
  
 

MONTHLY PROBLEMS IN MATHEMATICS 
 

December 2023 Problems and November Solutions 
 

  
1. Find all natural numbers n with property that the set   {1,2,3,...n} can be partioned into three 
disjoint subsets, such that the sum of the elements in all three subsets are equal. 
 
2. Find all polynomials P with integer coeffients so that if for natural numbers a and b,  a + b is 
a perfect squre, then so is   P(a)+ P(b) . 
 
[Problems 1 and 2 are from the Farsi language book, Iranian Mathematical Olympiads and International 
Results-From the beginning through 2021, by Ebadollah Mahmoodian.]  
 

3. For any positive integer n let  n  denote the closest integer to  n . Evaluate 

  

2 n + 2! n

2n
n=1

"

#  

 
4.  Prove that a finitie group can not be the union of two of its proper subgroups. Does the 
statement reman true if “two” is replaced by “three”? 
 
5. Consider the system of inequalities,   z ! vi + z ! wi < ri , i = 1,2,...n , where   z,vi ,wi  are 

complex numbers,  ri s are positive real numbers with  ri > vi ! wi , and   n > 3. 
(a) Prove that the system has a solution if and only if each choice of three inequalities has a 
common solution. Show that the number “three” cannot be replaced by “two”. 
(b) If k,   3< k < n , inequalities are selected at random and tested by the method in (a) and 
found that they have a common solution, what is the probability that the entire system will 
have solution? 
 (Proposed by Mahmoud Sayrafiezadeh) 
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  November 2023 Problems 

Solutions Follow 
 
 

1. Determine all prime numbers  p  such that the sum of all the divisors of  4p  is a perfect  
square. 
 

2. Let 2n ≥  be a positive integer and let A be an n n×  matrix with real entries such that 
2 .nA I= −   If  B  is an n n×  matrix with real entries and ,AB BA= prove that det 0.B ≥  

 
 3. Denote by  G  the group    ! 5! ! ! 10! ! ! 36!   and let  :f G G→  be thehomomorphism given by  

( ) 78   for all  .f g g g G= ∈   Find the cardinalities of the kernel and of the image of  f. 
 
(Above problems are proposed by Henry Ricardo) 
 

4. Find a closed-form expression for 
  

sin(k)
k=0

n

!  

 
5. Pierre Varignon in a paper published in 1731 proved that the mid points of the sides of an 
arbitrary quadrilateral form a parallelogram. Prove that if the Varignon parallelogram turns out 
to be a rectangle, then it will remain a rectangle under any transformation of the quadrilateral 
that preserves the lengths and the order of its sides.  
(Proposed by Mahmoud Sayrafiezadeh) 
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Solutions to November 2023 Problems 
 

Problem 1. Determine all prime numbers  p  such that the sum of all the divisors of 4p  is a perfect square. 
 
Solution to problem 1 by Henry Ricardo 

1. Since  p  is prime, the only divisors of  4p  are  2 3 41, , , , and  .p p p p   Therefore we want a solution 
( , )p n  of the Diophantine equation  2 2 3 41 ,= + + + +n p p p p where  p  is prime and n is a positive 
integer.  We will prove that the only prime  p  satisfying this condition is  3. 

First of all, numerical experimentation reveals that  ( , ) (3,11)=p n  is a solution:  
2 3 4 21 3 3 3 3 4 9 27 81 121 11 .+ + + + = + + + = =   Next we note that  p = 2  does not yield a 

solution.  If  p > 3 is an odd prime, then 
2 2

2 4 3 2 21 1 1 11
2 2 2 2

⎛ ⎞ ⎛ ⎞+ − ≤ + + + + ≤ + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
p p p p p p p p . 

 But this says that  4 3 2 1+ + + +p p p p 	
  	
  lies between two consecutive squares and so 
cannot be a perfect square.  Therefore,  p = 3  is the only prime that gives a solution. 
 

Problem 2. Let 2n ≥  be a positive integer and let A be an n n×  matrix with real entries such that 
2 .nA I= −   If  B  is an n n×  matrix with real entries and ,AB BA= prove that det 0.B ≥  

 
Solution to problem 2 
No solution has been received to problem 2. 
 
 Problem 3. Denote by  G  the group    ! 5! ! ! 10! ! ! 36!   and let  :f G G→  be the homomorphism 
given by  ( ) 78   for all  .f g g g G= ∈   Find the cardinalities of the kernel and of the image of  f. 
 
Solution 1 to problem 3 by Raymond Thomas 
!"# ! = !, !, ! ∈ ℤ!×ℤ!"×ℤ!": 78!, 78!, 78! = (0,0,0)  thus, 
we	
  must	
  solve	
  the	
  equation	
  78! = 0  in	
  ℤ!  ,ℤ!"  ,  and	
  ℤ!".	
  	
  
	
  
	
  	
  	
  	
  In	
  ℤ!, 78! = 0⟺ 3! = 0⇔ ! ∈ {0}	
  
	
  
	
  	
  	
  	
  In	
  ℤ!", 78! = 0⟺ 8! = 0⇔ ! ∈ {0  ,5}	
  
	
  
	
  	
  	
  	
  In	
  ℤ!", 78! = 0⟺ 6! = 0⇔ ! ∈ {0,6,12,18,24,30}	
  
	
  
	
  	
  	
  Hence	
  !"# ! = 0 × 0,5 × 0,6,12,18,24,30 ,	
  and	
  the	
  cardinality	
  of	
  !"#(!)	
  
	
  
	
  	
  	
  is	
  therefore	
  1(2)(6)	
  =	
  12.	
  Since	
  !" ! 	
  is	
  isomorphic	
  to	
  !/!"#(!),	
  we	
  have	
  
	
  
	
  	
  that	
  the	
  cardinality	
  of	
  !" ! = !"#$(!)

!"#$(!"# ! )
= !(!")(!")

!"
= !"#	
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Solution 2 to problem 3 by Henry Ricardo 
Let  1 2 3( , , )=g g g g  be an element of  G  with    g1 !! 5!, g2 !! 10!,  and  g3 !! 36!.  

The element  g  is in the kernel of  f  if and only 1 2 3 1 2 3( ) 78( , , ) (3 , 2 ,6 ) (0,0,0).= = − =f g g g g g g g   In 
other words, ( ) (0,0,0)=f g  if and only if 1 2 30  (mod 5), g 0 (mod 5), and  0  (mod 6).≡ ≡ ≡g g   
Therefore, we conclude that  Ker( )f  has  1 2 6 12 elements.⋅ ⋅ =   This implies that Im( ) Ker( );f G f  
has Ker( ) 5 10 36 12 150 elements.= ⋅ ⋅ =G f  

 

Problem 4. Find a closed-form expression for 
  

sin(k)
k=0

n

!
 

Solution 1 to problem 4 by Henry Ricardo 
We invoke the product-to-sum formula  2sin sin cos( ) cos( )θ ϕ θ ϕ θ ϕ= − − +   to  

prove a general result: 

   

sin(kx)
k=0

n

! = sin(kx)
k=1

n

!

=
2sin
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"
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"
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Taking 1,x = we see that  

0

1 1 1cos cos sin sin
2 2 2 2sin( ) .

1 12 sin sin
2 2

=

+⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠= =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑
n

k

n nn
k  

 
Solution 2 to problem 4 by Raymond Thomas 

sin ! = Im  (
!

!!!

!!"
!

!!!

) = Im
!!(!!!) − 1
!! − 1 = Im

!!(!!!) − 1
!! − 1 ∙

!!! − 1
!!! − 1  

	
  	
  	
  	
  =   Im   !!"!!! !!! !!!!!!
!!!!!!!!!!

= Im   !"# ! !!sin ! !cos !!! !!sin !!! !!"# ! !!sin ! !!
!!!"# ! !!sin ! !!"# ! !!sin ! !!
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  = sin ! !sin !!! !sin(1)

!!!cos(1)
	
  

 
 
Problem 5. Pierre Varignon in a paper published in 1731 proved that the mid points of the sides of an 
arbitrary quadrilateral form a parallelogram. Prove that if the Varignon parallelogram turns out to be a 
rectangle, then it will remain a rectangle under any transformation of the quadrilateral that preserves the 
lengths and the order of its sides.  
 
Solution 1 to problem 5 by Raymond Thomas 
The following picture is meant only as an aid in following the proof: 
 

 
 
Let the sides of the quadrilateral be the vectors !,!,!, and ! , then we have 
 
! + ! + ! + ! = ! , the zero vector. Furthermore, the two non-parallel sides 
 
of the Varignon parallelogram are given by !

!
! + !

!
! and !

!
! + !

!
! so they are 

 
parallel to the diagonals of the quadrilateral: ! + ! , and ! + !. We immediately  

!	
  

!	
  

!	
  

!	
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deduce that the Varignon parallelogram is a rectangle if and only if the diagonals of  
 
the quadrilateral are perpendicular i.e. iff (! + !) ∙ ! + ! = 0 where the dot is  
 
the usual vector dot product. 
 
 
We can now rephrase the problem at hand as follows: 
 
Given vectors !,!,!, and ! such that ! + ! + ! + ! = ! and (! + !) ∙ ! + ! = 0,  
 
Show that if !, !, !, and ! are such that ! = ! , ! = ! , ! = ! , ! = !  and  
 
! + ! + ! + ! = ! , then (! + !) ∙ ! + ! = 0 
 
Proof: Since |!| = |!| we have ! + ! + !

!
= ! + ! + !

!
 

 
or (! + ! + !) ∙ ! + ! + ! =(! + ! + !) ∙ ! + ! + !  
 

or ! ! + !
!
+ ! ! + 2! ∙ ! + 2! ∙ ! + 2! ∙ ! = !

!
+ !

!
+ !

!
+ 2! ∙ ! + 2! ∙ ! + 2! ∙ ! 

 
Now noting that ! ! = !

!
, !

!
= !

!
,  and ! ! = !

!
,  we conclude that  

 
 
              (*) 
 
 
We now compute (! + !) ∙ ! + !  = ! ∙ ! + ! ∙ ! + !

!
+ ! ∙ ! 

 
                                                                 = ! ∙ ! + ! ∙ ! + !

!
+ ! ∙ !   by (*) and b/c !

!
= !

!
 

 
                                                                 = (! + !) ∙ ! + !  
 
                                                                 = 0 by hypothesis. 
	
  
This	
  completes	
  the	
  proof.	
  

 
  
Solution 2 to problem 5 by Henry Ricardo 
First we see that 

   (u+ v) i (u+ x) = u i u+ u i x + v i u+ v i x .      (*) 

      Now suppose that   2 2 2 2 2 2 2 2, or .+ = + = − + +u w v x w u v x  Since 
( ),= − + +w u v x we have 

2! ∙ ! + 2! ∙ ! + 2! ∙ ! = 2! ∙ ! + 2! ∙ ! + 2! ∙ !	
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w
2
= w i w = (u+ v + x) i (u+ v + x)

= u
2
+ v

2
+ x

2
+ 2(uiv + ui x + x iv)

= ! u
2
+ v

2
+ x

2
+ 2(uiu+ uiv + ui x + x iv).

 

   Thus    uiu+ uiv + ui x + x iv = 0 —that is, looking at  (*) , +u v  is orthogonal to  .+u x  
On the other hand, if     (u+ v) i (u+ x) = 0, then	
  	
  	
  

	
  
So	
  	
   2 2 2 2+ = +u w v x .	
  
[This appeared as part of the solution to “Quickie” 630 in Mathematics Magazine (Vol 48 (1975), pp. 295 and 
303—a problem about a skew quadrilateral proposed by Murray Klamkin and Mahmoud Sayrafiezadeh—and 
appears as an exercise in my text A Modern Introduction to Linear Algebra.] 
 
 
 


