च

MONTHLY PROBLEMS IN MATHEMATICS

May 2024 Problems

1. Let S be the set of positive integers whose only prime factors are 2,3 , or 5 . Evaluate

$$
\sum_{x \in S} \frac{1}{x}=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{12}+\frac{1}{15}+\ldots
$$

2. Let B be a bounded closed convex symmetric (with respect to the origin) set in R^{2} with boundary the curve Γ. Let B have the property that the ellipse of maximal area contained in B is the disc D of radius 1 centered at the origin with boundary the circle C.
Prove that $A \cap \Gamma \neq \varnothing$ for any arc A of C of length $l(A) \geq \frac{\pi}{2}$.
3. Let S be the set of 3 by 3 symmetric matrices all of whose entries are 0 or 1 . Find the number of matrices in S for which five entries are 1 and four are 0 .
4. Prove that the arithmetic mean of all positive divisors of a positive integer n lies in theinterval

$$
\left[\sqrt{n}, \frac{n+1}{2}\right] .
$$

(Problems 2, 3, 4 are proposed by Henry Ricardo)
5. (a) For a real number a, and integer $n>1$, if possible, find functions f and g, each having at least n nonconstant derivatives, such that a is a zero of f, g and all their non constant derivatives.
(b) Do the same if f and g are required to be polynomials of degree $n+1, n \geq 1$.
(Proposed by Mahmoud Sayrafiezadeh)

MEC Monthly Problems in Mathematics
Department of Mathematics Medgar Evers College/CUNY

Editor: Raymond Thomas
Managing Editor: Mahmoud Sayrafiezadeh
Published since 2006

Deadline for submitting solutions is September 30
Please send solutions to Mah_Sayr@icloud.com Please type solutions in Word with equations in Mathtype

