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The 3rd Conference on Dynamical Systems and Geometric Theories 27-28 January, 2022

2. Preface

It is our pleasure to welcome you to the 2022 3rd Conference on Dynamical Sys-
tems And Geometric Theories (CDSGT2022) in Hakim Sabzevari University, Iran. A
major goal and feature of it is to bring academic scientists, mathematical researchers
together to exchange and share their experiences and research results about dynam-
ical systems and geometric theories, and discuss about them.
The program consists of invited sessions, workshops and discussions with eminent
speakers covering a wide range of Dynamical systems and Geometric theories. This
rich program provides all attendees with the opportunities to meet and interact with
one another. We hope your experience with CDSG2022 is a fruitful and long lasting
one. With your support and participation, the conference will continue its success for
a long time.
We would like to thank the organization staff, the members of the program com-
mittees and reviewers. They have worked very hard in reviewing papers and making
valuable suggestions for the authors to improve their work. We look forward to seeing
all of you next years at the conference.

Ali Barzanouni
Head of the Conference
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4. An upper bound for the measure-theoretic pressure of endomorphisms

Maryam Razi1*, Pouya Mehdipour, Sanaz Lamei
1University of Guilan-Iran. .razi264@gmail.com 2Federal University of Viosa-MG,

Brazil. Pouya@ufv.br 3University of Guilan-Iran. lamei@guilan.ac.ir

A measure-theoretic pressure was defined by [L. He, J. Lv and L. Zhou, Definition of measure-
theoretic pressure using spanning sets, Acta Math. Sinica(English Series), 20 (2004), 709-718]
based on Katok entropy formula. In this article, we investigate an upper bound for the measure
theoretic pressure of a C2 endomorphism on a closed s-dimensional Riemannian manifold (compact
and boundaryless) preserving a hyperbolic Borel probability measure.

Keywords: Thermodynamic formalism, Periodic points, Measure Pressure, Non-uniform hyper-
bolicity.

AMS Mathematics Subject Classification [2020]: 18A32, 18F20, 05C65
Code: cdsgt3-00560020

Introduction

Topological and measure theoretical pressures, as generalizations of the topological and measure
theoretical entropy, are significant quantities in Ergodic Theory and Statistical Mechanics. They
provide a determinant to measure the local complexity of dynamics defined in compact spaces.
In this paper we deal with measure theoretical pressure for endomorphisms which are C2 local
diffeomorphism cascades on closed s-dimensional Riemannian manifolds (compact and boundary-
less). It is considered the endomorphisms with fixed index, i.e., the dimension of the local unstable
manifolds is fixed. Note that when studying endomorphisms, different local dynamics are involved
and this can cause a variety of unstable indices at different points. Our aim is to extend the results
of [2] which uses the Katok entropy formula [4] to establish an upper bound for measure theoretic
pressure of diffeomorphisms in terms of their periodic points. We try to formulate such upper
bound for endomorphisms. The difficulty in achieving this result for the case of endomorphism
was due to the lack of a version of Katok Closing Lemma, for endomorphisms. In [5] a version
of Closing Lemma under the priory mentioned conditions for endomorphisms is obtained. These
results together with Theorem 2.1 of [2] on measure-theoretic pressures, defined on spanning sets
[1], are the crucial implements used for the proof of the following Theorem.

Multiplicative Ergodic Theorem for Natural Extension. We devote this subsection

to introduce the relevant Multiplicative Ergodic Theorem for Natural Extension (M̃ET ) and the
Katok Closing Lemma for C2 local diffeomorphisms. These results play a crucial role for our
purpose.

4.1. Theorem ([6]). Let µ be an f−invariant Borel probability measure on M . We denote by µ̃

the f̃−invariant Borel probability measure on Mf such that π∗µ̃ = µ. There exists a full measure
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subset R̃ called set of regular points such that for all x̃ = (xn) ∈ R̃ and n ∈ Z the tangent space
TxnM splits into a direct sum

TxnM = E1(x̃, n)⊕ · · · ⊕ Er(x0)(x̃, n)

and there exists −∞ < λ1(x̃) < · · · < λr(x̃) <∞ and mi(x̃) (i = 0, 1, ..., r(x̃)) such that:

(1) dimEi(x̃, n) = mi(x̃);
(2) Dxnf(Ei(x̃, n)) = Ei(x̃, n+ 1), and Dxnf |Ei(x̃,n) : Ei(x̃, n)→ Ei(x̃, n+ 1) is an isomor-

phism. For v ∈ Ei(x̃, n)\{0}, lim
m→∞

1
m log ‖Dxnf

m(v)‖ = λi(x̃);

lim
m→∞

− 1
m log ‖(Dxn−mf

m|Ei(x̃,n−m))
−1(v)‖ = λi(x̃);

(3) if i 6= j then

lim
n→±∞

1

n
log sin∠(Ei(x̃, n), Ej(x̃, n)) = 0,

where ∠(V,W ) denotes the angle between sub-spaces V and W of TxnM .

(4) r(.), λi(.) and mi(.) are measurable and f̃−invariant. Moreover r(x̃) = r(x0), λi(x̃) =
λi(x0) and mi(x̃) = mi(x0) for all i = 1, 2, ..., r(x̃).

Let µ be an f−invariant Borel probability measure on M . By M̃ET , there exists a full measure
subset R̃ called ”Lyapunov regular set”. The assumption that the measure mu is ergodic and
hyperbolic imposes that Lyapunov exponents are constant almost everywhere. The set of Lyapunov
regular points without zero Lyapunov exponents, contains a non-uniformly hyperbolic set of full
µ̃−measure with

λ = λµ, θ = θµ, C(x̃) = C(x̃, ε), K(x̃) = K(x̃, ε)

where λ = λµ (resp θ = θµ) is the least in modulus positive (resp. negative) Lyapunov exponent.
Suppose that µ has k positive Lyapunov exponents, then the index of f is considered k. Let
(f, µ) be a measure dynamics with µ a non-atomic hyperbolic ergodic measure. Without loss of

generality from now on, we set R̃ as the non-uniformly hyperbolic subset of the Lyapunov regular
points, with full µ−measure. We denote its projection on M by R = π(R̃) .

4.2. Definition (Pesin Blocks). Fix 0 < ε � 1. For any l > 1, we define a Pesin block

∆̃l of Mf consisting of x̃ = (xn) ∈ Mf for which there exists a sequence of splittings TxnM =
Es(x̃, n)⊕ Eu(x̃, n), n ∈ Z, satisfying:

• dimEs(x̃, n) = k ;
• Dxnf(Es(x̃, n)) = Es(x̃, n+ 1), Dxnf(Eu(x̃, n)) = Eu(x̃, n+ 1);
• for m ≥ 0, v ∈ Es(x̃, n) and w ∈ Eu(x̃, n);{

‖Dxnf
m(v)‖ ≤ ele−(θ−ε)me(ε|n|)‖v‖,∀n ∈ Z, n ≥ 1

‖(Dxn−mf
m|Eu(x̃,n−m))

−1(w)‖ ≤ ele−(λ−ε)me(ε|n−m|)‖w‖,∀n ∈ Z, n ≥ 1;

• sin∠(Es(x̃, n), Eu(x̃, n)) ≥ e−le−ε|n|.
The notation ∆̃k

l represents a Pesin Block with index k being the dimension of the local unstable
manifold.

Note that, Pesin blocks are compact subsets of Mf . The sub-spaces Es(x̃, n) and Eu(x̃, n) of

TxnM depend continuously on x̃ and f̃±(∆̃l) ⊂ ∆̃l+1.
In a non-uniformly hyperbolic setting, for C2 endomorphisms with fixed index, we have the

following version of Katok Closing Lemma.

4.3. Lemma (Katok Closing Lemma [5]). Let f be a C2−endomorphism of a compact Rie-
mannian s−dimensional manifold M . Then, for positive numbers χ, l, δ and 0 < k ≤ s, there exists
a number % = %(χ, l, δ, k) > 0 such that, if for some point x̃ ∈ ∆̃k

l and some integer m, one has

(1) f̃m(x̃) ∈ ∆̃k
l and d̃(x̃, f̃m(x̃)) < %,
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then, there exists a point z ∈M and z̄ ∈Mf , such that z = π(z̄)), and

• fm(z) = z and f̃m(z̄) = z̄;

• d̃(x̃, z̃) < δ and so d(x, z) < δ;
• the point z is a hyperbolic periodic point for f and its W s

loc(x) and Wu
loc(z̄) manifolds are

admissible manifolds near the point x,.

Meassure theoretic pressure

Let M be a compact n-dimensional Riemannian manifold and f : M → M be a C2 local
diffeomorphism preserving an ergodic hyperbolic measure µ (non-atomic). For any x̃ ∈ Mf with
π(x̃) = x, let r(x) denote the number of Lyapunov exponents of f at point x ∈M , λi(x) (1 ≤ i ≤
r(x) ≤ s) the i−th Lyapunov exponent and ki(x) its multiplicity. Due to Theorem 4.1, and the
ergodicity of the measure, the rµ, λµi , k

µ
i are constant.

Let f : M →M be a C2 map and µ an f -invariant Bore1 probability measure on M with µ̃ the
corresponded measure on Mf . Then, the following is a metric on M . This metric is called the dn
metric.

dn(x, y) = max
i
{d(f i(x), f i(y)); 0 < i ≤ n, x, y ∈M}.

For φ ∈ C(M) and µ ∈ Mf (M) the measure theoretic pressure with respect to the measure
entropy hµ(f) for a definition) is defined as following.

(2) Pµ(f, φ) = hµ(f) +

∫
φdµ.

In [2], the authors provide a definition for measure theoretical pressure using measurable sets.
The definition is stated as follows. Denote by Bn(x, ε) the ε-ball centered on x in dn-metric. For
ε > 0 a set E ⊂ M is said to be an (n, ε)-spanning set, if M ⊂

⋃
x∈E Bn(x, ε). For ρ > 0 one can

define the µ− (n, ε, ρ)-spanning set if µ(
⋃
x∈E Bn(x, ε)) > 1− ρ.

A set F ⊂ M is said to be an (n, ε)-separated set, if for x 6= y ∈ F there exists some 0 ≤ i < n
such that d(f i(x), f i(y)) ≥ ε. For ρ > 0, the µ− (n, ε, ρ)-separated sets are defined similarly. Note
that by definition, any (n, ε)-separating set is an (n, ε)-spanning set.

In what follows the notations lim and lim are used to represent respectively lim infn→∞ and
lim supn→∞. Let C(M) be the space of all continuous real valued functions on M . For φ ∈ C(M),

one define Snφ(x) =
∑n−1
i=0 φ(f i(x)) and

P (f, φ, n, ε) = inf{
∑
x∈E

exp Sn(φ)|E is (n, ε)- spanning set},

and for ρ > 0;

P ∗(f, φ, n, ε, ρ) = inf{
∑
x∈E

exp Sn(φ)|E is µ-(n, ε, ρ)-spanning set}.

Then, the Topological Pressure of f is defined as the map P (f, .) : C(M)→ R, where

P (f, φ) = lim
ε→0

limn→∞
1

n
logP (f, φ, n, ε).

In a similar way the Measure Theoretic Pressure of f with respect to µ is defined as,

(3) P ∗µ(f, φ) = lim
ρ→0

lim
ε→0

limn→∞
1

n
logP (f, φ, n, ε, ρ).

The following Theorem, establishes the equality of (3 and 2).

4.4. Theorem (Theorem 2.1 of [2]). Suppose (X, d) is a compact metric space and f : X → X
be a continuous map. For any µ ∈ E(f) and ϕ ∈ C(X),

Q∗µ(f, ϕ) = P ∗µ(f, ϕ) = Pµ(f, ϕ) = hµ(f) +

∫
ϕdµ,
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where Q∗µ(f, φ) = limε→0 limn→∞
1
n logP (f, φ, n, ε).

The following Variational Principle assigns the relation between the topological and measure
theoretical pressure.

4.5. Theorem. [4] Let f : X → X be a continuous map and ϕ ∈ C(X). Then

P (f, ϕ) = sup{Pµ(f, ϕ) | µ ∈M(f)} = sup{Pµ(f, ϕ) | µ ∈ E(f)}.

In this work the following upper bound for the measure theoretic pressure of a C2 endomorphism
is investigated.

4.6. Theorem. Let f : M → M be a C2 local diffeomorphism on a compact s-dimensional
Riemannian manifold M (with fixed index), and µ a hyperbolic measure. Then for any φ ∈ C(M),

Pµ(f, φ) ≤ lim
n→∞

sup
1

n
log

∑
x∈Fix(fn)

exp(sn(φ)(x)).

Conclusion

In this paper we give an upper bound for the measure theoretic pressure of a C2 endomorphism on
a closed s-dimensional Riemannian manifold (compact and boundaryless) preserving a hyperbolic
Borel probability measure with fixed index.
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5. Chaotic Dynamics of Lorenz-type systems

Roya Makroonia

Faculty of Mathematics, Statistics & Computer Sciences, University of Sistan and Baluchestan, Zahedan,

Iran

In the present paper, we consider a family of one-dimensional discontinuous monotone dynamical
systems of the interval [0, 1] onto itself, with N = 2 branches and investigate their chaotic
dynamics. Here we follow the definition suggested by Devaney in order to show robust full chaos.

Keywords: chaos, piecewise smooth dynamical systems, expanding

AMS Mathematics Subject Classification [2020]: 37G15
Code: cdsgt3-00710026

aSpeaker. Email address: r.makrooni@math.usb.ac.ir

Introduction

The study of piecewise smooth systems had a wide expansion in the last decade. This is due to
the large number of physical and engineering systems with nonsmooth vector fields. Many appli-
cations come from power electronic circuits in electrical engineering, which gave a wide impulse to
the study of piecewise defined systems, both continuous and discontinuous. Several kinds of bifur-
cations of non-smooth systems also appear in forced impact oscillators, in mechanical engineering,
in economics and social sciences.

Piecewise smooth (PWS for short) dynamical systems are characterized by the fact that their
state space is divided into partitions by borders also denoted as switching manifolds. Within each
partition, the system is smooth (that is Ck up to some k) but the rules which govern the dynamic
behavior (that is the right hand side of the system function) change at the boundaries ([1]).

Sometimes, simplifying assumptions on systems lead to piecewise linear models and since many
years particular studies have been devoted to piecewise linear (PWL for short) systems, both
contin- uous and discontinuous.

In the present work, we consider a map of an interval I into itself. In the last decades, the condi-
tion of persistence of chaos in the whole interval (robust full chaos) has become very important in
engineering applications, especially those related to grazing bifurcations, for security transmissions,
as well as in other applied fields. In such applications, the systems are often ultimately described
by piecewise smooth maps. In particular, it is known that the three-dimensional ordinary differen-
tial equations called Lorenz flows and discontinuity-induced bifurcation can be analyzed by using
suitable Poincaré maps, which are often piecewise smooth and discontinuous. An important class
of such systems, for which the Poincaré sections are maps with two branches (N = 2), leads to a
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family of discontinuous maps of an interval, with two increasing branches, called Lorenz maps of
Class A and, as we shall recall, already considered by many authors.

Moreover, particularly important is to investigate the conditions of full chaos, and its robustness,
in the class of expanding Lorenz maps. These kind of maps are discontinuous and have increasing
branches which has been considered in the literature. In fact, a well known sufficient, but not
necessary, condition of robust full chaos for an expanding Lorenz map f(x) is f ′(x) >

√
2 for any

x (seen in [6], [5]), while the necessary and sufficient conditions for the case 1 < f ′(x) <
√

2 can
be considered outlined in [2].

Differently, the case of a piecewise smooth map with N > 2 branches, has got less attention up to
now. Besides the basic results related to the piecewise linear map with constant slope, expanding
piecewise monotone maps with N > 2 branches have been considered by Li and Yorke in [4], where
some relevant properties of the chaotic sets are determined, but not the characterization of full
chaos.

Still less attention has been paid to the robustness of the chaotic regime. In many applications
it is relevant to get robust chaos, i.e. structurally stable chaos, or persistent under parameter
perturbations. In particular, the occurrence and robustness of full chaos in a Poincaré map which
is a non-expanding Lorenz map, can be considered as an open problem. Indeed this is a relevant
case, also in applications, which motivates the present work. Besides the class of Lorenz maps, we
are interested in a particular class of piecewise monotone discontinuous maps with N > 2 branches,
which is associated with the first return map in Lorenz maps. Their peculiarity is that the internal
branches of the first return maps are onto the interval, and we call these maps Baker-like. A
relevant fact is that even if a Lorenz map is not expanding, its related first return map may be
an expanding Lorenz map or Baker-like map, and this allows to get results otherwise difficult to
prove.

So, the main objective of this work is to give the necessary and sufficient conditions for a dis-
continuous piecewise smooth expanding map f of an interval into itself, constituted by N pieces
with N = 2, to be robustly chaotic in the whole interval. As recalled above, for N = 2 the map is
a Lorenz map of Class A, and this problem has been investigated by other authors, mainly giving
sufficient conditions for full chaos.

Main results

First of all, we state some basic notations related to the chaos theory. Many definitions of chaos
can be found in the existing literature. We will follow here the definition that was suggested by
Devaney in 1986. It has three ingredients defined as follows:

5.1. Definition. (Chaos) Let (X, d) be a metric space without isolated points. Then a dynamical
system f : X −→ X is said to be chaotic (in the sense of Devaney) if it satisfies the following
conditions:

(1) transitivity: f is topologically transitive in X; that is, for any pair of non-empty open sets
U and V of X there exists a natural number n such that fn(U) ∩ V 6= ∅;

(2) density: the periodic points of f are dense in X;
(3) sensitivity: f has sensitive dependence on initial conditions in X; that is, there is a positive

constant δ (sensitivity constant) such that for every point x of X and every neighborhood N of x
there exists a point y in N and a non negative integer n such that d(fn(x), fn(y)) ≥ δ.

For convenience, suppose that I is the interval [0, 1].

5.2. Definition. (Robust or Structurally stable choas) A map φ(x; p) := I −→ I depending on
a vector of parameters p ∈ P is said to be robustly chaotic (or structurally stable chaotic) in X at
p0 if the same property holds in a neighborhood U(p0) ∩ P of p0 (i.e. the maps are topologically
conjugate).
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In this work, we consider a one dimensional discontinuous piecewise monotone C(1) map f : I −→
I of the interval [0, 1] onto itself, with N ≥ 2 branches. That is, Lorenz maps for N = 2 and a family
of expanding Baker-like maps for N > 2. We distinguish between maps with one discontinuity
point, i.e. the number of branches is N = 2, which lead to the well known class of Lorenz maps,
or more branches, N ≥ 3, which we call Baker-like maps. This class of maps is relevant because
it may represent the first return map of non-expanding Lorenz maps. We determine the necessary
and sufficient conditions to have robust chaos, with robust we mean persistence under parameter
perturbations and full chaos refers to the whole interval.

5.3. Definition. (Lorenz map) A Lorenz map x 7−→ f(x) is defined by a function f : I −→ I,
I = [0, 1] , with a single discontinuity point ξ1 ∈ (0, 1) :

(4) f(x) =

{
f1(x) if 0 ≤ x < ξ1
f2(x) if ξ1 ≤ x ≤ 1

such that fi(x) are strictly increasing C(1) functions in Ii, i = 1, 2, with f1(ξ1) = 1 and f2(ξ1) =
0, I1 = [0, ξ1], I2 = [ξ1, 1] .

An example of map f is shown in Fig.1.

Figure 1. An example of map f and its branches

5.4. Definition. (expanding) A piecewise C(1) Lorenz map (4) is called expanding if a constant
λ > 1 exists such that f ′i(x) > λ for any x ∈ Ii and 1 ≤ i ≤ N.

Notice that in our definition of a Lorenz map, it is f([0, 1]) = [0, 1), but as it is common when
dealing with discontinuous maps, we can say the map is chaotic in closed interval [0, 1].

In the following, writing a condition on the derivative as f ′(x), for any x ∈ I, we mean that for
the components fi the property holds in the closed interval of definiton.

As we have already mentioned in the introduction, we know, from [6], that for an expanding

Lorenz map the condition f ′(x) >
√

2 is sufficient but not necessary to have chaos in [0, 1]. In this

section we show that the necessary and sufficient conditions, to have full chaos, for 1 < λ <
√

2 are
related to the existing basic cycle RLn−1 or Rn−1L, for some n > 1, which must be homoclinic.
We emphasize that the existence of such basic cycles is related to a border collision bifurcation,
clearly distinguished from the homoclinic bifurcation values.
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5.5. Proposition. ([3]). An expanding Lorenz map f is chaotic in [0, 1] iff the existing basic
cycle (with symbolic sequence Ln−1R or Rn−1L, for n > 1) is homoclinic. Chaos is not robust
at the homoclinic bifurcation values detected via the conditions fn(0) = xnmax and fn(1) = xnmin,
where xnmin and xnmax are the minimum and the maximum of the periodic points of the n−cycle.

The homoclinic bifurcations related to the basic cycles having symbolic sequence RLn−1 and
Rn−1L, n > 1, have been considered also in [2] for the β−Transformation T (x). Moreover, sim-
ilar results hold for a generic expanding Lorenz map (since it is topologically conjugate to a
β−Transformation T (x).
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Introduction

A (simply-connected) four-dimensional homogeneous Riemannian manifold is either symmetric
or isometric to a Lie group equipped with a left-invariant Riemannian metric. Indeed, the class of
n-dimensional simply connected Lorentzian Lie groups (respectively ,Lorentzian Lie algebras) coin-
cides with the class of the Riemannian ones. Using this fact, four-dimensional Einstein Lorentzian
Lie groups have been classified [3]. On the other hand, investigating critical points of the energy
associated to vector fields is an interesting problem from different points of view. In Riemannian
settings, it has been proved that critical points of the energy functional E : X(M)→ R, restricted
to maps defined by vector fields, are parallel vector fields [4, 5]. Moreover, Gil-Medrano [4] studied
when V is a harmonic map. So, it is natural to determine the harmonicity properties of vector
fields on four-dimensional Lorentzian Einstein Lie groups.
A Riemannian manifold admitting a parallel vector field is locally reducible, and the same is true
for a pseudo-Riemannian manifold admitting an either space-like or time-like parallel vector field.
This leads us to consider different situations, where some interesting types of non-parallel vector
fields can be characterized in terms of harmonicity properties [2].
If V : (M, g) −→ (TM, gs) is a critical point for the energy functional, then V is said to define a
harmonic map. The Euler-Lagrange equations characterize vector fields V defining harmonic maps
as the ones whose tension field θ(V ) = tr(∇2V ) vanishes. Consequently, V defines a harmonic
map from (M, g) to (TM, gs) if and only if

(5) tr[R(∇.V, V ).] = 0, ∇∗∇V = 0,

where with respect to a pseudo-orthonormal local frame {e1, ..., en} on (M, g), with εi = g(ei, ei) =
±1 for all indices i, one has

∇∗∇V =
∑
i εi(∇ei∇eiV −∇∇eieiV ).

A smooth vector field V is said to be a harmonic section if it is a critical point of Ev(V ) =
(1/2)

∫
M
||∇V ||2dv, where Ev is the vertical energy. The corresponding Euler-Lagrange equations
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are given by

(6) ∇∗∇V = 0.

Let Xρ(M) = {V ∈ X(M) : ||V ||2 = ρ2} and ρ 6= 0. Then, one can consider vector fields
V ∈ Xρ(M) which are critical points for the energy functional E|Xρ(M), restricted to vector fields
of the same constant length. The Euler-Lagrange equations of this variational condition are given
by

(7) ∇∗∇V is collinear to V.

In the non-compact case, the condition (7) is taken as a definition of critical points for the energy
functional under the assumption ρ 6= 0, that is, if V is not light-like. If ρ = 0, then (7) is still
a sufficient condition so that V is a critical point for the energy functional E|X0(M), restricted to
light-like vector fields ([2], Theorem 26).
Following [3], four-dimensional Einstein Lorentzian Lie groups are classified into four types, denoted
by (a1), (a2), (c1) and (c2). In the present paper using a case-by-case argument we shall completely
investigat the harmonicity of vector fields on space (a1).

Harmonicity of vector fields

Let (G, g) be a four-dimensional Lorentzian Lie group. Following [3], the Lie algebra g of G is a
semi-direct product rn g3, where r = span{e4} acts on g3 = span{e1, e2, e3}, and the Lorentzian
inner product on g is described by

(a)


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 , (c)


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

In 2013 Calvaruso and Zaeim [3] obtained the following result:

6.1. Theorem. Let G be a four-dimensional simply connected Lie group. If g is a left-invariant
Lorentzian Einstein metric on G, then the Lie algebra g of G is isometric to g = r n g3, where
g3 = span{e1, e2, e3} and r = span{e4}, and one of the following cases occurs.

(a) {ei}4i=1 is a pseudo-orthonormal basis, with e3 time-like. In this case, G is isometric to one
of the following semi-direct products RnG3:

(a1) R nH, where H is the Heisenberg group and g is described by one of the following sets of
conditions:

(1) [e1, e2] = εAe1, [e1, e3] = Ae1, [e1, e4] = δAe1, [e3, e4] = −2Aδ(εe2 − e3),

(2) [e1, e2] = ε
√
A2−B2

2 e1, [e1, e3] = − εδ
√
A2−B2

2 e1, [e1, e4] = δA+B
2 e1, [e2, e4] = B(e2+δe3), [e3, e4] =

A(e2 + δe3),

(3) [e1, e2] = εA
√
A2−B2

B e1, [e1, e3] = ε
√
A2 −B2e1, [e2, e4] = Be2−Ae3, [e3, e4] = Ae2− A2

B e3,

(4) [e1, e2] = ε
√
A2 −B2e1 +Be2, [e3, e4] = Ae3,

(a2) Rn R3, where g is described by one of the following sets of conditions:

(5) [e1, e4] = −(A+B)e1, [e2, e4] = Be2−ε
√
A2 +AB +B2e3, [e3, e4] = ε

√
A2 +AB +B2e2+

Ae3,
(6) [e1, e4] = −2Ae1, [e2, e4] = −5Ae2 + 6εAe3, [e3, e4] = Ae3,
(7) [e1, e4] = Ae1, [e2, e4] = Ae2 +Be3, [e3, e4] = Be2 +Ae3,
(8) [e1, e4] = εA+B

3 e1, [e2, e4] = ε 5B−A
6 e2 +Be3, [e3, e4] = Ae2 + ε 5A−B

6 e3,

(9) [e1, e4] = 5A
2 e1 + 3εAe3, [e2, e4] = Ae2, [e3, e4] = −A2 e3,

(10) [e1, e4] = Ae1 + ε
√
B2 −A2 − C2 −ACe2, [e2, e4] = ε

√
B2 −A2 − C2 −ACe1 − (A +

C)e2 −Be3, [e3, e4] = Be2 + Ce3,

(11) [e1, e4] = − 2ε
√

2A
3 e1 + δAe3, [e2, e4] = ε

√
2A
3 e2, [e3, e4] = Ae2 − ε

√
2A
6 e3,
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(c) {ei}4i=1 is a basis, with the inner product g on g completely determined by g(e1, e1) =
g(e2, e2) = g(e3, e4) = g(e4, e3) = 1 and g(ei, ej) = 0 otherwise. In this case, G is isometric
to one of the following semi-direct products RnG3:

(c1) RnH,where g is described by one of the following sets of conditions

(12) [e1, e2] = ε(A+B)e3, [e1, e4] = Ce1 +Be2 +De3, [e2, e4] = Be1 + Ee3, [e3, e4] = Ce3,

(13) [e1, e2] = Be3, [e1, e4] = (C+D)2−B2

4A e1 +De2 + Fe3, [e2, e4] = Ce1 +Ae2 + Ee3, [e3, e4] =
(C+D)2−B2+4A2

4A e3,

(14) [e1, e2] = ε
√

((A+D)2 + 4B2)e3, [e1, e4] = −Be1 +De2 +Ee3, [e2, e4] = Ae1 +Be2 +Ce3,

(c2) Rn R3, where g is described by one of the following sets of conditions:

(15) [e1, e2] = Ae2 +Be3, [e2, e4] = −Ae1 + Ce3,

(16) [e1, e4] = Ae1 +Be2 + Ce3, [e2, e4] = De1 + Ee2 + Fe3, [e3, e4] = (B+D)2+2(A2+E2)
2(E+A) e3

In all the cases listed above, ε = ±1, δ = ±1 and A,B,C,D are real constants.

All four-dimensional simply connected Einstein Lorentzian Lie groups of type (a1) are symmetric
[3] and the study of harmonic invariant vector fields on these spaces would be natural and interest-
ing. The main purpose of this section is to investigat the harmonicity properties of left-invariant
vector fields on four-dimensional Lorentzian Lie group of type (a1). The following notation is
necessary.

6.2. Remark. Let X̃ρ(M) denote the set of all vector fields V ∈ Xρ(M), which are critical
points for the energy functional E|Xρ(M), restricted to vector fields of the same constant length.
Remember that ρ is not necessarily the same for different cases.

Let (G, g) be a four-dimensional Lorentzian Lie group of type (a1) and {ei}4i=1 a pseudo-
orthonormal basis, with e3 time-like. Under these assumptions, we prove the following result
[1].

6.3. Theorem. Let g be the Lie algebra of G and V = ae1 + be2 + ce3 + de4 ∈ g a left-invariant
vector field on G for some real constants a, b, c, d. For the different cases (1)− (4) of type (a1), we
have:

(1) : V ∈ X̃ρ(G) if and only if V = c(e2 − e3 − e4), that is, b = −c = −d. In this case
ε = 1, ∇∗∇V = 3A2V.

(2) : V ∈ X̃ρ(G) if and only if V = c(e2 + e3 − e4), that is, b = c = −d. In this case ε = −1,
δ = 1, ∇∗∇V = − 3

4 (A+B)2V .

(3) : V ∈ X̃ρ(G), in this case, ∇∗∇V = − (A2−B2)2

B2 V .

(4) : V ∈ X̃ρ(G) if and only if a = b = 0, in this case ∇∗∇V = −A2V or c = d = 0, in this
case ∇∗∇V = (B2 −A2)V .

Proof. The above statement is obtained from a case-by-case argument. As an example, we
report the details for case (3) here. Let V ∈ g be a critical point for the energy functional. The
components of the Levi-Civita connection are the following:

∇e1e1 = − εA
√
A2−B2

B e2 + ε
√
A2 −B2e3, ∇e1e2 = εA

√
A2−B2

B e1

∇e1e3 = ε
√
A2 −B2e1 ∇e2e2 = −Be4, ∇e2e3 = −Ae4,

∇e2e4 = Be2 −Ae3, ∇e3e2 = −Ae4,

∇e3e3 = −A
2

B e4, ∇e3e4 = Ae2 − A2

B e3,

(8)

while ∇eiej = 0 in the remaining cases. From (8) we obtain

∇e1V = ε
√
A2 −B2( cB+bA

b e1 − aA
B e2 + ae3),

∇e2V = dBe2 − dAe3 − (cA+ bB)e4, ∇e4V = 0

∇e3V = dAe2 − dA2

B e3 − A(cA+bB)
B e4.

(9)

22



The 3rd Conference on Dynamical Systems and Geometric Theories 27-28 January, 2022

Table 1. Equivalent properties for the cases (1)− (4) in Theorem 6.3.

(G, g) Equivalent properties (denoted by ≡)

(1) V is geodesic; ≡ V ∈ X̃ρ(G); ≡ none of these vector fields is harmonic (in
particular, defines a harmonic map); ≡ V = c(e2 − e3 − e4),

(2) V is geodesic; ≡ V is harmonic if and only if A = −B; ≡ V ∈ X̃ρ(G); ≡ V
defines harmonic map if and only if A = −B; ≡ V is Killing if and only if A = −B
and d = 0; ≡ V = c(e2 + e3 − e4),

(3) V is geodesic if and only if A = ±B and b = ∓c; ≡ V is harmonic if and only if
A = ±B; ≡ V ∈ X̃ρ(G); ≡ V defines harmonic map if and only if A = ±B; ≡
V is Killing if and only if A = ±B, b = ∓c and d = 0,

(4) V is geodesic if and only if a = b = c = 0; ≡ V ∈ X̃ρ(G) if and only if a = b = 0;
≡ none of these vector fields is harmonic (in particular, defines a harmonic map).

Clearly, there are no parallel vector fields V 6= 0 in g. We can now calculate ∇ei∇eiV and ∇∇eieiV
for all indices i and we find

∇e1∇e1V = −(A2−B2)
B2 (a(A2 −B2)e1 + (cB + bA)(Ae2 −Be3)),

∇e2∇e2V = −(cB + bA)(Be2 −Ae3) + d(A2 −B2)e4,

∇e3∇e3V = −A2

B2 ((cB + bA)(Be2 −Ae3) + d(A2 −B2)e4), ∇e4∇e4V = 0,
∇∇e1e1V = ∇∇e3e3V = ∇∇e2e2V = ∇∇e4e4V = 0.

(10)

Thus, we get

∇∗∇V =
∑
i εi(∇ei∇eiV −∇∇eieiV ) = −(A2−B2)

B2 (a(A2 −B2)e1+

(cB + bA)(Ae2 −Be3))− (cB + bA)(Be2 −Ae3) + d(A2 −B2)e4−
(−A

2

B2 ((cB + bA)(Be2 −Ae3) + d(A2 −B2)e4)) = − (A2−B2)2

B2 V.

�

As the definitions already show, V is harmonic if ∇∗∇V = 0 and V defines a harmonic map if
and only if

tr[R(∇.V, V ).] = 0, ∇∗∇V = 0.

For case (3) in Theorem 6.3, ∇∗∇V = − (A2−B2)2

B2 V = 0 if and only if A = ±B, that is, V is
harmonic if and only if A = ±B. Let R denote the curvature tensor of (M, g), taken with the sign
convention R(X,Y ) = ∇[X,Y ]− [∇X,∇Y ]. Then, using (9), we find

R(∇e1V, V )e1 = ε(A2−B2)3/2

B3 ((A2 −B2)a2 + (bA+ cB)2)(Ae2 −Be3),
A2

B2R(∇e2V, V )e2 = R(∇e3V, V )e3 = A2(A2−B2)
B3 ((A2 −B2)d2 − (cA+ bB)2)e4,

R(∇e4V, V )e4 = 0

and so, when A = ±B clearly,

tr[R(∇.V, V ).] =
∑
i εiR(∇eiV, V )ei = 0.

Hence, tr[R(∇.V, V ).] = 0 if and only if A = ±B. Appling this argument for other cases of type
(a1) proves the following classification result [1].

6.4. Theorem. Let V be a critical point for the energy functional, described by the conditions
(2) and (3) in Theorem 6.3. Then, for cases (2) and (3), V defines a harmonic map if and only if
A = −B and A = ±B respectively.

A vector field V is geodesic if ∇V V = 0, and is Killing if LV g = 0, where L denotes the Lie
derivative. Parallel vector fields are both geodesic and Killing, and vector fields with these special
geometric features often have particular harmonicity properties. A straightforward calculation
proves the following main classification result [1].
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6.5. Corollary. If g is a left-invariant Lorentzian Einstein metric on G, then for the cases
(1)− (4) in Theorem 6.3, the equivalent properties for V = ae1 + be2 + ce3 + de4 ∈ g are listed in
Table 1.

6.6. Remark. Recall that for a Lorentzian Lie group, a left-invariant vector field V is spatially
harmonic if and only if

(11) X̃V = −∇∗∇V −∇V∇V V − divV · ∇V V + (∇V )t∇V V is collinear to V.

Clearly, conditions (7) and (11) coincide for geodesic vector fields. Hence, the results listed in
Table 1 show that for cases (1) and (2), V is spatially harmonic and for case (3), V is spatially
harmonic if and only if A = ±B and b = ∓c. For case (4), V is spatially harmonic if and only if
a = b = c = 0.
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Introduction

The pseudo-orbit tracing property is one of the most important notions in dynamical systems,
which is closely related to stability and chaos of systems . This concept is motivated by computer
simulations. More precisely, let X be a set and f : X → X be a map. Then in the computation
of f with initial value x0 ∈ X, computer approximates f(x0) by some point x1. To continue the
process, it computes the value x2 as an approximation of f(x1) and so on. For formulating this
concept we have to use the ‘distance’ between points to control approximation errors. In a metric
space (X, d) one can approximates points using metric d and define a pseudo-orbit with error δ as
a sequence x0, x1, . . . with d(xj+1, f(xj)) < δ for all j ≥ 0. However, for general topological spaces
such a distance cannot be found unless we have somewhat more structure than what the topology
itself provides. This issue will be solved if we consider a completely regular topological spaces which
is equipped with an structure, called uniformity, enabling us to control the distance between points
in these spaces. Using this structure, Das et al. generalized the usual definitions of shadowing,
and chain recurrence for homeomorphisms to topological spaces. Then, we [1] proved that a
dynamical system with ergodic shadowing is topologically chain transitive. Wu [2] introduced
the topological concepts of weak uniformity, uniform rigidity, and multi-sensitivity and obtained
some equivalent characterizations of uniform rigidity. Then, we [3] proved that a point transitive
dynamical system in a Hausdorff uniform space is either almost (Banach) mean equicontinuous
or (Banach) mean sensitive. Recently, we [?] generalized concepts of entropy points, expansivity
and shadowing property for dynamical systems to uniform spaces and obtained a relation between
topological shadowing property and positive uniform entropy. Good and Maćıas [4] obtained some
equivalent characterizations and iteration invariance of various definitions of shadowing in the
compact uniform spaces.
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Nevertheless when calculating approximate trajectories, it makes sense to consider errors small
on average, since controlling them in each iteration may be impossible. The notion of average
pseudo-orbit introduced by Blank in 1988. In a metric space (X, d) an average pseudo-orbit with

error δ is a sequence x0, x1, . . . for which there is N ∈ N such that 1
n

∑n−1
j=0 d(xj+k+1, f(xj+k)) < δ

for any n ≥ N and k ∈ N. The average shadowing property is related to finding an averagely close
real orbit for any average pseudo-orbit. But in a general topological space we need some method
to control the average of errors in a pseudo-orbit . Motivated by mentioned ideas, We introduced
average shadowing property on uniform spaces.[5]

Here we show that asymptotic average shadowing property can be defined in a natural way on
uniform spaces. In order to do this, we control the average of errors of a pseudo-orbit in a non-
metrizable topological space via infinite sequences of neighborhoods of diagonal. Then we prove
that asymptotic average shadowing property implies topological chain transitivity.

Topological asymptotic average shadowing property

Denote by ΣU the family of all sequences E = {Ei}∞i=0 of entourages in U with E0 = X × X,
such that Ei+1 ⊂ Ei for all i ∈ N0. For a sequence E = {Ei}∞i=0 ∈ ΣU , a map f : X → X and a
sequence ξ = {x0, x1, . . . } in X we define

An(ξ, f, E) = An(ξ, f, {Ei}∞i=0) = inf{
n∑
j=0

1

2σ(j)
| (xj+1, f(xj)) ∈ Eσ(j), σ ∈ Nn0}; n ∈ N

=

n∑
j=0

inf{ 1

2σ(j)
| (xj+1, f(xj)) ∈ Eσ(j), σ ∈ Nj0}; n ∈ N,

and

An(ξ, z, f, E) = An(ξ, z, f, {Ei}∞i=0) = inf{
n∑
j=0

1

2σ(j)
| (xj , f

j(z)) ∈ Eσ(j), σ ∈ Nn0},

where Nn0 is the set of all maps from {0, 1, . . . , n} to N0 = N ∪ {0}.

7.1. Remark. Let (X,U) be a compact uniform space and f : X → X be a continuous map. If
E = {Ei}∞i=0 ∈ ΣU and ξ = {xi}∞i=0 be a sequence in X, then for any m,n, k ∈ N we have

(1) 0 ≤ An(ξ, f, E) ≤ n;
(2) An(ξ, f, E) ≤ An+1(ξ, f, E) ≤ An(ξ, f, E) + 1;
(3) An(ξ, f, {Ei}∞i=0) = 1

2k
An(ξ, f, {E′i}∞i=0), where E′i = Ei+k for i ≥ 1 and E′0 = X ×X.

(4) An(ξ, f, {E′i}∞i=0) ≤ An(ξ, f, {Ei}∞i=0), where E′i = Eik;
(5) Am+n(ξ, f, E) = Am(ξ, f, E) +An(Tm(ξ), f, E), where T : XN0 → XN0 is the shift map.

7.2. Definition. [5] For D ∈ ΣU , a topological average D-pseudo-orbit of f is a sequence {xi}
in X such that limn→∞

1
nAn(ξ, f,D) = 0. Let E = {Ei} ∈ ΣU . We say that the sequence {xi} is

E-shadowed on average by some point z ∈ X, if limn→∞
1
nAn(ξ, z, f, E) = 0. We say that the map

f has the topological average shadowing property TASP, if for every E = {Ei} ∈ ΣU , there exists
D = {Di}∞i=0 ∈ ΣU such that every topological average D-pseudo-orbit is E-shadowed on average
by some point of X.
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If (X, d) is a compact metric space, then for any neighborhood U of ∆X , we can find δ > 0
such that V dδ ⊂ U . On the other hand, every V dδ is a neighborhood of ∆X . Moreover if {xi} is a
topological average {V dδ

2i
}-pseudo-orbit, then limn→∞

1
nAn(ξ, f, {V dδ

2i
}) = 0 and there exists N ∈ N

such that 1
nAn(ξ, f, {V dδ

2i
}) < 1 for n ≥ N . One can easily check that 1

n

∑n−1
i=0 d(xi+k+1, f(xk+i)) <

δ for all n ≥ N and k ∈ N. This shows that for any δ > 0, we can find a D = {Di}∞i=0 ∈ ΣU
such that every topological average D-pseudo orbit is an average δ-pseudo orbit. But the converse
is not true, for example, if we consider the identity map on S1 with the usual topology, then
for D = {V 1

i
}∞i=0 ∈ ΣUS1 and any δ > 0, the sequence xj+1 = xj + δ/2 with x0 = 0 is an

average δ-pseudo orbit which is not a topological average D-pseudo orbit. That is, this remark
does not implies that the topological average shadowing property is equivalent to the usual average
shadowing property when the uniform structure is came from a metric d.

7.3. Definition. An asymptotic-average-pseudo-orbit is a sequence {xi} in X such that for each
D ∈ ΣU we have

lim
n→∞

1

n
inf{

∑ 1

2σ(j)
: (fxj−1, xj) ∈ Dσ(j), σ ∈ Nn0} = 0

We say that the sequence {xi} is asymptotically shadowed on average by some point y ∈ X, if
for each E = {Ei} ∈ ΣU we obtain

lim
n→∞

1

n
inf{

∑ 1

2σ(j)
: (f j(x), xj) ∈ Dσ(j), σ ∈ Nn0} = 0

7.4. Definition. A map f is said to have the asymptotic average shadowing property, if every
asymptotic-average-pseudo-orbit of f can be asymptotically shadowed on average by some point
in X.

7.5. Definition. A map f is said to have the weak asymptotic average shadowing property, if if
for every E = {Ei} ∈ ΣU and any asymptotic pseudo-orbit ξ = {xi}, there exists z ∈ X such that
limn→∞

1
nAn(ξ, z, f, E) = 0.

The following example shows that AASP ; TASP.

7.6. Example. Let X = {a, b, c}. Consider following subsets of X ×X
U0 = ∆X ∪ {(a, b), (b, a)} U1 = ∆X ∪ {(a, b), (b, a), (a, c)}
U2 = ∆X ∪ {(a, b), (b, a), (a, c), (c, a)} U3 = ∆X ∪ {(a, b), (b, a), (a, c), (b, c)}
U4 = ∆X ∪ {(a, b), (b, a), (a, c), (c, b)} U5 = ∆X ∪ {(a, b), (b, a), (c, a)}
U6 = ∆X ∪ {(a, b), (b, a), (c, a), (b, c)} U7 = ∆X ∪ {(a, b), (b, a), (c, a), (c, b)}
U8 = ∆X ∪ {(a, b), (b, a), (b, c)} U9 = ∆X ∪ {(a, b), (b, a), (c, b)}
U10 = ∆X ∪ {(a, b), (b, a), (b, c), (c, b)} U11 = ∆X ∪ {(a, b), (b, a), (b, c), (c, b), (a, c).}
U12 = ∆X ∪ {(a, b), (b, a), (b, c), (c, b), (c, a)} U13 = ∆X ∪ {(a, b), (b, a), (b, c), (a, c).(c, a)}
U14 = ∆X ∪ {(a, b), (b, a), (c, b), (a, c).(c, a)}

Then U = {U0, U1, U2, . . . , U14, X × X} is a uniformity on X for which τU = {∅, {a, b}, {c}, X}.
Let f : X → X be a permutation defined by f(a) = b, f(b) = a and f(c) = c. Then f is uniformly
continuous. We show that f does not have the average shadowing property. Let E0 = X ×X and
Ei = U0 for all i ≥ 1. Then E = {Ei} ∈ ΣU . Put x0 = a and for each i ∈ N and k ≥ 0 define

xi =

{
f i(a) if 22k ≤ i < 22k+1,
c if 22k+1 ≤ i < 22k+2 .
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In other word

x0, x1, x2, · · · = a, b︸︷︷︸
2

, c, c︸︷︷︸
2

, a, b, a, b︸ ︷︷ ︸
4

, c, c, . . . , c︸ ︷︷ ︸
8

, a, b, a, b, . . . , b︸ ︷︷ ︸
16

, c, c, . . . , c, c︸ ︷︷ ︸
32

, . . . .

Let ξ = {xi}. Since any element of U contains (a, b) and (b, a), we obtain

1

n
inf{

n∑
j=1

1

2σ(j)
: (f(xj−1), xj) ∈ Dσ(j), σ ∈ Nn0} ≤

2(k + 1)

n

<
2(k + 1)

2k
,

for 2k ≤ n < 2k+1 and arbitrary D = {Di} ∈ ΣU . That is ξ is an average D-pseudo-orbit. For
2k ≤ n < 2k+1, we obtain

1

n
An(ξ, a, f, E) =

1

n
An(ξ, b, f, E) ≥

∑k
i=0 22i−1∑2k
i=0 2i

.

1

n
An(ξ, c, f, E) ≥

∑k
i=0 22i∑2k
i=0 2i

.

Hence

limn→∞ 1

n
An(ξ, a, f, E) = limn→∞ 1

n
An(ξ, b, f, E) ≥ 1

3

limn→∞ 1

n
An(ξ, c, f, E) ≥ 2

3
Therefore ξ could not be E-shadowed in average by any point in X. This implies that f does not
have the topological average shadowing property. It is easy to show that f has the topological
shadowing property and topological asymptotic average shadowing

7.7. Proposition. Let (X, f) be a dynamical system with uniform space. Then f has the asymp-
totically average shadowing property if fk has for every k ∈ N.

Let f : X −→ X be a homeomorphism of uniform compact Hausdorff space. Points x, y ∈ X
are called proximal if closure O((X,Y )) of the orbit of (x, y) under f × f intersects the diagonal
∆ = {(z, z) ∈ X ×X : z ∈ X}. Denote by PR(X, f) the set of all pairs (x, y) where x and y are
proximal.

7.8. Theorem. Let (X,U) be a uniform space and f : X → X be continuous function. If f has
the asymptotically average shadowing property, then (x, y) ∈ PR ◦ PR(X, f).

7.9. Corollary. Let (X,U) be a compact uniform space and f be a continuous map from X
onto itself. If f has asymptotic average shadowing property, then every point x ∈ X is topological
chain recurrent point.
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Introduction

A pair (X, f), where (X, d) is a metric space and f : X → X is a continuous map is called
a topological dynamical system. The shadowing theory is an important part of the global and
stability theory of dynamical systems [9]. The shadowing property means that near a pseudo-orbit
(numerically computed orbit) there exists an exact orbit. In other words, numerical computations
reflect the real dynamical behavior of f . Throughout the study (X, d) is a compact metric space.
We use Z+ for the set of non-negative integers.

Given δ > 0 a sequence ξ = {xi}i∈Z+ ⊂ X with the property

d(f(xi), xi+1) < δ, ∀i ∈ Z+

is called a δ-pseudo-orbit for f , and if

d({i ≥ 0 : d(f(xi), xi+1) < δ}) = 1,

where d(A) is the lower density of the set A ⊂ Z+ defined by

d(A) = lim inf
n→∞

|A ∩ {0, 1, · · · , n− 1}|
n

,

is called a δ-ergodic pseudo-orbit of f [3]. If we replace lim inf with lim sup in the above formula
we get d(A), the upper density of A. We say the set A has density zero if d(A) = 0. A sequence
ξ = {xi}∞i=0 is said to be ε-shadowed by a point z ∈ X if

d(f i(z), xi) < ε, ∀i ≥ 0.

A map f : X → X is said to has shadowing property (POTP, for short) if for any ε > 0 there exists
δ > 0 in which every δ-pseudo-orbit {xi}∞i=0 can be ε-shadowed by some point in X.
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8.1. Definition. A δ-ergodic pseudo-orbit {xi}i∈Z+ is said to be ε-ergodic shadowed by some
point z in X if

d({i ≥ 0 : d(f i(z), xi) < ε}) = 1.

A dynamical system (X, f) has ergodic shadowing property if for any given ε > 0 there exists
δ(ε) > 0 in which that any δ-ergodic pseudo-orbit of f can be ε-ergodic shadowed by some point
in X [3].

A set A ⊂ Z+ is called syndetic if it has bounded gaps, i.e., there is k > 0 such that A ∩ {i, i+
1, · · · , i+ k − 1} 6= ∅ for each i ≥ 0. The family of syndetic sets is denoted by Fs.

8.2. Definition. If for any ε > 0 there exists δ > 0 such that for every δ-pseudo-orbit {xi}i≥0

there is a point z ∈ X in which

{i : d(f i(z), xi) < ε} ∈ Fs,
then we say f has Fs-shadowing property.

Analogously, we denote Fd for the family of subsets of Z+ with positive lower density, and define
Fd-shadowing property similarly.

8.3. Definition. (X, f) has d-shadowing property if for each ε > 0 there exists δ > 0 such that
for every δ-ergodic pseudo-orbit {xi}i≥0 there is a point z ∈ X such that

d({i : d(f i(z), xi) < ε}) > 0.

Similarly, if d({i : d(f i(z), xi) < ε}) > 1
2 it is said d-shadowing property (see [1, Definition 2.1]).

Recently, Das et al. [2] introduced a new type of average shadowing named mean ergodic
shadowing and studied some aspects of it. We bring the following definition from [2].

8.4. Definition. [2] A map f has mean ergodic shadowing property if for any ε > 0 there exists
δ(ε) > 0 in which that any δ-ergodic pseudo-orbit of f can be ε-shadowed in average by some point
in X. In other words, there exists z ∈ X such that

lim sup
n→∞

1

n

n−1∑
i=0

d(f i(z), xi) < ε.

It is well known that mean ergodic shadowing is a weaker form of ergodic shadowing property[2,
Proposition 4.2].

8.1. Topological dynamical systems. A finite δ-pseudo-orbit {xi}bi=0 is called a δ-chain
from x0 to xb. A dynamical system (X, f) is called chain transitive if for any two points x, y ∈ X
and any δ > 0 there exists a δ-chain from x to y. If for any δ > 0 and any x, y ∈ X there is N > 0
so that for every n > N there is a δ-chain from x to y of length n, we say f is chain mixing. It is
known that f is chain mixing if and only if fn is chain transitive for every n > 0 [10].

For two nonempty open sets U, V ⊂ X, define N(U, V ) := {n ∈ N : fn(U) ∩ V 6= ∅}. In this
regard, f is called topological transitive if for any two nonempty open sets U, V ⊂ X, N(U, V ) 6= ∅.
Moreover, if N \N(U, V ) is finite set f is called topological mixing.

Main results

First of all, it is easy to see that mean ergodic shadowing is independent of choosing an equivalent
meter. In fact, suppose that d1 and d2 are two equivalent meters, and ε > 0 is arbitrary. Take
0 < ε1 < ε so that for each x ∈ X

Bd1
(x, ε1) ⊂ Bd2

(x, ε).

Note that this holds due to compactness of (X, d). Let δ1 > 0 be corresponding to ε1 for f in
definition of mean ergodic shadowing. Again choose δ2 > 0 in which

Bd2
(x, δ2) ⊂ Bd1

(x, δ1)
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holds for every x ∈ X. Now, let {xi}i≥0 be a δ2-ergodic pseudo-orbit for f with respect to d2. So,

d({i : d2(f(xi), xi+1) ≥ δ2}) = 0.

By choosing δ1 and δ2 we also have

d({i : d1(f(xi), xi+1) ≥ δ1}) = 0.

Note that the latter set is subset of the former set. Hence, the sequence {xi}i≥0 is a δ1-ergodic

pseudo-orbit for f with respect to d1. It follows there exists z ∈ X such that d(E1) < ε1, where

E1 = {i : d1(f i(z), xi) ≥ ε1}.
Eesily, by putting

E2 = {i : d2(f i(z), xi) ≥ ε},
we obtain d(E2) < ε, because E2 ⊂ E1.

In the following, we show that mean ergodic shadowing is invariant of conjugacy.

8.5. Theorem. Let (X, dX) and (Y, dY ) be two compact metric spaces, and let f and g be
two continuous maps on (X, dX) and (Y, dY ), respectively. If h : X → Y is a homeomorphism
(conjugacy) between f and g, then g = hofoh−1 has mean ergodic shadowing if and only if f has
mean ergodic shadowing property.

Proof. Suppose that f has mean ergodic shadowing, and ε > 0 be given. Take 0 < ε′ < ε
by uniform continuity of h, i.e., dX(x, y) < ε′ implies dY (h(x), h(y)) < ε. Suppose δ > 0 is
given for ε′ by mean ergodic shadowing for f and δ′ be given for δ by uniform continuity of
h−1, i.e. dY (x, y) < δ′ implies dX(h−1(x), h−1(y)) < δ. Let {yi}i∈N be a δ′-ergodic pseudo-orbit
for g = hofoh−1, i.e. d(E) = 0, where E = {i ∈ N | dY (hofoh−1(yi), yi+1) ≥ δ′} ⊃ {i ∈
N | dX(foh−1(yi), h

−1(yi+1)) ≥ δ}. This shows that {h−1(yi)}i∈N is a δ-ergodic pseudo-orbit for
f . So there is z ∈ X by mean ergodic shadowing such that d(E′) < ε′ , where

E′ ={i ∈ N | dX(f i(z), h−1(yi)) ≥ ε′} ⊃ {i ∈ N | dY (hof i(z), yi) ≥ ε}
= {i ∈ N | dY (gioh(z), yi) ≥ ε}.

That is, h(z) ε-shadowed {yi}∞i=0 in average, so g has mean ergodic shadowing. The remaining
part is similar. �

In [2, Theorem 4.1] it is proved that in the presence of shadowing property the followings are
equivalent for surjective dynamical system (X, f):

(1) f is totally transitive,
(2) f has almost average shadowing,
(3) f has mean ergodic shadowing,
(4) f has d-shadowing.

We can also equalize specification property and topologically mixing with others, because by the
above hypothesis totally transitivity implies chain mixing...

8.6. Corollary. Under the hypothesis of [2, Theorem 4.1] the followings are equivalent:

(1) f is totally transitive,
(2) f is topological mixing,
(3) f has almost average shadowing,
(4) f has mean ergodic shadowing,
(5) f has d-shadowing,
(6) f has specification property.

We go on with the relation between Fs-shadowing and mean ergodic shadowing property. We
prove the following result:

8.7. Corollary. The Fs-shadowing property does not imply mean ergodic shadowing.
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Proof. Because every Morse-Smale diffeomorphism has shadowing property so clearly has
Fs-shadowing property, but they are not chain mixing and therefore by Corollary 8.6 do not have
mean ergodic shadowing property. Refer to Example 8.14 as another example. �

8.8. Theorem. Mean ergodic shadowing implies Fd-shadowing property.

Proof. It is well known that d-shadowing implies Fd-shadowing property. So, [2, Proposition
4.4] completes the proof. Alternatively, without loss of generality, let 0 < ε < 1 be given and
δ > 0 corresponds to ε in mean ergodic shadowing. Suppose {xi}i≥0 is a δ-psuedo-orbit for f ,

obviously, it is also a δ-ergodic psuedo-orbit for f . There exists z ∈ X so that d(E) < ε, where
E = {i ∈ N | d(f i(z), xi) ≥ ε}. By the equality d(Ec) = 1 − d(E) we obtain d(Ec) > 1 − ε > 0.
That is f has Fd-shadowing property. �

In the following, we also prove that mean ergodic shadowing follows d-shadowing property.

8.9. Proposition. If f has mean ergodic shadowing, then it has d-shadowing property.

Proof. By inspiring of the proof of [8, Theorem 5], suppose ε > 0 be given, and f has mean
ergodic shadowing. Let δ > 0 be correspond to ε

2 in the definition of mean ergodic shadowing
property for f . Take any δ-ergodic pseudo-orbit {xi}∞i=0 so there exists z ∈ X such that ε

2 -

shadowed {xi}∞i=0 in average. Let A = {i : d(f i(z), xi < ε)} then we have

ε

2
> lim sup

n→∞

1

n

n−1∑
i=0

d(f i(z), xi) ≥ lim sup
n→∞

ε

n
(n−#A ∩ {0, · · · , n− 1})

≥ ε− εd(A),

so d(A) > 1
2 . �

8.10. Corollary. Every minimal dynamical system with mean ergodic shadowing does not have
Fs-shadowing property.

Proof. It is well known that mean ergodic shadowing implies chain mixing. By [8, Theorem
16] every chain mixing minimal dynamical system with at least two points, does not have Fs-
shadowing property. So, every minimal dynamical system with mean ergodic shadowing does not
have Fs-shadowing property. �

Question. Is there any minimal system with mean ergodic shadowing property?

8.11. Corollary. The asymptotic average shadowing property (AASP, for short) implies mean
ergodic shadowing, but not vice versa.

Proof. By [11, Theorem 4.3] AASP implies almost average shadowing property, and by
[2, Proposition 4.3] almost average shadowing property in turn implies mean ergodic shadowing.
However, the next example shows the converse does not hold. �

8.12. Example. By the statement of Example 5.4 from [5] we construct the map ϕ on interval
[0, 1] such that ϕ(x) > x if and only if x ∈ [0, 1

2 ) ∪ ( 1
2 , 1) It is easy to see that ϕ has mean ergodic

shadowing, but by [6, Theorem 3.1, Remark 1] it does not have AASP.

Easily it can be shown that the analogous of [1, Theorem 4.2] holds in case of mean ergodic
shadowing.

8.13. Corollary. Any transitive sofic subshift σ with mean ergodic shadowing is mixing.

Proof. �
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Examples

In this section, we bring two examples show that the shadowing property does not imply the
mean ergodic shadowing property and vice versa. Also, we bring a class of maps without mean
ergodic shadowing property.

8.14. Example. The permutation of two points does not have the mean ergodic shadowing
property, but has shadowing property.

Proof. Let X = {a, b}, f(a) = b, f(b) = a. Without loss of generality suppose that 0 < ε <
d(a,b)

4 is given and let δ > 0 be arbitrary. If {mi}∞i=0 is a sequence of natural numbers defined by

mi = 2i, it is obvious that {mi} has density zero. Now, let {xi}∞i=0 = {a; a, b; b, a; a, b, a, b; b, a, · · · }
be such that xmi = xmi+1 for each i ≥ 0 and {xmi+1, · · · , xmi+1

} is a finite δ-chain for each i. We
show that the sequence {xi} cann’t be ε-shadowed in average. Indeed, for z = a we have

lim sup
n→∞

1

22n

22n−1∑
i=0

d(f i(z), xi) ≥ lim sup
n→∞

1

22n

22n−1∑
i=22n−2+1

d(f i(z), xi)

= lim sup
n→∞

22n−2

22n
d(a, b) =

1

4
d(a, b) > ε.

Similarly, for z = b we have

lim sup
n→∞

1

22n

22n−1∑
i=0

d(f i(z), xi) ≥ lim sup
n→∞

1

22n

22n−1∑
i=22n−1+1

d(f i(z), xi)

= lim sup
n→∞

22n−1

22n
d(a, b) =

1

2
d(a, b) > ε.

Therefore, it doesn’t have the mean ergodic shadowing. However, it is an easy exercise to check
that the permutation of two points has the shadowing property. �

The following provides an example indicating mean ergodic shadowing does not imply the shad-
owing property.

8.15. Example. [7, Example 3.13] f : S1 3 e2πix 7→ e2πix2 ∈ S1 (where x ∈ [0, 1) and S1 is the
unit circle) has the AASP, and hence mean ergodic shadowing property by [4] and [2, Proposition
4.3], but obviously does not have the shadowing property.

8.16. Example. The circle rotations do not have mean ergodic shadowing.

Proof. �

Conclusion

In this paper we show that mean ergodic shadowing is a dynamical property, and study its
relation with other type of partial shadowing.
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Introduction and Preliminaries

The concept of shadowing was emanated from the Anosov closing lemma and because of its
rich consequences, it has a significant role in the study of dynamical systems. It is considerably
developed in recent years and many authors have studied several kinds of shadowing including
ergodic shadowing [2], d-shadowing, and average shadowing, which have the common motivation of
studying the behavior of a dynamical system by using the closeness of approximate orbits and true
orbit. The shadowing and average shadowing properties of IFSs(iterated function systems) were
introduced by Bahabadi in [1]. He obtained average shadowing property of an iterated function
system implies chain transitivity. Ergodic shadowing property of semigroup actions with finitely
many generators were introduced in [4], and the author showed that if a semigroup G has the
shadowing property then the ergodic shaowing property is equivalent to some kind of specification
which is called pseudo-orbital specification.

However, the definitions of shadowing and ergodic shadowing properties for a continuous map
f and also for the finitely generated semigroup actions on a compact metric space depend on
the metrics on non-compact metric spaces. In other words, the map f (or semigroup G) has
the shadowing (ergodic shadowing) property with respect to one metric, may does not have the
shadowing (ergodic shadowing) property with respect to another metric inducing the same topology
(see [3, Example 2.2] and Example 9.2). Lee et al. [3] introduced the notions of ε-chain and
shadowing property for homeomorphisms on non-compact metric spaces, which are dynamical
properties and equivalent to the classical definitions in case of compact metric spaces. Here, we
extend the notions of shadowing and ergodic shadowing properties to case of finitely generated
semigroup actions on non-compact metric spaces and we show that the definitions of shadowing in
the new notions are dynamical properties.
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9.1. Definition. [5] Let X and Y be two metric spaces. We say that two semigroups F and
G with generating sets {id, f1, . . . , fm} and {id, g1, . . . , gm} on X and Y , receptively, are (topo-
logically) conjugate if there is a homeomorphism h : X → Y such that h ◦ fi = gi ◦ h for all
i = 1, . . . ,m. The homeomorphism h is called a conjugacy between F and G.

A property P is called a dynamical property if a semigroup G has the property P , then any
other semigroup F which is conjugate to G also has the property P . Note that shadowing and
ergodic shadowing properties of semigroup action on compact metric spaces are independent of
metric and they are dynamical properties. However, they depend on the metrics on non-compact
metric spaces, as we see in the following example.

9.2. Example. Let T : R→ S1 \ {(0, 1)} be a map given by

T (t) =

(
2t

1 + t2
,
t2 − 1

t2 + 1

)
, for all t ∈ R,

and let X = T (Z). Let d be the metric on X induced by the Riemannian metric on S1, and
let d′ be a discrete metric on X. It is clear that d and d′ induce the same topology on X. Let
g1 : X → X be a homeomorphism defined by g1(ai) = ai+1. Denote by G the finitely generated
semigroup action associated with {id, g1, g2}, where g2 is any homeomorphism on X. Since the
metric d′ is discrete, it is easy to see that G has the ergodic shadowing property with respect to d′.
We show that g1 does not have the shadowing property with respect to d. Therefore the semigroup
G does not have the shadowing property. By contradiction, let g1 : X → X have the shadowing
property. For ε = 1

4 , let δ > 0 be an ε-modulus of the shadowing property of the mapping g1.

Choose N0 ∈ N such that d′(aN0
, a−N0

) < δ
2 . For any i ≥ 0, put j := i mod 2N0. Then, the

sequence {xi}i≥0 given by

xi =

{
aj , j ∈ {0, 1, 2, . . . , N0 − 1},
aj−2N0

, j ∈ {N0, N0 + 1, . . . , 2N0 − 1}.

is a δ-pseudo orbit for g1. So, there is a point z ∈ X such that d(gi1(z), xi) < ε, for any i ≥ 0 . Since
for any z ∈ X, gi1(z) attract to (0, 1), so we can find an integer i ∈ N such that d(gi1(z), xi) ≥ ε,
which is a contradiction. So, G does not have the shadowing and ergodic shadowing properties
with respect to d.

The shadowing and ergodic shadowing on non-compact metric spaces

In this section, we define the notions of shadowing and ergodic shadowing properties for the
finitely generated semigroup actions on non-compact metric spaces, which are independent of
metrics.

Let C(X) be the collection of all continuous functions from X to (0,∞). Let X be a metrizable
space and let G be a finitely generated semigroup action with the set of generators {id, g1, . . . , gm}.
For a sequence ξ = {xi}i≥0 ⊂ X, δ ∈ C(X), and ω = ω0ω1ω2 . . . ∈ Σm, put

Np(ξ,G, ω, δ) = {i ∈ Z+ : d(gωi(xi), xi+1) ≥ δ(gωi(xi))},

Npc(ξ,G, ω, δ) = Z+ \Np(ξ,G, ω, δ),
and

Npn(ξ,G, ω, δ) = Np(ξ,G, ω, δ) ∩ {0, . . . , n− 1}.
Given a sequence ξ = {xi}i≥0 and a point z ∈ X, consider

Ns(ξ,G, ω, z, δ) = {i ∈ Z+ : d(giω(z), xi) ≥ δ(giω(z))},

Nsc(ξ,G, ω, z, δ) = Z+ \Ns(ξ,G, ω, z, δ),
and

Nsn(ξ,G, ω, z, δ) = Ns(ξ,G, ω, z, δ) ∩ {0, . . . , n− 1}.
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9.3. Definition. Let X be a metrizable space, let G be a finitely generated semigroup action
with the set of generators {id, g1, . . . , gm}, and let δ ∈ C(X).

(1) [5] For w ∈ Am and x, y ∈ X, a (δ, w)-chain of semigroup G from x to y is a finite sequence
x0 = x, x1, . . . , xn = y such that d(gwi(xi), xi+1) < ε(gwi(xi)), for all i = 1, . . . , n− 1.

(2) We say that {xi}i≥0 ⊂ X is a (δ, ω)-pseudo orbit of G for some ω = ω0ω1 . . . ∈ Σm, if for
any i ∈ Z+, d(gωi(xi), xi+1) < δ(gωi(xi)).

(3) We say that {xi}i≥0 ⊂ X is a (δ, ω)-ergodic pseudo orbit of G for some ω = ω0ω1 . . . ∈ Σm

provided that the set Np(ξ,G, ω, δ) has zero density, that is,

lim
n→∞

|Npn(ξ,G, ω, δ)|
n

= 0.

9.4. Definition. Let X be a metrizable space, let G be a finitely generated semigroup action
with the set of generators {id, g1, . . . , gm}. We say that

(1) G has the shadowing property, if for every ε ∈ C(X), there is δ ∈ C(X) such that for
every (δ, ω)-pseudo orbit {xi}i≥0 of G, for some ω ∈ Σm, there is a point z ∈ X satisfying
d(giω(x), xi) < ε(giω(x)) for all i ≥ 0.

(2) G has the ergodic shadowing property if for each ε ∈ C(X), there exists δ ∈ C(X) such
that every (δ, ω)-ergodic pseudo orbit ξ of G can be ε-ergodic shadowed by some point z
in X, that is, there exists ϕ ∈ Σm with ϕi = ωi for i ∈ Npc({xi}i≥0, G, ω, δ), such that

lim
n→∞

|Nsn({xi}i≥0, G, ϕ, z, ε)|
n

= 0.

In the following, we show that Definition 9.4 for the semigroup G on the non-compact metric
space X can be preserved by conjugacy. Hence, they do not depend on the choices of metrics on
X. For this, we need two lemmas.

9.5. Lemma. [3, Lemmas 2.7 and 2.8] Let (X, d) and (Y, d′) be two metric spaces.

(1) A function f from X to Y is continuous if and only if, for any ε ∈ C(Y ), there exists
δ ∈ C(X) such that if d(x, y) < δ(x) (x, y ∈ X), then d′(f(x), f(y)) < ε(f(x)).

(2) For every α ∈ C(X), there exists γ ∈ C(X) such that

(12) γ(x) ≤ inf {α(z) : z ∈ B(x, γ(x))} .

The next lemma is cited from [5] and is an immediate result of Lemma 9.5.

9.6. Lemma. [5] Let (X, d) be a metric space and let fi : X → X (i = 1, . . . ,m) be contin-
uous maps. Then, for every ε ∈ C(X), there exists δ ∈ C(X) such that if d(x, y) < δ(x), then
d(fi(x), fi(y)) < ε(fi(x)) for all i = 1, . . . ,m.

9.7. Proposition. Let X be a metric space and let G be a semigroup action with generating
set {id, g1, . . . , gm}. Then the shadowing and ergodic shadowing properties of G introduced in
Definition 9.4, are dynamical properties.

Proof. Let G and F be two semigroups generated by G1 = {id, g1, . . . , gm} and F1 =
{id, f1, . . . , fm} on the metric space (X, d) and (Y, d′), respectively. Suppose that G and F are
topologically conjugate with conjugacy h : X → Y . We show that the ergodic shadowing property
preserves by topological conjugacy. Assume that G has the ergodic shadowing property. For every
ε′ ∈ C(Y ), there exists ε ∈ C(X) such that if d(x, y) < ε(x), then d′(h(x), h(y)) < ε′(h(x)). Take
δ ∈ C(X) as an ε-modulus of ergodic shadowing property of G, and let δ′ ∈ C(Y ) be such that if
d′(x, y) < δ′(x), then d(h−1(x), h−1(y)) < δ(h−1(x)). Let {xi}i≥0 ⊆ Y be a (δ′, ω)-ergodic pseudo
orbit of F for ω = ω0ω1 . . . ∈ Σm.

We show that {h−1(xi)}i≥0 is a (δ, ω)-ergodic pseudo orbit ofG. Indeed for any i ∈ Npc({xi}i≥0, F, ω, δ
′),

we have d′(fωi(xi), xi+1) < δ′(fωi(xi)) implies that

d(gωi(h
−1(xi)), h

−1(xi+1)) = d(h−1(fωi(xi)), h
−1(xi+1)) < δ(gωi(h

−1(xi))).
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It yields that Npc({xi}i≥0, F, ω, δ
′) ⊂ Npc({h−1(xi)}i≥0, G, ω, δ) and so {h−1(xi)}i≥0 is a δ-ergodic

pseudo orbit of G. Since the G has the ergodic shadowing property, there exist z ∈ X and ϕ ∈ Σm

with ϕi = ωi for i ∈ Npc({h−1(xi)}i≥0, G, ω, δ), such that Ns({h−1(xi)}i≥0, G, ϕ, z, ε) has zero
density. Since for any i ∈ Nsc({h−1(xi)}i≥0, G, ϕ, z, ε), d(giϕ(z), h−1(xi)) < ε(giϕ(z)), we have

d′(h(giϕ(z)), xi) = d′(f iϕ(h(z)), xi) < ε′(f iϕ(h(z))).

This means that Nsc({h−1(xi)}i≥0, G, ϕ, z, ε) ⊂ Nsc({xi}i≥0, F, ϕ, h(z), ε′), which implies that
h(z), ε′-ergodic shadows {xi}i≥0. Thus F the has the ergodic shadowing property. �

The proof of the next lemma for a semigroup G on a compact metric space X was appeared in
[4]. In the following theorem, shows that it holds for semigroup G on non-compact metric spaces
with the new notions for δ-chain and shadowing property introduced in Definitions 9.3 and 9.4.

9.8. Theorem. Let (X, d) be a metric space and G be a semigroup associated with finite family
{id, g1, . . . , gm} of continuous maps on X. If the semigroup G has the shadowing property, then G
is topologically mixing if and only if it is chain mixing.
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Introduction

The time varying maps (so-called non-autonomous or time-dependent dynamical systems), de-
scribe situations where the dynamics can vary with time and yield very flexible models than
autonomous cases for the study and description of real world processes. They may be used to
describe the evolution of a wider class of phenomena, including systems which are forced or driven.
In the recent past, lots of studies have been done regarding dynamical properties in such systems,
but a global theory is still out of reach. In general time varying maps can be rather complicated.
Thus, we are inclined to look at approximations of orbits, also called pseudo orbits. Systems for
which pseudo orbits can be approximated by true orbits are said to satisfy the shadowing prop-
erty. The shadowing property plays a key role in the study of the stability of dynamical systems.
This property is found in hyperbolic dynamics, and it was used to prove their stability. In this
literature, some remarkable results were further obtained through works of several authors, see e.g.
[1, 2, 3]. Since the approximation by true orbits can be expressed in various ways, different notions
of shadowing have been introduced. In this paper, what we want to study on time varying maps
is shadowing, h-shadowing, limit shadowing, s-limit shadowing and exponential limit shadowing
properties.

This article is organized as follows. In Section 8.1, we present an overview of the main concepts
and introduce notations. Next, we give our main results in Section 8.1.

Preliminaries

Throughout this paper we consider (X, d) to be a metric space, fn : X → X, n ∈ N, to be
a sequence of continuous maps and F = {fn}n∈N to be a time varying map on X that its time
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evolution is defined by composing the maps fn in the following way

Fn := fn ◦ fn−1 ◦ · · · ◦ f1, for n ≥ 1, and F0 := IdX .

For time varying map F = {fn}n∈N defined on X, we set F[i,j] := fj ◦ fj−1 ◦ · · · ◦ fi+1 ◦ fi
for 1 ≤ i ≤ j, and F[i,j] := IdX for i > j. Also, for any k > 0, we define a time varying map

(kth-iterate of F) Fk = {gn}n∈N on X, where

gn = fnk ◦ f(n−1)k+k−1 ◦ . . . ◦ f(n−1)k+2 ◦ f(n−1)k+1 for n ≥ 1.

Thus Fk = {F[(n−1)k+1,nk]}n∈N.
Let F = {fn}n∈N be a time varying map on a metric space (X, d). For a point x0 ∈ X, put

xn := Fn(x0) for all n ≥ 0. Then the sequence {xn}n≥0, denoted by O(x0), is said to be the orbit
of x0 under time varying map F = {fn}n∈N. Moreover, a subset Y of X is said to be invariant
under F if fn(Y ) = Y for all n ≥ 1, equivalently Fn(Y ) = Y for all n ≥ 0.

10.1. Definition (Conjugacy). Let (X, d1) and (Y, d2) be two metric spaces. Let F = {fn}n∈N
and G = {gn}n∈N be time varying maps on X and Y , respectively. If there exists a homeomorphism
h : X → Y such that h ◦ fn = gn ◦ h, for all n ∈ N, then F and G are said to be conjugate (with
respect to the map h) or h-conjugate. In particular, if h : X → Y is a uniform homeomorphism, then
F and G are said to be uniformly conjugate or uniformly h-conjugate. (Recall that homeomorphism
h : X → Y , such that h and h−1 are uniformly continuous, is called a uniform homeomorphism.)

10.2. Definition (Shadowing property). Let F = {fn}n∈N be a time varying map on a metric
space (X, d) and Y be a subset of X. Then,

(1) for δ > 0, a sequence {xn}n≥0 in X is said to be a δ-pseudo orbit if

d(fn+1(xn), xn+1) < δ for all n ≥ 0;

(2) for given ε > 0, a δ-pseudo orbit {xn}n≥0 is said to be ε-shadowed by x ∈ X if
d(Fn(x), xn) < ε for all n ≥ 0;

(3) the time varying map F is said to have shadowing property on Y if, for every ε > 0, there
exists a δ > 0 such that every δ-pseudo orbit in Y is ε-shadowed by some point of X. If
this property holds on Y = X, we simply say that F has shadowing property.

10.3. Definition (h-shadowing property). Let F = {fn}n∈N be a time varying map on a metric
space (X, d) and Y be a subset of X. We say that F has h-shadowing property on Y if for every
ε > 0 there exists δ > 0 such that for every finite δ-pseudo orbit {x0, x1, . . . , xm} in Y there is
x ∈ X such that d(Fn(x), xn) < ε for every 0 ≤ n < m and Fm(x) = xm. If this property holds
on Y = X, we simply say that F has h-shadowing property.

10.4. Definition (Limit shadowing property). Let F = {fn}n∈N be a time varying map on a
metric space (X, d) and Y be a subset of X. Then,

(1) a sequence {xn}n≥0 in X is called a limit pseudo orbit if d(fn+1(xn), xn+1) → 0 as
n→ +∞;

(2) a sequence {xn}n≥0 in X is said to be limit shadowed if there is x ∈ X such that
d(Fn(x), xn)→ 0, as n→ +∞;

(3) the time varying map F has the limit shadowing property on Y whenever every limit
pseudo orbit in Y is limit shadowed by some point of X. If this property holds on
Y = X, we simply say that F has limit shadowing property.

The notion of limit shadowing property was extended to a notion so called s-limit shadowing
property, to account the fact that many systems have limit shadowing property but not shadowing
property.

10.5. Definition (s-Limit shadowing property). Let F = {fn}n∈N be a time varying map on a
metric space (X, d) and Y be a subset of X. We say that F has s-limit shadowing property on Y
if for every ε > 0 there is δ > 0 such that
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(1) for every δ-pseudo orbit {xn}n≥0 in Y , there exists x ∈ X satisfying d(Fn(x), xn) < ε for
all n ≥ 0, and,

(2) if in addition, {xn}n≥0 is a limit pseudo orbit in Y then d(Fn(x), xn)→ 0 as n→ +∞.

If this property holds on Y = X, we simply say that F has s-limit shadowing property.

We say that a sequence {an}n≥0 of real numbers converges to zero with rate θ ∈ (0, 1) and write

an
θ−→ 0 as n→ +∞, if there exists a constant L > 0 such that |an| ≤ Lθn for all n ≥ 0.

10.6. Definition (Exponential limit shadowing property). Let F = {fn}n∈N be a time varying
map on a metric space (X, d) and Y be a subset of X. Then,

(1) for θ ∈ (0, 1), a sequence {xn}n≥0 in X is called a θ-exponentially limit pseudo orbit of

F if d(fn+1(xn), xn+1)
θ−→ 0 as n→ +∞;

(2) the time varying map F has the exponential limit shadowing property with exponent ξ on
Y if there exists θ0 ∈ (0, 1) so that for any θ-exponentially limit pseudo orbit {xn}n≥0 ⊆ Y
with θ ∈ (θ0, 1), there is x ∈ X such that d(Fn(x), xn)

θξ−→ 0, as n → +∞. In the case
ξ = 1 we say that F has the exponential limit shadowing property on Y . If this property
holds on Y = X, we simply say that F has exponential limit shadowing property.

Main results

In this section, we mention our main results.

10.7. Theorem. Let F = {fn}n∈N and G = {gn}n∈N be time varying maps on metric spaces
(X, d1) and (Y, d2), respectively, such that F is uniformly conjugate to G. Then, the following
statements hold:

(a) If F has the h-shadowing property, then so does G.
(b) If F has the limit shadowing property, then so does G.
(c) If F has the s-limit shadowing property, then so does G.

10.8. Theorem. Let F = {fn}n∈N and G = {gn}n∈N be time varying maps on metric spaces
(X, d1) and (Y, d2), respectively. Define metric d on X × Y by

d((x1, y1), (x2, y2)) := max{d1(x1, x2), d2(y1, y2)} for any (x1, y1), (x2, y2) ∈ X × Y.
Then,

(a) F and G have the h-shadowing property if and only if so does F × G := {fn × gn}n∈N.
(b) F and G have the limit shadowing property if and only if so does F × G.
(c) F and G have the exponential limit shadowing property if and only if so does F × G.
(d) F and G have the s-limit shadowing property if and only if so does F × G.

10.9. Theorem. Let F = {fn}n∈N be a time varying map on metric space (X, d) and k ∈ N.
Then, the following statements hold:

(a) If F has the limit shadowing property, then so does Fk.
(b) If F has the exponential limit shadowing property, then so does Fk.
(c) If F has the s-limit shadowing property, then so does Fk.

10.10. Definition (Equicontinuity). Time varying map F = {fn}n∈N on a metric space (X, d)
is said to be equicontinuous if for each ε > 0 there exists δ > 0 such that d(x, y) < δ implies
d(F[i,j](x),F[i,j](y)) < ε for all 1 ≤ i ≤ j.

10.11. Theorem. Let F = {fn}n∈N be an equicontinuous time varying map on a compact metric
space (X, d) and Y be an invariant subset of X. Then, the following conditions are equivalent:

(a) F has the h-shadowing property on Y .
(b) Fk has the h-shadowing property on Y for some k ∈ N.
(c) Fk has the h-shadowing property on Y for all k ∈ N.
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10.12. Lemma. Let F = {fn}n∈N be a time varying map on a metric space (X, d) and Y be a
subset of X. If Y ⊆ fn(Y ) for every n ∈ N and F has s-limit shadowing property on Y then F
also has limit shadowing property on Y . In particular, if F is a time varying map of surjective
maps and has s-limit shadowing property then F also has limit shadowing property.

10.13. Theorem. Let F = {fn}n∈N be a time varying map on a compact metric space (X, d)
and Y be a closed subset of X. Then, the following statements hold:

(a) If there is an open set U such that Y ⊆ U and F has h-shadowing property on U , then
F has s-limit shadowing property on Y . If in addition, Y ⊆ fn(Y ) for every n ∈ N then
F has limit shadowing property on Y .

(b) If Y is invariant and F|Y has h-shadowing property then F|Y has s-limit shadowing
property and limit shadowing property.

(c) If F has h-shadowing property then F has s-limit shadowing property. If in addition, F
is a time varying map of surjective maps then F has limit shadowing property.

10.14. Definition (Expansivity). An time varying map F = {fn}n∈N on a metric space (X, d)
is called strongly expansive if there exists γ > 0 (called expansivity constant) such that for any
two distinct points x, y ∈ X and every N ∈ N, d(F[N,n](x),F[N,n](y)) > γ for some n ≥ N .
Equivalently, if for x, y ∈ X and some N ∈ N, d(F[N,n](x),F[N,n](y)) ≤ γ for all n ≥ N , then
x = y.

10.15. Corollary. Let F = {fn}n∈N be a time varying map on a compact metric space (X, d).

(a) If F is strongly expansive then F has the shadowing property if and only if F has the
h-shadowing property.

(b) If F is strongly expansive and has the shadowing property then F has the h-shadowing
and s-limit shadowing properties. If in addition, F is a time varying map of surjective
maps then F has the limit shadowing property.

10.16. Definition (Uniformly contracting and uniformly expanding time varying map). Let
F = {fn}n∈N be a time varying map on a metric space (X, d). Then,

(1) the time varying map F is uniformly contracting if its contracting ratio which denoted
by α exists and is less than one, where

α := sup
n∈N

sup
x,y∈X
x 6=y

d(fn(x), fn(y))

d(x, y)
;

(2) the time varying map F is uniformly expanding if its expanding ratio which denoted by
β exists and is greater than one, where

β := inf
n∈N

inf
x,y∈X
x 6=y

d(fn(x), fn(y))

d(x, y)
.

10.17. Theorem. Let F = {fn}n∈N be a uniformly contracting time varying map on a metric
space (X, d). Then, F has the shadowing, limit shadowing, s-limit shadowing and exponential limit
shadowing properties.

10.18. Theorem. Let F = {fn}n∈N be a uniformly expanding time varying map of surjective
maps on a complete metric space (X, d). Then, F has the shadowing, limit shadowing, s-limit
shadowing and exponential limit shadowing properties.

10.19. Definition. Let f : X → X be a linear homeomorphism on a Banach space X. Then,
f is said to be hyperbolic if there exist Banach subspaces Xs, Xu ⊂ X, called stable and unstable
subspaces, respectively, and a norm ‖.‖ on X compatible with the original Banach structure such
that

X = Xs ⊕Xu, f(Xs) = Xs, f(Xu) = Xu, ‖f |Xs‖ < 1 and ‖f−1|Xu‖ < 1.
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10.20. Theorem. Let X be a Banach space, and let A be a finite set of hyperbolic linear homeo-
morphisms with the same stable and unstable subspaces. Then, any time varying map F = {fn}n∈N
with fn ∈ A has the shadowing, limit shadowing, s-limit shadowing and exponential limit shadowing
properties.

11. Conclusion

Time varying maps which are a natural generalization of autonomous dynamical systems, are
more flexible tools for the description and study of real world processes. Hence, their study is
important.
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12. A Stabilized diagonal-preservin of C*-algebras
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We give a stabilized version of any *-isomorphism OX → OY which maps C(X) onto C(Y ) is in
fact diagonal-preserving under mild conditions on X and Y .
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Introduction

Let X and Y be one-sided shift spaces. A *-isomorphism Ψ : OX → OY is diagonal-preserving if
Ψ(DX) = DY . In this paper we prove that a *-isomorphism Ψ : OX → OY satisfying Ψ(C(X)) =
C(Y ) is diagonal-preserving is stabilized. First we need some preliminary results. Everyone can
read more in [1, 2].

Main Section

12.1. Lemma. Let X be a one-sided shift space. Then

C∗(Iso(GX)◦) = D′X ⊆ C(X)′.

If X contains a dense set of aperiodic points, then D′X = C(X)′.

Proof. Let ι ∈ Cc(GX). The condition that ι ? g = g ? ι for all g ∈ DX means that ι is
supported on elements γ ∈ GX with s(γ) = r(γ). It follows that C∗(Iso(GX)◦) = D′X . The
inclusion D′X ⊆ C(X)′ follows from the inclusion C(X) ⊆ DX . �

Consider the equivalence relation ∼ on the space X̃ × T given by (x̃, ι) ∼ (ỹ, θ) if and only if

x̃ = ỹ and ιp = θp for all p ∈ Stab(x̃). Then the quotient X̃ ×T/ ∼ is compact and Hausdorff and
as we shall see (homeomorphic to) the spectrum of C∗(Iso(GX)◦). We read more in groupoid [3].

12.2. Lemma. Let ∼ be the equivalence relation on X̃×T defined above. There is a *-isomorphism

Ω : C∗(Iso(GX)◦)→ C(X̃ × T/ ∼),

given by

(13) Ω(f)([x̃, ι]) =
∑

p∈Stab(x̃)

f(x̃, p, x̃)ιn

for f ∈ Cc(Iso(GX)◦) and [x̃, ι] ∈ X̃ × T.
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Main Section

12.3. Theorem. Let X and Y be one-sided shift spaces with dense sets of aperiodic points and
let Ψ : OX → OY be a *-isomorphism satisfying Ψ(C(X)) = C(Y ). Then Ψ(DX) = DY .

Proof. If Ψ : OX → OY is a *-isomorphism satisfying Ψ(C(X)) = C(Y ), then Ψ(C(X)′) =
C(Y )′. By Lemmas 116 and 113, there is a homeomorphism

h : X̃ × T/ ∼→ Ỹ × T/ ∼,

such that Ψ(f) = f ◦ h−1 for f ∈ C(X̃ × T/ ∼).

Define the map qX : X̃ × T/ ∼→ X̃ by qX([x̃, z]) = x̃. This is well-defined, continuous and

surjective. Furthermore, qX induces the inclusion DX ⊆ C(X)′. Let x̃ ∈ X̃ and put ỹx̃ =

qY (h([x̃, 1])) ∈ Ỹ . The connected component of any [x̃, z] is the set [x̃, w] | w ∈ T, so since any
homeomorphism will preserve connected components, we have

h(q−1
X (x̃)) = q−1

Y (h([x̃, 1])).

We may now define a map h̃ : X̃ → Y by

h̃(x̃) = ỹx̃ = qY (h([x̃, 1]))

for x̃ ∈ X̃, which is well-defined, continuous and surjective. The above considerations show that
h is also injective. As both X̃ and Ỹ are compact and Hausdorff, h̃ is a homeomorphism. The
relation h̃ ◦ qX = qY ◦ h ensures that that Ψ(DX) = DY as wanted. �

12.4. Corollary. Let X and Y be one-sided shift spaces and let Ψ : OX → OY be a *-
isomorphism satisfying Ψ(C(X)) = C(Y ) and Ψ ◦ γX = γY ◦Ψ. Then Ψ(DX) = DY .

Proof. This follows from the observation that DX = C(X)′∩FX and DY = C(Y )′∩FY . �

12.5. Remark. Let X be any strictly sofic one-sided shift and let Y = X̃ be its cover. Then Y
is (conjugate to) a shift of finite type so DY = C(Y ) but DX = C(Y ) � C(X). The identity map
is a *-isomorphism OX → OY with sends DXonto DY = C(Y ), but there is no *-isomorphism
Ψ : OX → OY which satisfies Ψ(C(X)) = C(Y ).

Below, we give a stabilized version of Theorem 12.3. Consider the product X̃ ×N× T equipped
with the equivalence relation ≈ defined by (x̃,m1, z) ≈ (ỹ,m2, w) if and only if x̃ = ỹ and m1 = m2

and zn = wn for all n ∈ Iso(x̃). The spaces X̃ × N × T/ ≈ and (X̃ × T/ ∼) × N are now
homeomorphic. An argument similar to the above then yields the following result.

12.6. Corollary. Let X and Y be one-sided shift spaces with dense sets of aperiodic points
and let Ψ : OX ⊗ K → OY ⊗ K be a *-isomorphism satisfying Ψ(C(X) ⊗ c0) = C(Y ) ⊗ c0. Then
Ψ(DX ⊗ c0) = DY ⊗ c0.
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13. A note on causal conditions fail along a null geodesic
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It is known for some of the causality conditions that they can’t fail at a single isolated point.
Recetlely, it is shown that if causal continuity or stable causality fail at a point p then there is
a null geodesic segment containing p at every point of which the condition fails. In this paper,
we show that if causal simplicity fails at a point p of a reflecting spacetime M then there exists a
future or past inextendible maximal null geodesics with endpoint p at every point of which causal
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Introduction

In the theory of General Relativity, a space-time (M, g) is a connected C∞ Hausdorff mani-
fold of dimension two or greater which has a countable basis, a Lorentzian metric g of signature
(−,+, ...,+) and a time orientation. The metric g determines the causal structure of the space-time
based on which causality conditions are defined. Causality conditions are important in determining
how physical a space-time is and proving mathematical theorems about its global structure.

We say that a vector v ∈ TpM is timelike if gp(v, v) < 0, causal if gp(v, v) ≤ 0, null if gp(v, v) = 0
and spacelike if gp(v, v) > 0. A smooth curve is timelike (future pointing) if its tangent vector is
everywhere timelike (future pointing). When speaking about future pointing curves, we usually
omit future pointing and simply write causal or timelike curve. Causal and null, future or past
pointing and space-like curves are defined similarly. Suppose p, q ∈ M . q is in the chronological
future of p, written q ∈ I+(p) or p� q, if there is a timelike future pointing curve γ : [0, 1]→ M
with γ(0) = p, and γ(1) = q; similarly, q is in the causal future of p, written q ∈ J+(p) or p ≺ q, if
there is a future pointing causal curve from p to q. For any point, p, I±(p) is open; but J±(p) need
not, in general, be closed. J±(p) is, however, always a subset of the closure of I±(p). The set of all
the Lorentzian metrics on M is denoted by Lor(M). The fine C0 topology on Lor(M) is defined
using a fixed locally finite countable covering B = {Bi} of M by coordinate neighborhoods with
the property that the closure of each Bi lies in a coordinate chart of M . Let δ : M −→ (0,∞) be
a continuous function. Then g1, g2 ∈ Lor(M) are said to be σ close in the C0 topology, if for each
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p ∈ M all of the corresponding coefficients of the two metrics are σ(p) close at p when calculated
in the fixed coordinates of all Bi ∈ B which contain p. For all g, h ∈ Lor(M), h > g iff p ≺ q in
space-time (M, g) implies p� q in space-time (M,h).

To be more careful, it is useful to remind the following conditions.[2, 3] A space-time M is:

• Causal if there is no non-degenerate causal curve which starts and ends at the same point.
If M is causal at all points it’s simply called causal.

• Strongly causal at p if p has arbitrarily small neighborhoods which every causal curve
intersects in a single component.

• Stably causal if there is a fine C0 neighborhood U(g) of g in Lor(M) such that each
h ∈ U(g) is causal (equivalently there exists some causal h ∈ Lor(M) with g < h).

• Causally continuous at a point p if for each compact set K in the exterior of I+(p) there
exists some neighborhood U(p) of p such that for each q ∈ U(p), K is in the exterior of
I+(q).

• Causally simple at p if it is strongly causal and J±(p) is closed.
• Globally hyperbolic if it is strongly causal and J+(p)∩J−(q) is compact for all p, q ∈M .

Main results

Some causality conditions are defined pointwisely i.e. they either hold or not at individual points.
A natural question is whether the failure of a pointwise causality condition at a point of space-time,
implies the failure of the condition at some other points.

As a result of Proposition 4.29 and Theorem 3.31 in [4], one can deduce that the failure of future
or past distinction and strong causality conditions at some point p ∈M imply the failure of them at
all points of a null geodesic segment containing p. It is also not hard to show that chornologicality
and causality have this property too. In Ref. [1], it is shown that causal continuity and an
equivalent pointwise defition of stable causality also have this property i.e. if they fail at a point
p there is a null geodesic segment containing p along which the conditions fail.

13.1. Theorem. [1] If causal continuity fails at a point p then there is a future endless null
geodesic γ with past point p at every point of which causal continuity fails.

13.2. Theorem. [1] Let Sc be the set of points atwhich stable causality fails. If stable causality
fails at p then at least one of the following holds:
a) p ∈ int(Sc);
b) p is a non-endpoint point on a future endless null geodesic on ∂Sc;
c) p is a non-endpoint point on a past endless null geodesic on ∂Sc;
d) p is the endpoint of a future endless and a past endless null geodesic on ∂Sc;
e) p lies on an endless null geodesic on ∂Sc at every point of which stable causality fails.

So, the above theorem shows that when stable causality fails at a point p, there is a null geodesic
segment containing p along which the condition fails. But, the case of causal simplicity is a
challenging problem and remains a conjecture [1]. Now, by the following theorem, we prove it.

13.3. Theorem. If causal simplicity fails at a point p of a reflecting spacetime M then there
exists a future or past inextendible maximal null geodesics with endpoint p at every point of which
causal simplicity fails.

Proof. Let M not be causally simple. Therefore, there exists a point p that J+(p) or J−(p)
is not closed. We show that if J+(p) (J−(p)) is not closed then there exists a null geodesic segment
with past (future) endpoint p at every point of which causal simplicity fails. Since J+(p) is not
closed, there is a point r ∈ ∂J+(p)\J+(p) and a sequence of points rn ∈ I+(p) which rn −→ r and
also there is a sequence of causal curves γn from p to rn . Let U(p) be a strictly convex normal
neighborhood of p such that ∂U(p) is compact. So, γn intersects ∂U(p) in p′n. Assume p′n converge
to p′ ∈ ∂U(p). So, there exists a causal geodesic pp′. There exists two possibilities:

47



The 3rd Conference on Dynamical Systems and Geometric Theories 27-28 January, 2022

Case 1: The geodesic pp′ is timelike.
In this case, p ∈ I−(p′) and any future null geodesic with past endpoint p has a segment
in I−(p′) such that for every point s of this segment, r ∈ ∂J+(s) \ J+(s) and J+(s) is
not closed.
Case 2: The geodesic pp′ is null.
In this case, we show that causal simplicity fails at every points of the null geodesic
pp′. By the reflectivity of M , r ∈ ∂J+(p′) \ J+(p′) and we conclude that J+(p′) is not

closed. Now, for every point q on the null geodesic pp′ we have r ∈ ∂J+(p′) ⊆ J+(q) and
r 6∈ J+(q) ⊆ J+(p) and therefore, J+(q) is not closed.

�
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Introduction

In this article we consider a local equivalence problem for the class of equations

(14) uxx = ut +Q(u)ux

under a contact transformation pseudo-group. Two equations are said to be equivalent if there
exists a contact transformation mapping one equation to the other.We use Elie Cartan’s method of
equivalence, [1], in its form developed by Fels and Olver, [2, 3], to compute the Maurer - Cartan
forms, the structure equations, the basic invariants, and the invariant derivatives for symmetry
groups of equations from the class . All differential invariants are functions of the basic invariants
and their invariant derivatives. Cartan’s solution to the equivalence problem states that two
equations are (locally) equivalent if and only if Cartan test’s satisfied.

Equivalence problem of differential equations

In this section we describe the local equivalence problem for differentials equations under the
action of the pseudo group of contact transformations. Two equations are said to be equivalent
if there exists a contact transformation which maps the equations to each other. We apply Elie
Cartan’s structure theory of Lie pseudo-groups to obtain necessary and sufficient conditions under
which equivalence mappings can be found. This theory describes a Lie pseudo-group in terms of a
set of invariant differential 1-forms called Maurer-Cartan forms. Expressions of exterior differentials
of Maurer-Cartan forms in terms of the forms themselves yield Cartan structure equations for
the pseudo-group. The Maurer-Cartan forms contain all information about the pseudo-group, in
particular, they give basic invariants and operators of invariant differentiation and allow one to
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solve equivalence problems for submanifolds under the action of the pseudo-group.
As is shown in [4], the following differential 1-forms,

Θα = aαβ(duβ − uβxjdx
j),

Ξi = bijdx
j + ciβΘβ ,

Σαi = aαβB
i
jdu

β
xj + fαiβΘβ + gαijΞ

j

are Maurer-Cartan forms of Cont(J1(π)). They are defined on J1(π)×H, whereH = (aαβ , b
i
j , c

i
β , f

α
iβ , g

α
ij) |

α, β ∈ {1, . . . , q}, i, j ∈ {1, . . . , n}, det(aαβ).det(bij) 6= 0, gαij = gαji,(B
i
j) is the inverse matrix for (bij).

They satisfy the structure equations

dΘα = Φαβ ∧Θβ + Ξk ∧ Σαk ,

dΞi = Ψi
k ∧ Ξk + Πi

γ ∧Θγ ,

dΣαi = Φαγ ∧ Σγi −Ψk
i ∧ Σαk + Λαiβ ∧Θβ + Ωαij ∧ Ξj .

where the formsΦαβ ,Ψ
i
j ,Π

i
β ,Λ

α
iβ and Ωαij depend on differentials of the coordinates of H. Differ-

ential equations defines a submanifold R ⊂ J1(π). The Maurer-Cartan forms for its symmetry
pseudo-group Cont(R) can be found from restrictions θα = ı∗Θα, ξi = ı∗Ξiand σαi = ı∗Σαi . where
ı = ı0 × id : R×H −→ J1(π)×H with ı0 : R −→ J1(π) defined by our differential equations. In
order to compute the Maurer.Cartan forms for the symmetry pseudo-group, we implement Car-
tan’s equivalence method. Firstly, the forms θα, ξi, σαi are linearly dependent, i.e. there exists a
nontrivial set of functions Uα, Vi,W

i
α on R×H such that Uαθ

α + Viξ
i +W i

ασ
α
i ≡ 0. Setting these

functions equal to some appropriate constants allows one to express a part of the coordinates of H
as functions of the other coordinates of R×H. Secondly, we substitute the obtained values into the
forms φαβ = ı∗Φαβ and ψik = ı∗ψik coefficients of semi-basic forms φαβ at σγj , ξ

j , and the coefficients

of semi-basic forms ψij at σγj are lifted invariants of Cont(R). We set them equal to appropriate
constants and get expressions for the next part of the coordinates of H, as functions of the other
coordinates of R × H. Thirdly, we analyze the reduced structure equations. If the essential tor-
sion coefficients dependent on the group parameters appear, then we should normalize them to
constants and find some new part of the group parameters, which, on being substituted into the
reduced modified Maurer-Cartan forms, allows us to repeat the procedure of normalization. There
are two possible results of this process. The first result, when the reduced lifted coframe appears
to be involutive, outputs the desired set of invariant 1-forms which characterize the pseudo-group
Lie(R). In the second result, when the coframe is not involutive, we should apply the procedure
of prolongation [[5]].

Structure of symmetry groups for general form of Burgers’ equations

We apply the method described in the previous section to the class of equations (14).we take the
equivalent system of first order

(15) ux = v, ut = vx +Q(u)v.

Denoting, x = x1, t = x2, v = u1, u = u2, vx = p1
1, vt = p1

2, ut = p2
2, ux = p2

1. We consider
this system as a sub-bundle of the bundle J1(ε), ε = R2 × R2 −→ R2, with local coordinates
{x1, x2, u1, u2, p

1
1, p

1
2, p

2
1, p

2
2}, where the embedding ι is defined by the equalities:

(16) p2
1 = u1, p1

1 = p2
2 −Q(u2)u1.

The forms θα = ι∗Θα, α ∈ {1, 2}, ξi = ι∗Ξi, i ∈ {1, 2}, are linearly dependent. The group
parameters aαβ , b

i
j must satisfy the conditions det(aαβ) 6= 0, det(bij) 6= 0.

linear dependence between the forms σαi are

(17) σ2
1 = 0, σ1

1 = σ2
2
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Computing the linear dependence conditions (17) and The analysis of the semi-basic modified
Maurer-Cartan forms and the structure equations at the obtained values of the group parame-
ters gives the following group parameters as a functions of other group parameters and the local
coordinates {x1, x2, u1, u2, p

1
2, p

2
2} of R.

a2
1 = 0, b21 = 0, b22 =

b11a
2
2

a1
1

a2
2 = a1

1b
1
1, c21 = 0, c22 = c11(18)

c12 = 0, c11 = 0, a1
2 =

1

2

a1
1(Qb11 − b12)

b11
.

Regarding the appearance of different derivatives of Q(u) in the essential torsion coefficients and
with respect to vanishing or non-vanishing of these derivatives and their effects on normalizations
process, we have to impose some restrictions on the function Q(u2). As a result of these restrictions,
the following cases arise.
Case-1:
After normalization (31.16), if Q is a constant then we have the following structure equations

dθ1 = φ1
1 ∧ θ1 − 1

2
ψ1

2 ∧ θ2 + ξ1 ∧ σ2
2 + ξ2 ∧ σ1

2 ,

dθ2 = φ1
1 ∧ θ2 + ψ1

1 ∧ θ2 − θ1 ∧ ξ1 + ξ2 ∧ σ2
2 ,

dξ1 = ψ1
1 ∧ ξ1 + ψ1

2 ∧ ξ2,

dξ2 = 2ψ1
1 ∧ ξ2,(19)

dσ1
2 = φ1

1 ∧ σ1
2 − 2ψ1

1 ∧ σ1
2 −

3

2
ψ1

2 ∧ σ2
2 + λ1

21 ∧ θ1 + ω1
12 ∧ ξ1 + ω1

22 ∧ ξ2,

dσ2
2 = φ1

1 ∧ σ2
2 − ψ1

1 ∧ σ2
2 − ψ1

2 ∧ θ1 +
1

3
λ1

21 ∧ θ2 + ω1
12 ∧ ξ2 + ξ1 ∧ σ1

2 .

The structure equations (52) do not contain any torsion coefficient depending on the group
parameters. The first reduced character is s′1 = 5, and the degree of indeterminancy is 2. The
Cartan involutivity test is not satisfied. Therefore we should use the procedure of prolongation,
which gives us the following structure equations.

dθ1 = η1 ∧ θ1 − 1

2
η3 ∧ θ2 + ξ1 ∧ σ2

2 + ξ2 ∧ σ1
2 ,

dθ2 = η1 ∧ θ2 + η2 ∧ θ2 − θ1 ∧ ξ1 + ξ2 ∧ σ2
2 ,

dξ1 = η2 ∧ ξ1 + η3 ∧ ξ2,

dξ2 = 2η2 ∧ ξ2,

dσ1
2 = η1 ∧ σ1

2 − 2η2 ∧ σ1
2 −

3

2
η3 ∧ σ2

2 + η4 ∧ θ1 + η5 ∧ ξ1 + η6 ∧ ξ2,

dσ2
2 = η1 ∧ σ2

2 − η2 ∧ σ2
2 − η3 ∧ θ1 +

1

3
η4 ∧ θ2 + η5 ∧ ξ2 + ξ1 ∧ σ1

2 .(20)

dη1 =
1

2
η3 ∧ ξ1 + η4 ∧ ξ2,

dη2 =
2

3
η4 ∧ ξ2,

dη3 =
2

3
η4 ∧ ξ1 − η2 ∧ η3,

dη4 = −2η2 ∧ η4,

dη5 = −π1 ∧ ξ2 − η6 ∧ ξ1 + 2η3 ∧ σ1
2 − 2η4 ∧ σ2

2 + η1 ∧ η5 − 3η2 ∧ η5,

dη6 = −π1 ∧ ξ1 − π2 ∧ ξ2 − 10

3
η4 ∧ σ1

2 + η1 ∧ η6 − 4η2 ∧ η6 − 5

2
η3 ∧ η5.
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The forms η1, ..., η6 depend on differentials of the parameters of H , while the forms π1, π2 depend
on differentials of the prolongation variables.
In structure equations (54), the degree of indeterminancy is 2 and the reduced characters of the
coframe are s′1 = 2, s′2 = ... = s′12 = 0. Since the Cartan involutivity test for the lifted coframe
{θ1, θ2, ξ1, ξ2, σ1

2 , σ
2
2 , η1, η2, η3, η4, η5, η6} is satisfied, then the coframe is involutive. Also all the

essential torsion coefficients in the structure equations (54) are constants, then from the Theorem
11.8 of [5], we have:

14.1. Theorem. The equation ut = κux + uxx is equivalent to the ut = uxx under a contact
transformation.

Case-2:
Suppose Q = κu2 + λ, is a linear function (κ 6= 0). In this case the analysis of the structure
equations gives the following extra normalizations to (31.16).

b12 =
1

2
(κu2 + λ)(4κ2u1u2 + 4κλu1 − 4κp2

2)
1
3 ,

a1
1 = 4κ(4κ2u1u2 + 4κλu1 − 4κp2

2)−
2
3 , b11 =

1

2
κ(4κ2u1u2 + 4κλu1 − 4κp2

2)
1
3 ,(21)

f1
21 = −8κu1(4κ2u1u2 + 4κλu1 − 4κp2

2)−
2
3 , g1

12 = 6
3
√

2κu1(κ2u1u2 + κλu1 − κp2
2)−

2
3 .

The expression for g1
22 are too long to be written out in full here. Now, all the group parameters

are expressed as functions of the local coordinates {x1, x2, u1, u2, , p
1
2, p

2
2}.

After normalization (21) the structure equations of coframe {θ1, θ2, ξ1, ξ2, σ1
2 , σ

2
2}, is

dθ1 = −2I

3
θ1 ∧ ξ1 − 1

3
θ1 ∧ σ2

2 + θ2 ∧ ξ2 + ξ1 ∧ σ2
2 + ξ2 ∧ σ1

2 ,

dθ2 = −θ1 ∧ ξ1 − I

3
θ2 ∧ ξ1 − 1

6
θ2 ∧ σ2

2 + ξ2 ∧ σ2
2 ,

dξ1 = θ2 ∧ ξ2 +
1

6
ξ1 ∧ σ2

2 ,

dξ2 = −2I

3
ξ1 ∧ ξ2 +

1

3
ξ2 ∧ σ2

2 ,(22)

dσ1
2 = θ1 ∧ ξ1 − 8Iθ1 ∧ ξ2 − Iθ2 ∧ ξ2 − 1

2
θ2 ∧ σ2

2 + 40Iξ1 ∧ ξ2 +

4I

3
ξ1 ∧ σ1

2 − 13ξ2 ∧ σ2
2 −

2

3
σ1

2 ∧ σ2
2 ,

dσ2
2 = 6θ1 ∧ ξ2 − θ2 ∧ ξ1 − 2θ2 ∧ ξ2 + ξ1 ∧ σ1

2 + Iξ1 ∧ σ2
2 ,

where

I =
3
√

2(κ2u2ux + 2κλuux − κuut − κ(ux)2 + λ2ux − λut + utx)κ
3
√

(κ2uux + κλux − κut)4

is the only invariant of the symmetry group o equations of the from Case-2.
Note that, the exterior differential of I is

dI =
1

2
θ2 +

4I2

3
ξ1 + 6ξ2 +

1

2
σ1

2 +
2I

3
σ2

2 .

All derived invariants of the group are expressed as functions of I. Therefore, the rank of the
coframe, is 1 and our manifold is 6-dimensional and by theorem 8.22 from [5], we deduce the
following theorem.

14.2. Theorem. The equation ut = (κu+ λ)ux + uxx, (κ 6= 0) admits a contact transformation
symmetry group of dimension 5.

If Q is not a linear function, the analysis of the structure equations gives the following normal-
izations in addition to (31.16).
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a1
1 =

4
(
d2Q
du2

)2

(
dQ
du

)3 , b11 = −1

2

4
(
dQ
du

)2

(
d2Q
du2

) , b12 = −1

2

(
dQ
du

)(
−2
(
d2Q
du2 ux

)
+
(
dQ
du

)
Q
)

(
d2Q
du2

) .

The expression for f1
21, g

1
22, g

1
12 are too long to be written out in full here. Now, all the group

parameters are expressed as functions of the local coordinate.
Case-3:
Q(u) is a quadratic polynomial or

(23)
2(d

2Q
du2 )2 − (d

3Q
du3 )(dQdu )

(d
2Q
du2 )2

= Constant.

If (23) satisfied then the structure equations of the coframe are

dθ1 = J3θ
1 ∧ ξ2 − 8J1θ

2 ∧ ξ1 + J2θ
2 ∧ ξ2 + ξ1 ∧ σ2

2 + ξ2 ∧ σ1
2 ,

dθ2 = −θ1 ∧ ξ1 +
J3

3
θ2 ∧ ξ2 + ξ2 ∧ σ2

2 ,

dξ1 = θ1 ∧ ξ2 + θ2 ∧ ξ2 − (16J1 +
J3

2
)ξ1 ∧ ξ2,(24)

dξ2 = 0,

dσ2
2 = −16J1θ

1 ∧ ξ1 + 2(20J1 − J2)θ1 ∧ ξ2 − J2θ
2 ∧ ξ1 − θ2 ∧ σ2

2 −

(64J1
2 + 4J1J3 − 8J1 + J2)θ2 ∧ ξ2 + ξ1 ∧ σ1

2 − ξ2 ∧ σ1
2 −

J3

2
ξ2 ∧ σ2

2 .

The expression for dσ2
2 is too long to be written out in full here.

If Q(u) is a quadratic polynomial then the structure equations of coframe is different from (24),
and expressed only by {J1, J2, J3}, where

J1 =

(
d2Q
du2

)3 ((
d2Q
du2

)
ux

2 −Q
(
dQ
du

)
ux +

(
dQ
du

)
ut

)
(
dQ
du

)6 ,

J2 = −
4
(
d2Q
du2

)3

(
dQ
du

)9

((
dQ

du

)4

Qux +

(
d2Q

du2

)(
dQ

du

)3

ux
2 −

2

(
d2Q

du2

)(
dQ

du

)2

Q2ux + 6

(
d2Q

du2

)2(
dQ

du

)
Qux

2 −(25)

4

(
d2Q

du2

)3

ux
3 + 2

(
d2Q

du2

)(
dQ

du

)2

Qut − 6

(
d2Q

du2

)2(
dQ

du

)
uxut

−2

(
d2Q

du2

)(
dQ

du

)2

utx −
(
dQ

du

)4

ut

)
,

J3 = −
8
(
d2Q
du2

)2

(
dQ
du

)6

((
dQ

du

)3

ux + 2

(
d2Q

du2

)3

ux
2 − 2

(
d2Q

du2

)(
dQ

du

)
Qux

+2

(
d2Q

du2

)(
dQ

du

)
ut

)
,
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are invariants of the symmetry group of an equation from Case-3.
All derived invariants of the group are expressed as functions of {J1, J2, J3}. Therefore the rank
of the coframe, is 3. Again by theorem 8.22 from [5], we have

14.3. Theorem. If Q(u) is a quadratic polynomial or
2( d

2Q

du2 )2−( d
3Q

du3 )( dQdu )

( d
2Q

du2 )2
be a constant and d3Q

dux3 6=

0 then, the equation ut = Q(u)ux + uxx, admits a contact transformation symmetry group of
dimension 3.

Case-4:
We will make the following assumption for (14):

(26)
2(d

2Q
du2 )2 − (d

3Q
du3 )(dQdu )

(d
2Q
du2 )2

6= constant,
d3Q

du3
6= 0.

The structure equations of the coframe, in this case, is

dθ1 = −J4θ
1 ∧ θ2 + (4J1J3J4 + J3 + 32J1

2J4 +
1

8
J3

2J4 + 8J1J4)θ1 ∧ ξ2 −

(16J1
2J4 + 2J1J3J4 +

1

16
J3

2J4 − 8J1)θ2 ∧ ξ1 +
J4(16J1 + J3)

2
θ1 ∧ ξ1 +

(64J1
3J4 +

1

64
J3

3J4 + 16J1
2J4 + 12J1

2J3J4 +
3

4
J1J3

2J4 + J1J3J4 +

J2)θ2 ∧ ξ2 + ξ1 ∧ σ2
2 + ξ2 ∧ σ1

2 ,

dθ2 = −θ1 ∧ ξ1 +
J4(16J1 + J3)

4
θ2 ∧ ξ1 + (2J1J3J4 +

1

2
J3 + 16J1

2J4 +

1

16
J3

2J4 + 4J1J4)θ2 ∧ ξ2 + ξ2 ∧ σ2
2 ,(27)

dξ1 = θ1 ∧ ξ2 − J4

2
θ2 ∧ ξ1 + (1− 4J1J4 −

1

4
J3J4)θ2 ∧ ξ2 +

(2J1J3J4 − 16J1 −
1

2
J3 + 16J1

2J4 +
1

16
J3

2J4 − 4J1J4))ξ1 ∧ ξ2,

dξ2 = −J4θ
2 ∧ ξ2 +

J4(16J1 + J3)

2
ξ1 ∧ ξ2.

The expression for dσ1
2 , dσ

2
2 are too long to be written out in full here.

There is an invariant extra to (25), for the symmetry group of equations from case4, which is

J4 =
2(d

2Q
du2 )2 − (d

3Q
du3 )(dQdu )

(d
2Q
du2 )2

.

All derived invariants of the group are functionally expressed as functions of
{J1, J2, J3, J4}. The rank of the coframe, is 4, therefore we have:

14.4. Theorem. If Q(u) satisfy,
2( d

2Q

du2 )2−( d
3Q

du3 )( dQdu )

( d
2Q

du2 )2
6= constant and (d

3Q
du3

1
6= 0) then, the equation

ut = Q(u)ux + uxx, admits a contact transformation symmetry group of dimension 2.

15. Conclusion

In this paper, the moving coframe method of [4] is applied to the local equivalence problem for
a class of systems of the general form of Burgers’ equations under the action of a pseudo-group of
contact transformations. We have found four subclasses and showed that every type of the general
form of Burgers’ equations belongs to a system from one of these subclasses. The equivalence
condition of first subclass, structure equations and invariants for all subclasses are found.

————————————————————–
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The aim of this manuscript is to discuss the dynamics of a coronavirus disease 2019 (COVID–19)
model. We first prove the positivity and boundedness of the solution of the proposed COVID–19
model. Thence, we determine the equilibrium points and discuss the stability analysis of the
model. In continuation, we show that the equilibrium points are locally asymptotically stable.
We apply the nonstandard finite difference (NSFD) scheme to study the dynamic behaviors
COVID–19 model. In order to the efficiency and accuracy of the proposed NSFD, some numerical
results are presented.
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Introduction

Over the years, mathematical modelling is proved its ability to obtain more understanding dy-
namics of disease models in the community. These models can help the researchers to understand
more about the spread process of a virus that may turn into a pandemic situation and may pre-
dict the conditions that will show the continuation or end of these infections. In March 2020, the
COVID–19 disease begins to spread throughout the world which is originated from Wuhan in China
causing a global fear and devastating effect which conclude the governments and scientists to find a
suitable cure [1, 2]. This virus can mainly transmit through the droplets of an infected person that
can spread when the person coughs, sneezes, or even while talking. These small droplets from an
infected person can be transmitted to an uninfected person who may breathe them and causing the
person to be infected with this virus. These viruses are heavy and they will not be hanging in air
and eventually, they should land on any other surface or the floor. Another way of getting infected
is that when an infected person is caught or sneezes in his hand and touches some surfaces and then
an infected person touches these surfaces and then touches his eye or nose and then he becomes
infected. Due to the above reasons, scientists have been working extensively overall the last two
years [3, 4]. In many cases, mathematical modelling of disease can be described by a nonlinear
autonomous initial value problem. Since analytical solution a few numbers of these equations can
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be obtained, hence, various numerical methods were constructed to solve such equations. In this
research, in order to approximate the solution of the proposed COVID–19 model, we are going to
construct an efficient NSFD scheme. Our model takes the following form:

(28)


s′(t) = γr(t)− αs(t)i(t)− µss(t) + µ∗,

i′(t) = αs(t)i(t)− βi(t)− µii(t),
r′(t) = βi(t)− γr(t)− µrr(t),
s(0) = s0, i(0) = i0, r(0) = r0.

In this model, the total population individuals at each time t is divided into three groups. Here,
s(t) is the number of susceptible group at time t, i(t) is the number of infected group at time t
and r(t) denotes the recovered group at time t. Also, moving from the susceptible group to the
infected group occurs at a rate α and infected groups are supposed to recover at a constant rate β.
Moreover, the recovered individuals can again return to the susceptible group at a constant rate of
γ. According to the [6] in diseases COVID–19 because of two exposures over a small time period
a single contact produces infection at the rate αsi. Here the parameters µs, µi and µr denote
death rates of the susceptible, infected and recovered groups, respectively and the parameter µ∗

presents rate of birth the susceptible group. The organization of the manuscript is as follows. In
Section 2, we prove positivity and boundedness of the solution model of (28). Section 3 deals with
stability analysis of COVID–19 model. In Section 4, we construct an efficient NSFD scheme for
the COVID–19 model (28). The numerical results are obtained by the NSFD scheme, show the
efficiency of the NSFD scheme.

Positivity and boundedness of solutions

In this part, we are going to show that the state variables are nonegative and bounded that
describes the COVID–19 model meaningful. First, we want to show that the solutions s(t), i(t)
and r(t) of the model (28), when they exist, are positive for all t ≥ 0 with nonegative initial
conditions.

16.1. Theorem. Consider the initial conditions as given in (28). Then the solutions (s, i, r) are
positive for all time t ≥ 0.

Proof. Since the sr-coordinate plane is invariant under the flows of system, this implies that
i(t) > 0 for all t ≥ 0. Let A = {t ≥ 0|r(t) < 0}, we will show that A = ∅. Suppose that A 6= ∅ and
let t0 = inf(A). Since r(0) > 0, so t0 > 0. Now the continuity of r implies that r(t0) = 0 and by
the third equation of system (28), r′(t0) = βi(t0) > 0. Hence, there is ε > 0 such that r(t) > 0 for
all t ∈ (t0−ε, t0 +ε). Consequently, r(t) ≥ r(t0) > 0, for all time t ∈ (t0, t0 +ε) which contradicts
t0 = inf(A). By a similar argument, we can show that s(t) ≥ 0, for all t ≥ 0. �

In order to prove boundedness of the solutions of the system (28), we first state the following
proposition.

16.2. Proposition. Let K(t) : [0,+∞) −→ R be a derivative function such that K(t) ≥ 0 for

all t ≥ 0. If α > 0, β ∈ R, such that K ′(t) + αK(t) ≤ β, for all t ≥ 0, then K(t) ≤ K(0) + β
α .

16.3. Lemma. All the solutions (s(t), i(t), r(t)) of the system (28) are bounded.

Proof. Set K(t) = s(t) + i(t) + r(t) and suppose that m = min{µs, µi, µr}. Hence K(t) +

mK ′(t) ≤ µ∗. It follows from proposition 16.2 that s(t) + i(t) + r(t) ≤ s(0) + i(0) + r(0) + µ∗

m . This
shows that the solutions s, i, r of model (28) are bounded. �

Stability analysis for the COVID–19 model

The equilibrium points of the COVID–19 model (28) are given by E1 = (µ
∗

µs
, 0, 0) and E2 =

(µi+βα , i∗, βi∗

γ+µr
), where i∗ =

µs(
µi+β

α )−µ∗
γβ
γ+µr

−µi−β
.
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16.4. Theorem. The system (28) is

(i) locally asymptotically stable at the equilibrium point E1 if αµ
∗

µs
− β − µi < 0.

(ii) locally asymptotically stable at the equilibrium point E2 if i∗ > 0.

Proof. The Jacobian matrix of system (28) corresponding to any equilbrium point (s1, i1, r1)
can be written as

J(s1, i1, r1) =

−αi1 − µs −αs1 γ
−αi1 αs1 − β − µi 0

0 β −γ − µr

 .
The Jacobian matrix of (28) at the equilibrium point E1 is obtained as given below

J(E1) =


−αµ

∗

µs
− µs −αµ

∗

µs
γ

0 α
µ∗

µs
− β − µi 0

0 β −γ − µr

 .
The corresponding eigenvalues are λ1 = −αµ

∗

µs
−µs, λ2 = αµ

∗

µs
−β−µi and λ3 = −γ−µr. Therefore

the equilibrium point E1 is locally asymptotically stable if αµ
∗

µs
− β − µi < 0. At the equilibrium

point E2 the Jacobian matrix is given

J(E2) =

−αi∗ − µs −µi − β γ
αi∗ 0 0
0 β −γ − µr

 .
Hence, we obtain that the characteristic equation can be presented in the following form

(29) P (λ) = λ3 + a1λ
2 + a2λ+ a3,

where

a1 = αi∗ + µs + γ + µr, a2 = (αi∗ + µs)(γ + µr) +αi∗(µi + β), a3 = αi∗(µi + β)(γ + µr)− γαi∗β.

Using the Routh-Hurwitz criteria, all roots of Eq. (29) have negative real parts if

(30) a1 > 0, a2 > 0, a3 > 0, a1a2 − a3 > 0.

clearly a1 > 0, a2 > 0, and a3 > 0, and to see whether a1a2− a3 is greater than zero, we check the
following working

a1a2 − a3 = (αi∗ + µs)
2(γ + µr) + αi∗(µi + β)(αi∗ + µs) + (γ + µr)

2(αi∗ + µs) + γα∗i β > 0.

Hence, the equilibrium point E2 is locally asymptotically stable if i∗ > 0. �

A NSFD scheme for the COVID–19 model

In this section, we are going to develop an explicit numerical scheme using NSFD scheme which
were firstly proposed by Mickens for an initial value problem. Many applications are available in
literature using NSFD scheme [5]. In order to introduce the general aspect of a NSFD scheme
consider the following autonomous initial value problem

(31) X ′(t) = f(X(t)), X(0) = X0, t ∈ [0, tf ].

Suppose that a discretization tk = kh is given. A NSFD scheme for the problem (31) is constructed
by the following two steps.

(i) The first order deviation in the problem (31) at the k-th time step can be replaced by

a discrete form X ′(tk) ≈ Xk+1−Xk
φ(h) , where Xk is an approximation of the exact solution

X(tk) and moreover the denominator function φ(h) has to satisfy the condition φ(h) =
h+O(h2) with 0 < φ(h) < 1.
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(ii) The nonlinear and linear terms in the right–hand–side equation have to replace by non-
local discrete approximations. According to the Mickens rules, a NSFD scheme for the
proposed COVID–19 model (28) can be written as

(32)



sk+1 − sk
φ1

= γrk − αsk+1ik − µssk+1 + µ∗,

ik+1 − ik
φ2

= αsk+1ik − βik+1 − µiik+1,

rk+1 − rk
φ3

= βik+1 − γrk+1 − µrrk+1,

where the denominator functions are defined as

φ1(h) =
eµsh − 1

µs
, φ2(h) =

e(β+µi)h − 1

β + µi
, φ3(h) =

e(γ+µr)h − 1

γ + µr
.

The explicit form of (32) can be written as

(33)


sk+1 =

sk + φ1γrk + φ1µ
∗

1 + αφ1ik + φ1µs
,

ik+1 =
(1 + αφ2sk+1)ik
1 + (β + µi)φ2

,

rk+1 =
βφ3ik+1 + rk

1 + (γ + µr)φ3
.

16.5. Proposition. If s0 > 0, i0 > 0 and r0 > 0, then for all stepsize h, the numerical solutions
are obtained from (33) are always positive.

17. Numerical analysis

This section is devoted to numerical interpretation of COVID–19 model using the proposed NSFD
scheme simulated with the help of Matlab software. In order to investigate the numerical solutions
of the proposed NSFD we consider two cases. At the first simulation, we choose the parameter
values µ∗ = 0.02, µs = 0.2, α = 0.6, β = 0.1, γ = 0.001 and µr = µi = 0.02 with the initial
condition s0 = 30, i0 = 25 and r0 = 20 for simulating time 1000 and the stepsize h = 0.4. Figure 1
confirms that the NSFD scheme (32) converges to the equilibrium point E1 = (0.1, 0, 0). In Figure
2, we plot the behaviour of the NSFD scheme (32) for the parameter values β = 0.1, α = 0.05,
µs = 0.2, µi = µr = 0.02, γ = 0.001 and µ∗ = 0.5 with choosing stepsize h = 2 and initial condition
s0 = 30, I0 = 25 and r0 = 20. The Figure 2, shows that (sk, ik, rk) approaches to the equilibrium
point E2 = (2.4, 0.1735, 0.8261).

Conclusion

In this article, the dynamics of the new COVID–19 model is investigated. The positivity and
boundedness of the model is proved. The stability analysis for both equilibrium points is obtained
proving that the model is locally asymptotically stable for both equilibrium points. The proposed
COVID–19 model is solved using a NSFD scheme. The simulation results show the effective of the
NSFD scheme, even for choosing the large stepsize h. As a future research work, we can focus on
the fractional–order COVID–19 model and obtain an efficient NSFD scheme which preserves the
positivity and stability properties of the fractional order COVID–19 model.
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19. Introduction

The 2000 and 2016 United States presidential elections show us political parties shape public
opinion, but their influence is limited. Indeed, we should be noted that although many countries
have dual political parties which play a main role in their elections, there is a special parameter
which is people’s opinions. Some researches show sometimes people change the mind of these
political parties or maybe build a new political party. Indeed, a new party arises which a growing
number of voters move into it. The 2000 and 2016 U.S. presidential elections and 2005 Iran
presidential election are some samples of this idea.

According to the importance of elections in the democracy of countries, our attention is attracted
to study the movement of voters between political parties and the population dynamics amongst
each group. For this aim, a nonlinear mathematical model in fractional order with a constant
population assumption is considered.

In most countries, it is important that political independence is retained by the people and ex-
ercised directly by citizens. The usual mechanism in these countries is a decision-making process
by which citizens who have necessary conditions choose an individual to hold formal office. In this
approach, the influence of political parties on people’s views is treated as a disease that person
is affected. Therefore, it can be assumed that members move from one political party to another
one when they are exposed to the ideology of other parties. Some modeling studies have been
conducted regarding the growth of political parties and voters [3, 1, 2, 3, 4]. In the modeling
process, we assume that the total population is constant, N. This total population has been divided
into four classes:

(1) V : Population of eligible voters
(2) A: Population of Political Party A
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(3) B: Population of Political Party B
(4) C: Population of Political Party C.

Bauelos et al. [3] introduced the following model after simplification

dX

dt
= X(a(−X − Y − Z + 1)− µ− ψY + ΩZ),(34)

dY

dt
= Y (b(−X − Y − Z + 1)− µ+ ψ(X − Z)),(35)

dZ

dt
= Z(c(−X − Y − Z + 1)− µ−XΩ + ψY ),(36)

which

• X : Proportion of Political Party A
• Y : Proportion of Political Party B
• Z : Proportion of Political Party C
• a : per capita recruitment rate of Party A from V
• b : per capita recruitment rate of Party B from V
• c : per capita recruitment rate of PartyC from V
• µ : rate at which individuals enter and leave voting system
• Ω : Net Shift between Party A and Party C
• ψ : Net Shift between Party A and Party B and Net Shift between Party B and Party
C.

In the next Section, we consider the fractional order form of this model as follows

DαX(t) = X(a(−X − Y − Z + 1)− µ− ψY + ΩZ),(37)

DαY (t) = Y (b(−X − Y − Z + 1)− µ+ ψ(X − Z)),(38)

DαZ(t) = Z(c(−X − Y − Z + 1)− µ−XΩ + ψY ),(39)

to investigate its dynamics by determining equilibrium points of this system analytically and discuss
their stability.

20. Main results

The equilibrium points of our model are denoted by (X∗, Y ∗, Z∗), where X∗ = A∗

N , Y ∗ =
B∗

N , Z∗ = C∗

N , and V ∗ = N − (A∗ +B∗ + C∗). These equilibria will be in the one of four forms

• the party-free equilibria
• the single-party equilibria
• the dual-party equilibria
• the interior equilibria

which is obtained in [3] as it is summarized in Table 2 On the other hand, it is not hard to compute

Table 2. Equilibrium Points

case equilibrium point value status
1 p1 X = 0, Y = 0, Z = 1 —
2 p2 X = 0, Y = 1, Z = 0 —
3 p3 X = 0, Y = −1, Z = 1 not acceptable
4 p4 X = 0.99

Ω , Y = 0, Z = −0.99
Ω not acceptable

5 p5 X = 0.99
(2+Ω) , Y = 0.99Ω

(2+Ω) , Z = 0.99
(2+Ω) —

6 p6 X = 0., Y = 0., Z = 0. —
7 p7 X = 1, Y = 0., Z = 0. —
8 p8 X = −1, Y = 1, Z = 0. not acceptable
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the characteristic equation of the equilibria as the following polynomial:

(40) φ(λ) = λ3 + a1λ
2 + a2λ+ a3

Now, expressing the discriminant of φ(λ) as

(41) D(φ) = 18a1a2a3 + (a1a2)2 − 4a3a
2
1 − 4a2

2 − 27a2
3

and using the result of Ahmed et al. [1], following fractional RouthHurwitz conditions associated
with are observed:

(1) If D(φ) > 0, then the necessary and sufficient condition for the equilibrium point to be
locally asymptotically stable is a1 > 0, a3 > 0, a1a2 > a3;

(2) If D(φ) < 0, a1 ≥ 0, a2 ≥ 0, a3 > 0, then the equilibrium point is locally asymptotically
stable for α < 2

3 ,

(3) If D(φ) < 0, a1 < 0, a2 < 0, α > 2
3 , then all roots of Eq. 40 satisfy the condition

|arg(λi)| < απ2 , i = 1, 2, 3

To obtain the equilibria of system (4)-(6), we consider the following parameter values which is used
in [3]

a = b = c = ψ = 1,

µ = 0.01.

Therefore, if Ω = ψ we have the results in Table3

By applying fractional RouthHurwitz stability criterion, the results is summarized in Table 4

Table 3. Characteristic Equation

case equilibrium point value characteristic equation
1 p1 X = 0, Y = 0, Z = 1 λ3 + 1.03λ2 − 0.9797λ− 1.0099
2 p2 X = 0, Y = 1, Z = 0 λ3 + 0.03λ2 − 0.9997λ− 0.009999
3 p3 X = 0, Y = −1, Z = 1 not acceptable
4 p4 X = 0.99

Ω , Y = 0, Z = −0.99
Ω not acceptable

5 p5 X = 0.99
(2+Ω) , Y = 0.99Ω

(2+Ω) , Z = 0.99
(2+Ω) λ3 + 0.99λ2 + 0.3267λ+ 0.035937

6 p6 X = 0., Y = 0., Z = 0. λ3 − 2.97λ2 + 2.9403λ− 0.970299
7 p7 X = 1, Y = 0., Z = 0. λ3 + 0.99λ2 − 0.9801λ− 0.970299
8 p8 X = −1, Y = 1, Z = 0. not acceptable

Now, we consider p6. By Table 4 and 3, it is an unstable point, see Figure 4-6. The result for

Table 4. Fractional RouthHurwitz Stability Criterion

case equilibrium point D(φ)
1 p1 -7.73824
2 p2 -3.97242
3 p3 not acceptable
4 p4 not acceptable
5 p5 -0.407442
6 p6 201.692
7 p7 -7.56213
8 p8 not acceptable

other points is similar.
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Figure 4. Behavior of the numerical solution X(t) using GABMM , α = 0.95.
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Figure 5. Behavior of the numerical solution Y(t) using GABMM , α = 0.95.
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Figure 6. Behavior of the numerical solution Z(t) using GABMM ,α = 0.95.

21. Conclusion

This paper is devoted to implement the analytical and numerical method for studying a nonlinear
election model in fractional-order. In this work, we interested to discuss and study the discrimi-
nant of characteristic equation of our model to investigate the stability of equilibria. Also, some
numerical results is presented for one of equlibria, origin. Our analytical and numerical results
showed that it was unstable.
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Let X be an entropy minimal synchronized system and ϕ : X → Y a factor code. We show that
Y is synchronized whenever ϕ is entropy preserving. With this property, entropy preserving is
equivalent to having a degree. Moreover, entropy minimality is equivalent to X being intrinsically
ergodic of full support and in this situation, the entropy of X is identical with the synchronized
entropy of X.
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Introduction

Entropy minimality was introduced by Coven and Smtal [2] as a property of dynamical systems
which is stronger than topological transitivity and weaker than minimality. There has been some
recent work which describes some conditions which are equivalent to entropy minimality for shifts
of finite type. Our goal of this note is to look for entropy minimality among the synchronized
systems which are a well-known subclass of coded systems.

As any other topological dynamical system, the study of possible measures preserved by the shift
map is of interest in coded systems. In particular, the investigation for the existence and uniqueness
of a measure of maximal entropy has a long history and those systems with this unique invariant
measure are called intrinsically ergodic. This measure, if exists, is the most natural measure on
subshifts and is the main tool for studying their statistical properties.

Parry [5] established intrinsically ergodic for topologically transitive shifts of finite type and
all their subshift factors (sofic shifts) and Bowen [1] proved for shifts with specification property.
We extend their results and will show that a synchronized system (X, σ) with positive entropy is
intrinsically ergodic of full support if and only if it is entropy minimal.

In Theorem 22.2, we will prove that entropy minimality is a property invariant by entropy
preserving factor codes. Also, we will show that if X is an entropy minimal synchronized system,
then any factor of X by an entropy preserving factor code will be synchronized (Theorem 22.3).
Furthermore, for entropy minimal synchronized systems, entropy preserving is equivalent to having
a degree (Theorem 22.5).

Finally, for a synchronized system X with the underlying graph G for its Fischer cover, we show
that h(G) = hsyn(X) and if X is entropy minimal or equivalently if X is intrinsically ergodic of
full support, then h(X) = hsyn(X) [Theorem 22.8].
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Background and Notations

The notations has been borrowed from [4] and a brief reminder of the main definitions of symbolic
dynamics has been brought here. Let A be a finite set of alphabet. A full A-shift is defined as
(AZ, σ) where the shift map σ is defined by σ((xi)i∈Z) = (xi+1)i∈Z. Any closed invariant set X
of AZ is called a subshift or a shift space. Let Bn(X) denote the set of all admissible n words, i.e.
words of length n and set B(X) := ∪n∈NBn(X) to be the language of X.

Recall the definition of an (m+n+1)-block map from [4, §1.5]; however, without loss of generality
we will use only one-block maps (m = n = 0) which induces a map ϕ called code. Thus if ϕ is a
code from X into another shift space, then ϕ(· · ·x−1x0x1 · · · ) = (· · ·Φ(x−1)Φ(x0)Φ(x1) · · · ) where
Φ is the (m+ n+ 1)-block map.

A factor code is an onto code. A code ϕ : X → Y is finite-to-one if there is an integer M such
that |ϕ−1(y)| ≤M for every y ∈ Y . A point x in a shift space X is doubly transitive if every word
in X appears in x infinitely many often to the left and to the right. We denote by D(X) the set
of doubly transitive points of X.

A shift space X is irreducible if for every pair of words u, v ∈ B(X) there is a word w ∈ B(X)
so that uwv ∈ B(X). A word v ∈ B(X) is synchronizing if whenever uv, vw ∈ B(X), then
uvw ∈ B(X).

Let G be a graph with edge set E . The edge shift XG is the shift space specified by XG =
{ξ = (ξi)i∈Z ∈ EZ : t(ξi) = i(ξi+1) for all i ∈ Z}. A labeled graph G is a pair (G,L) where G is
a graph with the labeling L : E → A. Let L∞(ξ) be the label of a bi-infinite path ξ ∈ XG. Set
XG := {L∞(ξ) : ξ ∈ XG} which will be denoted by L∞(XG) as well. If there is a graph G such
that X = XG , then we say G is a presentation (or cover) of XG .

A shift space is sofic if there is a finite graph G such that X = XG . Equivalently X is sofic, if it
is a factor of an SFT, or shift of finite type (shifts characterized by a set of finite forbidden words).
A labeled graph G = (G,L) is right-resolving if for any vertex I of G and any symbol a ∈ A,
there is at most one edge labeled by a and going out of I. A minimal right-resolving cover (or
Fischer cover) of a sofic shift X is a right-resolving cover of X having the fewest vertices among
all right-resolving covers of X.

The entropy of a subshift X is defined by h(X) = limn→∞(1/n) log |Bn(X)|. There are some
other entropies which will be used in this note. One is the entropy related to graphs given by
Gurevich and that is defined as follows. Let G be a connected oriented graph. Then for any
vertices I, J

(42) h(G) = lim
n→∞

1

n
logBIJ(n)

where BIJ(n) is the number of paths of length n which starts at I and ends at J .

Main results

22.1. Definition. A topological dynamical system (X,T ) is said to be entropy minimal if all
closed T-invariant subsets of X have entropy strictly less than (X,T ).

First, we investigate some dynamical properties of a subshift satisfying entropy minimality. The
next two theorems deals with the application of entropy preserving factor codes in such systems.
Also see Theorem 22.5.

22.2. Theorem. Suppose ϕ : X → Y is an entropy preserving factor code and assume that X is
entropy minimal. Then, Y is entropy minimal as well.

Proof. Let Z be a proper subshift of Y and assume that h(Z) = h(Y ). By surjectivity,
ϕ−1(Z) is a proper subshift of X and since X is entropy minimal, h(ϕ−1(Z)) < h(X). Now Z is
a factor of ϕ−1(Z) and so h(Z) ≤ h(ϕ−1(Z)) < h(X) = h(Y ) violating our assumption. �
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22.3. Theorem. Suppose X is an irreducible entropy minimal shift space and let ϕ : X → Y be
an entropy preserving factor code. Then, ϕ−1(D(Y )) = D(X). In particular, if X is synchronized,
then ϕ has a degree and Y is synchronized as well.

Proof. For the first part a similar result holds for irreducible sofic shifts [4, Lemma 9.1.13].
The main ingredients for the proof of that result is to have X compact, ϕ entropy preserving and
the fact that entropy minimality holds for irreducible sofics [4, Corollary 4.4.9]. All of them are
provided here.

The second part is a direct application of [3, Theorem 3.3] and [3, Theorem 4.2]. �

22.4. Theorem. If X is an entropy minimal synchronized system with Fischer cover G = (G,L),
then h(X) = h(G).

Proof. One has h(X) = max{h(G), h(∂X)} [6, Theorem 6.16]. Also, ∂X is a proper subsys-
tem of X, and so h(X) = h(G). �

22.5. Theorem. Let X be an entropy minimal synchronized system and ϕ : X → Y a factor
code. Then, ϕ is entropy preserving if and only if it has a degree.

Proof. By Theorem 22.3 necessity is at hand, so we prove sufficiency. Assume ϕ has a degree.
Since X is entropy minimal, h(X) = h(GX) where GX is the underlying graph of Fischer cover of
X (Theorem 22.4). So, h(X) = h(GX) = h(GY ) = h(Y ). �

22.6. Theorem. Suppose X is a subshift with positive topological entropy. Then, any invariant
measure on X with maximal entropy is of full support if and only if X is entropy minimal.

Proof. First let µX be the invariant measure on X with maximal entropy of full support;
so h(X) = hµX . Suppose Y is a proper subsystem of X and h(Y ) = h(X). By the variational
principle

(43) h(Y ) = sup{hν : ν ∈M(Y, σ)}
where M(Y, σ) is the set of all invariant measures. The shift map σ is expansive and so there
is a measure νY with h(Y ) = hνY . Set νX(A) = νY (A ∩ Y ) for A ∈ M(X) and notice that
νX is an invariant measure on X vanishing at the open set X \ Y . Now by a direct verification,
hνX = hνY = h(Y ) = h(X) which is absurd by the hypothesis.

For the converse assume that X is entropy minimal and let µ be the measure with maximal
entropy which is not of full support. Then there has to be a cylinder [u] ⊂ X with µ([u]) = 0.
Now Y = X \ ∪∞i=−∞σ−i([u]) is a closed invariant subset of X and in fact a proper subsystem of
X with µ(Y ) = µ(X). Restrict µ to Y and call it µY . Then, hµY (Y ) = hµ(X) = h(X) and this in
turn by applying (43) implies that h(Y ) = h(X) which violates our assumption. �

22.7. Theorem. Let X be a subshift with positive topological entropy. If X is intrinsically ergodic
of full support, then X is entropy minimal. The converse is true whenever X is synchronized.

Proof. Apply Theorem 22.6 and the fact that a maximal measure of full support for syn-
chronized systems is unique [6]. �

Let X be synchronized and fix a synchronizing word α ∈ B(X). Let Cn(α) be the set of words
v ∈ Bn(X) such that αvα ∈ B(X). Then the synchronized entropy hsyn(X) is defined by

hsyn(X) = lim sup
n→∞

1

n
log |Cn(α)|.

This value is independent of α and h(X) ≥ hsyn(X). In general, h(X) 6= hsyn(X); however,
Thomsen showed that for irreducible sofic shifts h(X) = hsyn(X). Later Jung extended this result
to SVGL shifts.

22.8. Theorem. Let X be a synchronized system with Fischer cover G = (G, L). Then h(G) =
hsyn(X). In particular, when X is entropy minimal or equivalently if X is intrinsically ergodic of
full support, then h(X) = hsyn(X).
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Proof. First we show that h(G) ≤ hsyn(X). Let α ∈ B(X) be a synchronizing word. Then
all elements of L−1(α) have the same terminal vertex, say I and suppose Ln denote the set of
cycles in XG of length n starting and terminating at I. Set π ∈ Ln(I) and L(π) = v. Also, let
min{|w| : αwα ∈ B(X)} = k and w′ ∈ Ck(α). Then vw′ ∈ Cn+k(α). Since L∞ is right-resolving,

L : Ln(I) −→ Cn+k(α)

is injective. So,

lim sup
n→∞

1

n
logLn(I) ≤ lim sup

n→∞

1

n
logCn+k(α) = hsyn(X).

By (42), lim supn→∞
1
n logLn(I) = h(G). So h(G) ≤ hsyn(X).

The converse is quite similar! Let |α| = l and v ∈ Cn(α) with π ∈ L−1(v). Since all elements of
L−1(α) have the same terminal vertex I, then for some π′ ∈ L−1(α), ππ′ is a cycle in G starting
and terminating at I. So

hsyn(X) = lim sup
n→∞

1

n
logCn(α) ≤ lim sup

n→∞

1

n
logLn+l(I).

Now suppose X is entropy minimal. Then by Theorem 22.4, h(X) = h(G) and hence by above
result, h(X) = hsyn(X).

�
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23. On Sannon entropy bounds

Yamin Sayyari

Entropy, has many applications in thermodynamics, code theory, physics, statistics and informa-
tion theory. In this paper, we present some new and interesting results related to the bounds of
the Shannon entropy.
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Introduction

Entropy plays an important role in many areas of mathematics, probability and physics. Shan-
non’s entropy, as metric entropy, is in general difficult to calculate and even to estimate. See [1] for
other methods to estimate the Shannon entropy and [2, 4, 5, 6] for a review on entropy estimation.
In [9, 11], the authors presented some bounds for the classical Shannon’s entropy. The results of
this paper improve the results in [3, 7, 8, 10, 11].

Basic notions

Let p1, ...., pn be a positive weight sequence with
∑n
i=1 pi = 1, and let x = {x1, ..., xn} ⊆ I :=

[a, b] be a sequence. The well-known Jensen’s inequality states that: If f is convex on I, then∑n
i=1 pif(xi)− f(

∑n
i=1 pixi) ≥ 0. The sum

∑n
i=1 pixi is called the convex combination of xi.

23.1. Lemma. [2] Let f be a differentiable convex mapping. Then

0 ≤
n∑
i=1

pif(xi)− f(

n∑
i=1

pixi) ≤
1

4
(b− a)(f ′(b)− f ′(a)) := Df (a, b).(44)

Dragomir’s result (44), implies 0 ≤ log n−H(X) ≤ (ν−µ)2

4µν := D(µ, ν).

23.2. Proposition. [10] For µ := min1≤i≤n{pi} and ν := max1≤i≤n{pi}, have

m(µ, ν) := µ log(
2µ

µ+ ν
) + ν log(

2ν

µ+ ν
) ≤ log n−H(X)(45)

≤ log(
(µ+ ν)2

4µν
) := M(µ, ν).

23.3. Proposition. [10] Under the notation of Proposition 23.2, have

m(µ, ν) ≤ log n−H(X) ≤ nm(µ, ν).(46)
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23.4. Proposition. [7] Under the notation of Proposition 23.2, have

m̃(µ, ν) ≤ log n−H(X) ≤ M̃(µ, ν),(47)

where m̃(µ, ν) := m(µ, ν) + µ2(2−nµ−nν)2

2(µ+ν)(1−µ−ν) , and

M̃(µ, ν) := M(µ, ν)− (µ+ ν − 2nµν)2 + 2µν(1− µn)(νn− 1)

4ν2
.

23.5. Proposition. [7] Let µ := min1≤i≤n{pi} and ν := max1≤i≤n{pi}. Then

m(µ, ν) ≤ log n−H(X) ≤M(µ, ν),(48)

where m(µ, ν) := m(µ, ν) + (2−nµ−nν)2

4νn(n−2) and

M(µ, ν) := nm(µ, ν)− (2− nµ− nν)2 + 2(nν − 1)(1− nµ)

4νn
.

23.6. Theorem. [11] If X = {pi}ni=1 is a positive probability distribution, then

H(X) ≤ log n− max
1≤µ1<...<µn−1≤n

{log([(
n− 1∑n−1
i=1 pµk

)
∑n−1
k=1 pµk ][

n−1∏
k=1

p
pµk
µk ])}.

23.7. Theorem. [3] Let X = {pi}ni=1 be a positive probability distribution and µ = (µ1, .., µn).
Then

H(X) ≤ log(n)− 1

n

n∑
i=1

(e1−npi − 1)− max
1≤µ1<...<µn−1≤n

{F (µ) +G(µ)},

where

F (µ) = log([(
n− 1∑n−1
i=1 pµk

)
∑n−1
k=1 pµk ][

n−1∏
k=1

p
pµk
µk ]),

G(µ) =
n− 1

n
(e1− n

n−1

∑n−1
i=1 pµi − 1)− 1

n

n−1∑
i=1

(e1−npµi − 1).

Main results

In this section we obtain new upper bounds for Shannons entropy of a positive probability
distribution.

23.8. Theorem. Let X = {p1, ..., pn} be a positive probability distribution and µ0 := min1≤i≤n{pi},
then

H(X) ≤

log n− max
2≤i≤n−1

{ max
1≤µ1<...<µi≤n

{Fi(µ) exp (
µ2

0(n
∑i
k=1 pµk − i)2

2(1−
∑i
k=1 pµk)(

∑i
k=1 pµk)

)}}.

where

Fi(µ) := log([(
i∑i

k=1 pµk
)
∑i
k=1 pµk ][

i∏
k=1

p
pµk
µk ].

2 ≤ i ≤ n− 1 and µ = (µ1, .., µn).
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23.9. Corollary. Let X = {p1, ..., pn} be a positive probability distribution and µ0 := min1≤i≤n{pi},
then

H(X) ≤ log n− max
1≤µ1<...<µn−1≤n

{F (µ) exp(
µ2

0(n
∑n−1
k=1 pµk − n+ 1)2

2(1−
∑n−1
k=1 pµk)(

∑n−1
k=1 pµk)

))}.

where

F (µ) := log([(
n− 1∑n−1
k=1 pµk

)
∑n−1
k=1 pµk ][

n−1∏
k=1

p
pµk
µk ]

and µ = (µ1, .., µn).

Note that, the estimation in Corollary 23.9 is better than the estimation in Theorem 23.6.

23.10. Theorem. Let X = {p1, ..., pn} be a positive probability distribution. Let µ := min1≤i≤n{pi} =
pα, µ1 := mini{pi : i 6= α}, ν := max1≤i≤n{pi} = pβ and ν1 := max{pi : i 6= β} . Then

0 ≤ log n−H(X) ≤ M̃1(µ, ν, µ1, ν1),(49)

where M̃1(µ, ν, µ1, ν1) := M̃(µ, ν)− µ3(ν1−µ1)2

(1−µ−ν)2ν2
1µ1

.

23.11. Remark. Since M̃1(µ, ν, µ1, ν1) ≤ M̃(µ, ν) ≤ M(µ, ν) ≤ D(µ, ν), the estimation (49) is
better than (47) and (45).

23.12. Theorem. Let X = {p1, ..., pn} be a positive probability distribution. Let µ := min1≤i≤n{pi} =
pα, µ1 := mini{pi : i 6= α}, ν := max1≤i≤n{pi} = pβ and ν1 := max{pi : i 6= β} . Then

0 ≤ log n−H(X) ≤M1(µ, ν, µ1, ν1),(50)

where M1(µ, ν, µ1, ν1) := M(µ, ν)− µµ1(ν1−µ1)2

2ν(1−µ−ν) .

23.13. Remark. Since M1(µ, ν, µ1, ν1) ≤M(µ, ν) ≤ nm(µ, ν), the estimation (50) is better than
(48) and (46).

23.14. Example. Let n = 10k, µ = 10−k−1, ν = 10−k+1(k > 2) and

X = {10−k−1, 10−k−1, x3, x4, ..., x10k−2, 10−k+1, 10−k+1}.

Then M(µ, ν) ' 1.406, M̃(µ, ν) ' 1.202058. Since,

M̃1(µ, ν, µ1, ν1) = M̃(µ, ν)− µ3(ν1 − µ1)2

(1− µ− ν)2ν2
1µ1

= 1.202058− 10−3k−3(10−k+1 − 10−k−1)2

(1− 10−k−1 − 10−k+1)2× 10−2k+210−k−1

= 1.202058− 9.992

2× 104
× 10−2k

1− 10−k+1 − 10−k−1

≤ 1.202058− 9.992

2× 104
× 3× 10−2k

= 1.202058− 0/0149× 10−2k,

0 ≤ log n−H(X) ≤ 1.202058− 14/9× 10−2k−3.

23.15. Example. Let n = 100k, µ = 100−k−1, ν = 100−k+1(k > 2) and

X = {100−k−1, 100−k−1, x3, x4, ..., x100k−2, 100−k+1, 100−k+1}.
Then

nm(µ, ν)−M(µ, ν) ' 24.5049.
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Also,

M1(µ, ν, µ1, ν1) = M(µ, ν)− µµ1(ν1 − µ1)2

2ν(1− µ− ν)

= M(µ, ν)− 100−k−1 × 100−k−1(100−k+1 − 100−k−1)2

2100−k+1(1− 100−k−1 − 100−k+1)

= M(µ, ν)− 99.992

2× 1003
× 100−2k

1− 100−k+1 − 100−k−1

≤M(µ, ν)− 99.992

2× 1003
× 3× 100−2k

= M(µ, ν)− 149/9× 100−2k−2.

So, 0 ≤ log n−H(X) ≤M(µ, ν)− 149/9× 100−2k−2.
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In this paper, in order to develop a mathematical model underlying uncertainty and fuzziness
in a dynamical system, which is called relative mathematical modeling, we are going to apply
the notion of observer. First, by using a mathematical model of a one dimensional observer,
the notion of relative entropy for a relative dynamical system having countably many atoms is
considered. Also, some ergodic properties of relative dynamical systems are investigated. At the
end, a new version of Kolmogorov-Sinai theorem for a relative dynamical system having countably
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Introduction

Entropy is applicable and useful in studying the behavior of stochastic processes since it rep-
resents the ambiguity and disorder of the processes without being restricted to the forms of the
theoretical probability distributions. Different entropy measures have been studied and presented
including Shannon entropy, Renyi entropy, Tsallis entropy, Sample entropy, Permutation entropy,
Approximate entropy, and Transfer entropy. Since in mathematical modeling of physical systems
the role of observer is important, so a method is needed to measure the entropy of a system from
the point of view of an observer. Any mathematical model according to the view point of an
observer is called a relative model [6, 7]. The notion of a relative dynamical system as a gener-
alization of a fuzzy dynamical system has been defined in [7]. Also, the concept of entropy of a
relative dynamical system has been introduced in [6, 7]. This article is an attempt to present a
new approach to the entropy of relative dynamical systems having countably many atoms.

Basic Notions

This section is devoted to provide some basic notions of relative structures. A modeling for an
observer of a set X is a fuzzy set Θ : X → [0, 1] [6]. In fact this kinds of fuzzy sets are called ” one
dimentional observes”. The idea is based on the relation between ”experiance ” and ”information”
from the view point of an observer. Let Θ be an observer on X, then we say λ ⊆ Θ if λ(x) ≤ Θ(x)
for all x ∈ X. Moreover, if λ1, λ2 ⊆ Θ then λ1 ∨ λ2 and λ1 ∧ λ2 are subsets of Θ, and defined by

(λ1 ∨ λ2)(x) = sup{λ1(x), λ2(x)},
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and

(λ1 ∧ λ2)(x) = inf{λ1(x), λ2(x)},

where x ∈ X.

24.1. Definition. A collection FΘ of subsets of Θ is said to be a σΘ-algebra in Θ if FΘ satisfies
the following conditions [6],

(i) Θ ∈ FΘ,

(ii) λ ∈ FΘ then λ
′

= Θ− λ ∈ FΘ. λ
′

is the complement of λ with respect to Θ,
(iii) if {λi}∞i=1 is a sequence in FΘ then ∨∞i=1λi = supi λi ∈ FΘ,

(iv)
Θ

2
doesn’t belong to FΘ.

If P1 and P2 are σΘ-algebras on X then P1∨P2 is the smallest σΘ-algebra that contains P1∪P2,
denoted by [P1 ∪ P2].

24.2. Definition. A positive Θ−measure mΘ over FΘ is a function mΘ : FΘ → I which is
countably additive. This means that if λi is a disjoint countable collection of members of FΘ, (i.e.

λi ⊆ λ
′

j = Θ− λj whenever i 6= j) then

mΘ(∨∞i=1λi) =

∞∑
i=1

mΘ(λi).

The Θ−measure mΘ has the following properties [6],

(i) mΘ(χ∅) = 0,

(ii) mΘ(λ
′ ∨ λ) = mΘ(Θ) and mΘ(λ

′
) = mΘ(Θ)−mΘ(λ) for all λ ∈ FΘ,

(iii) mΘ(λ ∨ µ) +mΘ(λ ∧ µ) = mΘ(λ) +mΘ(µ) for each λ, µ ∈ FΘ,
(iv) mΘ is a nondecreasing function i.e. if λ, η ∈ FΘ and λ ⊆ Θ, then mΘ(λ) ≤ mΘ(η).

The triple (X,FΘ,mΘ) is called a Θ− measure space and the elements of FΘ are called relative
measurable sets. The Θ− measure space, (X,FΘ,mΘ), is called a relative probability Θ−measure
space if mΘ(Θ) = 1 [6].

24.3. Example. Let (X,β, p) be a classical probability measure space and Θ = χX . Then
FΘ = {χA : A ∈ β} is a σΘ-algebra on X. Define mΘ(χA) = p(A), A ∈ β. Then (X,FΘ,mΘ) is a
relative probability Θ− measure space.

24.4. Definition. Let (X,FΘ,m) be a Θ−measure space, the elements µ,λ of FΘ are called
mΘ-disjoint if mΘ(λ ∧ µ) = 0.

A Θ−relation ’=(mod mΘ)’ on FΘ is defined as bellow

λ = µ(modmΘ) iff mΘ(λ) = mΘ(µ) = mΘ(λ ∧ µ),

for each λ, µ ∈ FΘ.
Θ−relation ’=(mod mΘ)’ is an equivalence relation. F̃Θ denotes the set of all equivalence classes
induced by this relation, and µ̃ is the equivalence class determined by µ. For λ, µ ∈ FΘ, λ ∧ µ = 0
(mod mΘ) iff λ, µ are mΘ-disjoint. We shall identify µ̃ with µ.

24.5. Definition. Let (X,FΘ,mΘ) be a Θ−measure space, and P be a sub-σΘ-algebra of FΘ.

Then an element λ̃ ∈ P̃ is an atom of P if

(i) mΘ(λ) > 0,

(ii) for each µ̃ ∈ P̃ such that mΘ(λ ∧ µ) = mΘ(µ) 6= mΘ(λ) then mΘ(µ) = 0.

24.6. Theorem. Let (X,FΘ,mΘ) be a Θ−measure space, and P be a sub-σΘ-algebra of FΘ. If

λ̃1,λ̃2 are disjoint atoms of P then they are mΘ-disjoint.
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Entropy of a sub-σΘ-algebra with countable atoms

In this section we introduce the notion of entropy of a sub-σΘ-algebra with countable atoms.
At the following, the set of all sub-σΘ-algebra of FΘ with countable atoms is denoted by R∗(FΘ).
Assume that FΘ is a σΘ-algebra and P1, P2 ∈ R∗(FΘ), and {λi; i ∈ N} and {µj ; j ∈ N} denote the
atoms of P1 and P2 respectively, then the atoms of P1 ∨ P2 are λi ∧ µj which mΘ(λi ∧ µj) > 0 for
each i, j ∈ N.
If γ ∈ F̄Θ we set

P1 ∨ γ = {λi ∧ γ;mΘ(λi ∧ γ) > 0, i ∈ N}.

24.7. Theorem. Let {λi; i ∈ N} be a mΘ-disjoint collection of relative measurable sets of relative
probability Θ-measure space (X,FΘ,mΘ), then,

mΘ(∨∞i=1(λi)) =

∞∑
i=1

mΘ(λi).

24.8. Definition. Let (X,FΘ,mΘ) be a relative probability Θ−measure space and P1, P2 ∈
R∗(FΘ). We say that P2 is an mΘ-refinement of P1, denoted by P1 ≤mΘ

P2, if for each µ ∈ P̄2

there exists λ ∈ P̄1 such that,
mΘ(λ ∧ µ) = mΘ(µ).

24.9. Theorem. Let (X,FΘ,mΘ) be a relative probability Θ−measure space and P1, P2, P3 ∈
R∗(FΘ) if P1 ≤mΘ

P2 then,
P1 ∨ P3 ≤mΘ P2 ∨ P3.

24.10. Definition. Let (X,FΘ,mΘ) be a relative probability Θ−measure space, and P be a sub
σΘ-algebra of FΘ which P ∈ R∗(FΘ), the entropy of P is defined as

HΘ(P ) = − log sup
i∈N

mΘ(µi),

where {µi; i ∈ N} are atoms of P .

24.11. Definition. Let (X,FΘ,mΘ) be a relative probability Θ−measure space and P ∈ R∗(FΘ).
The conditional entropy of P given γ ∈ F̄Θ is defined by

HΘ(P |γ) = − log sup
i∈N

mΘ(µi|γ),

where,

mΘ(µi|γ) =
mΘ(µi ∧ γ)

mΘ(γ)
(mΘ(γ) 6= 0).

24.12. Theorem. Let (X,FΘ,mΘ) be a relative probability Θ−measure space, and P1, P2 ∈
R∗(FΘ) which P̄1 = {λi; i ∈ N} and P̄2 = {µj ; j ∈ N}. Then,

(i) P1 ≤mΘ
P2 ⇒ HΘ(P1) ≤ HΘ(P2),

(ii) P1 ≤mΘ
P2 ⇒ HΘ(P1|γ) ≤ HΘ(P2|γ).

24.13. Definition. Let (X,FΘ,mΘ) be a relative probability Θ−measure space and P1, P2 ∈
R∗(FΘ). We say that P1 and P2 are mΘ-equivalent, denoted by P1 ≈mΘ

P2, if the following axioms
are satisfied:

(i) If λ ∈ P̄1 then mΘ(λ ∧ (∨{µ;µ ∈ P̄2})) = mΘ(λ).
(ii) If µ ∈ P̄2 then mΘ(µ ∧ (∨{λ;λ ∈ P̄1})) = mΘ(µ).

24.14. Theorem. Let (X,FΘ,mΘ) be a relative probability Θ−measure space, and P1, P2 ∈
R∗(FΘ). If P1 ≈mΘ

P2 then,
P1 ≈mΘ P1 ∨ P2.

24.15. Theorem. Let (X,FΘ,mΘ) be a relative probability Θ−measure space, and P1, P2 ∈
R∗(FΘ). If P1 ≈mΘ

P2 then,
HΘ(P1) ≤ HΘ(P1 ∨ P2).
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24.16. Definition. Let (X,FΘ,mΘ) be a relative probability Θ−measure space and P ∈ R∗(FΘ).
The diameter of P is defined as follows

diamP = sup
λi∈P̄

mΘ(λi).

24.17. Definition. Let (X,FΘ,mΘ) be a relative probability Θ−measure space,and P1, P2 ∈
R∗(FΘ), which P̄1 = {λi; i ∈ N}, P̄2 = {γk; k ∈ N}. The conditional entropy of P1 given P2 is
defined as

HΘ(P1|P2) = − log sup
i∈N

diam(λi ∨ P2)

diamP2

= − log sup
j∈N

diam(P1 ∨ µj)
diamP2

.

24.18. Theorem. Let (X,FΘ,mΘ) be a relative probability Θ−measure space, and P1, P2, P3 ∈
R∗(FΘ). Then,

(i) P2 ≤mΘ
P3 ⇒ HΘ(P1|P2) ≤ HΘ(P1 ∨ P3),

(ii) HΘ(P1|P2) ≤ HΘ(P1 ∨ P2).

24.19. Theorem. Let (X,FΘ,mΘ) be a relative probability Θ−measure space, and P1, P2, P3 ∈
R∗(FΘ). If P1 ≤mΘ

P2 then,

HΘ(P1|P3) ≤ HΘ(P2|P3).

Entropy of a relative dynamical system having countably many atoms

24.20. Definition. Suppose (X,FΘ,mΘ) be a Θ−measure space and Θ be a constant observer
on X. A transformation ϕ : (X,FΘ,mΘ) → (X,FΘ, nΘ), is said to be a Θ−measure preserving if
mΘ(ϕ−1(µ)) = nΘ(µ) for all µ ∈ F̄Θ.

24.21. Theorem. Suppose ϕ : (X,FΘ,mΘ) → (X,FΘ, nΘ), be a Θ−measure preserving trans-
formation. Then for each P ∈ R∗(FΘ) we have,

HΘ(P ) = HΘ(ϕ−1(P )).

24.22. Definition. Suppose ϕ : (X,FΘ,mΘ)→ (X,FΘ, nΘ), be a Θ−measure preserving trans-
formation. If P ∈ R∗(FΘ), we define the entropy of ϕ with respect to P as:

hΘ(ϕ, P ) = lim
n→∞

1

n
HΘ(∨n−1

i=0 ϕ
−i(P )).

24.23. Theorem. Let ϕ : (X,FΘ,mΘ) → (X,FΘ, nΘ), be a Θ−measure preserving transforma-
tion and P ∈ R∗(FΘ). Then,

(i) hΘ(ϕ,ϕ−1(P )) = hΘ(ϕ, P ),
(ii) hΘ(ϕ,∨r−1

i=0ϕ
−i(P )) = hΘ(ϕ, P ) for every r ≥ 1.

24.24. Theorem. Let ϕ : (X,FΘ,mΘ) → (X,FΘ, nΘ), be a Θ−measure preserving transforma-
tion and P1, P2 ∈ R∗(FΘ). Then,

(i) P1 ≤mΘ
P2 ⇒ hΘ(ϕ, P1) ≤ hΘ(ϕ, P2),

(ii) if P1, P2 ∈ R∗(FΘ) such that P1 ≈mΘ P2 then,

ϕ−1(P1) ≈mΘ
ϕ−1(P2).

24.25. Definition. The entropy of the relative dynamical system (X,FΘ,mΘ, ϕ) is the number
hΘ(ϕ) defined by,

hΘ(ϕ) = sup
P
hΘ(ϕ, P ),

where the supremum is taken over all sub-σΘ-algebras of FΘ which P ∈ R∗(FΘ).
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24.26. Definition. P ∈ R∗(FΘ) is said to be a mΘ-generator of the relative dynamical system
(X,FΘ,mΘ, ϕ) if there exists an integer r > 0 such that,

Q ≤mΘ
∨ri=0ϕ

−iP,

for each Q ∈ R∗(FΘ).

24.27. Theorem. If P is a mΘ-generator of the relative dynamical system (X,FΘ,mΘ, ϕ) then,

hΘ(ϕ,Q) ≤ hΘ(ϕ, P ),

for each Q ∈ R∗(FΘ).

Now we can deduce the following version of Kolmogorov-Sinai theorem for relative dynamical
systems having countably many atoms.

24.28. Theorem. If P is a mΘ-generator of relative dynamical system (X,FΘ,mΘ, ϕ) then,

hΘ(ϕ) = hΘ(ϕ, P ).
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Introduction

Entropy is a tool to measure the amount of uncertainty in random events.The entropy has
been applied in the information theory, physics, computer sciences, statistics, chemistry, biology,
sociology, general systems theory and many other fields. The classical approach in the information
theory was based on Shannon entropy. Shannon entropy of a probability distribution was studied
in. Kolmogorov and Sinai used the Shannon entropy to define the entropy of measurable partitions
and then they defined the entropy of dynamical systems. Kolmogorov-Sinai entropy is a useful
tool in studying the isomorphism of dynamical systems. Adler, Konheim and McAndrew defined
the topological entropy of a continuous self-map of a compact space. So, Bowen extended this
notion to uniformly continuous self-maps of metric spaces. The notion of algebraic entropy was
studied later by Weiss and Peters. Topological and Algebraic entropy were deeply studied[1, 2, 3,
4, 5]. Recently, Mehrpooya, Sayyari, Molaei proposed other definitions of Algebraic and Shannon
entropies on commutative hypergroups.

In this paper, we introduce the notion of entropy on topological hypernormed hypergroup and
prove Some interesting examples. So, we obtain the fundamental properties of this entropy such as
Invariance under conjugation, Logarithmic Law, Monotonicity for subflows; Continuity for direct
limits.

Preliminaries

The notion of hyperstructure, as a generalization of algebraic structure, was introduced by F.
Marty at the 8th congress of Scandinavian Mathematicians in 1934 . One of the most important
instances of hyperstructures is hypergroupoid. Let H be a nonempty set and P?(H) be the set of
all non-empty subsets of H. A hyperoperation on H is a mapping ◦ : H ×H → P?(H). The pair
(H, ◦) is called a hypergroupoid. In the above definition, if A andB are two non-empty subsets of
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H, then we define A ◦ B =
⋃
a∈A,b∈B a ◦ b; a ∈ A, b ∈ B. A semihypergroup is a hypergroupoid

(H, ◦) such that:

∀(a, b, c) ∈ H3; a ◦ (b ◦ c) = (a ◦ b) ◦ c
A hypergroup is a semihypergroup (H, ◦) such that: ∀a ∈ H, a ◦ H = H ◦ a. This condition is
called the reproduction axiom.

A mapping ϕ : (H, ◦)→ (H, ◦) is called good homomorphism if for every x, y ∈ H ;

f(x ◦ y) = f(x) ◦ f(y).

We denote by End(H) the set of good homomorphism of H.
Algebraic structures which also have a topology are useful in mathematics. In the same direction,

some of mathematicians have studied the properties of hypergroupoids endowed with a topology.
Ameri and Hoskova have defined and studied τu−topological hypergroup. Now we introduce a
topology on P?(H).

25.1. Lemma. Let (H, τ) be a topological space. Then the family is consisting of all sets V =
{U ∈ P?(H) : U ⊆ V ;V ∈ τ}, is a basis for a topology τu on P?(H).

25.2. Definition. Let (H, ◦) be a hypergroup and (H, τ) be a topological space. Then, the
hyperoperation ◦ is said to be continuous if ◦ : H ×H → P?(H) is continuous. Here H ×H and
P?(H) are equipped with the product topology and τu , respectively.

Let (H, ◦, τ, τu) be a topological hypergroup. We denote Endc(H) the set of continuous good
homomorphism.

Hypernormed entropy on topological hyper normed hypergroup

In this section, Let (H, ◦, τ, τu) be a topological hypergroup and ϕ ∈ Endc(H).
A mapping ν : P?(H) → R≥0 is called hypernormed on H. For any x ∈ H; we define ν(x) =

ν({x}). If ν is a continuous on (H, ◦, τ, τu), then (H, ◦, τ, τu, ν) is called topological hypernormed
hypergroup.

25.3. Definition. A mapping ϕ : (H, ◦, τ, τu, ν)→ (H ′, ◦′, τ ′, τ ′u, ν′) is called contractive if

ν′(ϕ(A)) ≤ ν(A),(51)

for every A ∈ P?(H).

25.4. Definition. A hypernormed ν on P∗(H) is called :

(a) subadditive, if ν(A ◦B) ≤ ν(A) + ν(B) for every A,B ∈ P ∗(H).
(b) arithmetic, if for x ∈ H there exists cx ∈ R such that ν(xn) = cxlogn for every n ∈ N.
(c) ν is incresing respect to hyoeroperation such that ν(x), ν(y) ≤ ν(x◦y) for every x, y ∈ H.

Let (H, ◦, τ, τu, ν) be a topolpgical hypernormed hypergroup and
ϕ ∈ Endc(H). consider the n-th ϕ-trajectory of x ∈ H

Hn(ϕ, x) = x ◦ ϕ(x) ◦ · · · ◦ ϕn−1(x)

and let

hn(ϕ, x) = ν(Hn(ϕ, x)).

now, we define

h(ϕ, x) = lim
n

sup
hn(ϕ, x)

n
.

25.5. Lemma. Let (H, ◦, τ, τu, ν) be a topological hypernormed hypergroup. Then h(ϕ, x) is finite
for every x ∈ H.
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Now, we define hypernormed entropy of ϕ ∈ Endc(H), where (H, ◦, τ, τu, ν) is a topological
hypernormed hypergroup,

h(ϕ) = sup{h(ϕ, x), x ∈ H}.
In the following, we provide some partical examples of hypernormed entropy.

25.6. Example. Let(H, ◦, τ, τu) be a topological hypergroup and hypernormed
ν : P∗(H)→ R≥0 be a continuous and arthmetic.Then h(IH) = 0 where
I : H → H is idetitical map.

25.7. Example. Let (R, ◦, τ, τu) be a topological hypergroup with the standard topology, where
x ◦ y = {x, y} . Consider continuous hypernormed ν = ||.|| and ϕ : R→ R defined by ϕ(x) = x+ 1
for every x ∈ R.

Hn(ϕ, x) = {x, x+ 1, · · · , x+ n− 1}
Then for every x ∈ R and so hn(ϕ, x) = n, thus

h(ϕ, x) = lim
n

sup
n

n
= 1

therefore h(ϕ) = 1.

Fundamental properties of hypernormed entropy

In this section, we define some of fundamental properties of entropy such as Invariance under
conjugation, Logarithmic Law, Monotonicily for subflows; Continuity for direct limits.

25.8. Theorem. (Existence of limit) Let (H, ◦, τ, τu, ν) be a Topological hypernormed hypergroup.

If ν is a subadditive hypernormed, then for every x ∈ H, limn sup hn(ϕ,x)
n exists.

25.9. Theorem. (monotonicily for factors) Let (H, ◦, τ, τu, ν) and (H ′, ◦′, τ ′, τ ′u, ν′) be topological
hypernormed hypergroup. And ϕ ∈ Endc(H), ψ ∈ Endc(H

′). If α : H → H ′ is continuous
contractive good epimorphism.

Such that α ◦ ψ = ψ ◦ α. Then

h(ψ) ≤ h(ϕ).

The following corollary is a direct consequence of Theorem 2.

25.10. Corollary. (Invariance under conjugation) Let (H, ◦, τ, τu, ν) be a topological hypergroup
and ϕ ∈ Endc(H). If (H ′, ◦′, τ ′, τ ′u, ν′) is another topological hypernormed hypergroup and there
exist a topological good isomorphism α : H → H ′ such that ν(a) = ν′(α(a)) for every a ∈ H. Then

h(ϕ) = h(α ◦ ϕ ◦ α−1).

25.11. Lemma. (Monotonicily for subflow)
Let (H, ◦, τ, τu, ν) be a topological hypernormed hypergroup and ϕ ∈ Endc(H). If G is a ϕ−invariant

(ϕ(G) = G) subhypergroup. Then

h(ϕ|G) ≤ h(ϕ)

One of the important properties of entropy is the law of logarithm. The defined entropy in lemma
3 has this property.

25.12. Theorem. Let (H, ◦, τ, τu, ν) be a topological hypernormed hypergroup and ϕ ∈ Endc(H).
If ν is increasing respect to hyperoperation ◦, then

h(ϕk) = kh(ϕ),

for every k ∈ N.
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Proof. Fix k ∈ N.For every x ∈ H, we put

y = x ◦ ϕ(x) ◦ · · · ◦ ϕk−1(x)

we have

hn(ϕk, y) = ν(y ◦ ϕk(y) ◦ · · · ◦ ϕn−1(ϕk(x)))

= hnk(ϕ, x)

for every n ∈ N. So

h(ϕk) ≥ h(ϕk, y)

= lim
n

sup
hn(ϕk, y)

n

= k lim
n

sup
hnk(ϕ, x)

kn
= kh(ϕ, x)

consequently, h(ϕk) ≥ kh(ϕ).
Now,we prove the converse inequality. Since ν is increasing respect to ◦, then for every n ∈

N, x ∈ H, we finde that deduce

hnk(ϕ, x) = v(x ◦ ϕ(x) ◦ · · · ◦ ϕnk−1(x))

≥ V (x ◦ ϕk(x) ◦ · · · ◦ (ϕk)n−1(x))

= V (Hn(ϕk, x))

= hn(ϕk, x)

Thus

h(ϕ, x) = lim
n

sup
hnk(ϕ, x)

nk

≥ 1

k
lim
n

sup
hn(ϕk, x)

n

=
h(ϕk, x)

k
.

There fore

kh(ϕ) ≥ h(ϕk),

this complate the proof.
�

25.13. Theorem. (ciontinuity for direct limits) Let (H, ◦, τ, τu, ν) be a direct limit of ϕ −
invariant subhypergroups {Hi; i ∈ I}. Then

h(ϕ) = sup{h(ϕ|Hi); i ∈ I}.

Conclusion

In this paper, we introduce the notion of entropy on topological hypernormed hypergroup and
prove Some interesting examples. So, we obtain the fundamental properties of this entropy such as
Invariance under conjugation, Logarithmic Law, Monotonicity for subflows; Continuity for direct
limits.
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Introduction

Let (M, g) and (N,h) be complete Riemannian manifolds and ϕ : M −→ N be a critical point
of the energy integral E(ϕ) =

∫
M
|∇ϕ|2dvg, where N is isometrically embeded in Rd, d ≥ n. By

a one parameter family of Riemannian metrics (g(x, t), ϕ(x, t)), t ∈ [0, T ) and a family of smooth
functions ϕ(x, t), a Ricci harmonic-Bourguignon flow on manifold M is defined as

∂

∂t
g(x, t) = −2Ric(x, t) + 2ρR(x, t) + 2α∇ϕ(x, t)⊗∇ϕ(x, t),

∂

∂t
g(x, t) = τgϕ(x, t).

Here α and ρ are positive constants, Ric is the Ricci tensor of M , R is the scalar curvature, and
τgϕ is the intrinsic Laplacian of ϕ which denotes the tension field of map ϕ [2]. The system
(M, g,X, λ, ρ, ϕ) is said to define a Ricci harmonic-Bourguignon soliton (RHBS for short) when it
satisfies in the following coupled equation

Ric +
1

2
LXg = λg + ρRg + α∇ϕ⊗∇ϕ,

τgϕ− LX∇ϕ = 0,

where λ, α and ρ are constants, R is scalar curvature and ϕ is a smooth function ϕ : (M, g)→ (N,h)
where M and N are static Riemannian manifolds. In definition of RHBS if X = ∇f , which f is a
smooth function on M , then we say M is a gradient Ricci-harmonic-Bourguignon soliton (GRHBS
for short). In this case we have

Ric + Hessf − ρRg − α∇ϕ⊗∇ϕ = λg

τgϕ− < ∇ϕ,∇f > = 0.(52)
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The function f is called the potential. The GRHBS is steady, expanding or shrinking if λ = 0,
λ < 0 or λ > 0 respectively. Actually gradient Ricci solitons are a particularly interesting family
of Ricci solitons. These arise as self similar solutions of the Ricci flow under certain conditions. If
in (52), α = 0 or ϕ is a constant function, then it defines gradient Ricci Bourguignon soliton and if
ρ = 0, then it defines gradient Ricci-harmonic soliton. For more study about these kind of solitons
see [1, 3].
Let (Br, gB) and (Fmss , gFs) be semi-Riemannian manifolds for 1 ≤ s ≤ l and M = B × F1 ×
F2 × ... × Fl be an n-dimentional semi-Riemannian manifold. Let bs : B −→ (0,∞) be positive
smooth functions for 1 ≤ s ≤ l. The multiply warped product manifold is the product manifold
M = B ×b1 F1 ×b2 F2 × ...×bl Fl endowed with the metric tensor g = π∗(gB)⊕ (b1 ◦ π)2σ∗1(gF1

)⊕
... ⊕ (bl ◦ π)2σ∗l (gFl), where π and σ are the natural projections on B and Fi, respectively[5]. In
[4], Fatma Karaca studied about the necessary conditions for a multiply warped product to be
a gradient Ricci-harmonic soliton. Till now so many different results have been found about the
sufficient conditions for a multiply warped product and also doubly warped product to be different
kinds of Ricci soliton such as gradient Ricci solitons, gradient harmonic solitons and gradient
Yamabe solitons. Motivated by those work we studied some conditions that a multiply warped
product could be a GRHBS.

Main results

We shall denote ∇, ∇B and ∇Fs ; Ric, RicB and RicFs ; ∆, ∆B and ∆Fs ; the Levi-civita connec-
tions, the Ricci tensors and the Laplacians of M , B and F respectively. Here is our main results.
First of all we want to characterize the harmonic map ϕ by means of the potential function f . For
this aim we obtain:

26.1. Proposition. Let (M = B ×b1 F1 ×b2 F2 × ... ×bl Fl, g, f, ϕ, λ, ρ) be a GRHBS on a
multiply warped product with non-constant harmonic function ϕ, then for a neighborhood V around
(p, q1, ..., ql), it can be shown like ϕ = ϕB ◦ π or ϕ = ϕFs ◦ σs for 1 ≤ s ≤ l iff h = hB ◦ π.

Now we want to know the structure of RicB and RicFs for a multiply warped product which
could be a GRHBS.

26.2. Theorem. Let M = B×b1 F1×b2 F2× ...×bl Fl be a multiply warped product manifold. M
is a GRHBS iff
1) For ϕ = ϕB ◦ π we have{

RicB −
∑l
s=1

ms

bs
HessB(bs) + HessBhB − ρRgB − α∇BϕB ⊗∇BϕB = λgB ,

∆wϕB = 0 in B.
(53)

Here ∆w = ∆− < ∇,∇w >, w = h −
∑l
s=1mslog(bs). Fs is Einstein manifold for all 1 ≤ s ≤ l

with RicFs = µsgFs , where

µs = λb2s + bs(∆Bbs) + (ms − 1)‖∇Bbs‖2 + bs∇BhB(bs)

+

l∑
k=1,k 6=s

mk

bk
gB(∇Bbs,∇Bbk)bs + ρRb2s.

2) For ϕ = ϕFs ◦ σs, we have

(54) RicB −
l∑

s=1

ms

bs
HessB(bs) + HessBhB − ρRgB = λgB ,

and Fs are harmonic-Einstein manifolds so that{
RicFs − α∇FsϕFs ⊗∇FsϕFs = µsgFs
∆FsϕFs = 0

(55)
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which for all 1 ≤ s ≤ l, we have

µs =λb2s + ρRb2s + bs(∆bbs) + (ms − 1)‖∇Bbs‖2 + bs∇BhB(bs)

+

l∑
k=1,k 6=s

mk

bk
gB(∇Bbs,∇Bbk)bs.

Now, we give some results for the potential function and harmonic function with use of maximum
principle and give some conditions that cause the multiply warped product M to be a harmonic-
Einstein manifold.

26.3. Theorem. Suppose that M = B ×b1 F1 ×b2 F2 × ...×bl Fl is a GRHBS on multiply warped
product with non-constant harmonic map ϕ.
1) For 1 ≤ s ≤ l, either ϕ = ϕB ◦ π or ϕ = ϕFs ◦ σs, it is a constant function and M is a gradient
Ricci-Bourguignon soliton if ϕB or ϕFs has the maximum or minimum in B and Fs.
2) For λ, ρ,R ≥ 0, hB reaches the maximum or minimum in B and h = hB ◦ π is a constant map.
Therefore M is a harmonic-Einstein manifold.

We consider a GRHBS on a multiply warped product with harmonic map ϕ = ϕB ◦ π when the
base manifold is conformal to an n-dimentional semi-Euclidean space, invariant under the action
of an (r − 1)-dimentional tranlation group. Let M = (Rr, φ−2gR) ×b1 F1 ×b2 F2 × ... ×bl Fl be a
multiply warped product endowed with the metric tensor

(56) g =
1

φ2
gR + b21gF1

+ ...+ b2l gFl ,

which here gR is the canonical semi-Riemannian metric and ϕ is the conformal factor. Actually, we
have the semi-Riemannian metric (gR)i,j = εiδi,j in the coordinates x = (x1, ..., xr) of Rr, εi = ±1.
We consider the function ξ(x1, ..., xr) =

∑r
i=1 βixi, where βi ∈ R. We take ϕ = ϕB ◦π for the next

theorem.

26.4. Theorem. Let M = Rr ×b1 F1 ×b2 F2 × ... ×bl Fl be a multiply warped product with non-
constant harmonic map ϕ and bs = bs ◦ ξ, h = h ◦ ξ, ϕ = ϕ ◦ ξ, φ = φ ◦ ξ defined in (Rr, φ−2gR)
endowed with the metric (56), then M is a GRHBS iff the functions bs, h, ϕ and φ satisfy in the
following equations:

(57) (r − 2)
φ
′′

φ
−

l∑
s=1

ms
b
′′

s

bs
− 2

1∑
s=1

ms
b
′

s

bs

φ
′

φ
+ h

′′
+ 2

φ
′

φ
h
′
− α(ϕ)2 = 0,

(58)

(
φ
′′

φ
− (r − 1)

(
φ
′

φ

)2

+

l∑
s=1

ms
b
′

s

bs

φ
′

φ
− φ

′

φ
h
′
)
‖β‖2 =

λ+ ρR

φ2
,

(
b
′′

s

bs
− (r − 2)

φ
′

φ

b
′

s

bs
+ (ms − 1)

(
b
′

s

bs

)2

+

l∑
k=1,k 6=s

(
mk

b
′

s

bs

b
′

k

bk

)
+
b
′

s

bs
h
′
)
‖β‖2

=
µs
b2sφ

2
− λ+ ρR

φ2
,(59)

(60)

(
ϕ
′′
− (r − 2)

φ
′

φ
ϕ
′
+

1∑
s=1

ms
b
′

s

bs
ϕ
′
− ϕ

′
h
′
)
‖β‖2 = 0.

Now, we consider a GRHBS on a multiply warped product with harmonic map ϕ = ϕFs ◦σs when
the base manifold and fibers are conformal to r-dimentional and mi-dimentional semi-Euclidean
spaces, invarient under the action or (r − 1)-dimentional and (mi − 1)-dimentional translation
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groups for 1 ≤ i ≤ l, respectively. Let M = (Rr, φ−2gR)×b1 (Rm1 , τ−2
1 gR)×b2 (Rm2 , τ−2

2 gR)× ...×bl
(Rml , τ−2

l gR) be a multiply warped product endowed with the metric tensor

(61) g =
1

φ2
gR + b21

1

τ2
1

gR + ...+ b2l
1

τ2
l

gR,

here φ and τi for 1 ≤ i ≤ l are the conformal factors of base and fibers, respectively. We define
function ζs for nonzero arbitrary vectors a = (ar+1, ..., ar+ms) and y = (xr+1, ..., xr+ms) as follows

ζs(xr+1, ..., xr+ms) = ar+1xr+1, ..., ar+msxr+ms .

26.5. Theorem. Let M = Rr ×b1 Rm1 ×b2 Rm2 × ... ×bl Rml be a multiply warped product with
non-constant harmonic map ϕ = ϕFs◦σs and bs = bs ◦ ξ, h = h ◦ ξ, φ = φ ◦ ξ, ϕ = ϕ ◦ ζs defined
in (Rr, φ−2gR) and (Rms , τ−2

s gR) for 1 ≤ s ≤ l with the metric tensor (61), then M is a GRHBS
iff the functions bs, h, φ, ϕ satisfy

(62) (r − 2)
φ
′′

φ
−

l∑
s=1

ms
b
′′

s

bs
− 2

l∑
s=1

ms
b
′

s

bs

φ
′

φ
+ h

′′
+ 2

φ
′

φ
h
′

= 0,

(63)

(
φ
′′

φ
− (r − 1)(

φ
′

φ
)2 +

l∑
s=1

ms
b
′

s

bs

φ
′

φ
− φ

′

φ
h
′
)
‖β‖2 =

λ+ ρR

φ2
,

(
bsb
′′

sφ
2 − (r − 2)φφ

′
bsb
′

s + (ms − 1)φ2(b
′

s)
2 +

l∑
k=1,k 6=s

(
mkφ

2 b
′

k

bk
bsb
′

s

)
+ bsb

′

sφ
2h
′
)
‖β‖2

+(λ+ ρR)(bs)
2 = [τsτ

′′

s − (ms − 1)(τ
′

s)
2]‖a‖2,(64)

(65) (ms − 2)
τ
′′

s

τs
− α(ϕ

′
)2 = 0,

(66) (ϕ
′′
τ2
s − (ms − 2)τsτ

′

sϕ
′
)‖a‖2 = 0.
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Evaluating Persian Gazelles population can improve our understanding about the population
fluctuations of large mammals in eastern Iran. The present article showed that the most important
threatening factors for the population reduction of Persian Gazelle are natural and human-wise
parameters. In the present research work, we consider an animal population concluding some
parameters in that, such as illegal hunts, preferential migration and roads collision, which have
negative impacts on animals population, all of them are considered as disturbing factors. By
constructing some hypothesis, we model a population model of single species. After analyzing the
obtained model, we can study the Gazelles population on the respective hunting prohibited region.

Keywords: Gazelle population, Differential Equations, Equilibrium Point.
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Introduction

One of the most symbolic species of Irans wildlife is the Persian Gazelle (Gazella subgutturosa)
which its population significantly declined during the last decades due to several factors such as
illegal hunts and habitat destruction, so that currently, the mentioned animal has placed among
the protected species of Irans Environmental Protection Agency and has inserted at the Vulnerable
Class (VU) of IUCN Red List (Ashouri et al., 2017). Numerous studies have shown that several
factors influence its population dynamic changes and even the herd’s physiological parameters and
its biological reactions may stimulate the populations fluctuation in a distinctive area (Malekian
et al.,2020).

The study district enjoys a semiarid climate with an area of 108,000 hectare of hunting prohibited
region located on the east of Khorasan Razavi province and on the border of Iran and Afghanistan.
The region consists of two mountainous and plain lands. The predominant vegetation species of
the area include Salsola spp, Scariola orientalis, siberi and Euphorbia spp. Lacking the systematic
census and only based on the direct observations of rangers, the number of Persian Gazelle in the
area is estimated between 350 to 400 animals which despite the supportive strategies, it seems to
partially decline due to the shortage or undesirable forage, reduction of drinking water supplies, hu-
man interventions and unavoidable migrations. Periodic visits were conducted in accompany with
knowledgeable experts and environmental NGOS, in addition to library studies and questionnaires
distributed among the road drivers and local people.

In general, the purpose of this study is to investigate the causes of Gazelles population changes
and modeling the relationship of some of these parameters with the population decline of this
species. In an overview, the threatening factors affecting this animals population included two
categories of natural-wise and human-wise reasons.
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The main natural reasons are: unfavorable habitat, the non-sustainable climate conditions such
as the continuation of drought periods, the presence of large carnivores such as leopards and wolves,
age and sex structure of the species, reproductive failure rate, physiological weakness leading to
natural mortality and preferential migration of herds to neighboring areas such as Afghanistan;

Considering the human-wise reasons, the main causes were: illegal hunts (leading to gender ratio
change), destruction of natural habitats (such as expansion of human settlements, roads troubles,
innovations and agricultural lands, and intensification of livestock grinder pressure on pastures
leading to destructive competition), stray dog attacks especially for young Gazelles near to rural
settlements and agricultural fields, road casualties and other human-centered causes such as deer
dispersion, falling into a water pools, trapping in enclosed spaces, swallowing deadly waste, etc.

Modeling and Discussion

In the following, we consider a single-species model for deer population(Rahmani Doust et al.,
2021, 2020 and 2015). In this model, we enter some parameters such as illegal hunts, preferential
migration of herds to neighboring habitats and collisions with road vehicles that have a negative
impact on animal mortality. It is assumed that deers, in the absence of above factors, have a logistic
growth rate, about the two factors of illegal hunts and collisions with road vehicles, although both
of them cause animal deaths, the decrease in deer population has no effect on increasing the number
of poachers and vehicles.In fact, these two factors appear in the role of disturbing factors. Now,
we consider some following hypothesis:

The independent variable t and dependent variable x represent time and number of
Gazelle population, respectively.
Parameter a shows the exponential growth rate of deer population.
Parameter b illustrates the logistic growth rate of deer population.
Parameter c1 shows the impact factor of road casualties on deer population.
Parameter c2 indicates the coefficient of impact of migration on deer population.
Parameter c3 demonstrates the impact factor of illegal hunts on deer population
Parameter K indicates the maintenance capacity of the environment for the deer popu-
lation.

By considering the above assumptions, the following model may be obtained:

(67) x′ = x(a− bx

K
− c1 − c2 − c3)

Since the parameters c1, c2 and c3 are considered constant, after simplifying, model (67) may be
written as follow:

(68) x′ = x(a− bx

K
− c)

The above equation has trivial equilibrium point which is origin. Moreover, model (68) has non-

trivial equilibrium point which is x =
K

b
(a− c).

By analyzing the equilibrium points of equation (68) we are able to study the deer population.
The analysis of results shows that the situation of Persian Gazelle herds in the study area, like
other herds in the protected areas of Khorasan Razavi province, is in a defensive model (WT) and
urgent management strategies and supportive mechanisms should be applied and implemented to
maintain the population reductive factors at the lowest level of threat (Modoodi et al., 2016).
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The orbit of a point x ∈ X in a classical iterated function system (IFS) is defined as
{fu(x) = fun ◦ · · · ◦ fu1(x) : u = u1 · · ·un is a word of a full shift on finite symbols}. In other
words, an IFS is parameterized over the full shift. Here, we parameterize our IFS over an arbitrary
shift space Σ. In particular, we associate to σ ∈ Σ a non-autonomous system (X, fσ) where
trajectory of x ∈ X is defined as x, fσ1

(x), fσ1σ2
(x), . . .. We show that for a transitive IFS and

a sofic Σ, there is a transitive t ∈ Σ such that the non-autonomous system (X, ft) is transitive.
This is not true for the case where Σ is non-sofic.

Keywords: iterated function systems (IFS), non-autonomous system, transitivity.

AMS Mathematics Subject Classification [2020]: 37B55
Code: cdsgt3-00490021

aSpeaker. Email address: mahdi.aghaei66@email.com,

Introduction

In a classical dynamical system, here called conventional dynamical system, we have a phase space
and a unique map where the trajectories of points are obtained by iterating this map. However,
in various problems, including applied ones, one may have some finite sequence of maps in place
of a single map acting on the same phase space. For instance, in Physics by two or more maps
have appeared in [1, 11], Economy in [13] and Biology in [4]. In Mathematics, this has been
studied either by non-autonomous systems in many literature such as [9] or as iterated function
system (IFS) for constructing and studying some fractals in [5, 8] or for investigating dynamical
properties in many places such as [2, 3, 6, 7].

In a “classical” IFS, a compact metric space X and a set of some k finite continuous functions
{f0, · · · , fk−1} on X are assumed and the trajectory of a point x ∈ X is considered to be the
action on x of the sequence of freely combination of those maps, or action on x of combination of
those maps over the words of a full shift: just write

(69) fu = fu1 ◦ · · · ◦ fum

where u = u1 · · ·um is a word of the full shift over k symbols. However, in some physical problems,
such freely action is not possible. In other words, there are some words that one cannot perform
(69). This is the case where a subshift instead of the full shift must be considered and it is of our
interest.
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Preliminaries

Iterated function systems. Throughout the paper, X will be a compact metric space.
The classical iterated function system (IFS) consists of finitely many continuous self maps F =
{f0, . . . , fk−1} on X. The forward orbit of a point x ∈ X, denoted by O+(x), is the set of all
values of finite possible combinations of fi’s at x. We need the following equivalent statement: Let
ΣF be the full shift on k symbols and let L(ΣF ) called the language of ΣF be the set of words or
blocks. Define fu(x) as in (69) and set O+(x) := {fu(x) : u ∈ L(ΣF )}. Such iterated function
systems, here called classical IFS, have been the subject of study for quite a long time.

Here we define an IFS to be

(70) I = (X, F = {f0, . . . , fk−1} , Σ).

where fi is continuous and Σ is an arbitrary subshift on k symbols, not necessarily the full shift ΣF
as in the classical IFS. Hence we use a good deal of symbolic dynamics, see for instance [10] for this
subject. By this setting, ΣF above will be replaced with Σ and thus O+(x) = {fu(x) : u ∈ L(Σ)} is
the forward orbit of x. In particular, fu(fv(x)) = fvu(x) whenever vu is admissible or equivalently
vu ∈ L(Σ). Let u = u1 · · ·un ∈ L(Σ) and set u−1 := un · · ·u1. Then for A ⊆ X,

(fu)−1(A) = (fun ◦ · · · ◦ fu1)−1(A)

= f−1
u1
◦ · · · ◦ f−1

un (A)

= f−1
u−1(A),

where for the last equality, we used (69). Also

f−1
u−1(f−1

v−1(A)) = f−1
v−1u−1(A) = f−1

(uv)−1(A)

= (fuv)
−1

(A).

Thus the backward orbit and the (full) orbit of a point x ∈ X are O−(x) = {f−1
u−1(x) : u ∈ L(Σ)}

and O(x) = O+
−(x) = O+(x) ∪ O−(x) respectively.

When all fi’s are homeomorphisms, the backward, forward and full trajectory of x is defined.
We say F = {f0, . . . , fk−1} in (X, F = {f0, . . . , fk−1}, Σ) is surjective, if all fi’s are surjective.
When k = 1 and Σ = {0∞}, we simply have the classical dynamical system, here called conven-

tional dynamical system denoted either by the pair (X, f) or I = (X, {f0}, {0∞}). By the above
setting, the following definition looks natural.

28.1. Definition. Consider I as in (70) and let U and V be arbitrary open sets in X. Then
I is forward transitive, if there is x ∈ X such that {fu(x) : u ∈ L(Σ)} is dense in X. Backward
transitivity and transitivity is likewise defined.

28.2. Definition. Let I be an IFS. Then I is called (forward) transitive along an orbit σ ∈ Σ,
if the non-autonomous system (X, fσ) is (forward) transitive.

Transitivity in IFS vs transitivity in the subshift

Transitivity in dynamical systems is a sort of richness in dynamics. Thus when an IFS has
transitivity along an orbit, we in fact have a non-autonomous transitive system. Recall that
transitivity along an orbit defined in Definition 28.2 implies the transitivity of the system defined
in Definition 28.1 and the converse is not necessarily true. Having these in mind, we like to address
the following questions.

(1) Is there any sufficient condition on Σ such that two notions of transitivity in Definition
28.1 and Definition 28.2 coincides?

(2) In which situation there is a transitive t ∈ Σ such that for some x ∈ X, O+
t (x) = X?

(3) How large is the set

(71) S = S(I) := {σ ∈ Σ : ∃x ∈ X s.t. O+
σ (x) = X}?
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The following relatively similar propositions are stated due to the different types of transitivity
given in Definitions 28.1 and 28.2.

28.3. Proposition. Let (X, F = {f0, . . . , fk−1}, Σ) be an IFS with F surjective. Then the
following are equivalent.

(1) For some x ∈ X, O+(x) = X.
(2) Whenever E is a closed subset of X and for any i ∈ A, E ⊆ f−1

i E, then either E = X
or E is nowhere dense. (Equivalently, whenever U is an open subset of X and for any
i ∈ A, f−1

i U ⊆ U , then U = ∅ or U is dense.)
(3) Whenever W, V are non-empty open sets, then there is u ∈ L(Σ) such that (fu)−1V ∩W 6=
∅.

(4) The set {x ∈ X| O+(x) = X} is residual in X.

Although the following proposition, a very classical result in conventional dynamical systems, has
been declared for the case when subshift is over an alphabet with finite characters, the proof (not
presented here) is valid for a subshift over infinite characters and thus for a general non-autonomous
system as well. For non-autonomous systems, Yan, Zeng and Zang in [12] have a similar result for
the special case where their non-autonomous system {fσi}∞i=1 on a compact metric space (X, d) is
uniformly convergent to a map f and besides d(fσn···σ2n−1

, fn)→ 0 as n→∞.

28.4. Proposition. Let (X, F = {f0, . . . , fk−1}, Σ) be an IFS with F surjective and σ =
σ1σ2 · · · ∈ Σ. Then the following are equivalent.

(1) For some x ∈ X, O+
σ (x) = X.

(2) Assume E is a closed subset of X and for some j, f−1
σ1···σjE ⊂ f−1

σ1···σjuE whenever

σ1 · · ·σju ⊂ σ, then either E = X or E is nowhere dense. (Equivalently, suppose U is an
open subset and for some j, f−1

σ1···σjuU ⊂ f−1
σ1···σjU whenever σ1 · · ·σju ⊂ σ, then U = ∅

or U is dense.)
(3) Whenever W, V are non-empty open sets, then there is n ∈ N such that

(72) (fσ1···σn)−1W ∩ V 6= ∅.

(4) The set {x ∈ X| O+
σ (x) = X} is residual in X.

In our next proposition we will show that when Σ is an irreducible sofic and the respective IFS
is transitive, then for some x ∈ X, there is a transitive σ ∈ Σ such that the transitivity of the IFS
occurs along this transitive σ. This will give an answer to questions 1 and 2 on the beginning of
this section for special cases where Σ is an irreducible sofic. First we recall a classical result.

28.5. Proposition. Let I = (X, F , Σ) be an IFS, F surjective and Σ an irreducible sofic. Then,

I is forward transitive iff there is a forward transitive t ∈ Σ and some x ∈ X such that O+
t (x) = X.

The structure of S(I). Let S = S(I) ⊆ Σ be the set given in (71). In general, except in few
cases, a definite structure cannot be given for S, though its largeness can be understood in some
cases. In fact in the sequel, we give sufficient conditions where S is dense in Σ. First a weaker
version of specification property for subshifts:

28.6. Definition. A subshift Σ is called a subshift of variable gap length or SVGL, if there exists
M ∈ N such that for u and v in L(Σ), there is w with |w| ≤M and uwv ∈ L(Σ).

When Σ is mixing and SVGL, then Σ has specification property and in this situation, there exists
M ∈ N such that for u and v in L(Σ) there is w with |w| = M and uwv ∈ L(Σ). Clearly an SVGL
is irreducible. Moreover, all sofics are SVGL; however, there are SVGL’s which are not sofic [10].

28.7. Proposition. Let I = (X, F , Σ) be transitive along some σ ∈ Σ, F surjective and Σ an
SVGL. Then, S defined in (71) is dense in Σ. If S 6= Σ, then Σ \ S is also dense in Σ.
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Introduction

Let A be an alphabet. A word over A is a finite sequence over A, written w = w1...wn for wi ∈ A.
We say that w has length |w| = n and let the empty word of length 0 be denoted ε. If w = w1....wn
and v = v1...vm are words over A then wv = w1...wnv1...vm denotes their concatenation, and for
k ∈ N, wk is the concatenation of k copies of w [2, 5].
For a point x = (xi)i∈Z of the full shift AZ, we let x[i;j]; i ≤ j, signify the word w = xi...xj and
say that w occurs in x. Similarly, for a word w = w1...wn over A and i; j ∈ N with 1 ≤ i ≤ j ≤ n,
we denote by w[i;j] the subword u = wi...wj of w and say that u is a factor of w.
The canonical way of defining a shift space combinatorially is by the words that do not occur in
any of its points. Let A be a finite alphabet, F a set of words over A, and XF the set of points
x ∈ AZ such that no word of F occurs in x. The set F is called a set of forbidden words for XF .

29.1. Definition. Let A be an alphabet. A set X ⊆ AZ is a shift space if there is a set of
forbidden words F over A such that X = XF . If an arbitrary shift space X is given, we denote its
alphabet by A(X), and the shift map restricted to X by σX .

We recall that for some alphabet A, a shift space X over A is a compact, shiftinvariant subset
of AZ.

29.2. Definition. [1, 2] Let X be a shift space and define an equivalence relation ∼ on X × R
generated by (x; t + 1) ∼ (σX(x); t). Giving X × R the product topology we let the suspension
flow of X be given by the quotient space

(73) SX = X × R/ ∼

We denote by [x; t] the equivalence class in SX of (x; t) ∈ X × R.
A flow equivalence is a homeomorphism between the suspension flows of two shift spaces that
preserves direction in R.

29.3. Definition. [6] Let X and Y be shift spaces and SX and SY their suspension flows. A
homeomorphism Φ : SX → SY is a flow equivalence if for each [x; t] ∈ SX there is a monotonically
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increasing function φ[x;t] : R→ R such that Φ([x; t]) = [y; t′] implies Φ([x; t+r]) = [y; t′+φ[x;t](r)].
If such a homeomorphism exists we say that X and Y are flow equivalent and write X ∼FE Y .

Entropy describes the information density or complexity of a shift space by the asymptotic
number of words of a given length.

29.4. Definition. Let X be a shift space. Then the entropy of X is given by

(74) h(X) = limn→∞
1

n
log|Bn(X)|,

where log is the base 2 logarithm.

The limit exists (see for instance Lind and Marcus [[4], Prop. 4.1.8]), so the entropy is always
well-defined. Entropy can be said to describe the information density of a shift space in the sense
that if h(X) = t > 0 for some shift space X, then there are roughly 2tn words of length n in X. A
very intuitive example of entropy is that of the full shift.

29.5. Example. Let X = X[r] be the full r-shift. Then |Bn(X)| = rn, so

h(X) = limn→∞
1

n
log|Bn(X)| = limn→∞

n

n
logr.

Flow equivalence as symbol expansions

To understand flow equivalence in combinatorial terms we need the concept of a symbol expan-
sion. A symbol expansion of a shift space X takes a symbol a ∈ A(X) and appends to every
occurrence of a in every point of X a symbol ♦ /∈ A(X) such that a is replaced by a♦ everywhere
in X.

Let X be a shift space, a ∈ A(X), and ♦ /∈ A(X). Let for b ∈ A(X),

τ(b) =

{
a♦, b = a
b, b 6= a

and define a function T on the points of X by T (x) = · · · τ(x−1)τ(x0)τ(x1) · · · .
The shift space Xa7→a♦ = T (X) ∪ σ(T (X)) is said to be obtained by a symbol expansion of X. If
B is a set of words over an alphabet containing a, we write

Ba 7→a♦ = {τ(w1) · · · τ(wn)|w1 · · ·wn ∈ B}.

29.6. Remark. Adding the set T (σ(X)) in the definition of the symbol expansion of a shift
space is necessary for Xa7→a♦ to be closed under the shift map. We will be rather liberal with the
notation Xa 7→b, which will simply mean replacing every occurrence of a in X by b and taking the
closure under the shift map.

We now make sure that symbol expansion does in fact yield a shift space.

29.7. Proposition. (Johansen [3]) Let X be a shift space, a ∈ A(X), and ♦ /∈ A(X) be a
symbol. Then Xa7→a♦ is a shift space.

Proof. Let F be a set of forbidden words for X and B = A(X) ∪ {♦} be an alphabet. The
set

F ′ = F a 7→a♦ ∪ {b♦}|b ∈ A(X){a}} ∪ {♦♦}

is a set of forbidden words for Xa 7→a♦ ⊆ BZ. �

A result by Parry and Sullivan makes the concept of flow equivalence available to our combinato-
rial interpretation of the theory of shift spaces through symbol expansion. They showed that flow
equivalence is the coarsest equivalence relation which is closed under both conjugacy and symbol
expansion.
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29.8. Theorem. (Parry and Sullivan [5]) Let X,Y be shift spaces. Then X ∼FE Y if and only
if there exists a sequence of shift spaces X0 = X,X1, X2, · · · , Xn = Y such that for each 0 ≤ i < n
one of the following conditions hold.

• Xi is obtained by a symbol expansion of Xi+1,
• Xi+1 is obtained by a symbol expansion of Xi,
• Xi and Xi+1 are conjugate.

Main Section

This section will show that all shift spaces are flow equivalent to shifts of arbitrarily small entropy.
First of all, we prove the already known result that having entropy zero is an invariant under flow
equivalence.

29.9. Theorem. Let X and Y be shift spaces with X ∼FE Y . Then h(X) = 0 if and only if
h(Y ) = 0.

Proof. Let X be a shift space. Since entropy is invariant under conjugacy and flow equiva-
lence is generated by conjugacy and symbol expansion, we only need to show that for some shift
space X and some shift space Y = Xa7→a♦ obtained by a symbol expansion of X, we have h(X) = 0
if and only if h(Y ) = 0.

First, for u1;u2 ∈ Bn(Y ), it holds that u♦ 7→ε1 is a prefix of u♦ 7→ε2 if and only if u2 can be achieved by
adding and removing ♦ at the ends of u1. This can be done in maximally of two different ways (e.g.
if u1 = ♦u′1, where u′1 does not end in a ♦, then u2 = u1 or u2 = u′1♦ are the two possibilities),
so for every w ∈ Bn(X) there is at most two words u ∈ Bn(Y ) such that u♦ 7→ε is a prefix of w,
and for every u ∈ Bn(Y ), u♦7→ε is a prefix of some w ∈ Bn(X). Thus, 2|Bn(X)| ≥ |Bn(Y )|, which
yields

(75) h(X) = limn→∞
1

n
log2|Bn(X)| ≥ limn→∞

1

n
log|Bn(Y )| = h(Y ).

Second, for two different word w1;w2 ∈ Bn(X), none of the words wa 7→a♦1 and wa 7→a♦2 can be a
prefix of the other, and for every w ∈ Bn(X) there is at least one word u ∈ B2n(Y ), which has
wa7→a♦ as a prefix. So B2n(Y ) ≥ Bn(X), and we can make the estimate

(76) h(Y ) = limn→∞
1

2n
log|B2n(Y )| ≥ limn→∞

1

2n
log|Bn(X)| = 1

2
h(X).

Thus, h(X) ≥ h(Y ) ≥ 1
2h(X) and the result follows. �

29.10. Proposition. (Johansen [3]) Let X be a shift space and a, b ∈ A(X) with a 6= b. Then
X ∼FE Xa 7→ab.

Moving on to shift spaces with non-zero entropy, we need a procedure that given a shift space
can produce shift spaces flow equivalent to it of arbitrarily small entropy.

29.11. Theorem. Let X be a shift space and n ∈ N. Then there exists Y ∼FE X with h(Y ) =
1
nh(X).

Proof. The case n = 1 is trivially true, so assume that n > 1. Let A = e1, e2, ..., em be the
alphabet of X, ♦ /∈ A, and w = ♦n−1. Further, set X0 = X and consider the series of symbol
expansions

Xi = Xei 7→eiw
i−1 , 1 ≤ i ≤ m.

Now,X ∼FE Xm by repeated use of Proposition 116, and for every s ∈ N the words of Xm of
length ns can be described by

Bns(Xm) = {♦kf1wf2w...wfs♦
n−1−k | 0 ≤ k ≤ n− 1 and f1f2...fs ∈ Bs(X)}.

So, noting that |Bns(Xm)| = n|Bs(X)|, we find that

1

n
h(X) =

1

n
lims→∞

1

s
log|Bs(X)| = lims→∞

1

ns
log

1

n
|Bns(Xm)| = h(Xm).
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�

The main result of the section now follows easily.

29.12. Corollary. Any shift space X is flow equivalent to shifts of arbitrarily small entropy.

Proof. Follows directly from Theorem 88 �
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Introduction

motivations. One of the first steps to Lorentzian causality theory is the publication of the
papers ” Conformal Treatment of Null Infinity” (1964) and ” Gravitational Collapse and Space-
time Singularities” (1965) by Roger Penrose. In this theory, global methods from differential
geometry are employed to predict the formation of singularities of space- time. The fact that
any two points have a causal relation is equivalent to the existence of , at least, one causal curve
connecting these points to each other and so, the study of the treatments of causal curves in space-
time is important. In this way, it seems that limit curve theorem is the strongest tools available in
causality theory [3]. There one can find a discussion of the history of limit curve theorem results
in Lorentzian geometry. In fact, many authors contributed to their formulation, e.g. Hawking
and Ellis (1973), Penrose (1972), Beem et al. (1996), Galloway (1986), Eschenburg and Galloway
(1992) and Minguzzi (2008) (see for more infomation[1, 2]). The classical references (Hawking
and Ellis 1973; Beem et al. 1996) contain versions that are weaker in several respects, most
notably they might impose global causality conditions, such as strong causality, or the deduced
convergence might be weak, e.g. in the C0 topology on curves. The main difference between the
different versions of this theorem is the difference in their definitions of limit curve. Furthermore,
the domains of curves might be different by domain of each other or be different by the domain of
the limit. Also, the theorem can be generlized to curves by restriced domain and we consider this
version of definition and theorem [2].
In general, a sequence of curves may have no limit curve or may have many limit curves. Here, we
study some case in limit situation.

preliminaries and notations. By a space-time, M , we will mean a C∞ Hausdorff manifold
with a C∞ Lorentz metric of signature (+,−, . . . ,−) defined on it. Otherwise stated, M will be
four-dimensional Let the tangent bundle of M is TM , with fibre TpM at p. We say that a vector
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v ∈ TpM is timelike if gp(v, v) > 0, causal if gp(v, v) ≥ 0, null if gp(v, v) = 0 and spacelike if
gp(v, v) < 0. Also, M is said to be time-orientable if there exists a continuous timelike vector
field t on M; we will always assume that M is time-orientable. We state these basic definitions
here, only for convination about contracts relating to the temporality and location of events being
studied in space- time; other common definitions in the Lorentzian geometry literature which have
used in what follows, can be found in [1]. There are different forms of convergence for a sequence
of nonspacelike curves {γn} in Lorentzian geometry and general relativity. For example, the limit
curve convergence, the C0 convergence, and the uniform convergence. For arbitrary space-times,
each of the limit curve convergence and the C0 convergence is not stronger than the other. But in
strongly causal space-times, these two types of convergence are almost equivalent for sequences of
causal curves (see [1, Proposition 3.34]). Recently, Minguzzi introduced a discussion of the history
of limit curve theorems results in Lorentzian geometry and proved a strong version of limit curve
theorems by a generalized version of uniform convergence [2].

30.1. Definition. [2, Definition 2.1] (In this definition an, bn, a, and b may take an infinite
value.) Let h be a Riemannian metric on M and let d0 be the associated Riemannian distance. The
sequence of curves γn : [an, bn]→M converges h-uniformly to γ : [a, b]→M if an → a, bn → b, and
for every ε > 0 there isN > 0, such that for n > N , and for every t ∈ [a, b]∩[an, bn], d0(γ(t), γn(t)) <
ε.

The sequence of curves γn : [an, bn]→M converges h-uniformly on compact subsets to γ : [a, b]→
M if for every compact interval [a′, b′] ⊆ [a, b], there is a choice of sequences a′n, b

′
n ∈ [an, bn],

a′n < b′n, such that a′n → a′, b′n → b′, and for any such choice γn|[a′n,b′n] converges h-uniformly to

γ|[a′,b′]. Also, Minguzzi proved that the h-uniform convergence implies the C0 convergence and on
compact subsets, it is independent of the Riemannian metric h chosen (see [2, Theorem 2.4]). In
this paper, by the limit curve or the limit geodesic segment, we mean that the h-uniform conver-
gence on compact subsets is applied.

Main results

30.2. Proposition. [4] Any limit curve of a sequence of maximal null geodesics is a maximal
null geodesic.

Proof. For this, let γ be a future directed causal curve from p to q as a limit curve of a
sequence of future directed maximal null geodesics γn from pn to qn such that pk → p and qk → q.
By the maximality of γn, the Lorentzian arc length of γn is equal to the Lorentzian distance from
pn to qn namely, L(γn) = d(pn, qn) (see [1, Definitions 4.1 and 4.10]. Now, By using [1, Lemma
4.4], we have L(γ) ≤ d(p, q) ≤ lim inf d(pn, qn) = 0. Hence L(γ) = d(p, q) = 0 and γ may be
reparametrized to a maximal null geodesic segment from p to q by [1, Theorem 4.13]. Because every
null geodesic is locally maximal, then it immediately implies that any limit curve of a sequence of
null geodesics is a null geodesic. For this, we can cover γ with a finite number of strictly convex
normal neighborhoods U1, ..., Um such that p ∈ U1, q ∈ Um, and γn|Ui is a maximal null geodesic

segment for all i. So, γ|Ui is a maximal null geodesic segment for all i. �

30.3. Proposition. Let M be a past [resp. future] reflecting spacetime and {pn} and {qn} are
sequences in M converging to p and q respectively and there are causal curves γn from pn to qn
for all value of n. Then q ∈ J+(p) [resp. p ∈ J−(q)]. Especially, if M is causally simple then
q ∈ J+(p).

Proof. For each point x ∈ I+(q), the open set I−(x)) contains all but a finite number of

{qn}. So, there is N > 0 such that pn ∈ I−(x) for all value n ≥ N . It implies that p ∈ J−(x). By

the past reflectivity of M , x ∈ J−(p) and we have q ∈ J+(p). �
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30.4. Remark. We note that if p̃ and q̃ are two distinct limit points of the sequence γn in Lemma
30.3 and U(p̃) and U(q̃) are two distinct strictly convex normal neighborhoods that each γn lefts

U(p̃) and enter to U(q̃) then p̃ ∈ J+(q̃).
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Introduction

MV -algebras, which were introduced by Chang in [2] in 1958, prove the completeness theorem for
ℵ0-valued Lukasiewicz logic. Our aim in this article is to introduce and study MV-pseudo metrics
on MV-algebras. To this end, we first define MV-pseudo norms on MV-algebras, and study their
algebraic properties.

The article is organized as follows: in Section 2 we present some definitions and results of the
MV-algebra theory and uniform spaces which will be used later in the paper.

In Section 3 we define the concept of MV-pseudo norm, and discuss its algebraic properties and its
relation to filters and ideals. Also, the relationship between MV-pseudo norm on MV-algebras and
qoutient MV-algebras will be examined in this section. Finally, we show that if f : A1 → A2 is an
isomorphism between MV-algebras, and NA1 is an MV-pseudo norm on A1, then NA2 = NA1 ◦f−1

is an MV-pseudo norm on A2.
In Section 4, we define MV-pseudo metrics and examine their relations to MV-pseudo norms.

There are also a few theorems about the relationship between MV-pseudo metrics and uniform
MV-algebras. Theorem 31.14 in particular provides an efficient way to construct an MV-pseudo
metric on MV-algebras.

MV-algebras. An MV-algebra is an algebra (A,⊕, ∗, 0) of type (2, 1, 0) such that for every
x, y ∈ A,
(M1) (A,⊕, 0) is a commutative monoid,
(M2) x⊕ 0∗ = 0∗,
(M3) (x∗)∗ = x, and
(M4) (x∗ ⊕ y)∗ ⊕ y = (x⊕ y∗)∗ ⊕ x.[4]

In an MV-algebra A, for every x, y ∈ A, define
(M5) 1 := 0∗;
(M6) x� y := (x∗ ⊕ y∗)∗;
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(M7) x	 y := x� y∗;
(M8) x→ y := (x� y∗)∗;
(M9) x y := (x⊕ y∗)∗.

In an MV-algebra A, for every x, y ∈ A, we write x ≤ y if and only if x∗⊕ y = 1. It is well-know
that ≤ is a partial order on A, which gives A the structure of a distributive lattice, where the join
and meet are defined by x ∧ y = y � (y∗ ⊕ x) and x ∨ y = x⊕ (y 	 x), respectively, 0 is the least
element and 1 is the greatest element. By (M6) and (M7), for every x, y ∈ A, x ≤ y ⇐⇒ x	y = 0.

31.1. Definition. Let A be an MV-algebra.
(1) A non-empty subset I of A is called an ideal if it satisfies the following conditions.
(I1) For every x, y ∈ I, x⊕ y ∈ I.
(I2) If x ∈ I and y ≤ x, then y ∈ I. [2]
(2) A non-empty subset F of A is called a filter if it satisfies the following conditions.
(F1) For every x, y ∈ F, x� y ∈ F .
(F2) If x ∈ F and x ≤ y, then y ∈ F . [4]

31.2. Proposition. [4] Let F be a filter and I be an ideal of an MV-algebra A. Then the follow-
ing are congruence relations on A.

x
F≡ y ⇐⇒ x→ y ∈ F and y → x ∈ F.

x
I≡ y ⇐⇒ x	 y ∈ I and y 	 x ∈ I.

Moreover, if x/F = {y ∈ A : x
F≡ y}, A/F = {x/F : x ∈ A}, x/I = {y ∈ A : x

I≡ y} and
A/I = {x/I : x ∈ A}, then both A/F and A/I are quotient MV-algebras with the operations

x/F � y/F = (x� y)/F, x/I ⊕ y/I = (x⊕ y)/I, (x/F )∗ = x∗/F and (x/I)∗ = x∗/I.

MV-pseudo norms on MV-algebras

31.3. Definition. Let A be an MV-algebra. Then, we say that a map N : A −→ R is an
MV-pseudo norm on A if the following hold.
(N1) N(x⊕ y) ≤ N(x) +N(y).
(N2) N(x∗) ≤ N(1)−N(x).
An MV-pseudo norm is an MV-norm if N(x) = 0⇔ x = 0.

31.4. Example. Let X be a finite set and (P (X),∪, ∗,∅, X) be the MV-algebra in which for
each B ∈ P (X), B∗ is the complement of B in X. The map N : P (X) −→ R by N(B) = cardB
is a MV-pseudo norm.

31.5. Theorem. Let N1 and N2 be MV-pseudo norms on A and α ≥ 0, then
(i) the function N : A −→ R, defined by N(x) = αN1(x) + N2(x), is an MV-pseudo norm.
Moreover, N is an MV-norm, if N1 and N2 are MV-norms.
(ii) the map N(x) = inf{N1(z) : z ∈ x

I } is an MV-pseudo norm, where I is an ideal in A.

31.6. Theorem. Let I be an ideal in an MV-algebra A, and N be an MV-pseudo norm on it.
Then,
(i) the map n : A

I −→ R defined by n(xI ) = inf{N(z) : z ∈ x
I } is an MV-pseudo norm on A

I
morovere if for every x ∈ A, min x

I exists and N is an MV-norm on A, then n(xI ) is also an

MV-norm on A
I .

If F is filter, similar to the Theorem 31.6, n( xF ) is also an MV-pseudo norm on A
F .

31.7. Theorem. Let I be an ideal in an MV-algebra A. Then,
(i) the set IN = {x ∈ A : N(x) = 0} is an ideal in A if N is an MV-pseudo norm on A; moreover
if n is an MV-pseudo norm on A

I , then N(x) = n(xI ) is an MV-pseudo norm on A. Moreover, n

is an MV-norm on A
I if and only if I = IN .
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31.8. Theorem. Let f be an isomorphism from an MV-algebra (A1,⊕, 0) to an MV-algebra
(A2,⊕, 0). If NA1

is an MV-pseudo norm on A1, then NA2
: A2 −→ R, defined by NA2

(y) =
NA1

◦ f−1(y) for every y ∈ A2, is an MV-pseudo norm on A2, and NA2
(f(x)) = NA1

(x).

31.9. Theorem. Let A1 and A2 be MV-algebras, and NA1
be an MV-pseudo norm on A1. If

f : A1 −→ A2 is an epimorphism, then NA2
: A2 −→ R defined by y 7−→ inf{NA1

(z) : f(z) = y} is
an MV-pseudo norm on A2, and NA2

(f(x)) ≤ NA1
(x).

MV-pseudo metrics on MV-algebras

31.10. Definition. A pseudo metric d on an MV-algebra A is called an MV-pseudo metric if for
every x, y, a, b ∈ A,
(D5) d(x⊕ y, a⊕ b) ≤ d(x, a) + d(y, b), and
(D6) d(x∗, y∗) ≤ d(x, y).
An MV-metric on A is an MV-pseudo metric that satisfies d(x, y) = 0⇐⇒ x = y.

31.11. Theorem. If N is an MV-pseudo norm on an MV-algebra A, then dN (x, y) = N(x 	
y) +N(y 	 x) is an MV-pseudo metric on A.

31.12. Corollary. MV-pseudo metric dN of Theorem 31.11, satisfies the following properties.
(i) For every x, dN (0, x) + dN (1, x) = N(1), (ii) The mapping dN is an MV-metric if and only if
N is an MV-norm, (iii) For every x, dN (x, x∗) ≤ N(1).

Remark. From now on, if N is an MV-pseudo norm on an MV-algebra, then dN is the MV-
pseudo metric induced by N in Theorem 31.11.
Let A be an MV-algebra and U be a uniformity on A. By Definition uniformly continuous,
(i) the operation ⊕ : (A × A,U × U) → (A,U) is uniformly continuous if for every W ∈ U ,
there exist U, V ∈ U such that U ⊕ V ⊆ W or equivalently, for every (x, x′)∈ U and (y, y′)∈ V ,
(x⊕ y, x′ ⊕ y′)∈W ;
(ii) the map ∗ : (A,U) → (A,U) is uniformly continuous if for every W ∈ U , there exists V ∈ U
such that if (x, y) ∈ V , then (∗(x), ∗(y)) ∈W .
The pair (A,U) is called a uniform MV-algebra if ⊕ and ∗ are uniformly continuous.

Let d be an MV-pseudo metric on an MV-algebra A. Then, it is easy to prove that the set
B = {Uε : ε > 0} is a base for a uniformity Ud on A, where Uε = {(x, y) : d(x, y) < ε}. Thus,
by Definition uniformly continuos and (D5) and (D6), the operations ⊕ and ∗ are uniformly
continuous.
A subset S of an MV-algebra A is said to be convex if for any x, y, z ∈ A, x ≤ z ≤ y, and x, y ∈ S
imply that z ∈ S.

31.13. Proposition. Let A be an MV-algebra, S ⊆ A and Ŝ = {x ∈ A : ∃ y ∈ S such that x ≤
y}. Then,
(i) if 0 ∈ S, then S is convex if and only if for any x, y ∈ A, if x ≤ y and y ∈ S, then x ∈ S;

(ii) 0 ∈ Ŝ and Ŝ is the smallest convex set of A containing S;

(iii) if S ⊆ T , then Ŝ ⊆ T̂ ;

(iv) Ŝ ⊕ T̂ ⊆ Ŝ ⊕ T .

Remark. Let d be a pseudo metric on MV-algebra A. We denote the set {x : d(x, 0) < r} by
B(r) i.e B(r) = {x : d(x, 0) < r}. Also, we recall that the first part of the proof of the following
theorem is from [1].

31.14. Theorem. Let {Un}n>0 be a family of subsets of an MV-algebra A such that 0 ∈ Un and
Un+1 ⊕ Un+1 ⊆ Un for any n ≥ 0. Then there is an MV-pseudo metric d on A such that the
operations ⊕ and ∗ are uniformly continuous on (A,Ud) and for any n ≥ 0,

{x : d(x, 0) < 1/2n} ⊆ Ûn ⊆ {x : d(x, 0) < 2/2n}.

Moreover, d is an MV-metric if and only if
⋂
n≥0 Ûn = 0.

104



The 3rd Conference on Dynamical Systems and Geometric Theories 27-28 January, 2022

Proof. Let V (1) = U0, n ≥ 0 and assume that V ( m2n ) are defined for each m = 1, 2, 3, ..., 2n

such that 0 ∈ V ( m2n ). Put then V ( 1
2n+1 ) = Un+1, V ( 2m

2n+1 ) = V ( m2n ) for m = 1, 2, 3, ..., 2n and

for each m = 1, 2, 3, ..., 2n − 1, V ( 2m+1
2n+1 ) = V ( m2n ) ⊕ Un+1 = V ( m2n ) ⊕ V ( 1

2n+1 ). We also define
V ( m2n ) = A, when m > 2n. By induction on n we prove that for any m > 0 and n ≥ 0,

(∗) V (
m

2n
)⊕ V (

1

2n
) ⊆ V (

m+ 1

2n
).

First notice that if m + 1 > 2n, then (∗) is obviously true. Let m < 2n. If n = 1, then m is also
1, so V ( 1

2 ) ⊕ V ( 1
2 ) = U1 ⊕ U1 ⊆ U0 = V (1). Asume that (∗) holds for some n. We verify it for

n+ 1. If m = 2k, then by the definition of V ( 2m+1
2n+1 ), V ( m

2n+1 )⊕ V ( 1
2n+1 ) = V ( 2k

2n+1 )⊕ V ( 1
2n+1 ) =

V ( k
2n )⊕ V ( 1

2n+1 ) = V ( 2k+1
2n ). Suppose now that m = 2k + 1 < 2n+1 for some n ≥ 0. Then

V ( m
2n+1 )⊕V ( 1

2n+1 ) = V ( 2k+1
2n+1 )⊕Un+1 = V ( k

2n )⊕Un+1⊕Un+1 ⊆ V ( k
2n )⊕Un = V ( k

2n )⊕V ( 1
2n ). But

by the inductive assumption, V ( m
2n+1 )⊕ V ( 1

2n+1 ) ⊆ V (k+1
2n ) = V (m+1

2n+1 ). By Proposition 31.13, for

any r ≥ 0, V̂ (r) is a convex set containing 0, it is easy to derive that the map f : A −→ R defined

by f(x) = inf{r : x ∈ V̂ (r)} is increasing bounded function. Define the map N : A −→ R by
N(x) = sup{f(x⊕z)−f(z) : z ∈ A}. The function N is obviously well defined and increasing. In a
similar method with the proof of Theorem 31.11, we can show that dN (x, y) = N(x	y)+N(y	x) is
an MV-pseudo metric. By (D5) and (D6), we can prove that the operations ⊕ and ∗ are uniformly
continuous on (A,UdN ). Let us prove that dN satisfies

{x : dN (x, 0) <
1

2n
} ⊆ Ûn ⊆ {x : dN (x, 0) ≤ 2

2n
}.

Notice that f(0) = 0, hence if dN (x, 0) < 1
2n , then f(x) = f(x⊕0)−f(0) ≤ N(x) = dN (x, 0) < 1

2n .

Hence for some 0 ≤ r < 1
2n , x ∈ V̂ (r). Since V (r) ⊆ V ( 1

2n ) = Un, x ∈ V̂ (r) ⊆ V̂ ( 1
2n ) = Ûn. Now

let x ∈ Ûn. Then there is a x′ ∈ Un such that x ≤ x′. Clearly for any z ∈ A, there exists a k ≥ 0

such that k−1
2n ≤ f(z) ≤ k

2n . Since z ∈ V̂ ( k
2n ), there is a z′ ∈ V ( k

2n ) such that z ≤ z′. From

condition (∗) it follows that z′ ⊕ x′ ∈ V ( k
2n )⊕ V ( 1

2n ) ⊆ V (k+1
2n ) and from z ⊕ x ≤ z′ ⊕ x′ deduces

that z ⊕ x ∈ V̂ (k+1
2n ). Hence f(x⊕ z)− f(z) ≤ k+1

2n −
k−1
2n = 2

2n .

In the end of proof, let us prove that dN is an MV-metric if and only if
⋂
n≥0 Ûn = 0. Let⋂

n≥0 Ûn = 0 and dN (x, y) = 0. Then N(x	 y) = N(y 	 x) = 0. Hence for any n ≥ 0, x	 y and

y 	 x are in Ûn. This concludes that x	 y = y 	 x = 0 and so x = y. Therefore dN is metric.

Conversely let dN be metric and x ∈
⋂
n≥0 Ûn. Since Ûn ⊆ {x : dN (x, 0) ≤ 2

2n } for every n ≥ 0,

we derive that dN (x, 0) = 0. This implies that x = 0. �

31.15. Theorem. Let A be a MV-algebra. Then, there is an MV-pseudo metric d on A such
that (A,Ud) is a uniform MV-algebra if and only if there is a topology τ on A such that (A, τ) is a
topological MV-algebra and τ hsa a countable local base at 0. Moreover, d is continuous in (A, τ).

31.16. Proposition. Let S = {Ni : i ∈ I} be a chain of MV-pseudo norms on an MV-algebra
A. Then, there exists a uniformity U on A such that (A,U) is a uniform MV-algebra.

31.17. Proposition. Suppose A is an MV-algebra, I is an ideal and q : A −→ A
I , given by

q(x) = x
I , is the quotient map. Then there are uniformities ηI and εI on A and A

I such that

(A, ηI) and (AI , εI) are uniform MV-algebras and q : (A, ηI)→ (AI , εI) is uniformly continuous.

31.18. Proposition. Let N be an MV-pseudo norm and I be an ideal in an MV-algebra A.
Then there exists an MV-pseudo metric Dn on A

I such that (AI ,UDn) is a uniform MV-algebra and

the quotient map q : (A,UdN ) −→ (AI ,UDn), given by q(x) = x
I , is uniformly continuous.
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Conclusion

In this article is to introduce MV-pseudo norms, MV-pseudo metric and MV-metric and its
relation to uniform continuity are discussed.
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rf

(
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r

)
+ rf
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r

)
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where r is a fixed real number with r > 1.
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Introduction

The stability of functional equations was first introduced by Ulam in 1940. Hyers gave a partial
solution of Ulam,s problem for the case of approximate additive mappings under the assumption
that G1 and G2 are Banach spaces. Aoki generalized the Hyers, theorem for approximately additive
mappings. In 1978, Th.M. Rassias generalized the theorem of Hyers by considering the stability
problem with unbounded Cauchy differences. The paper of Th.M. Rassias has provided a lot of
influence in the development of what we call Hyers-Ulam-Rassias stability of functional equations.

32.1. Theorem. Let f : E → E′ be a mapping from a normed vector space E into a Banach
space E′ subject to the inequality

‖f(a+ b)− f(a)− f(b)‖ ≤ ε(‖a‖p + ‖b‖p)(77)

for all a, b ∈ E, where ε and p are constants with ε > 0 and p < 1. Then there exists a unique
additive mapping T : E → E′ such that

‖f(a)− T (a)‖ ≤ 2ε

2− 2p
‖a‖p(78)

for all a ∈ E. If p < 0 then inequality (77) holds for all a, b 6= 0, and (78) holds for a 6= 0. Also,
if the function t→ f(ta) from R into E′ is continuous for each fixed a ∈ X, then T is linear.

The result of the Th.M. Rassias theorem was generalized by Forti and Gavruta who permitted
the Cauchy difference to become arbitrary unbounded. Some results on the stability of functional
equations in single variable and nonlinear iterative equations can be found in . G. Isac and Th.M.
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Rassias were the first to provide applications of stability theory of functional equations for the
proof of new fixed point theorems with applications. The concept of n-Jordan homomorphisms
in complex algebras was introduced by Eshaghi Gordji et al. J. Jamalzadeh et al. introduced
the Hyers-Ulam stability and the superstability of n-Jordan ∗-derivations in Fréchet locally C∗-
algebras.

During the last decades several stability problems of functional equations have been investigated
by many mathematicians (see [1, 2, 3, 4, 5]).

We recall a fundamental result in fixed point theory.
Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric on X if d satisfies
(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

32.2. Theorem. Let (X, d) be a complete generalized metric space and let J : X → X be a
strictly contractive mapping with Lipschitz constant L < 1. Then for each given element x ∈ X,
either

d(Jnx, Jn+1x) =∞
for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

In this paper, assume that n is an integer greater than 1.

32.3. Definition. Let A, B be complex algebras. A C-linear mapping h : A → B is called an
n-Jordan homomorphism if

h(an) = h(a)n

for all a ∈ A.

32.4. Definition. Let A, B be C∗-algebras. An n-Jordan homomorphism h : A → B is called
an n-Jordan ∗-homomorphism if

h(a∗) = h(a)∗

for all a ∈ A.

32.5. Definition. A topological vector space X is a Fréchet space if it satisfies the following
three properties:

(1) it is complete as a uniform space,

(2) it is locally convex,

(3) its topology can be induced by a translation invariant metric, i.e., a metric
d : X ×X → R such that d(x, y) = d(x+ a, y + a) for all a, x, y ∈ X.

For more detailed definitions of such terminologies, we can refer to . Note that a ternary algebra
is called a ternary Fréchet algebra if it is a Fréchet space with a metric d.

Fréchet algebras, named after Maurice Fréchet, are special topological algebras as follows.
Note that the topology on A can be induced by a translation invariant metric, i.e. a metric

d : X ×X → R such that d(x, y) = d(x+ a, y + a) for all a, x, y ∈ X.
Trivially, every Banach algebra is a Fréchet algebra as the norm induces a translation invariant

metric and the space is complete with respect to this metric.
A locally C∗-algebra is a complete Hausdorff complex ∗-algebra A whose topology is determined

by its continuous C∗-seminorms in the sense that a net {ai}i∈I converges to 0 if and if the net
{p(ai)}i∈I converges to 0 for each continuous C∗-seminorm p on A. The set of all continuous
C∗-seminorms on A is denoted by S(A). A Fréchet locally C∗-algebra is a locally C∗-algebra
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whose topology is determined by a countable family of C∗-seminorms. Clearly, any C∗-algebra is
a Fréchet locally C∗-algebra.

For given two locally C∗-algebras A and B, a morphism of locally C∗-algebras from A to B is a
continuous ∗-morphism ϕ from A to B. An isomorphism of locally C∗-algebras from A to B is a
bijective mapping ϕ : A→ B such that ϕ and ϕ−1 are morphisms of locally C∗-algebras.

Hilbert modules over locally C∗-algebras are generalization of Hilbert C∗-modules by allowing
the inner product to take values in a locally C∗-algebra rather than in a C∗-algebra.

In this paper, using the fixed point method, we prove the Hyers-Ulam stability and the supersta-
bility of n-Jordan ∗-homomorphisms in Fréchet locally C∗-algebras for the the following generalized
Jensen-type functional equation

rf

(
a+ b

r

)
+ rf

(
a− b
r

)
= 2f(a).

Stability of n-Jordan ∗-homomorphisms

32.6. Lemma. Let A, B be linear spaces, and f : A → B be an additive mapping such that
f(µa) = µf(a) for all a ∈ A and all µ ∈ T 1 := {λ ∈ C : |λ| = 1}. Then the mapping f : A→ B is
C-linear.

32.7. Theorem. Let A, B be Fréchet locally C∗-algebras, and f : A→ B be a mapping for which
there exists a function ϕ : A×A→ [0,∞) such that

rµf

(
a+ b

r

)
+ rµf

(
a− b
r

)
− 2f(µa) ≤ ϕ(a, b),(79)

‖f(an)− f(a)n‖ ≤ ϕ(a, b),(80)

‖f(a∗)− f(a)∗‖ ≤ ϕ(a, b)(81)

for all µ ∈ T 1 and all a, b ∈ A. If there exists an L < 1 such that ϕ(a, b) ≤ rLϕ(ar ,
b
r ) for all

a, b ∈ A, then there exists a unique n-Jordan ∗-homomorphism h : A→ B such that

‖f(a)− h(a)‖ ≤ L

1− L
ϕ(a, 0)(82)

for all a ∈ A.

Now, we prove the Hyers-Ulam stability problem for n-Jordan ∗-homomorphisms in Fréchet
locally C∗- algebras.

32.8. Corollary. Let p ∈ (0, 1) and θ ∈ [0,∞) be real numbers. Suppose f : A→ B satisfies

‖rµf
(
a+ b

r

)
+ rµf

(
a− b
r

)
− 2f(µa)‖ ≤ θ(‖a‖p + ‖b‖p),

‖f(an)− f(a)n‖ ≤ 2θ‖a‖p,

‖f(a∗)− f(a)∗‖ ≤ 2θ‖a‖p

for all µ ∈ T and a, b ∈ A. Then there existes a unique n-Jordan ∗-homomorphism h : A → B
such that

‖f(a)− h(a)‖ ≤ 2pθ

2− 2p

for all a ∈ A.
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Superstability of n-Jordan ∗-homomorphisms

In this section, we prove the superstability of n-Jordan ∗-homomorphisms on Fréchet locally
C∗-algebras for the generalized Jensen-type functional equation. we need the following lemma in
our main results.

32.9. Lemma. Let A, B be Fréchet locally C∗-algebras, Let θ ≥ 0, p and q be real numbers with
q > 0 and p+ q 6= 1. Suppose f : A→ B satisfies f(0) = 0 and∥∥∥∥rµf (a+ b

r

)
+ rµf

(
a− b
r

)
− 2f(µa)

∥∥∥∥ ≤ θ‖a‖p‖b‖q(83)

for all µ ∈ T and all a, b ∈ A. Then f is C-linear.

Now, we prove the superstability problem for n-Jordan ∗-homomorphisms in Fréchet locally
C∗-algebras.

32.10. Corollary. Let p, s ∈ R and θ, q ∈ (0,∞) with p + q 6= 1, s 6= 2. Let A,B be Fréchet
locally C∗-algebras. Suppose f : A→ B satisfies f(0) = 0 and∥∥∥∥rµf (a+ b

r

)
+ rµf

(
a− b
r

)
− 2f(µa)

∥∥∥∥ ≤ θ‖a‖p‖b‖q
‖f(an)− f(a)n‖ ≤ θ‖a‖s

for all µ ∈ T and all a, b ∈ A. Then f is an n-Jordan ∗-homomorphism.

32.11. Corollary. Let p ∈ R and θ, q ∈ (0, 1) with p + q 6= 1, 2. Suppose A,B are Fréchet
locally C∗-algebras, f : A→ B satisfies f(0) = 0, and

max{‖f(a∗)− (f(a))∗‖, ‖f(an)− (f(a))n‖,∥∥∥∥rµf (a+ b

r

)
+ rµf

(
a− b
r

)
− 2f(µa)

∥∥∥∥} ≤ θ‖a‖p‖b‖q
for all µ ∈ T and all a, b ∈ A. Then f is an n-Jordan ∗-homomorphism.

Conclusion

In this paper, using the fixed point method, we prove the Hyers-Ulam stability and the super-
stability of n-Jordan ∗-homomorphisms in Fréchet locally C∗-algebras

Acknowledgement

Finally, thank you to the conference organizers.

References

1. A. Inoue, Locally C∗-algebra, Mem. Fac. Sci. Kyushu Univ. Ser. A.25 (1971), 197–235.
2. J. Jamalzadeh, K. Ghasemi, S. Ghaffary, n-Jordan ∗-derivations in Fréchet locally C∗-algebras, Int. J. Nonlinear
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In this talk, we solve the problem of the coexistence of periodic orbits in homogeneous parallel
Boolean dynamical systems which are induced by majority function, with a directed dependency
graph. In particular, we show that periodic orbits of any period can coexist. This result contrasts
with the properties of their counterparts over simple graphs with the same evolution operator,
where only fixed points and 2−periodic points can exist and coexist.

Keywords: Parallel dynamical systems, Boolean network , Fixed points, Periodic points, Depen-
dency graph, Majority function

AMS Mathematics Subject Classification [2020]: 94C11, 94C15, 54H25
Code: cdsgt3-00840037

aSpeaker. Email address: leilamusavi.math@gmail.com,

Introduction

Many real-world phenomena are modeled as (finite) dynamical systems over large complex net-
works. For example we can list them as the interactions of gene regulatory networks, the virus
spreading thorough a computer network, the spread of a disease through a social network, etc.
Such coherent utilizations of (finite) dynamical systems in social network, science and engineering
make the research on this topic an interesting and important subject. We devote this paper to
study a class of finite dynamical system that we call it majority-PDDS.

Given a finite (non-empty) set of elements X and a function F : X → X, the pair (X,F ), or
simply F , is named a finite dynamical system. Throughout this work, X is called the state space
and F is named the evolution operator of the system.

Let (X,F ) be a finite dynamical system, a point x ∈ X is called a periodic point of F of period
t > 0 whenever F t(x) = x and F s(x) 6= x for each 0 < s < t. We denote by Pert(F ) the set of
periodic points of F of period t. In particular, if t = 1 then x is called a fixed point of F , and
we denote by Fix(F ) the set of fixed points of F . Note that (X,F ) is called a fixed point system
when all the periodic points are fixed points.

A Boolean finite dynamical system is a finite dynamical system where the state space and the
evolution operator are Boolean. More precisely, in a Boolean finite dynamical system (X,F ),
X = {0, 1}n for some natural n and

F : {0, 1}n → {0, 1}n, F (x1, . . . , xn) = (F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn))
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where each Fi is a Boolean function. Corresponding to this system, we consider the underlying
graph G = (V,E) on the vertex set {1, . . . , n} whose edge/arc set is

E = {(i, j) ; the variable xi is involved in the component function Fj}.

Throughout this work, we assume that for each 1 ≤ i ≤ n the variable xi appears in the
component function Fi, but to simplify, we remove all self-loops of G. The graph G defined in
this way is called dependency graph of F . The Boolean evolution operator F of a Boolean finite
dynamical system can update the (states of ) variables in a synchronous or in an asynchronous
manner. In the first case, the system is called parallel or synchronous, while in the second case it
is named sequential or asynchronous. In the literature, when the dependency graph G = (V,E)
is simple (resp. directed), these systems are denoted by PDS and SDS (resp. PDDS and SDDS),
respectively. If the evolution operator F is induced by a function

f : {0, 1}n → {0, 1}

such that each Fj is computed by the restriction fj of f to the state of the entry j and the entries
i such that (i, j) ∈ E, then the system is called homogeneous. In this setting we simply say F is an
f−PDS, f−SDS (resp. f− PDDS and f−SDDS). In this paper, we are going to study f−PDDS
in the case that f is a majority function.

Following the notations of [3], let

sumn : {0, 1}n → N, sumn(a1, . . . , an) = a1 + · · ·+ an

and assume that the evolution operator F induced by

majorityn : {0, 1}n → {0, 1}, majorityn(a1, . . . , an) =

{
1, sumn(a1, . . . , an) ≥ dn2 e
0, otherwise

In this situation, we simply say F is a majority-PDS or majority-PDDS depending on G is a simple
or directed graph.

Goles and Olivos proved that every periodic point of a majority-PDS has period 2 or 1 (see [2]).
Poljak and Turzik showed that for any arbitrary point x, xt is a periodic point when t ≥ O(n2)
(see [5]). Moreover, Kaaser, Mallmann-Trenn, and Natale ([1]) proved that given an integer t and
some graph G, it is NP-hard to decide whether there exists an initial point x for which xt is a
periodic point.

Many papers were devoted to the study of majority-PDS while majority-PDDS has net been
study well. The main contribution of this paper is to show that periodic orbits of any period
can exist and coexist together in majority-PDDS despite the fact that in majority-PDS only fixed
points and 2-periodic points can exist and coexist together.

Main results

Let F be a majority-PDS over a simple graph G, then, as we mentioned before, Pert(F ) can be
a non-empty set only in the case that t = 1, 2. As (1, . . . , 1) and (0, . . . , 0) are always fixed points
of F , it is clear that Per1(F ) = Fix(F ) 6= ∅. It is worth remarking that in many situations F is a
fixed-point system. For example, if G is a tree or a complete graph or a cycle of odd length, then
F is a fixed point system, while fixed points and 2-periodic points present simultaneously if G is
a cycle of even length (see [4]). In this Section, we show that majority-PDDS behaves completely
different from majority-PDS and periodic points of any period may happens for a majority-PDDS.

33.1. Theorem. Given {n1, . . . , nr} ⊂ N, r ≥ 2, there exists a majority-PDDS which presents
periodic orbits of periods n1, . . . , nr simultaneously.

Proof. In order to prove the result, we introduce a specific majority-PDDS F and we find
all t that Pert(F ) 6= ∅. Consider the majority-PDDS F over the directed graph G = (V,E) where

V = {1, . . . ,m,m+ 1, . . . , 2m}
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and

E = {(i, i+1), (i, i+m+1) | 1 ≤ i ≤ m−1}∪{(i, i+1), (i, i−m+1) |m ≤ i ≤ 2m−1}∪{(2m, 1), (2m,m+1)}
So, F : {0, 1}2m → {0, 1}2m is given by (F1, . . . , Fm, Fm+1, . . . , F2m) where

F1(x1, . . . , x2m) = majority3(x1, xm, x2m),

Fm+1(x1, . . . , x2m) = majority3(xm+1, xm, x2m),

∀2 ≤ i ≤ m Fi(x1, . . . , x2m) = majority3(xi, xi−1, xm+i−1)

and
∀m+ 2 ≤ i ≤ 2m Fi(x1, . . . , x2m) = majority3(xi, xi−1, xi−m−1).

Let a = (a1, . . . , am) be an arbitrary point of {0, 1}m and define

ba = (a1, . . . , am, a1, . . . , am) ∈ {0, 1}2m

It is straightforward to see that

F (ba) = (am, a1, . . . , am−1, am, a1, . . . , am−1).

Now consider the finite Boolean dynamical system R : {0, 1}m → {0, 1}m where R(x1, . . . , xm) =
(xm, x1, . . . , xm−1). It is clear that for each positive integer i,

F i(ba) = (Ri(a), Ri(a)).

This shows that for each a ∈ {0, 1}m, the orbit of ba in F is in one-to-one correspondence with
the orbit of a in R. On the other hand, all orbits of R are periodic orbits and Pert(R) 6= ∅ if and
only if t|m. So, we conclude that for each a ∈ {0, 1}m, the orbit of ba in F is a periodic orbit and
in particular Pert(F ) 6= ∅ for each t dividing m.

Now suppose that b = (b1, . . . , bm, bm+1, . . . , b2m) ∈ {0, 1}2m be such that for each 1 ≤ i ≤ m,
bi 6= bm+i, then one can easily see that b is a fixed point of F .

Finally, if b = (b1, . . . , bm, bm+1, . . . , b2m) ∈ {0, 1}2m is such that bi = bm+i for some 1 ≤ i ≤ m,
then one can easily check that there exists a positive integer n and a ∈ {0, 1}m such that Fn(b) =
ba and so the orbit of b in F converges to the periodic orbit of ba in F .

In few words, we have shown that Pert(F ) 6= ∅ if and only if t divides m. Now to prove the
result, for a given {n1, . . . , nr} ⊂ N, r ≥ 2, let m be the least common multiple of n1, . . . , nr and
F as defined in previous paragraphs. As discussed before Pert(F ) 6= ∅ for each t dividing m. So,
F presents periodic orbits of periods n1, . . . , nr simultaneously and the conclusion follows �

Conclusion

Let F be a majority-PDS over a simple graph then, it is well-known that Pert(F ) can be a
non-empty set only in the case that t = 1, 2. In this paper by a careful study of periodic structure
of a specific majority-PDDS, we conclude that for a given {n1, . . . , nr} ⊂ N, r ≥ 2, one can find
a majority-PDDS which presents periodic orbits of periods n1, . . . , nr simultaneously. This shows
that majority-PDDS behave completely different from majority-PDS and studying their periodic
structure is more difficult than the case that the dependency graph is a simple graph.
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For a dynamical system (X, f), the concept of “conjugate” is studied by many authors. Our goal
is to introduce and study this concept in pointfree topology to give a description of categorical
properties of conjugate in localic dynalical systems. We give the relation between the category
TDS of dynamical systems and the category LDS of localic dynamical sysytems and continuous
maps between them.
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Introduction

In this section we briefly touch category theory and give the definitions and results needed in the
next section. For more details, the reader can see [5] and [4].

34.1. Definition. Let F,G : C → D be functors. A natural transformation τ : F → G is a
function τ : ObjC → MorD assigning to each object A in C a morphism τA : FA → GA in D
such that for every morphism f : A → B in C, (Gf)(τA) = τA(Ff). In this case we denote τ by
(τA)A∈C, and call each τA a component of τ .

Let G : D → C be a functor and A ∈ ObjC. A universal arrow from A to G is an object B of
D together with a morphism u : A → GB in D such that for each D ∈ ObjD and each morphism
f : A→ GD in C there is a unique morphism f̄ : B → D in D with (Gf̄) ◦ u = f . Dualizing this,
we get the notion of a couniversal arrow from A to G.

34.2. Definition. Let G : D → C be a functor. A left adjoint to G is a functor F : C → D
such that for each A ∈ ObjC, B ∈ ObjD there is an isomorphism αA,B : HomD(FA,B) →
HomC(A,GB) which is natural in A and B (that is, (αA,−)A∈ObjC : Hom(FA,−)→ Hom(A,G−)
and (α−,B)B∈ObjD : Hom(F−, B) → Hom(−, GB) are natural isomorphisms). In this case we
write F a G, and say (F,G, α) is an adjunction, or also G is a right adjoint to F .

34.3. Theorem. For functors F : C→ D and G : D→ C, the following are equivalent:

(a) F is a left adjoint to G.
(b) There exists a natural transformation η : IC → G ◦ F , called unit or front adjunction,

such that for each A ∈ ObjC, ηA : A→ GFA is a universal arrow from A to G.
(c) There exists a natural transformation ε : F ◦ G → ID, called counit or back adjunction,

such that for each B ∈ ObjD, εB : FGB → B is a couniversal arrow from B to F .
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Our references for frames and locales are [4] and [5].
A frame (or locale) is a complete lattice L in which the infinite distributive law

a ∧
∨
S =

∨
{a ∧ s : s ∈ S}

holds for all a ∈ L and S ⊆ L. We denote by 0 and 1, respectively, the bottom and top elements
of L. A frame homomorphism (or frame map) is a map between frames which preserves finite
meets, including the top element, and arbitrary joins, including the bottom element. An element
p ∈ L is said to be prime if p < 1 and x ∧ y ≤ p implies a ≤ p or b ≤ p. Recall the contravariant
functor Σ from Frm to the category Top of topological spaces which assigns to each frame L its
spectrum ΣL of prime elements with Σa = {p ∈ ΣL : a 6≤ p} (a ∈ L) as its open sets. Also, we
have ΣL = {f : L → 2 : f is a frame map }, where 2 = {0, 1}. The frame of all open sets of a
topological space X is denoted by O(X). The right adjoint of a frame homomorphism h : L→M
is denoted by h∗. We shall use the terms “frame” and “locale” interchangeably, but when we wish
to consider frame homomorphisms we will rather use “frame”.

A localic map f : L→M is a meet-preserving mapping between locales the left adjoint of which
preserves binary meets.

For the category Loc, we have the functor Lc: Top → Loc by setting Lc(X) = O(X) and
Lc(f) = O(f)∗ where O(f) = f−1.

A discrete-time dynamical system (X, f) is a continuous map f on a nonempty topological space
X, i.e. f : X → X. The dynamics is obtained by iterating the map. The reader can see [2, 1] and
[3] for more informations on dynamical systems.

34.4. Definition. A homomorhism of dynamical sysytems from (X, f) to (Y, g) is a map ϕ :
X → Y such that ϕ ◦ f = g ◦ ϕ. In this case, we say that two dynamical systems are conjugated.

Adapting by this, we call (L, f) a locallic dynamical system if L is a locale and f : L → L is a
locallic map.

Main results

Recall that for dynamical systems (X, f) and (Y, g), we call continuous function ϕ : X → Y a
morphism if the following diagram commuts.

X
f //

ϕ

��

X

ϕ

��
Y

f
// Y

We denote the category of all topological dynamical systems and their morphisms by TDS. Now,
we give the next definition.

34.5. Definition. A localic dynamical system (L, f) is a localic map f on a locale L, that is,
f : L→ L.

34.6. Definition. Let (L, f) and (M, g) be localic dynamical systems. We call continuous
function h : L→M a morphism if the following diagram commuts.

L
f //

h
��

L

h
��

M
f

// M

We denote the category of all localic dynamical systems and their morphisms by LDS. Here, we
are going to give a relation between TDS and LDS.

Foe this, we define Σ : LDS −→ TDS with (L, f) 7−→ (ΣL,Σf∗). It is clear that if h : L → M
be a localic map such that h ∈ Hom

(
(L, f), (M, g)

)
, then g ◦ h = h ◦ f . This implies that

Σh∗ ◦ Σg∗ = Σf∗ ◦ Σh∗ which means that
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ΣM
Σg∗ //

Σh∗

��

ΣM

Σh∗

��
ΣL

Σf∗
// ΣL

and therefore Σh∗ ∈ Hom
(
(ΣM,Σg∗), (ΣL,Σf∗)

)
. Threfore we have:

34.7. Proposition. The functor Σ is a countravariant functor from LDS to TDS.

Now, we define Lc : TDS −→ LDS with (X, f) 7−→ (Lc(X),Lc(f)). It is clear that if h : X → Y
be a morphism such that h ∈ Hom

(
(X, f), (Y, g)

)
, then g ◦h = h ◦ f . This implies Lc(h) ◦Lc(f) =

Lc(g) ◦ Lc(h), which means that the next diagram commuts

Lc(X)
Lc(f) //

Lc(h)

��

Lc(X)

Lc(h)

��
Lc(Y )

Lc(g)
// Lc(Y )

and therefore Lc(h) ∈ Hom
(
(Lc(X),Lc(f)), (Lc(Y ),Lc(g))

)
. Thus we have:

34.8. Proposition. The functor Lc is a covariant functor from TDS to TDS.

Now, Put λ : ITDS → ΣLc such that, for every X, λX : X −→ ΣLc(X) is gicen by x 7−→ {U ∈
O(X) : x ∈ U}. Now, let h : (X, f) → (Y, g) be a morphism in TDS, then g ◦ h = h ◦ f . This
implies ΣLc(h) ◦ λX = λY ◦ h and so the following diagram is commuted:

X
λX //

h

��

ΣLc(X)

ΣLc(h)

��
Y

λY

// ΣLc(Y )

We put ϕ : L −→ LcΣL with a 7−→ {F : a ∈ F , F is a completely prime filter on L}. It is clear
that ϕ is a frame map. Now, we define σ : LcΣ→ ILDS and set σL = (ϕL)∗. Now, let f : X → X be
a continuous function, then, for a completely prime filter F , we have (ΣLc(f))(F ) = (Lc(f)∗)−1(F )
This implies that, for h : X → Y , we have ΣLc(h)λ = λY h.

34.9. Proposition. The function λX is a natural transformation.

Now, let f : L→M be a localic map. We have

(LcΣ)(L)
σL //

(LcΣ)(f)

��

L

f

��
(LcΣ)(M)

σM
// M

and so f ◦ σL = σM ◦ (LcΣ)(f) which implies that σ∗L ◦ f∗ = (LcΣ)(f)∗ ◦ σ∗M .
Let λ : ITDS → ΣLc. For every (X, f) ∈ Obj(TDS), we have λ(X,f) : (X, f)→ ΣLc(X, f) where

λ(X,f) = λX : X → ΣLc(X) is a continuous fuction. It is easy to see that, for every x ∈ X, we
have Σ(Lc(f))λ(X,f)(x) = λ(X,f)f(x) which shows that the following diagram is commuted:

X
f //

λ(X,f)

��

X

λ(X,f)

��
ΣLc(X)

Σ(Lc(f))
// ΣLc(X)
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Now, let h : (X, f) → (Y, g) be a morphism in TDS. Thus, for every x ∈ X, we have Σ(Lc(h)) ◦
λ(X,f)(x) = λ(Y,g) ◦ h(x) which shows that the following diagram commuts.

(X, f)
λ(X,f)//

h

��

(Σ(Lc(X)),Σ(Lc(f)))

λ(X,f)

��
(Y, g)

λ(Y,g)

// (Σ(Lc(Y )),Σ(Lc(g)))

For every (L, f), we define σ(L,f) : (LcΣ(L),LcΣ(f))→ (L, f) where σ(L,f) = (ϕ)∗ : LcΣL→ L is
a localic map. One can see that σ(L,f) ◦LcΣf = f ◦σ(L,f) which shows that the following diagram
commuts. LcΣL

LcΣf //

σ(L,f)

��

LcΣL

σ(L,f)

��
L

f
// L

Now, let h : (L, f) → (M, g) be a morphism in LDS. We have σ(M,g) ◦ LcΣh = h ◦ σ(L,f) which
shows that the following diagram commuts.

(LcΣL,LcΣf)
σ(L,f) //

LcΣL

��

(L, f)

h

��
(LcΣM,LcΣg)

σ(M,g)

// (M, g)

34.10. Proposition. The function σ is a natural transformation.

Conclusion

34.11. Corollary. Let Σ : LDS→ TDS and Lc : TDS→ LDS be as the same in the previous
section. Then Lc a Σ.
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Introduction

Finite dynamical systems play a crucial role in studying problems of several different contexts.
In particular, these mathematical models, which naturally arise in computer processes, are pro-
fusely used in other sciences as biology, mathematics, physics, chemistry, or even sociology. Some
relevant examples of finite dynamical systems are (finite) cellular automata and, more generally,
deterministic Boolean networks, also called Boolean finite dynamical systems, diffusion models
and recently semilattice networks (see [5, 4]. It is worth remarking that semilattice networks are
generalization of conjunctive Boolean networks in [3] and some diffusion models that studied in
[2] and the results of [5] recovers and extends some main theorems of those researches.

The benefit of finite dynamical systems is that they can be easily simulated on a computer
in most cases and the difficulty is that few analytical devices beyond simulation are available. A
common combinatorial device to study dynamics of models is the dependency graph that extensively
has been used in Boolean networks, diffusion models and recently in the study of semilattice
networks. Actually, [5] provides a general mathematical (algebraic and combinatorial) method to
study semilattice networks.

A partially ordered set (L,≤) is called a join-semilattice if each two-element subset {a, b} ⊆ L
has a join (i.e. least upper bound, denoted by a ∨ b), and is called a meet-semilattice if each
two-element subset has a meet (i.e. greatest lower bound, denoted by a ∧ b). (L,≤) is called a
lattice if it is both a join- and a meet-semilattice.

Let (L,≤) be a finite meet-semilattice (or join-semilattice). A finite dynamical system

f = (f1, . . . , fn) : Ln → Ln,

is called a semilattice network when fj =
∧
xi∈Ij xi for all j = 1, . . . , n where Ij is the set of

variables that influence the variable xj (or fj =
∨
xi∈Ij xi for all j = 1, . . . , n). In this paper, we

introduce and study the concept of lattice network. Let (L,≤) be a finite lattice. We say that a
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finite dynamical system

f = (f1, . . . , fn) : Ln → Ln,

is a lattice network when for each j = 1, . . . , n, fj =
∧
xi∈Ij xi or fj =

∨
xi∈Ij xi. Note that the

notion of lattice network is a generalization of the notion of AND-OR network where L = {0, 1},
∧ = AND, and ∨ = OR. Also note that AND-OR networks have been studied well in the literature.
In the following, we assume that f is a lattice network. The dynamics of f is characterized by its
phase space which is the directed graph with vertex set Ln and each (u,v) is a directed edge if
f(u) = v. A limit cycle of length t is a set with t elements {u1,u2, . . . ,ut} such that f(ui) = ui+1

for i = 1, . . . , t − 1 and f(ut) = u1. All elements of that limit cycle are called periodic points of
period t. If t = 1 then u1 is called a fixed point and if all periodic points of f are fixed points then
f is called a fixed-point network (system). Note that since L is a finite set, each u ∈ Ln converges
to a periodic point ( there exists k ≥ 0 such that fk(u) is a periodic point). Dependency graph
associated to f is a directed graph G = (V,E) on the vertex set V = {1, 2, . . . , n} with the edge
set

E = {(i, j) | the function fj depends on xi}
which is a powerful combinatorial tool that is used for detecting cycle structure of the network
without direct computation of the phase space. In this paper, we assume that for each 1 ≤ i ≤ n,
(i, i) ∈ E which means that each function fi depends on xi (Note that in many research papers
this assumption has a crucial role in the study of the network), and we show that f is a fixed-point
network.

Main results

Let (L,≤) be a finite lattice and f : Ln → Ln be a lattice network. In this section we show
that f is a fixed-point system. Before presenting the main result let us give an example of lattice
network.

35.1. Example. Let L = {1, 2, 3, 6}. Define ≤ in L by

a ≤ b if and only if a divides b.

So, by a ∧ b we mean the greatest common divisor of a and b, and by a ∨ b we mean the least
common multiple of a and b.

Now define f : L3 → L3 by f(x1, x2, x3) = (x1 ∨ x2, x2 ∧ x3, x3 ∨ x1). Then the dependency
graph of f is G = (V,E) where V = {1, 2, 3} and E = {(1, 1), (2, 1), (2, 2), (3, 2), (3, 3), (1, 3)}. One
can check that f is a fixed-point system and

fix(f) = {(a, b, a) ∈ L3 | b | a and a | c}

Now we are ready to present our main result.

35.2. Theorem. Let (L,≤) be a finite lattice and f : Ln → Ln be a lattice network. Then f is
a fixed point system.

Proof. Let G = (V,E) be the dependency graph of f . Since f is a lattice network, there exists
I, J ⊆ {1, . . . , n} (I ∪ J = {1, . . . , n}, I ∩ J = ∅) such that for each j ∈ I, fj = xj ∧

∧
(s,j)∈E xs

and for each j ∈ J , fj = xj ∨
∨

(s,j)∈E xs. Let a = (a0
1, . . . , a

0
n) be a t-periodic point of f .

We show that a is a fixed point of f . For each 1 ≤ r ≤ t let fr(a) = (ar1, . . . , a
r
n) and let

L1 := {ari | 1 ≤ i ≤ n, 0 ≤ r ≤ t}. For each b ∈ L1 define Ar,b (0 ≤ r ≤ t) as

Ar,b = {j ∈ I | arj = b}

Since a is a t−periodic point, it is clear that A0,b = At,b for all b ∈ L1.
Suppose that b is a minimal element of L1. Let 0 ≤ r ≤ t − 1 be such that j ∈ Ar,b, then by

fj = xj ∧
∧

(s,j)∈E xs, we have ar+1
j = arj ∧

∧
(s,j)∈E a

r
s. So ar+1

j ≤ arj = b and by the minimality
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of b in L1, We get ar+1
j = b which shows that j ∈ Ar+1,b and so for each 0 ≤ r ≤ t − 1,

Ar,b ⊆ Ar+1,b.mThus
A0,b ⊆ A1,b ⊆ · · · ⊆ Ar,b = A0,b

In particular,
A0,b = A1,b

Now suppose that b ∈ L1 is a cover of some minimal element of L1. Let 0 ≤ r ≤ t − 1 be such
that j ∈ Ar,b. As previous paragraph, we can show that ar+1

j ≤ arj = b. If ar+1
j < arj , then ar+1

j

is a minimal element of L1 and so Ar,ar+1
j

= Ar+1,ar+1
j

and it shows that arj = ar+1
j which is a

contradiction. So ar+1
j = arj and again we conclude that for each 0 ≤ r ≤ t− 1, Ar,b ⊆ Ar+1,b. So,

A0,b ⊆ A1,b ⊆ · · · ⊆ Ar,b = A0,b,

and we have
A0,b = A1,b.

Continuing this process, we finally conclude that

(84) ∀b ∈ L1, A0,b = A1,b

Now for each b ∈ L1 define Br,b (0 ≤ r ≤ t) as

Br,b = {j ∈ J | arj = b}
Since a is a t−periodic point, it is clear that B0,b = Bt,b for all b ∈ L1. Suppose that b is a maximal
element of L1. Let 0 ≤ r ≤ t − 1 be such that j ∈ Br,b, then by fj = xj ∨

∨
(s,j)∈E xs, we have

ar+1
j = arj ∨

∨
(s,j)∈E a

r
s. So b = arj ≤ ar+1

j and by the maximality of b in L1, We get ar+1
j = b

which shows that j ∈ Ar+1,b and as above this yields to the fact that

A0,b = A1,b

Next we do the same method for an arbitrary element of L1 which is covered by a maximal element
of L1 and continuing in this way we get that

(85) ∀b ∈ L1, A0,b = A1,b

Now by equations (1) and (2), a is a fixed point of f . �

We remark that Theorem 2.2 is an extension of [?, Theorem 1] where f is finite Boolean dynamical
system and ∧,∨ are AND,OR respectively. Next we study some special cases.

35.3. Corollary. Let (L,≤) be a finite lattice and f : Ln → Ln be a lattice network with
dependency graph G = (V,E). Then the following holds.

(i) If for each 1 ≤ j ≤ n, fj =
∧

(s,j)∈E xs, then an arbitrary point a = (a1, . . . , an) converges

to the fixed point ba = (b1, . . . , bn) where for each 1 ≤ i ≤ n,

bi =
∧

there is a directed path from s to i

as

(ii) If for each 1 ≤ j ≤ n, fj =
∨

(s,j)∈E xs, then an arbitrary point a = (a1, . . . , an) converges

to the fixed point ba = (b1, . . . , bn) where for each 1 ≤ i ≤ n,

bi =
∨

there is a directed path from s to i

as

(iii) If f is as (i) or (ii), and G is strongly connected then an arbitrary point a = (a1, . . . , an)
converges to the fixed point ba = (b1, . . . , bn) where for each 1 ≤ i ≤ n, bi =

∨
1≤s≤n as

and in particular a = (a1, . . . , an) is a fixed point of f if and only if a1 = · · · = an.

Conclusion

Let f be a lattice network over a dependency graph G = (V,E). We prove that f is a fixed-point
system provided that all vertices of G have a self-loop.
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Introduction

Ricci flow is a branch of general geometric flows, which is an evolution equation for a Riemannian
metric in the set of all Riemannian metrics defined on a manifold. Geometric flow can be used to
deform an arbitrary metric into an informative metric, from which one can determine the topology
of the underlying manifold and hence innovate numerous progress in the proof of some geometric
conjectures. In 1982 Hamilton introduced the notion of Ricci flow on Riemannian manifolds by
the evolution equation

∂

∂t
gij = −2Ricij , g(t = 0) := g0.(86)

The Ricci flow, which evolves a Riemannian metric by its Ricci curvature is a natural analogue
of the heat equation for metrics. In Hamilton’s celebrated paper [4], it is shown that there is a
unique solution to the Ricci flow for an arbitrary smooth Riemannian metric on a closed manifold
over a sufficiently short time.

Let (M, g) be a closed Riemannian manifold. One of the most natural functionals one can
construct on M is the so-called Einstein-Hilbert functional E :M−→ R, which is the integral of
the scalar curvature: E(g) =

∫
M
Rgdµ, where Rg is the scalar curvature related to g. Hamilton

has computed the variation of E at g, in direction ∂
∂sgij = vij , and he has concluded that

d

ds
E(g) =

∫
M

< v,
1

2
Rg −Rc > dµ.

Note that (twice) the gradient flow of E is

∂

∂s
gij = 2(∇E(g))ij = Rgij − 2Rij .
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We note that this equation looks similar to the Ricci flow, but the extra term means that this
equation is not parabolic and as such, short time existence is not expected to hold. Dropping the
Rg term on the RHS of last formula yields the Ricci flow.
The concept of Ricci flow on Finsler manifolds is defined first by D. Bao, cf., [3], choosing the Ricci
tensor introduced by H. Akbar-Zadeh, [2]. It seems to the present authors that, this choice of D.
Bao for definition of Ricci tensor, is completely suitable for definition of Ricci flow in Finsler geome-
try. In fact, in order to define the concept of Ricci tensor, Akbar-Zadeh has used Einstein-Hilbert’s
functional in general relativity, although it has some computation negligence and introduced defi-
nition of Einstein-Finsler spaces as critical points of this functional, similar to the Hamilton’s work.

Main results

The concept of Ricci flow on Finsler manifolds is defined first by D. Bao, cf., [3], choosing the
Ricci tensor introduced by H. Akbar-Zadeh, [2]. Let M be a compact Finslerian manifold and Ricjk

the symmetric tensor defined by 1
2
∂2(F 2Ric)
∂yjyk

. Let λ be a differentiable function on M . We consider

the scalar function on S(M) defined by Ĥ = H̃ − λ(x)Ric, where H̃ = gjkRicjk. Akbar-Zadeh

consider the functional E(g) =
∫
S(M)

Ĥdµ as energy-functional similar to Hamilton’s approach in

Finsler space, cf. [1]. Here, we look for the gradient flow of the energy functional introduced by
Akbar-Zadeh. It is computed that the variation of E at g, in direction ∂

∂sgij = vij is

d

ds
E(g) = − < A, v >= −

∫
S(M)

Ajkvjk dµ,

where <,> denotes the global scalar product and A is defined by

Ajk = Ricjk − λRiclj lk − (nτ − φ)lj lk − Ĥ(gjk − 1

2
nujuk).

The (twin) gradient flow of energy functional introduced by Akbar-Zadeh is ∂
∂sgjk = −2Ajk, that

is
∂

∂s
gjk = −2(Ricjk − λRiclj lk − (nτ − φ)lj lk − Ĥ(gjk −

1

2
nlj lk)).

By multiplying the two sides by lj and lk successively we get

d

ds
ln(F (t)) = −(1− 1

2
nλ)Ric+ (nτ − φ)− (1− 1

2
n)H̃.

Case λ = 0. In this case the integral E(g) (the energy functional introduced by Akbar-Zadeh) is

reduced to E1(g) =
∫
SM

H̃dµ. The derivative of E1(g) is E′1(g) = − < Ã, v >, where

Ãij = Ricij − nτlilj − H̃(gij −
1

2
nlilj).

The (twin) gradient flow of energy functional E1(g) is

∂

∂s
gij = −2Ãij .

By multiplying the two sides by uj and uk successively we get

d

ds
ln(F (t)) = −H(u, u) + nτ − (1− 1

2
n)H̃.

Similar to Hamilton’s approach for definition of Ricci flow, we note that this equation looks similar
to the Ricci flow, but the extra term means that this equation is not parabolic and as such, short
time existence is not expected to hold. Dropping the nτ − (1 − 1

2n)H̃ term on the RHS of last

formula yields the Finsler Ricci flow d
ds ln(F (t)) = −H(u, u). Therefore the Finsler Ricci flow

introduced by David Bao is completely suitable for definition of Ricci flow in Finsler geometry.
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Introduction

The notion of semi-symmetric connections on a differentiable manifold is introduced by Friedman
and Schouten in 1924 [2]. The study of it was further developed by some researcher such as Yano
[5].
These mentioned connections have applications in Physics. There are various physical problems
involving them.
In this work, we find relations between mean curvatures of these connections and the Levi-Civita
connection.
In the following, we provide basic information used in the paper.
A linear connection ∇ on a semi-Riemannian manifold (M, g) is said to be semi-symmetric if the
torsion tensor T of the connection ∇ satisfies

(87) T (X,Y ) = ω(Y )X − ω(X)Y,

for any vector fields X,Y on M and ω is a 1-form given by ω(X) = g(X,W ), where W is the
vector field associated with the 1-form ω.
If ∇g = 0, then the connection ∇ is said to be a metric connection; otherwise, it is called non-
metric [3].
Now let (M, g) be an (n+p)−dimensional semi-Riemannian manifold endowed with an n−distribution
D. The real vector space of all symmetric bilinear mappings gx : D × D −→ R, is denoted by
L2
s(Dx,R). Then we consider the vector bundle

L2
s(D,R) =

⋃
x∈M

L2
s(Dx,R)

over M. The metric tensor g induces a global section of L2
s(D,R) which is denoted by the same

symbol g. If g is non-degenerate, the pair (D, g) is a semi-Riemannian distribution.
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Also the vector bundle D⊥ is considered as follows

D⊥ =
⋃
x∈M
D⊥x ,

where D⊥x is the complementary orthogonal subspace to Dx in (TxM, gx). The metric tensor g
induces a semi-Riemannian metric on D⊥, and here again we denote it by g. Therefore (D⊥, g) is
a semi-Riemannian distribution. Thus we have

(88) TM = D ⊕D⊥.
Also the mappings P and Q are the projection morphisms of TM on D and D⊥ respectively.

(89) a) H̃(X,PY ) = Q∇̃XPY, b) H̃⊥(X,QY ) = P∇̃XQY,

where H̃ and H̃⊥ are the second fundamental forms of D and D⊥ with respect to ∇̃, respectively
[1].

Main Results

We now suppose that the semi-Riemannian manifold (M, g) admits a semi-symmetric metric
connection given by

(90) ∇XY = ∇̃XY + ω(Y )X − g(X,Y )W,

where ∇̃ is the Levi-Civita connection on (M, g), ω is a 1-form and W is the vector field defined
by

(91) g(W,X) = ω(X),

for any vector field X of M (see [4], [5]).

(92) a) H(X,PY ) = Q∇XPY, b) H⊥(X,QY ) = P∇XQY.

We call H (resp. H⊥) the second fundamental forms of D (resp. D⊥) with respect to ∇. Since ∇
is metric by using (92) we obtain that

g(H(X,PY ),QZ) = g(∇XPY,QZ)(93)

= −g(PY,∇XQZ)

= −g(H⊥(X,QZ),PY ).

By defination of the semi-symmetric metric connection ∇ and by (89a), (89b), (92a) and (92b) we
deduce that

H(X,PY ) = H̃(X,PY ) + ω(PY )QX − g(X,PY )QW,
and

H⊥(X,QY ) = H̃⊥(X,QY ) + ω(QY )PX − g(X,QY )PW.
Therefore

(94) H(PX,PY ) = H̃(PX,PY )− g(PX,PY )QW,

(95) H⊥(QX,QY ) = H̃⊥(QX,QY )− g(QX,QY )PW.
The second fundamental forms and the shap operators of the distributions D and D⊥ are related

by [1]

(96) g(H̃(PX,PY ),QZ) = g(ÃQZPX,PY ),

and

(97) g(H̃⊥(QX,QY ),PZ) = g(Ã⊥PZQX,QY ).

Let E1, ..., En be an orthonormal basis for Dp of signature ε1, ..., εn, then
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q̃ =
1

n
Σni=1εiH̃(Ei, Ei)

is the mean curvature vector field of (D, g) with respect to ∇̃ and

q =
1

n
Σni=1εiH(Ei, Ei)

is the mean curvature of (D, g) with respect to ∇. We obtain from (94)

q =
1

n
Σni=1εiH(Ei, Ei)(98)

=
1

n
Σni=1εi{H̃(Ei, Ei)− g(Ei, Ei)QW}(99)

=
1

n
Σni=1εi{H̃(Ei, Ei)} −

1

n
Σni=1εig(Ei, Ei)QW}

= q̃ − QW.

We can state the following.

37.1. Theorem. The mean curvature of (D, g) with respect to ∇̃ concides with that of (D, g)
with respect to ∇, if a vector W lies in D.

If H̃ vanishes, then (D, g) is totally geodesic with respect to ∇̃, and if H̃(PX,PY ) = g(PX,PY )q̃,
then (D, g) is totally umblical with respect to ∇̃. Similarly, If H vanishes, then (D, g) is totally
geodesic with respect to ∇, and if H(PX,PY ) = g(PX,PY )q, then (D, g) is totally umblical with
respect to ∇.
From (94) and (98), we have the following Proposition:

37.2. Proposition. The semi-symmetric distribution (D, g) is totally umblical with respect to ∇̃
if and only if it is totally umblical with respect to the semi-symmetric metric connection ∇.

If q̃ = 0 (resp.q = 0), then (D, g) is called minimal with respect to ∇̃ (resp.∇) from equation
(98) we have the following result:

37.3. Theorem. (D, g) is minimal with respect to the semi-symmetric metric connection ∇ if
and only if it is minimal with respect to the Levi-Civita connection, when a vector field W lies in
D.

A linear connection ∇̆ on a semi-Riemannian manifold (M, g) defined by

(100) ∇̆XY = ∇̃XY + ω(Y )X

is a semi-symmetric non-metric connection, where ∇̃ is the Levi-Civita connection of (M, g) and
ω is a 1-form.

(101) a) H̆(X,PY ) = Q∇̆XPY, b) H̆⊥(X,QY ) = P∇̆XQY.

H̆ and H̆⊥ are the second fundamental forms of D and D⊥ respectively. By (100) and (101)

(102) H̆(X,PY ) = H̃(X,PY ) + ω(PY )QX,

(103) H̆⊥(X,QY ) = H̃⊥(X,QY ) + ω(QY )PX.
Thus we obtain that

a) H̆(PX,PY ) = H̃(PX,PY ) b) H̆⊥(QX,QY ) = H̃⊥(QX,QY ).(104)

(105) q̆ =
1

n
Σni=1εiH̆(Ei, Ei)
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is the mean curvature of (D, g) with respect to the semi-symmetric non-metric connection ∇̆, where
E1, ..., En is an orthonormal basis for Dp of signature ε1, ..., εn.
Hence by 102 we may state the following results.

37.4. Theorem. The mean curvature of (D, g) with respect to ∇̃ concides with that of (D, g)

with respect to the semi-symmetric non-metric connection ∇̆.

If q̆ = 0, then (D, g) is called minimal with respect to ∇̆.

37.5. Theorem. (D, g) is minimal with respect to ∇̆ if and only if it is minimal with respect to

∇̃.

If H̆ vanishes, then (D, g) is totally geodesic with respect to ∇̆ and if H̆(PX,PY ) = g(PX,PY )q̆,
then (D, g) is said to be totally umblical with respect to ∇̆.

37.6. Theorem. (see[6]) The semi-Riemannian distribution (D, g) is totally geodesic (totally

umblical) with respect to ∇̃ if and only if it is totally geodesic (totally umblical) with respect to ∇̆.
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Many classic finance, such as the Black-Scholes option pricing model, has its origins equation:

1

P
dP = µdt+ σdW

In this article, we try to review this model on the Iran Stock Exchange index in 1399. This led to
finding relation to model the future forecast of the Tepix of Iran.
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Introduction

Block-chain technology enables a large number of traders to conduct electronic transactions. In
fact, a new set of currencies called cryptocurrencies, in recent years, has attracted the attention of
many traders. The price of Bitcoin focused the spotlight of public attention on cryptocurrencies
that evolved into a new asset class. Following the pattern of other nascent assets, speculators
dominated trading and pushed prices toward a bubble. Directly without intermediaries, and in
recent years has led to a new form of payment. Financial markets in the world today, whether forex
or cryptocurrencies like Bitcoin or in general, all financial markets have very complex fluctuations.
But with all these fluctuations that are practically a kind of chaotic property for such markets, by
considering these markets as a category of dynamic systems in order to model and formulate such
markets can be done.

Black and Scholes attempted to apply the formula to the markets, but incurred financial losses,
due to a lack of risk management in their trades. In 1970, they decided to return to the academic
environment. Scholes received the 1997 Nobel Memorial Prize in Economic Sciences for his work,
the committee citing their discovery of the risk neutral dynamic revision as a breakthrough that
separates the option from the risk of the underlying security. Many classic finance, such as the
Black-Scholes option pricing model, has its origins equation:

1

P
dP = µdt+ σdW,

for the change in the relative price P−1dP in terms of the expected return, µ, the standard
deviation of the return, σ, and independent increments of Brownian motion, dW . The SDE can
solved this equation analytically and the solution has the form:

P (t) = P (0)exp([µ− σ2

2
]t+ σW (t)),
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where (W (t))t≥0 is a Brownian motion.

In fact, Black-Scholes is a pricing model used to determine the fair price or theoretical value
of a buy or sell option based on six variables such as fluctuations, type of option, stock price,
time, strike price and risk-free rate. Quantum is more speculation about stock market derivatives,
and therefore proper pricing of options eliminates the possibility of any arbitrage. There are two
important models for option pricing, the binomial model and the Black Scholes model. This model
is used to determine the price of a European purchase option, which simply means that this option
is only valid on the expiration date. For more information in this regard, we refer dear readers to
references [1], [2], [3],[4], [5] and [6].

Main results

In this article, we intend to examine the effects of the Black-Scholes model on the total index of
Iran Stock Exchange. Table (1) contains the monthly information of the total index of Iran Stock
Exchange based on the closing number of the monthly candlestick. We get data through the Tse
Clint software.

Table 5. Your table’s caption

Month Monthly Tepix of Iran Returns

1 741960
2 986759 0.329935576
3 1419453 0.438500181
4 1901147 0.339351849
5 1718783 -0.095923145
6 1611582 -0.062370293
7 1288330 -0.200580548
8 1367248 0.061256045
9 1447915 0.058999538
10 1183978 -0.182287634
11 1205832 0.018458113
12 1294521 0.073550047

Therefore, we have µ = 0.070808157 and σ = 299957.6543.

Notice that

dP = µPdt+ σPdW.

So, in the interval [a, b], we have ∫ b

a

dP =

∫ b

a

µPdt+

∫ b

a

σPdW.

Therefore, considering the numerical approximation
∫ b
a
f(t) = f(a)(b − a), we have P (b) =

(1 + µ)P (a) + σP (a)(W (b)−W (a)). We know that W (t) is a Brownian motion. Therefore,

W (b)−W (a) ∼ N(0, b− a).

Thus,

P (b) = (1 + µ)P (a) + σP (a)N(0, b− a)).

Hence, if we use Table 1, we can get the following relation beyond the total index of Iran Stock
Exchange.
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P (1) = (1 + µ)P (0) + σP (a)N(0, 1)) = P (0)((1.070808157) + 299957.6543N(0, 1)).

When P (1) is the Tepix of Iran for one year later. This relation can be used as a approxima-
tion method using numerical methods and can practically be considered as one of the available
approximate methods to predict the future trend of the Iranian stock market.
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In this paper, we introduce two linear connections, that are called Schouten and Vranceanu con-
nections, on a metallic Riemannian manifold and study the notion of parallelism for distributions
derived frome metallic structure with respect to the Schouten and Vranceanu connections.
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Introduction

In 1999, the concept of the metallic ratio was introduced by Vera W. de Spinadel [4]. Recently,
many researchers studied metallic structures [2, 3].
Now, we recall some necessary notions.
Let M be a C∞ manifold, A tensor J of type (1, 1) is said to be a metallic structure if

J2 = pJ + qI,

where p and q are two positive real numbers.
A C∞ manifold M equipped with a metallic structure J is called a metallic manifold and denoted
by (M,J)[2]. The solutions of the equation x2 − px− q = 0 are named the metallic means family
and denoted by

(106) σ+ =
p+

√
p2 + 4q

2
, σ− =

p−
√
p2 + 4q

2

The projections operator with respect to metallic structure J are as follows:

P =
−1√
p2 + 4q

J +
σ+√
p2 + 4q

I,

(107) P ′ =
1√

p2 + 4q
J − σ−√

p2 + 4q
I.

These maps satisfy in the following relations:

P2 = P, P ′ = P ′, P + P ′ = I.

Also, we have J = σ+P + σ−P ′, where J is a metallic structure.
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The corresponding distributions with respect to P and P ′ are as follows:

Dp = {Xp ∈ TpM, JXp = σ+Xp}, D =
⋃
p

Dp,

(108) D′p = {Xp ∈ TpM, JXp = σ−Xp}, D′ =
⋃
p

D′p,

so TM = D ⊕D′.

Main Results

In this section, we investigate the notion of parallelism for the distributions D and D′, defined
in (108), with respect to the Schouten and Vranceanu connections.

39.1. Definition. The Schouten and Vranceanu connections with respect to metallic structure
are defined as follows [1]:

∇SXY = P∇XPY + P ′∇XP ′Y,
∇VXY = P∇PXPY + P ′∇P′XP ′Y + P[P ′X,PY ] + P ′[PX,P ′Y ].

39.2. Definition. Let D be a distribution on M . D is parallel with respect to linear connection
∇ if the vector ∇XY ∈ Γ(D).

39.3. Proposition. Let (M,J) be a metallic Riemannian manifold and D and D′ be the dis-
tributions with respect to P and P ′ defined in (107) and (108). The following statements are
valid.

1) Both of the distributions D and D′ are parallel with respect to the Schouten and Vranceanu
connection.

2) ∇SXPY = P∇XPY.
for all X,Y ∈ TM .

Proof. 1) We must show that ∇SXY,∇VXY ∈ Γ(D). For this purpose we have if Y ∈ Γ(D)
then P ′(Y ) = 0, so

∇SXY = P∇XPY + P ′∇XP ′Y = P∇XPY ∈ Γ(D).

and

∇VXY = P∇PXPY + P ′∇P′XP ′Y + P[P ′X,PY ] + P ′[PX,P ′Y ]

= P∇PXPY + P[P ′X,PY ] ∈ Γ(D).

Similarly, we can prove this for D′.
2) By a straightforward calculation we get

∇SXPY = P∇XP2Y + P ′∇XP ′PY
= P∇XPY.(109)

�

39.4. Proposition. Let (M,J) be a metallic Riemannian manifold. Then ∇SXP = 0, where P
is the projection map from TM to D.

Proof. we have

∇SXPY = P(∇SXY ) + (∇SXP)Y = P(P∇XPY + P ′∇XP ′Y ) + (∇SXP)Y

= P∇XPY + (∇SXP)Y,(110)

According to Eqs. (109) and (110), we obtained (∇SXP)Y = 0, for all Y ∈ TM , so ∇SXP = 0 �

39.5. Proposition. Let (M,J) be a metallic Riemannian manifold. Then the metallic structure
J is parallel with respect to Schouten and Vranceanu connections.
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Proof. we have ∇SXJY = P∇XPJY + P ′∇XP ′JY . Since

PJ = JP = σ+P,
and

P ′J = JP ′ = σ−P,
so we have

∇SXJY = P∇Xσ+PY + P ′∇Xσ−PY
= σ+P∇XPY + σ−P ′∇XPY.(111)

on the other hand

∇SXJY = (∇SXJ)Y + J(∇SXY )

= (∇SXJ)Y + J(P∇XPY + P ′∇XP ′Y )

= (∇SXJ)Y + σ+P∇XPY + σ−P ′∇XPY ).(112)

By Eqs. (111) and (112), we have (∇SXJ)Y = 0, for all Y ∈ TM . So ∇SXJ = 0.
Similarly, we can show that ∇VXJ = 0. �
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This paper examines the impact of McGinley dynamic indicator on the total index of Iran
Stock Exchange. The trend of the total index of Iran Stock Exchange is considered as a
dynamic system. Two points are important here. The first point is that this indicator,
using recursive relations, presents a very close and formulable approximation of the trend
chart of the total index of Iran Stock Exchange. The next point is that the chaotic behaviors in
the chart of the total index of the Iranian Stock Exchange have been leveled by using this indicator.
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Introduction

The foundation of stochastic finance is return independence, which is the key assumption in
the random walk model. Real stock prices exhibit higher-order and nonlinear correlations, thus
according to the ARCH and GARCH models, the classical approach to deal with this problem is to
model the volatility parameter in the random walk model as a random process. This means that the
price returns are in general not independent. The classical models are non-linear stochastic equa-
tions. Also, they are descriptive in nature and they could not provide quantitative links between
return independence and trader actions. One of the best topics in this field has been considered by
researchers is that how the returns generated by our price dynamical model are changing from posi-
tively correlated to uncorrelated and then to negatively correlated as the model parameters change.

Indicators in financial markets are in fact a kind of observer of financial markets as a dynamic
system. The highly complex and volatile behavior of global financial markets increases the need for
these indicators every day. Very important indicators such as RSI, MACD, MA, SMA, ... are some
of these indicators that predict the future trend of a financial market as a dynamic system. The
McGinley Dynamic is a little-known yet highly reliable indicator invented by John R. McGinley,
a chartered market technician and former editor of the Market Technicians Association’s Journal
of Technical Analysis. Working within the context of moving averages throughout the 1990s,
McGinley sought to invent a responsive indicator that would automatically adjust itself in relation
to the speed of the market. His eponymous dynamic, first published in the Journal of Technical
Analysis in 1997, is a 10-day simple and exponential moving average with a filter that smooths
the data to avoid whipsaws. The McGinley Dynamic indicator is a type of moving average that
was designed to track the market better than existing moving average indicators. It is a technical
indicator that improves upon moving average lines by adjusting for shifts in market speed. This
indicator solves the issue of varying market speeds by incorporating an automatic adjustment
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factor into its formula, which speeds (or slows) the indicator in trending, or ranging, markets. The
McGinley Dynamic indicator improves upon conventional moving averages by minimizing price
separations and volatile whipsaws so that price action is more accurately reflected. McGinley
Dynamic Formula is:

MDi = MDi−1 +
Close−MDi−1

k ×N × ( Close
MDi−1

)4
.

Where:

(1) MDi=Current McGinley Dynamic;
(2) Close=Closing price ;
(3) MDi−1=Previous McGinley Dynamic;
(4) k=0.6 (Constant 60 percent of selected period N ;
(5) N=Moving average period.

In fact, McGinley found that the moving averages were too often applied incorrectly. The period
of the moving averages should be adjusted to the speed of the market changes. Another problem
McGinley saw in the moving averages was that they are often too far separated from the prices.
They should follow the price to give the right signals to open a position. To read more about the
structure of indicators and how they work, we refer dear readers to references [1], [2], [3], [4] and
[5].

Main results

Global financial markets today are known as highly complex dynamic systems. These markets
have volatile movements and with these volatile movements they cause losses to traders. In fact,
it is these fluctuations that cause bubbles in financial markets. These bubbles cause the real price
of a financial market to never happen easily. Positive and negative price bubbles actually cause
drastic changes in the price movements of a financial market. In this article, we intend to examine
the trend of the total index of the Iranian Stock Exchange in the past two years by using McGinley
dynamic indicator. Last year, the Iranian stock market experienced one of its biggest historical
declines. But was this fall unpredictable? In fact, the indicators, that are based on the trend of
the financial market, which in practice is a complex dynamic system, can predict the future of
this financial market by putting together past information as a random process. The information
that is examined in this article is the information of the total index of Iran Stock Exchange, the
source of which is the site of the Iran Stock Exchange Organization. First, in Figure (1), we see
the behavior of the indicator on the total index of Iran Stock Exchange. Sometimes an indicator
on the chart of a financial trend can be very telling and useful. As can be seen in Figure (1),
McGinley dynamic indicator, Expresses important points from the Iranian stock market process.

It can be seen that this indicator can practically act as a simulator of the Iranian stock market
trend in the last two years. Also, this indicator has formalized the kind of chaotic movements of
the Iranian stock market by eliminating minor oscillating movements. In a dynamic system, the
existence of a formulation is very important. From the trading point of view, this indicator has
both support and resistance properties. Whenever this indicator is located above the chart of the
total index of the Iranian Stock Exchange, it has acted as a resistance of the trend. This can be
clearly seen in Figure (1). Also, whenever this indicator is below the chart of the Iranian Stock
Exchange index, it has acted as a supporter of the trend. In other words, whenever this indicator is
at the bottom of the chart of the total index of Iran Stock Exchange, the trend of the stock market
index is upward, and whenever this indicator is at the top of the chart of the total stock index
of Iran, the trend of the stock market index is downward. But, what is important here in terms
of discussing dynamic systems are two points. The first point is that this chart, using recursive
relations, presents a very close and formulable approximation of the trend chart of the total index
of Iran Stock Exchange. The next point is that the chaotic behaviors in the chart of the total
index of the Iranian Stock Exchange have been leveled using this indicator.
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Figure 7. McGinley Dynamic Indicator and Tepix of Iran.
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41. A Study on Epidemic Models; Stability and Basic Reproduction Number
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Over the past century, mathematical modeling has made the connection between important
public health questions and the basic parameters of infection for a proper understanding of the
spread of disease has been used. Nowdays, every scientist and researcher knows the importance
and appreciation of dynamical systems and differential equations in ecology, biology, medicine,
epidemiology and etc. The major topic in epidemiology is when time a disease is epidemic,
endemic or pandemic. This is usually done by finding the basic reproduction number, R0. In
this paper, we study SIR and SEIR models. In continuation after finding equilibrium point, we
prove three theorems which analyzes locally and globally asymptotically stability and backward
bifurcation.
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Introduction

We first give a brief literature to the modeling of epidemics; more thorough descriptions may
be found in [1, 5]. One of the early triumphs of mathematical epidemiology was the formulation
of a simple model by Kermack and McKendrick (1927) whose predictions are very similar to this
behavior, observed in countless epidemics. The Kermack-Mendrick model is a compartmental
model based on relatively simple assumptions on the rates of flow between different classes of
members of the population and there is a threshold quantity which is called the basic reproduction
number and denoted by R0 which determines whether there is an epidemic [3].

Modeling

The special case of the model proposed by Kermack and McKendrick in 1927 which is the starting
point for our study of epidemic models is as follows:

S
′

= −βSI,

I
′

= βSI − αI,

R
′

= αI.

(113)

In this model, we assume that S(t) denotes the number of individuals who are susceptible to the
disease, that is, who are not infected at time t. I(t) denotes the number of infected individuals,
assumed infectious and able to spread the disease by contact with susceptibles. R(t) denotes the
number of individuals who have been infected and then removed from the possibility of being
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infected again or of spreading infection. In this model infected neighbors recover at rate α and
infected neighbors transmit infection at rate β and it is based on the following assumptions:
(i) An average member of the population makes contact sufficient to transmit infection with βN
others per unit time, where N represents total population size (mass action incidence).
(ii) Infectives leave the infective class at rate I per unit time.
(iii) There is no entry into or departure from the population, except possibly through death from
the disease.
(iv) There are no any disease deaths, and the total population size is a constant N .
In many infectious diseases there is an exposed period after the transmission of infection from sus-
ceptibles to potentially infective members but before these potential infectives develop symptoms
and can transmit infection. Cosider the SEIR model with some infectivity in the exposed period,
to incorporate an exposed period with mean exposed period 1

κ , we add an exposed class E and
use compartmentsS,E, I,R and total population size N = S +E + I +R to give a generalization
of the epidemic model (1) as follows:

S
′

= −βSI,

E
′

= βSI − κE,

I
′

= κE − αI.

(114)

42. Main Results

Now, we consider the SEIR model infectivity in the exposed stage,

S
′

= −βS(I + εE),

E
′

= βS(I + εE)− κE,

I
′

= κE − αI,

R
′

= αI.

(115)

The analysis of this model is the same as the analysis of (1), but with I replaced by E + I. That
is, instead of using the number of infectives as one of the variables, we use the total number of
infected members, whether or not they are capable of transmitting infection. In some diseases
there is some infectivity during the exposed period. This may be modeled by assuming infectivity
reduced by a factor ε during the exposed period. Here, the disease states are E and I, and hence
the Jacobin matrix is as follows:

J =

[
εβN − κ βN

κ −α

]

So the next generation matrix obtanied by the following matrices

F =

[
εβN βN

0 0

]
, V =

[
κ 0
−κ α

]
the matrix K = FV −1 is referred to as the next generation matrix for the system at the disease-free
equilibrium. Since FV −1 has rank 1, it has only one nonzero eigenvalue, and since the trace of the
matrix is equal to the sum of the eigenvalues, we see that

R0 =
εβN

κ
+
βN

α
,
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the element in the first row and first column FV −1. If all of new infections are in a single com-
partment, as the case here, the basic reproduction number is the trace of the matrix FV −1. There
are some situations in R0 < 1 in which it is possible to show that the asymptotic stability of the
disease-free equilibrium is global, that is, all solutions approach the disease-free equilibrium, only
those with initial values sufficiently close to this equilibrium.

System (3) has a continuum of disease-free equilibria (DFE), given by: E0 = (N, 0, 0) and the
next generation operator method can be used to analyse the asymptotic stability property of the
DFE.

42.1. Theorem. Assume that the disease transmission model is given by

x
′

i = fi(x, y)− vi(x, y) i = 1, ..., n

y
′

j = gj(x, y) j = 1, ...,m
(116)

The diseasefree equilibrium of (3.1) is locally asymptotically stable if R0 < 1, but unstable if R0 > 1.

Proof. Let F and V be as defined as above, and let J21 and J22 be the matrices of partial
derivatives of g with respect to x and y evaluated at the disease-free equilibrium. The Jacobian
matrix for the linearization of the system about the disease-free equilibrium has the block structure

J =

[
F − V 0
J21 J22

]
The disease-free equilibrium is locally asymptotically stable if the eigenvalues of the Jacobian ma-
trix all have negative real parts. Since the eigenvalues of J are those of (F − V ) andJ22, and the
latter all have negative real parts by assumption, the diseasefree equilibrium is locally asymptoti-
cally stable if all eigenvalues of (F − V ) have negative real parts.
By the assumptions on F and V , F is nonnegative and V is a nonsingular M-matrix. Hence, all
eigenvalues of (F − V ) have negative real parts if and only if ρ(FV −1) < 1. It follows that the
disease-free equilibrium is locally asymptotically stable if R0 = ρ(FV −1) < 1.
Instability for R0 > 1 can be established by a continuity argument. If R0 ≤ 1, then for any ε ≥ 0,
((1 + ε)I − FV −1) is a nonsingular M-matrix and by Lemma 3.1, ((1 + ε)I − FV −1)−1 ≥ 0.
By Lemma 3.2, all eigenvalues of ((1 + ε)V − F ) have positive real parts. Since ε > 0 is arbitrary,
and eigenvalues are continuous functions of the entries of the matrix, it follows that all eigenvalues
of (V − F ) have nonnegative real parts. To reverse the argument, suppose all the eigenvalues of
(V − F ) have nonnegative real parts. For any positive ε, (V + εI − F ) is a nonsingular M-matrix,
and by Lemma 3.2, ρ(F (V + εI)−1) < 1.
Again, since ε > 0 is arbitrary, it follows that ρ(FV −1) ≤ 1. Thus, (F − V ) has at least one
eigenvalue with positive real part if and only if ρ(FV −1) > 1, and the disease-free equilibrium is
unstable whenever R0 > 1.

�

For globally asymptotically stable theorem, we will say that a vector is nonnegative if each of its
components is nonnegative, and that a matrix is if each of its entries is non-negative. We rewrite
the system (4) as

x
′

= −Ax− f̂(x, y)

y
′

j = gj(x, y) j = 1, ...,m.
(117)

42.2. Theorem. If -A is a nonsingular M-matrix and f̂ ≥ 0, if the assumptions on the model (4)
are satisfied, and if R0 < 1, then the disease-free equilibrium of (5) is globally asymptotically stable.
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Proof. The variation of constants formula for the first equation of (4) gives

x(t) = e−tAx(0)−
∫
t
0e
−(t−s)f̂(x(s), y(s))ds.

It can be shown that e−tA ≥ 0 if −A is an M-matrix. Because we have −A = B − sI with B ≥ 0,

e−tA = etBe−stI = etBe−stI = etBe−st

and etB ≥ 0, since B ≥ 0. This, together with the assumption that f ≥ 0, implies that 0 ≤ x(t) ≤
e−tAx(0) and since etAx(0)→ 0 as t→∞ follows that t→∞.
On other hand, there are another examples to show that the disease-free equilibrium may not be

globally asymptotically stable if the condition f̂ ≥ 0 is not satisfied.
�

42.3. Theorem. Consider model (3). A backward bifurcation occurs at R0 = 1.

Proof. the Jacobin matrix for system (3) at E0 = (N, 0, 0) is as follows:

J =

[
εβ1N − κ β1N

κ −α

]
Choosing β1 as the bifuraction parameter, then R0 = 1 and β1 =

κα

N(εα+ κ)

�

Conclusion

We have established that the simple Kermack-McKendrick epidemic model (3) has some basic
properties:
(i) There is a basic reproduction number R0 such that if R0 < 1, the disease dies out while if
R0 > 1, there is an epidemic.
(ii) There is a relationship between the reproduction number and the final size of the epidemic,
which is an equality if there are no disease deaths. And also, in epidemic models the disease-free
equilibrium is asymptotically stable if R0 < 1 and unstable if R0 > 1.
(iii) In models for which endemic equilibria exist near the disease-free equilibrium for R0 < 1 the
bifurcation is called a backward bifurcation.
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In this paper, we study a rich and important class of Finsler metrics called Finsler warped product
metrics. We find an equation that characterizes locally projectively flat warped product metrics.
Further, we study Einstein Finsler warped product metrics.
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In this paper, we study generalized symmetric (α, β)−spaces. We prove that generalized symmetric
(α, β)−spaces with Matsumoto metric are Riemannian.
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In this paper, we introduce the notion of sympathetic hom-Lie superalgebras. We prove some
results on sympathetic multiplicative hom-Lie superalgebras with surjective α. In particular,
we find some equivalence condition in which a sympathetic graded hom-ideal is direct factor of
multiplicative hom-Lie superalgebra.
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Recently, the relationship between (geodesics) convexity, connectedness, and completeness prop-
erties in Riemannian manifolds (Σ;h) and the causal properties in Lorentzian static spacetimes
(M ; g) = (R× Σ;−dt2 + h) is studied. In this paper, some sufficient conditions are introduced to
(Σ;h) be geodesically convex.
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In this paper, we give a generalization of Chow–Rashevsky’s theorem for control systems in regular
connected manifolds modeled on convenient locally convex vector spaces which are not necessarily
normable. To indicate an application of our approach to the infinite-dimensional geometric control
problems, we conclude with a novel controllability result on the group of orientation-preserving
diffeomorphisms of the unit circle, which has applications in, e.g., conformal field theory as well
as string theory and statistical mechanics.
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Using the action of a Lie group on a hypergroup, the notion of Lie hypergroup is defined. It is
proved that tangent space of a Lie hypergroup is a hypergroup and that a differentiable map
between two Lie hypergroup is good homomorphism if and only if its differential map is a good
homomorphism.
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Cosmological Model of Rotating Fluids
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The investigation of rotating fluids in the context of general relativity received remarkable
consideration principally after Godel proposed relativistic model of a rotating dust universe. In
this paper, a comprehensive analysis regarding the structure of the Lie algebra of Killing vector
fields for a specific solution of field equations describing the behaviour of rotating fluid models
is presented. Killing vector fields can be undoubtedly reckoned as one of the most substantial
types of symmetries and are denoted by the smooth vector fields which preserve the metric
tensor. Additionally, the flow corresponding to a Killing vector field generates a symmetry in a
way that if each point moves on an object at the same distance in the direction of the Killing
vector field then distances on the object will not distorted at all. Therefore, Killing vector fields
are inherently expected to be of significant application in the study of geodesic motion. When
one investigates the Lagrangian explaining the motion of a particle, one can realize that Killing
vectors are the symmetries of the system and lead to conserved canonical momenta analogous to
cyclic coordinates in classical mechanics. Taking into account the outstanding properties declared
above, in this paper, we specifically concentrate on detailed investigation of the Killing vector
fields by reexpressing the analyzed cosmological solution in the orthogonal frame. Significantly,
for the resulted Lie algebra of Killing vector fields, the associated basis for the original Lie algebra
is determined in which the Lie algebra will be appropriately decomposed into an internal direct
sum of subalgebras, where each summand is indecomposable.
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