

MONTHLY PROBLEMS IN MATHEMATICS

December 2023 Problems and November Solutions

1. Find all natural numbers n with property that the set $\{1,2,3, \ldots n\}$ can be partioned into three disjoint subsets, such that the sum of the elements in all three subsets are equal.
2. Find all polynomials P with integer coeffients so that if for natural numbers a and $b, a+b$ is a perfect squre, then so is $P(a)+P(b)$.
[Problems 1 and 2 are from the Farsi language book, Iranian Mathematical Olympiads and International Results-From the beginning through 2021, by Ebadollah Mahmoodian.]
3. For any positive integer n let $\langle n\rangle$ denote the closest integer to \sqrt{n}. Evaluate

$$
\sum_{n=1}^{\infty} \frac{2^{\langle n\rangle}+2^{-\langle n\rangle}}{2^{n}}
$$

4. Prove that a finitie group can not be the union of two of its proper subgroups. Does the statement reman true if "two" is replaced by "three"?
5. Consider the system of inequalities, $\left|z-v_{i}\right|+\left|z-w_{i}\right|<r_{i}, i=1,2, \ldots n$, where z, v_{i}, w_{i} are complex numbers, r_{i} s are positive real numbers with $r_{i}>\left|v_{i}-w_{i}\right|$, and $n>3$.
(a) Prove that the system has a solution if and only if each choice of three inequalities has a common solution. Show that the number "three" cannot be replaced by "two".
(b) If $k, 3<k<n$, inequalities are selected at random and tested by the method in (a) and found that they have a common solution, what is the probability that the entire system will have solution?
(Proposed by Mahmoud Sayrafiezadeh)

MEC Monthly Problems in Mathematics
Department of Mathematics
Medgar Evers College/CUNY
Published since 2006

Editor: Raymond Thomas
Managing Editor: Mahmoud Sayrafiezadeh

November 2023 Problems Solutions Follow

1. Determine all prime numbers p such that the sum of all the divisors of p^{4} is a perfect square.
2. Let $n \geq 2$ be a positive integer and let A be an $n \times n$ matrix with real entries such that $A^{2}=-I_{n}$. If B is an $n \times n$ matrix with real entries and $A B=B A$, prove that $\operatorname{det} B \geq 0$.
3. Denote by G the group $\mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 10 \mathbb{Z} \times \mathbb{Z} / 36 \mathbb{Z}$ and let $f: G \rightarrow G$ be thehomomorphism given by $f(g)=78 g$ for all $g \in G$. Find the cardinalities of the kernel and of the image of f.
(Above problems are proposed by Henry Ricardo)
4. Find a closed-form expression for $\sum_{k=0}^{n} \sin (k)$
5. Pierre Varignon in a paper published in 1731 proved that the mid points of the sides of an arbitrary quadrilateral form a parallelogram. Prove that if the Varignon parallelogram turns out to be a rectangle, then it will remain a rectangle under any transformation of the quadrilateral that preserves the lengths and the order of its sides.
(Proposed by Mahmoud Sayrafiezadeh)

Solutions to November 2023 Problems

Problem 1. Determine all prime numbers p such that the sum of all the divisors of p^{4} is a perfect square.

Solution to problem 1 by Henry Ricardo

1. Since p is prime, the only divisors of p^{4} are $1, p, p^{2}, p^{3}$, and p^{4}. Therefore we want a solution (p, n) of the Diophantine equation $n^{2}=1+p+p^{2}+p^{3}+p^{4}$, where p is prime and n is a positive integer. We will prove that the only prime p satisfying this condition is $\mathbf{3}$.

First of all, numerical experimentation reveals that $(p, n)=(3,11)$ is a solution:
$1+3+3^{2}+3^{3}+3^{4}=4+9+27+81=121=11^{2}$. Next we note that $p=2$ does not yield a solution. If $p>3$ is an odd prime, then

$$
\left(p^{2}+\frac{1}{2} p-\frac{1}{2}\right)^{2} \leq p^{4}+p^{3}+p^{2}+p+1 \leq\left(p^{2}+\frac{1}{2} p+\frac{1}{2}\right)^{2} .
$$

But this says that $p^{4}+p^{3}+p^{2}+p+1$ lies between two consecutive squares and so cannot be a perfect square. Therefore, $p=3$ is the only prime that gives a solution.

Problem 2. Let $n \geq 2$ be a positive integer and let A be an $n \times n$ matrix with real entries such that $A^{2}=-I_{n}$. If B is an $n \times n$ matrix with real entries and $A B=B A$, prove that $\operatorname{det} B \geq 0$.

Solution to problem 2

No solution has been received to problem 2.
Problem 3. Denote by G the group $\mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 10 \mathbb{Z} \times \mathbb{Z} / 36 \mathbb{Z}$ and let $f: G \rightarrow G$ be the homomorphism given by $f(g)=78 g$ for all $g \in G$. Find the cardinalities of the kernel and of the image of f.

Solution 1 to problem 3 by Raymond Thomas

$\operatorname{Ker}(f)=\left\{(a, b, c) \in \mathbb{Z}_{5} \times \mathbb{Z}_{10} \times \mathbb{Z}_{36}:(78 a, 78 b, 78 c)=(0,0,0)\right\}$ thus, we must solve the equation $78 x=0$ in $\mathbb{Z}_{5}, \mathbb{Z}_{10}$, and \mathbb{Z}_{36}.

$$
\begin{aligned}
& \text { In } \mathbb{Z}_{5}, 78 x=0 \Leftrightarrow 3 x=0 \Leftrightarrow x \in\{0\} \\
& \text { In } \mathbb{Z}_{10}, 78 x=0 \Leftrightarrow 8 x=0 \Leftrightarrow x \in\{0,5\} \\
& \text { In } \mathbb{Z}_{36}, 78 x=0 \Leftrightarrow 6 x=0 \Leftrightarrow x \in\{0,6,12,18,24,30\}
\end{aligned}
$$

$$
\text { Hence } \operatorname{Ker}(f)=\{0\} \times\{0,5\} \times\{0,6,12,18,24,30\} \text {, and the cardinality of } \operatorname{Ker}(f)
$$

is therefore $1(2)(6)=\mathbf{1 2}$. Since $\operatorname{Im}(f)$ is isomorphic to $G / \operatorname{Ker}(f)$, we have that the cardinality of $\operatorname{Im}(f)=\frac{\operatorname{card}(G)}{\operatorname{card}(\operatorname{Ker}(f))}=\frac{5(10)(36)}{12}=150$

Solution 2 to problem 3 by Henry Ricardo

Let $g=\left(g_{1}, g_{2}, g_{3}\right)$ be an element of G with $g_{1} \in \mathbb{Z} / 5 \mathbb{Z}, g_{2} \in \mathbb{Z} / 10 \mathbb{Z}$, and $g_{3} \in \mathbb{Z} / 36 \mathbb{Z}$.
The element g is in the kernel of f if and only $f(g)=78\left(g_{1}, g_{2}, g_{3}\right)=\left(3 g_{1},-2 g_{2}, 6 g_{3}\right)=(0,0,0)$. In other words, $f(g)=(0,0,0)$ if and only if $g_{1} \equiv 0(\bmod 5), \mathrm{g}_{2} \equiv 0(\bmod 5)$, and $g_{3} \equiv 0(\bmod 6)$.
Therefore, we conclude that $\operatorname{Ker}(f)$ has $1 \cdot 2 \cdot 6=12$ elements. This implies that $\operatorname{Im}(f) ; G / \operatorname{Ker}(f)$ has $|G| /|\operatorname{Ker}(f)|=5 \cdot 10 \cdot 36 / 12=150$ elements.

Problem 4. Find a closed-form expression for $\sum_{k=0}^{n} \sin (k)$

Solution 1 to problem 4 by Henry Ricardo

We invoke the product-to-sum formula $2 \sin \theta \sin \varphi=\cos (\theta-\varphi)-\cos (\theta+\varphi)$ to prove a general result:

$$
\begin{aligned}
\sum_{k=0}^{n} \sin (k x) & =\sum_{k=1}^{n} \sin (k x) \\
& =\sum_{k=1}^{n} \frac{2 \sin \left(\frac{x}{2}\right) \cdot \sin (k x)}{2 \sin \left(\frac{x}{2}\right)} \\
= & \frac{\sum_{k=1}^{n}\left[\cos \left(k x-\frac{x}{2}\right)-\cos \left(k x+\frac{x}{2}\right)\right]}{2 \sin \left(\frac{x}{2}\right)} \\
= & \frac{\cos \left(\frac{x}{2}\right)-\cos \left(n+\frac{1}{2}\right) x}{2 \sin \left(\frac{x}{2}\right)}, \quad x \neq 2 m \pi, m \in \mathbb{Z}
\end{aligned}
$$

Taking $\boldsymbol{x}=1$, we see that

$$
\sum_{k=0}^{n} \sin (k)=\frac{\cos \left(\frac{1}{2}\right)-\cos \left(n+\frac{1}{2}\right)}{2 \sin \left(\frac{1}{2}\right)}=\frac{\sin \left(\frac{n}{2}\right) \sin \left(\frac{n+1}{2}\right)}{\sin \left(\frac{1}{2}\right)}
$$

Solution 2 to problem 4 by Raymond Thomas

$$
\begin{aligned}
& \sum_{k=0}^{n} \sin (k)=\operatorname{Im}\left(\sum_{k=0}^{n} e^{i k}\right)=\operatorname{Im}\left(\frac{e^{i(n+1)}-1}{e^{i}-1}\right)=\operatorname{Im}\left[\left(\frac{e^{i(n+1)}-1}{e^{i}-1}\right) \cdot \frac{e^{-i}-1}{e^{-i}-1}\right] \\
= & \operatorname{Im}\left[\frac{e^{i n}-e^{i(n+1)}-e^{-i}+1}{1-e^{i}-e^{-i}+1}\right]=\operatorname{Im}\left[\frac{\cos (n)+i \sin (n)-\cos (n+1)-i \sin (n+1)-\cos (1)+i \sin (1)+1}{1-\cos (1)-i \sin (1)-\cos (1)+i \sin (1)+1}\right]
\end{aligned}
$$

$$
=\frac{\sin (n)-\sin (n+1)+\sin (1)}{2-2 \cos (1)}
$$

Problem 5. Pierre Varignon in a paper published in 1731 proved that the mid points of the sides of an arbitrary quadrilateral form a parallelogram. Prove that if the Varignon parallelogram turns out to be a rectangle, then it will remain a rectangle under any transformation of the quadrilateral that preserves the lengths and the order of its sides.

Solution 1 to problem 5 by Raymond Thomas
The following picture is meant only as an aid in following the proof:

Let the sides of the quadrilateral be the vectors $\vec{A}, \vec{B}, \vec{C}$, and \vec{D}, then we have $\vec{A}+\vec{B}+\vec{C}+\vec{D}=\vec{O}$, the zero vector. Furthermore, the two non-parallel sides of the Varignon parallelogram are given by $\frac{1}{2} \vec{A}+\frac{1}{2} \vec{B}$ and $\frac{1}{2} \vec{B}+\frac{1}{2} \vec{C}$ so they are parallel to the diagonals of the quadrilateral: $\vec{A}+\vec{B}$, and $\vec{B}+\vec{C}$. We immediately
deduce that the Varignon parallelogram is a rectangle if and only if the diagonals of the quadrilateral are perpendicular i.e. $\operatorname{iff}(\vec{A}+\vec{B}) \cdot(\vec{B}+\vec{C})=0$ where the dot is the usual vector dot product.

We can now rephrase the problem at hand as follows:
Given vectors $\vec{A}, \vec{B}, \vec{C}$, and \vec{D} such that $\vec{A}+\vec{B}+\vec{C}+\vec{D}=\vec{O}$ and $(\vec{A}+\vec{B}) \cdot(\vec{B}+\vec{C})=0$,
Show that if $\vec{a}, \vec{b}, \vec{c}$, and \vec{d} are such that $|\vec{a}|=|\vec{A}|,|\vec{b}|=|\vec{B}|,|\vec{c}|=|\vec{C}|,|\vec{d}|=|\vec{D}|$ and $\vec{a}+\vec{b}+\vec{c}+\vec{d}=\vec{O}$, then $(\vec{a}+\vec{b}) \cdot(\vec{b}+\vec{c})=0$

Proof: Since $|\overrightarrow{d \mid}=\overrightarrow{\mid D}|$ we have $|\vec{a}+\vec{b}+\vec{c}|^{2}=|\vec{A}+\vec{B}+\vec{C}|^{2}$
or $(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{a}+\vec{b}+\vec{c})=(\vec{A}+\vec{B}+\vec{C}) \cdot(\vec{A}+\vec{B}+\vec{C})$
or $|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+2 \vec{a} \cdot \vec{b}+2 \vec{a} \cdot \vec{c}+2 \vec{b} \cdot \vec{c}=|\vec{A}|^{2}+|\vec{B}|^{2}+|\vec{C}|^{2}+2 \vec{A} \cdot \vec{B}+2 \vec{A} \cdot \vec{C}+2 \vec{B} \cdot \vec{C}$
Now noting that $|\vec{a}|^{2}=|\vec{A}|^{2},|\vec{b}|^{2}=|\vec{B}|^{2}$, and $|\vec{c}|^{2}=|\vec{C}|^{2}$, we conclude that

$$
\begin{equation*}
2 \vec{a} \cdot \vec{b}+2 \vec{a} \cdot \vec{c}+2 \vec{b} \cdot \vec{c}=2 \vec{A} \cdot \vec{B}+2 \vec{A} \cdot \vec{C}+2 \vec{B} \cdot \vec{C} \tag{*}
\end{equation*}
$$

We now compute $(\vec{a}+\vec{b}) \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}+|\vec{b}|^{2}+\vec{b} \cdot \vec{c}$

$$
\begin{aligned}
& =\vec{A} \cdot \vec{B}+\vec{A} \cdot \vec{C}+|\vec{B}|^{2}+\vec{B} \cdot \vec{C} \text { by }\left(^{*}\right) \text { and } \mathrm{b} / \mathrm{c}|\vec{b}|^{2}=|\vec{B}|^{2} \\
& =(\vec{A}+\vec{B}) \cdot(\vec{B}+\vec{C}) \\
& =0 \text { by hypothesis. }
\end{aligned}
$$

This completes the proof.

Solution 2 to problem 5 by Henry Ricardo

First we see that

$$
\begin{equation*}
(u+v) \cdot(u+x)=u \cdot u+u \cdot x+v \cdot u+v \cdot x \tag{*}
\end{equation*}
$$

Now suppose that $\|\boldsymbol{u}\|^{2}+\|\boldsymbol{w}\|^{2}=\|\boldsymbol{v}\|^{2}+\|\boldsymbol{x}\|^{2}$, or $\|\boldsymbol{w}\|^{2}=-\|\boldsymbol{u}\|^{2}+\|\boldsymbol{v}\|^{2}+\|\boldsymbol{x}\|^{2}$. Since $\boldsymbol{w}=-(\boldsymbol{u}+\boldsymbol{v}+\boldsymbol{x})$, we have

$$
\begin{aligned}
\|\boldsymbol{w}\|^{2} & =\boldsymbol{w} \cdot \boldsymbol{w}=(\boldsymbol{u}+\boldsymbol{v}+\boldsymbol{x}) \cdot(\boldsymbol{u}+\boldsymbol{v}+\boldsymbol{x}) \\
& =\|\boldsymbol{u}\|^{2}+\|v\|^{2}+\|x\|^{2}+2(\boldsymbol{u} \cdot \boldsymbol{v}+\boldsymbol{u} \cdot \boldsymbol{x}+\boldsymbol{x} \cdot \boldsymbol{v}) \\
& =-\|\boldsymbol{u}\|^{2}+\|v\|^{2}+\|\boldsymbol{x}\|^{2}+2(\boldsymbol{u} \cdot \boldsymbol{u}+\boldsymbol{u} \cdot \boldsymbol{v}+\boldsymbol{u} \cdot \boldsymbol{x}+\boldsymbol{x} \cdot \boldsymbol{v}) .
\end{aligned}
$$

Thus $\boldsymbol{u} \cdot \boldsymbol{u}+\boldsymbol{u} \cdot \boldsymbol{v}+\boldsymbol{u} \cdot \boldsymbol{x}+\boldsymbol{x} \cdot \boldsymbol{v}=0$-that is, looking at $(*), \boldsymbol{u}+\boldsymbol{v}$ is orthogonal to $\boldsymbol{u}+\boldsymbol{x}$.
On the other hand, if $(\boldsymbol{u}+\boldsymbol{v}) \cdot(\boldsymbol{u}+\boldsymbol{x})=0$, then
So $\|\boldsymbol{u}\|^{2}+\|\boldsymbol{w}\|^{2}=\|\boldsymbol{v}\|^{2}+\|\boldsymbol{x}\|^{2}$.
[This appeared as part of the solution to "Quickie" 630 in Mathematics Magazine (Vol 48 (1975), pp. 295 and 303 -a problem about a skew quadrilateral proposed by Murray Klamkin and Mahmoud Sayrafiezadeh - and appears as an exercise in my text A Modern Introduction to Linear Algebra.]

