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2474(Z4 + uZ4)-Additive skew cyclic codes

ROGHAYE MOHAMMADI HESARTI*

Abstract

In this paper, we study the algebraic structure additive skew cyclic codes over Z;Z;R, where

q = p™ is a prime power and R = Z, + uZ, with u* = 0. Also, we describe the generator
polynomials of these codes. We classify that there are eight different types of explicit generators
of Z,7Z4R-additive skew cyclic codes.
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1. Introduction

Aydogdu et al. presented the structure of cyclic and constacyclic codes and
their duals in [1]. Wu et al. have been studided Z,7Z,74-additive cyclic codes
in [5]. One of the most applicable type of cyclic codes is skew cyclic codes
which were introduced by Boucher et al. in [2]. Jitman et al. extended the
results of skew cyclic codes to skew constacyclic codes over finite chain rings.
They have obtained Euclidean and Hermitian dual of these codes in [3].

The class of skew cyclic codes plays a very significant role in the theory
of error-correcting codes. Since there are much more additive skew cyclic
codes, this class of codes allows to systematically search for codes with good
properties and improve the previously best known linear codes.

In this paper, we generalize the approach used by Melakhessou et al. in [4]
to determine the structure of Z,7,,(Z; + uZ,)-additive skew cyclic codes.

This paper has been organized as follows. Section 2 contains some basic
definitions, some notations and previous results related to our work. Also, we
specify the Z,Z,(Z, + uZ,)-additive skew cyclic codes, where u? = 0.

2. Additive skew cyclic codes of length («,8,7v) over Z,Z,R

In this section we determine the algebraic structure of all additive skew
cyclic codes of length («, 8,7) over Z,Z;R.
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Recall that R = Z; +uZ,; = {a+ub:a,b € Z,} is a finite ring of nilpotency
index 2 and characteristic p. The ring R is not a chain ring, whereas it is a local
ring, and the only maximal ideal is (1, p). Also, the ring R is isomorphic to Zé.
It is known that the ring Z; is a subring of the ring R.

Definition 2.1. [4] An automorphism 0 of R is defined as 6(a + ub) = a + o(u)b,
where o(u) = ¢ + ud such that c is a non-unit in Zy, > =0 mod q and 2cd =
0 mod gq. Therefore,

O(a+ub) =a+oc(u)b= (a+cb)+ ubd.
Definition 2.2. Let R[x; 6] the set of all (skew) polynomials
ag + a1x + asx? + ...+ a,x",

where a; € R, x is an indeterminate and n € INg. Equality and addition of these
polynomials is defined in the standard manner while multiplication is defined by the
basic rule xa = 6(a)x (a € R). The multiplication is extended to all elements in R[x; 0]
by associativity and distributivity. The set R[x;6] with the above operations forms a
ring called the skew polynomial ring over R, and every element in R[x;0) is called
the skew polynomial. It is easily seen that the ring R[x;0| is non-commutative
unless 0 is the identity automorphism on R.

Proposition 2.3. [3, Proposition 2.3] Let h(x),g(x) € R[x;0]. If h(x)g(x) is a
monic central skew polynomial, then h(x)g(x) = g(x)h(x).

The ring R[x;6] is neither left nor right Euclidean. However, left and right
divisions can be defined for some suitable elements. Let f(x),g(x) be skew
polynomials in R[x;6], with f(x) # 0. Then there exist q(x),r(x) € R[x,6] such
that g(x) = g(x)f(x) 4+ r(x), where r(x) = 0 or deg(r(x)) < deg(f(x)). Note
that g(x) and r(x) are unique.

We say that f(x) is a right divisor of g(x) in R[x,60] and we write f(x) |, g(x)
if there exists a skew polynomial /1(x) such that g(x) = h(x)f(x).

Let (a,B,7v) denote n = a + B + 7, where , B are positive integers and 1 is
a positive integer coprime to characteristic of R.

Throughout this paper, we use the following symbols for simplicity:

e [x]

Ra = gaay Rp =

Zq[x]
(1)

Rlx;0
Ry = 58, R = Ro x R x Ry,

and by [3, Proposition 2.2], we assume that 0(6) | 7y, where 0(6) is the order of
6. Since x7 — 1 is a monic central skew polynomial, therefore by Proposition
2.3, aright divisor of x7 — 1 is a two-sided divisor.

Definition 2.4. A code C over R is called skew 6-cyclic, if C is closed under 6-cyclic
shift p, : RY — R which is defined by

0, ((ag,a1,....a,-1)) = (0(ay-1),0(ag),....0(a,—2)).
When there is no ambiguity, we say “skew cyclic” instead of skew 0-cyclic”.
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Let yt: R — Z; be defined by y(a + ub) = b, for any a + ub € R. Then y is
ring homomorphism. Consider the set

Z4Z4R = {(alb|c): a,becZyccR}.
By the following scalar multiplication, Z4Z4Ris a left R-module,
R X ZgZ4R — Z4Z4R,
r.(alblc) = (u(r)alp(r)blc).
This multiplication can be generalized over the set Zf;Zqﬁ R in the following
way. For any r € R and (ao, ..., a4 —1|bo, -, bg_1|co, -, Co—1) € Zg‘Zf;RV define
r.(ao,‘..,aa,l\bo,‘..,bﬁ_l|c0,...,c,y,1) = (y(r)ao,...,y(r)a“,l|y(r)b0,‘..,y(r)bﬁ_1|rc0,...,rc,y,1).

Definition 2.5. A non-empty subset C of Zf;Zqﬁ R" is called a Z47.,R-additive skew
cyclic code if

1) C is a subgroup of Zgzg RY, and
2) For any codeword (ag,..., 051 ]bo,...,bﬁ,l\co,...,cy_l) € C, its O-cyclic shift
(a,x_l,ao,...,a“,zlbﬁ,l,bo,...,bﬁ,z\H(cv_l),f)(co),...,9(c7,2)) is also in C.
There is a bijection map between ZQ‘ZEI R7and R =Ry x Rp X Ry given
by
(ﬁlo,...,&la,1 |b0,..., bﬁ—l |C0, ...,C,yfl) — (H(X) |b(x) |C(X))
Suppose (f(x)|g(x)|h(x)) € R and r(x) € R[x;0], we have
G R[x0) xR — R,
r(x)-(f(2)Ig(x) [h(x)) = (u(r(x)) f () [u(r(x))g (x)[r(x)h(x)),
where u(r(x)) = y(Zr]-xf) = Zy(rj)xf and r; € R.
] ]
Lemma 2.6. A code C is a Z,Z.,R-additive skew cyclic code of length (a, B, ) if and
only if C is a left R[x;0]-submodule of R.
Definition 2.7. We define a Gray map
$:R— 2y,
¢(a+ub) = (b,a+b),
and we can generalize this Gray map for all (xo, ..., xa—1) € Zg, (Yo, Yp-1) € Z,f
and (zo,...,z,—1) € R7 as follows:

. B a+B+2y
P Zg‘Zq RY — Zq ,

(%0, Xa—1|Y0, - Yp-1120, 1 29-1) = (X0, Xa—11Y0, - Yp-11¢(20), -, P(24-1))-
Therefore, C = 1(C) is a cyclic code of length a + B + 2y over Z,.
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Theorem 2.8. Every left R[x;0]-submodule of R is of the form
((a(x)[0]0), (0]b(x)[0), (£1(x)[£2(x) e (x) + ug(x))),

where
a(x),l1(x) € R, a(x)|x* =1, b(x),Ll2(x) € Rg,

b(x)[xf —1, deg(t1(x)) <deg(a(x)), deg(f2(x)) < deg(b(x)),
and g(x)|,c(x)|x7 — 1. Moreover, g(x) with the above condition is unique.

Now, we can list all Z;Z;R-additive skew cyclic code of length («,8,7) as
follows:

Theorem 2.9. Z;Z4R-Additive skew cyclic code of length (a, B,7) are of the follow-
ing types:

oType1:0, R.
oType 2 : ((a(x)[0]0)), where a(x) € Ry, a(x)|x* —1and 0 < deg(a(x)) <a —1.
eType 3: ((0[b(x)|0)), where b(x) € Rg, b(x)|xP —1and 0 < deg(b(x)) <p— 1.

eType 4: (14 (x)|(2(x)[c(x) + ug(x))), where
l1(x) € Ra, la(x) €Rp, g(x)|,c(x)[x” —1,

and 0 < deg(c(x)) <y — 1. Moreover, g(x) with the above condition is unique.

e Type 5: ((a(x)[0]0), (0|b(x)[0)), where a(x) € Ry,
a(x)|x* —1,0 <deg(a(x)) <a—1,b(x) € 72/3,17(35)|x/8 -1,
and 0 < deg(b(x)) <p—1.

o Type 6 : ((a(x)[0]0), (¢1(x)|€2(x)|e(x) + ug(x))), where
a(x) € Ry, a(x)|x*—1, 0<deg(a(x)) <a—1, /l1(x)€ Ry,
l(x) €Rp, g(x)],c(x)[x” =1, 0<deg(e(x)) <y—1,
and deg(¢1(x)) < deg(a(x)). Moreover, g(x) with the above condition is unique.

o Type 7: ((0]b(x)[0), (£1(x)[€2(x)[c(x) 4 ug(x))), where
b(x)€Rp, b(x)|xF -1, 0<deg(b(x))<p—1,
g(x)],c(x)xT =1, 0<deg(c(x)) <7r—-1,
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and deg(l>(x)) < deg(b(x)). Moreover, g(x) with the above condition is unique.

o Type 8: ((a(x)]0]0), (01b(x)[0), (€1 (x)|£2(x)|e(x) + ug(x))), where

a(x) € Ry, a(x)[x*—1, 0<deg(a(x)) <a-—1,
b(x) € Rg, b(x)[xf —1, 0<deg(b(x))<p-1,
l1(x) ERe, ba(x) €ERp,  g(x)|,c(x)|x7 —1,

0 <deg(c(x)) <v—1, deg(¢1(x)) <deg(a(x)), deg(l2(x)) < deg(b(x)).

Moreover, g(x) with the above condition is unique.

(1]
(2]
(3]
(4]
5]
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Lee Weight for (u,u 4 v)-construction of codes over Z,4

FARZANEH FARHANG BAFTANT*

Abstract

For a linear code C of length n over Z,, the Lee support weight of C, denoted by wt | (C), is the
sum of Lee weights of all columns of A(C), A(C) is |C| x n array of all codewords in C. For
1 <r <rank(C), the r-th generalized Lee weight with respect to rank (GLWR) for C, denoted by
dL(C), is defined as

dX(C) = min{wt; (D); D is a Z4 — submodule of C,rank(D) = r}.

Let Cj,i = 1,2 be codes over Z4 and C denote (u,u + v)-construction of them. In this paper, we
obtained d}(C) in terms of d}(Cy),d} (C,) and we generally obtained an upper bound for d%(C)
forallr, 1 <r < rank(C). We found a relationship between wt| x, wt; y and wt; (x + y), for any
x,y € Z and we showed that Lee support weight is invariant under multiplication by 3.

Keywords and phrases: Linear code, Hamming Weight, Lee Weight, Generalized Lee Weight,
(1,1 4+ v)- construction of Codes.

2010 Mathematics subject classification: 94B65.

1. Introduction

Consider Z,, as code alphabet. The Lee Weight of an integer i, for 0 <i <m
is defined as wty (i) = min{i,m —i}. For m = 4, namely in Z;, we have
wtp (0) =0,wtp (1) = wtp (3) =1, wt (2) =2 . The Lee metric on Z}}, is defined
by

wty(a) = éw&(‘li)r

where the sum is defined in Ny. We define Lee distance by dy (x,y) = wtp (x —
y). For more information, see [5]. Generalized Lee Weight (GLW) for codes
over Z4 introduced by B. Hove in [4] for the first time. He showed that there is
a relationship between Generalized Hamming Weight (GHW) and GLW. After
him, several authors studied this concept, see [1] and [7]. The concept of GHW
introduced by V. K. Wei in [6]. After Wei, several authors worked on this topic,
see [2] and [3].
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A code of length n over Z, is a subset of the free module Z] and it is called
linear if it is a Z4— submodule of Zj’.

Let C be a linear code of length n over Z4 and Let A(C) be the |C| x n array
of all code words in C. Each arbitrary column of A(C), say ¢, corresponds to
the following three cases:

i) ¢ contains only 0
ii) c contains 0 and 2 equally often
iii) c contains all elements of Z4 equally often,

We define the Lee support weight of these columns as 0, 2 and 1, respec-
tively. Also, we define the Lee support weight of code C, denoted by wt (C),
as the sum of the Lee support weights of all columns of A(C). As an exam-
ple, let C = {(0,0,0),(2,1,2),(0,3,2),(0,2,0),(2,3,2),(2,0,2),(0,1,0),(2,2,0) }.
Hence we have

NONDNOONO
N = OWNWRO
SN INONDN O

0

If ¢; be the i-th column of C, then we have wt;(c1) = 2, wt;(c;) =1 and
wt(c3) = 2. Hence we obtain that wt; (C) =2+ 1+ 2 =5. For code C with
one generator, say x, we have wty (C) = wtp (x).

Let C be a code of length n over ring Z;. The rank of C, denoted by
rank(C), is defined as the minimum number of generators of C, see [1]. For
1 <r <rank(C), the r-th generalized Lee weight with respect to rank (GLWR)
for C, denoted by d%(C), is defined as follows

dL(C) = min{wt; (D) | D is a Z4 — submodule of C with rank(D) = r}.

In this paper, we denote by C = [n,k]|, the linear code C of length n and
rank = k.

2. Main Results

Theorem 2.1. Let C; be an [n,k;] linear code over Zy, fori =1,2. Then the (u,u + v)-
construction of Cy and C; defined by

C={(c1,c1+c2):c1€Cp00€Ca},

is a [2n,ky + ko] linear code over Z,.
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Theorem 2.2. [1] Let Cy and C; be [n;ky, ko] codes over Z4. Then we have
wty (C) = = Y (wtp(x) — wt(x)).
HxeC
Note that wt(x) is the Hamming weight for vector x.
Lemma 2.3. (Main Result) For any x,y € Z}}, we have
wtp (x) + wtp(y) > wtp(x +y).
PROOF. Itis enough to show that for1 <i <mn,
wtr (x;) + wir (yi) = wtr (x; + i)

Considering all cases for x; and y;, the proof is completed. o
Lemma 2.4. (Main Result) Let x = (x1,X2,...,Xn) € Zj, so we have

wt (x) = wtr (3x).

PROOF. It is enough to show that wt (x;) = wt;(3x;), for any i,1 <i < n.
Considering all cases for x;, the proof is completed. This means that the
Lee weight of any coordinate is not changed after multiplication by 3. It is
desired. o

Theorem 2.5. (Main result) Let C; and Cy be linear codes over Zy. Let C =
{(c1,c1 +¢2) : ¢c1 € Cq,cp € Ca}. Then we have

d-(C) = min{2d} (Cy),dk(Co)}.
PROOF. Let df(Cy) = wty(Dy),D1 =< x > for x in C; and
dH(Cy) = wtp(Dy), Dy=<y>,

for y in C;. We have d-(C;) = wt (x) and d}(Cy) = wt (y). Note that
(x,x) € C. Let D =< (x,x) >. Hence rank(D) = 1. We have wt (D) =
wtp (x,x) = 2wty (x) = 2d%(Cy). Also (0,y) € C. Now let D' =< (0,y) >, so we
have wt (D') = wt(0,y) = wt, (y) = d}(Cy). Note that D and D’ are satisfying
{wt  (H);H < C,rank(H) =1}, and

min{wt; (H);H < C,rank(H) =1} = d-(Cy).

So we have
d}(C) <wt (D) = 2d1(Cy),

df(C) <wt (D) =d(Cy).

Therefore we have
dp (C) <min{2d}(Cy),df (Ca)}- (1)
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On the other hand, let d}-(C) = wt; (H). So, rank(H) =1and H =< (x,x +y) >
for x € C; and y € C,. We have
wtp (H) = wtp(x,x +y) = wty (x) + wtp(x +y).
We have the following three cases:
i) If x =0,y # 0 then wt (H) = wt (y) > dL(Cy).
ii) If x # 0,y = 0 then wt[ (H) = 2wty (x) > 2dL(Cy).
iii) If x # 0,y # 0 then by using Lemmas 2.3 and 2.3, we have
th(H) = th(3X) + th(x + ]/) > th(4X + y) = th(y) > d%(CZ)

Finally, we have

df (C) = min{2d; (C1),d5 (C2)}- 2)
By using Egs (1) and (2), the proof is completed. O
Theorem 2.6. (Main result) Let C1 and Cy be linear codes over Z4 and let C =
{(c1,61+¢c2):¢c1 € Cy,cp € Ca}. Then we have

4 (C) < min{24-(Cy),d(C2) .

PROOF. Suppose that d-(Cy) = wt(D1), D1 =< x1,%2,- -+, % > and d£(Cy) =
wty (D2), Dy =<y1,Y2, -, Yr >. Let D} =< (x1,x1),(x2,%2), -, (X, %) >. By
Theorem 2.2, we have

4
WtL(Di): ‘D/’ Z [WtL(al(xllxl)+"‘+“r(xr/xr))
1w, 0, €74
—wt(ag (x1,x1) + -+ + ar(xp,xr))]
4

= szwa(Dclxl + - arxy)

— 2wi(wxy + -+ + apxy)

=220 Y wir(t) — wh(t) = 2wt (Dy) = 2d5(Cy),

implying that wt[ (D}) = 2dL(Cy). By using the above method for

Dé =< (Oryl)/ (Olyz)l' Tt (O’yr> >

we have wt (D)) = wty (Dy) = d-(Cy). Since D and D), are submodule of
C of rank r, satisfying {wt;(H);H < C,rank(H) = r}. Moreover, we have
min{wt; (H); H < C,rank(H) = r} = d-(C). so we have

dy(C) <wty (Dy) =2dy(Cy),  dy(C) <wty (D) = dy (Ca)

Finally, we obtain
d(C) < min{2dk(Cy),d(Cy) -
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Relation between the power graph of finite group and
commutative elements

ALIREZA DOOSTABADI*

Abstract

Let G be a finite group. The power graph of a group G, with notation P(G) is a graph such that
it’s vertex set is the group G and two distinct elements x,y are adjacent if and only if x = y" or
y = x" for some positive integer n. For a nonempety set X of G, The commuting graph C(G, X)
is the graph with X as the vertex set and two distinct elements of X being joined by an edge if
they are commuting elements of G. The purpose of this paper is study of groups with property
P(G) =C(G,G).

Keywords and phrases: Finite group, Power graph, Commutative elements.
2010 Mathematics subject classification: Primary: 05C25; Secondary: 13C20.

1. Introduction

The investigation of algebraic structures using the properties of graphs is an
important topic for some researchers. The different types of graphs with
respect to group are defined as: Cayley graphs, Commuting graphs and Power
graphs. The power graph P(G) of a group G, is the graph whose vertex set
is the group G so that two distinct elements are adjacent if one is a power of
the other. For a nonempety set X of G, The commuting graph C(G, X) is the
graph with X as the vertex set and two distinct ele- ments of X being joined
by an edge if they are commuting elements of G. For the first time, Kelarev
and Quinn [3] have studied the directed power graph of semigroups, in which
there is an arc from a vertex x to a vertex y if y is positive power of x. Some
numerical properties of commuting graphs been discussed by Mahmoudifar
et al. [4]. Suppose that G is a finite group with power graph P(G). We know
that if the elements x,y € G are adjacent in the P(G), then xy = yx. Thus
commutativity of the elements x,y is necessary condition for x is adjacent to y
in the graph P(G). In this paper, we study groups that necessary and sufficient
condition for adjacency elements in the P(G) is commutative. In other words,
P(G) = C(G,G). We use of notation P.(G) for the power graphs with this

property.
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2. Main Results

Theorem 2.1. Let G be a finite p-group with graph P.(G) where p is prime. Then
the group G is cyclic or generalized quaternion.

PROOF. Suppose that G is a finite p-group with the graph P.(G). Letz € Z(G)
of prime order p. Since [x,z] = 1 for every element x of order p, then (z) = (x).
Hence the finite p-group G has a unique cyclic subgroup of order p. By
([5],5.3.6), G is cyclic or generalized quaternion. m|

Lemma 2.2. If G is a finite group with the graph P.(G). Then, the elements of G are
p-element for some prime number p.

PROOF. By contradiction, assume that there exists x € G such that pg divides
order x where p,q are distinct primes. Let y,z € (x) of orders p and ¢. It
is clearly, [y,z] =1 but y is not adjacent z in the graph P.(G) which is a
contradiction. o

Corollary 2.3. Suppose that G is a finite group with the graph P.(G). Then,
centralizer nontrivial elements is p-group for some prime number p, particularly if
G is not p-group, then Z(G) is trivial.

We define class CP of finite groups in which the centralizers of all nontrivial

elements contain only elements of prime power order. By the previous lemma,
The finite groups with the graph P.(G) are in the class CP-groups. In the next
theorem Deaconescu characterized ([1]) CP-groups.

Theorem 2.4. A group G is a CP-group if and only if one of the following holds:

(1)
(2)
3)
4)
(5)
(i)
(ii)

G is isomorphic with PSL(2,q) withq=4,7,8,9,17; PSL(3,4), SZ(8),5Z(32)
or M10~
G has a nontrivial normal 2-subgroup P and  is isomorphic with PSL(2,4),PSL(2,8),
SZ(8) or SZ(32).Moreover P is elementary abelian and isomorphic with a direct
sum of natural modules.
G is a p-group.
G is a frobenius group whose kernel is a p-group and the complement is either a
cyclic g-group (q # p) or a generalized quaternion group.
G is a 3-step group of order p*q® (p,q primes, ¢ > 2) ie. G = Oppp(G) and
G D Oy (G) with
O, (G) is a Frobenius group with kernel O(p ()G) and cyclic complement.

G /(G

. ‘ ‘ o
0,() is a Frobenius group with kernel %,

Theorem 2.5. Let G be a finite group with the graph Pc(G). Then G is isomorphism
one of the following groups:

(1)

The group Hy which is a cyclic p-group or generalized quaternion group for
some prime number p,
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(2) Hp=H,
(3) Hp>< (quHp).
where p and q are distinct primes.

PROOF. If G is a finite p-group, then by Theorem 2.1 G is given in the part
(1). Suppose that G is not p-group. Whether G is group with mentioned
property by Theorem 2.1, all Sylow p-subgroups of G are cyclic or generalized
quaternion. If all Sylow p-subgroups of G are cyclic, then groups G’ and g
are cyclic and they have coprime orders, by Theorem ([2], 5.16) and the other
hand theses groups are p-group by Lemma 2.2. Hence G is Frobenius group
and G = H, =« Hy; where H), is cyclic. Suppose that all Sylow subgroups of odd
order are cyclic and Sylow 2-subgroup is generalized quaternion group. If
G is not solvable, then G contains a normal subgroup G; with the properties
that [G : G1] <2 and G; is a direct product of a Z-group (A group that is all
Sylow subgroups are cyclic) and a subgroup isomorphic with SL(2, p) for some
odd prime number p. But SL(2,p) has some element of order 2p which is a
contradiction. Hence assume that G is solvable. Since G is CP-group, then
G is not isomorphic to groups of (1) and (2) in the Theorem 2.4. Thus G is
isomorphic to one of the groups 4 and 5 and the proof is complete. |
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On the annihilators of Ext modules

ALI FATHI*

Abstract
Let R be a commutative Noetherian ring, and let M and N be two finitely generated R-modules
such that N is Gorenstein. For each integer ¢ we give a bound under inclusion for the annihilator
of Extk (M, N) in terms of minimal primary decomposition of the zero submodule of M, which
is independent of the choice of minimal primary decomposition. Then, by using that bound, we
compute the annihilator of Extk (M, N) for t = dimg (N) — dimg (M ®g N).

Keywords and phrases: Ext-module, annihilator, primary decomposition.
2010 Mathematics subject classification: 13D07, 13E05.

1. Introduction

Throughout the paper R is a commutative Noetherian ring. If S is a Gorenstein
local ring and ] is an ideal of S with htg(]) = 0, then Lynch proved in [3,
Lemma 2.1]
Anng (Homg(S/],5)) = N ai,
dims(S/q,’):dims (S)

where | = N, g; is a minimal primary decomposition of | in S. In this pa-
per we generalize her result. More precisely, let M,N be non-zero finitely
generated R-modules such that N is Gorenstein. Let 0 = N_;M; with
Assgr(M/M;) = {p;} for all 1 <i < n be a minimal primary decomposition of
the zero submodule of M . For each integer t we obtain the following bound
for the annihilator of Extk (M, N)

Anng (M/ N Mi) C Anng (Exti(M,N)) C Anng (M/ N Mi>

PiEA(H) meX(t)
for some suitable subsets A(t) and X(t) of Assg(M). This bound is inde-
pendent of the choice of minimal primary decomposition. Then, by using
this bound, we compute the annihilator of Exth(M,N) for t = dimg(N) —
dimg (M ®g N). We refer the reader to [4] for basic properties of primary
decomposition of modules, to [5, 6] for more details about the Gorenstein mod-
ules and to [1] for the theory of local cohomology:.

* speaker
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2. Main Results

Assume M is an R-module. We denote the set of all associated prime
ideals of M by Assg(M) and the set of its minimal elements is denoted
by MinAssg(M). For each t € Ny, we denote, respectively, the sets {p €
Assg(M) : dimg(R/p) >t} and {p € Assg(M) : dimg(R/p) = t} by Assz' (M)
and Assk(M). Similarly, the sets MinAss3' (M) and MinAssk (M) are defined
as above by replacing Assg (M) by MinAssg(M). Also, when dimg(M) < oo,
we denote the set {p € Assg(M) : dimg(R/p) = dimg (M) } by Asshr(M). We
say that a subset X of Assg (M) is isolated if it satisfies the following condition:
if g € Assg(M) and q C p for some p € X, then q € X. If N is a submodule of M
and S is a multiplicatively closed subset of R, then we denote the contraction
of S~!N under the canonical map M — S™!M by Sy (N).

Definition 2.1. Let (R, m) be a local ring. A non-zero finitely generated R-module
G is said to be Gorenstein if depthy(G) = dimg(G) = idr(G) = depthi(R) =
dimpg (R). When R is not necessarily local, a non-zero finitely generated R-module G
is said to be Gorenstein if Gy is a Gorenstein Ry-module for all prime (or maximal)
ideals p in Suppg (G); see [5, Theorem 3.11 and Corollary 3.7].

When (R,m) is a complete Cohen-Macaulay local ring, then Gorenstein
modules are the non-empty finite direct sums of the canonical module [6,
Corollary 2.7].

Theorem 2.2 ([2, Theorem 2.5 and Remark 2.6]). Let M,N be non-zero finitely

generated R-modules such that N is Gorenstein. Let 0 = (\i_; M; be a minimal

primary decomposition of the zero submodule of M with Assg(M/M;) = {pi} for
all 1 <i<n. Let t € Ny and set

A(t) = {p» € Assg(M) N Suppy(N) :htg(p) < t},
%(t) = {» € MinAssg (M) N Suppy(N) : htg(p) = t},
S'=R\ |J »
PEA(L)
and T' = R\ Upex () p- Then

1. The sets A(t),5(t) are isolated subsets of Assg (M) and N, ca() Mi = S4,(0),
Npex(r) Mi = Ty (0). In particular, Ny ea(ry Mi and Ny ex ) M; are indepen-
dent of the choice of minimal primary decomposition of the zero submodule of
M.

St4(0) is the largest submodule L of M such that Exty (L,N) = 0 for all i < t.

N

Anng(M/S4,(0)) C Anng (Extgk(M,N)) C Anng(M/Ts,(0)).

En-15



4. If Suppr(M) NSuppg(N) # D and t = dimg(N) — dimg(M ®g N), then
A(t) =%(t) and

Anng (Exti(M,N)) = Anng (M/T}(0)).

Corollary 2.3 ([2, Remark 2.6]). Let (R,m) be a local ring of dimension d, and
let M,N be non-zero finitely generated R-modules such that N is Gorenstein. Let
0 = Ny M; be a minimal primary decomposition of the zero submodule of M with
Assg(M/M;) = {pi} forall 1 <i < n. Then for each t € Ny

M M

Ann(

) € Ann (Ext}(M,N)) C Ann(

Mi)'

nDiEAssﬁd*t(M) M; p;€EMinAss% (M)
In particular,
d—dimg (M
Anng (Exty, "™ M (M, N)) = Anng(M/ Ny e Asshg () M3)-

We end the paper by two examples showing how we can compute the
above bounds for the annihilators of Ext modules. Moreover, these examples
show that to improve the upper bound in Corollary 2.3 we can not replace
the index set MinAss% (M) by the larger sets MinAssz? (M), Ass% (M)
or Asslid*t (M) and also to improve the lower bound in Corollary 2.3 we can
not replace the index set Ass2’ (M) by the smaller set Ass% f(M). Also, in

general, for an arbitrary integer f there is not a subset X of Assg(M) such that
Anng (Extz(M,N)) = Anng (M/ Nyex M;).

Example 2.4 ([2, Example 2.7]). Let R = K[[x,y]] be the ring of formal power series
over a field K in indeterminates x,y. Set M = R/(x?,xy), My = (x)/(x?,xy) and
My = (x?,y)/{(x?,xy). Then 0 = My N My is a minimal primary decomposition of
the zero submodule of M with Assg(M/M;) = {p1 = (x)} and Assg(M/M;) =
{p2 = (x,y) }. So Assg(M) = {p1,p2} and MinAssg (M) = {1 }. Hence, we have

) ift=0
Assz2 H (M) =4 {p} ift=1,
{p1,p2} ift=2

and
@ ift=0,2

- 2t —
MinAssy ' (M) = { (o1} ift=1

Thus
R ift=0
AnnR(M/ N Mi):{ (x) ift=1,

pieAssizft(M)

Anng (M/ m Mi) - (x) ift=
piEMinAss%(t (M)

En-16



Therefore, Corollary 2.3 implies that
Hompg (M, R) =0, Anng (Extk(M,R)) = (x),

and
(x%,xy) C Anng (Ext%(M,R)) CR.

Also, since idg (R) = 2 we deduce that Exty (M, R) = 0 for all t > 2.
Now, we directly compute Anng (Exty (M,R)) for all t (especially for t = 2).

It is straightforward to see that P:0 — R BRED RS M 0 with e(f) =

f+ (2 xy), di(f,8) = x2f + xyg, da(f) = (yf,—xf) for all f,g € R being a
projective resolution of M. Applying the functor Homg (-, R) to the delated projective
resolution P, we obtain

Exth(M,R) = R/ (x),Ext%(M,R) = R/ (x,y), Exth(M,R) =0 forall t #1,2.

It follows that Anng (Ext}{(M,R)) = (x) and Anng (Ext%{(M,R)) = (x,y). Thus,
there is not a subset ¥ of Assg (M) such that

Anng (Extﬁ(M,R)) — Anng (M/ N M,-) .
PED

Moreover, for t = 2, this example shows that in the second inclusion of Corollary 2.3,
to obtain a better upper bound of Anng (Extk (M, R)), we cannot replace the index set

MinAss% (M) by the larger sets MinAssz' (M), Ass (M) or Ass3'~F(M).

Example 2.5 ([2, Example 2.8]). Let R = K{[x,y,z,w]] be the ring of formal power
series over a field K in indeterminates x,y,z,w. Then R is a local ring with maximal
ideal w = (x,y,z,w). Set p1 = (x,y), vp = (z,w) and M = R/(py N py). Then
depthy (R/p1) = depthg (R/p2) = 2 and hence, Hi(R/p1) = Hi (R/p2) = 0 for
i = 0,1. Now, the exact sequence

0—+M—R/p ®R/p2 = R/n—0,
induces the exact sequence
0 — Iy(M) = T(R/p1 ® R/p2) — Tu(R/n) — HY(M) — Hy(R/p1 ® R/ 1)

of local cohomology modules. It follows that T'y(M) = 0 and HL (M) = R/n. Hence,
by the Grothendieck duality [1, Theorem 11.2.8],

Homp (Ext} (M, R),E(R/n)) = HL(M).

Thus, Anng (Ext%(M,R)) =1 On the other hand, if My = py/(p1 N p) and

My = py/(p1 N p2), then 0 = My N My is a minimal primary decomposition of the
zero submodule of M. Since Assk(M) = @, we have

R = Anng (M/ N Mi) ¢ Anng (Ext%(M,R)) .
pi€Assk (M)
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Therefore in the first inclusion of Corollary 2.3, to obtain a better lower bound of
Anng (Extk (M, R)), we cannot replace the index set Ass3?~" (M) by the smaller set

Asstt(M).

(1]

(2]
(3]
(4]

(5]
(6]
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On the annihilator of local cohomology
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Abstract

Let R be a commutative Noetherian ring, a an ideal of R, M a finitely generated R-module and ¢
anonnegative integer. In certain cases, we give some bounds under inclusion for the annihilator
of H{ (M) in terms of minimal primary decomposition of the zero submodule of M, which are
independent of the choice of minimal primary decomposition. Then, by using those bounds,
we compute the annihilators of local cohomology modules in certain cases.
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1. Introduction

Throughout this note R is a commutative Noetherian ring. The ith local
cohomology of an R-module M with respect to an ideal a was introduced by
Grothendieck as follows:

H, (M) := limExtg (R/a", M).

We we refer the reader to [5] for more details about the local cohomology.

In this paper, we investigate the annihilator of local cohomology. Let a be
a proper ideal of R, M a nonzero finitely generated R-module of dimension d,
and 0 = N_; M; a minimal primary decomposition of the zero submodule of
M with Assg(M/M;) = {p;} forall 1 <i < n. We denote sup{i € Ny : H/y(M) #
0} by cdgr(a,M). If cdr(a, M) = d < oo, then

Anng (Hg (M)) — Anng (M/ Nedg (R v0)—d Ml-).

This equality is proved by Lynch whenever R is a complete local ring and
M = R, see [7, Theorem 2.4]. In [4, Theorem 1.1], Bahmanpour et al. proved

that Anng (H‘;(M)) = Anng(M/Tg(a,M)) whenever a = m and R is a com-
plete local ring, where Tr(a, M) denotes the largest submodule N of M such

* speaker
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that cdgr (a,N) < cdr(a,M). Then Bahmanpour in [3, Theorem 3.2] extended
the result of Lynch for the R-module M. Next, Atazadeh et al. in [2, Propo-
sition 3.8] proved this equality whenever R is a local ring (not necessarily
complete) and finally in [1, Corollary 1.2] they extended it to the nonlocal
case. We note that Tr(a, M) = Neay(a,R/p;)=cdg (o,M) Mi [2, Remark 2.5] also,
if (R, m) is a complete local ring and p € Assg(M), then by the Lichtenbaum-
Hartshorne Vanishing Theorem, cdg (a,R/p) = d if and only if dimg(R/p) =4d
and /a+p=m.

When (R, m) is a local ring for an arbitrary integer t we give a bound for
the annihilator of Hf, (M) in Theorem 2.3. More precisely, we show that

Anng(M/ () M;) CAnng (Hi,(M)) C Anng(M/ [ M),
pi€Assy (M) piEMinAssk (M)

where Ass3/ (M) = {p € Assg(M) : dimg(R/p) >t} and MinAssk(M) = {p €
MinAssg (M) : dimg(R/p) = t}. Also, whenever R is not necessarily local, in

Theorem 2.4, we provide a bound for Anng (HﬁdR(a’M) (M)) which implies

the above equality when cdg(a, M) = d. Finally, when M is Cohen-Macaulay,
abound for Anng (Hf(M)) is given and at t = grade(a, M), this annihilator is
computed in Theorem 2.6.

We adopt the convention that the intersection of empty family of subsets of
aset M is M.

2. Main Results

Let M be an R-module. The set of all associated prime ideals of R is denoted
by Assg(M) and the set of all minimal elements of Assg(M) under inclusion
is denoted by MinAssg(M). Also, we use Asshr(M) to denote the set {p €
Assg(M) : dimg(R/p) = dimg(M)}. For each t € Ny, we set Assz' (M) =
{p € Assg(M) : dimg(R/p) > t} and MinAssk(M) = {p € MinAssg(M) :
dimg (R/p) =t}.

Definition 2.1. A proper submodule N of an R-module M is called a primary
submodule of M if m € M,r € R and rm € N imply that either m € N or ¥ M C N
for some t € N.

If N is a primary submodule of M, then p = \/Anng(M/N) is a prime
ideal of R and N is called a p-primary submodule of M. We say that a proper
submodule L of M has a primary decomposition in M when L = N_; M; for
some primary submodules Mj,..., M, of M. If, in addition, p;’s are distinct
and (j,; M; € M; for all i, then the primary decomposition is called minimal.
If L =N,M; is a minimal primary decomposition of L in M with M; is
p;-primary, then we have Assg(M/L) = {py,...,pn}. Over a commutative
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Noetherian rings every proper submodule of a finitely generated module M
has a (minimal) primary decomposition in M.

Assume N is a submodule of an R-module M. For any multiplicatively
closed subset S of R, we denote the contraction of S~!N under the canonical
map M — S~!M by Sy (N). Assume ¥ C Assg(M). We say that ¥ is
an isolated subset of Assg(M) if it satisfies the following condition: if q €
Assg(M) and q C p for some p € ¥, then q € X.

Lemma 2.2 ([6, Lemma 2.2]). Let M be a finitely generated R-module, and N a
proper submodule of M. Let N = (\'_; N; be a minimal primary decomposition of
N in M with Assg(M/N;) = p; for all 1 <i < n. Assume ¥. is an isolated subset
of Assg(M/N). Then ey Ni = Sp(N), where S = R\ Uyex b. In particular,
Np,ex N; is independent of the choice of minimal primary decomposition of N in M.

Theorem 2.3 ([6, Theorem 3.2]). Let (R,m) be a local ring and t € Ny. Let
M be a nonzero finitely generated R-module and 0 = 'y M; a minimal primary
decomposition of the zero submodule of M with Assg(M/M;) = {p;} forall1 <i <
n. Then

L mPiEAsST/{t(M) M; = 55\/1(0) and nDiEMinAsS%(M) M; = TItVI(O)’ where S' = R\
UpGASS?(M) pand T' = R\ UpeMinasst, (m) P+ 11 particular, ﬂpieAssj/{(M) M;
and N, cnin Assty (M) Mi are independent of the choice of minimal primary de-

composition of the zero submodule of M.
2. S4,(0) is the largest submodule N of M such that dimg (N) < t.

Anng (M/S}4(0)) € Anng (HE (M)) C Anng (M/T}(0)).

In particular, for t = dimg(M) there are the equalities S',(0) = Ti,(0) =
mp,EAsshR(M) M;, and

Anng (Hm (M)) — Anng (M/ Moy Assh (M) Mi).

Now, in the following theorem, we give a bound for the annihilator of top
local cohomology module without the local assumption on R.

Theorem 2.4 ([6, Theorem 3.4]). Let M be a nonzero finitely generated R-module

and a an ideal of R such that aM # M. Let ¢ = cdr(a,M) and 0 = N}_; M; be a

minimal primary decomposition of the zero submodule of M with Assg(M/M;) =

{pi} forall1 <i<mn. Set A= {p € Assg(M) :cdr(a,R/p) =c}and L= {p €

Assr(M) : cdr(a,R/p) = dimg(R/p) = c}. Then

L. NyeaMi=5m(0), where S = R\ Upep . In particular, N, cp M; is indepen-
dent of the choice of minimal primary decomposition of the zero submodule of
M.

2. Spn(0) is the largest submodule N of M such that cdg(a,N) < c.
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Anng(M/NpeaM;) € Anng(Hg(M)) € Anng(M/Npex M;).
In particular, when ¢ = dimg (M), there are the equalities . = A and
AI‘IDR (HE(M)) = AI‘II’IR (M/SM(O)) .

When (R, m) is a Cohen-Macaulay local ring and a is a nonzero proper ideal
of R, then for t = grade(a, R) Bahmanpour calculated the annihilator of H! (R)
in [3, Theorem 2.2]. In the following theorem, we generalize his result for
Cohen-Macaulay modules whenever R is not necessarily local.

Definition 2.5. Let M be an R-module. For p € Suppg(M), the M-height of v,
denoted hty(p), is the supremum of the lengths t of strictly descending chains p =
Po D P1... D pt of prime ideals in Suppy (M). For an arbitrary ideal a we define the
M-height of a, denoted htys(a), by htps(a) = inf{htys(p) : p € Suppr (M) NV(a)}.

Theorem 2.6 ([6, Theorem 3.6]). Let a be an ideal of R, M a nonzero finitely
generated Cohen-Macaulay R-module, and 0 = 'y M; with Assg(M/M;) = p;
forall 1 <i < mnaminimal primary decomposition of the zero submodule of M . Then
foreach t € Ny,

AnnR(HfI(M)) C Anng(M/ ﬂhtM(a—i-p;):t M;).
Moreover, if M # aM and t = grade(a, M), then the equality holds.
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When a quotient of a distributive lattice is a Boolean algebra

H. BARZEGAR*

Abstract
In this article, we introduce a lattice congruence with respect to a nonempty ideal I of a

distributive lattice L and a derivation d on L denoted by 6. We investigate some necessary
and sufficient conditions for the quotient algebra L/6¢ to become a Boolean algebra.

Keywords and phrases: Distributive lattice, Boolean algebra, Congruence, Ideal, Filter .

1. Introduction

The main result of this manuscript is to obtain a necessary and sufficient
condition in which the quotient lattice L/6 is a Boolean algebra.

Throughout the paper L stands for a distributive lattice. A least element,
if exists, is denoted by _Lj(orl) and a greatest one is denoted by T (orT).
By a lattice map (or homomorphism), we mean a map f : A — B between
two lattices which preserves binary operations V and A. Recall that a non-
empty subset [ of L is called an ideal (filter) of LifavVbe A (aAbe€ A) and
aNx €A (aVxeA)whenevera,be Aand x € L. An equivalence relation 6
defined on L is said to be a lattice congruence on L if it satisfies the following
conditions, a0b implies (a V ¢)0(b V c¢) and (a Ac)0(b Ac), for all a,b,c € L.

Definition 1.1. [1] For a distributive lattice L, a function d : L — L is called a
derivation on L, if for all x,y € L:

(i) d(x Ay) = d(x) Ay = x Ad(y)
(ii) d(x Vy) =d(x) Vd(y).

2. Congruences and ideals in a distributive lattice with respect to a
derivation

By definition, we consider ker,d =d~!(I) = {x € L | d(x) € I} and (a)¢ =
{xeL|aAnxe€kerd} ={xeL|d(aAx) e I}. Both of them are ideals of the
lattice L.
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Now we introduce a binary relation on a distributive lattice with respect to
an ideal and a derivation.

Proposition 2.1. For an ideal I of L, a binary relation 6% defined as follow is a lattice
congruence.

x0y iff (x)f = (y)4

An element a € L is called a kernel element with respect to an ideal I, if
(a)? = ker,d. Let us denote the set of all kernel elements with respect to the

ideal I of L by K4.

Proposition 2.2. For a nontrivial ideal T of L, the distributive lattice L/0% is a
bounded lattice with
(i) J‘L/G? = kerld,

(ii) TL/G‘; = K4 whenever K4 # @.

Proposition 2.3. For a nontrivial ideal I of L, the congruence 07 is the greatest
congruence relation having kerrd as a whole class.

Now we investigate some conditions over ideals and derivations to get a
smallest congruence 6?. The smallest one infer that the quotient lattice L/ 9‘?
has the maximal cardinality.

Proposition 2.4. For an ideal I and a derivation d on L, 9?’1 - 9? .

Lemma 2.5. For ideals I C | and a derivation d on L, if there exists a derivation dq
on L such that ker;dy = ], then 69 C 9? and the equality holds if d = d.

In the rest of this section we investigate some relationships between prime
ideals and ideals of the form (x)’f. First note that, if I is a prime ideal, then so
is ker;d.

Lemma 2.6. (i) If I is a prime ideal of L, then ker;d = L or for each x ¢ kerjd,
I =kerid = (x)4.
(ii) If (x)4 is not a subset of prime ideal (y)?, then x Ay € ker/d.
(iii) If (x)9 # (y)? are prime ideals, then x Ay € ker/d.
Proposition 2.7. The quotient lattice L/69 = {ker,d, [a]e,{, [b]e?} such that for each
X € [a]G? and y € [b]e?, x Ay € kerid if and only if there exist prime ideals P, P, in
L in which Py U P, = L and Py N P, = keryd.
Theorem 2.8. Let I be an ideal of L and a € 1. The following assertions are equivalent:
(i) (a)? is a maximal element in the X.
(i) (a)4 is a prime ideal.
(iii) (a) is a kerd-minimal prime ideal.
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For a nontrivial ideal I of L, an ideal P is called I-minimal, if it is minimal
in the set of ideals containing I. From now on, we consider the set £ = {(x)? |
x € L\ keryd} which is a poset under the inclusion relations.

Lemma 2.9. In the following assertions we have, (i)=- (ii)=- (iii).
(i) The set X4 satisfies the descending chain condition with respect to inclusion.
(ii) L does not have an infinite M C L\ kerjd such that for each x,y € M,
x Ay € kerpd. (%)
(iii) The set 1 satisfies the ascending chain condition with respect to inclusion.

Lemma 2.10. Let L satisfies the condition (x), then L has only a finite number of
distinct kerd-minimal prime ideals of the form (a;)%(1 <i <mn). Also n-, (a;)4 =
kerd.

The following result is an immediate consequence of Lemma 2.10.

Theorem 2.11. If L is a distributive lattice with a bottom element | and satisfies the
condition (x) for ker | (id), then every minimal prime ideal of L is of the form (a)™,
for some a € L.

A special case of the previous theorem is the case where L is atomic with a
finite number of atoms(Inparticular L is a finite lattice).

3. when a quotient lattice is a Boolean algebra

In this section some necessary and sufficient conditions are derived for the
quotient algebra L /6 to become a Boolean algebra.

Theorem 3.1. Let L be a distributive lattice and 0 a lattice congruence on L. The
distributive lattice L/ is a Boolean algebra if and only if the following conditions
hold:

(i) There exists ag,by € L such that for each x € L, [aglg < [x]g < [bog, which
means that 1| ;9 = [aglg and T 1,9 = [bole.

(ii) For each x € L there exists y € L such that (x A y)0ag and (x V y)6by.

Theorem 3.2. Let I be a nontrivial ideal of L. Then L /6% is a Boolean algebra if and

only if for each x € L, there exists y € (x)4 such that x VV y € K¢.

Corollary 3.3. Let L/6¢ be a Boolean algebra. Then [x](;il = [y] o1 if and only if
1

x Ny €kerydand xVy € K9,

Proposition 3.4. (i) If I or kerd is a prime ideal of L, then L/ 9? is a Boolean algebra.
(ii) If each (x)% has a maximum element, then L/6% is a Boolean algebra.

Lemma 3.5. Let L be a Boolean algebra with a bottom element L and d a derivation
on L. Then ker(d) = 6.
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Theorem 3.6. Let I be an ideal of L and d a derivation on L. Then the following are
equivalent:

(i) 04 = V.

(ii) kerjd = L

(iil) For each x € L, I N [x|jep(q) is a singleton set.

Proposition 3.7. The Boolean algebra L/6% = 2 if and only if ker|d is a prime ideal
of L.

By the following operations, the set & = {(x)4 | x € L} is a bounded
distributive lattice. For each x,y € L, (x)4 V (y)? = (x Vy)¥ and (x)7 A (y)4 =
(x A y)’;. The bottom and the top elements in the lattice > are of the form,
Ly = (x)4 = L for each x € ker;d and Ty = (x)¢ = ker;d for each x € KY.
The map f : L — X defined by f(x) = (x)4 is a lattice epimorphism, in which
kerf = 64. Thus, by the Isomorphism Theorem, L/6% = %.

Lemma 3.8. If the quotient lattice L/0% is a Boolean algebra then for each x € L, the
set {(z)% | z € (x)%} has a maximum element.

Consider A4(L), the set of all ker;d-atoms of L and A%(a) = A%(L)N | a.

Theorem 3.9. Let L be a kerjd-atomic distributive lattice. The lattice L/ 9‘;1 is a
Boolean algebra if and only if for each x € L, there exists y € L such that A%(x)
and A%(y) are a partition of A%(L) and [y] o1 is a complement of [x]e? inL/69.

Theorem 3.10. If L/09 is a Boolean algebra, then the congruence 9 is the only
congruence relation having kerd as a whole class.

There is still an open question concerning 9?:
Is there a necessary and sufficient condition on an ideal I such that 0? is the
smallest congruence in which L/ G‘Ii is a Boolean algebra?
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Stanley’s Conjecture on the k-Cohen-Macaulay simplicial
complexes of codimension 3

SEYED MOHAMMAD AJDANT*

Abstract

Let A be a simplicial complex on vertex set [n]. It is shown that if A is k-Cohen—Macaulay
of codimension 3, then A is vertex decomposable. As a consequence we show that A is
partitionable and Stanley’s conjecture holds for K[A].

Keywords and phrases: Vertex decomposable, simplicial complex, Shellable.
2010 Mathematics subject classification: 13F20, 05E40, 13F55.

1. Introduction

Let A be a simplicial complex on vertex set [n] = {1,---,n},i.e. Aisa collection
of subsets of [1] with the the property that if F € A, then all subsets of F are
also in A. An element of A is called a face of A, and the maximal faces of A
under inclusion are called facets. We denote by F(A) the set of facets of A. The
dimension of a face F is defined as dimF = |F| — 1, where |F| is the number
of vertices of F. The dimension of the simplicial complex A is the maximum
dimension of its facets. A simplicial complex A is called pure if all facets of
A have the same dimension. Otherwise it is called non-pure. We denote the
simplicial complex A with facets F,...,F; by A = (Fy,..., F). A simplex is a
simplicial complex with only one facet.

For the simplicial complexes A1 and A, defined on disjoint vertex sets, the
joinof A and Ay is Ay x Ay ={FUG : Fe Ay, G € My}

For the face F in A, the link, deletion and star of F in A are respectively,
denoted by linkaF, A \ F and star,F and are defined by linkpaF = {G € A :
FNG=g,FUGeA}and A\F={G €A : FZG}andstarpF = (F) xlinksF.

Let R = K[x,...,x,] be the polynomial ring in n indeterminates over a field
K. To a given simplicial complex A on the vertex set [n], the Stanley—Reisner
ideal is the squarefree monomial ideal whose generators correspond to the
non-faces of A. we set:

XF = 1_[ Xi.

x;€F
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We define the facet ideal of A, denoted by I(A), to be the ideal of S generated by
{xp: F € F(A)}. The non-face ideal or the Stanley-Reisner ideal of A, denoted
by Iy, is the ideal of S generated by square-free monomials {xp: F &€ N (A)}.
Also we call K[A] := S/ I the Stanley-Reisner ring of A. We say the simplicial
complex A is Cohen-Macaulay if K[x1,...,x,]/Ip is Cohen-Macaulay. One
of interesting problems in combinatorial commutative algebra is the Stanley’s
conjectures. The Stanley’s conjectures are studied by many researchers. Let
R be a IN"- graded ring and M a Z"- graded R- module. Then Stanley [5]
conjectured that

depth (M) < sdepth (M)
He also conjectured in [6] that each Cohen-Macaulay simplicial complex is
partitionable. Herzog, Soleyman Jahan and Yassemi in [4] showed that the
conjecture about partitionability is a special case of the Stanley’s first conjec-
ture. Duval, Goeckner, Klivans and Martin in [3] construct a Cohen-Macaulay
complex that is not partitionable, thus disproving the partitionability conjec-
ture. Hachimori gived an open problem as following: Whether every two
dimensional Cohen-Macaulay simplicial complex is partitionable; see [8]
Ajdani and Soleyman Jahan in [1] proved the following result :

Theorem 1.1 ([1, Theorem 2.3]). If A is a Cohen-Macaulay simplicial complex of
codimension 2, then A is vertex decomposable.

In this paper we show that any k-Cohen-Macaulay simplicial complex of
codimension 3 is vertex decomposable. As a consequence we show that A is
partitionable and Stanley’s conjecture holds for K[A].

2. Main Results

As the main result of this section, it is shown that every k-Cohen-Macaulay
simplicial complexes of codimension 3 is vertex decomposable. For the proof
we need the following lemmas:

Lemma 2.1 ([7, Lemma 2.3]). Let A be a simplicial complex with vertex set V. Let
W C Vand let o be a face in A. If W N o = @, then link 5\ w{c} = linka{c} \ W.

Definition 2.2. Let K be a field. A simplicial complex A with vertex set V is called k-
Cohen-Macaulay of dimension r over K if for any subset W of V (including @), A\ W
is Cohen-Macaulay of dimension r over K.

Lemma 2.3. Let A be a simplicial complex with vertex set V. Then the following
conditions are equivalent :

(i) A is k-Cohen-Macaulay;

(i) forall o € A, link{c} is k-Cohen-Macaulay ;

PROOF. By lemma 2.1, for any subset W of V, we have link, w{c} =

linka{c} \ W. Since A\ W is Cohen-Macaulay so linkx{c} \ W is Cohen-
Macaulay. Therefore link s {c} is k-Cohen-Macaulay. m
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Now, we are ready that prove the main result of this section.

Theorem 2.4 ([2, Theorem 2.4]). Let A be a k-Cohen-Macaulay simplicial complex
of codimension 3 on vertex set [n]. Then A is vertex decomposable.

PROOF. We prove the theorem by induction on |[n]| the number of vertices of
A. If |[n]| = 0, then A = {} and it is vertex decomposable. Now Let |[n]| > 0
and d € [n] be a vertex of A. Then the simplicial complex link o {d} is a complex
on |[n]| — 1 vertex and its dimension is dimA — 1. By Lemma 2.3, link 5 {d} is
again k-Cohen-Macaulay of codimension 3. Therefore by induction hypothesis
link o {d} is vertex decomposable.

On the other hand since A is a k-Cohen-Macaulay, for each existing vertex
de A, A\ {d} is Cohen-Macaulay of codimension 2 and by Theorem 1.1,
A\ {d} is vertex decomposable. It is easy to see that no face of link{d} is
a facet of A\ {d}. Therefore any vertex d is a shedding vertex and A is vertex
decomposable. o

Stanley conjectured in [5] the upper bound for the depth of K[A] as the
following;:
depth (K[A]) < sdepth (K[A])

. Also we recall another conjecture of Stanley. Let A be again a simplicial
complex on {x1,...,x, } with facets G, ...,G;. The complex A is called parti-
tionable if there exists a partition A = Ule [F;, G;] where F; C G; are suitable
faces of A. Here the interval [F;, G;] is the set of faces {H € A: F; C H C G;}.
In [6] and [9] respectively Stanley conjectured each Cohen-Macaulay simpli-
cial complex is partitionable. This conjecture is a special case of the pre-
vious conjecture. Indeed, Herzog, Soleyman Jahan and Yassemi [4] proved
that for Cohen-Macaulay simplicial complex A on {xj,...,x,} we have that
depth (K[A]) < sdepth (K[A]) if and only if A is partitionable. Since each ver-
tex decomposable simplicial complex is shellable and each shellable complex
is partitionable. Then as a consequence of our results we obtain :

Corollary 2.5. If A is a k-Cohen-Macaulay simplicial complex of codimension 3, then
A is partitionable and Stanley’s conjecture holds for K[A].
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Some inequalities for the dimension of the second homology
of nilpotent Leibniz algebras

BEHROUZ EDALATZADEH"

Abstract

Let L be a finite dimensional nilpotent Leibniz algebra. In this paper, we present some upper
bounds for the dimension of the second homology of L, in terms of the dimension of derived
subalgebra, center and some special quotients of L.

Keywords and phrases: Leibniz algebra, second homology.
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1. Introduction

The notion of a Leibniz algebra first appeared under the name of a D-algebra,
introduced by A. Bloh as one of the generalizations of Lie algebras, in which
multiplication by an element is a derivation. Later, they were re-considered
by J.-L. Loday [6] and gain popularity under the name of Leibniz algebras.
A (right) Leibniz algebra is an [F-vector space equipped with a bilinear map
[-,—]: L x L — L, called the Leibniz multiplication, such that the Leibniz
identity
[ ly,2]] = [Poyl 2] =[x 2] ),

holds for all x,y,z € L. Note that if the bilinear mapping [—,—] is also
skew-symmetric, then L is a Lie algebra. The Leibniz homology (with trivial
coefficients) of a Leibniz algebra L, denoted by HL. (L), is the homology of the
complex (CL,(L) = L®",9,,1n > 0) such that the boundary map d,, : CL, (L) —
CL,_1(L) is defined as

(X1 ® - R@x,) = Z (_1)j(x1®"‘®[xi/xj]®"'®5f\j®"‘®xn)-

1<i<j<n

It can be readily checked that, similar to Chevalley-Eilenberg homology of a
Lie algebra, HLo(L) = IF,HL;(L) = L/L?. The first attempts for computing
and developing of the homology theory of Leibniz algebras was formulated
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by Loady in calculating Leibniz homologies of the Lie algebra g/(A), where A
is an associative algebra over a characteristic zero field.

We remark that if L is a Leibniz algebra of dimension, then the maximal
possible dimension for HL;(L) is (dim(L))? which is met if and only if L is
abelian. As an immediate consequence, one can verify that in the second step
we have dim(L?) 4+ dim(HLy(L)) < (dim(L))>.

Let 0 + A —+ K — L — 0 be the maximal stem extension of the finite
dimensional Leibniz algebra L, that is, an exact sequence such that A is a
central ideal of K that contained in K? and dim(K) is maximal amongst all
such extensions. Then Casas and Ladra in [2] showed that A = HL,(L).

Originally, the notion of non-abelian tensor product was introduced for
groups by Brown and Loday in 1984. In 1991, Ellis extended this concept to Lie
algebras. The non-abelian tensor and exterior product of Leibniz algebras was
found by Gnedbaye [5] and has been used by Donadze et al. [4] to define the
non-abelian exterior product. They proved that for a free Leibniz algebra F, we
have FAF = [F, F|. This implies that if 0 — R — F — L — 0 is an arbitrary free
presentation of L then HL,(L) = ([F,F] N R)/[R,F]. The last quotient algebra
is known as the Hopf-Schur multiplier of L.

The main goal of this paper is to present some inequalities for the dimen-
sion of the second homology of a finite dimensional nilpotent Leibniz algebra.

2. Main Results

We begin in this section by reminding the Ganea sequence for Leibniz
algebras. This sequence initially obtained in [3, Proposition 4] as apart of a ten
term exact sequence. Later in [1, Corollary 4.4] this sequence was described
in terms of the non-abelian tensor product of Leibniz algebras. This sequence
plays a key role in obtaining our next results.

Proposition 2.1. Let L be a Leibniz algebra and N be a central ideal of L. Then the
sequence

HL3(L) — HL3(L/N) — Coker(t) — HLy(L) — HLy(L/N)
—+N—=L/L> = L/(L2+N) =0,

is exact where the map T: N @ N — (L/L>® N) & (N® L/L?) is given by
T(a®b) = (@ ® b, —a ® b) where a denotes the image of a € N on L/L2.

Corollary 2.2. Let L be a finite dimensional Leibniz algebra and N be a central ideal
of L. Then

(i) dim(HLy(L)) 4+ dim(L?> N N) < 2dim(N)dim(L/L?) + dim(HLy(L/N)).

(ii) dim(HL (L)) +dim(L>NN) <2dim(N)dim(L/ (N + L?)) + 2dim(HLy(N))
+dim(HLy(L/N)).
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Loday in [7] established a Kiineth-type formula for homology of Leibniz
algebras. He proved that for Leibniz algebras Li,L, there is a canonical
isomorphism of graded vector spaces

HL,(Ly & Ly) = HL,(Ly) * HL,(Ly),

where * in this formula is a sort of non-commutative tensor product for graded
modules. As a special case

HLz(Ll S, Lz) = HLz(Ll) D HLz(Lz) D (HL1<L1> & HLl(Lz))
® (HLy(L2) ® HL1(L1)).

Now we are ready to state the main theorem of this paper. The proof of all
inequalities presented in the following theorem are based on induction on the
dimension of L or L2. Here, as an instance, we give the proof of the first part.

Theorem 2.3. Let L be an n-dimensional non-abelian nilpotent Leibniz algebra with
dim(L?) = m and dim(Z(L)/(Z(L) N L?)) = t. Then

(i) dim(HLy(L)) < (n —m) +m(2(n —m) —1).

(i) dim(HLp(L)) < (n+m —2)(n —m) + 1.

(iii) dim(HLy(L)) < (n — m)? +2(m — 1)(dim(L/Z(L)) — 1) + m.

(iv) dim(HLy(L)) < (n—m—t)(n+m—2)+t(n—m) —m+2.

PROOF. (i) We proceed by induction on the dimension of L. We don’t have any
non-abelian Leibniz algebra of dimension one and all non-abelian nilpotent
Leibniz algebra of dimension two are isomorphic to J; = (x,y : [x,x] = y).
The statement is trivial in this case, because dim(HL;(J;)) = 1. So suppose
that dim(L) > 2 and we may suppose that the statement holds for all Leibniz
algebras of dimension less than dim(L). Choose N C Z(L) N L? to be a one
dimensional ideal of L. Employing the induction hypothesis, we have

dim(HLy(L)) < 2dim(L/L?) + dim(HLy(L/N)) — 1
<2dim(L/L?) 4+ dim(HLy(L/L?))
+ (dim(L?) —1)(2dim(L/L?) — 1) — 1
=dim(HLy(L/L?)) + dim(L?)(2dim(L/L?) — 1).
which completes the proof. o

Corollary 2.4. Let L be a finite dimensional nilpotent Leibniz algebra. If L is not
abelian then

dim(HLy(L)) < (dim(L) —1)% +1,

and equality holds if and only if L = (x,y,z : [x,y] = —[y,x] = z) & A, for some
abelian Lie algebra A.
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Tensor product of crossed modules in Lie algebras

ARASH JAVAN*

Abstract

The notions of non-abelian tensor and exterior products in the category of Lie crossed modules
are introduced and investigated. Also, their relationships with the homology of Lie crossed
modules are established.

Keywords and phrases: Tensor product, exterior product, crossed module, lie algebra, crossed
square. .

2010 Mathematics subject classification: Primary: 17B05, 17B99; Secondary: 18G50, 18G99.

1. Introduction

All Lie algebras are considered over a fixed field IF and [—, —] denotes the Lie
bracket. In this article, using crossed squares in Lie algebras, we generalize
the definitions of non-abelian tensor and exterior products for two arbitrary
Lie crossed modules, similar to the works of Ellis [1] in the Lie algebra case.

Definition 1.1. Let M and P be two Lie algebras. By an action of P on M we
mean a F-bilinear map P x M —s M, (p,m) —sP m, satisfying (i) P#'Ilm =p
(P'm) =¥ (Pm),and(ii) P[m,m’'] = [Pm,m'] + [m,P m') for all m,m’' € M, p,p’ € P.
For example, if P is a subalgebra of some Lie algebra L and M is an ideal in L, then Lie
multiplication in L induces an action of P on M given by Pm = [p,m]. A Lie Crossed
module M = (M, P,0) is a Lie homomorphism d : M — P together with an action
of P on M such that (i) d(Pm) = [p,d(m)], (ii) *™m’ = [m,m’] for all m,m’ € M,
p € P. If M is an ideal of P, then (M, P,i) is a Lie crossed module, in which i is the
inclusion map. In This way, every Lie algebra P can be regard as Lie crossed module
in the two obvious ways: (0,P,i) or (P,P,id).

A morphism of Lie crossed modules (aq,a3) : (M,P,9) — (N, Q,0) is a pair of Lie
homomorphisms aq : M — N and ap : P — Q such that o o aqy = ap 0 0 and for all
pEP,meM,ar(Pm) =2P) a;(m).
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Definition 1.2. Let (M, P,d1) and (N, P,0;) be two Lie crossed modules. There are

actions of M on N and of N on M given by "n =1") 1 and "m =220") m. We take

M (and N ) to act on itself by Lie multiplication. The non-abelian tensor product

M ® N is defined in [1] as the Lie algebra generated by the symbols m @ n for m € M,

n € N. Let MON be the submodule of M @ N generated by the elements m & n with

d(m) = o(n). One easily gets that MON lies in the centre of M @ N . Following G.

o . . o (M®N)

Ellis in [1], the non-abelian exterior product M A\ N is defined to be (MoN) *

Proposition 1.3. With the above assumptions and notations, we have

i) Themaps A : M®N — P, m @ n+—— [d1(m),d(n)] are Lie crossed modules,
in which the action of P on M ® N is given by the equation ¥ (m @ n) =P
mn+mPn,and M and N act on M ® N via 01 and d,. Furthermore,
the results holds with ® replaced by A.

ii)  The functional homomorphism 01 ® idy : M ® N — P ® N, together with the
action of P® N on M ® N induced by the map A}, : P& N — P, is a Lie
crossed module.

iii)  There is an action of P on the semidirect sum M > N defined by the formula
P(m,n) = (Pm}Fn).

iv) The map B: M <N — P defined by B(m,n) = 01(m) + 0x(n) is a Lie
homomorphism.

v) ForanymeM ,neNand x e M®N, "x =m @ An(x) and "x =
—Ap(x) @n.

vi) Foranyx,y € M@ N, d1Ap(x) @ AN(y) = —01Am(y) @ An(x).

Definition 1.4. A crossed square in Lie algebras is a triple ((M, P,01),(T,L,9),
(A1,A2)) with properties d o A1 = A 0 01 of Lie endowed with actions of L on M, T, P
(and hence actions of M,P via 0 and of P on M, T via Ay) and a bilinear map
hy : t X P — M such that the following axioms hold:

1)  Aq,0q preserve the actions of L.

2)  9,Ap,Ap 001 = d o Aq are Lie crossed modules,

3) Mh(tp) =—"toik(tp) ="p(M(m),p) = —Pm,mn (£,01(m)) ='m

4 m((t]p) =m(t" p) —m(t p), htlpp]) =mtp) —m(Lp),
5 'm(t,p)=m(tp)+m(t'p)

forallt,t' € T, p,p’ € P,me M, 1 € L. It is obvious that for any ideal crossed submod-
ule (M, P,01) of a Lie crossed module (T, L,), the square ((M,P,91),(T,L,9), (i1,i2))
with hy(t,p) = —Pt is a crossed square, where iy,iy are the inclusion maps.

Lemma 1.5. Consider the crossed square ((M, P,01),(T,L,9), (Al,Az)) of Lie alge-
bras. Then

i) The maps Ay , 01 are Lie crossed modules.

ii)  (kerAq,kerAy,01)is a central crossed submodule of (M, P,91).

iii) Foranyte Tandp,p’ € P,V hy(t,p) = hi(Pt,p").
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Definition 1.6. Consider the crossed squares ((M,P,01),(T,L,9),(A1,A2)) and
((N,Q,02),(T,L,9), (p1,12)) together with bilinear functions hy : T x P — M
and hy : T x Q — N, respectively. Plainly, both Lie algebras appeared in the above
crossed squares act on each other. Then we can form the non-abelian tensor products
M®N, M®Q, P® N and P ® Q. Using the Lie crossed modules

AM:MON—M, ANy MRQ—M,Ap:PRQ—P
AN:M®N—>N,A}\,:P®N—>N,/\Q:P®QHQ

We now construct the semidirect sum (M ® Q) = (P ® N) and define the maps

a:MAIN—(M®RQ)=(P®N), (m@n)r— (m®dy(n),—a1(m)@n)
B:(M®Q)=(PRN)—P®Q, (mxq,p@n)+— 0d1(m)®@q+p @ da(n).

In the remainder of this paper, we will always assume that M = (M, P,d;),
N = (N,Q,02) and T = (T,L,0) are Lie crossed modules which get from
crossed squares in definition 1.6.

2. Main Results
Using these assumptions, we have the following consequences.

Lemma 2.1. i) The Lie crossed modules 0 ® idy, 01 ® idg and id & 9y preserve
the actions of P and Q.
ii) Themaps py:PON-—M p@n+— —hy(u1(n),p)
Py M®Q—N m® q— hy(A1(m),q)
iii)  There is an action of P®@ Q on (M ® Q) = (P ® N) by ¥(xq,x2) = (Yx1,Y x2),
forally € P® Qand (x1,x2) € ( M® Q)= (P®N).

Lemma 2.2. If hy(p1(n),p) = Op and hy(A1(m),q) = Oy for all m € M, n €
N, p € P, g € q, then the square ((M & n,P & Q,01 & 9,),(T,L,9),(p1,02))
with h(t,(p,q)) = (h1(t,p),h2(t,q)) is a crossed square, where p1 and p, are Lie
homomorphisms defined by p1(m,n) = Ay(m) + py(n) and p2(p,q) = M(p) +
#1(q), and L acts on M & N and P & Q with componentwise action.

Proposition 2.3. i) The map B is a Lie homomorphism such that B(Ima) = 0.

ii)  The image of the map « is an ideal of (M ® Q) = (P ® N). put cokerw to be the
quotient Lie algebra of (M ® Q) = (P ® N) by Ima.

iii) Themaps — ppp:cokera — M, (x1,x2) + Ima — Al (x1) + ph,(x2)

uN i cokera — N, (x1,x2) + Ima — ply, (1) + Al (x2) are

Lie crossed modules, where 'y, and p'y, are defined in Lemma 2.1 (ii).

iv)  The homomorphism B : cokera. — P ® Q induced by B, together with the action
induced by Lemma 2.1 (iii), is a Lie crossed module.

v) If I is a subalgebra of cokera generated by the elements (m ® q,p @ n +
d1(m’) @ n') + Ima, where Ay (m) = py(n), A (m') = puy(n’) and Ay(p) =
12(q), then (I, PuQ, B) is an ideal crossed submodule of (cokera, P ® Q, B).
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In this part, using Proposition 2.3, we define the tensor and exterior prod-
ucts of Lie crossed modules and give some fundamental properties of them.

Definition 2.4. The non-abelian tensor and exterior products of Lie crossed modules
M and N are defined, respectively, as

M ® N = (cokera, P ® Q,B),

M®N  (cokera,P ® Q,p)
MON (I1,PoQ,B)
where MON is the Lie crossed module (I, P0Q,¢) introduced in Proposition 2.3 .

cokerwo

= ( ; ,PNQ,B)

MAN=

Proposition 2.5. i) There are two Lie crossed module morphisms (pp, Ap) : M ®
N — Mand (un,Ag) : M ®N — N, where jup, pn are Lie crossed modules
defined in Proposition 2.3 (iii).

ii)  The Lie crossed modules ker(jup1, Ap) and ker(pn,Ag) are abelian.

iii)  If 91 and 9, are onto, then the squares ((cokera, P® Q,B), (M, P,01), (tim, Ap))
and ((cokera,P® Q,B),(N,Q,02), (1N, Aq)) together with bilinear functions
h'(m,p®q) = (—Pm®q,p @ hy(A(m),q)) + Ima and hy'(n,p @ q) =
(h(p1(n),p) ® q,—p @1 n) + Ima, respectively, are crossed squares.

Lemma 2.6. Suppose that ((M,P,d1),(T,L,9),(A1,A2)), ((N,Q,9,),(T,L,9),

(p1,12)) and ((K,R,03),(T,L,9),(v1,v2)) are crossed squares. Also, suppose that

D (i (n,p)) = 0 and hp(Ay(m), ) = 0,

b) m"r=m@lr=0pgrandn " r=n &P r=0NgRr,

c) p®Tk=0pgkand q ¥ k= 0ggk,

forallme M, ne N,keK,peP,qe Qandr € R.

Then assuming M = (M,P,01), N = (N,Q,0,) and K = (K,R,d3), there is an

isomorphism M ®N) @ K — (M @ K) @ (N ® K).
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Abstract

We introduce the notion of non-abelian tensor product of a given precrossed module by one of
its ideals. We use this concept to describe the classical Stallings-Stammbach sequence for the
schur multiplier of precrossed modules in term of the non-abelian tensor product.
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1. Introduction

Throughout this paper, and are the categories of Lie algebras and vector
spaces over a fixed field F, respectively and as usual [—,—] denotes the Lie
algebra brackets. Non-abelin tensor product is a powerful tool in the study
of extension theory of groups and Lie algebras. Precrossed modules as a
natural generalization of crossed modules in their own right are subject of
interest. Recently, Casas et. al in [2] introduced the actor of precrossed module
and used it to derive the basic notions of action, center, semi-direct product,
derivation, commutator and abelian precrossed module in Lie algebras. The
main goal of the present paper is to introduce the non-abelian tensor product
of a precrossed module and a precrossed ideal.

Definition 1.1. Let M, L be two Lie algebras. A triple (M,L,0) is a precrossed
module of Lie algebras whenever d: M — P is a Lie homomorphism and there is
a (left) Lie action of L on M denoted by 'm for all | € L and m € M, such that
o( 'm) = [1,0(m)). In addition, d is called a crossed module if  satisfies the Peiffer’s
identity, A(m) ! — [m,m'] for all m,m" € M.

A morphism (f1, f2): (My,L1,01) — (Ma, Ly, 92) of precrossed modules is a pair of
Lie algebra homorphisms f1: My — My and fo: Ly — Ly such that f,01 = 02f;
and the morphisms preserve the actions, that is, fi( 'm) = £2U)f(m) for all I €
Li,m € M. Taking objects and morphisms as defined above, we obtain the category
of precrossed modules in Lie algebras. One also directly check that XLie, the category
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of crossed modules of Lie algebras, is a full Birkhoff subcategory of . The category of
Lie algebras can be regarded as a subcategory of the category of precrossed modules, by
the inclusion functor i : Lie — PXLie with i(L) = (0,L,0). The functor i has a right
adjoint « : PXLie — Lie, x(M,L,9) = L.

Definition 1.2. Let (N,K,d) be an ideal precrossed module of a precrossed module
(M,L,9). We define the commutator precrossed module v,((N,K,d),(M,L,9)) =
[(N,K,9),(M,L,9)] to be the ideal ([N, M] + [L,N] + [K,M], [K,L],0) where

[L,N]=('n:leLneN) , [K,M]=(*m:kecKmeM)

In particular, the commutator precrossed submodule (M, L,d) = [(M,L,9),

(M,L,9)] of (M, L,9) is the ideal ([M,M] + [L,M],[L,L],9). We say that (N,K,9)
is central if v2((N,K,9),(M,L,0)) = 0. A precrossed module (M,L,0) is called
abelian if yo(M,L,0) = 0. In fact, (M,L,0) is abelian if and only if M and L
are abelian Lie algebras and L acts trivially on M. We will denote by XVect, the
full-Birkhoff subcategory of abelian percrossed modules. The abelianization func-
tor Ab which assigns to (M,L,d) the factor precrossed module Ab(M,L,0) =
(M,L,9)/v2(M,L,0), is left adjoint to the inclusion functor from XVect to .

2. Main Results

Let L be a Lie algebra and N an ideal of L. The non-abelian tensor product
L ® N is the Lie algebra generated by symbols I @ n (I € L,n € N) with the
following defining relations

HAlen)=AMen=1®An, (i) [,I'|en=1x ([I',n]) —1"® ([L,n]),
(i) I+ @on=lon+1'®n, @ nn]|=(n1])on—([nl]) o,
lo(n+n)=len+len, (iv)[(Ien),(l'@n)]=—(nI) ("]

forall A € A, LI € L and n,n’ € N. Furthermore, the non-abelian exterior
product L A N is the Lie algebra generated by the elements I A n subject to the
relations (i)-(iv) besides the relation n A n =0, for all n € N. There is an action
of Lon L ® N defined by '(Iy An)=[I,j]]An+1A[lL,n] , LLe€LneN.
There is a commutator homomorphism [—,—] : L A N — L which assigns any
generator I A n to [I,n] and also (L A N,L,[—,—]) is a crossed module. It is an
important note that there is an isomorphism

(-] [

Hy(L)=ker(LAL 5'L) , Hy(L,N)=zker(LAN N ), (1)

where Hy(L),Hy(L,N) are the second Cartan-Eilenberg homology of L and
the second relative homology of (L, N), respectively. It is useful note that if we
define the action of L on L A N by

Nhan)= (L) An+L A[Ln) , LhLeLneN
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then (LA N,L,[—,—]) is a crossed module.

In this part, we were greatly inspired by the works of D. Arias and M.
Ladra [1], to define the non-abelian tensor product for precrossed modules and
investigate the parallel applications to homology theory of precrossed mod-
ules. Recall that for a given precrossed module of Lie algebras (M,L,9), we
can form the semidirect sum M > L. Moreover, there are Lie homomorphisms
T,0: M~ L — Ldefinedby t(m,l)=1 , o(mil)=0(m)+] meM,leL.
Suppose (N, K,d) is a precrossed ideal of (M, L,d). The homomorphism 7 in-
duces the Lie homomrphisma =1t ® T

o (NxK)@(MxL)—)K@L

which is defined on generators as a((1n,k) ® (m,1)) = k ® I. The restriction of
o ® o to kera defines the homomorphism B : kera — K ® L with B((n,k) ®
(m,1)) = ((n) +k) @ (a(m) +1).

Proposition 2.1. With the above assumptions and notations, we have (kera,K @
L,B) is a precrossed module.

Definition 2.2. Let (M, L,9) be a precrossed module with a precrossed ideal (N, K, 9).
The precrossed module (kera, K @ L, B) will be called the non-abelian tensor product
of (M,L,0) and (N,K,9) and denoted by (M,L,9) ® (N,K,9).

In a similar way, &’: (N = K) A (M = L) — K A L defined by &'((n,k) A
(m,1)) =k Alis a Lie homomorphism and ': kera’ — K ® L with p/((n,k) A
(m,1)) = (d(n) + k) A (d(m) + 1) defines a precrossed module. We denote by
(M,L,0) A (N,K,9) the precrossed module (kera’, K A L, ') and call it the non-
abelian exterior product. It is obvious that the mappings yy : kera’ — N and
ug :KAL—K

un (k) A (mD)=[n,m] — 'n+*m , ux(kAD) =[]

which are the restrictions of the commutator maps will being Lie homomor-
phisms. It can be easily observed that (yn, pk) is a morphism of precrossed
modules. We should note that Im(un, ux) = v2((N,K,9),(M,L,9)).

Proposition 2.3. Suppose (R1,R2,6) = (Fy,F,6) » (M, L,9) is a projective presen-
tation of the precrossed module (M, L,d). Then there is an isomorphism of precrossed

modules (M,L,d) A (M,L,9) = VZ(R;’,Z}{(ZF/B’)F,Z(QFZ/(S). In particular Hy(M,L,d) =
)
(

ker((M,L,3) A (M, L,3) "4 (M, L,3)).
Using the equations (1) and (M,L,9) A (M,L,9) = (M AN(Mx=L),LAL,A
o) we can infer the following corollary.

Corollary 2.4. Let (M, L,0) be a precrossed module. Then

x(Hap (M, L,3)) =ker(Ha(M=L) ™25 Hy(L)).
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Example 2.5. (i) Let L be a Lie algebra and regard L as the precrossed module
(L,L,id). By (M,L,0) A (M,L,0) = (M A (Mx=L),LALJAC), (LL,id) A
(L,L,id)= (LA (L=L),LAL,id Ac). Thereisanatural isomorphism L& L — L= L
which sends (x,y) to (x —y,y). Hence

LA(LxL)=LA(L&L)=(LAL) & (L/L>®L/L?).

Applying Proposition 2.3, and using an easy diagram chasing we conclude that there
exist an isomorphism of abelian precrossed modules Hp (L, L,id) = (Ho(L) @ (L/L?> ®
L/L?),Hy(L),<id,0>).

(ii) For arbitrary Lie algebra L, consider the precrossed modules (L,0,0) and (0,L,0).
Then (L,0,0) A (L,0,0) = (LA L0,0) , (0,L,0) A (0,L,0) = (0,L A L,0).
Consequently, H»(L,0,0) = (Hy(L),0,0),H(0,L,0) = (0,H>(L),0).

we give a version of the classical Stallings-Stammbach sequence for homol-
ogy of groups and Lie algebras.

Proposition 2.6 (Five term exact sequence). Let (N,K,0) > (M,L,0) » (Q,S,u)
be an exact sequence of precrossed modules. There exists a natural exact sequence of
abelian precrossed modules

M(M,L,3) — M(Q,5,1) — (N,K,3)/72((N,K,),(M,L,3))
— (MIL/a)/’)’Z(M/L/a) > (Q/S/V)/’)’Z(Q/S’V)
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Abstract

Let S = K[x1,...,X,] be a polynomial ring over a field K and m = (xy,...,x,) be the unique
homogeneous maximal ideal. Let I C S be a monomial ideal with a linear resolution and Im
be a polymatroidal ideal. We prove that if either Im is polymatroidal with strong exchange
property, or I is a monomial ideal in at most 4 variables, then I is polymatroidal.

Keywords and phrases: polymatroidal ideals, monomial localization, linear quotients, linear
resolution.
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1. Introduction

Let S = K][xq,..., Xy be the polynomial ring over a field K and m = (x1,...,x,)
denotes the unique homogeneous maximal ideal. Let I C S be a monomial
ideal and G(I) be the unique minimal set of monomial generators of I.

The monomial localization of a monomial ideal I C S with respect to
a monomial prime ideal P is the monomial ideal I(P) which is obtained
from I by substituting the variables x; ¢ P by 1. Observe that I(P) is the
unique monomial ideal with the property that I(P)Sp = ISp. The monomial
localization I(P) can also be described as the saturation I : (TT,.¢p x;)*. When
I is a squarefree monomial ideal, we see that I(P) = I : u where u = [T 4p x;.
Note that I(P) is a monomial ideal in S(P), where S(P) is the polynomial ring
in the variables which generate P.

It has been observed that a monomial localization of a polymatroidal is
again polymatroidal ([4, Corollary 3.2]).

The author and Herzog conjectured that a monomial ideal I is polyma-
troidal if and only if I(P) has a linear resolution for all monomial prime ideals
P ([1, Conjecture 2.9]). They gave an affirmative answer to the conjecture in
the following cases: 1) I is generated in degree 2; 2) I contains at least n — 1
pure powers; 3) I is monomial ideal in at most three variables; 4) I has no
embedded prime ideal and either |Ass(S/I)| < 3 or height(I) =n — 1.
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Now, we consider the following statement: (x) Let I be a monomial ideal
with linear resolution such that Im is polymatroidal. Then I is polymatroidal.

Observe that () holds if Bandari-Herzog’s conjecture is satisfied, because
I(P) = (Im)(P) forall P # m.

In this paper, we give a positive answer to the statement (x) in the fol-
lowing cases: 1) Im is polymatroidal with strong exchange property; 2) I is a
monomial ideal in at most 4 variables.

2. Main Results

Definition 2.1. Let I C S be a monomial ideal. We say that I has a d-linear resolution,
if I has the following minimal graded free resolution:

0—>S"M(—(d+t)— - = S"(—-(d+1i)) —
St (—(d+(i—-1) = =88 (=(d+1)) = " (-d) - 1—0

Lemma 2.2. ([1, Page 760]) Let I C S = K|[x1,...,x,| be a monomial ideal and
m = (x1,...,Xn). If I has a linear resolution, then I = Im: m.

Definition 2.3. Let I C S be a monomial ideal. We say that I has linear quotients,
if there exists an order uy,...,u, of G(I) such that for j =2,...,r, the minimal
generators of the colon ideal (uy,...,u;_1) : u;j are variables.

Definition 2.4. Let I C S be a monomial ideal generated in a single degree. The ideal
L is polymatroidal if for any two elements u,v € G(I) such that deg, (u) > deg, (v)

there exists an index j with deng(u) < deng (v) such that xj(u/x;) € 1.

In the case that the polymatroidal ideal I is squarefree, it is called matroidal.

Any polymatroidal ideal I has linear quotients ([5, Lemma 1.3] ). Then
since I is generated in a single degree, it follows that I has a linear resolution
([2, Lemma 4.1]).

The author and Herzog conjectured that a monomial ideal I is polyma-
troidal if and only if all monomial localizations of I have a linear resolution. If
the conjecture is satisfied, then the following statement holds:

(*) Let I be a monomial ideal with linear resolution such that I'm is poly-
matroidal. Then I is polymatroidal.

The following example shows that the linear resolution condition of the
statement (x) cannot be weakened.

Example 2.5. The ideal I = (x3,x1x2,%3,x2%3) C S = K([x1, %2, x3] is generated in
a single degree, but it does not have a linear resolution. On the other hand Im is
polymatroidal, but I is not.

Definition 2.6. Let I C S be a monomial ideal. We say that I satisfies the strong
exchange property if I is generated in a single degree, and for all u,v € G(I) and for
all i, j with deg, (u) > deg, (v) and deng(u) < deng(v), one has xj(u/x;) € L.
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Now, we show that () holds if I'm is a polymatroidal with strong exchange
property.
Proposition 2.7. Let I C S be a monomial ideal with a linear resolution and Im be

polymatroidal with strong exchange property. Then I is polymatroidal with strong
exchange property.

PROOF. Let u,v € G(I) with deg, (1) > deg, (v) and deng(u) < deng(v). So
uxy,vxy € Im for each k =1,...,n. Now, since deg, (uxy) > deg, (vx;) and
deng(uxk) < deng (vxy), it follows that x;(ux;/x;) € Im for each k =1,...,n.

Hence x;(u/x;)m C Im. Since I has a linear resolution, it follows by Lemma
2.2, xj(u/x;) € L. i

Lemma 2.8. ([3, Lemma 3.1]) Let I C S be a polymatroidal ideal. Then for any
monomials u = x7* -+ - x3" and v = xbroxbnin G(I) and for each i with a; < b;, one
has j with a; > bj such that x;(u/x;) € G(I).

Lemma2.9. Let I C S=K|xy,..., x| be a monomial ideal with assumption I = Im :

m. Let u € G(I) and Im be a polymatroidal ideal. If for 1 <i#j<mn, (u/x;)x? € Im,
then (u/xj)x; € I.

PROOF. Since I = I'm :m, it is enough to show that (ux;/x;)m C Im. We
have (ux;/xj)x; = ux; € Im and (u/x]-)xl.2 € Im. Now, let k #i,j. Then with
considering Lemma 2.8 for monomials (u/xj)x? € Im and ux; € Im, we have
(ux;/x;)x; € Im. i

Finally, we are ready to prove that (*) holds for monomial ideals in at most
4 variables.

Proposition 2.10. Let I C S = K[xy,...,X,] be a monomial ideal with n < 4. Let I
has a linear resolution and Im be polymatroidal. Then I is polymatroidal.

PROOF. We have already noted that the claim is true for n < 3. Now, let n = 4.
Since I has a linear resolution, it follows by Lemma 2.2 that [ = Im: m. Let
deg, (1) > deg, (v), so there exists an index j with deng(u) < degx/, (v). For

convenience, we assume that j = 2. So deg, (1) < deg,, (v). Now, we consider
the following cases:

Case 1: deg,. (u) < deg, (v) and deg, (u) < deg, (v). With considering
Lemma 2.8 for ux, and vxp, we have (uxp/x1)x, € Im. So by Lemma 2.9, it

follows that (u/x1)x, € I.

Case 2: deg, (u) > deg, (v) and deg, (u) > deg, (v). With considering
exchange property between ux; and vx,, we have (ux,/x1)x; € Im. So Lemma
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2.9, implies that (u/x1)xp € 1.

Case 3: deg,.(u) < deg,,(v) and deg, (u) > deg, (v). With considering
exchange property between ux, and vxy, it follows that either (ux4/x1)x € Im
or (uxy/x1)x3 € Im.

- Assume (ux4/x7)x2 € Im. With considering Lemma 2.8 for ux; and vxy,
we have either ux% /x1 € Im, so there is nothing to prove, or ux% /x4 € Im. Now
with comparing (ux4/x1)xp and ux% /x4, we have ux% /x1 € Im, which implies
that (1/x1)x; € L.

- Assume (ux4/x7)x3 € Im. With considering Lemma 2.8 for ux3 and vxs,
we have either ux3/x; € Im, so there is nothing to prove, or ux3 /x4 € Im. Now
with comparing (ux4/x1)x3 and ux% /x4, we have ux% /x1 € Im, which implies
that (u/x1)x3 € 1.

Case 4: deg, (u) > deg,, (v) and deg, (u) < deg, (v). This follows by a
similar argument of case (3). m]
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Cofiniteness and Artinianness of generalized local
cohomology modules

F. VAHDANIPOUR*

Abstract

Let R be a commutative Noetherian ring and I C | be ideals of R. Let M and N be finitely
generated R-modules such that pd (M) < co. The notion §;(M, N) is the greatest integer i
such that H}(M, N) is not Artinian and J-cofinite. In this paper, we give a bound for §;(M, N)
by using q;(M, N). We show that q;(M, N) < q;(M, N) + c¢dj(M, N/IN).

Keywords and phrases: cofinite module, cohomological dimension, generalized local cohomology
module, Noetherian ring..
2010 Mathematics subject classification: Primary: 13D45; Secondary: 14B15, 13E05.

1. Introduction

Throughout this paper, Let R denote a commutative Noetherian ring and I
be an ideal of R. Let M and N be two finitely generated R-modules. The
notion of generalized local cohomology was introduced by Herzog in [4]. The
ith generalized local cohomology modules of M and N with respect to I is
defined as _ '
Hi(M,N) = linExtk(M/I”M,N).
n>1
It is clear that Hf(R, N) is just the ordinary local cohomology module

Hi(N). Generalized local cohomology modules have been studied by several
authors (see for example [5], [7]).

Hartshom in [3] defined an R-module M to be I-cofinite, if Supp(M) C
V(I) and Extk (R/I, M) is finitely generated module for all i > 0.

Recall that for an R-module M, the notion cd(I, M), the cohomological
dimension of M with respect to I, is defined as:

cd(I, M) = sup{i € Ny : Hi(M) # 0}

* speaker
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and the notion q(I, M), which for first time was introduced by Hartshorne, is

defined as:

q(I, M) = sup{i € Ny : Hi(M) is not Artinian},
with the usual convention that the supremum of the empty set of integers is

interpreted as —oo.

Amjadi and Naghipour in [1] defined for R-modules M and N, the notion
cd;(M, N), the cohomological dimension of M and N with respect to I, as:

cd;(M,N) = sup{i € Ny : Hi(M,N) #0}.
Vahdanipour et al. in [6], introduced the notion q;(M, N) as:
q;(M,N) = sup{i € No : H}(M, N) is not Artinian J-cofinite},
if there exist such i’s and —oo otherwise.
In this paper, we give a bound for q;(M, N).
The main aim of this paper is to prove the following result:

Theorem 1.1. Let R be a Noetherian ring, I C ] be ideals of R and M, N be finitely
generated R-modules such that pdg (M) < oo. Then

qj(M,N) < q1(M,N) + cd;(M, N/IN).

For any ideal I of R, we denote {p € SpecR : p D I} by V(I). We refer the
reader to [2] for any unexplained notion and terminology.

2. Main Results

The main purpose of this section is to prove Theorem 1.1. But first of all we
need the following auxiliary lemmas.

Lemma 2.1. Let R be a Noetherian ring, I and | be ideals of R such that I C ]. Let
M be finitely generated and N be an arbitrary module. Then

(a) FI(M,N) EHOIHR(M,FI(N)),

(b) T;(M,N)=T;(M,T[(N)).

O

Lemma 2.2. Let R be a Noetherian ring, I and | be ideals of R and M, N be finitely
generated R-modules such that H}(M, Hi(N)) is Artinian and J-cofinite, for each
i > 0andeach j > 0. Then H}(M, N) is also Artinian and J-cofinite, for each i > 0.

O
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Lemma 2.3. Let R be a Noetherian ring, I C | be ideals of a Noetherian ring R and
M, N be finitely generated R-modules. If §;(M, N) > 0, then ;(M,N) > 0.

O

Lemma 2.4. Let R be a Noetherian ring and I C | be ideals of R. Let M and N be
fini;el% generated R-modules. If (M, N) > 0, then §;(M, @fig’N) Hi(N)) >0
such that

a;(M, &8N Hj(N)) = Sup{q; (M, Hj(N)) : i € No}.

O

Lemma 2.5. Let R be a Notherian ring, I be ideal of R and M, N be finitely
generated R-modules such that pdg(M) < oo and SuppL C SuppN. Then
qr(M, L) < qr(M, N).

o
The following proposition plays an important role in the proof of Theorem
27.

Proposition 2.6. Let R be a Notherian ring, I C | be ideals of R and M, N be finitely
generated R-modules such that pdg (M) < co. Then

4 (M, N) < q(M,N) +q;(M, &30N Hi(N)).

Now we are ready to state and prove the main result.

Theorem 2.7. Let R be a Noetherian ring, I C | be ideals of R and M, N be finitely
generated R-modules such that pdg (M) < co. Then

q](M,N) < qI(M, N) + Cd](M,N/IN).
PROOF. Assume that ;(M, N) > 0. Then by using Proposition 2.6, it follows
that

_ ~ - cd(I, i
q(M,N) < §(M,N) + (M, &N Hi(N)).

Set k := q;(M, &{o("N Hi(N)). Since
47(M, ®iz0H](N)) < edj(M, ®iz0H](N)),
it follows that cd; (M, ®;>0H!(N)) > k which implies that

d(I,N 1
Hf(M, &8N H(N)) # 0.

Therefore, there exists a finitely generated submodule L of the R-module

@fgg’N) Hi(N), such that H’f (M, L) # 0 concequently

k < cdj(M,L). 1)
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Since
d(LN) i
Supp L C Supp(@5ai™ Hi(N))
C Supp(N/IN),
it follows from [1, Theorem B] that
Cd](M,L) SCd](M,N/IN) (2)
Then by relations (1) and (2) we have
qj(M,N) < qi(M,N) +k
[(M, N) + Cd](M, L)
qr(M,N) 4 cdj(M,N/IN).

VANVAN!
o

So, the assertion holds. O
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Groups which do not have four irreducible characters of
degrees divisible by a prime p

FEREYDOON ALIZADEH, HOUSHANG BEHRAVESH, MEHDI GHAFFARZADEH and
MOHSEN GHASEMI*

Abstract

Given a finite group G, we say that G has property P, if for every prime integer p, G has at most
n — 1irreducible characters whose degrees are multiples of p. In this paper, we classify all finite
groups that have property Ps. We show that the groups satisfying property Py are exactly the
finite groups with at most three nonlinear irreducible characters, one solvable group of order
168, SL2(3), A5, 55, PSL2(7) and A6.

Keywords and phrases: Finite group; Prime divisors; Character graph. .
2010 Mathematics subject classification: Primary: 43A20; Secondary: 46H25.

1. Introduction

Throughout this paper, G will be a finite group, Irr(G) will be the set of
irreducible complex characters of G and cd(G) = {x(1) | x € Irr(G)}. We
denote by Irr,;(G) the set of nonlinear irreducible characters of G. We say
that a group G satisfies property P, if for every prime integer p, G has at most
n — 1 irreducible characters whose degrees are multiples of p.

A useful way to study the character set Irr(G) of a finite group G is to attach
a graph structure on Irr,,; (G). Wr propose the following question:

Question 1. What can be said about the structure of finite groups that have property
Pn?

Clearly, if a finite group G has property Py, then it will also satisfy property
Pyt1. Our main goal in this paper is to classify the finite groups that have
property Pj.

Theorem 1.1. Let G be a finite group. Then G has property Py if and only if one of
the followings hold:
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(i) [Trr, (G)| <3.

(ii) G is the semidirect product of an elementary abelian group E,s by a Frobenius
group of order 21.

(iii) G is isomorphic to one of the groups SL,(3), As, S5, PSLy(7) or As.

In addition, another related question has been studied by Benjamin in [1]
and Ghaffarzadeh et al. in [3], respectively, for solvable and nonsolvable
groups, in which instead of irreducible characters, the degrees of irreducible
characters are considered. In fact, in the papers above, it is said that a group G
has property Py, if every set of n distinct elements of cd(G) is setwise relatively
prime. In [1], an upper bound is obtained for |cd(G)| when G is a nonabelian
solvable group that satisfies property P;, and in [3], it is shown that if G is a
nonsolvable group satisfying property P;, then |cd(G)| < 8.

Here, we introduce some more notation. A Frobenius group with a com-
plement H and the kernel N is denoted by (H,N). If G is a group, N <G
and 7 € Irr(N), the inertia group of T in G is denoted by I;(7). We write
Irr(G | T) for the set of irreducible constituents of T and ¢d(G | T) = {x(1) |
x € Irr(G | 7)}. We shall write d(G | T) = (ag - do,a1 - dy,-- - ,a¢ - d¢) to denote
that cd(G | T) = {do,d1, -~ ,d¢}, where dy,dy, - - - ,d; are distinct and Irr(G | 7)
contains exactly a; characters of degree d;, i € {0,1,---,t}. We also define
d(G) as above, in which we place Irr(G) and cd(G) instead of Irr(G | T) and
cd(G | 7), respectively, then |G| = agd3 + a1d? + - - - + a;d2.

Finally, we will frequently make use of the following results in this paper.
Let N<G and fix T € Irr(N). If T € Irr(N) is G-invariant, we have two
cases to consider. First that T extends to G, then Gallagher’s theorem [4,
Corollary 6.17] gives a description of Irr(G | 7). In particular, the characters
inIrr(G | 7) are in bijection with the characters in Irr(G/N). Next we consider
the case that T does not extend to G. In this case, to determine the set
Irr(G | T), one needs to use projective representations (see [4, Chapter 11]).
In particular, we can find Schur representation group I' for G/N. This implies
that I" has a central subgroup A so that I'/A = G/N, A is isomorphic to the
Schur multiplier for G/N, and A C I". By [4, Theorem 11.28]), there exists a
character w € Irr(A) so that the characters in Irr(G | T) are in bijection with the
characters in Irr(T' | «). In particular, cd(G | 7) = {t(1)a|a € cd(T | «)}. The
Atlas [2], provides the character tables for the Schur representation groups
of the simple groups that it includes. When 7 is not G-invariant, we apply
Clifford’s correspondence [4, Theorem 6.11] for a description of the elements
of Irr (G | 7).

2. Solvable groups with property Py

In this section, we study solvable groups satisfying property P;. We first
consider a situation in which the multiplicity of each nonlinear character
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degree in the group is at most two. Such groups, called DD-groups, are
classified in [5].

Lemma 2.1. Let G be a solvable group satisfying property Py. If G is a DD-group,
then |Irr,; (G)| < 3.

Proposition 2.2. Let G be a solvable group satisfying property Ps. Then one of the
following holds:

(i) [Trry, (G)| <3.
(ii) There exists K < G such that G/K is isomorphic to Ay or (Cs,Cy), and G has
three distinct nonlinear irreducible characters of the same degree d coprime to 3.

Proof of Theorem A. Suppose that G is a solvable group satisfying property
P4 and assume that (i) is false. By Proposition 2.2, there exists K < G such that
G/K is isomorphic to A4 or (C3,C7), and G contains three distinct irreducible
characters of the same degree d such that (3,d) = 1. Let N/K = (G/K)' be the
kernel of the Frobenius group G/K. We consider all possibilities for d(G) in
each cases:

Case 1. G/K = Ay. Then d(Ay4) =(3-1,1-3). Let 1x # 7 € Irr(K) and
T = I (7). We will get all possibilities for Irr(G | ).

Case 2. G/K=(C3,C7). Thend(G/K) = (3-1,2-3). Fix 1g # T € Irr(K) and
let T = Ig(T).

3. Nonsolvable groups with property P4

In this section, we prove Theorem A for nonsolvable groups. We first
consider the almost simple groups satisfying property P,. Recall that a group
G is an almost simple group with socle S if S is a nonabelian simple group and
S 4G < Aut(S).

Theorem 3.1. Let S be a nonabelian simple group and G a group such that S QG <
AutS. Then G has property Py if and only if one of the following holds:

(1) G=§5= A5,PSL2(7) or A6.

(i) G =Ss, where S = As.

Theorem 3.2. Let G be a nonsolvable group satisfying property Py. Let L be the

solvable radical of G. Then G/ L is isomorphic to one of the groups As, Ss, PSLy(7)
or Ag.

Lemma 3.3. Let G be a nonsolvable group satisfying property Py, and let L be the
solvable radical of G. Let T € Irr(L) and T = I (7). If T < G, then |Irr(T | T)| < 2.

Now, we with the above results we could prove the main theorem for non
solvable case.
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Abstract

Dandan et. all in [1], introduced universal congruences on semigroups. We generalized this
concept to S-acts and consider an S-act A such that the universal right congruence w 4, is finitely
generated. Also we fined some relationships between w 4 being finitely generated and A being
pseudo-finite.

Keywords and phrases: universal congruence, pseudo-finite, finitely generated..
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1. Introduction

A finitary condition for a class of algebras is a condition that is satisfied by
at least all finite members of the class. Finitary conditions were very high
Importance in understanding the structure and behavior of rings, groups,
semigroups and many other types of algebra. The two finitary conditions we
focus on them are the case where an S-act A being pseudo-finite and the weaker
condition under which the universal right congruence w 4 is finitely generated.
Dandan et. all in [1], introduced universal congruences on semigroups. We
generalized this concept to S-acts and consider an S-act A such that the
universal right congruence w,, is finitely generated. Also we fined some
relationships between w4 being finitely generated and A being pseudo-finite.

Throughout the paper S will denote a given monoid. A (right) S-act is a set
A on which S acts unitarily from the right with the usual properties, that is, if
there is an S-action y: A x S — A, denoting y(a,s) := as, such that a(st) = (as)t
and al = a, where 1 denotes the identity of S. In fact, an S-act is a universal
algebra (A, (ys)ses) where each ys : A — A is a unary operation on A such that
Us © Uy = Ust for each s, t € S, and py = id 4.

Let Ag be aright S-act. An equivalence relation p on A is called a right S-act
congruence or a right congruence on As, if apa’ implies (as)p(a’s) fora,a’ € Ag,
s €S.Note that p(H) for H C A x A denotes the congruence generated by H(i.e
the smallest congruence on A containing H). Also we denote H™! = {(a,b) |

* speaker

En-55



(b,a) € H} and it is not difficult to check that ap(H)b if and only if eithera = b
or there exists a sequence a = p151,4151 = P252,4252 = P353,...,qnSn = b where
fori=1,..,n,(p;,q) € HU H~ 1 and sy,s,...,5s5 € S. The above sequence is
referred to as an H-sequence of length n. for more informations and definitions
not mentioned here see [3].

2. Main Results

Definition 2.1. For a right S-act A, the congruence A x A is said to be universal
right congruence and denotes by w 4.

Definition 2.2. Let A be a right S-act with w4 being generated by a finite subset
H C A x A. We say that A is pseudo-finite with respect to H if there exists n € IN
such that for any a,b € A, there is an H-sequence from a to b of length at most n. We
say that an S-act A is pseudo-finite with respect to X C A if A is pseudo-finite with
respect to X?> = X x X.

Clearly, if an S-act A is pseudo-finite with respect to H, then w4 is finitely
generated.

Theorem 2.3. If G is a group, then wg is finitely generated if and only if G is finitely
generated group.

A congruence p; is called principal extension of pi, if there exists (a,b) €
A x A such that pp = p(p1 U{(a,b)}).

Lemma 2.4. For a right S-act A, the following are equivalent:

(i) w4 is finitely generated.

(ii) There is a finite chain 1 = 6y C 01 C -+ C 6y = wy of left congruences on S
where each 6; is a principal extension of 6; 1 forall 1 <i <n.

(iii) There exists a finite subset X of A such that w = (X?).

(iv) There exists a finite subset X of A such that for any x € X,w4 = ({x} x X).

(v) For any u € A there exists a finite subset X of A such that u € X and
wy = {u} x X).

Lemma 2.5. Let A be a right S-act and H be a finite subset of A% which generats w 4.
Suppose wp = (K) for some K C A2, Then there exists a finite subset K' of K such
that w, = (K').

Further, if A is pseudo-finite with respect to H of length at most m € IN, then it is
pseudo-finite with respect to K of length at most m’ € IN.

We now make some observations which will be very useful for later sec-
tions.

Lemma 2.6. Let A be anon-trivial right S-act such that w = (H) for some H C A2.
Let C(H)={x:3y € As.t(x,y) € HUH '}, Then,

(i) there exists X C A such that w = (X?).

(ii) C(H) is a generating subset of an S-act A.
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Proposition 2.7. Let A be a right S-act and A’ be a subact of A. Then w 4 is finitely
generated if and only if there exists a finite subset X of A such that A = XS and
war = p(X?)| grx ar- In addition, A is pseudo-finite if and only if there exists n € N
such that for any a,b € A’ there is an X?-sequence from a to b of length at most n.

As corollary of Proposition 2.7, we have the following result.

Theorem 2.8. The following are equivalent for an S-act A with zero.
(i) A is finitely generated.
(ii) w4 is finitely generated.
(iii) A is pseudo-finite.

Now we give a variety of alternative conditions for S—acts such that w4 is
finitely generated.

Proposition 2.9. Let A be an S—act and B a homomorphic image of A. If w4 is
finitely generated (A is pseudo-finite), then so is wg(B is so).

Corollary 2.10. Let A and B be S-acts. If waxp is finitely generated (A X B is
pesudo-finite), then both w 4 and wg are finitely generated(pseudo-finite).

Now let A be an S—act and B be a T—act. Then A x Bisaright S x T—act
by the action given by,

p:(AxB)x(SxT)— AXB
p((a,b),(s,1)) = (as, bt)

Proposition 2.11. Let A be an S—act and B be a T—act. If w4 and wp are finitely
generated(pseudo-finite), then waxp is finitely generated (A x B is pseudo-finite
S x T-act).

Definition 2.12. Let S be a semigroup, I and | non-empty sets and P a matrix
indexed by I and | with entries p;; taken from S. Then the Rees matrix semigroup T =
M(S;1,]; P] is the set (I x S x ]) together with the multiplication (i,s,j)(k,t,1) =
(i,sp]-kt,l).

Now let A be a right S-act, then the set A = (I x A x |) is a right T-act by the action
(i,a,j)(k,s,1) = (i,apjs,1) and we call it Rees matrix induced action.

Theorem 2.13. Let T = M]S;1,]; P| be a Rees matrix semigroup over a semigroup S
and At be the Rees matrix induced action. Then w 4 is finitely generated if and only
if the following conditions hold:
(i) I and | are finite;
(ii) there is a finite set V. C A such that with
H= {(ap]-y,bpji) cjeliuyelabeV}

every element of A is p(H)-related to an element of V.
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Abstract

In this paper, we first define a new series on the IA-central subgroup and two automorphisms
on this series. Then we identify the relationships of the members of these series. Finally, we
study the relationships of these two new automorphisms with IA(G), Aut;(G), Ivar(G), Inn(G),
and each other.

Keywords and phrases: 1A-group, IA-central subgroup, autocentral automorphism, Ivar(G), inner
automorphism.

2010 Mathematics subject classification: Primary: 20D45, 20D15; Secondary: 20E36.

1. Introduction

The various series have many applications in algebra. In particular, they
are necessary for important definitions such as nilpotency and solubility of
groups. On the other hand, All kinds of automorphisms also have interesting
properties. Hence, automorphisms have been the idea of many researchers
articles. Let G be a group and j be any positive integer. Let us denote by G/,
Z(G), Aut(G) and Inn(G), respectively the commutator subgroup, the centre,
the full automorphism group and the inner automorphisms. Bachmuth [1] in
1965 defined an IA-automorphism of a group G as

IA(G) = {rx € Aut(G) | g 'a(g) = [g,0] € G, Vg € G}.
For any group G, Inn(G) < IA(G).
Hegarty [4] in 1994 introduced the absolute center
L(G)= {g €G|lgla(g)=1Vae Aut(G)}
and absolute central automorphisms
Aut;(G) = {oc € Aut(G) | g 'a(g) € L(G), Vg e G}.
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On the similar lines, Ghumde and Ghate [3] in 2015 introduced the IA-central
subgroup

S(G) = {g €Glgla(g)=1,ac 1A(G)}

and Ivar(G) group as follows:
Ivar(G) = {a cIA(G) | g 'a(g) €5(G), Vg € G}.

For any group G, L(G) <S(G) € Z(G).

2. Main results

In this section, after some new definitions, we give our main results about the
automorphisms on the IA-central series.

2.1. TA-central series

Definition 2.1. We define the IA-central series of G in the following way:
(1) = 50(G) €51(G) = 5(G) € 52(G) S --- S Sa(G) S -
where
S.(G)={geG|lga1,...,an] =1, Vay,...,a, € IA(G)}, n>1

Definition 2.2. A group G is called an Sj-group if the 1A-central series stalls at
some point. This means that there exists a least positive integer j for which S;j(G) =

57:1(G) =+

Definition 2.3. A group G is said to be S(G)-autonilpotent(or IA-nilpotent) group of
class at most n if S, (G) = G, for some natural number n.

Example 2.4. For abelian groups, S(G)=G, so S,,(G) = G, for every natural number
n. Therefore, for every n € IN, the abelian groups are S(G)-autonilpotent.

Remark 2.5. Every S(G)-autonilpotent group of class j is trivially a Sj-group, since
G =5(G) =5 (G) =+

2.2. The automorphisms of IA-central series

Definition 2.6. The kernel of the natural homomorphism from Aut(G) to Aut(G/S;(G))
is called the group of Sj-automorphism and denoted by Autsg, (G).

According to the above definition, A S;-automorphism group acts as the
identity on G modulo S;(G), Thus:

Autg (G) = {a € Aut(G) | g a(g) € Si(G), Vg € G} 9 Aut(G).

Also, we have Aut;(G) < Autg, (G) for everyj.
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Notation 2.7. We use the notation 1Ag, (G)=1IA(G)N Autg, (G). Another defini-
tion of IAg,(G) is given by

IASj(G) = {ac Aut(G) | g 'a(g) € SiNG', V¥ ge G} < Aut(G).

According to this notation, we have I[Ag, (G) = Ivar(G).

Proposition 2.8. For any group G,
a) ¢ € Autg(G) ifand only if [x, @] € Auts,(G), for every & € Aut(G).
IA(G) _ 1A(G)Autg (G)

Y TA5(C) " Auts (C)

1R

PROOF. a) It is obvious by the normality of Auts (G).

b) The result follow from the definition of IAg; (G) and the third isomor-
phism theorem. o

Corollary 2.9. For any group G, [Aut(G), Auts,(G)] < Autg (G).
Theorem 2.10. Let G be a group. If IA(G/S;(G)) = Inn(G/S;(G)), then
IA(G) < Inn(G)Auts (G).

PROOF. Let & € IA(G). By hypothesis, IA(G/S;(G)) = Inn(G/Sj(G)), so
there exists ¢ € G such that for all x € G,

a(x)S;(G) = x85;(G).
Hence,
x Sa(x) = (x_l (oc(x))gil)g €5;(G)

= xil(zx(x))gi1 €5,(G)
— x 'g(a(x))g" €;(G)
= xilgogfltx(x) €5(G)

where ¢¢ € Inn(G).
Consequently, g 'a € Auts (G), ie., a = ggpg'a € Inn(G)Auts (G). o

In the special case j=1, we have the following result
Corollary 2.11. Let G be a group. If IA(G/S(G)) = Inn(G/S(G)), then
IA(G) < Inn(G)Ivar(G).
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The Torsion Theory of A Completely Prime Radical of A
Module

A. NAJAFIZADEH*

Abstract

This talk is about torsion theories induced by prime and completely prime radical of a module
M over an arbitrary ring R. In fact, we review some basic facts and new results which have
been achieved over the past years. In particular, it is shown that the class of all completely
prime modules, g M for which g M # 0 is special. Finally, some outlines about new researches of
the subject under discussion are given.

Keywords and phrases: prime radical, completely prime radical, torsion theory.
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1. Introduction

All rings in this talk are associative (not necessarily with identity) and all
modules are left R-modules. In [4], the authors call a proper submodule P
of an R-module M to be completely prime whenever for all ¥ € R and m € M,
if rm € P then m € P or rM C P. The terminology of radical in this talk is that
of [6]. A functor 7y from the category of R-mod to R-mod is called a preradical
if y(M) is a submodule of M and f(y(M)) € y(N) for each homomorphism
f:M — Nin R-mod. A radical vy is a preradical for which y(M/y(M)) = 0 for
all M in R-mod. A preradical is hereditary or left exact if y(N) = N N (M)
whenever N is an arbitrary submodule of M in R-mod. We recall that for
an R-module M, B(M) is the prime radical of M which is the intersection of
all prime submodules of M. Moreover, B, (M) denotes the completely prime
radical of M, which is the intersection of all submodules K of M such that M/K
is a completely prime module. In this talk, we discuss some basic facts and
new results related to torsion theories induced by prime and completely prime
radical of a module M over an arbitrary ring R, which have been achieved over
the past years in [2, 4-6]. Moreover, it is shown that the class of all completely
prime modules, g M for which g M # 0 is special. Finally, some outlines about
new researches of the subject under discussion are given.
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2. Main Results
We begin with a definition from [3, Page 454].

Definition 2.1. Let <y be a functor from the category of R-mod to R-mod. Then,
it is said to be Hoehnke radical if f(y(M)) S v(f(M)) for all homomorphism
f:M— f(M)and y(M/vy(M)) =0 for all M € R-mod. Moreover, vy is said to be
complete if for all submodules K of M, the relation «y(K) = K implies that K S y(M).
Finally, -y is said to be idempotent if y(y(M)) = v(M) for all M € R-mod.

Definition 2.2. A Kurosh-Amitsur radical is a complete idempotent Hoehnke radical.
The following definition is from [6, Page 139].

Definition 2.3. A torsion theory in the category of R-mod is a pair (T, §) of classes
of modules in R-mod such that

1. Hom(T,F)=0forallT € Tand F € §.
2. IfHom(C,F)=0forall F € §, then C € .
3. IfHom(T,C)=0forall T € T, then C € §.

Definition 2.4. We define Ty, to be the class of all modules M such that Beo(M) =
M, and Fp,, to be the class of all modules M such that Bc, (M) =0.

In view of [6, Page 140], T, is a torsion class and &g, is a torsion-free class
and the pair (zﬁw,‘gﬂw) is a torsion theory. Moreover, s, coincides with the
class of modules with no completely prime submodules. Now by Proposition
2.1in [6], we get:

Theorem 2.5. T is a torsion class for some torsion theory exactly if it is closed under
quotient objects, direct products and extensions.

This theorem yields the following result as Corollary 4.3 in [4]:
Corollary 2.6. Tg_, is closed under quotients, direct products and extensions.

We observe that in view of the following example, T4, is not closed under
taking submodules:

Example 2.7. Let p be a prime number and M = Zy~ as Z-module. We have
Beo(M) = Z . Now, let N be a proper submodule of M. Then, N has a (maximal)
completely prime submodule, say P. Thus, Beo(N) C P C N = Beo(M) NN and
Beo(M) NN E Beo(N).

Definition 2.8. Let M be an R-module. We define B.,(M) to be the sum of all

submodules N of M such that B.o(N) = N. Moreover, we define BCO(M) to be the
intersection of all submodules N of M such that M/ N € g,

Now by [2, Proposition 1.1.5], we have:
Corollary 2.9. The following statements hold.
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1. B.(M) is an idempotent preradical, B, S Bco, Tp,, = T, - B, is the largest

idempotent preradical contained in Beo. X
2. Beo(M) is radical. Beo S Beo, Fp., = %Bm. Moreover, B, is the least radical

containing Beo.

Moreover, a similar argument as [6, Proposition 2.5.], yields the following
result:

Theorem 2.10. If M € Tg_, then for each non-zero homomorphic image N of M there
exists a submodule K of N such that 0 # K € T

In view of the fact that the results for completely prime (sub)modules
are true for prime (sub)modules, we deduce that prime radical (M) is a
complete Hoenhke radical which is neither hereditary nor idempotent (hence
not Kurosh-Amistur). Furthermore, prime modules are not closed under
taking essential extensions. However, if we define a faithful prime radical,
as the submodules P of M such that M /P is faithful and prime, then in view
of [5, Section 3] By is a Kurosh-Amitsur radical. Furthermore, the class of all
faithful prime modules is closed under essential extensions.

Definition 2.11. A class Q) of associative rings is called a special class if it is
hereditary and it consists of prime rings and it is closed under essential extensions.

Andrunakievich and Rjabuhin [1] extended this notion to modules and
showed that prime modules, irreducible modules, simple modules, modules
without zero divisors, etc form special classes of modules. B. de la Rosa and
S. Veldsman [3] defined a weakly special class of modules. In [4], the authors
follow the definition in [3] of a weakly special class of modules to define a
special class of modules.

Definition 2.12. Let R be a ring and Kg be a (possibly empty) class of R-modules. Let
K be the union of Kg such that R is a ring. Then K is called a special class of modules
if it satisfies:

1. MeSQgand I <«Rwith1C (0: M)g implies M € Sg/;.

IfI<Rand M € K/, then M € Kg.

M e {gand I « R with IM # 0 implies M € &].

M € Kg implies RM # 0 and R/ (0 : M) is a prime ring.

If 1 <R and M € 8, then there exists N € Kg such that (0: N); S (0: M);.

AN I

Now with some similar arguments as [7], we get:

Theorem 2.13. Let M = UMig be a special class of modules. Then, the set J which is
the set of rings R such that there exists M € M with (0 : M)g = 0 with 0 is a special
class of rings. If R is the corresponding special radical then, R(R) is the intersection
of (0: M)g with M € M.

Furthermore, by [4, Theorem 6.3] the following result is obtained:
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Theorem 2.14. Let J be a special class of rings and for every ring R, let My be the
set of modules M such that M is an R-module, RM # 0 and R/(0: M)r € 3. If
M = UMR, then M is a special class of modules. Moreover, if r is the corresponding
special radical and M is any R-module, then r(M) is the intersection of all submodules
P such that M/ P € ig.

For the case of completely prime modules, we have the following results as
Theorem 6.4 and Corollary 6.5 in [4]:

Theorem 2.15. Let R be any ring and let Mg be the set of completely prime R-
modules M such that RM # 0. If Mt = UNig, then Mt is a special class of modules.

Corollary 2.16. If M, is the special class of completely prime modules, then the
special radical induced by M, on a ring R is given by Beo(R) is the intersection of all
(0: M)g such that M is a completely prime R-module. Moreover, it is the intersection
of all ideals I of R such that 1 is a completely prime ideal.

It is observed that some analogous investigations as this talk for the case of
co-prime, completely co-prime, completely semi-prime and etc. may yield to
new results.
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A Subgraph of the strongly annihilating submodule graph

P. KARIMI BEIRANVAND* and R. BEYRANVAND

Abstract

For a module M over a commutative ring R, the strongly annihilating submodule graph of M,
denoted by SAG(M), introduced in [4]. This graph is a generalization of a graph AG(M), the
annihilating submodule graph of M, defined in [2]. In this note we give the more properties of
SAG(M) and moreover we introduce and study a subgraph of the SAG(M).

Keywords and phrases: strongly annihilating submodule graph, coloring number, star graph.
2010 Mathematics subject classification: Primary: 05C78; 16D10; 13C13; 13A99.

1. Introduction

In this presentation, all rings are commutative with nonzero identity elements
and all modules are right unitary. Let M be an R-module. For any N < M,
the ideal {r € R | Mr C N} is denoted by (N : M). We denote (0 : M) by
anng (M) or simply ann(M). If ann(M) = 0, then M is said to be faithful.

In [3] the authors introduced The annihilating ideal graph AG(R) that is a
graph whose vertices are ideals of R with nonzero annihilators and in which
two distinct vertices I and | are adjacent if and only if I] = 0. In [2], the
authors generalized the above idea to submodules of M and defined the graph
AG(M), called the annihilating submodule graph, with vertices {0 # N <
M| M(N : M)(K: M) = 0,for some 0 # K < M}, and two distinct vertices
N and K are adjacent if and only if M(N : M)(K : M) = 0. In [4, 5], the
strongly annihilating submodule graph, denoted by SAG(M), introduced and
studied. In fact SAG(M) is an undirected (simple) graph in which a nonzero
submodule N of M is a vertex if N(K : M) = 0 or K(N : M) = 0, for
some 0 # K < M and two distinct vertices N and K are adjacent if and
only if N(K : M) = 0or K(N : M) = 0. Clearly SAG(M) is a subgraph
of AG(M) and SAG(R) = AG(R) and if M is a multiplication R-module,
then SAG(M) = AG(M). The notations of graph theory used in the sequel
can be founed in [6].
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Here, we define a subgraph of SAG(M), denoted by SAG*(M) that is a
simple graph with vertices {0 # N < M | (N :g M) # 0 and there exists a
nonzero submodule K < M with (K :g M) # 0 such that N(K :x M) =0
or K(N :g M) = 0} and two distinct vertices N, K are adjacent if and only if
N(K:g M) =0or K(N :g M) = 0. In this paper, in addition to providing the
more properties of SAG(M), we compare the properties of SAG* (M) with
SAG(M) and AG(M).

2. Main Results

Example 2.1. Let Sq be a faithful simple R-module and Sy be an unfaithful R-module.
Setting M = S1 @ S1 @ Sy, the submodule N = (0) & (0) & Sy is not a vertex in
SAG* (M), since (N :g M) = anng(S1) = 0. But for the nonzero submodule
K = (0)® S; @ (0) we have NN K = 0 and hence N and K are adjacent in
SAG(M). Therefore SAG* (M) ¢ SAG(M).

An R-module M is called prime if the annihilator of M is equal to the
annihilator of any its nonzero submodule. A proper submodule N of M is
called prime submodule if M/ N is a prime module. One can easily check that
a proper submodule N of M is prime if and only if for any » € R and any
submodule K of M, the relation Kr C N implies that K € N or Mr C N.
Also the set of all zero divisors of M is denoted by Z(M) = {r € R | xr =
0, for some 0 # x € M}.

In the following, we show that the existence of a vertex in a graph that
is connected to any other vertex is the same in both graphs SAG(M) and
AG(M).

Theorem 2.2. Let M be an R-module such that anng (M) is a nil ideal of R. Then
there exists a vertex in AG(M) that is joined to all other vertices if and only if there
exists a vertex in SAG (M) that is joined to all other vertices.

Example 2.3. Consider M = Zy @ Z3 as a Zqp-module. Then anngz (M) is
a nilpotent ideal and SAG(M) is a star graph with two vertices Z, @ (0) and
(0) @ Zs.

Now, the existence of a vertex in SAG* (M) that is connected to any other
vertex is characterized

Theorem 2.4. Let M be a faithful module. Then there exists a vertex in SAG* (M)
that is joined to all other vertices if and only if M can be written as M = My & My,
where My is a simple submodule and M, is a prime submodule of M, or Z(R) is a nil
ideal of R.

Recall that a ring is called reduced if it has no nonzero nilpotent element.

Corollary 2.5. Let R be a reduced ring and M be a faithful R-module. The following
statements are equivalent:
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(1) There exists a vertex in SAG* (M) that is adjacent to every other vertex.

(2) SAG* (M) is a star graph.

(3) M = My & My, where M is a simple submodule and Mj is a prime submodule
of M.

Example 2.6. Q & Q as a Q & Z-module is faithful and SAG*(Q & Q) is a star
graph with two adjacent vertices Q & (0) and (0) & Q.

Proposition 2.7. Let M = M @& My, where anng (M) is a nil ideal of R, My is a
simple submodule of M and M; is a prime submodule of M. Then there exists a vertex
in AG(M) that is joined to every other vertex.

Proposition 2.8. (a) Let M be a faithful R-module such that it has only one nonzero
proper submodule. Then M = R as an R-modules.

(b) Let R be an Artinian ring and M be a finitely generated faithful R-module. Then
any nonzero proper submodule of M is a vertex in SAG* (M).

In a graph G, a clique of G is a complete subgraph and the supremum of the
sizes of cliques in G, denoted by cI(G), is called the clique number of G. Let
X(G) denote the chromatic number of the graph G, that is, the minimal number
of colors needed to color the vertices of G so that no two adjacent vertices have
the same color.

Proposition 2.9. Let M be a faithful R-module. Then x(SAG(M)) = 1 if and only
if M has only one nonzero proper submodule.

Theorem 2.10. For any faithful R-module M, the following are equivalent:

(a) X(SAG" (M)) = 2.

(b) SAG™ (M) is a bipartite graph with two nonempty parts.

(¢) R is a reduced ring with exactly two minimal prime ideals or SAG* (M) is a star
graph with more than one vertex.

Corollary 2.11. Let R be an Artinian ring and M be a faithful R-module. Then the
following are equivalent:

(a) X(SAG™(M)) = 2.

(b) SAG™ (M) is a bipartite graph with two nonempty parts.

(c) M = M; ® My where My and My are homogeneous semisimple modules or
SAG* (M) is a star graph with more than one vertex.

Corollary 2.12. Let R be a reduced ring and M be a faithful R-module. The following
statements are equivqlent:

(@) X(SAG*(M)) = 2.

(b) SAG™ (M) is a bipartite graph with two nonempty parts.

(¢) R has only two minimal ideals.

Lemma 2.13. Let M be a semiprime R-module such that the clique number of
SAG*(M) is not infinite. Then the set of all submodules of the form anny;(I), where
I is an ideal of R, satisfies the ACC condition.
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PROOF. Assuming the contrary, there is a strictly ascending chain
anny (L) € anny () € ...
in M. Since for any i > 1, anny(l;11)]; # 0, there exists ; € I; such that
annpy (I 1)r; # 0. We set J; = annpy(I;1)r; fori = 1,2,3, ..., and we show that
for any i < j, J; # J;. Otherwise anny(l;1)r; = annp(lj;1)r;, where i < j.
Then
0= al’ll’lM(Il‘_;,_])Tﬂ’j = al’ll’lM(I]'_;,_l)T]Z.

Since M is semiprime, annys(l;;1)r; = 0, a contradiction. Now for any i < j;
Ji(Ji :r M) = annp(Ijy1)rj(annpy (Liy1)r; ik M) € annpyg(Liy1)rirj = 0.
Therefore for any i < j, J; and J; are joined in SAG" (M) and hence SAG" (M)
has an infinite clique number which contradicts the hypothesis. o

Theorem 2.14. For a semiprime module M, the following statements are equivalent:
(a) x(SAG*(M)) is finite.

(b) cl(SAG*(M)) is finite.

(c) SAG* (M) dose not have an infinite clique number.

(d) There are prime submodules Py, Py, . .., P in M such that N_, (P; :x M) = (0).
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RING MORPHISMS AND THEIR ORDERINGS

ALBERTO FACCHINI and LEILA HEIDARI ZADEH*

Abstract

We associate to any ring R with identity a partially ordered set Hom(R), whose elements are
all pairs (a, M), where a = kerg and M = ¢~ 1(U(S)) for some ring morphism ¢ of R into an
arbitrary ring S. Here U(S) denotes the group of units of S. The maximal elements of Hom(R)
constitute a subset Max(R) which, for commutative rings R, can be identified with the Zariski
spectrum Spec(R) of R. Every pair (a, M) in Hom(R) has a canonical representative, that is,
there is a universal ring morphism : R — S(g/q m/q) cOrresponding to the pair (a, M), where
the ring S(g /o M4 18 constructed as a universal inverting R/ a-ring in the sense of Cohn. Several
properties of the sets Hom(R) and Max(R) are studied.

Keywords and phrases: Ring morphism, Partially ordered set, Universal inverting mapping of
rings. .
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1. Introduction

In this paper, the partially ordered set Hom(R) is considered. The elements
of Hom(R) are ordered pairs (a, M), where a = ker g and M = ¢~ (U(S)) for
some ring morphism ¢ of R into an arbitrary ring S. Here U(S) denotes the
group of units of S. It turns out that it is possible to canonically associate
to any such pair (a, M) a morphism of rings ¢: R — S(g/q M/ that realizes
the pair (a, M) , meaning that ker(¢) = a and ¢ (U(S(r/qm/a))) = M. The
ring S(r/q,M/q) is constructed as a universal inverting R/ a-ring in the sense of
Cohn [3]. With respect to a suitable partial order, the set Hom(R) turns out to
be a meet-semilattice (Lemma 2.2). The idea is to measure and classify, via the
study of the partially ordered set Hom(R), all ring morphisms from the fixed
ring R to any other ring S.

We want to generalize the theory developed by Bavula for left Ore local-
izations [1, 2] to arbitrary ring morphisms. Therefore here we want to extend
his idea from ring morphisms R — [T~!]R that arise as left Ore localizations
to arbitrary ring morphisms ¢: R — S.
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For a commutative ring R, the set Max(R) is in one-to-one correspondence
with the Zarisky spectrum Spec(R) of R (Proposition 3.2). Thus Max(R) could
be used as a good substitute for the spectrum of a possibly non-commutative
ring R. Finally, the partially ordered set Hom(R) always has a least element,
the pair (0,U(R)), which corresponds to the identity morphism R — R. More
generally, like in Bavula’s case [2, p. 3224], the set Hom(R) has a natural
partition into subsets Hom(R, a) (Section 2).

Throughout, all rings are associative, with identity 1 # 0, and all ring
morphisms send 1 to 1. The group of (right and left) invertible elements of
R will be denoted by U(R).

2. The partially ordered set Hom(R)

Let R be a ring. We associate to each ring morphism ¢: R — S into
any other ring S the pair (a, M), where a := ker(¢) is the kernel of ¢ and
M := ¢~ 1(U(S)) is the inverse image of the group of units U(S) of S. Recall
that, if X is a set, or more generally a class, and p is a preorder on X, then it is
possible to associate to p an equivalence relation ~, on X and a partial order
<, on the quotient set X/~,. The equivalence relation ~, on X is defined, for
every x,y € X, by x ~, y if xpy and ypx. The partial order <, on the quotient
set X/~p:={[x]~, | x € X} is defined by [x]~, <, [y]~, if xpy.

On the class H(R) of all morphisms ¢: R — S of R into arbitrary rings S, If
¢: R— S, ¢': R — S’ are two ring morphisms, we have a preorder p on H(R),
defined setting pp¢’ if ker(¢@) C ker(¢') and ¢~ 1(U(S)) C ¢'~1(U(S)).

Correspondingly, there is a equivalence relation ~ on the class H(R),
defined, for all ring morphisms ¢: R — S, ¢’: R — S’ with associated pairs
(a, M), (a/, M) respectively, by ¢ ~ ¢’ if (a, M) = (a/, M’). Thatis, ¢ ~ ¢’ if
and only if ker(¢) = ker(¢’) and ¢~ 1(U(S)) = ¢/~ 1(U(S")). Let Hom(R) :=
H(R)/~ denote the set (class) of all equivalence classes [¢]~. modulo ~, that
is, equivalently, the set of all pairs (ker(¢), ¢~ 1(U(S))). The partial order < on
Hom(R) = H(R)/~ associated to the preorder p on 7 (R) is defined by setting
(o, M) < (o/,M')ifaCa"and M C M.

Proposition 2.1. Let Ring be the category of rings with identity and ParOrd
the category of partially ordered sets. Then Hom(—): Ring — ParOrd is a
contravariant functor.

For any fixed proper ideal a of R, set
Hom(R,a) := { (ker(¢),¢ 1 (U(S))) | ¢: R — S, ker(¢) =a}.

Clearly, Hom(R) is the disjoint union of the sets Hom(R, a):

Hom(R) = anR Hom(R,a).
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In particular, the partial order < on Hom(R) induces a partial order on
each subset Hom(R, a).

The following lemma has an easy proof.

Lemma 2.2. Let (a,M),(a’, M) be the elements of Hom(R) corresponding to two
morphisms ¢: R — S and ¢': R — S'. Then the element of Hom(R) corresponding
to the product morphism ¢ x ¢': R— S x S"is (and,MNM').

As a consequence, the partially ordered set Hom(R) turns out to be a
meet-semilattice. In particular, with respect to the operation A, Hom(R) is a
commutative semigroup in which every element is idempotent and which has
a zero element (= the least element (0,U(R)) of Hom(R), which corresponds
to the identity morphism R — R).

3. A universal construction and maximal elements in Hom(R)

Theorem 3.1. Let R be aring and (a, M) be an element of Hom(R). Then Sg /o m/q)
is a non-zero ring, and if P: R — S(r/q m/q) denotes the composite mapping of
the canonical projection 7t: R — R/a and X(rjom/a): R/0 = S(R/am/a), then
ker(¢) = a and ¢_1(U(S(R/G,M/a))) = M. Moreover, for any ring morphism
f: R — S such that ker(f) 2 a and f~Y(U(S)) D M, there is a unique ring
morphism g: S(r/am/a) — S such that gip = f.

Proposition 3.2. For any commutative ring R, the maximal elements of Hom(R) are
the pairs (P,R \ P), where P is a prime ideal.

Proposition 3.3. Let a be an ideal of a ring R such that (a,R \ a) € Hom(R). Then a
is a completely prime ideal of R, the ring R/ a is invertible, and (a,R \ a) € Hom(R)
is a maximal element of Hom(R).

In the following example, we show that not all maximal elements of
Hom(R) are of the form (a,R \ a) for some completely prime ideal a.

Example 3.4. Let R be the ring of n x n matrices with entries in a division
ring D, n > 1. For instance, R can be the ring M (k) where k is a finite field.
Then any homomorphism ¢: R — S, S any ring, is injective because R is
simple. Every element of M := ¢~ (U(S)) is regular. But regular elements
in R are invertible. This proves that Hom(R) has exactly one element, the pair
(0,U(R)). Thus, clearly, Hom(R) has a greatest element, which is not of the
form (a,R \ a) because R is simple, but not a domain, and R has no completely
prime ideals.

Proposition 3.5. Let R be a commutative ring. Then Hom(R) has a greatest element
if and only if R has a unique prime ideal.
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Hence the set Max(R) of all maximal elements of Hom(R) could be used
as a good substitute for the spectrum of a non-commutative ring R.

Theorem 3.6. For every ring R, the partially ordered set Hom(R) has maximal
elements.

Example 3.7. As an example, we now describe the structure of the partially
ordered set Hom(Z), where Z is the ring of integers. Assume that a = nZ for
some 1 > 2 and that (a, M) corresponds to some ring morphism ¢: Z — S.
Then ¢ induces an injective ring morphism ¢: Z/nZ — S, and M/nZ is a
multiplicatively closed subset of Z/nZ that consists of regular elements and
contains U(Z/nZ). Since in a finite ring all regular elements are invertible,
it follows that M/nZ = U(Z/nZ), so that M = Mgjy(,), where P := {p |

p is prime number } and div(n) := {p € P | p|n} . Thus

Hom(Z) = { (0,Mp) | P is a subset of P } U { (Z, Mgyy() | N € Z, 1> 2}.
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On the triple tensor product of some class of nilpotent Lie
algebras

A. SHAMSAKI* and P. NIROOMAND

Abstract
In this paper, we give the explicit structure of ®3L where L is a finite dimensional Lie algebra
of class two such that dim(L/Z(L)) = d and 3d(d — 1) — 3 < dim L? < 3d(d —1).

Keywords and phrases: nilpotent Lie algebra, tensor product, triple tensor product.
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1. Introduction

Let IF be a field. Throughout the paper, all Lie algebras are considered over a
fixed field. Recall that a Lie algebra H is called a generalized Heisenberg Lie
algebra of rank 7 if H> = Z(H) and dim H? = n. It is known [7] the structure
of the tensor product and the triple tensor product of generalized Heisenberg
Lie algebras of rank at most 2. In this note, we give the triple tensor product
finite dimensional Lie algebra of class two such that dim(L/Z(L)) = d and
ld(d—1) -3 <dimL*< ld(d—1).

The following lemma and propositions are useful instruments in the rest.

Proposition 1.1. [5, Proposition 2.4] Let L be a finite dimensional nilpotent Lie
algebra of nilpotency class 2. Then L = H @& A where A is abelian and H is a
generalized Heisenberg Lie algebra.

We assume that the reader is familiar with the basic definitions and prop-
erties of the tensor square L ® L in [1]. Then

Proposition 1.2. [1, Proposition 3] There are actions of both L and K on L ® K given
by

"aek) =Ll ok+1o ("k),

Kilok) =F)ok+1e K,k
forall1,I" € L and k,k' € K.
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We know from Proposition 1.2, L acts on L ® L. On the other hand, the
tensor product L ® L acts on Lby {1 = 8] forallt € L® L and I € L such
that A : L ® L — L is a homomorphism given by a ® b ~— [a,b]. Now, we can
construct the triple tensor product ®3L = (L ® L) ® L.

Lemma 1.3. [7, Lemma 3.1] Let L be a Lie algebra of nilpotency class two. Then
(i). L ® L acts trivially on L.
(i)). (L® L) ® L is an abelian Lie algebra.

Let L be a nilpotent Lie algebra of class k and v,(L) be the k-th term of
the lower central series of L and ¢ : (L) — L a natural homomorphism. Let
§=(p®i)@ir: ((L)®L)®L— @Landy:(L®L)®n(L) — &°Lby
sending (1 ® b) ® ¢ — (a ® b) ® c be homomorphisms. Then

Proposition 1.4. [7, Proposition 3.3] If L is a nilpotent Lie algebra of class k, then

(L) @L) @ LY @31 s @B /(L) — 0,
v v

is exact.

2. Main Results

Here, for a finite Lie algebra L of class two such that dim(L/Z(L)) =d
and 1d(d — 1) —3 <dim L2 < }d(d — 1), we determine the structure of the Lie
algebras ®3L.

The following lemma is an useful instrument in the next.

Theorem 2.1. Let L be a Lie algebra of nilpotency class two. Then

(Lo L)®L=(L®L)®L®.

PROOF. Let @g: L® L — L® L and ¢ : L — L% be homomorphisms. Then
90 =90 ® ¢1: ®L = (L® L) ® L such that ¢g ® ¢1((x ®y) ®z) = @o(x ®
¥) ® ¢1(z) is an epimorphism by using [6, Proposition 1.2 (ii)]. Since L is of
nilpotency class two, L ® L is abelian by using [2, Lemma 2.8] and so L ® L
and L act trivially on each other. Thus

dim((L ® L) ® L) = dim(L ® L) dim L. 1)

Now, we claim that dim®3L = dim(L ® L)dim L%, First, we show that
(p(L2) ® L) ® L = (p(L?) ® L) ® L. Since L is of nilpotency class two, it
is clear that ¢(L?) and L act trivially on each other. Hence (¢(L?) ® L) ® L =
(¢(L?) ® L") ® L. By a same reason, we have ¢(L?) ® L’ and L act trivially on
each other. Thus (¢(L?) ® L) ® L= (¢(L?) ® L") ® L™. By using the following
exact sequence

Rol®™ 1oL - L/I20L/12 —0, )
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we have

dimL ® L =dim LY ® L + dimIm(¢ ® iy ) = dim L?’ ® L 4 dim ¢(L?) ® L.

®)
Since (¢(L?) ® L) ® L = (¢(L?) ® L") @ L, we have

dim(¢(L?) ® L) ® L = (dim ¢(L?) ® L) dim L. (4)
Now, by using (3), (4) we have
dim(¢(L?) ® L) dim L’ = (dimL ® L — dim L’ ® L) dim L*.  (5)
On the other hand, we have
dim ®3L = dim @3L" + dimIm((¢ ® i) @ iL)
= dim ®@3L% + dim(¢(L?) ® L) dim L% (6)

by using Proposition 1.4. Hence dim ®*L = dim(L ® L) ® L* by using (2) and
(6) and so
(L®L)®L=(L®L)® L™,

O

Theorem 2.2. Let L be an n-dimensional Lie algebra of class two such that dim(L/Z(L)) =
dand dimL? = 1d(d —1). Then n = 1d(d + 1) + t for t > 0 and

1 1 1
Q3L = A((gd(Zdz +3d —5)+ E(t2 —t)+dt+ S (d+H(d+t+1))(d+1).
PROOF. Proposition 1.1 implies L = H & A(t) for t > 0 such that the set

{xl""’xd’yl""’y%d(d—l)}

is a basis for H, hence dimL = %d(d + 1)+t for t > 0. By using Lemma 1.3(i),
[1, Proposition 5] and Theorem 2.1 we have dim ®°L = dim(L ® L)dim L.
Also, L® L= A(Ld(2d®> +3d —5) + 3(t? —t) +dt + 3(d + t)(d + t + 1)) by
using [4, Corollary 2.11] and L’ = A(d + t). Hence the result follows. ]
Theorem 2.3. Let L be an n-dimensional Lie algebra of class two such that dim(L/Z(L)) =

d. Then
(i) ifdimL?=1d(d—1)—1,thenn=1d(d—1)—1+tfort>0and

—_

9L = A((%d(dZ F3d—4)+ S22 4 4dt+ &2+ d))(d 1 b)),

N

(ii) IfdimL*=1ld(d—1)—2, thenn=}d(d—1) —2+tfort > 0and

—_

2L = A((%d(dz 430 —7) + 2P +4dt+ P+ d))(d +1)).

2
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(iii) IfdimL?=}d(d —1) — 3, thenn =}

(d—1)—3+tfort>0and

NI —

L= A((%d(dz +3d—10)+ 222 +4dt+ R+ d))(d+1)),

or

Q3L = A((%d(dz +3d —10) + %(z# +4dt +d> +d) —1))(d+1)).

PROOF. (i). By a similar method in the proof of Theorem 2.2 we can see
n=1d(d—1) — 1+t for t > 0. By using Lemma 1.3(i), [1, Proposition 5] and
Theorem 2.1 we have dim®3L = dim(L ® L) dim L™ Let dim L2 = 1d(d — 1) —
1.Since L = A(d +t)and L® L= A(3d(d? +3d — 4) + (22 + 4dt + d* + d))
by using [3, Theorem 2.9 (i)], we have

L= A((GA(P +3d — 4) + 3 (2 + 4dt + &+ d))(d + 1),

Parts of (ii) and (iii) are obtained by a similar way and by using [3, Theorem
2.9 (ii) and (iii)].

(1]
(2]
(3]
(4]
(5]
(6]

(71
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Bogomolov multiplier and the Lazard correspondence

Z. ARAGHI ROSTAMI*, M. PARVIZI and P. NIROOMAND

Abstract

In this paper we extend the concept of CP covers for groups to the class of Lie algebras, and
show that despite the case of groups, all CP covers of a Lie algebra are isomorphic. In addition
we prove that CP covers of groups and Lie rings which are in Lazard correspondence, are in
Lazard correspondence too, and the Bogomolov multipliers of the group and the Lie ring are
isomorphic.

Keywords and phrases: Bogomolov multiplier, Commutativity-preserving defining pair, CP cover,
Baker-Campbell-Hausdorff formula, Lazard correspondence..
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1. Introduction

The Bogomolov multiplier and the CP cover were first studied by Moravec
for the class of finite groups. In the class of groups, the Bogomolov multiplier
of a group is unique up to isomorphism but the corresponding CP cover is
not necessarily unique. In our recent work [1], we defined the Bogomolov
multiplier for Lie algebras. Here, we will introduce CP covers of Lie algebras,
then we will show that all CP covers of a Lie algebra are isomorphic. Also,
the Lazard correspondence that was introduced by Lazard in [2], builds an
equivalence of categories between finite p-groups of nilpotency class at most
p — 1 and the finite p-Lie rings of the same order and nilpotency class. There
is a close connection between many invariants of an arbitrary group and a Lie
ring that is its Lazard correspondent.

2. Bogomolov multiplier and CP cover of Lie algebras

The section is devoted to introduce CP covers of Lie algebras and then we
will show (unlike the situation in finite groups), all CP covers for a Lie algebra
are isomorphic. Throughout this section, L will represent a Lie algebra over a
field.
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Bogomolov multiplier. The Bogomolov multiplier is a group-theoretical in-
variant that introduced as an obstruction to the rationality problem in alge-
braic geometry. Let K be a field, G be a finite group and V be a faithful rep-
resentation of G over K. Then there is natural action of G upon the field of
rational functions K(V). The Noether’s problem asks whether the field of G-

invariant functions K (V)G is rational over K? Saltman found some examples
of groups of order p with a negative answer to the Noether’s problem, even
when taking K = C. His main method was the application of the unramified

cohomology group H2,(C(V)©,Q/Z) as an obstruction. Bogomolov proved
that it is canonically isomorphic to

Bo(G) =) ker{res& : H*(G,Q/Z) — H?(A,Q/Z)},

where A is an abelian subgroup of G. The group By(G) is a subgroup of the
Schur multiplier and Kunyavskii named it the Bogomolov multiplier of G. Thus
vanishing the Bogomolov multiplier leads to positive answer to Noether’s
problem. Moravec in [3] introduced an equivalent definition of the Bogo-
molov multiplier. In this sense, he used a notion of the nonabelian exte-
rior square G A G of a group G to obtain a new description of the Bogo-
molov multiplier. He showed that if G is a finite group, then By(G) is non-
canonically isomorphic to Hom(By(G),Q/Z), where the group By(G) can be
described as a section of the nonabelian exterior square of a group G. Also,
he proved that By(G) = M(G)/ My(G), such that the Schur multiplier M (G)
interpreted as the kernel of the commutator homomorphism G A G — [G, G|
given by x Ay — [x,y], and My(G) is the subgroup of M(G) defined as
My(G) = (x Ay | [x,y] =0, x,y € G). Thus in the class of finite groups, By(G)
is non-canonically isomorphic to By(G). With this definition all truly nontriv-
ial nonuniversal commutator relations is collected into an abelian group that
is called Bogomolov multiplier. Furthermore, Moravec’s method relates Bo-
gomolov multiplier to the concept of commuting probability of a group and
shows that the Bogomolov multiplier plays an important role in commutativ-
ity preserving central extensions of groups, that are famous cases in K-theory.

Hopf-type formula for Bogomolov multiplier: We recall Hopf-type formula
for groups and Lie algebras as follows. Let K(F) denotes {[x,y]|x,y € F}.
Theorem 2.1. Let G be a group and L be a Lie algebra. Then

. _F ‘ 5 ~ RNy (F)
(i) If G = ¢- be a presentation for G, then By(G) = m,

~ 2
(i) IfL= 1% be a presentation for L, then By(L) = %

Definition 2.2. Let C and By be Lie algebras. We call a pair of Lie algebras (C,By), a
commutativity preserving defining pair (CP defining pair) for L, if

L=C/By, ByCZ(C)NnC?*, BynK(C)=0.

En- 80



A pair (C,By) is called a maximal CP defining pair if the dimension of C is maximal.

Definition 2.3. For a maximal CP defining pair (C,By), C is called a commutativity
preserving cover or (CP cover) for L.

Definition 2.4. Let c(L) =

{(C,A\) | A € Hom(C,L), A surjective and ker A C C>NZ(C), kerANK(C) =0}.
(T, ) is called a universal member in c(L) if for each (C,A) € c¢(L), there exists
h' € Hom(T,C) such that Aoh’ = 1.

Proposition 2.5. Let L be a finite dimensional Lie algebra. Then (T,7) is a universal
element of c(L) if and only if T is a CP cover.

Proposition 2.6. Let L be a finite dimensional Lie algebra, then all CP covers of L are
isomorphic.

3. Bogomolov multiplier and the Lazard correspondence

The section is devoted to show that the Bogomolov multiplier of a Lie ring
L and a group G is isomorphic, when L is Lazard correspondent of G. Note
that a Lie ring is termed a Lie algebra over that field. Also a Lie ring can be
defined as a Z-Lie algebra, and p-Lie ring is a Lie algebra over Z/p*Z for
some positive integer k. Therefore more definitions and proofs of Lie rings
can be obtained as generalizations from the Lie algebras, and there are similar
results between finite Lie rings and finite dimensional Lie algebras over a field.
The Baker-Campbell-Hausdorff formula (B-C-H) and its inverse. Let L be a
p-Lie ring of order p" and nilpotency class ¢ with p —1 > c and G be a finite
p-group with order p” and the same nilpotency class c. For every x,y € L, the
B-C-H formula is a group multiplication in terms of Lie ring operations

1 1
xy:=x+y+ E[x,y]L + E[x,x,y]L + ...

The inverse g~ ! of the group element g corresponds to —g. and the identity
1 in the group corresponds to 0 in the Lie ring. So, the B-C-H formula is
used to turn Lie ring presentations into group presentations. Conversely
the inverse B-C-H formula is a Lie ring addition and Lie bracket in terms of
group multiplication that it is used to turn group presentations into Lie ring
presentations. When c < 14, we have the general form
-1
x+y:=xylxyld ..., [xoylr= [yl xylge..

The Lazard correspondence. The B-C-H formula and it’s inverse give an iso-
morphism between the category of nilpotent p-Lie rings of order p" and the
nilpotency class ¢, provided p — 1 > ¢ and the category of finite p-groups of
the same order and nilpotency class which is known as the Lazard correspon-
dence. By using this correspondence, in the same line of investigation, the
same results on p-groups can be checked on p-Lie rings.
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Proposition 3.1. Let G be a finite p-group of class at most p — 1, and L be its Lazard
correspondent. Then every CP defining pair of G is in the Lazard correspondence with
a CP defining pair of L and vice versa.

Theorem 3.2. Let G be a finite p-group of class at most p — 1, and L be its Lazard
correspondent. Then

(i)  The isomorphism types of CP covers of G are in the Lazard correspondence with

the isomorphism types of CP covers of L and vice versa.
(ii) The Bogomolov multipliers of G and L are isomorphic as abelian groups.
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The Annihilator Graphs of Modules

H. PASBANI* and M. HADDADI

Abstract
In this paper, we introduce the annihilator graph of a module over a commutative ring with
identity. We study the relations between algebraic properties of modules and graph properties
of the annihilator graph. In particular, we study connectivity, girth and relations between the
annihilator graph and the zero-divisor graph of a module.

Keywords and phrases: Zero divisor graph, Annihilator graph. .
2010 Mathematics subject classification: Primary: 05C25,05C38; Secondary: 05C40.

1. Introduction

Throughout, R is a commutative ring with nonzereo identity and M is an
unital R-module. An element x € R is a zero-divisor if there exists a nonzero
¥y € R such that xy = 0. We denote the set of zero-divisors of R as Z(R),
and the set of nonzero zero-divisors denoted by Z(R)*. The zero-divisor
graph of R, denoted by I'(R), is the graph with vertex set Z(R)*, and for
distinct elements x,y € Z(R)*, the vertices x and y are adjacent if and only
if xy = 0. The study of the zero-divisor graph goes back to Beck, [5].
Recently, many different graphs on commutative rings have been studied by
some authors, see [1, 8]. Badawi, in [2], introduced the annihilator graph of
a commutative ring R, denoted AG(R). For x € R, anng(x) = {r € R :
rx = 0}. AG(R) is a simple graph with the vertex set Z(R)* and for any
two distinct elements x,y € Z(R)*, the vertices x and y are adjacent if and
only if anng (x) Uanng(y) C anng(xy). Note that zero divisor graph I'(R) is a
subgraph of annihilator graph AG(R).

As a generalization of the zero divisor elements of commutative rings to
modules, Behboodi in [4], defined the set of zero divisor elements of modules.
He defined three types of zero divisor elements, weak zero divisor, zero
divisor and strong zero divisor. In the following, we focus on the set of weak
zero divisor elements of M and as a generalization of the annihilator graph of
a commutative rings [2], we define the annihilator graph of a module. Let M
be an R-module and m € M, the set of {r € R : rM C Rm} is denoted by I;,.
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Definition 1.1. Let M be an R-module and m € M. Then m is called an strong
zero divisor of M, if m = 0 or ann(M) C I, and there exists 0 # m' € M that
ann(M) C I, C Rand I,,I,,M = 0.

For any R-module M, Z*(M) denote the set of all strong zero-divisors of
M and Z*(M) denote the set of all non zero zero-divisors of M. By the above
observation, Behboodi [4] associated a zero-divisor graph to a module that the
vertices are the elements of Z*(M):

Definition 1.2. Let M be an R-module. The zero-divisor graph of M, denoted I'* (M),
is the graph associated to M whose vertices are the elements of Z*(M), and two
distinct vertices m, m’ are adjacent if and only if I, I, M = 0.

Therefore, we can define the annihilator graph of modules as following;:

Definition 1.3. Let M be an R-module. The annihilator graph of M, denoted
AG(M), is the graph associated to Z* (M) whose vertices are the elements of Z* (M),
and distinct vertices m, m' are adjacent if and only if ann(ImI,yM) # ann(I,M) U
ann(I,/M).

In the following, we set up some definitions and notations of the modules
and the simple graphs.

Throughout M is an R-module, Z*(M) is the set of the weak zero divisors
elements of M and Z*(M) = Z*(M)\ {0}, TM) = {m € M : am =
0,forsome0 # a € R}, ann(M) is the annihilators of M and /ann(M) is
its radical ideal. For a submodule N of M ann(N) = {r € R: tfN = 0}. An
R-module M is called a multiplication module if for any m € M, Rm = I,,M,
where I, = ann(M/Rm), see [7]. Let m € M, m is called a torsion element if
ann(m) = {r € R: rm = 0} is not zero ideal and the set of all torsion elements
of M is denoted by T(M).

Let m and m’ be two distinct vertices of a simple graph G. If m and m’ are
adjacent, then it is denoted by m — m’ and it is called an edge of G. A graph
is called connected if there is a path between any two distinct vertices. For a
vertex m of G, the set of all vertices that are adjacent with m is denoted by
Ng(m). The diameter and girth of a connected graph are denoted by diam(G)
and gr(G), respectively. A complete bipartite graph is a graph G which its
vertex set may be partitioned into two disjoint nonempty vertex sets V; and
V> such that two distinct vertices are adjacent if and only if they are in distinct
vertex sets. If | V; |=n and | V, |= n, the complete bipartite graph is denoted
by K"™" 1f | V1 |=1or| V, |=1, then we call G a star graph.

Our main purpose is to compare the theoretical properties of zero-divisor
graph of modules and annihilator graph of modules and to establish the
some important graph theory properties of the annihilator graphs of a mod-
ule. In second section, we show that AG(M) is a connected graph with
diam(AG(M)) < 2. we show that gr(AG(M) < 4, whenever AG(M) contains
a cycle. In the third section, we determine when AG(M) is identical to I'(M).
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For notations and terminologies not given in this paper, the reader is
referred to [6, 9].

2. Main Results

In this section, the properties of adjacent vertices in the annihilator graph
will be studied. We determine the diameter and the girth of these graph. Also
we specify the annihilator graph of a module, when its girth is not 3.

Proposition 2.1. Let M be an R-module and m and m' be distinct elements of Z*(M).
Then

(i) m,m’ are not adjacent in AG(M) if and only if either ann(InLyM) =
ann(InM) or ann (I [,y M) = ann(I,/M).

(i) If m,m’ are not adjacent in AG(M), then ann(InM) C ann(I,M) or
ann(IyM) C ann(InM).

(iii) If ann(ImnM) ¢ ann(I,yM) and ann(I,,M) ¢ ann(InM), then m — m’ is an
edge of AG(M).

(iv) Ifdppy(m,m') = 3, then m —m’ is an edge of AG(M).

Proposition 2.2. Let M be an R-module. Assume that m and m’ are distinct elements

of Z*(M). Then

(i) Ifm—m'isanedge of T*(M), then m — m’ is an edge of AG(M). Thus I'*(M)
is a subgraph of AG(M).

(i) If m,m' are not adjacent vertices in AG(M), then there exists m" € Z*(M)
such that m" ¢ {m,m'} and m —m" —m’ is a path in T*(M) and hence in
AG(M).

(iii) If Ly and L, are nilpotent ideals of R. Then m — m’ is an edge of AG(M).

Theorem 2.3. Let M be an R-module. Then AG(M) is a connected graph with
diam(AG(M)) < 2.

PROOF. It follows from Proposition 2.2 (ii). O

Theorem 2.4. Let M be an R-module. Then gr(AG(M)) € {3,4, c0}.

Theorem 2.5. Let M be an R-module such that /ann(M) = ann(M). If
gr(AG(M)) = 4, then AG(M) = K™, where n,m > 2.

Lemma 2.6. Let M be an R-module. Assume that gr(AG(M)) = oco. Then
(i)  AG(M) is an star graph.
(i) T*(M)=AG(M).
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3. When the Annihilator Graph and the Zero-divisor Graph of a Module
Are the Same

A proper ideal I of R is called 2-absorbing if whenever abc € I for
a,b,c € R,thenab € I or bc € I or ac € I, see [3]. In this section, we determine
some module that the annihilator graph and the zero divisor graph of these
modules are the same.

Proposition 3.1. Let M be an R-module such that ann(M) is a 2-absorbing ideal of
R. ThenT*(M) = AG(M).

Proposition 3.2. Let m € Z*(M) such that ann(I,M) be a prime ideal of R. Then
Nr«(pry (m) = Nagom (m).

Theorem 3.3. Let M be an non cyclic multiplication module that M # T(M). If
Nr-(p) (m) = Nagowy(m), then either \/ann(Im) = ann(Im) or /ann(Im) =
Nil(R).
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Sums of Sylow numbers of finite groups

A.K. ASBOET*

Abstract

Let G be a finite group, 1,(G) be the number of Sylow p-subgroups of G, and 77(G) be the set
of prime divisors of |G|. We set S(G) = {p € 1(G)|n,(G) > 1} and define 5p(G) = ¥ n,(G).
peS(G)

In [1], the authors worked on 6y(G), with small éy(G). Continuing [1], our further investigation
show that if Jp(G) < 57, then G is solvable or G/N = As or G/N = S5, where N is the largest
normal solvable subgroup of G.

Keywords and phrases: Sylow number, nonsolvable group. .
2010 Mathematics subject classification: Primary: 20D20 Secondary: 20D15.

1. Introduction

In this paper, all groups under consideration are finite. Denoted by 71(G), the
set of prime divisors of the order of group G, and 7, (G), the number of Sylow
p—subgroups of G. All further unexplained notations are standard, and can
be found in [1] (henceforth to be referred to as I).

In I, we defined the sum of the Sylow numbers and were able to use it to
obtain information about the structure of finite groups. In this paper, we will
continue to work and get new results.

We first need to recall some of the concepts from I. Let S(G) = {
7(G)|np(G) > 1}. We defined the sum of Sylow number of G as dy(G

Z( )np(G). By the third Sylow’s theorem, we see if p € S(G), then n,(G
peS(G
1+ p. If G is a nonabelian simple group, then for every p € 7(G), n,(G
1+ p. Our main result is the following.

~— _ T3
IV I m

Y

Theorem 1.1. If G is a finite nonsolvable group with éy(G) < 29, then G/N = As,
where N is the largest normal solvable subgroup of G. Furthermore, if Z(G) = 1 then
G=As.
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There is probably a number greater than 29 such as m such that 6y(G) < m
and we still get G/N = As. Although this is still open, but we pose the
following theorem. We will prove it in a slightly different way.

Theorem 1.2. If G is a finite nonsolvable group with 6y(G) < 57, then As < G/N <
Ss, where N is the largest normal solvable subgroup of G.

We need the following lemma to prove the theorems.

Lemma 1.3. [3, Lemma 1] Let G be a group and N be a normal subgroup of G. Then
ny(N)ny(G/N) | ny(G) for every prime p.

2. Proof of Theorems

Proof of Theorem 1.1. Let T be a nonabelian composition factor of G. First,
let n,(T) > 8 for every prime divisor p of |T|. Since T is a nonsolvable group,
by Feit-Thompson’s theorem 2 € 77(T). Thus, by Sylow’s Theorem n,(T) > 9.
Let p,g € n(T)\{2}. Then n,(T) > 10 and n,(T) > 10 by Sylow’s Theorem.
Hence, éo(T) > 29, which is a contradiction. Therefore, 1,(T) < 8 for some
pen(T).

Assume that P is a Sylow p-subgroup of T. Then |T : Np(P)| = n,(T) < 7.
So, Nr(P) = H is a proper subgroup with |T : H| <7. Now, T acts on
QO = {Hx|x € T}. For all g € T the map ¢, : Hx — Hxg is a permutation of Q).
Moreover, the map ¢, : Hx — Hxg is a homomorphism T — Sym((Q2). Since
T is a simple group, the kernel of this homomorphism is trivial. Thus, T is
isomorphic to a subgroup of Sy, and so T is isomorphic to a subgroup of Aj.
Hence, T = As, Ag, A7, or PSL(2,7). If T = Ag, A7, or PSL(2,7), then 6o(T) > 29,
which is a contradiction. Therefore, T = As.

Suppose there exists a prime r > 7 such that r | |G|. If n,(G) > 1, then by
Sylow’s theorem 1,(G) > 1+r > 8. Since np(G) > 5, n3(G) > 10, n5(G) > 6, we
have 6y(G) > 21 + 8 = 29, which is a contradiction. It follows that n,(G) =1
for every prime r > 7.

Since G is a finite group, it has a chief series. Suppose that

1=NypdN;<..<aN,_14dN, =G

is a chief series of G. Since G is a nonsolvable group, there exists a maximal
non-negative integer i such that N;/N;_; is a simple group or a direct product
of isomorphic simple groups and N;_; is a maximal solvable normal subgroup
of G. Now, set N; := H and N;_1 := N. Hence, G has the normal series
1< N < H <G such that H/ N is a direct product of isomorphic simple groups.
By the above discussion H/ N is a direct product of copies of As. By Lemma
1.3 and 8y(G) < 29, we have H/N = As. Set H:= H/N = As and G := G/N.
Hence,

As=H=HCg(H)/Cg(H) < G/Cx(H) = Ng(H)/Cg(H) < Aut(H).
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If K={x e G| xN € Cg(H)}, then G/K=G/Cg(H). So
A5 < G/K < Aut(A5) = 55.

Therefore, G/K = As or G/K = Ss.

Suppose that G/K = Ss. We know that 1,(Ss) = 15, n3(S5) = 10 and
1’15(55) = 6. By Lemma 1.3, n2(55) =15 | nz(G), 1’13(55) =10 | ng(G) and
n5(Ss) = 6 | n5(G), a contradiction. Therefore, G/K = As.

We show that K = N. Suppose that K # N. By Lemma 1.3, and the
assumption ép(G) < 29, n,(K) = 1 for every prime p € 71(G), so K is a nilpotent
subgroup of G. Since Cg(H) = K/N and N is a maximal solvable normal
subgroup of G, K is a nonsolvable normal subgroup of G, a contradiction.
Thus, K= N, and so G/N = As.

Now, let Z(G) = 1. We show that N = 1. Assume that N # 1. Let
R € Syl,(N) for some r € 71(N) and let P € Syl (G) for some p € {2,3,5}\{r}.
Since R < G, we have P < Ng(R) = G. So, P normalizes R. If N £ Ng(P), then

n,(G) =|G: Ng(P)| > |G/N: Ng(P)N/N]|
=|G/N: Ng/n(PN/N)| = n,(G/N).

On the other hand, n,(G/N) | n,(G). So, if p = 2, then n,(G) > 15,if p =3,
then 7n,(G) > 40, and if p =5, then n,(G) > 36. Since Jy(G) < 29, we get
a contradiction. Hence, R < N < Ng(P). Now, we have P < Ng(R) and
R < Ng(P),itfollows that [P,R] =1. Thus, R < Cg(P). Since G/ N is generated
by its Sylow p-subgroups, it follows that Z(R) < Z(G) =1, a contradiction.
Therefore, G = As. O

Proof of Theorem 1.2. Since G is a finite nonsolvable group, it has the
normal series 1 < N < H < G such that H/ N is a direct product of isomorphic
simple groups, and N is a maximal solvable normal subgroup of G. We show
that H/N = As. By [1, Corollary 1.8.], there exists a prime p € 7(G) such
that n,(H/N)? > |H/N]|. Since 6(G) < 57 and n,(H/N) < n,(G), we have
n,(H/N) < 57. Hence, |H/N| < 57% = 3249. But by [2], the simple non-
abelian groups of order less than 3249 are: As, Ag, A7, PSL(2,7), PSL(2,8),
PSL(2,11), PSL(2,13), and PSL(2,17). It is easy to check that éy(T) > 57,
when T = Ag, Ay, PSL(2,7), PSL(2,8), PSL(2,11), PSL(2,13), and PSL(2,17).

Therefore, H/N = As. Now, if we set H := H/N = As and G := G/N, then
As=H=HCg(H)/Cs(H) < G/Cgz(H) = Nz(H)/Cg(H) < Aut(H).
Put K= {x € G| xN € Cg(H)},so G/K=G/Cg(H). Hence,
As < G/K < Aut(As) = Ss.

Let G/K = S5. We show that K = N. Suppose that K # N. Since C5(H) =
K/N and N is a maximal solvable normal subgroup G, K is a nonsolvable
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normal subgroup of G. By Lemma 1.3, n5(Ss5) =15 | n2(G), n3(Ss) =10 | n3(G)
and n5(S5) = 6 | n5(G). Also, by Lemma 1.3, n,(K)n,(Ss) | n,(G) for every
prime p € 71(G). On the other hand, 6y(G) < 57, so n(K) = 1. Since K is a finite
nonsolvable group, it has the normal series 1 < Ny < H; < K such that H;/N;
is a direct product of isomorphic simple groups. It follows that n5(K) > 1, a
contradiction. Therefore, K = N.

Let G/K = As. We also in this case show that K = N. Suppose that K # N.
It follows that K is a nonsolvable normal subgroup of G. By Lemma 1.3,
112(A5> =5 ‘ n2(G), n3(As) = 10 ’ 1’13(G) and 1’15(145) =6 ‘ n5(G). On the other
hand, by Lemma 1.3, n,(K)n,(As) | n,(G) for every prime p € 7(G). Since
J0(G) < 57, we have ny(K) € {1, 3,5}, n3(K) =1, and n5(K) = 1.

First, assume that 1, (K) = 1. Arguing as S5, K= N.

Next, let np(K) =3, or 5. By Lemma 1.3, §p(K) < 57. Since K is a finite
nonsolvable group, it has the normal series 1 < Ny < H; < K such that H; /Nj is
a direct product of isomorphic simple groups. Similar to the above discussion,
Hi/Njp = As. It follows that n3(K) > 1, a contradiction. Therefore, K = N.
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The Schroder-Bernstein Theorem for the class of Baer modules

N. DenGHANT® and S. T. Rizvi

Abstract

The main objective of this work is to study the Schroder-Bernstein property (shortly SB property) for the
class of Baer modules. Our motivation comes from Kaplansky’s Theorem showing that any Baer x-ring
satisfies the SB property. Examples which illustrate our results are provided.

Keywords and phrases: Baer, direct summand, extending, Rickart, subisomorphism..
2010 Mathematics subject classification: Primary: 16D80, 16E50; Secondary: 16D99.

1. Introduction

Throughout this paper, we assume that R is an associative ring (not necessarily
commutative) with unity. All modules are right and unital. Let M be an R-module.
The notations N € M, N < M, or N <o M mean that N is a subset, a submodule,
or a direct summand of M, respectively. Endg(M) is the ring of R-endomorphisms of
M. The notations M and M“ mean @;ca M; and [],c4 M;, respectively, where A is an
index set and each M; ~ M. The annihilator of an element m € M will be denoted by
anng(m). For other terminology and results, we refer the reader to [1] and [5].

The famous Schroder-Bernstein Theorem states that any two sets with one to one maps
into each other are isomorphic. The question of whether two subisomorphic algebraic
structures are always isomorphic to each other has been of interest to a number of
researchers. Bumby in 1965 [2], showed that any two injective modules which are
subisomorphic to each other are isomorphic. For abelian groups, Kaplansky in 1954 [4,
p-12], posed the following question, also known as Kaplansky’s First Test Problem: “If
G and H are abelian groups such that each one is isomorphic to a direct summand of the
other, are G and H necessarily isomorphic?" Negative answers have been given to this
question by several authors. Besides, Kaplansky in 1968 [5, Theorem 41], showed that
every Baer x-ring satisfies this analogue of the Schroder-Bernstein Theorem. Recall
that a ring R with an involution x is called a Baer %-ring if the right annihilator of
every nonempty subset of R is generated by a projection e (the idempotent e of the
*-ring R is called a projection if e* = ¢). In particular he proved the following result:
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Theorem 1.1. [5, Theorem 41] Let R be a Baer x-ring and e, f be projections in R. If
eR is isomorphic to a direct summand of fR and fR is isomorphic to a direct summand
of eR then eR is isomorphic to fR.

Following [3], an R-module M is called to satisfy the Schroder-Bernstein prop-
erty(or SB property) if any two d-subisomorphic direct summands of M are isomor-
phic (the R-modules N and K are called d-subisomorphic to each other whenever N is
isomorphic to a direct summand of K and K is isomorphic to a direct summand of N).
Moreover, a subclass C of R-modules is called to satisfy the SB property provided that
any pair of members are isomorphic whenever they are d-subisomorphic to each other.
By Kaplansky’s Theorem, every Baer x-ring satisfies the SB property.

Kaplansky in 1968 [5], introduced the notion of Baer rings. Recall that a ring R is
called Baer if the right annihilator of any nonempty subset of R is generated by an
idempotent. It is easy to observe that the Baer property is left and right symmetric
for any ring. The notion of a Baer ring was extended to modules. An R-module M is
called Baer if for all N < M, anng(N) is a direct summand of S where S = Endg(M)
[1, Chapter 4]. Clearly R is a Baer ring if Rg is Baer. An R-module M is called Rickart
if Kerf = anny(f) <¢ M where S = Endg(M) and f € S. A ring R is called right
(left) Rickart if Rg (gR) is Rickart. Clearly every Baer module is Rickart. For more
details see [1, Chapter 3].

Now what Kaplansky proved for Baer %-rings (Theorem 1.1), motivated us to ask
“when any pair of subisomorphic or d-subisomorphic Baer modules are isomorphic to
each other".

In this paper, first we give several examples to show that subisomorphic Baer modules
are not necessarily isomorphic to each other (Examples 2.2 and 2.3). We also show that
two Rickart modules which are d-subisomorphic to each other are not isomorphic in
general. In the main theorem, we prove that if My is Baer and the set of all idempotents
in Endg(M) forms a complete lattice then My satisfies the SB property.

2. Main Results

We recall that a x-ring (or ring with involution) is a ring with an involution x — x*

such that (x*)* = x, (x + y)* = x* + y* and (xy)* = y*x*. A ring R with an involution
* is called a Baer %-ring if the right annihilator of every nonempty subset of R is
generated by a projection. It is clear that Baer x-rings are Baer rings. By Theorem 1.1,
it is known that every Baer %-ring satisfies the SB property. Therefore it is natural to
ask ourselves whether Baer rings do satisfy the SB property. So we will be concerned
with the question of when any two Baer modules which are subisomorphic or direct
summand subisomorphic to each other are necessarily isomorphic. We begin with the
following basic definitions in this study.
An R-module M is called extending if every submodule of M is essential in a direct
summand of M. An R-module M is called nonsingular if mI = 0 implies that m = 0
where m € M and I is an essentail right ideal of R. A ring R is called right nonsingular
provided that Ry is nonsingular. Next result from [1] is needed for latter uses.
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Theorem 2.1. [I, Theorem 3.3.1] every nonsingular extending module is Baer.

In the following, we give some examples to show that any two subisomorphic Baer
modules are not necessarily isomorphic.

Example 2.2. Let R be a commutative domain which is not PID and I be any non
principal ideal of R. By Theorem 2.1, R, I are Baer R-modules. Clearly they are
subisomorphic to each other while R # 1.

In the following, we show that even if N and K are Baer R-modules with the
stronger condition: “N is isomorphic to a submodule of K and K is isomorphic to
a direct summand of N", N is not isomorphic to K in general.

Example 2.3. Let N = Q(N) ®Zand K = Q(N). By Theorem 2.1, Ky is Baer. Besides,
Nz is also Baer [I, Theorem 4.2.18]. Moreover, it is clear that K <g N and N is
isomorphic to a submodule of K, however, N is not isomorphic to K.

We recall that a ring R is called (von-Neumann) regular provided that for each
r € R, r € rRr. It is well known that regular rings R are precisely the ones whose every
principal (finitely generated) right ideals are direct summands. The following result
was shown in [6]:

Theorem 2.4. [6, Theorem 4] Let M be an R-module and S = Endg(M). Then S is a
regular ring if and only if for each ¢ € S, Kerp and Imy are direct summands of M.

By the above theorem, every R-module M, with the regular endomorphism ring is
a Rickart module. In the following proposition, we show that Rickart modules N and
K are d-subisomorphic to each other if and only if they are epimorphic images of each
other.

Proposition 2.5. Let N and K be Rickart modules. Then N and K are d-subisomorphic
to each other if and only if there are R-epimorphisms N — K and K — N.

Corollary 2.6. If N and K are Baer R-modules then N and K are d-subisomorphic to
each other if and only if they are epimorphic images of each other.

In the next example, we show that two Rickart modules which are d-subisomorphic
to each other are not necessarily isomorphic.

Example 2.7. Suppose that V is an infinite dimensional vector space over a field F
with S = Endp(V). Let 8 = {vi}ic; be a basis for Vg and R = {(f,g) € S XS |
rank(f — g) < oo}. Clearly R is a subring of S X S. We note that R is a regular ring
and so Ry is Rickart. There exist idempotents e and g in R such that eR and gR are d-
subisomorphic to each other however eR is not isomorphic to gR (see [3, Example 2.2]
for more details). Since every direct summand of a Rickart module has the property
[1, Proposition 4.5.4], eR and gR are Rickart R-module. Therefore the Rickart module
Rg does not satisfy the SB property.
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Regarding examples 2.2, 2.3, 2.7, and Theorem 1.1 about Baer x-rings, it is natural
to ask the question: “does any Baer module satisfy the SB property?"
It is clear that any Baer module satisfies the SB property if and only if any pair of Baer
modules which are d-subisomorphic to each other are isomorphic. In order to answer
this question, we note that the main point in the proof of Theorem 1.1, is that the set
of all projections in a Baer %-ring forms a complete lattice under “ < ” (if e, f are
idempotents in aring R, we write e < fincase ef = fe = e,1.e., e € fRf). Whilein a
Baer ring, the set of all right ideals generated by idempotents forms a complete lattice
[1, Theorem 3.1.23].
In the following Theorem, we prove that any Baer module with idempotents in its
endomorphism ring forming a complete lattice has the SB property.

Theorem 2.8. Let M be an R-module and S = Endg(M). If the set of all idempotents
in S is a complete lattice with respect to the ordering e < f then M satisfies the SB

property.
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Some results on 15-valent 2-arc-transitive graphs

FATEME ABEDI* and M. REZA SALARIAN

Abstract

Let X be a connected (G, s)-transitive graph of valency 15 for some s > 2 and G < Aut(X). In

this paper, we give a characterization of the vertex-stabilizer G, when G;;, = 1.

Keywords and phrases: Arc-transitive graph, 2-arc-transitive graph, (G,s)-transitive graph,
vertex-stabilizer.

2010 Mathematics subject classification: Primary: 05C25; Secondary: 20B25.

1. Introduction

In this paper, all graphs are finite, undirected and simple, i.e without loops
or multiple edges. For a graph X, we use V(X), E(X) and Aut(X) to denote
its vertex set, edge set and full automorphism group, respectively. For u,v €
V(X), {u,v} is the edge incident to u and v in X. The set of all vertices adjacent
to v is denoted by X;(v). Let G < Aut(X). We denote the vertex-stabilizer of

v € V(X) in G by G,. Denote by GX 1) the constituent of G, acting on Xi(v)

and by G the kernel of G, acting on X; (v). Then GX 10) o G,/ G}. For an edge
{u,v} € E(X), we write G, = G, N G, and G};, = G N G}.

For each integer s > 0, an s-arc of X is an (s + 1)-tuples (vo,v1, ..., Vs—1,0s) of
vertices such that {v;_1,v;} € E(X) for1<i<sandv; 1 #v;j;1for1 <i<s—1.
If G < Aut(X) is transitive on the set of s-arcs, then X is called (G,s)-arc-
transitive; while if in addition G is not (G,s + 1)-arc-transitive, then X is
called (G, s)-transitive. A graph X is called s-arc-transitive or s-transitive if it is
(Aut(X),s)-arc-transitive or (Aut(X),s)-transitive, respectively. In particular,
X is called vertex-transitive or symmetric if it is (Aut(X),0)-arc-transitive or
(Aut(X),1)-arc-transitive, respectively.

As we all know a graph X is (G, s)-arc-transitive if and only if G is transitive
on V(X) and Gy is transitive on the set of s-arcs with initial vertex v. So the
structure of G, plays an important role in the study of such graphs. Interest
in s-transitive graphs stems from a beautiful result of Tutte [5] in 1947 who
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proved that for any s-transitive cubic graph, s < 5. Tutte’s Theorem was
generalized in 1981 by Weiss [7] who proved that there exist no finite s-
transitive graph for s = 6 and s > 8. Note that the only connected graphs
of valency two are cycles which are s-arc-transitive for any positive integer s.
So the valency of a s-transitive graph is greater than 2. Let X be a connected
(G,s)-transitive graph. Up to now, we know the structure of G, when X has
prime or twice a prime valency [3, 4]. Furthermore, It is a well-known result
that when the valency of X is prime or s > 2, the order of G, is bounded above.

Let p a prime and n a positive integer. We denote by n the cyclic group
of order n, by p” the elementary abelian group of order p", by A, and S, the
alternating group and the symmetric group of degree n. For two groups M
and N, we denote by N.M an extension of N by M and N : M stands for a
semidirect product of N by M.

All the notation and terminology used throughout this paper are standard.
For group and graph theoretic concepts not defined here, we refer the reader
to[1, 2].

The following proposition is about sufficient and necessary conditions for
symmetric graphs.

Proposition 1.1. Let X be a graph and G < Aut(X). Then we have;

(i) X is G-arc-transitive if and only if X is G-vertex-transitive and the vertex-
stabilizer G, is transitive on Xy (v) for each v € V(X).

(i) X is (G,2)-arc-transitive if and only if X is G-vertex-transitive and G, is 2-
transitive on Xy (v) for each v € V(X).

The proof of the next lemma is straightforward

Lemma 1.2. Let X be a (G, s)-arc-transitive graph for some G < Aut(X) and s > 1.
Let {u,v} € E(X). Then we have;

() Go=GpG" = (Gyp Gy 1).G .
We formulate the following lemma from [6-8].

Lemma 1.3. Let X be a connected (G, s)-transitive graph with s > 2 and let {u,v} €
E(X). Then one of the following holds:

i) s<3, G =1and Gi=G:XW gcXM
(ii) G, is a nontrivial p-group, PSLy(q) < Go!

1R

Gaa .
) d_1

,q=p"and [X:(0)| = T

—

In view of ([1], Appendix B), we have the following observation.

Proposition 1.4. Let H be a 2-transitive group of degree 15. Then H = A7, PSL4(2),A15
or 515.
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2. Main Results
In this section, we give our main result as follows.

Theorem 2.1. Let X be a finite connected (G,s)-transitive graph of valency 15 for
some G < Aut(X) and s > 2. Let {u,v} € E(X) and G};, = 1. Then s < 3 and one
of the following holds:

(i) s=2,Gy= Ay, PSLy(2), A5 o0r Sis.
(i) s=23,Gy= Ay x PSLy(7), PSL4(2) x (2% : PSL3(2)), A15 X A14, S15 X S14
or (A15 X A14) 12 with A15 2= 515 and A14 2= 514.

PROOF. Let X be a connected (G, s)-transitive graph of valency 15 for some
G < Aut(X) and s > 2. Let v € V(X). By Proposition 1.1, we get that

Gf 1) s a 2-transitive permutation group of degree 15. So by Proposition

14, G = A, PSL4(2), Ars or Sis. Suppose that Gi, = 1. Then by Lemma
1.3, € {2,3} and G; is isomorphic to a normal subgroup of a vertex-stabilizer

of a permutation group Gz}f 19) " Assume that G} =1. Then G, = Ay, PSL4(2),
Ajys or Si5. Thus, in what follows we may assume that G;; # 1.

Suppose that GX1*) = A;. Then G = PSL,(7) and Gy = Ay x PSLy(7).

Suppose that G?l(v) = PSL4(2). Then we get that G =23 : PSL3(2) and
Gy = PSL4(2) x (23: PSL3(2)).

Suppose that fol(v) = A15. Then G} = Ay and G, = A5 X Aqg.

Suppose that Gf,( 100) o S15. Then G} = A4 or S14. For the former, G, =
(A15 X A14) : 2 with A14 2= 514 and A15 2= 515. For the latter, Gy = 515 X 514.
Finally, it is easy to see that s = 2 for G; = 1, otherwise s = 3. m|
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GCP-graphs
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Abstract

A GCP-graph is a suitable generalization of the Cayley graph where the vertices are elements
of a polygroup. We survey some important properties on GCP-graphs in order to answer this
question: which simple graph is a GCP-graph?

Keywords and phrases: Simple graph; Caylay graph; graph product; polygroup; GCP-graph .
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1. Introduction

The theory of algebraic hyperstructures which is a generalization of the con-
cept of ordinary algebraic structures first was introduced by Marty. Since then
many researchers have worked on algebraic hyperstructures and developed it.
A short review of this theory appears in [3]. Application of hypergroups have
mainly appeared in special subclasses. For example, polygroups which are
certain subclasses of hypergroups are studied by Ioulidis and are used to study
color algebra [1, 2]. Quasi-canonical hypergroups (called “polygroups" by
Comer) were introduced as a generalization of canonical hypergroups.There
exists a rich bibliography on polygroups [4]. This book contains the principal
definitions endowed with examples and the basic results of the theory.

Cayley graphs were first introduced by Cayley as diagrams representing
a group in terms of its generators. Cayley graphs, both in their directed and
undirected form have been widely studied.

A connection between hyperstructure theory and graphs was found in 2019
when Heidari et al. [5, 6] studied the concept of generalized Cayley graphs
over polygroups.

2. Main Results

In this section, we mention to the suitable generalization of the Cayley
graph where the vertices are elements of a polygroup and introduce to some
properties of them.
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Definition 2.1. [5] Let P = (P,0,1,71) be a polygroup and S, say the connection
set, be a non-empty inverse closed subset (ie. S™' = S) of P. Then we define the
generalized Cayley graph GCP(P;S) as a simple graph with vertex set P and edge set

E={{xy}|x#yandxoy 'NS20}.

A graph A is called a GCP-graph if there exists a polygroup P and a connection
set S such that A = GCP(P;S).

Example 2.2. The generalized Cayley graph of the polygroup P = ({1,2,3,4},0,1,71)
and connection set {3,4} is shown in Figure 1.

o|1 2 3 4
1/1 2 3 4
202 1 4 3
303 4 {1,3} {24}
414 3 {24 {1,3

FIGURE 1. GCP(P2; {3,4})

The necessary and sufficient condition that a GCP-graph over a polygroup
be connected is same as in Cayley graphs. In other words:

Theorem 2.3. [5] Let P = (P,0,1,71) be a polygroup and S be a connection set.
Then, the generalized Cayley graph GCP(P;S) is connected if and only if S generates
P.

In what follows, some properties of the generalized Cayley graphs over a
polygroup are given.

Theorem 2.4. [6] Let G1,Gy,...,G, be GCP-graphs and B C {—1,0,1}". Then
Pr(G1,Gy,...,Gn;B) is a GCP-graph.

Corollary 2.5. [6] The Cartesian, tensor, strong and lexicographic product of GCP-
graphs are GCP-graphs.
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Lemma 2.6. [6] Let P = (P,0,1,71) be a polygroup and S be a connection set. Put
Q =P{{v}}, wherev ¢ P. Then

()  GCP(Q;S) is connected.

(I) GCP(P;S) is an induced subgraph of GCP(Q;S).

(III) Every Cayley graph is a GCP-graph;

(IV) All complete graphs and cycles are GCP-graphs.

(V) Every star graph S, is a GCP-graph, where n € IN.

In above lemmas we find some classes of GCP-graphs. In the next theorem,
we restrict ourselves to the graphs of order at most five and prove that all
simple graphs on at at most five vertices are GCP-graphs.

Theorem 2.7. [5] All simple graphs on at most five vertices are GCP-graphs.
Qustion. Are Theorem 2.7 hold for all simple graphs with n > 6 vertices?
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The rate of graded modules over some graded algebras

MARYAM JAHANGIRI* and RASOUL AHANGARI MALEKI

Abstract

Let k be a field, R a standard graded k-algebra and M be a finitely generated graded R-
module. The rate of M, rateg(M), is a measure of the growth of the shifts in the minimal
graded free resolution of M. In this paper, we find upper bounds for this invariant. More

precisely, let (A,n) be a regular local ring and I C n’ be an ideal of A, where t > 2. We prove
that if (B = A/I,m =n/I) is a Cohen-Macaulay local ring with multiplicity ¢(B) = (h+£71),
where i = embdim(B) — dim B, then rateg, (3)(gr,,(N)) <t —1 for every B-module N which is

annihilated by a minimal reduction of m.

Keywords and phrases: Rate, Associated graded module, Koszul algebras.
2010 Mathematics subject classification: Primary: 13D02 ; Secondary: 13D07, 16W50.

1. Introduction

Throughout k denotes a field and R = @;>(R; is a commutative standard
graded algebra over k. We denote by m the graded maximal ideal of R. Let
M = ®;czM; be a finitely generated graded R-module.
There are several invariants that we can associate to M. For each i > 0, we
set
tR (M) = max{j : TorlR(M,k)j #0}

provided that TorX (M, k) # 0, otherwise we set 8 (M) = —oo. Indeed tR(M) is
the maximum degree of minimal generators of the i-th syzygy of M.
The regularity of M as an R-module is defined by

regp (M) = sup{tf (M) —i:i>0}.

The regularity can be infinite. For example if R = k[x]/(x3), then regy (k) =
—+o00.

Assume that M is generated by homogeneous elements of the same degree
d. Then we say that M has a linear resolution if reg, (M) = d. We also say that
R is Koszul if k has a linear resolution that is regy (k) = 0.
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Another important invariant is the rate of graded modules. The Backelin
rate of the k-algebra R is defined as

Rate(R) = sup{(t{(k) —1)/i —1:i >2}.

The notion of rate for an algebra R, introduced by Backelin ([4]) to study
the Koszul property of R. He showed that R(®) = @,5(R;., the c-th Veronese
subalgebra of R, is Koszul for all ¢ sufficiently large.

Aramova, Bircinescu and Herzog [3], extended the result of Backelin for
modules. They defined the notion of rate for a finitely generated graded R-
module M:

rateg (M) = sup{tR(M)/i:i>1}.

For an integer d the notation M(d) stands for the graded module with
M(d); = My for all i. A comparison with Backelin’s rate shows that

Rate(R) = rateg(m(1)).

Note that with the above notations rateg (R) = —oo. Also, it turns out that
the rate of M is finite (see [3, 1.3]).

Let dimg Ry = n, then R = S/I, where S = k[x1,...,x,] is a polynomial ring
over k and I is a graded ideal of S generated by elements of degree > 2. There
are lower and upper bounds for the rate of R:

m(I) —1 < Rate(R) <m(in(I)) — 1,

here for a graded ideal | the notation m(]) stands for the maximum degree of
minimal generators of | and in(I) is the initial of I with respect to some term
order. We refer the reader to [5] for more details and discussions on this result.

Since m(I) > 2, we have Rate(R) > 1 and equality holds if and only if R is
Koszul. Also, if M is generated in degree zero, one has tf(M) > 1 and so by
definition we have rateg(M) > 1. The equality holds if and only if M has a
linear resolution.

Hence rate(M) can be considered as a measure of how much M deviates
from having linear resolution.

Much less known about the upper bounds for the rate of graded modules.
In this paper we study the rate of graded modules over some special graded
algebras and find some upper bounds for the rate.

2. Main Results

2.1. Change of ring. We study the behavior of the rate of a graded module
via a change of ring.

Proposition 2.1. Let ¢ : R — S be a surjective homomorphism of standard graded
k-algebras. Assume that M is a finitely generated graded S-module generated by
homogeneous elements of degree zero. If rateg (S) = 1, we have then

rateg (M) < rates(M)
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Remark 2.2. Let the situation be as in Proposition 2.1. Aramova et al. in [3,
Proposition 1.2] showed that

rateg(M) < max{rateg (M), rater(S)}.
By combination of this result with Proposition 2.1 we get
rateg (M) = rateg(M).

2.2. Rate of modules over some special rings. The following lemma which
gives an upper bound for the rate of modules over artinian algebras, will be
used in the proof of the main theorem.

Lemma 2.3. Let R be an Artinian standard graded K-algebra such that R; = O for all
i > t. Then for a finitely generated non-negatively graded R-module M,

rateg (M) < t&(M) +t —1.

Let (R,m) be a Cohen-Macaulay complete local ring and R >~ A/I be a
minimal Cohen presentation of R where (A, n) is a regular local ring and I C n
a perfect ideal of A with t > 2. It is well-known that e(R) > h + 1 where ¢(R)
is the multiplicity of R and & = embdim(R) — dimR (see for example[1]). The
ring R is called of minimal multiplicity if the equality holds.

As remarked in [6], if I C nf with t > 3 the inequality ¢(R) > h + 1 is not
sharp. Then it is shown that e(R) > (h+,i_1). The ideal I is called t-extremal if
the equality holds.

The second author in [2, Proposition 2.14] showed that if R is of minimal
multiplicity, that is 2-extremal, then R$ := gr, (R) is Koszul and N¢ :=gr, (N)
has a linear resolution as a graded R$-module, for every R-module N annihi-
lated by a minimal reduction of m. The following theorem can be considered
as a generalization of the result of [2] mentioned above.

Theorem 2.4. Let (R, m,k) be a Cohen-Macaulay local ring and e(R) = (hﬂifl)
where t is the initial degree of a defining ideal of RS and h = embdim(R) — dimR.
Let N be an R-module and ] be a minimal reduction of m. Then

1. Rate(R8)=rt—-1,

2. ifJN =0, then rategs (N8) < t—1.

As a corollary, when t = 2, we recover Proposition 2.14 of [2].

Corollary 2.5. Let (R, m) be a Cohen-Macaulay local ring with minimal multiplicity.
Then RS is a Koszul algebra. If N is a finitely generated R-module annihilated by a
minimal reduction of m, then N3 has a linear resolution.
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Dominating set for bipartite graph I'(v,k,3,2)

ABOLFAZL BAHMANI*, MOJGAN EMAMI and OZRA NASERIAN

Abstract

A bipartite graph (X,Y) in which X and Y are, respectively, the set of all I-subsets and all k-
subsets of a v-set V and two vertices being adjacent if they have i elements in common, is
denoted by I'(v,k,1,i). In this paper we study dominating set for I'(v,k,3,2),4 < k <6.

Keywords and phrases: Dominating set, Bipartite graph, Steiner triple system.
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1. Introduction

Let t,k,v and A be positive integers such that 0 <t < k < v. Moreover, let V
be a v-set. All of the i-subsets of V are denoted by P;(V). The pair D = (V,B),
where B is a subset of P (V) (called blocks), is called a t — (v,k,A) design such
that every t-subset of V appears in exactly A blocks [1]. The number of blocks
in D is shown by b. Moreover, a 2 — (v,3,1) design is called a Steiner triple
system and is denoted by STS(v) [1].

Theorem 1.1. [1] An STS(v) exists if and only if v 2103,

A modified Steiner triple system on V denoted by MSTS(v) is a proper
subset of P3(V) such that every pairs of V occurs exactly once except for pairs
(1,2),(2,3),--,(v—2,v—1),(v—1,1), which do not occurred at all and we
have |MSTS(v)| = w. A graph is a pair G = (V,E), where E C P,(V)
in which V is the vertex set and E is the edge set of G. Two vertices u and v
are adjacent or neighbors if {u,v} € E. A dominating set for a graph G is a
subset S C V(G) such that every vertex of G either is in S or is adjacent to at
least one element of S. The domination number of G, is the minimum size of a
dominating set in G and is denoted by y(G) [3]. The following theorem gives
a classic bound for y(G):
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Theorem 1.2. [3] Let G be an n-vertex graph with minimum degree 6, then

n(l+In(6+1))
J+1 '
Let v,k,I be positive integers, i be a non-negative integer and v > k > [ > i.
Define a bipartite graph I'(v,k,1,i)[2] by V(T'(v,k,1,i)) = P (V) U P;(V) such
that

7(G) <

{u,w} € E(T(v,k,1,i)) < |[unw|=iue P(V),we (V).

In this paper, we study dominating sets for I'(v,k,3,2), where 4 < k < 6, using
design theory.

2. Main result
We begin our results with the following

Theorem 2.1. Let G =T(v,4,3,2) and v > 12, then

702 — 160+ 9
< - -
7(G) < N

PROOF. We consider two cases:
Case i. Suppose v is an odd integer and v > 7. Let

X = P3(V), Y = P4(V), V= {{11,612,- . ,av}.
We give a subset of X as a dominating set for Y and give a subset of Y as
dominating set for X.

6
a) If v =1 or 5, then any MSTS(v) C X is a dominating set for Y since any
vertex in Y such as B = {ay,a,,a3,44} contains at least one non-consecutive
pair, therefore B is dominated by a block of MSTS(v).

b) If v 2 3, then any STS(v) is a dominating set for Y, since any vertex in Y as
B ={ay,ay,a3,a4} is dominated by a block of STS(v) having exactly two points
in common with B.

In next step, we give a subset of Y as a dominating set of X. Let

Ci={m,a2},Co = {az,a4},--- ,Cvz;l ={ay_2,0p-1}

and C = {Cy,Cy, -~ ,C%l}. The set P;(C) is a dominating set for X.
Case ii. Suppose v is an even integer and v > 12. Let

X = P3(V), Y = P4(V), V= {Lll,&lz,- o ,Elv}.

Let V' = V U {x}, where x ¢ V. Similar to Case i on V' we may consider
either STS(v + 1) or MSTS(v + 1) and then delete the blocks containing x.

En - 107



The remaining blocks dominate Y. In next step, we give a subset of Y as the
dominating set for X. Let

Cl = {alllZZ}'CZ = {113,6!4},‘ e er/Z = {av—l;av}
C={C,C,-,Co}and C"={Cz,4,---,Cy}. In this case D (CYUP(C)isa
dominating set for X.

Theorem 2.2. Let G =T(9v,5,3,2) and v > 9, then

2 _
7(G)§4v ’:1120—1—59'

PROOF. Suppose
X = p3(V), Y = P5(V), V= {611,112,' . ,av}.

Let V= AU B such that [ANB| =0or 1and also |A| ° 1 or3and | B 2 1or3.
Hence STS(]A|) and STS(|B|) exist. The set of all blocks of these two designs
is a dominating set for Y. Note that the maximum number of this dominating
set occurs when v = 12m + 11 = (6m + 3) + (6m + 9) + (—1). On the other
side for a dominating set for X, we may consider two cases

Case i. Suppose that v be an odd integer. Let

Ci={m,a2}, Co = {az,as},---, C% ={ay_4,80_3}

and C = {Cy,Cy, - -~ ,Cz;2;3}. We add 4,1 to all members of P,(C) to get a sets

of five tuples over V. We do the same with a4,_, to get a similar set of five
tuples. Now by adding the block {a1,4,,a3,a,_2,4,_1} to these later two set of
five tuples we have a dominating set for X.

Case ii. Suppose that v be an even integer. Let

Ci ={a,a2},Co = {az, a4}, - 'C”T*Z ={ay-3,a02}

and C = {Cy,Cy, - ,C%z}. We add a4, to all members of P,(C) to get a set of

five tuples over V. We do the same with a,_; to get a similar set of five tuples.
The set of these five tuples is a dominating set for X.

Theorem 2.3. Let G =T(9v,6,3,2) and v > 9, then

7v% — 180 + 40
<
7(G) < o

PROOF. Suppose
X = P3(V), Y = P6(V), V= {Cl],llz,' . ,llv}.

If v is odd and v 2 or 5, then MSTS(v) is a dominating set for Y and if v s 3
then STS(v) is a dominating set for Y. If vis even, let V' =V — {a,}, then |V’|
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is odd and as above we have a dominating set for Y. In next step, we give a
subset of Y as a dominating set of X. If v is even, let

Ci={m,a2},Co={az,a4},---,Cpjo = {ap-1,a0}

and C = {Cy,C3,---,Cy/2}. We add C; to all members of P>(C) to get a set of
six tuples over V. This set along with the set A = {C2C3Cy,C5C6Cr,--- } is a
dominating set for X. Note that if |C| is not a multiple of 3, the last triple of
A may build with the last one or two elements of C and any other member
of C. If vis odd, let V' =V — {a,} then |V’| is even and as above we have a
dominating set for X.

One should note that the bounds given in this paper for v(G) is sharper
than the bound given in Theorem 1.2.
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n-Jordan *-Derivations in Fréchet locally C*-algebras

K. GHASEMI®, J. JAMALZADEH and S. GHAFFARY

Abstract

By using the fixed point method, we prove the Hyers-Ulam stability and the superstability of
n-Jordan *-derivations in Fréchet locally C*-algebras for the following generalized Jensen-type

functional equation
a+b a—b
(50) (") =

Keywords and phrases: n-Jordan x-derivation; Fréchet locally C*-algebra; Fréchet algebra; fixed
point method; Hyers-Ulam stability. .

2010 Mathematics subject classification: Primary: 17C65, 47H10; Secondary: 39B52, 39B72, 46L05..

1. Introduction
In this paper, assume that 7 is an integer greater than 1.

Definition 1.1. Let n € N — {1} and let A be a ring and B be an A-module. An
additive map D : A — B is called n-Jordan derivation (n-ring derivation) if

D(a") = D(a)a" ' +aD(a)a" 2 + ...+ a"2D(a)a+a""'D(a),
foralla € A.

n
(D(] [ai) = D(a1)az...an + a1D(az)as...ay + aray...a,_1D(ay)
i=1

forall ay,ay,...,a, € A).
The concept of n-jordan derivations was studied by Eshaghi Ghordji.( [2]).

Definition 1.2. Let A, B be C*-algebras. A C-linear mapping D : A — B is called
n-Jordan x-derivation if

D(a") = D(a)a" ' +aD(a)a" 2 + ...+ a"2D(a)a +a"'D(a),
D(a") = D(a)"
foralla € A.
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Definition 1.3. A topological vector space X is a Fréchet space if it satisfies the
following three properties:

(1) it is complete as a uniform space,
(2) it is locally convex,

(3) its topology can be induced by a translation invariant metric, i.e.,
a metric d : X x X — R such that d(x,y) = d(x + a,y + a) for all
a,x,yc X.

For more detailed definitions of such terminologies, we can refer to [1].
Note that a ternary algebra is called a ternary Fréchet algebra if it is a Fréchet
space with a metric d.

Fréchet algebras, named after Maurice Fréchet, are special topological
algebras as follows.

Note that the topology on A can be induced by a translation invariant
metric, i.e. a metric d: X x X — R such that d(x,y) = d(x 4+ a,y + a) for all
a,x,y e X.

Trivially, every Banach algebra is a Fréchet algebra as the norm induces
a translation invariant metric and the space is complete with respect to this
metric.

A locally C*-algebra is a complete Hausdorff complex *-algebra A whose
topology is determined by its continuous C*-seminorms in the sense that
a net {a;};c; converges to 0 if and if the net {p(a;)};c; converges to 0 for
each continuous C*-seminorm p on A (see [4, 6]). The set of all continuous
C*-seminorms on A is denoted by S(A). A Fréchet locally C*-algebra is a
locally C*-algebra whose topology is determined by a countable family of C*-
seminorms. Clearly, any C*-algebra is a Fréchet locally C*-algebra.

For given two locally C*-algebras A and B, a morphism of locally C*-
algebras from A to B is a continuous *-morphism ¢ from A to B. An iso-
morphism of locally C*-algebras from A to B is a bijective mapping ¢ : A — B
such that ¢ and ¢! are morphisms of locally C*-algebras.

Hilbert modules over locally C*-algebras are generalization of Hilbert C*-
modules by allowing the inner product to take values in a locally C*-algebra
rather than in a C*-algebra.

In this paper, using the fixed point method, we prove the Hyers-Ulam
stability and the superstability of n-Jordan *-derivations in Fréchet locally C*-
algebras for the the following generalized Jensen-type functional equation

F(50) +£ (7)) =@,
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2. Main Results
Lemma 2.1. ([5]) Let A, B be C*-algebras, and let D : A — B be a mapping such

that
Ip(“52) +0(*5" ) I < 1Dl )

forall a,b € A. Then D is Cauchy additive.

Now, we prove the Hyers-Ulam stability problem for n-Jordan *-derivations
in Fréchet locally C*- algebras.

Theorem 2.2. Let A, B be Fréchet locally C*-algebras, and 6 be nonegative real
numbers. let f : A — B be a mapping such that

fCF0) w50~ fua) + £~ FlO) (o) 2+ .

+ Qe () + f(d) — f(d) s <0 @

foralluy e T :={A€C:|A|=1}andall a,b,c,d € A. Then the mapping f : A — B
is an n-Jordan x-derivation.

Theorem 2.3. Let A,B be Frechet locally C*-algebras , and let 6 be nonegative real
numbers. Let f : A — B be a mapping satisfying then the mapping f : A — Bisa
n-Jordan x-derivation

Now we prove the Hyers-Ulam stability of n-Jordan derivations in C*-
algebras.

Theorem 2.4. Let A, B be Fréchet locally c*-algebras. Let f : A — B be a mapping
for which there exists a function @ : A* — RY such that

Y(a,b,c,d) = 22’i<p(2ia,2ib,2ic,2id) < oo, 3)
i=0

f D)+ 5D~ fua) + F() — O +efle)e 2+ .

+ "Ef(e)e+ ") + f(dY) — f(d) g < p(a,b,ed) ()

foralla,b,c,d € Aandall y € TL. Then there exists a unique n-Jordan *-derivation
D : A — B such that

1f(a) = D(a)|p < (a,4,0,0) ®)
foralla € A.
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Corollary 2.5. Let A,B be Fréchet locally C*-algebras, and let f: A — B be a
mapping with f(0) = 0 for which there exist constants 6 > 0 and py,pa, p3,pa €
(—o0,1) such that

I F0) S0 — fua) + F() — O+ ef()e 2 .

+ "2 f()e+ ") + f(d) — f(d)" |18
< O([lall™ + (1672 + lellP + [la]]") 6)

forall a,b,c,d € A and all u € T'. Then there exists a unique n-Jordan -derivation
D : A — B such that

20 P1
I(a) - Do) < 24 %

foralla € A.
Theorem 2.6. Let A, B be Fréchet locally C*-algebras. Let f : A — B be a mapping
for which there exists a function @ : A* — R* such that

¥(a,b,e,d) =Y 2'¢(27'a,27'b,27c,27'd) < oo, (8)

i=0

IIHf(”erb) + uf(5 %)~ Flua) + £(e) = FO" T+ efle)em 2 4.

+ ")+ ") + f(dF) = (@) |lp < pla,b,e,d) (9)

forall a,b,c,d € Aandall y € TL. Then there exists a unique n-Jordan x-derivation
D : A — B such that

If (@) = D(a) s < ¢(a,4,0,0) (10)
foralla € A.

Corollary 2.7. Let A,B be Fréchet locally C*-algebras, and let f: A — B be a
mapping with f(0) = 0 for which there exist constants 0 > 0 and py,pa, p3, pa €
(—o0,1) such that

D)+ S0 — fua) + F() — O+ ef()e 2 .

+ "2 f()e+ " (e) + f(d) — f(d)" |18
O(llal|”r + [[21[7> + [lell”> + [14][**) (11)

forall a,b,c,d € A and all u € T'. Then there exists a unique n-Jordan -derivation
D : A — B such that

IN

p1
I£(a) ~ Dla)llp < T104 1)

foralla € A.
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On Complement to a Submodule of Multiplication Modules

R. MAHTABI*

Abstract
In this paper, after recalling the definitions of multiplication modules and complement to a sub-
module in a module, we find some properties of associated and supported prime submodules
of a multiplication module in connection with complement.

Keywords and phrases: multiplication modules, associated prime submodules, supported prime
submodules, complement to a submodule .
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1. Introduction

In 1979, Singh and Mehdi defined the multiplication modules for the first time
in [5]. Then in 1981, Barnard in [1] defined the multiplication modules in a
different way. After Barnard, El-Bast and Smith in [2], study multiplication
modules in more details. In this paper, the definition of multiplication mod-
ules is coincided to Barnard’s definition.

In this paper all rings commutative with identity and all modules are unitary.
Let S be a non-empty subset of an R-module M then the annihilator of S is
defined as Anng(S) = Ann(S) = {r € R| rS = 0}. By [3] and [4], A proper
submodule N of an R-module M is said to be prime if rx € N, where r € R and
x € M, implies that x € Norr € (N: M). If p= (N : M) then p is a prime
ideal of R and N is called p-prime. The sets of all prime ideals of R and all
prime submodules of an R-module M are denoted by Spec(R) and Spec(M),
respectively. Also the set of all maximal submodules of an R-module M is
denoted by Max(M).

For an R-module M, S~!R-module S~ M is the module of fractions with re-
spect to S. (Notation: M, = S"'M if S = R\ p where p is a prime ideal of R).

2. Definitions and Results

Definition 2.1. By [1], An R-module M is called a multiplication module if for
every submodule N of M there exists an ideal I of R such that N = IM. It can be
shown that N = (N : M)M.
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Definition 2.2. Let M be an R-module.

(i). The prime ideal p of R is called an associated prime ideal of M if for some non-
zero x € M, p = (0: x) = Anng(x). The set of all associated prime ideals of M is
denoted by Assg(M).

(ii). The prime ideal p of R is called a supported prime ideal of M if M # 0. The
set of all such prime ideals is denoted by Suppr(M), that is, Suppr(M) = {p €
Spec(R)| M, # 0}.

It can be proved that

Suppr(M) = {p € Spec(R)| p 2 (0: x) for some x € M, x #0}.
Also if M is finitely generated then
Suppr(M) = {p € spec(R)| p 2 Anng(M)}.

The following proposition is useful in the sequel.

Proposition 2.3. Let M be an R-module and p € Spec(R), where R is a Noetherian
ring. Then p € Suppr(M) if and only if p D q for some q € Assg(M).

Definition 2.4. Let M be an R-module and p a prime ideal of R. We define
M(p) = {x € M| sx € pM for some s € R\p}. Clearly M(p) is a submodule of
M.

Definition 2.5. Let M be a weakly finitely generated R-module. The sets of asso-
ciated prime submodules and supported prime submodules of M are defined,
respectively, as follows:

Assp(M) = {M(p)| p € Assg(M)} and Suppp(M) = {M(p)| p € Suppr(M)}.

Definition 2.6. Let K be a submodule of an R-module M. A submodule N < M
is called a complement to K in M if N is maximal with respect to the property
LN K =0, where L is a submodule of M.

By the Zorn’s Lemma, any submodule S of M has a complement. Because if
Q= {N|N isasubmoduleof Mand NN S =0}, partially ordered by inclusion,
then Q) # @ since (0) € Q. It can be shown that the Zorn’s Lemma applies for
() and therefore () has a maximal element. In fact any submodule Cy of M
with the property Cyp NS = 0 can be enlarged to a complement of S in M.

Definition 2.7. A submodule N of an R-module M is said to be strongly irreducible
if for all submodules K and L of M, the inclusion L N K C N implies that L C N or
KCN.

Proposition 2.8. Let M be a multiplication R-module and let N be a prime submodule
of M. Then N is strongly irreducible.

En-116



Proposition 2.9. Let M be a multiplication R-module and 0 + pM € Suppp(M) be
such that it has a non-zero complement. If pM N gM = 0 for any gM € Suppp(M)
with q # p then pM is a complement to qM in M and also pM is a maximal submodule
of M.

Theorem 2.10. Let M be a multiplication R-module. Then either Suppp(M) =
Max (M) or there exists p1M € Suppp(M) such that its complement in M is zero.

Corollary 2.11. Let M be a multiplication R-module and complement to each element
of Suppp(M) in M is non-zero. Then Suppp(M) = Max(M) = Spec(M).

Theorem 2.12. Let M be a multiplication R-module and let pM € Suppp(M)
be such that it has a non-zero complement C in M. If pM NgM = 0 for each
gM € Suppp(M) with q # p, then

Suppp(M) = Max(M) = {pM, C}.
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On the Center and Automorphisms of Crossed Modules

M. A. DEHGHANIZADEH™

Abstract

The term crossed module was introduced by J. H. C. Whitehead in his work on combinatorial
homotopy theory. Crossed modules and its applications play very important roles in category
theory, homotopy theory, homology and cohomology of groups, algebra, ktheory etc. Actor
crossed module of algebroid was defined by M. Alp. Nilpotent, Solvable, n-Complete and Rep-
resentations of crossed modules was studied by M. A. Dehghanizadeh and B. Davvaz. In this
paper we examine the center, n-center, central automorphisms and n-central automorphisms
groups to crossed modules and obtain some results and theorem.

Keywords and phrases: center, n-center, automorphism, crossed module. .
2010 Mathematics subject classification: Primary: 18D35, 20L05; Secondary: 55U35 .

1. Introduction

We recall some definitions and properties of the crossed module category. A
crossed module (T,G,0) consist of a group homomorphism d : T — G
together with an action (g,t) — 8t of G on T satisfying 9(§t) = gd(t)g~!
and °G)t = sts—1, for all g € Gand s, t € T [1-6]. In addition to the inner
automorphism map 7 : N — Aut(N) already mentioned; other standard
examples of crossed modules are:

- The inclusion of a normal subgroup N — G;

- A G-module M with the zero homomorphism M — G

- And any epimorphism E — G with central kernel.

2. Main Results

Definition 2.1. A crossed module morphism < a, ¢ >: (T,G,9) — (T',G',d")
is a commutative diagram of homomorphisms of groups
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T * 71

Lk

— > G

¢

such that for all x € G and t € T; we have a(*t) =) a(t).

Definition 2.2. Suppose that (T, G, 0) be a crossed module. Center of (T, G, d) is the
crossed module kernel Z(T, G,9) of < 1, >. Thus Z(T, G, 0) is the crossed module
(TC,Stc(T) N Z(G),d) where TS denotes the fixed point subgroup of T; that is,

TC = {te T| “t=tforall x € G}.
Stg(T) is the stabilizer in G of T, that is:
Stg(T) ={xe€ G| *t=tforallt € T}
and Z(T) is the center of G. Note that TC is central in T.

Definition 2.3. Suppose that (T, G,d) be a crossed module. n-center of (T,G,0),
Z"(T, G,9), for n a nonnegative integer g is the crossed module ((T¢)", Z"(G) N Stg(T), )
where

(TCY'={teT|t"=1 and St=t; Vg€ G}

7"G) ={ge€z(G)| " =1}
Stg(T)={ge€ G| $t=t VteT}

The n-central of (T,G,0) is a normal crossed submodule called n-central crossed
submodule of (T, G, 9).

Definition 2.4. Suppose that (T, G,d) be a crossed module and Z(T,G,d); center
of it and < wa,¢ >€ Aut(T,G,0). If < a,¢ > induced of < a,¢ > in

Aut (Tlc, W,é); is identity, then< «, ¢ > is called central automorphism

of crossed module (T, G, d).

Definition 2.5. Suppose that (T,G,0d) be a crossed module and Z"(T,G,d); n-
central of it; Z"(T,G,9) = ((T®)",Z"(G)NStg(T),d); and < a,$ >€
Aut(T,G,9). If < a,¢ > induces < &,¢ > in Aut ((Tg)"’ StG(T)(r;wZ"(G)'é); is
identity; then < w, ¢ > is called n-central automorphism of crossed module (T, G, ).

Definition 2.6. A Adeny-Yen crossed module map is a of into the such that and is
< ¢1,¢2 > of Autc(T, G, 9) into the Hom((T,G,9), Z(T, G, d)) such that

<P, ><a,0 >=< 1, P2 > p0>
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and < ¢1, 2 > < o> is crossed module homomorphism of (T, G,9) into Z(T,G,0) =
(T%,8tc(T) N Z(G),0) such that < ¢1,¢2 > <4,0>=< P1<w0> P2<a 0> >

Preaes : T —TC

P1<ao>(t) =t a(t)
and

Prcnp> : G— Stg(T)NZ(G)

$2<n0>(8) =870(3)
Let C* be the set of all central automorphisms of (T, G, 9d) fixing Z(T, G, 9)
element wise.

Theorem 2.7. For purely non-abelian groups T and G , Adeny-Yen crossed module
map is one-to-one correspondence of Autc(T,G,d) onto Hom((T,G,9), Z(T, G,9)).

Theorem 2.8. For any non-abelian groups T and G the restriction of the Adeny-
Yen crossed module map < ¢1,¢» >: C* — Hom ((T,G,9),(Z(T,G,0)) is a
homomorphism crossed module.

Definition 2.9. Given a crossed module X = (0 : T — G). We denote by Der(X)
the set of all derivations from G to T, i.e. all maps x : G — T such that forall g,r € G

7

x(qr) = (xq)"x(r)-
Definition 2.10. The Whitehead group W(X) is defined to be group of units of
Der(X). The elements of W(X') will be called regular derivations.

Example 2.11. If T is a G-module, then the trivial homomorphism T — G is a
crossed module and Der(X') is the usual abelian group of derivations.

Example 2.12. Together with the conjugation action of a group G of itself, the
identity map X = (id : G — G) is a crossed mudule. An automorphism « of G
determines its displacement derivation 6, € W(X) given by 5,(r) = a(r)r~! and
the correspodence o« — 6, is an isomorphism 6 : Aut(G) — W(X).

Definition 2.13. The actor crossed module A(X') is defined to be the crossed module
A(X) = (A: W(X) — Aut(X)).

Theorem 2.14. Let (T, G, d) has trivial n-central. then its actor A(T,G,d) also has
trivial n-central.

Theorem 2.15. There is a homomorphism of groups

A: W(X) = Aut(X)
X—<o,p>

and with the action x<*%> = a7 xp, A < X >= (A: W(X) — Aut(X)), is
a crossed module.
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Theorem 2.16. Let x be a crossed module and W(x), whitehead group of x. Then
Autc, (W) = Aut(W).
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On skew Armendariz ideals of rings

F. FATAHI*, A. MOUSSAVI and R. SAFAKISH

Abstract

Let R be a ring with an endomorphism a and R[x;«] be the ring of skew polynomials. In
this paper we study the skew Armendariz property on ideals of rings, introducing a new
concept which unifies the various Armendariz properties for rings. A ring R is weak skew
Armendariz if and only if every left ideal of R is weak skew Armendariz. We determine weak
skew Armendariz ideals of some ring extensions and study related properties.

Keywords and phrases: Armendariz ideal, weak skew Armendariz ideal, weak annihilator..
2010 Mathematics subject classification: Primary 16536; Secondary 16D25.

1. Introduction

Throught this paper, all rings are associative with an identity. Given a ring
R with an endomorphism «, the skew polynomial ring over R is denoted by
R[x;«] whose elements are the polynomials over R, the addition is defined as
usual and the multiplication subject to the relation xr = a(r)x for any r € R.

In [7], a ring R is called Armendariz if whenever the product of any two
polynomials in R[x]| over R is zero then so the product of any pair of coef-
ficients from the two polynomials. This definition was given by Rege and
Chhawchharia in [7].

Several types of generalizations of Armendariz rings have been introduced
for some of which variations of the previous results are also valid. The Ar-
mendariz property of rings was extended to skew polynomial ring in [2] for
an endomorphism «of a ring R. A ring R is called skew a-Armendariz if for

Zax g(x Zb x/ € R[x;a], f(x)g(x) = 0 implies that a;a’(b;) =0

j=0
for all 0 § i<nand 0 <j<m. In 2006, Liu and Zhao [3] introduced the
notion of a weak Armendariz ring and following that, C. Zhang and J. Chen
[8] say a ring R with an endomorphism « is weak a-skew Armendariz if two

polynomials f( Za X, g(x Zb ¥/ € R[x;a] satisfy f(x)g(x) = 0 then
j=0

* speaker

En - 122



ﬂiﬂéi(b') € nil(R) for each i and ] A ring R is said to be nil a-skew Armen-

dariz if whenever polynomials f Za X, g(x Z bix/ € R[x;a] satisfy
=
f(x)g(x) € nil(R)[x;«] then a;a (b]-) € nzl( ) for each i, ;.

For a nonempty subset X of a ring R, the left and right annihilator of R
which is denoted by rg(X) = {r € R | Xr =0} and Ig(X) = {r e R | rX =0}.

The concept of Armendariz ideal is introduced and studied by Ghalan-
darzadehetal., in [1]. A one- sided ideal I of a ring R is said to be Armendariz if

whenever polynomials f( Zalx g(x Z bix/ € R[x] satisfy f(x)g(x) €
j=0
TR[x] (I[x]), then, ab; € rr(I) for each 7,j. According to Nikmehr [4], a one-

sided ideal I of a ring R is said to be a-skew Armendariz if for f(x Za X,

m . )
= Zb]-x] € R[x;a], f(x)g(x) € rriy, (I[x]) implies a;a’(b;) € rr(I), and
j=0
that, for each a,b € R, ab € rg(I) if and only if an(b) € rr(I).

For a subset X of a ring R, Ouyang and Birkenmeier [5] define the notion
of weak annihilator of X in R, Nr(X) = {a € R | xa € nil(R), for allx € X},
and investigate the properties of the weak annihilator over ring extensions.
In the present paper we study the Armendariz property on ideals of rings,
introducing a new concept which unifies the various Armendariz properties
for rings.

2. Main Results

If X is a singleton, say X = {r}, Ng(r) is used in place of Ngr({r}). Ob-
viously, for any nonempty subset X of R, we have Nr(X) ={a € R | xa €
nil(R),for all x € X} = {b € R | bx € nil(R), for all x € X}, rg(X) € Ng(X) and
IR(X) C Ng(X).

Let T>(Z) be the triangular matrix ring over the ring of integers Z and let

2 0
X = { (O 2) } Then TTZ(Z) (X) - NTz(Z) (X) and sz(Z)(X) - NTz(Z)(X)

If R is a reduced ring, then rg(X) = Nr(X) = Ig(X) for any subset X of R.
It is easy to see that for any subset X C R, Ng(X) is an ideal of R in case nil(R)
is an ideal. For more details and results of weak annihilators, see [6].

The next lemmas appear in [6] and will be helpful in the sequel.
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Lemma 2.1. Let X,Y be subsets of R. Then, we have the followings:

(i) X CY implies Nr(X) D Ng(Y).

(if) X € Ng(Nx (X))

(i) Nr(X) = Nr(Nr(Ng(X))).
Lemma 2.2. Let R be a subring of S. Then, for any subset X of R, we have
Nr(X) = Ng(X) N R.
Definition 2.3. We say a left ideal I of R is weak a-skew Armendariz if whenever
polynomials f(x),g(x) € R[x;a] satisfy f(x)g(x) € rr(I)[x;a] we have a;a’ (b)) €
NR(I)fOT’ all a; € Cf(x) and b] € Cg(x)'

The following result shows that our definition of a weak a-skew Armen-

dariz left ideal is a generalization of Zhang and J. Chen [8], to the more general
setting.

Theorem 2.4. A ring R is weak a-skew Armendariz if and only if every left ideal of
R is weak a-skew Armendariz.

PROOF. Let R be a weak a-skew Armendariz ring and I be a left ideal of R.
n ) m )

If f(x) =) aix', g(x) = ) b;x/ are element of R[x;a] such that f(x)g(x) €
i=0 j=0

rr(I)[x;a]. Thus we have d(x)f(x)g(x) = 0 for any d € I. Since R is weak

a-skew Armendariz, da;a’(b;) € nil(R) for all i,j. Thus a;a’(b;) € Ng(I). This

show that I is a weak a-skew Armendariz ideal.

Clearly, the other condition is hold, because R is an ideal of R and Ng(R) C

o

nil(R).

Theorem 2.5. Let R be a reversible ring with an endomorphism «. If rg(I) is an
x-compatible ideal of R, then I is a weak a-skew Armendariz ideal.

Corollary 2.6. Each left ideal of an a-compatible semicommutative ring is weak «-
skew Armendariz.

Theorem 2.7. Let I be a left ideal of R and A be a multiplicative closed subset in R
containing of central reqular elements. Then I is a weak a-skew Armendariz ideal of
R if and only if A='1 is an a-skew Armendariz ideal of A~ R.

By Theorem 2.7 we have the following results.

Corollary 2.8. [8, Proposition 2.11] A ring R is weak a-skew Armendariz if and
only if A~'R is weak &-skew Armendariz.

Corollary 2.9. Let I be an ideal of R. Then I[x] is a weak a-skew Armendariz ideal of
R[x] if and only if I[x; x '] is a weak a-skew Armendariz ideal of R[x;x1].

By Corollary 2.9 we have the following.

Corollary 2.10. [8, Corollary 2.12] For a ring R and an automorphism « of R, R[x]
is weak w-skew Armendariz if and only if R[x;x 1] is weak a-skew Armendariz.
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¢-primary subsemimodules

F. FATAHI and R. SAFAKISH*

Abstract

Let R be a commutative semiring with identity and M be a unitary R-semimodule. Let
¢:S(M) — S(M) U {D} be a function, where S(M) is the set of all subsemimodules of M.
A proper subsemimodule N of M is called ¢-primary subsemimodule, if whenever r € R and
x € M with rx € N — ¢(N), implies that r € /(N :x M) or x € N. So if we take $(N) =@
(resp., $(N) = {0}), a ¢-primary subsemimodule is primary (resp., weakly primary). In this
paper, we study the concept of ¢-primary subsemimodule which is a generalization of ¢-prime
subsemimodule in a commutative semiring.

Keywords and phrases: Semiring, Semimodule, ¢-primary subsemimodule, M-subtractive sub-
semimodule..

2010 Mathematics subject classification: Primary:16Y60 .

1. Introduction

Anderson and Bataineh [2] have introduced the concept of ¢-prime ideals in a
commutative ring as a generalization of weakly prime ideals in a commutative
ring introduced by Anderson and Smith [1]. After that several authors [6, 11],
etc. explored this concept in different ways either in commutative ring or
semiring. Recently, we generalized the above mentioned concepts to semiring
theory; for example see [7], [9]. In this paper, we introduce the notion of ¢-
primary subsemimodules of a commutative semiring as a generalization of all
the above mentioned definitions and prove several results connected with ring
theory.

For the definition of monoid, semirings, semimodules and subsemimod-
ules of a semimodule we refer [6, 8]. All semirings in this paper are com-
mutative with non-zero identity. The semiring R is to be also a semimodule
over itself. In this case, the subsemimodules of R are called ideals of R. Let
M be a semimodule over a semiring R. A subtractive subsemimodule (= k-
subsemimodule) N is a k-subsemimodule of M such that if x, x +y € N, then
y € N. If N is a proper subsemimodule of an R-semimodule M, then we denote
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(NogM)={reR:rMCN}and /(N:g M)={reR:r"M C N for somen €
IN}. Clearly, (N :g M) and +/(N :g M) are ideals of R.

2. Main Results

Definition 2.1. Let S(M) be the set of subsemimodule of M and ¢ : S(M) —
S(M) U {@} be a function. The proper subsemimodule N of M is called a ¢-primary
semimodule ifr € R, x € Mand rx € N — ¢(N), thenr € \/(N :g M) or x € N.

Since N — ¢(N) = N — (N N ¢(N)), so without loss of generality, through-
out this article we will consider ¢(N) C N. In the rest of the article we use the
following functions ¢, : S(M) — S(M) U {D}.

$o(N) =0, NeSM),
¢o(N) ={0}, NeSM),
¢1(N) (N:g M)N, NeSM),
¢2(N) = (N:xg M)’N, N e S(M),
¢w(N) =N2, (N :g M)'N, N €S(M).

Then it is clear that ¢y, ¢o-primary subsemimodules are primary, weakly
primary subsemimodules respectively. Evidently for any subsemimodule and
every positive integer 1, we have the following implications:

primary = ¢y, — primary = ¢, — primary = ¢,,_1 — primary.

For functions ¢, : S(M) — S(M) U {@}, we write ¢ < ¢ if ¢(N) C ¢(N) for
each N € S(M). So whenever ¢ <, any ¢p-primary subsemimodule is -
primary.

Definition 2.2. [7, Definition 2.2] A proper subsemimodule N of M is called M-
subtractive, if N and ¢(N) are subtractive subsemimodules of M.

The following theorems asserts that under some conditions ¢-primary
subsemimodules are primary.

Theorem 2.3. If N is a ¢-primary subsemimodule of M and ¢(N) is a primary
subsemimodule, then N is a primary subsemimodule of M.

Theorem 2.4. Let N be a ¢-primary M-subtractive subsemimodule of M such that
(N :g M)N & ¢(N). Then N is a primary subsemimodule of M.

PROOF. Let ax € N for some a € R and x € M. If ax ¢ ¢(N), then ax €
N — ¢(N), which implies that a € /(N :g M) or x € N, as N is a ¢-primary
subsemimodule of M. Therefore, N is primary. So, let ax € ¢(N).

Let aN ¢ ¢(N). Then there is n € N such that an ¢ ¢$(N) and an € N.
Therefore, a(x +n) € N — ¢(N). Thus we have eithera € /(N :g M) or x +
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n € N, thatis,a € /(N :g M) or x € N, as N is M-subtractive subsemimodule
of M. So N is a primary subsemimodule of M. Now we can assume that
aN C ¢(N).

Suppose that (N :g M)x ¢ ¢(N). Then there exists u € (N :g M) such that
ux € (N :g M)x but ux ¢ ¢(N). Therefore (a + u)x € N — ¢(N). Since N is
¢-primary, we have either a +u € /(N :g M) or x € N. Now it follows by [6,
Lemma 2.10] thata € /(N :g M) or x € N, and therefore, N is primary. So we
may assume that aN C ¢(N) and (N :g M)x C ¢(N).

Since (N :g M)N ¢ ¢(N), then there exist some r € (N :g M) and n; € N
such that rny ¢ ¢(N). So (a+7r)(x +n1) € N—¢(N) and hence (a +71) €
V(N:g M) or x +ny €N, that is, a € /(N :g M) or x € N. Therefore, in

any case, we have N is a primary subsemimodule of M. o

Corollary 2.5. [6, Theorem 2.11] Let N be a weakly primary subtractive subsemi-
module of M such that (N :x M)N # {0}. Then N is primary.

Theorem 2.6. Let N be a proper M-subtractive subsemimodule of M. Then the
following statements are equivalent:
(i) N is a ¢-primary subsemimodule of M.
(ii) Foranym € M — N, \/(N:gm) = /(N :g M) U (¢(N) :g m).
(iii) Foranyr e R — \/(N:g M), (N :pr7) = NU (¢(N) :p 7).
(iv) Foranyr e R— /(N M), (N:pyr)=Nor (N:pr) = (¢p(N) :pr 7).
(v) If IP C N — ¢(N) for some ideal I of R and a subsemimodule P of M, then

either | C /(N :g M) or P C N.

Corollary 2.7. [6, Theorem 2.9] Let N be a proper subtractive subsemimodule of M.
Then the following statements are equivalent:

(1) N is weakly primary.

(ii) Forme M —N, /(N :gm) = /(N:xg M) U (0:g m).

Proposition 2.8. Let N be a proper subsemimodule of M. Let ¢ : S(M) — S(M) U
{@} and ¢ : Z(R) — Z(R) U {Q@} be two functions such that (¢p(N) :g m) C
Y((N :g M)) for every m € M — N. If N is a ¢p-primary subsemimodule of M,
then (N :g M) is a -primary ideal of R.

PROOF. Letab e (N:g M) —¢((N:g M)) for some a,b € Rand a ¢ (N :g M).
Then there is 0 # m € M such that am ¢ N. We have abm € N — $(N), and

so b e /(N:g M) since N is a ¢-primary subsemimodule. Consequently
(N :gr M) is a ip-primary ideal. i

Corollary 2.9. [4, Lemma 2] Let R be a semiring. If N is a primary subsemimodule
of an R-semimodule M, then (N :g M) is a primary ideal.

Corollary 2.10. [6, Proposition 2.4] Let M be an entire R-semimodule and N a
weakly primary subsemimodule of M. Then (N :gr M) is a weakly primary ideal of R.
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Recall from [3, Definition 2] that, an R-subsemimodule N of M is said to
be a strong subsemimodule if for each x € N, there exists y € N such that
x+y=0.

Theorem 2.11. Let f : M — M’ be an epimorphism of R-semimodules with f(0) =0
andlet :S(M) = S(M)U{@}and ¢’ : S(M') — S(M") U {@} be two functions.
Then the following statements hold:

(i) If N' is a ¢'-primary subsemimodule of M and ¢(f~1(N')) = f~1(¢'(N")),
then f~Y(N') is a ¢p-primary subsemimodule of M.

(ii) If N is a subtractive strong ¢-primary subsemimodule of M containing
Ker(f)and ¢'(f(N)) = f(¢(N)), then f(N) is a ¢'-primary subsemimodule of M'.
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One-Sided Repeated-Root Two-Dimensional Constacyclic
Codes

M. BEYGI KHORMAEI*, A. NIKSERESHT and S. NAMAZI

Abstract

In this paper, we study some repeated-root two-dimensional constacyclic codes over a finite
field IF = IF;. We obtain the generator matrices and generator polynomials of these codes and
their duals. We also investigate when such codes are self-dual.

Keywords and phrases: Two-dimensional constacyclic codes, Self-dual codes. .
2010 Mathematics subject classification: Primary: 94B05, 11T71, 94B15.

1. Introduction

Two-dimensional (2D, for short) cyclic codes which have a long history, see
for example [2, 3], still gain attention, see [6] and the references there in.
Constacyclic codes which are a generalization of cyclic codes are investigated
over finite fields and some other types of rings, see [1] and its references. In
[5], 2D constacyclic codes were introduced and studied as a generalization of
2D cyclic codes.

We recall the definition of 2D constacyclic codes. We always assume that p
is a prime number, IF = I, is a finite field with g = p" elements and A and ¢ are
units in [F. Consider

T) - F* — TF"
(dO/dll-“/dnfl) — ()\dnflrdOI---/dn—Z)/ where dJEIF
and
Ys: (FH)" — (F"H)™
(ag,ay,...,ay1) +—— (bay_1,a9,...,ay—2), where aj € F".

Assume thata = (ag,ay,...,a,_1) is an element of F"", where a; = (ajo,a)1,-..,aj 1) €
F". Foranyi,j,0<j<m—1and0<i<n —1,define

51 (a) = Yj (1} (a0), T} (1), -, T} (@ns1))-
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A 2D linear code D of length nm is called (A,d)-constacyclic code over F, if
@{S’ZA(D) =Dforany0<j<m—1land 0<i<n—1 InF" >~ M,.,(F),
any nm-array (ag,aj,...,a,—1) corresponds to a polynomial in F[x,y] with x-
degree less than n and y-degree less than m, say a(x,y) = Z;”:_Ol Y ajix'yl.
With this correspondence, any (A, d)-constacyclic code of length nm over F is

identified with an ideal of the quotient ring S = %.

2. One-sided repeated-root 2D constacyclic codes and their duals

In this paper, we deal with 2D constacyclic codes which are either simple
root or have repeated roots in at most one direction. We call such codes one-
sided repeated-root codes, as defined below.

Definition 2.1. We call a two-dimensional (A, d)-constacyclic code D of length
nm over IF,r, one-sided repeated root, if either gcd(n, p) =1 or ged(m, p) = 1.

From now on, we assume that 1, m are two integers, such that gcd(n,p) =1,
m = m'p® and ged(m’, p) = 1. Also we assume that A,§ are non-zero elements

of F. Welet S = #ﬂ_&. Moreover, we assume that x* — A = H7 1fi(x),

where fj(x), 1 <j <1, are monic irreducible coprime polynomials in [F|x].
Also we set d; = degfj, K; = TGy = Iqu]. and §; = (y,/_&. We consider
elements of S as those elements of IF[x,y] whose x-degree and y-degree is less
than n and m, respectively.

Now, we can determine the general form of ideals of S.

Theorem 2.2. Let C be a (A,8)-constacyclic code over F. Then there exist unique
polynomials g;(x,y) such that g;(x,y) | y™ — ¢ in Kjly], gj(x,y) is monic when
considered as a polynomial in y and as an ideal of S,

C= <g1(x,y)#Hlﬁ(X),gz(x,y)#Hzﬁ(x),--.,gq(x,y) ll;}iﬁ(x)%

Moreover, dim(C) = mn — 23-7:1 djt, where t; = degyg]'.

In what follows we assume that C and Sjs 0 <j <y, are as in Theorem 2.2.

Corollary 2.3. The following set is a basis for C over IF.
U
A= U{xVgi(x,y)TLfi(x) |0<r<d;,0<I<m—tj},
j=1 i#]

where t; = deg, ;.
For any (A,d)-constacyclic code C C F"", let
Ct={ucF"|uw=0foranyw € C}
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be the dual of the code C. By [5, Propositin 2.2], Clisa (Afl,éfl)-constacyclic
code over F. We shall determine the unique generating set of the dual of C as

. — Flxy]
anideal of T = A TS

If f(x) is anon-zero polynomial of degree d in [F[x], we define the reciprocal
of f(x) by f*(x) = x7f(x~1). Since x" — A =TT, fi(x), we have x" — A~1 =
ulIl_, f7 (x) for some u € F. Suppose that f(x,y) € [F[x,y] has x- and y-degree
less than n and m, respectively. Now for any polynomial f(x,y) € F[x,y] define
fH(xy) = xdegxfydegyff(%,%). If f €S (resp. in T), we consider f* as an
element of 7 (resp. S).

Assume that h;(x,y) =

% in Kj[y]. If gi(x,y) = 0, we assume that
hi(x,y) = 1. Suppose that hﬁ (x,y) is the monic polynomial in F[x, y] such that

hﬁ(x y)= ((;C g)) in 05[( }» ly], where f; (x ﬁ( )= Jjﬂ ((g)). With this notations, we have

the following theorem that gives the generating set of the dual of the code C.

Theorem 2.4. Let C be a (A, 6)-constacyclic code over IF. Then

= (h}(x,y) gﬁ%x»hé(x,y) gfﬂx),...,h%(x,y) 1 FE(x)).

Next we study when C is self-dual, that is, C = C*. To see why it is
important to study and find self-dual codes see for example [4, Section 3].
Note that if C is self-dual, then it is both (A,8)-constacyclic and (A~1,671)-
constacyclic. Here, we just consider the cases that A = A1, 6 =61 and f;(x) =

fiﬁ(x). Let in K;[y], Yy — 5= H;j:1 hji(x,y), where hjy(x,y),1 <1 <t;, are monic
irreducible coprime polynomials in K;[y]. Assume that h;(x,y) = h?l(x,y) for
1<I<ajand hﬁ # hj for a]- < 1. Since (y" —8)t =y — 61 =y™ —§,s0 for
each 1 </ <t;, we have Kt il = = hjy for some 1 < 1" < t;. Thus we can suppose
that

g Hhﬂxy Hh x,y) Hhﬂxy (2.1)
I=aj+1 I=aj+1
Theorem 2.5. Let p=2,5>0, fl.jj (x) = fi(x) forall i, and C be a (A, d)-constacyclic
code of length n(25m’) over T, where A> = 62 = 1. The code C is self-dual if and only
if for every j,

bj
s—1 S_ .
th (x,y) H ' (xy) TT )7 ' (xy),  (22)
1= Ll]-‘rl l:El]‘-i-l

for some ajj, 0 < ajy <2°
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Theorem 2.6. Assume that fiﬁ(x) = fi(x), forall i and \> = 6> = 1. Let p be an odd
prime number or s = 0. There exists a self-dual 2D (A, 8)-constacyclic code of length
nm = n(p°m'’) over IF if and only if in (2.1), a; = 0 for all j. In this case, a code C is
self-dual if and only if

bj bj
o S__ .
gi(xy) =TT () [T(H)" 0 (xy),
1=1 1=1
for some ajy, 0< aj) < P
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On Differential Semigroups and Radical Differential Ideals

MOHAMMAD ALI NAGHIPOOR®

Abstract

Our objective in this paper is to define a notion of derivation in a semigroup by using its ideals.
We call a semigroup with such a derivation, a differential semigroup. We study some properties
of the derivations in (commutative) semigroups. Also we determine the radical differential
ideals of any differential monoid by using prime differential ideals.

Keywords and phrases: prime radical, differential semigroup, differential ideal.
2010 Mathematics subject classification: Primary: 20M11, 20M12; Secondary: 20M14.

1. Introduction

The notion of differential algebra was introduced in the work [2] of Kolchin
and [5] of Ritt. This notion has a huge applications in algebraic geometry
and topology. Specially Kolchin in [2] and [3] used this notion for rings
to give a generalization of the notion of derivation in the field of rational
functions and ordinary polynomial rings to any arbitrary ring. A derivation
on a ring R was defined as a mapping on elements of R with r — r/ for which
(xy)" = x"y + xy/, for any x,y € R. In this paper we use ideals of S (instead of
elements) to define a derivation in S. We introduce the notion of differential
semigroups and study prime and radical ideals of them in Section 2. Also we
define differential ideals as ideals each of which contains its derivative. We
will show that any radical differential ideal in a differential semigroup is an
intersection of prime differential ideals. This is a reconstruction of the well-
known result in classical ring theory (Krull’s theorem for prime ideals) that
any radical ideal in a ring is an intersection of prime ideals. Indeed we prove
a similar result for radical differential ideals and prime differential ideals in a
commutative monoid.

For basic results and definition relating to semigroups and radical of ideals
in this paper, we refer the reader to [1] and [4], respectively.
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2. Main Results

Suppose that S is a semigroup and (Z(S),U,N) is the lattice of all ideals
of S and I] = {ijli € I,j € J} for every I,] € Z(S). Clearly Z(S) with this
multiplication of ideals forms a semigroup.

Definition 2.1. By a derivation on ideals of S we mean a map
d:Z(S) —Z(S)

preserving unions and intersections of ideals and satisfying d(1]) =d(I)J U 1d(]) for
any I,] € Z(S).

We denote the image of any I € Z(S), under a distinguished derivation d
with d(I) = I'. In this notation I’ is called the derivative of I. Also we use the
notations I”,1",... 10" (for any 4 < n € N) to show higher order derivatives
of I. Indeed I(") = d"(I), is the composition of d by itself 1 times.

Always there exist trivial derivations in any semigroup S. For example the
identity map on Z(S) is a derivation. Also if S contains a zero the constant
zero map is a derivation on Z(S).

A homomorphisms f : S — T between differential semigroups S and T is
defined as a homomorphism of semigroups for which f(I') = (f(I)’), for any
I1€Z(S).

In the continuation of this article we consider commutative semigroups,
however many of the results may be hold in arbitrary semigroups similarly.
Also by a differential semigroup we mean a commutative semigroup with a
derivation on the semigroup of its ideals. Moreover, an ideal I of a semigroup
S is called a differential ideal if I’ C I. The followings are some of the preliminary
rules for computing derivations that are routinely checked. For every I,] €
Z(S) and n € N we have:

(rugy =ruy,
/

(Inp'=rnJ,
(' =rjuly,
(" =rjuryul,
(I = 1My [0V g 102y oy o,
(1" =111
The following two lemmas can be easily proved.

Lemma 2.2. If S is a differential monoid with identity 1 then for any I € Z(S),
S1CT.

1Jj
Inj
Lemma 2.3. If I is a differential ideal of a commutative semigroup S and JK C I, for

some J,K € Z(S), then JK' C Tand 'K C 1.
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Anideal P of a semigroup S is called prime if I] C P implies ] C Por ] C P,
for any ideals I and | of S. It is easy to see that in any commutative semigroup
this is equivalent to xy € P implies x € Pory € P, for any x,y € S.

Proposition 2.4. Suppose that I is a differential ideal of a differential semigroup S
and T C Z(S). Then the set

T ={J€Z(S)|JKC I, forany K€ I},

is an ideal of Z(S) containing some ideals of S and their derivatives. Also if I is a
prime ideal of S then J is a prime ideal of Z(S). Moreover,

A= ] J={xeS|xkelforanyk €K, forany K € T},
JeJg

is a differential ideal of S, and if S contains an identity 1, S € T and I is a prime ideal
of S then A is also prime.

PROOF. Clearly J is an ideal of Z(S). If ] € J then for any K € Z, JK C I. So
by Lemma 2.3, ]'K C I, which implies ]’ € . Thus derivative of any ideal in
Jisalsoin J.

To prove J is prime, suppose that MN € J for some ideals M,N € Z(S).
Then MNK C I, for any K € Z. Since I is a prime ideal of S, M C I or NK C I,
forany K€ Z.SoM € J or N € J, thatis, J is a prime ideal in Z(S).

To prove the last part, first note that A is a union of ideals and so it is an
ideal of S. Also A" = (UjesJ)' = Ujes J'. But by the first part | € 7, for any
] € J which implies A’ C A, that is, A is a differential ideal of S. If st € A for
some s,t € Sthenst € | forsome | € J.SinceS€Z,st€[.Thusselortel,
for I is a prime ideal of S. Also clearly I € J that implies I C A. Sos € A or
t € A. Therefore A is a prime ideal of S. o

For any ideal I of a semigroup S the radical of I is denoted by rad(I) is the
set of all x € S for which there exists n € IN such that x” € I. Also I is called a
radical ideal if I = rad(I), thatis, forany x € Sand n € N, x" € I implies x € I.
Clearly every prime ideal is radical and the intersection of radical ideals is also
radical. Also we can see that in a commutative monoid any radical ideal is an
intersection of prime ideals. We will find a similar result for differential ideals
as a substitute for any ideals.

The intersection of all radical differential ideals of a differential semigroup
S which contain a subset T of S, is denoted by drad(T).

Remark 2.5. It is easily checked that Proposition 2.4 can be rewritten for radical ideals
as an alternative to prime ideals. Also for the last part of the new revision we do not
need the condition S € T.

Lemma 2.6. Let I be an ideal of a differential monoid S and T C S. Then I drad(T) C
drad(IT).
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Proposition 2.7. Suppose that S is a differential monoid and T C S. Let
L=A{1€Z(S)|INT =@ and I is a radical differential ideal }.

If ¥ # @ then it has a maximal element with respect to the inclusion which is also a
prime ideal of S.

Using the Axiom of Choice we have the following revision of Krull's
theorem for differential ideals as we have promised before.

Theorem 2.8. Suppose that 1 is a radical differential ideal of a differential monoid S.
Then I is an intersection of prime differential ideals of S.
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On EL2-semihypergroups of order 2

S. H. GHAZAVI and S. MIRVAKILI*

Abstract

EL2-semihypergroups obtained from quasi ordered semihypergroups using "Ends lemma". In
this paper we classify all EL?-semihypergroups over sets with two elements obtained from
quasi ordered semihypergroups.

Keywords and phrases: Semihypergroup, EL2-semihypergroup, Ends lemma. .
2010 Mathematics subject classification: Primary: 20N20, 16Y99.

1. Introduction

The concept of EL-hyperstructures first described by Chvalina [1] when
he was investigated quasi ordered sets and hypergroups. Then Novak in
[6, 7] studied some properties of EL-hyperstructures. Ghazavi et al. intro-
duced a new class of EL-hyperstructures called EL?-hyperstructures in [4].
EL?-hyperstructures are hyperstructures based on (partially) quasi ordered
(semi)hypergroups instead of a (partially) quasi ordered (semi)groups. More-
over, Ghazavi and Mirvakili computed EL-hypergroups of order 2 [5].

In this paper, first we characterize all quasi ordered semihypergroups of
order 2. Then, we concentrate on quasi ordered semigroups and in order to
find and classify all EL?-semihypergroups and EL2-hypergroups of order 2.

A hypergroupoid is a pair (H,o) where H is a nonempty set and o :
H x H — P*(H) is a hyperoperation when P*(H) is the family of non-
empty subsets of H. A semihypergroup is an associative hypergroupoid,
i.e. hypergroupoid satisfying the equality a o (boc) = (aob) oc for every
a,b,ce H.

If A and B are two non-empty subsets of Hand x € H, thenxo A= {x} 0 A,
Aox=Ao{x}and AocB=J{aobla€ A,b e B}.

If the semihypergroup (H, o) satisfiesao H=H = Hoa, foralla € H, itis
called a hypergroup.

A semihypergroup (S,o,R) is called a (partially) quasi ordered semihyper-
group if (S, 0) is a semihypergroup and “R” is a (partially) quasi order relation
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on S such that for all 4,b,c € S with the property aRb there holds a o cRb o c and
c o aRc o b (monotone condition), where if A and B are non-empty subsets of
S, then we say ARB whenever for all a € A, there exists b € B and for all b € B
there exists a € A such that aRb [4].

Moreover, the notation [x)g used below stands for the set {s € S;xRs}
and also [A)g = | J [x). Similarly, (x]g = {s € S;sRx} and (A]g = J (x]&-

X€A X€EA
The EL-hyperstructures or Ends lemma based hyperstructures are hyperstruc-

tures constructed from a (partially) quasi ordered (semi)groups using "Ends
lemma".

This concept was first introduced by Chvalina in 1995 [1]. In particular,
Chvalina proved that:

Lemma 1.1. ([1], Theorem 1.3) Let (S, -, R) be a partially ordered semigroup. Binary
hyperoperation o : S x S — P*(S) defined by aob=[a-b)g ={x € S,a-bRx}
is associative. The semihypergroup (S, o) is commutative if and only if the semigroup
(S,) is commutative.

Theorem 1.2. ([1], Theorem 1.4) Let (S,-,R) be a partially ordered semigroup. The
following conditions are equivalent:

(1)  For any pair (a,b) € S? there exists a pair (c,c1) € S? such that (b - c)Ra and
(c1-b)Ra.
(1)  The associated semihypergroup (S,0) is a hypergroup.

We need the following theorem.

Theorem 1.3. Let S={a,b}. Then, there are 4 quasi order relations on S as follows:.

= {(a,a),(b,)},
Rz—{( a),(b,b), ( b),(b,a))} =S xS,
Ry ={(a,a),(b,b),(b,a),},
Ry ={(a,a),(b,b),(a,b)}.

Definition 1.4. [1] Suppose (S, o, R) is a (partially) quasi ordered hypergroupoid. For
a,b € S, we define the new hyperoperation x : S x S — P*(S) as follows:

axb=[aob)g= [J [m)r

meaob

Remark 1.5. From now on, we name (S, ) as the EL2-hypergroupoid associated to
(partially) quasi ordered hypergroupoid (S,o,R).

Theorem 1.6. [1] Let (S,0,R) be a (partially) quasi ordered semilhypergroup i.e. the
hyperoperation o is associative. Then, the hyperoperation x on S, defined in Definition
1.4, is associative and therefore (S, ) is a semihypergroup.
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2. EL%-semihypergroups of order 2

Now, in order to find and study EL?-semihypergroups of order 2, we need
all semihypergroups with two elements. Then, we obtain the next theorem:

Theorem 2.1. There are, up to isomorphism, 17 semihypergroups of order 2 are give
in Table 1. In Table 8 the Cayley table (abcd) of semihypergroup (S = {a,b}, o) means
thata=101,b=102,c=201andd=202. Also, S; = (abcd) means that the
semihypergroup (S = {a,b},o;)

TABLE 1. Semihypergroup of order 2

S1=(a,a,a,a) | S7=(a,S,a,b) | S;3=(a,S,S,b)
S»=(a,a,a,b) | Sg=(a,S,b,b) | S14=(S,b,S,b)
S3=(a,4,b,b) | So=(5,b,b,b) | Sis=(5,5,5,b)
Sy = (ab,b,a) | S;y=(S,5,a,b) | S5 = (a,5,5,5)
S5 = (a,b,a,b) | S{; =(S,a,5,b) | S;,=(S,5,S,5)
S¢ =(S,a,a,b) | S1o=(5,5,b,b)

Among these 17 semihypergroups there are 8 ones which are hypergroups.
We mention them by a “ * ” sign in the related Cayley tables of Table 1.
By Theorem 1.3 there are 4 quasi ordered relations on a set with two

elements. Hence there are 4*17=68 triple (S,0;,R;) for 1 <i<17and 1 <j <4.

Now, we look after the ones which are quasi ordered semihypergroups. (i.e.
those which has the monotone condition).

Theorem 2.2. Foralli€ {1,2,...,17} and j € {1,2}, the triple (S, 0;,R;) is a quasi
ordered semihypergroup.

Theorem 2.3. Foralli€ {1,2,3,5,7,8,9,12,13,14,15,16,17 } and j € {3,4}, triples
(S,0i,R;) are quasi ordered semihypergroups.

Proposition 2.4. Foralli € {4,6,10,11} and j € {3,4}, the triple (S,0;,R;) is not a
quasi ordered semihypergroup.

Now, by Theorems 2.2 and 2.3, we have:
Corollary 2.5. There are 56 quasi ordered semihypergroups of order 2.

Definition 2.6. Suppose (S,o) is an semihypergroup. Then, (S,%) is said to be
a nontrivial semihypergroup if it is not total semihypergroup (ie. axb =S for
all (a,b) € S) nor it is not associated to (S,o;,Ry), i € {1,2,---,17} in EL?-
construction.

Theorem 2.7. There are 7 non-trivial EL?-semihypergroups of order 2. (S; has the
EL?-construction fori € {1,6,9,12,14,15,16}.)
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Definition 2.8. The semihypergroup (S, ) is said to be a proper semihypergroup if it
is not a hypergroup. (i.e. the hyperoperation * is not reproductive.)

Theorem 1. There are 3 proper EL?-semihypergroups created by semihypergroups.(
So,S12, S14 are proper EL?-semihypergroups).

Corollary 2.9. There are 4 non-trivial hypergroup with EL?-construction.

(1]
(2]
(3]
(4]
(5]
(6]
(7]
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Some relations between the distinguishing and some graph
parameters

BAHMAN AHMADI and S.A. TALEBPOUR SHIRAZI FARD*

Abstract

The distinguishing number of a simple graph G is the least number D(G) of colors needed for a
coloring of G which is preserved only by the identity automorphism. Similar parameters have
been defined whose concern is breaking the symmetries of a graph. In this paper, we present
interesting connections between these parameters and some other graph parameters such as
the independence number. In particular, we study conditions under which a given graph G is
(D, a)-ordinary, that is, for which D(G) < a(G).

Keywords and phrases: graph, distinguishing, independence number, fixing number.
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1. Introduction

Throughout the paper we assume n = |V(G)| is the number of vertices of G
unless otherwise stated. All graphs are assumed to be undirected, simple and
finite, and by “coloring” we mean vertex coloring. Let G be a graph and c
be a coloring of G. We say that an &« € Aut(G) preserves the coloring c if for
any pair of vertices 1 and v in V(G), for which a(u) = v, the vertices 1 and v
have the same color. For a graph G, a distinguishing coloring is a coloring of G
such that the only automorphism which preserves the coloring, is the identity
automorphism. Then the distinguishing number of G, denoted by D(G), is
defined to be the smallest number of colors for a distinguishing coloring of
G. As stated in [2], it is easy to see that D(K,,) =n, D(Ky,) =n+1, D(P,) =2
forn > 2, D(C3) = D(C4) = D(Cs) = 3, while D(C,,) =2, for n > 6.

It has been showed in [2] that if the automorphism group of a graph G
is abelian, then D(G) < 2. Indeed, it is stated in [4] that the distinguishing
number of “almost” all connected graphs is at most 2. On the other hand,
the independence number of a graph G is at least 2 unless G is a complete
graph on more than 1 vertices. It follows that for almost all connected graphs
G, D(G) < «(G). We call the graphs for which this inequality holds (D,«)-
ordinary graphs. It is, therefore, an interesting problem to see under which
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conditions a graph is (D,a)-ordinary. In this paper, along with studying
some relationships between the distinguishing number and some other graph
parameters such as the independence number and the fixing number of graphs,
we consider the problem of identifying conditions under which a graph is
(D, a)-ordinary /nonordinary. In [1], along with some new parameters related
to distinguishing colorings, the authors introduced the distinguishing threshold
6(G) as the minimum number k of colors such that any coloring of the graph
G with k colors is distinguishing. Obviously D(G) < 8(G) < n. They also
showed that 6(K,) = 0(K,,) =n, 0(Ky,u) =m~+mn, 0(P,) = [5] +1, forn >2,
and 6(C,) = | 5| + 2, for n > 3. In addition, it has been proved [5] that

0(G) = max{|a| |« € Aut(G) \ {id}} +1, (1)

where || stands for the number of cycles in the cycle decomposition of «
acting on the set of vertices of G. In [6] authors have defined the concept of a
steady vertex which plays an important role in evaluating the distinguishing
number of some graphs A vertex v in a graph G is said to be steady if
Stabye(g) (#) = Aut(G — u). The authors of [6], also prove the following.

Theorem 1.1. A vertex v of a graph G is steady if and only if every distinguishing
coloring of G induces a distinguishing coloring on G — v. o

2. Main Results

2.1. Distinguishing and fixing number As stated in [6], the concept of a
steady vertex, can be generalized to a steady set. To define it, we make use
of the following notation. For any non-empty subset A C V(G), in this paper,
we denote by Stab () (A) the set of all automorphism of G which point-
wise fix A. Then, we say that a non-empty set A C V(G) is a steady set in
G if Stabpy(G) (A) = Aut(G — A). Using a similar approach as in [6] we can
generalize Theorem 1.1 to steady sets as follows.

Proposition 2.1. A subset A of the vertices of a graph G is steady if and only if every
distinguishing coloring of G induces a distinguishing coloring on G — A. o

The concept of a distinguishing coloring is closely related to the concept
of a fixing set in a graph G which was introduced in [3] as they are both
“symmetry breaking” tools. A non-empty set A C V(G) is a called a fixing
set of G if Stabayyc)(A) = {id}. If G is asymmetric, i.e. if Aut(G) = {id},
then as a convention, we assume that the empty set is a fixing set for G. Note
that V(G) is both a fixing set and a steady set for G. Furthermore, the fixing
number of G, denoted by Fix(G), is the minimum size of a fixing set of G.
Thus, for an asymmetric graph G, we have Fix(G) = 0. It is pointed out in [3]
that Fix(K, ) =n — 1, Fix(P,) = 1, for n > 2, and Fix(C;) =2, for n > 3.

Proposition 2.2. For any graph G, we have D(G) < Fix(G) +1 < 6(G). m
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For the next result, we recall that a set A C V(G) is a vertex cover of G if
every edge of G has one of its vertices in A. The vertex covering number B(G) is
the minimum cardinality of a vertex cover of G. Note that «(G) + B(G) = n.

Theorem 2.3. For any graph G if 6(G) # n, then Fix(G) < B(G).

In the rest of this subsection, we study the connections between steady
vertices (sets) and fixing sets.

Proposition 2.4. Let v € V(G) be an steady vertex. If A is a fixing set of G, then
A — {v} is also a fixing set of G — {v}.

Now, we conclude the subsection by generalizing Proposition 2.4 to steady
sets which, in turn, is the fixing set variant of Proposition 2.1.

Theorem 2.5. Let G be a graph and A,B C V(G) be a steady and a fixing set of G,
respectively. Then B — A is a fixing set of G — A.

2.2. Distinguishing and independence number In this subsection we study
situations in which the distinguishing number of a graph is bounded above
by its independence number. We say that a graph G is (D,«)-ordinaryif
D(G) < a(G) and a graph is (D,a)-nonordinary if it is not (D,«)-ordinary.
It is easy to see that the graphs K, Cs, Py, for n > 5, and all asymmetric
graphs are (D,a)-ordinary while the graphs Ky, Ky,,...n, and Py are (D,«)-
nonordinary, and that the set of all (D, a)-nonordinary graphs is closed under
the join operation which provides an infinite family of such graphs. This
shows that it is an interesting problem to determine which graphs are (D, «)-
ordinary/nonordinary. Note that according to Proposition 2.3, for the graphs
G with 0(G) # n, if a(G) is large, then Fix(G) must be small. Another
consequence of Proposition 2.3 is the following result which provides some
necessary condition for a graph to be (D, «)-nonordinary.

Theorem 2.6. If G is (D, a)-nonordinary then either 6(G) = n or a(G) < 1.
Corollary 2.7. Ifa graph G satisfies 0(G) #n and a(G) > "51, then D(G) < a(G).

We now investigate some families of graphs to see whether they are (D, «)-
ordinaryWe first consider forests. The following result has been proved in [7].

Theorem 2.8. For any tree T, we have D(T) < A(T), except for Kj. i
In order to prove the next result, we will make use of the following fact.
Lemma 2.9. Let F be a forest consisting of a; copies of the tree T, fori =1,...,m,
where a; are positive integers. Then D(F) < max{D(T;) +a; — 1}. o

1
Proposition 2.10. All forests with more than 2 vertices are (D, a)-ordinary.

In addition, for the case of cycles, we observe the following.
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Proposition 2.11. A cycle Cy, is (D, a)-ordinary if and only if n > 6. O

As another family of graphs whose distinguishing numbers have been
studied thoroughly, we consider the so-called generalized Johnson graphs. The
following result is due to Kim et al. and we state the rephrased version in [5].

Theorem 2.12. Assume that 2 <k < n/2 and set e = }(}).

(@) Ifn=>5andk =2, then D(J(n,k,1)) = D(J(n,k,2)) =3.

(b) Ifn#5and2<k< 5%, then D(J(n,k,i)) =2, foreachi=1,...,k.

(© Ifk="2andig¢ {5k}, then D(J(n ki) =2.

(d) Ifk=%andi=¥, then D(J(nk,i))=3.

(€) Ifk=2andi=k, then D(J(n,k,i)) = [LIE8], O

Using Theorem 2.12, we can see which generalized Johnson graphs are
(D, a)-ordinary. The result appears in the following proposition.

Theorem 2.13. Assume that 2 <k < n/2. The graph J(n,k,i) is (D,«)-ordinary if
and only if (n,k,i) # (4,2,1),(5,2,1).
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CFGH: A hypergroup for the control flow graph
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Abstract

A Control Flow Graph (CFG) is a directed graph that represents all paths that might be traversed
through a program during its execution. This graph is used to generate test cases for a program.
In this paper, we define a hyper-operation on the vertex set of a CFG. Consequently, it is proved
that (1) the generated hyperstructure is a quasi-ordering hypergroup, (2) the connectivity in a
CFG is equivalent to the inner irreducibility in the hypergroup, and (3) each sub-graph in a CFG
is a sub-hypergroup.

Keywords and phrases: Hyper-operation; Quasi-ordering Hypergroup; Control Flow Graphs.
2010 Mathematics subject classification: 20N20, 68Q45, 68Q70.

1. Introduction

Software testing is an important task in the life cycle of software development
process. A Control Flow Graph (CFG) is utilized to generate the test cases of
a program [4, 6]. In a CFG, each node represents a basic program block and
edges are the control dependencies between these blocks. A basic block is a
straight-line code sequence with no branches in except to the entry and no
branches out except at the exit [1]. In fact, CFG shows all paths that might
be traversed through a program during its execution, and each test case is
generated by the software testing task to trace one of these paths [7]. In this
paper, we construct a quasi-ordering hypergroup on the set of CFG vertexes
and state the relationship between a CFG and its corresponding hypergroup
(called CFGH). Consequently, we prove that the connectivity in a CFG is
equivalent to the inner irreducibility in CFGH, and each sub-graph of a CFG
is a sub-hypergroup of CFGH.

The theory of algebraic hyperstructures which is a generalization of the
concept of ordinary algebraic structures first was introduced by Marty [5].
Since then many researchers have worked on algebraic hyperstructures and
developed it [2].
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2. Main Results

In this section, the definition of a CFG is presented and then a hypergroup
associated with an CFG is constructed and some properties are proved.

Definition 2.1. A CFG G is a quintuple (Q,%,9, 90, F) where Q is a non-empty finite
set of basic program blocks and X = {t, f } is the set of jump symbols when t and f
are "true” and "false” conditions. The transition function 6 : Q x £ — Q shows the
control dependencies between blocks based on the conditions. Vertex qo € Q is the
initial block, and F C Q is a set of final blocks.

Note that for two sequential blocks g; and g; that have a non-conditional
dependency, we can consider ¢, f as its condition which states that the control
flow can move from g; to g; without satisfying a true or false condition. Since
the transition function ¢ is defined as a total function, we consider a non-
conditional edge from each final statement to itself. However, we do not label
a non-conditional edge to increase the readability of a CFG. For more clarity,
we use a simple example to illustrate the CFG of a program. Fig. 1 shows the
CFG of the program of Listing 1 which calculates the sum of 1 to n. In this
example, program block 1 contains statements 1, 2, 3, 4, 5, block 2 contains
6,7,8, and block 3 contains statements 9 and 10.

void main () {

int n,s=1,counter=1;
cout<<"enter.an.integer_number:";
cin>>n;

while(counter<=n) {
sum=sum+counter;
counter=counter+1;

}

cout<<sum;

}

O O X IO Uk WD -

Listing 1. An example program to creating CFG

i
%

FIGURE 1. The CFG of Listing 1
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In the following, we correspond a hypergroup to a CFG independent of
initial and final blocks, so for more simplicity the notion (Q, X, ¢) is considered
for a CFG. Moreover, we define 6* as an extension of ¢ to the domain Q x £*
by 6*(q,A) =g for each g € Q; 6*(q,xa) = 6(6*(q,x),a) foreachx € 2*,a € L.

For two CFGs G; = (Q1,%,61) and G, = (Q2,%,62), Gy is a sub-CEG of
G if Q> € Qq and & = J1 |g,xx, i-e., & is the restriction of J; to Qp x X.
Moreover, the nonempty sub-CFG G; is called separated if the subscriptions of
91(Q1 \ Q2,X*) and Q; be empty. Based on the definitions, a CFG is connected
if it does not possess any separated proper sub-CFG.

Suppose (H, o) be a hypergroup, then 4" is a non-empty subset of H where
a"isaoao---oain which a belongs to H and 7 is an integer number. If for
every a,b € H, we have a € a®> = a® and a o b = a> U b?, then (H, o) is a quasi-
ordering hypergroup. Note that (H,o) is an ordering hypergroup when for
every a,b € H, if a2 = b2 implies a = b.

Definition 2.2. Suppose G = (Q,%,8) be a CFG. Then we define a hyper-operation
on Qby q1 °g 42 = c({q1,92}) for any q1,92 € Q, where ¢ (P) = {q € Q:6"(q,x) €
P, for some x € X*} for every subset P of Q. Moreover, the hypergroupoid (Q,og)
is denoted by H(G).

Theorem 2.3. [3]If G = (Q,X%,0) be a CFG, then H(G) is a quasi-ordering hyper-
group.

Consider G as the CFG of Listing 1. For x =1, x =2, and x =3, x og x is
equal to {1}, {1,2}, and {1,2,3} respectively. Consequently, (G) is a quasi-
ordering hypergroup.

Proposition 2.4. [3] Let G = (Q,%,0) be a CFG, T be a non-empty subset of Q, and

T¢ be the complement of T in Q. Then the following assertions hold:

() If(T,%,6 |7xx) is a sub-CFG of G, then T¢ is a sub-hypergroup of H(G).

(1) If (T,%,0 |Txx) is a separated sub-CFG of G, then T¢ is a sub-CFG of G, and T
is a sub-hypergroup of H(G).

(III) If T is a sub-hypergroup of H(G), then (T¢,%,0 |rxx) is a sub-CFG of G.

For sub-hypergroups (Hy,0) and (Hp, o) of the commutative hypergroup
(H,o0), if H= Hj o Hy and the subscriptions of H; and Hj be empty, then the
hypergroup is an inner disjoint product of its sub-hypergroups. Moreover, the
commutative hypergroup (H, o) is inner irreducible if for any pair H; and Hp
of its sub-hypergroups such that H; o H = H, we have Hy N Hp # @.

Theorem 2.5. [3] Let G = (Q,%,5) ba a CFG, then G is connected if and only of
H(G) is inner irreducible.

For example, consider G as the CFG of Listing 1. Based on the Theorem 2.5
the hypergroup of this CFG (called CFGH) is inner irreducible since there are
no inner disjoint product of its sub-hypergroups, thus this CFGH is connected.
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Consider the CFG G = (Q,X,9). It is strongly connected if for any giand g
belong to Q, there exist u,v € £* such that 6*(g1,u) = g2 and 6*(q2,v) = g1. In
other words, § is strongly connected if it consists of a unique layer. Moreover,
if hypergroup H is equal to {h} U h? for some &k € H, then it is called 2-single-
power cyclic [2].

Theorem 2.6. [3] The following assertions are equivalent for the CFG G = (Q,%,9):
(I) G is strongly connected.

(I)  The hypergroup H(G) is 2-single-power cyclic.

(I1I) The hypergroup H(G) is the total hypergroup on Q.

Consider the CFG G = (Q,%,9). If for any state g € Q and any word x € X*
there exists a word y € 2* such that §*(g,xy) = ¢, then § is called retrievable.

Theorem 2.7. [3] A CFG G is retrievable if and only if the state set of each sub-CFG
is a sub-hypergroup.

Corollary 2.8. [3] For the retrievable CFG G, the following assertions are equivalent:
(1) G is connected, (2) G is simple, and (3) H(G) is simple.
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Distance spectral of the unitary Cayley graphs of
commutative rings
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Abstract

Let R be a commutative ring with unity 1 # 0 and let R* be the set of all unit elements of R. The
unitary Cayley graph of R, denoted by Gg = Cay(R,R*), is a simple graph whose vertex set
is R and there is an edge between two distinct vertices x and y if and only if x —y € R*. This
paper involves determining the distance, distance Laplacian and distance signless Laplacian
spectrum of the unitary Cayley graphs with diameter at most 2.

Keywords and phrases: Unitary Cayley graph, Distance spectrum, Distance Laplacian spectrum,
Distance signless Laplacian spectrum..

2010 Mathematics subject classification: Primary: 05C50, 13M05.

1. Introduction

Let R be a commutative ring with unity 1 # 0 and let R* be the set of all
unit elements of R. In this paper, we consider the unitary Cayley graph of
R, denoted by Gr = Cay(R,R*), which is a simple graph whose vertex set
is R and there is an edge between two distinct vertices x and y if and only if
x —y € R*. The following proposition is a basic consequence of the definition
and it was illustrated in [1, Proposition 2.2].

Proposition 1.1. Let R be a commutative ring.

(a) Then Gg is a |R* |-regular graph.

(b) If R is a local ring with maximal ideal M, then Gg is a complete multipartite
graph whose partite sets are the cosets of Mt in R. In particular, Gg is a complete
graph if and only if R is a field.

(c) IfRisan Artinian ring and R = Ry X ... X Ry as a product of local rings, then
Gr = ®!_,Gg,. Hence, Gy is a direct product of complete multi-partite graphs.

For two distinct vertices # and v in a connected graph G, d(u,v) denotes the
distance between u and v, i.e., the length of a shortest path between u and v.
The maximum distance between two vertices is called the diameter of G and
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denoted by diam(G), i.e., diam(G) = max{d(u,v) : u,v € G}. In[1], Akhtar et
al. calculated the diameter Gg when R is a finite ring.

Theorem 1.2. [1, Theorem 3.1] Let R = Ry X ... X Ry be an Artinian ring. Then

t =1and R is a field

t =1and R is not a field
t>1and f1 >3
t>2and f1 =2, >3
oo t>2and f1 = fr =2.

diam(GR) =

LW NN =

The transmission of a vertex v, denoted by Tr(v), is defined to be the sum
of the distances from v to all other vertices in G, i.e., Tr(v) = ¥cv(c)d(u,0).
The distance matrix D of a graph G is the matrix indexed by the vertices
of G where D = [dj]uxn with d;j = d(v;,v;) denotes the distance between
the vertices v; and v;. The spectrum of D, denoted by Spec,(G), is called
the distance spectrum of G. Let Diag(Tr) denote the diagonal matrix of the
vertex transmissions in G. Similarly to the Laplacian matrix of a connected
graph G, we define the distance Laplacian as the matrix D' = Diag(Tr) — D.
The spectrum of DL, denoted by Specy. (G), is called the distance Laplacian
spectrum of the graph G. Also, the distance signless Laplacian matrix of a
connected graph G is defined to be D!' = Diag(Tr) 4 D. The spectrum of DI,
denoted by Spec,;(G), is called the distance signless Laplacian spectrum of
the graph G. In this paper, we study the distance, distance Laplacian and
distance signless Laplacian spectral of Gg when diam(Gg) is at most 2.

2. Main Results

In this section, we present our results about the distance, distance Laplacian
and distance signless Laplacian spectral of Gg when diam(Gg) is at most 2. We
start our work with investigating the distance spectral of Gg.

It is well known that the distance matrix of a graph G with diameter 2 can
be written in terms of the adjacency matrices of G and its complement G. So,
if G is a regular graph with diameter 2, then the distance spectrum of G can be
obtained from its adjacency spectrum as stated in the next theorem.

Theorem 2.1. [4] Let G be a k-regular graph on n vertices with diameter at most
2 and adjacency spectrum k = A1,Aa,...,Ay. Then the distance spectrum of G is
2n—2— k,—(2+)\2),—(2+/\3),...,—(2+/\H).

The adjacency spectrum of the graph Gg has been studied in [1, 5]. With
using their results about the adjacency spectrum and this fact that the graph
Gr is aregular graph, the following result is an immediate consequences from
the above.
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Theorem 2.2. Let R be a finite commutative ring.
(a) If (R,M) is a local ring with |M| = m and | &| = f, then

_ 0 m—2 |R|+m—2
sweo(n) = gy o1 ),

(b) IfR=Rq xRy x...x Rywheret>2, R;isalocal ring with maximal ideal It;
such that |M;| = m;, |%] =fiforall1<i<tand3 < fi < fo <--- < fi, then
the distance spectrum of Gr consists of:

(i) 2|R| — |R*| — 2 with multiplicity 1.

i (24 (-l IR, licity [Tec |RX|/m:

(ii) (2 +(-1) Mrec |R].X ]/m]-> with multiplicity [Ticc \R] |/mj for
all non-empty subsets C of the set {1,2,...,t}.

(iii) —2 with multiplicity |R| — [Ti_; (1 + [R|/m;)

The distance Laplacian spectral of the graphs with diameter at most 2 has
been investigated in [3].

Theorem 2.3. [3, Theorem 3.1.] Let G be a connected graph on n vertices with
diameter at most 2. Let AL > AL > ... > AL = 0 be the Laplacian spectrum of G. Then

the distance Laplacian spectrum of Gis p3 =2n— AL > pp=2n—AL ,>... >
Un—1 :Zn—)\%z;tn =0.

The Laplacian spectral of the graph Gr has been calculated in [6]. So, we
can deal with the distance Laplacian matrix of Gg and calculate its spectral.

Theorem 2.4. Let R be a finite commutative ring.
(a) Let (R,M) be a local ring with |M| = m and | &| = f. Then

(0 Rl IR+
SpecpL(Gr) = ( 1 f—’1 IR —nf1 )

(b) Let R=Ry x Ry x ... x Ry where t >2, R; is a local ring with maximal ideal
M; such that |M;| = m;, |%| =fiforall1<i<tand3< f1i<fo<---<fp
Then the distance spectrum of Gg consists of:

(i)  2|R| — |R*| — 2 with multiplicity 1.
R*|
(i) —(2+ (—1)|C"— with multiplicity [T:cc |RX|/m; for
( [Ticc |R].X ]/mj jeC IRy ]
all non-empty subsets C of the set {1,2,...,t}.
(iii) —2 with multiplicity |R| — [Ti_; (1 + |R|/m;)
The following result concerns with the distance signless Laplacian spec-
trum of a graph with diameter at most 2.

Theorem 2.5. [2, Theorem 6] Let G be a connected k-regular graph on n vertices
with diameter at most 2. If {2k,AS,...,\,[} are the eigenvalues of the signless
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Laplacian matrix |L|(G) of G, then the distance signless Laplacian eigenvalues of
Garedn —2k —4and 2n —4 — A} forall2<i<n.

In last result, we derive the distance signless Laplacian spectrum of the
graph Gr with diameter at most 2. By Theorem 2.5, we only need to know
about the signless Laplacian spectral of G, which has been studied in [6].

Theorem 2.6. Let R be a finite ring.
(a) If (R, M) is a local ring with |M| = m and |X| = f, then

Rl+m—4 |R|+2m—4 2(|R|+m)—4
Specp(Ge) = (Rl 74 IR H 24 20k =4

(b) Lett>2and f; > 3. If R=Ry X Ry X ... X Ry, then the distance signless
Laplacian spectrum of G consists of:
(i) 4|R| —2|R*| — 4 with multiplicity 1,
(i) 2|R| — |R*| — 4 with multiplicity |R| — TT'_, f;,
(iii) 2|R| — 4 — A4 with multiplicity Tlica (fi — 1) forall A¢ {1,2,...,t},

where /
A= R+ (=D)WITTIRY TT Imyl.
icA jeA’
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Supplemented acts over monoids and their properties

B. TAHMASEBI ASHTIANI, H. RASOULI*, A. TEHRANIAN and H. BARZEGAR

Abstract

In this talk, we generalize the notion of supplement in modules to S-acts for a monois S.
In contrast to the case of modules, here we show that supplements of S-acts always exist
and uniquely characterize the supplement of a proper subact of an S-act. We introduce
supplemented acts as acts whose proper subacts all have proper supplements and study some
connections between the property of being supplemented and some other properties of acts.
Among other results, it is proved that supplemented acts are exactly completely reducible ones.

Keywords and phrases: S-act, supplement, supplemented, hollow.
2010 Mathematics subject classification: 20M30, 20M50.

1. Introduction

Miyashita [6] initiated the study of supplemented modules. This notion was
also studied by Kasch and Mares [3] and continued in many papers (see, for
example, [1, 2, 5]). A module M is called supplemented if every submodule N
of M has a supplement in M, that is, a submodule K of M which is minimal
with respect to M = N + K. Supplements are applied to get projective covers
of modules. Here we generalize the concept of supplement in modules to
acts over monoids. First we explicitly characterize supplements of proper
subacts of an S-act so that, in contrast to the case of modules, they always
uniquely exist. We show that S-acts whose proper subacts have improper
supplements are exactly the hollow acts, the acts whose proper subacts are
superfluous. Thereafter, we consider those S-acts for which the supplement
of any proper subact is proper, namely supplemented acts, and study some
relationship between such acts and some other classes of acts. In particular, it
is proved that supplemented acts coincide with completely reducible acts, the
acts which are disjoint unions of simple subacts.

Let S be a monoid. A non-empty set A is called a (right) S-act if there is a
mapping A : A x S — A, denoting A(a,s) by as, satisfying a(st) = (as)t and
al =aforalla € Aands,t € S. A non-empty subset B of A is called a subact

* speaker

En- 154



of Aif bs € B foreverys € Sand b € B. By a simple S-act we mean an S-act
with no proper subact. An S-act A is called completely reducible if it is a disjoint
union of simple subacts. Also, A is said to be decomposable if it is a disjoint
union of two (proper) subacts; otherwise, it is called indecomposable.

For undefined terms and notations concerning S-acts, one may consult [4].

2. Main Results
We first extend the notion of supplement in modules to acts.

Definition 2.1. Let B be a subact of an S-act A. A subact C of A is said to be a
supplement of B in A if C is minimal with respect to A = BUC, thatis, A= BUC
and if A = BU D for some subact D of C, then D = C.

It is clear from the definition of supplement that a subact B of an S-act A
is a supplement of A in A if and only if B is simple. So the supplement of
an S-act A in itself is not unique and does not exist in general. However, we
show that supplements of proper subacts of an S-act always uniquely exist
and characterize them in the following:

Theorem 2.2. Let B be a proper subact of an S-act A. Then a subact C of A is a
supplement of B in A if and only if C = (A \ B)S, i.e. the subact generated by A \ B.

From now on, the word “supplement" stands only for supplements of
proper subacts and the (unique) supplement (A \ B)S of a proper subact B of
an S-act A in A is denoted by B’,.

Proposition 2.3. The supplement of any maximal subact of an S-act is cyclic.

Let B be a subact of an S-act A. Then B is called superfluous if BUC # A for
each proper subact C of A. An S-act A is said to be hollow if any proper subact
of A is superfluous.

Here we present an equivalent condition for an act to be hollow in terms of
supplements.

Theorem 2.4. An S-act A is hollow if and only if B, = A (equivalently, B C B,)
for any proper subact B of A.

Corollary 2.5. An S-act A is hollow if and only if for any proper subact B of A and
any b € B, we have b = as for somea € A\ Band s € S.

In what follows, the notion of supplemented acts is introduced and studied.
Moreover, some connections between the property of being supplemented and
other properties of acts are investigated.

Recall that a module M is supplemented if each submodule of M has a
supplement in M. As for acts, we make the following definition.

Definition 2.6. An S-act A is called supplemented if the supplement of any proper
subact B of A is proper in A, that is, BS, < A.
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Lemma 2.7. Let A be a supplemented S-act. Then each subact of A is supplemented.
Corollary 2.8. Every cyclic subact of a supplemented act is simple.

In the following, we present some equivalent conditions for an act to be
supplemented.

Theorem 2.9. Let A be an S-act. Then the following are equivalent:
(i) A is supplemented.
(ii) A is completely reducible.
(iii) Every cyclic subact of A is simple.
(iv) For any proper subact B of A, there is a proper subact C of A with A = BUC.

\(V) For any proper subact B of A, the intersection B N B is empty, i.e. B =
A\ B.

Proposition 2.10. Let B be a proper subact of a supplemented S-act A. Then
(B4)a = B.

Corollary 2.11. An S-act A is supplemented if and only if any proper subact of A is
a supplement of a proper subact of A.

Proposition 2.12. Let A = ;e A; be an S-act where each A;,i € 1, is a subact of
A. Then A is supplemented if and only if each A;,i € I, is supplemented.

The unique decomposition theorem for acts states that every S-act can be
uniquely decomposed into a disjoint union of indecomposable S-acts. Thus,
from Proposition 2.12 we obtain:

Corollary 2.13. An S-act A is supplemented if and only if every indecomposable
subact of A is supplemented.

We say that an S-act A is Artinian (Noetherian) if every descending (ascend-
ing) chain of subacts of A terminates.

Theorem 2.14. Let A be a supplemented S-act. Then A is Noetherian if and only if
it is Artinian.

Proposition 2.15. Let A be a finitely generated S-act and B be a proper subact of A
with proper supplement and (B)% = B. Then B is finitely generated.

Corollary 2.16. The following assertions hold:
(i) A supplemented S-act is Noetherian if and only if it is finitely generated.

(ii) Let A be a finitely generated S-act and B < A for some proper subact B of A.
Then B, is finitely generated.
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A cotorsion theory in the homotopy category of complexes of
flat R-modules

A. HAJIZAMANT*

Abstract
This note is devoted to the study of cotorsion theory in the homotopy category of flat R-
modules, K(Flat-R). Let R be an arbitrary ring and K(dg-CotF-R) be the homotopy category
of all dg-cotorsion complexes of flat R-modules. It is proved that (]Kp (Flat-R), ]K(dg—CotF—R))

forms a complete cotorsion pair in K(Flat-R), where K, (Flat-R) is the subcategory of all flat
complexes.

Keywords and phrases: Homotopy category; flat complex; dg-cotorsion complex.
2010 Mathematics subject classification: Primary: 18E30, 55U35; Secondary: 18G35, 18G20, 16E05.

1. Introduction

Cotorsion pairs (or cotorsion theories), originally defined by Salce in [7], have
now appeared in various contexts and play significant role in various fields of
mathematics. Their capability in proving the Flat Cover Conjecture in Mod-R
and in C(R) [1, 3] is worthwhile.

A couple of works concerning cotorsion theories in the category of com-
plexes are worth recalling: the first one is a paper by Gillespie [4] where certain
cotorsion theories in the category of unbounded complexes over an abelian
category C arise from cotorsion theories of C and this applies to get flat cover
conjecture over Ch(C). The second is [2] in which Enochs and his colleagues
showed that Cp(Flat-R) is a covering class and Cp(Plat—R)L is an enveloping
class in the category C(R), where Cp,(Flat-R) is the full subcategory of C(R)
consisting of all flat complexes. The aim of the present paper is to prove the
existence of a complete cotorsion pair (K (Flat-R), K(dg-CotF-R)) in the ho-
motopy category K(Flat-R) of complexes of flat R-modules, for arbitrary R,
where K, (Flat-R) is the subcategory of all flat complexes and K(dg-CotF-R)
is the homotopy category of dg-cotorsion complexes of flat R-modules. In
the setting of quasi coherent sheaves over a Noetherian scheme, this cotorsion
pair was discovered in [5]. The approach taken there is based on set-theoretic
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arguments that are typically applied by many authors, particularly in the stage
of proof of the existence of various covers and envelopes. We prove a version
of this result in the setting of modules over an arbitrary ring. Our approach is
a simpler one, based on the theory of homotopic chain maps. The other priv-
ilege is that one does not need to restrict to commutative Noetherian rings,
as a prerequisite of passing from the context of Noetherian schemes to that of
rings.

2. Main Results

In this paper R denotes an associative ring with identity and by default all
modules are left R-modules. If we say that X is a complex, we mean that it is a
complex of R-modules, that is, a sequence of (left) R-modules X' and R-linear
maps o' : X' — X*1,i € Z, such that 9'+19' = 0.

We denote by C(R) the category of complexes over R whose morphisms
are the usual chain maps between complexes.

The homotopy category K(R) has as objects the complexes in R and the
morphisms are the homotopy equivalences of morphisms in C(R) . Let X’ be a
class of R-modules. We denote by K(X') the homotopy category of complexes
over X, which is a triangulated subcategory of K(R) see, e.g., [8].

Definition 2.1. A pair (S,C) of full subcategories of T is called a cotorsion pair
in T if *C = S and S+ = C, where the left orthogonal of C in T is defined by
1C = {X € T |Homy(X,C) =0 forall C € C}. The right orthogonal of S in
T is defined similarly. A cotorsion pair (S,C) is called complete if any object X of T
fits into a triangle S — X — C — T(S) where S € S and C € C.

Definitions 2.2.

e (i) An acyclic complex F of flat R-modules is called a flat complex if all its
syzygies are also flat R-modules. We denote by Ky, (Flat-R) the full subcategory
of K(Flat-R) consisting of flat complexes.

e (ii) A complex C of cotorsion R-modules is called dg-cotorsion if Homg (F, C)
is exact, whenever F is a flat complex.

e (iii) A complex C of cotorsion flat modules is said to be dg-cotorsion flat if it is dg-
cotorsion. We denote by K (dg-CotF-R) the corresponding homotopy category.

e (iv) A complex C is cotorsion if it is exact and ker(C' — C'*1) is cotorsion
R-module for all i € Z.

Remark 2.3. By [6, Theorem 8.6], K, (Flat-R) is the right orthogonal of K(Proj-R)
in K (Flat-R), that is, K, (Flat-R) = K(Proj-R)".

Proposition 2.4. Let F € K(Flat-R) satisfy Homg gy (F,C) = 0 for any C €
K(dg-CotF-R). Then F is exact.
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Lemma 2.5. The inclusion K(Proj-R) — K(Flat-R) has a right adjoint; that is,
for any complex F of flat R-modules, there exists a triangle P — F — L — XP
with P € IK(Proj-R) and L € K (Flat-R).

PROOF. See [6, Proposition 8.1]. O

Proposition 2.6. For any ring R, (K, (Flat-R),K(dg-CotF-R)) is a cotorsion pair
in the homotopy category of complexes of flat R-modules.

PROOF. Here we give a sketch of the proof .

Step 1. According to the definitions, in order to show K (Flat-R)* =
K(dg-CotF-R), one only needs to verify IKP(Flat-R)L C K(dg-CotF-R).
Choose

X:--- Xi 9 Xi+1 Cak Xi+2

in K(Flat-R) such that it lies in K, (Flat-R)™. We must check that for any i, X/
is a cotorsion R-module and, with no lose in generality, we may set i = 0.

Step 2. The inclusion Kp(Flat-R) Ct K(dg-CotF-R) is just the definition.
To settle the reverse inclusion, pick an object F € K(Flat-R) that lies inside
1K (dg-CotF-R). By virtue of Proposition 2.4, we deduce at the first pace
that it is exact. Take the triangle P — F — L — X~ !P from Lemma
2.5 where P € K(Proj-R) and L € K, (Flat-R). The complex P is then exact,
because L is so, and lies in +IK(dg-CotF-R), as L and F do. In view of the
fact that K (Proj-R)*" = Ky (Flat-R), [6, Theorem 8.6], it suffices to show that
P € K, (Flat-R). O

Theorem 2.7. For any ring R, the pair (IKp (Flat-R), IK(dg—CotF-R)) is a complete
cotorsion pair in K (Flat-R).

PROOF. A well-known result says that every X € C(R) admits a flat cover
with a dg-cotorsion kernel. So if X € K(Flat-R), then there exists a short
exact sequence 0 —> C — F — X — 0in C(R) with F € K (Flat-R)
and C € K(dg-CotF-R). But this sequence will then split at the module level,
and consequently transforms into a triangle C — F — X — %7 !Cin

K(Flat-R). Therefore, by definition, the pair (]Kp (Flat—R),]K(dg-CotF—R)) is
a complete cotorsion pair in the homotopy category of complexes of flat R-
modules. o
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A Note on Rees Large Subacts

R. KHOSRAVI* and M. ROUEENTAN

Abstract

In this paper, Rees large subacts and Rees Socle of an S-act based on Rees congruences are
studied. We also investigate when S-acts satisfy the descending or ascending chain condition
on non-Ress large subacts.

Keywords and phrases: Rees Large, Essential, S-acts, Rees Artinian, Cocyclic .
2010 Mathematics subject classification: 20M30.

1. Introduction

Throughout this paper, S will denote a monoid. In this section, we recall some
notions which will be needed in the sequel. Recall that an equivalence relation
p onan S-act Ag is said to be a congruence on Ag if apa’ implies as p a’s for any
a,a' € Agand s € S. The set of all congruences on Ag is denoted by Con(A).
We recall that for a subact B of an S-act A, the Rees congruence pp is defined by
(a,b) € ppifa,b € Bora = b. The set of all Rees congruences on Ag is denoted
by RCon(A). We recall from [5] that an S-act Ag is finitely cogenerated if for any
family of congruences {p;| i € I} on Ag, if Nicjp; = Ay, then Njcjp; = Ay
for some finite subset | of I. We also call Ag finitely Rees cogenerated whenever
for any family of Rees congruences {pp.| i € I} on Ag, if Njc;pp, = Aa, then
NiejpB; = A 4 for some finite subset | of I.

We recall from [6] that an S-act Ag is called Rees artinian (Rees noetherian) if it
satisfies the descending (ascending) chain condition on its Rees congruences,
equivalently, on its subacts (or, equivalently, the minimal (maximal) condition
on its subacts). By [6, Proposition 7], Rees artinian (Rees noetherian) S-acts
are those which all their factor acts (subacts) are finitely Rees cogenerated
(generated). Moreover, an S-act Ag is called artinian (noetherian ) in case
Con(A) satisfies the descending (ascending) chain condition, equivalently, the
minimal (maximal) condition. By [6, Theorems 5 and 6], artinian S-acts are
those which all their factor acts are finitely cogenerated, also noetherian S-acts
are those which all their congruences are finitely generated.
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Recall from [1] that a monomorphism f : A — B of S-acts is said to
be essential if for each homomorphism ¢ : B — C, ¢ is a monomorphism
whenever gf is. If f is an inclusion map, then B is said to be an essential
extension of A, or A is called large in B. In this situation, we write A C’ B.
It follows from [3, Lemma 3.1.15] that A C’ B if and only if for every non-
trivial 6 € Con(B), 6 Npa # Ap. Moreover, recall from [4] that if S contains
a zero, a non-zero subact B of Ag is called intersection large if for all non-zero
subact C of Ag, BN C # O, and will denoted by B is N-large in Ag. In [2], the
authors proved that every large subact of Ag is N-large, but the converse is not
true.

In the category Act — S, we get [ [;c; A; = Uje1A;. If S contain a zero, In
fact in the category Acto— S, [1ie; Ai = Uje1A; where A; N A; = ©. Now, We
merge both cases and express them as [ [;c; A; = Ujc1A; where [A; N A < 1.
We refer the reader to [3] for preliminaries and basic results related to S-acts.

2. Main Results

In this section, We begin with the following definition that generalizes the
notion of N-large for an arbitrary S (can be without zero).

Definition 2.1. Let Ag be an S-act. A subact B is called Rees large (Rees essential)
in A if for every non-trivial Rees congruence pc, pc N pp # A, which is denoted by
B Cgrp, A.

It is easily checked that B is Rees large in A if for every proper subact C,
|CNB| > 1. In module theory, the socle of a module is defined to be the
sum of the minimal nonzero its submodules. Equivalently, the intersection of
essential submodules. For S-acts, socle and Rees socle defined as follows.

Definition 2.2. Let Ag be an S-act. Socle of A is defined by
Soc(A) =nN{LC A|LC' A},
and Rees socle is defined by
RSoc(A) =N{L C A|L Cgp A}.

If Soc(A),RSoc(A) # @, then Soc(A) and RSoc(A) are subacts of A. By
an argument closely resembles the proof in module theory, one can show the
following proposition.

Proposition 2.3. Let Ag be an S-act. Then RSoc(A) is the union of simple or 6-
simple subacts of A.

Obviously, RSoc(A) C Soc(A). But, unlike the case for module theory, the
converse can not be valid in general. For instance, if S = (IN, max) U {oo}, it is
not difficult to see that RSoc(Ss) = {oo} ¢ Soc(Ss) = S.

The next result presents some general properties of the essentiality and
socle.
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Proposition 2.4. For a monoid S, the following statements are true.

(1) IfBl C' Ayand By C' Ay, then ByN By C' A1 N A,.

(i) If f : As — Bg is an S-morphism and B' C' B, then f~1(B") C’ As.

(iii) If B C" A and B is indecomposable, then A is indecomposable or A = A" U ®
in which A’ is indecomposable.

(iv) If A= A1 Ay, then Soc(A1) USoc(A;z) C Soc(A).

The previous proposition is also valid where "C’" is replaced by "Cg; " and

"socle" by "Rees socle".

Proposition 2.5. Every Rees essential extension of a finitely Rees cogenerated S-act
is again finitely Rees cogenerated.

Now, we use the concepts of Rees large and Rees socle to characterize
finitely Rees cogenerated S-acts.

Theorem 2.6. An S-act Ag is finitely Rees cogenerated if and only if RSoc(A) is a
finitely generated Rees large subact of Ag.

A non-Rees large subact means a subact that can not be a Rees large subact,
similarly non-finitely generated or non-large can be defined.

Lemma 2.7. Let Ag be an S-act. Then each non-finitely generated subact of Ag is
Rees large in Ag if and only if each non-Rees large subact of Ag is Rees noetherian.

Corollary 2.8. If each non-finitely generated subact of Ag is Rees large in Ag, then
Ag is a finite coproduct of indecomposable S-acts.

Recall from [7] that an S-act A is called cocyclic if the intersection of its
non-zero subacts is non-zero. So A is cocyclic if and only if every its non-
zero subact is Rees large. Now we characterize S-acts which satisfy DCC
(descending chain condition) on non-Rees large subacts . Clearly cocyclic S-
acts and Rees artinian S-acts satisfy DCC on non-Rees large subacts.

Theorem 2.9. The following statements are equivalent for an S-act Ag.
(i) Ag satisfies DCC on non-Rees large subacts.

(ii) Every non-Rees large subact of Ag is Rees artinian.

(iii) Every decomposable subact of Ag is Rees artinian.

In this case, Ag is either cocyclic or finitely Rees cogenerated.

Theorem 2.10. The following statements are equivalent for an S-act Ag.
(i) Ag satisfies ACC on non-Rees large subacts.

(ii) Every non-Rees large subact of Ag is Rees noetherian.

(iii) Every decomposable subact of Ag is Rees noetherian.

In this case Ag is a finite coproduct of indecomposable subacts.

Proposition 2.11. Ifan S-act Ag satisfies the ascending chain condition on non-Rees
large subacts, then Ag is cocyclic or it has a Rees noetherian subact Bg such that B is
a Rees large subact of A.
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Pseudo o-minimaliy for double stone algebras

JAFAR SADEGH EIVAZLOO and FARHAD JAHANIAN*

Abstract

Lei Chen, Niandong Shi and Guohua Wu introduced the notion of pseudo o-minimality for
stone algebras. They then described definable sets in stone algebras using P.H Schmitt’s result
for model completion and quantifier elimination, and proved that an extension of the theory
of stone algebras is Pseudo o—minimal. In this paper we investigate pseudo o-minimality in
double stone algebras using David M. Clark results and prove that the theory of double stone
algebras DBS is pseudo o-minimal.

Keywords and phrases: Double stone algebra, Definable set, Quantifier elimination, Pseudo o-
minimality. .

2010 Mathematics subject classification: Primary: 03C64, 06D15; Secondary: 06D50.

1. Introduction

The o-minimal linear ordered structures introduced by Van Den Dries in [7]
have been extensively studied in the last four decades. In [6], Toffalory gen-
eralized the concept of o-minimality to partially ordered structures. Then Lei
Chen, Niandong Shi and Guohua Wu, using this generalization, introduced
the notion of pseudo o-minimality in stone algebras[1]. They investigated
definable sets in stone algebras by using schmitt’s results in [5]. In this pa-
per, we investigate the definable sets in double stone algebras, examine the o-
minimality feature and some model theoric features for double stone algebras
. Then we prove that the theory of double stone algebras is pseudo o-minimal.

Definition 1.1. A first order structure S, = (S, A, V,*,0,1. <) is called a stone
algebra if (S, A, V,0,1) is a bounded distributive lattice and the operation * of pseudo
complementation satisfies {¥a(a N a* = 0),Ya¥b(a ANb =0 — b < a*),Va(a* Vv
a*=1)} Sy = (S,A,V,+,0,1, <) is called a dual stone algebra if (S, A, V,0,1)
is a bounded distributive lattice and the operation + of dual pseudo complementation
satisfies {Va(a VvV at = 1),VaVb(aVvb = 1 — at < b),Va(a® Aat = 0)}.
DS = (S,A,V,%,+,0,1,<) is called a double stone algebra if (S, A, V,%,0,1,<)
is a stone algebra and (S, A\, V,+,0,1, <) is a dual stone algebra.
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The subalgebra Sk(DS) = {x*|x € DS} = {x € DS|x = x*} and it’s
dual Sk(DS) = {xT|x € DS} = {x € DS|x = x*"} play an important
roul in the study of double stone algebras. In fact Sk(DS) = Sk(DS), and
(Sk(DS), A, V,0,1) is a boolean algebra. The dense set of DS, D(DS) = {x €
DS|x* = 0} is a filter of DS, and the set DD(DS) = {x € DS|x* =0,x" =1}
is called the doubly dense set of DS.

Lemma 1.2. Every Double ston algebra DS has the followmg properties:

i) x<x**x<y—>y <xtx=y—-oxr=y,xtt <xx<y—-yt <
xt,x=y—xt=y".

i) (xVy) =x*Ay* (xAy)F =x*Vy', (xvy)t =xt Ayt (xAy)T =
xt vyt

iii)  x* = x**, xt = xt T+,

iv) 0*=1,1*=0,0"=1,1" =0.

v)  (xVy)* =xF vy, (e Ay)t =AY, (evy) T =xtt vyt (oA
y)tt =t Ayt

Lemma 1.3. Forany x € DS:
i) xtt < x

i)  xtr=xtT,

iii)  x*t = x**

iv) x*<xT.

Theorem 1.4. (Clarc and Krauss [3]) (D, €) is a full duality between ISP(DS) and
IS.P(DG).
If DS = €(X) is a double Stone algebra, then:

Sk(DS) = {c € DB|¢** =0} = {0 € DS|c—{a,b} = @},
DD(DS) = {6 € DB|6* =0and 6" =0} = {6 € DS|6-1{0,1} = @}

are the skeleton of DS, and the sublattice of doubly dense elements of DS [4].

Theorem 1.5. (David clark[2]) For a double stone algebra DS = E(X), the following
are equivalent:
i) DS is existentially closed.
ii) DS satisfies the following V3-axioms:
(DS1) DD(DS) is nonempty and form a relatively complemented sublattice of

DS.
(DS2) for every 7,6 € DD(DS). thereisa o € DS such that (y A 6) V (6 A
oc*) =y V.

(DS3) DD(DS) contain no covers.
(DS4) if 5* = 0and 6 < 1, then there is a iy > & such that 4+ = 5+,
(DS5) if 5t = 1and 6 > 0, then there is a v < & such that v* = §*.
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Given Th(DS), as the complete theory of double stone algebras, we in-
troduce the theory DBS , which is Th(DS) with the additional axioms
DS1, ..., DS5 in theorem 1.5. Since every model of DBS is existentially closed,
DBS is model complete. And since DBS has the amalgamation property , we
conclude that DBS has the quantifier elimination property.

2. pseudo o-minimality for DBS

Definition 2.1. Let A = (A, <, ...) be a structure partially ordered by <. A is said
to be pseudo o-minimal if and only if the only subsets of A definable in A are the
finite Boolean combinations of sets defined by formulas a < v or v < b with a and
b in A. i.e if every definable subset of A is a Boolean combination of finitely many
strongly connected subsets of A. A set S C A is said to be strongly connected if for
any x,y € S, x Ny € SorxVy € S. If every model of a theory T is a pseudo
o-minimal structure, then T is a pseudo o-minimal theory.

Lemma 2.2. Every atomic formula of DBS is equivalent to a conjunction of the
formulas T < v, where T € {a,x Na,x* Na,xT Na,x** Na,xT Na,x ANxt Aa}
andv € {b,xVb,x* Vb, xT Vb, x*Vb,x"T\Vb,xVx*Vb}, where a,bare terms
of DBS and do not contain variable x.

PROOF. By lemma 1.2 and lemma 1.3 and distributivity, every atomic formula
is equivalent to a conjunction of formulas /\;-”zlrj < Vj_; vk such that 7;s and

Vs are one of Xj, X, x]’-‘*, a, X, x;, x,j+, b where a and b are constants. O

Corollary 2.3. Each atomic formula of DBS is equivalent to a conjunction of some of
the following formulas:

a<b a<xVbh a<x*Vb
a<xtvb a<x**Vb a<xttvb
a<xVx*Vb xANa<b xANa<xVb
xANa<x*Vb xANa<xTVb xANa<x*Vb
xAa<xttvb xAa<xVx*Vb x*ANa<b
x*ANa<xVb x*ANa<x*Vb X*ANa<xTh
X*ANa<x**Vb x*Aa<xttvb X*Aa<xVx*Vb
xtTAa<b xTAa<xVDb xTAa<x*Vb
xTAa<xtVvb xTAa<x*™*Vb xTAa<xtTtvb
xTAa<xVx*Vb x**ANa<b xX*ANa<xVb

X Aa<x*Vb X ANa<xTVvb X ANa<x*Vb
x*Aa<xtt v X*Aa<xVx*Vvb xTTAa<b
xTtAa<xVb xTtAaa<x*Vb xTtAaa<xtvb
xtTAa<x*™*Vb xtTtAa<xtTvb xTTAa<xVvVx*Vb
xAxtTAa<b xAxtTAa<xVDb xAxtTAa<x*Vb
xAxTAa<xtVD xAxTAa<x*Vb xAxTAa<xTtvb

xAxtAa<xVx*Vb
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Theorem 2.4. Each of the sets defined by formulas in corollary 2.3, are strongly
connected sets in a double Stone algebra.

PROOF. Using lemma 1.2, one can make straightforward proofs for all of the
listed formulas. O

Theorem 2.5. DBS is a pseudo o-minimal theory.

PROOF. Let DS = (DS, A,V *,+,0,1) be a double stone algebra and a model
of DBS. Since DBS has the quantifier elimination property, every definable set
in DS is a boolean combination of strongly connected sets. On the other hand,
by lemma 2.2 and theorem 2.4, strongly connected sets are defined exactly by
forty nine formulas listed in corollary 2.3. Therefore, every definable set of DS
is a finitely boolean combination of strongly connected sets. Hence DS is a
pseudo o-minimal double stone algebra. So we have the pseudo o-minimality
for the theory DBS. m
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Co-Intersection graph of act

A. DELFAN*, H. RASOULI and K. MORADIPOR

Abstract

Here, we define the co-intersection graph Coint(A) of an S-act A which is a graph whose
vertices are non-trivial subacts of A and two distinct vertices By and B; are adjacent if By U By #
A. We investigate the relationship between the algebraic properties of an S-act A and the
properties of the graph .

Keywords and phrases: S-Act, co-intersection graph .
2010 Mathematics subject classification: 20M35, 05C75, 05C25, 05P40.

1. Introduction

Let S be a semigroup. A non-empty set A is said to be a (left) S-act if there is a
mapping A : S x A — A, denoting A(s,a) by sa, satisfying (st)a = s(ta) and, if
Sisamonoid with1,1a =a, foralla € A, s,t € S.

Definition 1.1. Let A be an S-act. The co-intersection graph of A, Coint(A) , is
a graph whose vertices are all non-trivial subacts of A such that two distinct
vertices By and B, are adjacent if and only if By UBy # A .

2. Main Results

2.1. Some properties of the graph Coint(A) Itis clear that if A and B are
isomorphic S-acts, then the graphs Coint(A) and Coint(B) are isomorphic.
The converse is not true in general. This result is illustrated in the following
example.

Example 2.1. Take the monoid S = {1,s}, where s?> = 1. Consider two S-acts
A ={a,b,c} with trivial action and B = {a,b,c,d} presented by the following
action table:

SERIE)
S S S
QU a0
o X
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The non-trivial subacts of A and B are:
Ay ={a}, Ay ={a,b}, Az ={b},As ={b,c},As = {c}, A¢ = {a,c}
and
By ={a},By={a,b},Bs ={b},By={b,c,d},Bs = {c,d},Bs = {a,c,d},

respectively. Then Coint(A) and Coint(B) are isomorphic which are given in
the following;:

As Ag Bs Be

Coint(A) = Coint(B) whereas A and B are not isomorphic S-acts.

In the following, we give some conditions on two S-acts A, B under which
A and B are isomorphic S-acts when Coint(A) = Coint(B).

Lemma 2.2. Let A be a free S-act with a basis X where S is a group. Then
Coint(A) = Coint(X) in which X is considered as an S-act with trivial action.

Theorem 2.3. Let A and B be two free S-acts and Coint(A) = Coint(B). Then A= B
under each of the following conditions:

(1) S is a group.

(ii) S has only finitely many left ideals, and A and B have finite bases.

Example 2.4. The bicyclic monoid S = (u,v | uv =1) = {v"u" : m,n > 0} has
a complete co-intersection graph. To see this, let I and | be two non-trivial left
ideals of S such that v"u" ¢ I and v*u! ¢ ] for some non-negative integers m, 1,
k and I. First, suppose that n > [. We show that v"ul ¢ TU J. Assume on the
contrary that v"u’ € U J, then either v"u' € T or v"u! € ]. If v"u' € I, then
(o™um =) (vmul) = o™u" € T and if v™u! € ], then (vfu™)(v™u) = oFul € ],
which are contradictions. Therefore, v"u' ¢ [U ] and IU ] # S. Now suppose
that n < I. We show that v*u" ¢ I U J. Let v*u" € I U J, then either vfu" € I
or ofu™ € J. If vku" € I, then (v’”uk)(vku”) = o"u" € I and if v¥u" € |, then
(oFul k=) (vFu™) = vku! € J, which are contradictions in both cases. Therefore,
ofu ¢ TU Jand TU ] # S. Hence, the graph Coint(S) is complete.

Now, we give a necessary and sufficient condition for an S-act A to have a
co-intersection complete graph.
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Theorem 2.5. Let A be a Noetherian S-act. Then Coint(A) is complete if and only if
A contains a unique maximal subact.

Theorem 2.6. Let G be a non-null bipartite graph. Then G is a co-intersection graph
of an S-act if and only if G = P;, where i € {2,3}.

Theorem 2.7. The cycle graph C,, is a co-intersection graph of an S-act if and only if
n=3.

2.2. Connectivity, diameter and girth Here, we characterize all S-acts A for
which the associated co-intersection graphs are connected. Using these results,
the diameter and the girth of co-intersection graphs of S-acts are obtained.

Theorem 2.8. Let A be an S-act. Then the graph Coint(A) is disconnected if and
only if A is a coproduct of two simple subacts.

Corollary 2.9. Let A be an S-act and have at least one edge. Then Coint(A) is
connected.

Theorem 2.10. Let A be an S-act. Then the following assertions hold:
(i) If Coint(A) is connected, then diam (Coint(A)) < 3.
(ii) If Coint(A) contains a cycle, then girth (Coint(A)) = 3.

2.3. Some finiteness conditions Here, we study finiteness conditions of
some parameters of co-intersection graphs of S-acts such as clique number,
chromatic number, independence number and domination number.

Theorem 2.11. Let A be an S-act. Then the following are equivalent:
(i) deg(B) < oo for each vertex B in Coint(A).
(i) deg(B) < oo for some vertex B in Coint(A).
(iii) |Coint(A)| < co.
(iv) x(Coint(A)) < oo.
(v) w(Coint(A))) < oo.

Corollary 2.12. Let A be an S-act and B be non-trivial subact of A with deg(B) < oo.
Then A is both Artinian and Noetherian.

Theorem 2.13. Let A be a Noetherian S-act. Then the following assertions hold:
(i) Max(A) is both independent and dominating set in Coint(A).
(i) a(Coint(A)) = |[Max(A)].
(iii) v (Coint(A)) < a(Coint(A)).

Theorem 2.14. Let A be an Artinian S-act. Then y(Coint(A)) =1 or 2.

Theorem 2.15. Let A be an S-act and e be a cut edge with end-point By and By. Then
one end-point is a minimal subact and the other one is a maximal subact .
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Bounds for the index of the second center subgroup of a pair
of finite groups

F. MIRZAET*

Abstract

By a pair of groups, we mean a group G and a normal subgroup N. In the present work, we
give an upper bound for [N/Z,(G, N)| in which Z;(G, N) denote the second center subgroup
of a pair (G, N) of finite groups where N is a subgroup of G. As a consequence, we obtain an
upper bound for K/Z(H,K) where H = G/Z(G,N) and K = N/Z(G, N), for a pair (G, N) of
finite groups.

Keywords and phrases: Pair of groups, Upper bound, Second center..
2010 Mathematics subject classification: Primary: 20F14; 20E22; 20F05.

1. Introduction

A basic theorem of Schur [13] asserts that if the center of a group G has finite
index, then the derived subgroup of G is finite. A question that naturally arises
from Schur’s theorem is whether the converse of theorem is valid. An extra
special p-group of infinite order shows that the answer is negative. One of
the remarkable problems is finding conditions under which the converse of
Schur’s theorem holds. Neumann [8] provided a partial converse of Schur’s
theorem as follows:

If G is finitely generated by k elements and vy, (G) is finite, then G/ Z(G) is finite and
G/Z(G)| < |2(G)I.

This result was recently generalized by P .Niroomand [9]. He proved that
if G’ is finite and G/Z(G) is finitely generated, then G/Z(G) is finite and
|G/ Z(G)| < |G'|4G/2(G), in which d(X) is the minimal number of generators
of a group X. B. Sury [14] gave a completely elementary short proof of a further
generalization of the Niroomand’s result. Yadav [15] states another extension
of the Neumann’s result when Z,(G)/Z(G) is finitely generated. He [17] also
provided other modifications of the converse of Schur’s theorem as follows :
For a group G the factor group G/Z(G) is finite if any of the following holds
true.

* speaker

En-174



(i) G is finite and Z;(G) is abelian.
(i) G’ isfinite and Z,(G) < G'.
(iii) G'is finite and Z(G)/Z(Z,(G)) is finitely generated.
(iv) G/G'Zy(G) is finite and G/Z(Z,(G)) is finitely generated.

Another modification of the converse of the Schur’s theorem may be con-
cluded from a more general theorem of P. Hall (see Theorem 2 in [5]), as fol-
lows:

For a group G, if G’ is finite then G/ Z,(G) is finite.

The first explicit bound for the order of G/Z;(G) in terms of the order of G’
was given by 1.D. Macdonald [6], in 1961. He proved that for a group G, if G/
is finite of order 7, then |G/ Z5(G)| < nlog2(1+logz ),

Considering the modifications of the converse of Schur’s theorem, finding
upper bounds for the orders |G/Z(G)| and |G/Z,(G)] in terms of |G'|, is a
noticeable and interesting problem. I. M. Isaacs and K. Podoski and B. Szegedy
gave different answers for this problem (see [3], [12], [10], [11]).

Ellis extended the concepts of capability, Schur multipliers and central series
of groups for pairs of groups. By a pair of groups,we mean a group G and
a normal subgroup N. An excellent introduction to the extended concepts
capable pairs and Schur multiplier of pairs of groups appear in [2] and [1],
respectively. Ellis [2] also define the concept of relatively capable groups. A
group K is relatively capable if and only if there exists a pair (G, N) of groups
such that K = N/Z(G, N).

Recall that, for a pair (G, N) of groups, the center subgroup and the second
center subgroup, denoted by Z(G, N) and Z,(G, N) respectively, are defined
as follows:

Z(G,N) = {x € N|x8 = x,Vg € G},
Z>(G,N) G N

aQN)_(aQNYﬂGNﬂ

The author generalized some result of [11] for pairs of finite groups in
[7] and obtained an upper bound for |[N/Z,(G,N)| in terms of |[N, G]| and
rank(G'),where rank(G) is, the minimal number r such that every subgroup of
G can be generated by r elements.

In the present research we apply the result of [7] and give a better up-
per bound for [N/Z,(G,N)| in terms of |[N, G|| and rank(G'), for any pair
(G,N) of finite groups. Also we use this result and obtain an upper bound
for K/Z(H,K) which appears as H = G/Z(G,N) and K = N/Z(G,N), for
another pair (G, N) of finite groups.
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2. Main Results

First we state the following results which are needed to prove the main
theorem of the paper.

Lemma 2.1. Let H and K be two subgroups of a group G, such that K < G and H can
be generated by d elements. Then

K: Cx(H)| < |[H, K]
PROOF. See the proof of Lemma 10 in [11]. O

Theorem 2.2. Let (G, N) be a pair of finite groups. Suppose that Z = Z(G,N) N
[N, G] and rank([N,G|/Z) = r. Then
[N, G] L
AL
PROOF. See the proof of Theorem 2.4 in [7]. O

ICN(G") : Z2(G,N)| < |

Now we are going to obtain an upper bound for |N : Z;(G, N)|. For this
we need to prove some lemmas.

Lemma 2.3. Let (G, N) be a pair of finite groups. Suppose that Z = Z(G,
[N,Gland A/Z = Cy,z(G'/Z). Then A is a nilpotent group and G’/ Cg (
p-group, for any Sylow p-subgroup P of A.

Lemma 2.4. Let (G, N) be a pair of finite groups. Suppose that Z = Z(G,N) N
[N,Gland A/Z = Cn,z(G'/Z). Then

|A:Cn(G)| <IN, Gl/ZI,
in which r = rank(G'/Z(G) N G').
Theorem 2.5. Let (G, N) be a pair of finite groups. Then

[N/ G] ’41'
[N,GINnZ(N,G)" ’

N)N
)isa

IN:Zy(G,N)| <|

in which r = rank(G'/G' N Z(G)).

The next main result of the paper is an immediate consequence of the above
theorem.

Corollary 2.6. Let (H,K) be a pair of groups such that H = G/Z(G,N) and
K= N/Z(G,N), for a pair (G, N) of finite groups. Then

IK: Z(H,K)| < |[K, H]|*,
in which r = rank(H").
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Connected Domination Number of Central Trees

FARSHAD KAZEMNEJAD*

Abstract

Let G = (V,E) be a graph. A subset S of V is called a dominating set of G if every vertex notin S
is adjacent to some vertex in S. The domination number 7(G) of G is the minimum cardinality
taken over all dominating sets of G. A dominating set S is called a connected dominating set if
the induced subgraph < S > is connected. The minimum cardinality taken over all connected
dominating sets of G is called the connected domination number of G and is denoted by 7. (G).
In this paper, we study the connected domination number of central trees. Indeed, we obtain
some tight bounds for the connected domination number of a central trees C(T) in terms of some
invariants of the graph T. Also we characterize the connected domination number of the central
of some families of trees.

Keywords and phrases: Connected domination number, Central trees .
2010 Mathematics subject classification: 05C69, 05C70.

1. Introduction

The notion of domination and its many generalizations have been intensively
studied in graph theory and the literature on this subject is vast, see for
example [2], [3] and [4]. Throughout this paper, we use standard notation for
graphs and we assume that each graph is non-empty, finite, undirected and
simple. For the standard graph theory terminology not given here we refer
to [1]. Throughout this paper, G is a non-empty, finite, undirected and simple
graph with the vertex set V(G) and the edge set E(G).

Let G be a graph with the vertex set V(G) of order n and the edge set
E(G) of size m. The open neighborhood and the closed neighborhood of a vertex
v € V(G) are Ng(v) = {u € V(G) : uv € E(G)} and Ng[v] = Ng(v) U {v},
respectively. The degree of a vertex v is defined as degg(v) = |[Ng(v)|. The
minimum and maximum degree of a vertex in G are denoted by § = §(G) and
A = A(G), respectively. We write K; ,_1 and P, for a star graph and a path
graph of order n, respectively, while The m-corona G o P, of a graph G is the
graph of order (m + 1)|V(G)| obtained from G by adding a path of order m
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to each vertex of G. A double star graph Sy ,, , is obtained from the star graph
K1, by replacing every edge with a path of length 2.

G|[S] denote the subgraph of G induced on the vertex set S. The complement
of a graph G, denoted by G, is a graph with the vertex set V(G) such that for
every two vertices v and w, vw € E(G) if and only if vw ¢ E(G). A vertex cover
of the graph G is a set D C V(G) such that every edge of G is incident to at
least one element of D. The vertex cover number of G, denoted by 7(G), is the
minimum cardinality of a vertex cover of G.

For a tree graph G, any vertex of degree one is called a leaf and the
neighbour of a leaf is called a support vertex of G.

Vernold et al., in [7] by doing an operation on a given graph G obtained the
central graph of G as follows.

Definition 1.1. [7] The central graph C(G) of a graph G of order n and size m is a
graph of order n + m and size () + m which is obtained by subdividing each edge of
G exactly once and joining all the non-adjacent vertices of G in C(G).

We fix a notation for the vertex set and the edge set of the central graph
C(G) to work with throughout the paper. Let V(G) = {v1,v2,---,v,}. We set
V(C(G)) = V(G) UC,whereC = {Cij P 0ivj S E(G)} and E(C(G)) = {UZ'CZ']‘,U]‘CZ']' :
0V} € E(G)} U {UZ‘U]' D00 ¢ E(G)}.

Definition 1.2. A subset S of V' is called a dominating set of G if every vertex not in S
is adjacent to some vertex in S. A dominating set S is called connected dominating set
if the induced subgraph < S > is connected. The minimum cardinality taken over all
connected dominating sets in G is called the connected domination number of G and
is denoted by v.(C(G)). Moreover, a connected dominating set of G of cardinality
Ye(C(G))is called a . - set of G.

Definition 1.3. A total dominating set, briefly TDS, of a graph Gisaset S C V(G)
such that Ng(v) N S # @, for any vertex v € V(G). The total domination number
of G is the minimum cardinality of a TDS of G and is denoted by 7:(G).
Moreover, a total dominating set of G of cardinality v(G) is called a yi—set of G.

The concept of connected domination in graphs was introduced by Sam-
pathkumar and Walikar [6] in 1979. In this paper, we study the connected
domination number of central trees.

The paper proceeds as follows. In Section 2, first we determine 7.(C(T))
explicitly, when T is Ky ,_1, P, corona graph G o Pj, 2-corona graph G o P,
double star graph S;,,. In continue, we present some upper and lower
bounds for v.(C(T)).
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2. Main Results

In this section, we obtain the connected domination number of the central
trees. The connected domination number of the central graph of star graph is
given in the first Theorem.

Theorem 2.1. For a star graph Ky ,,_1 of order n > 3, v.(C(Ky,,—1)) = 3.
Theorem 2.2. For any path P, of order n > 3,

Te(C(P)) = {?[2 | Ay
Theorem 2.3. For any integer n > 2, y.(C(Sy1,n)) =n+ 1.
Theorem 2.4. For any tree T of order n > 4,
Ye(C(To Py)) = n.
Theorem 2.5. For any tree T of order n > 4,
Y(C(ToP)) =n+1(T).

In continue, we obtain a lower bound and an upper bound for the con-
nected domination number of the central graph of a tree.

Theorem 2.6. For any tree T of order n > 3 with A(T) > n — 3, v.(C(T) = 3.
Corollary 2.7. For any tree T of order 3 <n <6, y.(C(T) = 3.
Theorem 2.8. For any tree T of order n > 7 with A(T) <n — 4,

Ye(C(T) < 7(T) +2

By Theorem 2.6, Corollary 2.7 and Theorem 2.8, we have the following
result.

Corollary 2.9. For any tree T of order n > 3,
3< 'YC(C(T) < T(T) +2
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Energy of Monad Graphs Generated by Cubic Function

ALI A. SHUKUR"

Abstract

There are a limit numbers of methods which associate group theory to graph theory. In 2003,
V.I. Arnold introduced a very important phenomena named by monad. The monad graph is
a directed graph involved to the finite group G, where every vertex of the elements g of G is
adjacent to its image by a directed edge under the action of the map f In this work, we will
calculate the energy of some monad graphs generated by cubic function, i.e. f(g) = g° for all
ge€G.

Keywords and phrases: Directed graphs, graph energy, finite group.

1. Introduction

Since 1978, when the concept of graph energy based on the eigenvalues of the
adjacency matrix was conceived [6], a large number of other “graph energies”
has been put forward. Nowadays, their number is near to 200 [7, 8]. Almost
all of these “graph energies” are based on the eigenvalues of various graph
matrices, different from the adjacency matrix. In the present paper we consider
one more “graph energy”, which —in contrast to the earlier ones — has its roots
from group theory and uses the eigenvalues of the adjacency matrix. Monad
is discrete dynamical systems, for more details, we refer to [1],[2],[3],[4].

Let G be a digraph (directed graph) of order n. Let V(G) = {v1,v2,...,0n}
be the vertex set and E(G) the edge set of G. By ¢;; is denoted the directed edge
of G starting at vertex v; and ending at vertex v;. The adjacency matrix of G is
the n x n matrix A(G) defined by

1 if ejj € E(g)
Llij =
0 otherwise.

A1, A, ..., Ay are the eigenvalues of A(G). In the case of digraphs, some of
the eigenvalues may be complex numbers. Therefore, the energy of digraphs is
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defined as the sum of absolute values of the real parts of the eigenvalues, i.e.,
n
E(G) =) |ReA].
i=1
In this paper, we are interested in the energy of the so-called monad graphs.

2. Main Results

In [2], a very interesting phenomena termed as monad was introduced by
Arnold. Let G be a finite group. A monad function is a mapping of each
element from G into itself, ie. f : G — G for all g € G. The monad graph
I'(G) is a directed graph such that every vertex of G is adjacent to its image by
a directed connected edge under the action of f. In fact, the monad function
considered in [2] was a square function.

In Table 1, the additive notation for the group operation have been used to
show the monad graphs of the first few residue classes of cyclic groups.

In order to have our results, we will consider the following lemmas:
Lemma 2.1 is an immediate consequence of the Sachs coefficient theorem [5].
Recall that for digraphs, this theorem reads:

Lemma 2.1. Let G be a digraph.

(a) If the directed edge e does not belong to any cycle of G, then e does not
contribute to the spectrum of G. In other words, by deleting e from G, neither the
spectrum nor the energy of G will change.

(b) If the vertex v does not belong to any cycle of G, then v contributes to the
spectrum of G by a zero. Therefore, by deleting v from G, the energy of G will not
change.

Lemma 2.2. Let G be a digraph with characteristic polynomial
n
$(G) =Y apx" k.
k=0

Then ag = 1 and fork > 1,

= ¥ (1))

Sely

where Ly denotes the set of k-vertex subgraphs of G, in which every component is a
directed cycle. w(S) is the number of connected components of S.

According to Lemma 2.2, the characteristic polynomial of the directed cycle
0O, is
(P(On,/\) - /\l’l - 1 .

Thus the eigenvalues of O, are

A=, i=0,1,2,...,n—1
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I'(Z,) 1—0= Ay
n
I(Zs3) 0 1.2 01+ 0,
1
\ 0
/2—»0
['(Z4) 3 Ty
1—>2Q
Polo
F(Z5) 4—3 O1+ 0Oy
AT Q
I(Zg) | 17245 3—0 | A1+ 4,
2 6
/\ /\ 0
I(Z;) | 1~———4 3~——5 0 | O +20;

TABLE 1. Monad graphs of the residue class cyclic groups for n < 8. O,, is the directed cycle

on n vertices. A, is the connected graph on 2n vertices, consisting of a directed cycle of length

n to which n one-edge branches are attached, each for every vertex of the cycle. D, is the 4n-

vertex graph consisting of the cycle Oy, to each of its vertices a three-edge branch is attached;

for examples see the 16-vertex digraph on Fig. 1 and the 80-vertex digraph on Fig. 2. To» is the
rooted binary tree on 2" vertices and n leaves. For more details see [3].

implying

CcOos

). M

n—1
E(On)=)_
j=0

By direct calculation we get E(O1) = 1, E(Oz) = 2, E(O3) =2, E(O4) =
2, E(O5) =1+ /5~ 3236, E(Og) = 4.
The following results were obtained in [9]

Theorem 2.3. Let Ay, Dy, and Tyn be the digraphs described in the caption of Table
1. Then

E(An) = E(On)}
E(Dy) = E(Oy);

E(Ton) = 1.
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n (Z,) E(T(Zy4))
2 Ay 1

3 01 +0, 3

4 Ty 1

5 O1+ 0Oy 3

6 A1+ Az 3

7 01 + 203 5

8 Ts 1

9 01 +0O¢ 5
10 A+ Ay 3
11 O1 + 019 7472
12 Ty + (T4 * Oz) 3
13 O1 + O 8.464
14 Ay +2A3 5
15 01+ O3 4304 9
16 Tie 1
17 01 +20g 9.6568
18 A+ Ax + Ag 7
19 01 + O3 12.517
20 Ty + (Ty % O4) 3
21 01 +203 +20¢ 13
22 A1+ A 7472
23 01 + 2011 15.0536

TABLE 2. Energies of monad graphs pertaining to cyclic groups Z, for the first few values of n

Theorem 2.4. The energy of the monad graph pertaining to an additive cyclic group
Oy, of odd order n is given by

m—1 :
E(T(Gu) =) Om=) ), cos%
m Mo j=0

for some (not necessarily mutually distinct) values of m, 1 < m < n — 1. For details
see Table 2.

Now, let us consider the case of cubic map, i.e. monad map is f(g) = ¢°
for all g € G. In the following table, for the simplest abelian groups of residue
class groups n < 11 and additive notation for the group operation, we show
the monad graphs generated by map f(g) = ¢° as:

Theorem 2.5. Energy of the monad graphs pertaining to a group of order 3" for r > o
is given by
27j

C0S 577

r r n—1
E((Gy)) = E(Ts) + (E2 | 0y) + EQ2) =1+ (L 1 +2)).
i=2 j=

i=2
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Group Monad Graph Graph'’s symbol Group Monad Graph Graph's symbol
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1 2
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Definable Monotone Functions in Type Complete Ordered
Fields

P. ABBASPOUR™ and J.S. EIVAZLOO

Abstract

Type complete ordered structures have been studied in [2] and [4] within many remarkable
results. The main results were achieved under the additional definable completeness named
DC. An ordered structure M = (M, <,...) satisfies DC if every definable subset of M has a
least upper bound in M U {£o0}. Here, we study type-complete structures in which definable
bounded monotone functions converge.

Keywords and phrases: type-complete, definable monotone function.
2010 Mathematics subject classification: Primary: 12]J15, 03C64; Secondary: 06F30.

1. Introduction

Let M = (M, <,...) be a first order expansion of a dense linear order (M, <)
which has no end points. For a € M, let a~ and a™ denote the partial types
{b<x<albeM,b<a}and {a <x<b|be M, b>a}, respectively. The
structure M is said to be type-complete if for any 2 € M, a~ is a complete
type, equivalently, for every definable set X C M and any a € Me(= M U
{o0}), defining formula ¢(x) of X is in a~ or ¢ € a~. Type-completeness
(abbreviated by TC) is a first order property in the language of M. Let TC
denote the theory of type-complete expansions of dense linear orders in a
first order language £ = {<,...}. Also the structure M is called definably
complete if every definable subset of M has a least upper bound in MU {£o0}.
Definable completeness of L-structures is a first order property that is denoted
by DC in [4]. For details of DC-structures, see [1] and [3]. Models of
TC + DC have been studied in [2] and [4]. Note that models of TC are
called locally o-minimal structures in [2]. Here, we replace the assumption of
being definably complete with the weaker assumption that definable bounded
monotone functions converge in the ordered structure. In the following, we
fix an L-structure M which is a model of TC and assume that every definable
bounden monotone function f : M — M converges in M.
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2. Main Results

Lemma 2.1. Let Y C M be definable and K C M compact. If K is open or Y C K,
then K N'Y is a finite union of intervals in M.

PROOF. Given a definable subset Y C M, and suppose that K is open, then for
each x € K, there is an open interval I, C K such that I, NY is an interval. since
Kis compact and the I, cover K, there exist finitely many points xy,---,x, € K
such that K = I, U--- U I, and hence KN Y is a finite union of intervals. If
K is arbitrary, then we cannot arrange for all I, to be contained in K, and so
we only have K C Iy, U---Uly,. Butsince Y CKsoY C I U---UlIy, so
Y=YN(I;;U---Ul,),and finally YN K =Y = U | (Y N I,). O

Definition 2.2. An ordered structure M is said to be ordered-minimal (abbreviated
by o-minimal) if every definable set X C M is a finite union of open intervals and
points in M.

It is worth mentioning that o-minimal structures have been extensively
studied in the four last decades. The most important examples of o-minimal
structures are dense linear orders, divisible ordered abelian groups, and real
closed fields.

Theorem 2.3. If every closed and bounded subset of M is compact (Heine-Borel
property), then the structure M is o-minimal.

PROOF. suppose that Y C M is definable. Since M is type-complete, then
c0o” CYoroo CM\Y. Also, (—o0)t C Y or (—o0)™ C M\ Y. Hence, in
order to prove that M is o-minimal, we may assume after removing one or
two unbounded intervals that Y is bounded, whence contained in some closed
bounded interval K := [a,b]. Hence Y = Y N K is a finite union of intervals by
lemma 2.1

m

Corollary 2.4. If M is a substructure of real ordered structure (R, <,...) with the
assumptions above, then M is o-minimal.

For example the ordered field of real algebraic numbers is o-minimal.

Proposition 2.5. If X C M is definable, then it is discrete or otherwise has a nonempty
interior.

Lemma 2.6. Let f : M — M be a definable increasing function. Then, we have the

following.

e Ifinf f(M) exists in M, then it is a boundary point of f(M).

e If f(M) is definably connected, then it is an interval in M.

e If f(M) is discrete, then it is closed and bounded, and so has minimum and
maximum elements.
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Theorem 2.7. Every finite union of definable discrete subsets of M is discrete.

PROOF. Itis enough to show that the union of two definable discrete subsets of
M is discrete. Let X,Y C M be definable discrete sets and suppose that X U'Y
is not discrete, so it has nonempty interior (by proposition 2.5) and contains
an open interval I. Assume thata € I then 4~ and a™ don’t belong to X nor Y
(since they are discrete), so both belong to M \ X and M \ Y. hence they belong
to( M\ X)N(M\Y)=M)\ (XUY). Therefore a would be a isolated point of
X UY and it is a contradiction. |

Proposition 2.8. The set of boundary points of every definable subset of M is closed,
bounded, and discrete.
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A note on mono-covered acts

MOHAMMAD ROUEENTAN* and ROGHAIEH KHOSRAVI

Abstract

The main purpose of this article is an introduction and investigation of new kinds of acts namely
mono-covered acts. Some general properties of these kinds of acts are presented and their
relations with some other concepts are studied.

Keywords and phrases: Trace, act, monomorphism .
2010 Mathematics subject classification: Primary: 20M30.

1. Introduction

Throughout this article S will denote a monoid and an S-act Ag (or A) is a
right S-act. From [3], the trace of an S-act B in an S-act A is defined by

Tr(B,A) := lJ  ¢(B). Also by modeling trace concept the notion of
@€Hom(B,A)
mono-trace is defined in [5]. For any S-acts A,B the mono-trace of B in
A is defined by MTr(B,A) := U  @(B) where Mon(B,A) = {f: B —
@EMon(B,A)

Alf is a monomorphism}. A right S-act A is called mono-covered if for any
subact B of A,MTr(B,A) = A. From [1] for an element a of an S-act A, the
annihilator of a is defined by ann(a) := {(s,t) € S x S| as = at} = ker(A,) where
Ag:Ss —> Alis defined by A4(s) = as for every s € S. Moreover, for an S-act A,

the annihilator of A is defined by ann(A) = () ann(a). Recall that a non-zero
acA
S-act A is called uniform if every non-zero subact is large in A i.e., for any

non-zero subact B of A, any S-homomorphism g : A — C such that g|p is a
monomorphism is itself a monomorphism. We denote this situation by B C" A.
We encourage the reader to see [3] for basic results and definitions related to
acts not defined here.
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2. Main Results

Definition 2.1. Let S be a monoid. A right S-act A is called mono-covered if for any
element a € A and any subact B of A, there exists a monomorphism f : B — A such
that a = f(b) for some b € B.

It is clear that a right S-act A is mono-covered if and only if for any subact
B of A,MTr(B,A) = A. Also it is easy to check that any retract of any mono-
covered act is a mono-covered. Moreover, the right S-act Sg is mono-covered
if and only if every projective (free) S-act is a mono-covered.

The following proposition contains some general properties of mono-trace.
Recall that an S-act A is called injective if for any S-act B, any subact C of B and
any homomorphism f : C — A, there exists a homomorphism f : B — A
relative to all inclusions from its cyclic subacts. We denote in short "cyclic
quasi-injective", by "CQ-injective".

For any S-act A, by E(A) we denote the injective envelope of A.

Proposition 2.2. Let S be a monoid and B C C C A be S-acts. Then the following
hold:

(i) If A is CQ-injectiveand A = \J {f(b) | f : bS — A}, then MTr(B,A) = A.
beB

(ii) If MTr(B,A) = A and A is CQ-injective, then MTr(C,A) = A.

(iii) If MTr(B,A) = A and C is CQ-injective, then MTr(B,C) = C.

(iv) If MTr(I,Ss) = Ss, then MTr(E(I),E(S)) = E(S), where 1 is a right ideal of S.
Corollary 2.3. Let S be a monoid. Then the following hold:

(i) Any CQ-injective subact of any mono-covered act is mono-covered.

(ii) If A is a CQ-injective act and for any elements a,b € A,ann(a) = ann(b), then A
is mono-covered.

Proposition 2.4. Suppose S is a monoid and A is a mono-covered act. Then for any
subact B of A,ann(A) = ann(B). Also if ann(a) = ann(b) for any elements a,b € A
and A(S) satisfies the descending chain condition on cyclic subacts (principal right
ideals), then A is a mono-covered act.

From [2] an S-act A is called uniserial if the set of its subacts is linearly
ordered by inclusion.

Proposition 2.5. Let S be a monoid and A be a right S-act which satisfies the
descending chain conditions on subacts. Then A is a uniserial mono-covered act if
and only if A is a simple S-act.

Proposition 2.6. Suppose S is a commutative monoid and A is a CQ-injective S-act.
If T = End(A), then the following conditions are equivalent:
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i) For any elements a,b € A,ann(a) = ann(b).
ii) A is a mono-covered act.
iii) Ifa € A, then A = Ta, where Ta = {f(a) | f € T}.

(
(
(
(iv) A isasimple T-act.

Proposition 2.7. Suppose that Sg is mono-covered. Then for every right ideal I of S,
there exists x € E(I) such that E(I) = Tx where T = Hom(E(I),E(I)).

PROOF. Suppose I is a right ideal of S. Since Sg is a cyclic right S-act, S
embedded in I and so E(S) and E(I) are retract of each other. Thus there exists
an epimorphism 1 : E(I) — E(S). Now, projectivity of S implies the existence
of a homomorphism f : S — E(I) such that hof = i where i is the inclusion
map. Thus f is a monomorphism. If m € E(I), then for the homomorphism
Am S — E(I),An(1) = m. Again, injectivity of E(I) implies the existence
of a homomorphism g : E(I) — E(I) such that gof = Ay. If f(1) = x, then
g(f(1)) = m and hence g(x) = m. Consequently, E(I) = Tx. o

Proposition 2.8. Ouver a commutative monoid S, any cyclic mono-covered act is
uniform. In particular if Sg is a mono-covered act, then S is a uniform monoid.

References

[1] Chen, G., The Endomorphism structure of simple faithful S-acts, Semigroup Forum, 59:
179-182(1999).

[2] Chen, Y., Shum, K. P, Rees short exact sequence of S-systems, Semigroup Forum. 65,
141-148 (2002)

[3] Kilp, M., Knauer, U., Mikhalev, A. V.: Monoids, Acts and Categories, With Application
to Wreath Product, Berlin; New York(2000)

[4] Roueentan, M., Sedaghatjoo, M., On uniform acts over semigroups, Semigroup Forum.
97, 229-243 (2018)

[5] Roueentan, M., Khosravi, R., Mono-duo and strongly mono-duo S-acts over monoids,
the 50" Annual Iranian Mathematics Conference, 1317-1319 (2019).

MOHAMMAD ROUEENTAN,
College of Engineering, Lamerd Higher Education Center, Lamerd, Iran,

e-mail: m.rooeintan@yahoo.com

ROGHAIEH KHOSRAVI,
Department of Mathematics, Fasa University, Fasa, Iran,

e-mail: khosravi@fasau.ac.ir

En-192



27" Iranian Algebra Seminar

Persian Gulf University, Bushehr, Iran

18-19 Esfand 1400 (March 9-10, 2022)

The autocentralizer automorphism of groups

F.KARIMI* and M.M. NASERABADI

Abstract

Let G be a finite group and let Aut"2(G)(G) be the group of autocommutator automorophisms
of G where H,(G) is an autocentralizer subgroup of G.

In this paper, we find necessary and suffcient conditions on the finite group G such that this
subgroup of automorphisms be equal of Inn(G) or C*. We give some properties of these
automorphisms.

Keywords and phrases: Centralizer subgroup, autocentralizer subgroup and autocentralizer
automorphism. .

2010 Mathematics subject classification: Primary: 22D15, 43A10; Secondary: 43A20, 46H25.

1. Introduction

In this paper our notations are standard. Let G be a finite group, by Z(G), G,
Cg(a), Hom(G,H), Aut(G), Inn(G) respectively the center, the commutator
subgroup, the centralizer subgroup, the homomorphism group of G into an
abelian group H, the full automorphism group and the inner automorphisms
of G.

Arora and Karan [1] defined the autonormalizer subgroup of H in G,

Ng(H) ={x € G| [x,a] € H, for all « € Aut(G)}. In the paper we denote
the autocentralizer subset H,(G) of G for a some a € G as:

H,(G) ={x e G|[x,a] € Cg(a), foralla € Aut(G)}

and
Hz(G)={x€ G| [x,a] € Z(G), forall « € Aut(G)}.

An automorphism & of G is called central if x “'a(x) € Z(G) for each x € G. The
set of all central automorphisms of G, denoted by Aut.(G), fix G’ elementwise
and form a normal subgroup of the full automorphism group of G.(see [3]).
The group of all central automorphism of G is defined as follows:

C*={a € Aut(G) | [x,a] € Z(G),a(z) =z forall z€ Z(G) and x € G}.
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Similarly in this paper we introduce autocentralizer automorphism. An
automorphism « of G denote autocentralizer if x~'a(x) € H,(G) for eachl
x € G for some a € G. The set of all autocentralizer automorphisms of G,
denote by Aut'a(G)(G). There are some well-known results about autocen-
tralizer automorphism of finite groups. We prove there exists a bijection

H,(G) G . .
between Autcl ) (G) and Hom(cc(u),Ha(G)). Also we prove if G be a fi-

nite group, Cg(a) < Z(G), G < H,(G) and Hom(=S—,H,(G)) ~ S, then

e Co(@)” = Z(G)
Autg")(G) = Inn(G) .

2. Main Results

Definition 2.1. Let G be a group.The autocentralizer H,(G) of G for some a € G
define by

H,(G) ={x € G|[x,a] € Cg(a), forall x € Aut(G)}

Note that by the outonormalizer subgroup definition, H,(G) is a subgroup of G.
It is easy to see that if Cg(a) be a characteristic subgroup of G then H,(G) is a
characteristic subgroup of G. Also it is clear VH,(G) = Hz(G) for any a € G.

Definition 2.2. An automorphism o of G define autocentralizr, if x~'a(x) € H,(G)
for some a € G and for each x € G.  We denote the set of all autocentralizer
automorphisms of G by Aut™(G)(G), ie

AutP(C)(G) = {a € Aut(G) | [x,a] € Hy(G), forall x € G}.

Notice that if H,(G) be a normal subgroup of G then Aut™=(G)(G) is the subgroup
of Aut(G). Also if Cc(a) be a characteristic subgroup of G then AutHa(G)(G) is
the subgroup of Aut(G). It is very interesting to characterize if Cg(a) = Z(G)
then in which Aut™a(C)(G) be equal to Aut.(G), the group of all central automor-
phisms of G. We mean Autc_,)(G) the subgroup of Aut(G) consisting of all auto-
morphisms which fix Cg(a) pointwise. We denote Aut™(G)(G) N Autc, (o) (G) by

H,(G)
Autcc(a) (G).

Azhdari and Akhavan-Malayeri [2] showed, if M, N be two normal sub-
groups of G and M be a central subgroup of G then Autd (G) < Aut.(G). they

proved if M < Z(G) NN, then Aut¥!(G) ~ Hom($;, M). By substituting M by
H,;(G) and N by Cg(a), we have a similar result for Autgg(c)(G). We prove

(@)
AutZ"©)(G) ~ Hom (S, Ha(G)).

Theorem 2.3. Let G be a finite group.
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(i) If Cg(a) be a normal subgroup of G and H,(G) be a central subgroup of G, then

AutZ" %) (G) ~ Hom(=——, Ha(G)).

G
Cg(a)’
(ii) If H,(G) be a central subgroup and Cg(a) be abelian subgroup of G, then

H,(G) . KNCg(a _
Autge(y)(6) = S5 where Z(q%5) = miey

PROOF.
(i) Let 6: AutH“((G))(G) — Hom( @)
a*(xCg(a)) = xa(x) for each a € Aut (( )) (G). Since a is an automorphism

,H,(G)), defined by 6(«) = a* where

fixing Cg(a) elementwise a* is a well- defmed homomorphism of CGG@ to
H,(G). Therefore 6 is a well-defined map. Clearly, 6 is one-to-one.

In the first place, 0 is a homomorphism: for if ay,a; € Autggif)) (G)and x € G,
then

= xtag (el (%)) = x Ty (). (2 Lap(x))
= x"lay ()2 Map (x) = (xC (a)) a3 (xCg (a)).

Our homomorphism is also surjective, for this let B € Hom( CGG(a) ,H,(G)), we

(t1a2)*(xCg(a)) = x aqan(x) = x oy (w2 (x))
)

define the map

0:G—G
x — xB(xCg(a))

evidently « is a well-defined homomorphism By Lemma 1.1 in [2], a is an
isomorphism. Furthermore a centralizes ( 3 and H,(G) and consequently

€ Autt(C )(G). Also by the definition of 6, we have a* =  and it follows

Cg(a)
that 6 is an isomorphism of Autg‘;((ac)) (G) to Hom( H,(G)), as required.

G
Co(a)’
(ii) It is straightforward to see that ¢ € KN Cg(a) if and only if I; € Aut (( )) (G).

And a quick calculation shows that the map ¢ : KN Cg(a) — Aut (( )) de-

fined by ¢(x) = I,1, for all x € KN Cg(a)) is an epimorphism with the kernel
equal to Z(G), as required. i

As an immediate consequence of this result, one readily gets the following
corollaries.

Corollary 2.4. Inn(G) = Autgg((f))(G) if and only if Cc(a) < Z(G), G' < Ha(G)

and Hom ( H,(G)) ~ 5.

G
Cela)’ Z(G)
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PROOF. If Inn(G) = AutH“(G)(G) then Inn(G) < Aut (G)(G) and so G <

Cg(a) Cg(a)
H,(G), Cg(a) < Z(G) and Hom(m,Ha(G)) % Conversely, if
G <H, ( ), Cg(a) < Z( ) therefore Inn(G) < Aut (( ) Cola ))(G) and
Hom (=5~ o H,;(G)) =~ 7. So the equality holds. O

Corollary 2.5. Let G is aﬁnite group. If H,(G) = Hz(G) and Cg(a) be a charac-
teristic subgroup of G, then

H,(G) _
Autcc(u) (G)=C*
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On characters of polygroups

K. GHADIMI*

Abstract

In this paper we introduce characters of polygroups over hyperrings and show such characters
induce characters of the fundamental group over corresponding fundamental ring.

Keywords and phrases: character, polygroup, hyperring.
2010 Mathematics subject classification: Primary: 22D15, 43A10; Secondary: 43A20, 46H25.

1. Introduction

The concept of hypergroup, which is a generalization of the concept of or-
dinary group, we first introduced by Marty [6]. A hypergroup is a set H
equipped with an associative hyperoperation - : H x H — P*(H) which sat-
isfies the property x - H = H - x = H, for all x € H. If the hyperoperation - is
associative then H is called a semihypergroup.

In the above definition if A,B C H and x € H then we define

A-B= |J a-b,x-B={x}-Band A-x=A-{x}.
acA,beB

A polygroup is a special case of hypergroup. According to [2] and [3] a
polygroup is a system P = (P,-,e,”1), where ¢ € P, ~! is a unary operation on
P, - maps P x P into non-empty subsets of P, and the following axioms hold
forall x,y,z € P:

() (x-y) - z=x-(y-2);

() x-e=e-x=x;

(Ps)x €y -zimpliesy € x-z landzey ! x.

A hyperring is a hyperstructure with two hyperoperation + and - that sat-
isfies the ring-like axiomes: (R,+,-) is a hyperring if (R,+) is a commuta-
tive polygroup, - is an associative hyperoperation and the distributive laws
x-(y+z)Cx-y+x-z,(x+y)-z<Cx-z+y-zare satisfied for every x,y,z € R.
The element 0 is called zero element of Rif 0-x =x-0=0forall x € R.
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(R,+,-) is called a semihyperring if +, - are associative hyperoperations
where - is distributive whith respect to +.

The character is a very important function in the theory of representations
because it characterizes the representation. Thus it is natural to define this
for hypermatrix representations as well. But first we need some definitions.
In the following M, denotes the set of all n x n hypermatrices over a given
hyperring.

Definition 1.1. Let (R,+,-) be hyperring endowed with a zero element 0, and
the set of unite elements Ugr = {u € R|r € (ur) N (ru) forallr € R} is non-
empty. A hypermatrix I, € M, is called unit hypermatrix if it is of the form
I, = diag(uy,...,un) where u; € Ug foralli € 1,...,n. Soone has A € (Al, NI, A)
for all A € M. Remark that the above relation can be also valid for non-diagonal
hypermatrices, but the set of identities becomes greater. An A € M, will be called
invertible if there exists a hypermatrix A~' € M,, called inverse of A, such that
I, € (A"YAN AA~Y) where 1, is a unit matrix.

These definitions may give enormous number of identities and inverses,
however, more we are interested in hyperrings endowed unique 0 and 1. A
hypermatrix A € M, is said to quasi-diagonal if it is of the block form:

A= di{/'lg(Al,Az,..., Ak)

where A; € M, i=1,...,.k,n; € N* and ny + ... + ny = n. So A is the direct sum
of the hypermatrices A; and we write

A:Al@@Ak

A € M, will be called reducible if there is an invertible hypermatrix B such
that (B~*A)B or B~'(AB) contains a proper quasi-diagonal A" € My, i.e. A is
similar to a quasi-diagonal hypermatrix. If A is not reducible, then it is called
irreducible.

In this paper we introduce characters of polygroups over hyperrings and
show such characters induce characters of the fundamental group over corre-
sponding fundamental ring.

2. Main Results
Definition 2.1. [7] Let A = (a;j) be hypermatrix over the commutative hyperring
(R,+,-), then we can define the following traces:
1. Tr:M, — P(R) : TrA=Y" a;.
2. trx . Mn —> R : trx E TTA, (x E R).
3. trg: My — R/y* 1 trgA="(La;) =tre(A) € R/y*, where ¢ is the
fundamental map (fundamental trace).

Theorem 2.2.
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1. try(Iy) = n for all n X n unit hypermatrices on R.

2. try(AB) =try(BA) forall A,B € M.

3. trg(B7Y(AB)) =try((B~1A)B) =tryA forall A,B € M,.

Definition 2.3. Let T be a representation of a polygroup P by hypermatrices over R,
we shall call fundamental character of T the mapping

Xr:H — R/ x — Xr(x) = try(T(x)) = tr(T*(x)).
Definition 2.4. Let T be a hypermatrix representation of degree n of P over R. Let
denote by diag(Mnl,...,Mnk) where n; € N* and ny + ... + ny = n the set of all
quasi-diagonal hypermatrices over R, diag(Ay, ..., Ax) where Ay, € My, Vi=1,...,k.
If every matrix T(x), x € P has a similar matrix which belongs to a fixed set

diag(Mp,,.... Mn,),
then T is called reducible. If T is not reducible, then it is called irreducible. If T is
reducible then for every x € P we can write
T(x) =diag(T1(x),..., Tx(x)),

where Tj(x) € My,, i =1,...,k. The components T;, i =1,...,k are also representations
of P over R. Indeed, it is clear that for all x,y € P we have

T(xy) = diag(Ti(xy),..., Te(xy))
= diag(T1(x), ..., Te(x)) - diag(T1(y), ..., Tk (y))
= T(x)T(y)

Wewrite T =T @ ... ® Ty and T is called direct sum of the representations Ty, ..., T.
In a direct sum it is immediate that

treT(x) = treTi(x) + ... + tryTi(x).
Therefore, the character Xt can be written as
Xr = XTl + ...+ XTk'

A character is called reducible (resp. irreducible) if it corresponds to reducible (resp.
irreducible) representation.

Theorem 2.5. Let T be any inclusion hypermatrix representation of P over R, of
degree n. Then there exists a unique group character Xt such that X7 = Xr, o ¢, of
the fundamental group over the fundamental ring.

Example 2.6. Suppose that the multiplication table for polygroup P = (P,-,e,~1)
where P = {e,a,b} is

e a b
ele a b
a|a {eb} {ab}
b

b {ab} {ea}
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In Z3, we define a hyperoperation & as follows:
1®1=1{0,2},202=1{0,1},1®2={1,2} and @ be the usual sum for the other
cases, and let ® be the usual product in Zs. One can see that (Z3,®,®) is a
semihyperring.

If we choose iy, jo, io # jo, 0 < i, jo < n and then put T(e) = I,, T(a) = A, and
T(b) = By, where

a; = 1i=1,..,n
A, = (ui]-) with Aigjo = 1
ajj =0 otherwise.

By = (bjj) with { bij=ajj if i#io, j#jo
binO = 2,

then T is a representation of P. Characters of P over R are:
TrA,=101el=>0161)e1={02}e1={0012¢1} ={1,{1,2}} and
TrB, = TrA, = {1,{1,2} }.

(1]

[2]
(3]

[4]
[5]

(6]
[7]
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Commutativity degree of crossed modules

SH. HEIDARIAN™, F. KHAKSAR HAGHANI and S. AMINI

Abstract

In this article, we extend the notion of commutativity degree to the class of all finite crossed
modules. We shall state some results concerning commutativity degree of crossed modules and
obtain some upper and lower bounds for commutativity degree of finite crossed modules. Fi-
nally we show that, if two crossed modules are isoclinic, then they have the same commutativity
degree.

Keywords and phrases: Crossed Module; Commutativity Degree; Isoclinism. .
2020 Mathematics subject classification: Primary: 20E34, Secondary: 20N99, 18B99.

1. Introduction

In 1968, Erdos and Turén, [2] introduced the concept of commutativity degree
of groups, when they worked on symmetric groups. Let G be a finite group,
the commutativity degree of G, denoted by d(G) is defined as

d(G) = L&Y € G’>C<;|Cz3txy=yx}|.

Note that d(G) > 0 and d(G) = 1 if and only if G is abelian. In 1973, Gustafson
[3] obtained an upper bound for d(G), when G is a non-abelian finite group.
Few years later, Rusin [6] computed the value of d(G), when G’ C Z(G) and
G' N Z(G) is trivial and classified all finite groups G for which d(G) is greater
than :1,)—5 A crossed module (T,G,¢) is a group homomorphism ¢ : T — G
together with an action of G on T satisfying certain conditions. In [5] and
[7] the concept of isoclinism has been generalized for crossed modules. In
this article, we generalize the concept of commutativity degree for the finite
crossed modules and show that two isoclinic crossed modules have the same
commutativity degree.
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2. Main Results

A crossed module (T,G,d) is a pair of groups T and G together with an
action of G on T and a homomorphism 6 : T — G called the boundary map,
satisfying the following axioms:

i)6(8t) =gd(t)g ' forallge G, teT,

i) )s = tst~1 for all t,s € T.

We will denote such a crossed module by T L G. A crossed module (T,G,9)
is said to be finite, if the groups T and G are both finite. A crossed module
(S,H,¢") is a subcrossed module of (T,G,d), when

i) S is a subgroup of T and H is a subgroup of G,

ii) &' = 6|5, the restriction of 6 to S,

iif) the action of H on S is induced by the action of G on T.
In this case, we write (S,H,d") < (T,G,é). A subcrossed module (S,H,d) of
(T,G,d) is a normal subcrossed module, if

i) H is a normal subgroup of G,

ii)8se Sforallge G,s€S,

iii) "tt~1 € Sforallh € H,t € T.
This is denote by (S,H,é) < (T,G,J). Let (S,H,d) be a normal subcrossed
module of (T,G,6). Consider the triple (%, %,5), where § : % — % is induced
by 6. There is the action of  on I given by 8H(tS) = (8t)S. It is called the

quotient crossed module of (T,G,d) by (S, H, ) and denoted by ggi; Let

(T,G,d) be a crossed module. The center of (T,G,d) is the crossed module
Z(T,G,8) : T¢ — Stg(T) N Z(G), where T¢ = {t € T:8t =t forall g € G}
and Stg(T) ={ge€ G:8t=t forall t € T}. A crossed module (T,G,0)
is abelian, if (T,G,d) = Z(T,G,d). In addition, the commutator subcrossed
module [(T,G,$),(T,G,d)] of (T,G,é) is [(T,G,9),(T,G,é)] : Dg(T) — [G,G],
where D (T) is the subgroup generated by {$tt~1:t € T, ¢ € G} and [G,G]
is the commutator subgroup of G. The (T,G,J) is abelian if and only if G is
abelian and the action of the crossed module is trivial [4].

Remark 2.1. let (T,G,0) be a crossed module. We denote (1,G,0) by T i> G, where

! Z(T,G,9)
T= TLG and G = m for shortness.

Lemma 2.2. ([5]). Let (T, G,8) be a crossed module. Define the maps c1: T x G —>
Dg(T), where (tTC,g(Stg(T) N Z(G))) = 8tt L and ¢y : G x G — [G, G], where
(¢(Stc(T)NZ(G)),8 (Stg(T) N Z(G))) — [8,§], forall t € T, 3,8’ € G. Then
the maps ¢y and cq are well-defined.

Definition 2.3. ([7]). The crossed modules (Ty,G1,01) and (T, Gy,0,) are isoclinic,
if there exist isomorphisms

(771,770) : (T1,61,(5_1) — (TZ/GZISZ)
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and
(€1,€0) : (Dg, (T1) = [G1,G1]) — (Dg,(T2) — [G2, G2])

such that the diagrams

T1 X Gl L) DGl(Tl)

l’hxﬂo lel

_ - c}
T2 X G2 —_— DGl(Tl)
and

G1 X Gl L) [Gl,G1]

JUOX'IO leo

_ _ 66
Gy X Gy —— [Gy, Gy

are commutative, where (c1,co) and (c},c}y) are commutator maps of crossed modules
(T1,G1,61) and (T, Gy, 02), that introduced in Lemma 2.3. The pair ((11,10), (€1,€0))
will be called an isoclinism from (T1,Gy,01) to (To, Gy, 02) and this situation will be
denoted by ((7]1,170),(61,60)) : (Tl,G1,§1) ~ (Tz,Gz,éz).

Definition 2.4. ([1]) Let (T,G,9) be a finite crossed module. The commutativity
degree d(T,G,0) of (T,G,0) is defined by

x,Y) EGXG:xy=yx, x,y€<Stc(T
4(T,G,6) = 1Y) y\cyzy y € Sta(T)}|

It is clear that, (T, G,J) is abelian if and only if d(T,G,6) = 1.

Theorem 2.5. Let (T,G,d) be a crossed module. Then d(T,G,d) < K|(TG|), where
K(G) is the number of conjugacy classes of G.
Corollary 2.6. If (T, G,6) is a crossed module and the action of G on T is trivial, then

d(T,G,6) = % and & <d(T,G,0).

Theorem 2.7. Let (T, G,6) be a crossed module. Then d(T,G,5) < 3(1+ é—/')

Theorem 2.8. Let (T,G,6) be a crossed module. If G is a non-abelian finite group,
then d(T,G,0) < %.

Example 2.9. Let Dpg =< a,b:a? = b7 =, bab=! = a”" > such that p is prime,

qlp — 1 and r has order q mod p. This type of group is called a generalized dihedral
group. Conjugacy classes type are [e], [a"] and [b™] so that no classes are 1,

pT_l and q — 1, respectively and Z(Dp,) = {e}. Consider the map i : Dp; —
Dyq. If the action of Dyq on Dpqg is conjugacy, then Stp, (Dpg) = Z(Dpg) and
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2
d(Dpg,Dpq,i) = lﬁg”'@' = (p;)z. If the action of Dpy on Dy, is trivial, then
pa
~  K(D 22 4g-1 24,9 . .
d(Dpg, Dpg,i) = é;p‘:f) = — =1 p;’z . If the action of Dpg on Dy is

_ 1 _ 1
‘qu‘z (W)z.

Theorem 2.10. Let (Ty,Gq,01),(Ta, Ga,02) be two isoclinic finite crossed modules.
Then d(Tl,G1,51) = d(Tz, G2,52).

faithful, then d(Dpg, Dpg, i)
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On hyper Cl-algebras: as a generalization of hyper
BE-algebras

S. BORHANINEJAD RAYENI!, A. REZAEIZ

Abstract

In this paper, we define the notion of hyper Cl-algebras as a generalization of hyper BE-algebras
and present some properties. Also, we define the commutative hyper Cl-algebra and find the
number of commutative hyper CI-algebra of order less than 3.

Keywords and phrases: Cl-algebra, hyper BE-algebra, hyper (commutative) Cl-algebra.
2010 Mathematics subject classification: Primary: 06F35, 03G25; Secondary: 20N20.

1. Introduction and Preliminaries

The hyper algebraic structure theory was introduced in 1934, by F. Marty at
the 8" congress of Scandinavian Mathematiciens [3]. H.S. Kim et al. defined
the notion of a BE-algebra as a generalization of a dual BCK-algebra [2].
B.L. Meng introduced the notion of Cl-algebras, and studied some relations
with BE-algebras [4]. A. Radfar et al. introduced the notion of hyper BE-
algebra and defined some types of hyper filters in hyper BE-algebras. They
showed that under special condition hyper BE-algebras are equivalent to dual
hyper K-algebras [6]. A. Rezaei et al. characterized the relation between
dual hyper K-algebras and commutative hyper BE-algebras and some types of
commutative hyper BE-algebras [7]. F. Iranmanesh et al. studied some types of
Hv-BE-algebras and investigate the relationship between them [1]. Recently,
R. Naghibi et al. introduced the new class of H,-BE-algebra as a generalization
of a (hyper) BE-algebra and they construct the H,-BE-algebra associated to a
BE-algebra [5]. In this paper, we introduce notions of (commutative) hyper
Cl-algebra and study its properties.

An algebra A = (A; %, 1) of type (2,0) is called a Cl-algebra if following
axioms hold ([4]):
(CI1) xxx=1,
(CI2) 1xx=x,
(CI3) xx(y*z)=yx*(xxz), forall x,y,z € A.

* speaker
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Cl-algebra A = (A; %, 1) is said to be BE-algebra if satisfies (BE) x*1=1,
for all x € A ([2]).

Let H be a nonempty set and o : H x H — P*(H) be a hyperoperation,
where P*(H) = P(H) \ @. Then H = (H; o, 1) is called a hyper BE-algebra, if
it satisfies the following axioms ([6]):

(HBEj)x <1and x < x,
(HBEy)xo (yoz)=yo(xoz),
(HBE;)x € 10,
(HBE4)1 < x implies x =1, forall x,y,z € H.
A hyper BE-algebra H = (H; o, 1) is said to be commutative if
(xoy)oy=(yox)ox, forall x,y € H ([7]).

2. On hyper Cl-algebras

In this section, as a generalization of hyper BE-algebra, we define the notion
of hyper Cl-algebra and investigate some results.

Definition 2.1. Let H be a nonempty set and o : H x H — P*(H) be a hyperoper-
ation. Then H = (H; o, 1) is called a hyper Cl-algebra, if it satisfies the following
axioms:

(HCI1) x < x,

(HCIp) xo(yoz)=yo(xoz),

(HCI3) x € lox, forall x,y,z € H.

Where the relation ” < ” is defined by x <y & 1 € x oy. For any two
nonempty subsets A and B of H, we define A < B if and only if there exist
ac Aand b € Bsuchthata <band AoB = U aob.

acAbeB

We will also refer to the hyper Cl-algebra H = (H; o, 1) by H.
Example 2.2. Consider R as the set of real numbers. Define the hyper operation ” o ”
on R as follows:
_J ALyt i x=1;
xey= { R otherwise.
Then (R;0,1) is a hyper Cl-algebra.
Example 2.3. Let H = {1,a,b,c}. Define the hyperoperation ” o on H as follows:

‘ 1 a b c

{1} {a} {10} {ac}
{a} {1,a} {a,c} {1l,4,b,c}
{1t {a} {1} A{La}
{1t {1}  {a} {La}

Then (H; o, 1) is a hyper CI-algebra.

O SN ~ |0
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Proposition 2.4. Any hyper BE-algebra is a hyper Cl-algebra.

The following example shows that every hyper Cl-algebra is not a hyper
BE-algebra, in general.

Example 2.5. Let H = {1,a,b,c}. Define the hyperoperation ” o ” on H as follows:
o ‘ 1 a b
{1} {a} {b}
a|{b} {l,a,b} {1,ab}
b |{b} {ab} {1,ab}

Then (H; o, 1) is a hyper CI-algebra. Since a 1, we get (HBE) does not hold. Thus
it is not a hyper BE-algebra.

Proposition 2.6. Let (A; *,1) be a Cl-algebra. If define x oy = {x xy}, for all
x,y € H, then (A; o, 1) is a hyper Cl-algebra.

Proposition 2.7. Let H be a hyper Cl-algebra and x,y € H. If x <y, then x <
(xoy)oxandy < (xoy)oy.

Proposition 2.8. Let H be a hyper Cl-algebra. Then
(i) lox<x,

(ii) x<1lox,

(iii) x<1o(lo(---(lox)--+)),

(iv) y<((yox)ox), forall x,y € H.

Theorem 2.9. Let H be a hyper Cl-algebra. Then
(i) Ao(BoC)=Bo(AoC),
(i) A<A,
(iii) x <yozimpliesy < xoz,
(vi) zexoyimpliesx <zoy, forallx,y,z € Hand A,B,C C H.
Theorem 2.10. There exist 16 hyper Cl-algebras of order less than 3 up to isomor-
phism.
3. On commutative hyper CI-algebras
In this section, we discuss on commutative hyper Cl-algebras, and enumer-
ate them of order less than 3.
Definition 3.1. A hyper Cl-algebra H is said to be commutative if
(yox)ox=(xoy)oy, for all x,y € H.
Example 3.2. (i) In Example 2.2, (R; o, 1) is a commutative hyper CI-algebra.
(ii) Let H = {1,a,b}. Define the hyper operation “ o ” as follows:
o ‘ 1 a b
v {1y {Lay  {b}

a|{l,ab} {1,ab} {b}
b|{1l,a} {1,a,b} {1,a,b}
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Then (H; o, 1) is a commutative hyper Cl-algebra.

Proposition 3.3. Let H be a commutative hyper Cl-algebra such that 1o x = {x}.
Then x oy =y ox = {1} implies x = y.

Proposition 3.4. Let H be a commutative hyper Cl-algebra. Then
(i) le(xol)ol,
(ii) (xol) <1, forallx € H.

The following example shows that, in the Proposition 3.4, condition com-
mutativity is necessary.

Example 3.5. Consider the Example 2.5, hyper CI-algebra (H; o, 1) is not commu-
tative, since H= (loa)oa+ (ao1)o1={b}. Also, we have1¢ (bo1)o1={b},
andb= (bol) £1.

Theorem 3.6. There exist 7 commutative hyper Cl-algebras of order less than 3 up to
isomorphism.

4. Conclusions and future works

In the present paper, we have introduced the concept of hyper Cl-algebras,
and presented some of their useful properties. It is shown that there exist 16
hyper Cl-algebra, and 7 commutative hyper Cl-algebra of order less than 3 up
to isomorphism. In our future work, we will investigate among filters in hyper
Cl-algebras and characterization of hyper Cl-algebras in cases |H| = 3 and 4.
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Reconstructing normal edge-transitive Cayley graphs of
abelian groups

BAHMAN KHOSRAVI*

Abstract

Cayley graphs of groups have been used extensively for designing interconnection networks
with optimal fault tolerance. On the other hand, normal edge-transitive Cayley graphs have
been extensively studied by many authors and they are characterized in some classes of groups.
In this paper, first we focus on reconstruction problem posed by Praeger and give a necessary
and sulfficient condition for a Cayley graph of an abelian group to be normal edge-transitive.
Then we investigate the main properties of these graphs as interconnection networks and we
show that they have several supremacies comparing with many other known networks.

Keywords and phrases: Normal edge-transitive Cayley graphs, Factorization of groups, Optimal
fault-tolerance..

2010 Mathematics subject classification: Primary: 05C25; Secondary: 08A30, 08A35.

1. Introduction

To design very fast computers, a lot of processors need to work together and
communicate with each other. These processors must be interconnected with
each other such that the time of communication between them would be as
short as possible and compatible with hardware technology restrictions. To
solve these issues, algebraic and geometric tools and graph theory methods
have been applied and several studies have been done in Mathematics, Com-
puter Science and Hardware Engineering.

Recall that an interconnection network is a network of interconnected de-
vices and refers to the network used to route data between the processors in a
multiprocessor computing system. The interconnection network is often mod-
eled as a graph. The vertices of the graph correspond to processors, and two
vertices are adjacent in the graph whenever there is a direct communication
link between the two corresponding processors (see [1] and [6]). In the rest
of the paper, similarly to [6], we use the terms interconnection networks and
graphs interchangeably. This easy model enables us to use graph theory in
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designing interconnection networks, and also using graph theoretical param-
eters for comparing the performances of different networks with each other.

Note that the main theoretical properties of a good graph with high per-
formance as an interconnection network (and definitely not all in reality) are
the following: low degree, small diameter, small mean distance, high vertex-
connectivity, high edge-connectivity, algebraic and easy construction, and hav-
ing easy routing and alternate path algorithms (see [1]). Clearly, designing of
a network with all the above properties is not an easy task, because some of
these properties are in conflict with each other. So we have to use very ad-
vanced tools in Mathematics (specially, in graph theory and algebraic graph
theory).

Cayley graphs of groups are very algebraic structures which have many ap-
plications in Mathematics and other research areas. Akers and Krishnamurthy
in [1] were first who suggested Cayley graphs in designing interconnection
networks. Later, in [18] this study was continued and specially, Cayley graphs
of simple groups are suggested for presenting networks with better perfor-
mance rather than several other known networks. In fact, the algebraic struc-
ture of a Cayley graph makes working with them easy, specially in presenting
very effective routing algorithms. Furthermore, edge-transitive Cayley graphs
are more interesting because they are symmetric (vertex- and edge-transitive)
and so they have optimal fault-tolerance. Therefore normal edge-transitive
Cayley graphs of groups which have been extensively studied by many au-
thors (for example see [2],[3], [4], [5], [8], [12] and [19]) are very good choices
for designing interconnection networks.

To state our main results in this paper, first we recall some facts and notions.
For every set S, by |S| we mean the cardinality of S. For every non-empty set I
and every set A =[[;c; A, by 71j: A — A; we mean the natural projection onto
the j-th component for j € I. The normalizer of a subgroup K in a group G is
denoted by Ng(K). For every group G, let Aut(G) denote the automorphism
group of G. Also note that by id;, we mean the identity map on G.

Let G be a group and C C G \ {1}, where 1 denotes the identity element
of G. The Cayley graph Cay(G,C) of G with respect to C is defined as the graph
with vertex set G and arc set E(Cay(G,C)) consisting of those ordered pairs
(g,8') such that cg = ¢/, for some ¢ € C (equivalently, ¢'¢~! € C). The set C
is called the connection set of Cay(G,C). Note that Cayley graphs of groups
are always vertex-transitive but they are not necessarily edge-transitive. The
graph Cay(G,C) is undirected if and only if C is an inverse-closed subset
of G (i.e. C=C™1). Also note that Cay(G,C) is connected if and only if
C is a generating set of G. From now on, we denote Aut(Cay(G,C)) by
Ac(G). For every g € G, the function p, : G — G defined by h — hg, for every
h € G, belongs to Ac(G). The group {pg | ¢ € G} is called the right regular
representation of G and it is denoted by Gg.
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Following the terminology in [17] we denote the group {¢ € Aut(G) |
o(C) = C}, by Aut(G;C). Recall that the Cayley graph Cay(G,C) is said
to be normal edge-transitive, if N, _()(Gr) is transitive on edges (see [17]).
Equivalently, by [17, Proposition 1], for an inverse-closed generating set C of a
group G, the Cayley graph Cay(G C) is normal edge-transitive if and only if
Aut(G;C) acts transitively on C, where C = {{c,c ™1} | c € C}.

Let P be the collection of pairs (G, C), where C is a generating set of G and
Cay(G, C) is a normal edge-transitive Cayley graph such that G has no pair of
non-trivial subgroups Hy, H, which are Aut(G;C)-invariant and G = H; x Hp.
Note that for every normal edge-transitive Cayley graph Cay(G,C), where G
is a simple group and C is a generating set of G, the pair (G, C) belongs to P.

Let G be a group and P be a vertex partition of I' = Cay(G,C), where C
is a subset of G. Recall that for a finite group G and a generating set C of
G, Na.(6)(GRr) is equal to Gg = Aut(G;C), the semidirect product of Gg and
Aut(G;C) (see [7]). We denote the quotient of I relative to P by I'p. Recall
that the group G induces a group of automorphisms of I'p if and only if P is
the set of cosets of a subgroup H of G. Furthermore the quotient is a Cayley
graph for a quotient group of G if and only if H is a normal subgroup of G (see
[17, Theorem 3]). On the other hand, note that if G is finite and N,_()(Gr)
is transitive on the edges of Cay(G,C) (or on unordered edges of Cay(G,C)),
then N,_(c)(Gr) acts transitively on the edges (or unordered edges) of the
quotient of Cay(G, C) if and only if H is Aut(G;C)-invariant (see [17, Theorem
3]). If Cay(G,C) is a finite normal edge-transitive Cayley graph, then the set

C(G,C)= {Cay(; CH )| H is an Aut(G;C)-invariant normal subgroup of G}

is a non-empty set. Having these notions and facts, we are able to state our
main questions in this paper.

Question 1. ([17, Question 2. Reconstruction]) Given a normal edge-transitive
Cayley graph Cay(G,C), under what conditions is it determined by its quotient
graphs in C(G,C)?

2. Main Results

The main idea of this paper is to use the notion of normal edge-transitive
Cayley graphs to provide an algebraic algorithm for constructing symmetric
graphs and using it to continue the study of these graphs. For this purpose,
using the idea of reconstruction question posed in [17] about normal edge-
transitive Cayley graphs (see Question 1), we present a special factorization
of groups which is well-behavior with respect to normal edge-transitivity (see
Theorem 2.1). Note that edge-transitive graphs are not very well-behaviour
with respect to different products of graphs (see [9]). Then we show that us-
ing our factorization, every normal edge-transitive Cayley graph of an abelian
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group can be decomposed graph theoretically to normal edge-transitive Cay-
ley graphs of its Sylow subgroups (see Theorem 2.2 and Proposition 2.3).

Theorem 2.1. [11, Theorem 1.3] Let G be a finite group and C be an inverse-closed

generating set of G. Then Cay(G,C) is normal edge-transitive if and only if there

exists a family {(G;,C;)}_; C P such that the following conditions hold.

i) G=Giy XX Gy

(i) for every 1 <i <n, C; = m(C)\ {1} and Cay(G;,C;) is normal edge-
transitive;

(iii) Aut(Gy1;Cq1) x -+ x Aut(Gy;Cy) has a subgroup which has an orbit O on G
such that G=0U O 1.

Then we continue the study of normal edge-transitive Cayley graphs of
abelian groups. Recall that in [8], normal edge-transitivity of Cayley graphs
of Z,», Zy x Zp and Zy x Z; were determined, where p and ¢ are prime
numbers. In the following theorem, we continue this study with similar
strategy and we show that by determining normal edge-transitive Cayley
graphs of abelian p-groups, we can determine the other normal edge-transitive
Cayley graphs of abelian groups.

Theorem 2.2. [11, Theorem 1.4] Let G be a finite abelian group and C be an inverse-
closed generating set of G. Then Cay(G,C) is normal edge-transitive if and only if
there exists a family {G;}_, of groups such that the following conditions hold.

(i) Gy, -+, Gy areall Sylow subgroups of G;

(ii) forevery1<i<n, C;=m;(C)\ {1¢,} and the Cayley graph Cay(G;,C;) is
normal edge-transitive;

(i) Aut(Gy;C1) X -+ x Aut(Gy;Cp) has a subgroup which has an orbit O on G
such that C=0UO™ L,

Proposition 2.3. [11, Proposition 3.6] For a group G and an inverse-closed generat-

ing set C of G, suppose that Cay(G,C) is normal edge-transitive and G = Gy X - -+ X

Gn, where G; is Aut(G; C)-invariant for every 1 <i <n. Let C; = r;(C) \ {1} for

every 1 < i < n. Then the following results hold.

@) (Girci> eP;

(i) Cay(G,C) is a spanning subgraph of the strong product of {Cay(G;,C;)}1"4;

(iii) For every 1 <i < n, the natural projection 7t; : Cay(G,C) — Cay(G;,C;) isa
full epimorphism.
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Deficient square graph of finite group

M. ZAMENI* and M. ALIZADEH SANATI

Abstract

In this paper, we define thedeficient square graph I';s(G) which is a graph associated to a non-
abelian finite group with the vertex set G \ Z(G), where Z(G) denotes the center of G, and two
vertices x and y are joined whenever |{x,y}?| < 4. We investigate how how the graph theoretical
properties of IT's(G) can be effected on the group theoretical properties of G. We claim that if G
and H are two non-abelian finite groups such that I's;(G) = T45(H), then |G| = |H]|.

Keywords and phrases: Deficient square graph, Planar and Capable group. .
2010 Mathematics subject classification: Primary: 05C25; Secondary: 20P05.

1. Introduction

The study of algebraic structure, using the properties of graphs, becomes an
exciting research topic in the last twenty years, leading to many fascinating
results and questions. There are many papers on assigning a graph to a ring
or a group and investigation of algebraic properties of ring or group and
investigation of algebraic properties of ring or a group using the associated
graph, for instance, see [ 3 |. In the present article, to any non-abelian group G
we assign a graph and investigate algebraic properties of the group using the
graph theoretical concepts. Before starting, let us introduce some necessary
notation and definitions.

We consider the following way: let Z(G) be the center of G, associate a
graph I';s(G) with G as follows: Take G \ Z(G) as the vertices of I';5(G) and
join two distinct vertices x and y whenever |{x,y}?| < 4 := {xy = yx or x> =
y?}. Two elements x and y of group G satisfy the deficient square property
on 2—subsets if |[{x,y}?| <4, see[ 3] and [ 3 ]. Let ds(G) be the probability
that two randomly chosen elements x and y of G satisfy the deficient square
property, that is, xy = yx or x? = yz.

Let F;(x) be the Freiman centralizer of an element x of a group G, that is,
Fs(x)={y€G:|{x,y}? <4} ={y € G:xy =yx or x> = y*}. We denote F(x)
simply by F(x). Itis clear that C(x) C F(x), in which C(x) is the centralizer of
X.
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2. Deficient square graph

Throughout this section, G is a finite group and C, is a cyclic group of
order n. Here, we define the deficient square graph I';s(G) and then we state
some basic graph theoretical properties of I'ys(G), such as domination number.
Moreover, we give its effect on the group theoretical properties of G.

Definition 2.1. A graph T 5(G) associate to G may be defined as follows: Take
G\ Z(G) as vertices of T'35(G) and join two distinct vertices x and y, whenever
[{x,y}|? < 4. The graph T 45(G) is called the deficient square graph of G.

According to the definition, d(x) = |F(x)| — |Z(G)| — 1 for every vertex x.
Clearly I'ys(G) is precisely the null graph if and only if G is abelian. There
is no group with deficient square empty graph, the otherwise it implies that
Z(G)=1and |C(x)| = |F(x)| =2 for every x € G \ Z(G) which is impossible.

Lemma 2.2. For each group with odd order, F(x) = C(x) for every x € G\ Z(G).
Corollary 2.3. If the order of G is odd, then T 45(G) =T¢(G).

We want to express what the graph properties I's(G x A) can inherit from
I';s(G), where A and G are finite abelian group and order of odd, respectively.

Theorem 2.4. Let the order of G be odd.

() If T 45 (G) is complete, then T 35(G x A) is also.

(ii) If T 45 (G) is k-regular, then T 3(G x A) is |A|(k 4+ 1) — 1-regular.
(iii) If T 45 (G) is connected, then T 35(G x A) is also.

Theorem 2.5. With the above notations and assumptions,

(i) if order of G is odd, then y(T'y5(G)) > 1.

(ii) if order of G is even, then {x} is dominating set for I 35(G) if and only if Z(G) is
elementary 2—group and o(x) = o(y) = 4 for every y € G \ C(x).

Corollary 2.6. There is no group with deficient square star graph.

Proposition 2.7. If Z(G) is elementary abelian 2—group, then |Z(G)| divides
|F(x)|, for every x € G\ Z(G).

Theorem 2.8. Let G be non-abelian group and Z(G) be elementary abelian 2—group
such that T 4s(G) = Tys(H), for some group H.
(i) If Y(T4s(G)) > 1, then |Z(G)| divides

(IG] = 1Z(G)]IG] = [E(x) |, |[E(x)| = [Z(G)]),

forvery x € G\ Z(G).
(ii) If (T 4s(G)) =1, then |Z(G)| divides

(IGI = 1Z(G)| 1G] = [F(x) |, |[F(x)| = [Z(G)I),
forvery x € G\ Z(G) such that o(x) # 4.
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We define the deficient square probability ds(G) of a finite group G to be
the probability that a randomly chosen ordered pair of elements of G has the
DS—property, that is,

ds(G) = [{(x,y)eGXG: |xGy|2:yx or X2:y2}|.

It is clear that if G is abelian, then ds(G) = 1.
We recall [2?, Theorem 2] as below, which is on essential tool in the next lemma.

Theorem 2.9. If Py =0, then G = Qg x E, where Qg is quaternion group of order 8
and E an elementary abelian 2-group, (G is assumed to be non-abelian).

Freiman in the above theorem showed that ds(G) = 1, for a finite non-
abelian group G if and only if G is a direct product of the quaternion group
of order 8 with an elementary abelian 2-group.

Lemma 2.10. T'ys(G) is complete graph if and only if G is a direct product of the
quaternion group of order 8 with an elementary abelian 2-group.

We want to express what the graph properties I';5(G X E) can inherit from
I';s(G), where E is elementary abelian 2-group of rank of .

Theorem 2.11. Let G be a finite non-abelian group.

(1) If T 45 (G) is complete, then T 35(G X E) is complete.

(i) If T 45 (G) is k-regular, then T 3(G x E) is 2" (k + 1) — 1-reqular.
(iii) If T 45 (G) is connected, then T 35(G X E) is connected.

We give some groups with unique the deficient square graph of G, i.e.
groups G with the property thatif I';s(G) =T 4(H) for some H, then G= H. As
expected, and as we shall show, the deficient square graph, in general, is not
unique and there are non-isomorphic groups with the same deficient square
graph. We concentrate on the following question.

Question 1. Let G and H be two groups such that T'y5(G) = T35 (H), can we prove
Gl = [H]?

Question 1 has affirmative answer when one of groups is S, and A,,.
Lemma 2.12. Let Fds(G) = Fds(53). Then G = 53.

Lemma 2.13. Let G and H be two non-cyclic groups with T'ys(G) = T'ys(H) and
|V (T4s(G)| be prime. Then |G| = |H|.

Theorem 2.14. Let G be a non-cyclic groups with T 3s(G) = Ty5(Sy). Then |G| =
|Snl-

Theorem 2.15. Let G be a non-cyclic groups with T 45(G) = T ys(Ay). Then |G| =
|Anl.
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3. K, -free

In this section, we define K;, — free and then we examine K —freeness,
planarity and regularity of T 45(G).

Definition 3.1. A graph that does not contain Ky, is called a K,,—free graph.

Theorem 3.2. Let G be a non-abelian group. Then T 35(G) is

(i) Ks — free if and only if G is isomorphic to one of the groups Ds,S3, Ay, C3 = Cy
or My(2) = (a,b:a®> =1,aba = b~3).

(ii) K¢ — free if and only if G is isomorphic to one of the groups Dg, S3, As, C3 < Cy,
Fs or My(2) = {(a,b:a?> = 1,aba = b~3).

(iii) Ky — free if and only if G is isomorphic to one of the groups Ds, Sz, As, C3 % Cy,
Fs, Qs, Qu2, De, S1(2,3), Ay x C, Cy0 Dy, SD1g, Hes, 3142, (a,b:a” = 0% =
1,bab=! = a*) or My(2) = (a,b: a* = 1,aba = b—3).

(iv) Ks — free ifand only if G is isomorphic to one of the groups Dg, Sz, Ag, C3 % Cy,
F5/ QS/ QlZ/ D6/ Sl(2 3) A4 X CZ/ C4 o D4, SD16, H€3, 3 +2, <a,b N a7 = b3 =
1,bab=! = a*) or My(2) = (a,b: a* = 1,aba = b~3).

(v) Ko — free if and only if G is isomorphic to one of the groups Dg, S5, Ag, C3  Cy,
F5/ QS/ Q12I D6/ Sl(zls)/ A4 X C2, C4 e} D4, SD16, Heg, 31+2, <a,b . [Z4 = b4 =
1,a 'ba=b"1), (a,b:b> =1,bab=a3),C;xC3 = (a,b:a’ =b3 =1,bab~! =a*),
C3 X 53, DiC5, C4 > Cg, M5(2), Cg o D4, C% e Cg, C2 X (C% e C4), Cz.Cﬁ, CZ‘ e Cz,
Cg = Cy, C3xCg, C4 X Sz, Cq X Ay, Cy.Agy0or My(2) = (a,b:a> =1,aba =b3).
Lemma 3.3. (i) If T 45(G) contains K3 3, then it contains Ks.

(ii) Let G be a non-abelian group. Then T 35(G) is planer if and only if G is isomorphic
to one of the groups Dg, S3, A4, C% > Cq 0r My(2) = (a,b:a®> = 1,aba = b~3).

Corollary 3.4. Let G be a non-abelian group. Then girth(T 45(G)) = 3.

In the following, we consider K,—free graph that can be at most n — 2-
regular. On the other hand, if T's(G) contins K}, then it is at least r—regular
when r > n — 1. Thus we obtained the following results.

rank of regularity height3-regular

L4s(C5 = Ca)
5-regular Fd

Hes)
31+2)

8)
7-regular [ys(Cq0Dy)

(
(
Las (
(Q
(
Tas(Ms(2))
(
(
(
(C
(

1ﬂuls

Lys Cs o Dy)
I'45(C3 = Cs)
[gs(Co ¥ (C2 xCy))
1ﬂuls ( )
Tys Cs > C4)

En - 217



References

[1] J. A.Bondy and ]. S. Marty, Graph theory with application, Elsevier (1977).

[2] Freiman, G. A, On two- and three-element subsets of groups, Aequationes Math, 22,
140-152 (1981).

[3] M. Farrokhi D. G and S. H. Jafari, On the probability of being a deficient square group
on 2-element subsets, Communications in Algebra, 46, 1259-1266 (2017).

[4] P. Niroomand, A. Erfanian, M. Parvizi and B. Tolue, Non-exterior square graph of finite
group, Filomat, 31, 877-883 (2017).

M. ZAMENI,
Department of Mathematics, Faculty of science, Golestan University, Gorgan,

e-mail: m.zameni@yahoo.com

M. ALIZADEH SANATI,
Department of Mathematics, Faculty of science, Golestan University, Gorgan,

e-mail: m.alizadeh@gu.ac.ir

En-218



27" Iranian Algebra Seminar
Persian Gulf University, Bushehr, Iran

18-19 Esfand 1400 (March 9-10, 2022)

Z-Scott topology and Z-refinement property

HALIMEH MOGHBELI"*

Abstract

In this paper, we first recall the concept of a Z-poset and then introduce a topology on it called
Z-Scott topology. Finally, we investigate the properties of this topology and also define especial
kind of maps between Z-posets and give some sufficient conditions under which an arbitrary
map is of the form of such maps.

Keywords and phrases: Subset systems; Z-Scott topology; Z-continuous posets; Z-refinement
property.
2010 Mathematics subject classification: 06A15, 06B35.

1. Introduction

The concept of a subset system Z on the category Pos of posets with order-
preserving maps as morphisms, is defined by Wright et al. in [14]. There
the authors suggested a way to generalize Dana Scott’s continuous lattices
[13]. Markowsky [5] had already generalized Scott’s continuous lattices to
continuous posets. In both Scott’s and Markowsky’s defintions directed sets
played a fundamental role. In [14], instead of confinding themselves to
directed sets, the authors introduced a more general concept, that of a subset
system. The results in this paper are presented as pure mathematics, that
is without applications. However the posets with Z-set structures have the
applications to problems in computer science and, in particular, to fixed point
semantics for programming languages, see for example [2].

2. Main Results

First we recall from [1], some concepts that will be needed in the sequel.

Definition 2.1. Let P be an ordered set and Q C P.

(i) Qisadown-setif,x € Q,y € Pand y < x then we have y € Q.
(ii) Dually, Qis an up-set if, x € Q, y € P and x <y then we have y € Q.
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For an arbitrary subset Q of P and x € P, we define

1Q:={yeP|[(BxeQ)y<xtand 1Q:={yeP[(Ix€Q)x <y},
lx:={yePly<xtand tx:={yeP|x<y}

Definition 2.2. A Galois connection between two posets P and Q is a pair («; )
of order-preserving maps «: P — Q and B: Q — P such that a(x) <y if and
only if x < g(y) forall x € P, y € Q. The map «a (resp. p) is the left map (resp.
right map) of the Galois connection. We refer the reader to Ern “e et al. [10].

We recall form [14] the definition of a subset system.

Definition 2.3. A subset system is a function Z hat assigns to each poset P a set

Z(P) of subsets of P called Z-sets such that

(i) forallxeP,{x}eZ(P);

(ii) if ¢: P — Q be an order-preserving map between posets, then ¢(Y) €
Z(Q) for all Y € Z(P). In other words, each order-preserving map
between posets preserves Z-sets.

Remark 2.0.1. Each subset system Z defines a functor on the category Pos.
Here are some examples of subset systems:

(1) a (resp. a*) selects all (resp. nonempty) subsets. It works well for
investigating completely distributive lattices, see Raney [11, 12], Ern’e
etal. [10].

(2) Db selects upper-bounded subsets.

(3) cselects chains (i.e. subsets C such that x <y or y < x whenever x,y € C).
See Markowsky and Rosen [8], and Markowsky [3, 4, 6, 7]. See also Erne
[[9], p. 541

(4) e" selects singletons.

Definition 2.4. Let Zbe a subset system. A poset P is called Z-complete if, every
Z-set of P has a least upper bound. A morphism a: P — Q is Z-continuous if
for every Z-set S in P such that \/S exists, we have \/«(S) exists in Q and

(VS) = Va(s).

Definition 2.5. Let Z be a subset system and P be a poset. We say that x € P is
Z-way-below y € P, written x < v, if, for every Z-subset S with sup, y < /S
implies x €/ S. We write qu and Ti for the subsets {y € P | y <% x} and
{y € P| x <%y}, respectively. A element x € P is called Z-compact if x <Z x.

The poset P is called Z-continuous if qu contains a Z-subset whose sup is x, for
all x € P.

Definition 2.6. Let Z be a subset system and P be a poset. A subset U is Z-Scott
open if it is up-closed Z N U is non-empty whenever Z is a Z-subset of P with
sup such that \/ Z € U. We denote the set of all Z-Scott open subsets with o5.
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Theorem 2.7. Let Z be a subset system and P be a poset. Then 0% is a topology on P.
The topology 0% is called Z-Scott topology.

Theorem 2.8. Let Z be a subset system and P be a poset. A subset F of P is Z-Scott
closed if and only if F is down closed and closed under all existing suprema of all
Z-subsets.

Theorem 2.9. Let Z be a subset system and P be a poset. Then o5 is Ty.

Theorem 2.10. Let Z be a subset system and P,Q be two posets. A map a: P — Q
is Z-continuous if and only if it is continuous with respect to Z-Scott topologies on P
and Q.

Theorem 2.11. Let P be Z-continuous. Then {T§| x € P} forms a basis for the Z-Scott
topology 5.

Definition 2.12. A map «: P — Q has the Z-refinement property if, whenever
x € P and a(x) < \/Z' for some Z-subset Z' of Q with sup, there exists a
Z-subset Z of P with sup such that«(Z) C| Z" and x < \/ Z.

Definition 2.13. A subset A of a poset P has the Z-refinement property if the
inclusion map A — P has Z-refinement property; equivalently, whenevera € A
and a < \/ Z for some Z-subset Z of P with sup, there exists a Z-subset Z’ of
Aincluded in | Z, with sup in A such thata < \/4 Z'.

Theorem 2.14. Let a: P — Q be an order-preserving map. Then a(DP) satisfies the
Z-refinement property in Q in any of the following cases:

(1) « is surjective;

(2) waisa Z-continuous map with the Z-refinement property;

(B) « is Z-continuous and there exists a Z-continuous map B: Q — P such that

ao Beirca =aand a(B(y)) <y forally € Q;
(4) wisaleft map whose right map B is Z-continuous.
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Some Results on Internal state Residuated Lattices
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Abstract

In this paper, we investigate the notion of state operators on residuated lattices and some of
the features associated with these operators. Also, we characterize the filters generated by a
subset in state residuated lattices by studying state operators on divisible residuated lattices
and Heyting algebras.

Keywords and phrases: residuated lattice; state residuated lattice; internal state filter; state
congruence.
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1. Introduction

The notion of a state is an analogue of probability measure. Such a notion plays a crucial role
in the theory of quantum structures which generalizes the Kolmogorov probabilistic space
[1]. Residuated lattices are the algebraic counterpart of logics without contraction rule. The
concept of residuated lattices introduced by Krull on1924 who discussed decomposition
into isolated component ideals. After him, they were investigated by Ward 1938, as the
main tool in the abstract study of ideal lattices in ring theory. For a survey of residuated
lattices we refer to [4, 6]. In this work, the notion of state residuated lattices are investigated
and some results of [2, 5] are generalized in this class of algebras.

2. Main Results

2.1. Residuated Lattices An algebra A = (A;V,A,®,—,0,1) is called a residuated lattice if
£(A) = (A;V,A,0,1) is a bounded lattice, (A;®,1) is a commutative monoid and (®,—) is
an adjoint pair,i.e. a ®b < ciffa <b— ¢, forall a,b,c € A. In a residuated lattice ¥, for any
a € A, we put 7a:=a — 0. We denote by RL the class of residuated lattices. Following
the results of [1], we deduce that the class RL is equational, hence it forms a variety. A
residuated lattice U is called a divisible residuated lattice if it satisfies the divisibility condition
(denoted by (div)):
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(div)x® (x > y) =xAy.
The following remark provides some rules of calculus in a residuated lattice
which will be used in this paper (see [3]).

Remark 2.1. Let A be a residuated lattice. Then the following assertions are satisfied

forany x,y,z € A:

rn xLy&sx—y=1

rn x—>x=0—>x=x—1=1andl —>x=x;

r3 x—=(y—z)=x0y) —z

g xOY<xO((x—=y)<xAy

5 x<y— (xOy);

6 x<yY=x0z<y0z

Ty x§yz>z—>x§z—>yandy—>z§x—>z;

rg x—=y<(y—z)—=(x—2z)

rg x—=y<(z—x)—(z—vy)

ro x—(yAz)=(x—y)A(x—z);

m x—(y—z)=y—(x—z);

2 xV(y©z)>(xVy)© (xVz). Inparticular, x* V y™ > (x V y)"™, for any
integers n,m;

r3 (xVy) —z=(x—-2)Aly—z)

ria —x ©x = 0. In particular, x <y implies x © =y = 0.

2.2. State residuated lattice In this section, the required definitions and basic
concepts are given from [5]. Let A be a residuated latticeand v: A —+ Ais a
function. For convenience, we enumerate some conditions which will be used
in this paper:

s1 v(0)=0; s5 v(v(x) Ov(y)) =v(x) ©Ov(y);
s, v is monotone; s v(v(x) Vv(y)) =v(x) Vu(y);
55 v(x—=y) <v(x) = v(y); s7 - v(v(x) Av(y)) =v(x) Av(y)

sy v(ix—y)=v(x) = v(xAy);

Lemma 2.2. Let A be a residuated lattice and v : A — A be a function. The following
assertions hold:

(1) ifvsatisfies 51 and sy, then v satisfies the following assertion:

sg v(l)=1;

(2) if v satisfies s, and sy, then v satisfies s3;

(3) if v satisfies s3 and sg, then v satisfies s);

(4) if v satisfies 51 and sy, then v satisfies s if and only if v satisfies s3.

Definition 2.3. Let U be a residuated lattice. A mapping v: A — A is called a state
operator on W if it satisfies s1, 57, 54, 55, 56 and s;.

Example 2.4. Let U be a residuated lattice. Clearly Id 4 is a state operator. So 4,
is a state residuated lattice.

En-224



Definition 2.5. Let U be a residuated lattice. A mapping v: A — A is called a good
state operator on W if it satisfies sy, s5, s¢, 57 and the following assertion:

gs  v(ix—=y)=v(x) = v(y).

A good state residuated lattice is a state residuated lattice Ay, where v is a good state
operator on A. By [7] we can obtain that a state operator on a linear residuated lattice
is a good state operator.

Definition 2.6. Let U be a divisible residuated lattice. A mappingv: A — A is called
a state operator on W if it satisfies sy, sy, s4, 55 and sg.

The following proposition characterizes divisible residuated lattices in
terms of state operators.

Proposition 2.7. [5] Let A be a residuated lattice. Then the following assertions are
equivalent:

(1) Wis a divisible residuated lattice;
(2) every state operator on U satisfies the following condition:

vixAy)=v(x) Ov(x = y).

In the following proposition we characterize Heyting algebras in terms of
state operators.

Proposition 2.8. Let A be a residuated lattice. Then N is a Heyting algebra if and
only if every state operator on U satisfies the condition v(x?) = v(x).

The following theorems give relations between state operators and states
on residuated lattices.

Theorem 2.9. Let A, be a good state residuated lattice. If s is a Bosbach state on
v(A), then the mapping s, : A — [0,1], defined by s,(a) = s(v(a)), is a Bosbach
state on .

2.3. State maximal and state prime filters

Definition 2.10. Let A, be a state residuated lattice. A filter F of Wis called a v-filter
of W, if v(F) C F. The set of all v-filters will be denoted by F(A,,).

Corollary 2.11. Let U, be a state residuated lattice, F be a filter of A, and x,y € A.
The following assertions hold:

(1) F7(x) =F(xOv(x)) =F(x Av(x)) = F(x,v(x)) = F(x
(2) FU(Fx)=F(FU(x0v(x)))={ac AlfO (xOv(x))"
(3) ifx <y then IV (y) C F¥(x);

4) F'(v(x)) € F¥(x).

(x));

v F(
a, feF,n>1};

)
<

In the following corollary, we give another proof for characterizing of
simple state residuated lattices.
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Corollary 2.12. Let N, be a state residuated lattice. Then A, is simple if and only if
v(A) is a simple residuated lattice and v is faithful.

Corollary 2.13. Let N, be a state residuated lattice and x,y € A. The following
assertions hold:

(1) F(x)NIF'(y) =F((xOv(x) vV (y©vy)));

@) T () YT (y) =T (x Oy).

Corollary 2.14. Let Uy, be a state residuated lattice. Then PF (W) is a sublattice of
F(A).

Definition 2.15. Let U, be a state residuated lattice. A proper v-filter M is called
maximal, if it is not strictly contained in any v-filter. We use Max (2, ) to denote the
set of all maximal v-filters.

Proposition 2.16. Any proper v-filter of a state residuated lattice Uy, can be extended
to a maximal v-filter.

Corollary 2.17. Let Uy, be a state residuated lattice. Then W, is local if and only if
v(A) is local.

Definition 2.18. Let U, be a state residuated lattice and « be a cardinal. A proper
v-filter G of Wy, is called a-irreducible if for any family of v-filters F of cardinal «,
G = N F implies G = F for some F € F. A v-filter G is called (finite) irreducible if
it is a-irreducible for any (finite) cardinal x. A v-filter P is called prime if it is finite
irreducible. It is obvious that a v-filter P is prime if and only if F; N F, = P implies
Fy = P or F, = P for any v-filters Fy,F,. The set of prime v-filters of N, is called
the prime spectrum of W, and denoted by Spec(W,). It is obvious that any maximal
v-filter of a residuated lattice Ny, is irreducible and so is a prime v-filter.

Now, we characterize state prime filters in residuated lattices.
Proposition 2.19. Let U, be a state residuated lattice. For any v-filter P, the following
assertions are equivalent:
(1) Pisaprime v-filter.
(2) If Fy and F, are v-filters and Fy N F, C P, then F; C Por F, C P.
(3) Ifx,ye€ Asuchthat (x®v(x))V (y©v(y)) € P, thenx € Pory € P.

Proposition 2.20. Let A, be a state residuated lattice and P be a proper v-filter of 2U,,.
If{F € 3(W,)|P C F} is a chain, then P is v-prime.

Theorem 2.21. Let Uy, be a state residuated lattice, F be a v-filter and I be a \/-closed
subset of Wy, such that F N I = @. There is a prime v-filter P containing F such that
PNI=2.

Corollary 2.22. Let W, be a state residuated lattice and F be a v-filter. The following
assertions hold:

(1) IfagF, thereexists P € Spec(W,) such that F C Pand a ¢ P;
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(2) ifa#1,thereexists P € Spec(N) such that a ¢ P;
(3) F=n{P € Spec(W,)|F C P},
(4) NSpec(A,) =1.

Theorem 2.23. Any state residuated lattice W, is isomorphic to a subdirect product
of state residuated lattices {(%/P), ,p|P € Spec(Wy)}.

Theorem 2.24. Let N, be a faithful state residuated lattice. Then U, is subdirectly
irreducible if and only if v(A) is subdirectly irreducible.
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Some remarks on regular association schemes of order pgr

H. MOSHTAGH*

Abstract

Let C be a non-thin regular association scheme of order pqr, where p, g4 and r are any prime
numbers. Using the thin radical and thin residue, we give sufficient conditions for such
association scheme to be schurian. Also, we show that C is isomorphic to the wreath product of
two thin regular association schemes of order r and pyg, if thin radical and thin residue are equal
of order pg.

Keywords and phrases: Association scheme, Regular scheme, Wreath product .
2010 Mathematics subject classification: Primary: 05E30.

1. Introduction

Suppose that C is a regular association scheme; this implies that C has a non-
trivial thin radical and so C has a normal thin closed subset of prime valency
[2, Theorem 29]. All regular association schemes of degree p are thin. In [3,
Theorem 15], it was shown that each regular association scheme of order pq is
thin or the wreath product of two thin cyclic schemes of order p and gq. Our
main results show that any regular association scheme of order pgr whose thin
radical and thin residue are equal is isomorphic to the wreath product of two
thin regular association schemes of order r and pq.

2. Preliminaries

In this section, we prepare some notations and results for association
schemes. For general introduction to association schemes and regular schemes,
we refer the reader to [2, 6].

An association scheme C = (V,R = {R;}ics) on a finite set V is a pair consist-
ing of V and a partition R of V x V into |I| binary relations R; satisfying the
following conditions:

1- 1y={(x,x):x€V}eR;

2- ForeachR; e R, Ry ={(y,x): (x,y) ER;} €R;

* speaker
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3- piﬁ j=lxRin YR | which is independent of the choice of (x,y) € Ry for all
i,j,k € I, where
xRi={y e V:(xy) € R;}.
The numbers pf, ; are called intersection numbers of the association scheme C.
For each relation R; € R, the integer ng, = p?i, is called the valency of R. The

numbers |V| and |I| are called the order and the rank of C, respectively. Let P
and Q be nonempty subsets of R. We define PQ to be the set of all elements
Ry in R for which there exist elements R; € P and R; € Q satisfying pffl 1A
subset P of R is called closed if RS* C P holds for all R,S € P. The relation R of
a scheme C is called thin if its valency ng is 1. The set Oy(C) ={R € R:ng =1}
is called the thin radical of C and C is called thin if Oy(C) = C. Let O?(C) be the
smallest closed subset of R that contains RR* for any R € R. O?(C) is called
the thin residue of C.

A relation R of R is called regular if R*RR = {R}, and an association scheme
is called regular if each of its relations is regular.

Let T be a closed subset of C. For each relation R € R, we define RT =
{(xT,yT) : y € xR}. Setting

V/T={xT|x €V} and R//T={RT|Re R}

one obtains that C//T = (V/T,R//T) is a scheme. The scheme C// T is called
the quotient scheme of C over T. Let C; = (V1,R1) and C; = (V,R2) be two

association schemes. The wreath product of C; = (V,R1) with C; = (V2,R»)
is defined as follows:

Ci11C = (V1 x V1, Rq ZRz),
where R1 1 Ry = {Ro ®S:RygeRq,S € Rz} U {S RV xV:S5€ Rl\{Ro}}.

Theorem 2.1 ([1]). Assume that O%(C) C Oy(C) and that {RR*|R € C} is linearly
ordered with respect to set-theoretic inclusion. Then C is schurian.

Theorem 2.2 ([5]). Let C be a scheme whose thin radical and thin residue are equal.
C is then isomorphic to a fission of the wreath product of 2 thin schemes.

Theorem 2.3 ([5]). Let C be a p-scheme of degree p" . The degrees of the thin radical
and the thin residue of C are then equal to p if and only if C is isomorphic to the wreath
product of a thin scheme of degree p and a thin scheme of degree p"~ 1.

Theorem 2.4 ([2]). Let C be a reqular association scheme. Then, C has non-trivial
thin radical.

Theorem 2.5 ([2]). Let C1 = (V4,R1) and Cy = (Va, Ry) be two regular association
schemes. Then the wreath product C1 1 C; is also regular.

Theorem 2.6 ([3]). Let p and q be primes. A non-thin regular association scheme of
order pq is the wreath product of two thin cyclic schemes of order p and q.
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3. Main results

In this section, assume that p, g and r are any primes. To prove the main
theorems, we need to the following lemmas:

Lemma 3.1. Assume that C = (V,R) is a non-thin regular association scheme of
order pqr. Then
|0%(C) N Oy(C)| > 1.

PROOF. First, suppose that for all R € R, |7t(nr)| = 2, where 7t(ng) denote
the set of prime divisors of ng. By Theorem 2.4, |Oy(C)| > 1. It is easy to
check that in this case |Oy(C)| € {p,pq, pr}. Since C is regular, ng = ngg+ and
RR* C 0?(C) is a thin closed subset of C and the proof in this case is complete.
Thus, we assume that there exist R € R such that |7 (ng)| = 1. With loss of
generality, Assume that ng = r. Similarly, since C is regular and RR* is a closed
subset. Then, Ry € RR* and ngg+ = r. Thus, O%(C) contains thin closed subset
RR*. ]

Lemma 3.2. Assume that C is a regular association scheme of order pqr. Then, the
degrees of the thin radical and the thin residue of C is equal to r if and only if C is
isomorphic to the wreath product of two regular association schemes of order r and pq.

PROOF. By [5], for each relation R € R we have ng < Nos(cy =T- Moreover,
since C is a regular association scheme, RR* is a closed subset and ng = ngg-.
It follows that, for each relation R € R , we have ng = {1,r}. Then, the proof
is similar to the proof of Theorem 2.3. |

Theorem 3.3. Let C = (V,R) be a non-thin reqular commutative association scheme
of order pqr. Assume that one of the following conditions holds.

1. 0%(C)=04(C), n(0g(C)) =rand C//O(C) = Cpy.

2. n(0y(C)) = pq.

Then C is schurian.

Corollary 3.4. A non-thin regular association scheme of order pqr whose thin radical
and thin residue are equal, of order pq, is isomorphic to the wreath product of a thin
cyclic association scheme of prime order v and the regular association scheme of order

pq-

PROOF. Let C be a non-thin regular association scheme of order pgr such that
|0?(C)| = |0g(C)| = pq. In this case, C is isomorphic to a fission of the wreath
product of two thin schemes. We may assume that C is isomorphic to the
wreath product of Cy ¢y and C// 0?(C). By the definition of 0%(C) and O4(C),
clearly two association schemes Cqs ¢y and C// 0?(C) are thin and so regular.

Finally, by Theorem 2.5, C is isomorphic to the wreath product of two regular
association schemes. |
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Example 3.5. Let C be the adjacency algebra of association scheme with order 30 ([4],
No.223). Then

0%(C) = 0y(C) = Cy5

and C//O‘9(C) = C,.

(1]
[2]
(3]
[4]

[6]
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A survey on some subclasses of residuated lattices

S. RASOULI*

Abstract

Notions of quasicomplemented, mp, and Rickart residuated lattices is investigated as some
important subclasses of the variety of residuated lattices. A combination of algebraic and
topological methods is applied to obtain new and structural results on these subclasses.

Keywords and phrases: Rickart residuated lattice; mp-residuated lattice; quasicomplemented
residuated lattice; generalized Stone residuated lattice. .

2010 Mathematics subject classification: Primary: 06F99; Secondary: 06D20.

1. Introduction

Let A be a residuated lattice, 7 (A) the lattice of filters, and &2.% () the lattice
of principal filters of A. Then I'(A), the lattice of coannihilators of ¥, is the
skeleton of . (), and (A), the lattice of coannulets of U, is the skeleton of
PFA). So (T(A);Vv,N,{1},A) is a complete Boolean lattice, in which VI
is the join in the skeleton, and y() is a sublattice of T'(A). A is said to be
Baer provided that I'() is a sublattice of .# (%), and Rickart provided that
(%) is a Boolean sublattice of .7 (A). Obviously, A is Rickart if and only if
() is both Boolean and a sublattice of .7 (). The class of residuated lattices
which satisfies the former condition is called quasicomplemented and the class of
residuated lattices which satisfies the latter condition, and can be characterized
by a property that can be formulated in terms of universal algebra; namely
that each prime filter contains a unique minimal prime filter, is called mp. I
assume the reader is familiar with the rudimentary properties of residuated
lattices. For the basic facts concerning mp-, quasicomplemented, and Rickart
residuated lattices I refer to [2], [3], and [5], respectively. Proposition 2.2,
which characterizes the direct summands of a residuated lattice, is the heart,
and Theorem 2.10, which characterizes Rickart residuated lattice, is the main
theorem of this section.
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2. Main Results

Definition 2.1. Let U be a residuated lattice. The set of complemented elements of
F (N) shall be denoted by B(.F# (N)), and its elements called the direct summands of
A

For a residuated lattice ¥, the set of complemented elements of ¢() is de-
noted by B(A) and called the Boolean center of . In residuated lattices, how-
ever, although the underlying lattices need not be distributive, the comple-
ments are unique. In the following, we set .# (B()) = {F(e) | e € B(A)}.

Proposition 2.2. Let U be a residuated lattice and F a filter of . The following
assertions are equivalent:

(1) Fep(F ()

(2) FYF-t=4;

(3) FeZ(B).

Let A be a residuated lattice. Recall [1] that for any subset X of A, we set
Xt =kd(X), T(U) = {Xt| X C A}, y(U) = {x! | x € A}, and A(A) = {x+ |
x € A}. Elements of I'(%), v(A), and A(A) are called coannihilators, coannulets,
and dual coannulets of A, respectively.

Definition 2.3. [3] a residuated lattice U is called quasicomplemented provided that
A() C ().

Proposition 2.4. [3, Proposition 3.3,Corollary 3.4] Let A be a residuated lattice.
A is quasicomplemented provided that (W) C P .F (N). In particular, any finite
residuated lattice is quasicomplemented.

A filter F of a residuated lattice U is called an a-filter provided that for
any x € F we have x+ C F. The set of a-filters of % is denoted by a().
For any subset X of A, the a-filter generated by X is denoted by a(X).
By [3, Proposition 5.3] follows that («(%);N,V*,{1},A) is a frame, in which
VA*F =a(YF), for any F C a() . For the basic facts concerning a-filters and
quasicomplemented residuated lattices we refer to [3].

Proposition 2.5. Let U be residuated lattice. The following assertions hold:
(1) Min(%A) C a(N);
(2) any prime filter contains a prime a-filter.

Let A be a residuated lattice and IT a collection of prime filters of A. For a
subset 77 of ITwe set k(7r) = (7, and for a subset X of A we set hj(X) ={P €
IT| X C P} and dp(X) =11\ hrp(X). The collection IT can be topologized by
taking the collection {h7(x) | x € A} as a closed (an open) basis, which is called
the (dual) hull-kernel topology on IT and denoted by IT},;. Also, the generated
topology by 7, U 1y is called the patch topology and denoted by T,. For a subset
X of A, we set Hrp(X) = {hi1(x) | x € X} and Dp1(X) = {dri(x) | x € X}. As

En-233



usual, the Boolean lattice of all clopen subsets of a topological space A shall
be denoted by Clop(A+). For a detailed discussion on the (dual) hull-kernel
and patch topologies on a residuated lattice, we refer to [4].

The following proposition gives a topological characterization for quasi-
complemented residuated lattices.

Theorem 2.6. [4, Theorem 5.9] Let A be a residuated lattice. The following asser-
tions are equivalent:

(1) Wis quasicomplemented;

(2)  Miny () is compact;

(3) D () = Clop(Miny,(N));

(4) Dy, (N) is a Boolean lattice with the set theoretic operations.

Let A be a residuated lattice. For anideal I of £(%),setw(I) ={a € AlaVx=
1, for some x € I}, and Q(A) = {w(I)|I € ¢(A) }. Using Proposition 3.4 of [2],
it follows that Q (%) C .%(A), and so elements of Q(A) are called w-filters of A.
For an w-filter F of %, Ir denoted an ideal of ¢(A), which satisfies F = w(If). It
is shown that (Q();N,Vv¥,{1},A) is a bounded distributive lattice, in which
FVYG=w(IpVIg), for any F,G € Q() (by v, we mean the join operation
in the lattice of ideals of ¢(2)). For a prime filter p of %, set D(p) = w(A \ p),
and D(A) = {D(p) | p € Spec(A) }. For the basic facts concerning w-filters of a
residuated lattice we refer to [2].

Definition 2.7. [2] A residuated lattice W is called mp provided that any prime filter
of A contains a unique minimal prime filter of A.

The following theorem gives some algebraic criteria for mp-residuated
lattices.

Theorem 2.8. (Cornish’s characterization) Let U be a residuated lattice. The follow-
ing assertions are equivalent:

1) Any two distinct minimal prime filters are comaximal;

A is mp;

for any prime filter p of A, D(p) is a minimal prime filter of U;
(QA);N,Y) is a frame;

(v(N);N,Y) is a lattice;

Miny () is Hausdorff;

Ming(N) is a retraction of Spec;(N);

Specy(N) is a normal space.

(
(2
(3
(4
(5
(6
(7
(8

— N S N N

Let A be a A-semilattice with zero. Recall that an element a* € A is a pseudo-
complement of a € Aif a Aa* =0and a A x =0 implies that x < a*. An element
can have at most one pseudocomplement. A is called pseudocomplemented if
every element of A has a pseudocomplement. The set S(A) = {a* | a € A}
is called the skeleton of A and we have S(A) = {a € A|a =a**}. Itis well-
known that if % is a pseudocomplemented complete A-semilattice, then S()
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is a complete Boolean lattice, where the meet in S() is calculated in %, the join

in S(A) is given by VX = (A{x* | x € X})*, forany X C S(U), and 1 def- g+

Applying Proposition 2.11 of [3], it follows that I'(%) is the skeleton of
Z (W), and y(A) is the skeleton of L2.Z(A). So (T(A);Vv!,N,{1},A) is a
complete Boolean lattice, in which V! is the join in the skeleton, and «(2)
is a sublattice of T'(2). A is said to be Baer provided that I'() is a sublattice of
F (W), and Rickart provided that () is a Boolean sublattice of .% ().

Definition 2.9. [5] A residuated lattice A is called Rickart provided that () =
Z (B(A))-

The following theorem provides some criteria for a residuated lattice to be
Rickart.

Theorem 2.10. Let U be a residuated lattice. The following assertions are equivalent:
(1) Ais Rickart;

(2) Wis quasicomplemented and normal;

(3) Wis generalized Stone, i.e. x* Y x+ = A, forany x € A.;

(4) () is a Boolean sublattice of 2.7 (A);

(5) any prime filter of A contains a unique prime a-filter;

(6) forany x € A there exists e € B(N) such that dy,(x) = dp(e).
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On the isoclinism of a pair of Hom-Lie algebras

M. SADEGHLOO" and M. ALIZADEH SANATI

Abstract

In 1940, P. Hall introduced the notion of isoclinism on the class of all groups. In this article, we
first, introduce pairs of Hom-Lie algebras and then define the concept of isoclinism for them.
As the main result, we state some conditions under them, two pairs of Hom-Lie algebras are
isoclinic.

Keywords and phrases: Hom-Lie algebras, Isoclinism, Pairs of Hom-Lie algebras.
2010 Mathematics subject classification: Primary: 22D15, 43A10; Secondary: 43A20, 46H25.

1. Introduction

The concept of group isoclinism was introduced by P. Hall in 1940 [1]. In 1993,
Kay Moneyhun used this notion on Lie algebras [4] and in 2010 Salemkar and
Mirzaei generalized it to n-isoclinism [5]. The notion of isoclinism for pairs
of Lie algebras was studied by Moghaddam and Parvaneh in 2009 [3]. Also,
in [2], Hartwig, Larsson, and Silvestrov introduced the notion of Hom-Lie
algebras.

In this paper, we introduce the concept of pairs of Hom-Lie algebras and
investigate some properties of isoclinism for these algebraic structures.

Throughout this paper, we fix F as a ground field and all the vector spaces
are considered over F and linear maps are F-linear maps. We begin by review-
ing some basic concepts and recalling known facts which will be used in the
article.

Definition 1.1. A Hom-Lie algebra is a triple (V,[—, —|, ) consisting of a vector
space V, a bilinear map [—, —] : V x V. — V and linear map ¢ : V. — V provided

(i) [xy]=—[y, x|, (skew— symmetry)
(i) [o(x), [y, 2l + [o(y), [z %] + [9(2), [x,y]] =0, (Hom — Jacobi identity)
forallx,y,z € V.
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A Hom-Lie subalgebra of (V, @) is a vector subspace W of V, which is closed
by bracket and ¢, ie. [w, @], p(w) € W for all w,w’ € W. A Hom-Lie
subalgebra (W, ¢|) is said to be ideal if [w,0] € W forallw € W, v € V
in which ¢ is the restriction of ¢ to W. For any ideal W of (V, ¢), we can
naturally, define the quotient Hom-Lie algebra on the quotient vector space

V/W with ¢: V/W — V /W which induced naturally by ¢.

In the whole paper, we assume that ¢ preserves the product which is
called multiplicative, i.e. ¢([v1,v2]) = [@(v1), ¢(v2)] for all v1,v, € V. Taking
¢ = idy, we exactly recover the Lie algebras. A vector space endowed with
a trivial bracket and any linear map are called abelian Hom-Lie algebra. Let
(V, 1) and (W, ) be two Hom-Lie algebras. A linearmap f: V — Wisa
Hom-Lie algebra morphism, if for all v1,v, € V, f([v1,v2]) = [f(v1), f(v2)] and
f o @1 = @20 f. In other words, the following diagram commutes

vILow

1 )

Definition 1.2. Let (I, ¢|) be an ideal of Hom-Lie algebra (V, @), then (I, (V, ¢)) is
considered to be a pair of Hom-Lie algebras and the commutator and the @-center of
the pair (I, (V, @)) is defined respectively, as follows

[LV]=(liv]|i€eLveV),
Zo(I, V) ={i € I|[¢"(i),0] =0, VoeV,k>0}.
Clearly, [I, V] and Z4(1, V) are both ideals of (V, @) contained in 1. If I = V, then
we get the derived Hom-Lie subalgebra V2 and the p-center of (V, ¢), respectively.

Now, we introduce the notion of isoclinism for the pairs of Hom-Lie
algebras (I1, (V1, ¢1)) and (I, (V2, ¢2)) in the following way.

Definition 1.3. Let (I, (V1, 1)) and (Lo, (Va, ¢2)) be two pairs of Hom-Lie al-
gebras.  Then («,B) is called a pair of isoclinisms between (I, (V1,¢1)) and
(I, (Va, @2)), in whicha : Vi — Vo, witha(ly) = Iyand B : [, V1] — [I, V5]
are both isomorphisms such that the following diagram commutes

I x Vi — [I;, V4]
apXal LB
Iy x Vo — [, V3]
given by
(i1, 91) = [i1, v1]
ap X 1B

(i2,T2) — [iz, v2]
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where ~ is the congruence modulo Zy, (1;, Vi), fori = 1,2. In fact, forall iy € 11,7y €
V1, we have B([iy, v1]) = [ia, va], where iy € a(iy) and vy € a(Tq).

In this case, we say that (I, (Vy,¢1)) and (Lo, (Va, ¢2)) are isoclinic and it is
denoted by (I, (V1, ¢1)) ~ (L, (Va, ¢2)).

2. Main Results

The following lemmas are devoted to show some properties of pairs of
Hom-Lie algebras are used to prove our main result.

Lemma 2.1. Let («, B) be a pair of isoclinism between the pairs of Hom-Lie algebras
(I, (Vq, 91)) and (I, (Va, ¢2)). Forall x € [I;, V1| and v € V3
(1) a(x + Zg, (I, V1)) = B(x) + Zg, (I2, V2);
(if) B([x,v]) = [B(x),'], where v' € a(v + Zy, (I, V1)).
Lemma 2.2. Two pairs of Hom-Lie algebras (I, (V1, ¢1)) and (L, (Va, ¢2)) are
isoclinic if and only if there exist Hom-ideals || and J of Vq and V, contained in
Zy, (I, V1) and Zy, (I, V) respectively, and isomorphisms

4 Vs

— =

"I J2

with 06(11/]1) = 12/]2 and
B, Vi] — [I, V3]

such that for all iy € I, iy € a(iy + Zgy, (I1, V1)) and v € a(v1 + Zg, (I, V1)),

B(li,v1]) = [iz, va].
The following theorems state some useful properties of pairs of Hom-Lie

algebras.

Theorem 2.3. Let (w, B) be a pair of isoclinisms between two pairs of Hom-Lie alge-
bras (I, (V, ¢)) and (J, (W, 1))

(i) If V1 is a Hom-Lie subalgebra of (V, @) containing Zy(I1,(V, ¢)) and a(Vi/Zy(1,(V, @))) =

Wi/ Zy(J, (W, 1)), for some Hom-Lie subalgebra Wy of W, then
(VinL(Vi, @) ~ (JO Wy, (W, 9)).

(ii) If I is a Hom-Lie subalgebra of I containing in [I, V], then

I v i W

(I],(Illq))) (,B(Il),(ﬁ(ll)’llj))

PROOF. (i) Assume that [; = Z(P(V1 NIV, (p)) and J; = le(Wl nJ, (W, 1,[7))

which are contained in Z,(Vi NI, (V4, ¢)) and Zy(Wq N ], (W1, 1)), respec-

tively. Consider the following natural maps

vi o w

1
p:inL (Vi,9)] — Win], (Wi, ¢)].
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Now, by using Lemma 2.2, the result will be obtained.
(11) Since B is an 1somorphlsm B(I1) is an ideal of W. Put V =V / 11, I1=1/L,

W= W/ﬁ(ll) and ]— J/B(I1). Now, define & : V/I; W/ ]1 and
B:[LV] —| ] W] Now, by using Lemma 2.2 the assertion holds. O

Theorem 2.4. Let (I, (V, ¢)) be a pair of Hom-Lie algebras, | a Hom-Lie subalgebra
and W an ideal of V contained in 1, then

@ JNL(Je) ~ (UNI+Zy(L,V),(J + Zp(I,V),@)). In particular, if

V =]+ Z,(L,V), then (101, (], 99) ~ (I,(V, )}
(i) (I/W,(V/W,@)) ~ (I/WNI[LV],(V/WNI[LV],¢)). In particular, if
WNI[LV]=0,then (I/W,(V/W,¢)) ~ (I, (V,9)).
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Cubic edge-transitive graphs of order 40p

J. REZAEE" and R. SALARIAN

Abstract

A simple graph is called semisymmetric if it is regular and edge-transitive but not vertex-
transitive. Let p be a prime. Folkman in [1] proved that a regular edge- transitive graph of order
2p or 2p?, necessarily vertex-transitive. We prove that if ' is a connected cubic edge-transitive
graph of order 40p, p a prime, then either is semisymetric for, p = 3 and T is isomorphic to
the cubic semisymmetric graph of order 120 in [2] or p =31 and I' = C(L,(31);S4,S4). and for
p # 3,31 I is vertex-transitive.

Keywords and phrases: semisymmetric graph, edge-transitive graph, vertex-transitive graph..
2010 Mathematics subject classification: 05E18, 20D60; 05C28, 20B25.

1. Introduction

In this paper all graphs are finite, undirected and simple, i.e. without loops
or multiple edges. A graph is said semisymmetric if it is regular and edge-
transitive, but not vertex-transitive. An interesting research question is to
classify connected cubic edge-transitive graphs of various types of orders.
Folkman proved in [1] that a cubic semisymmetric graph of order 2p or 2p2
is vetex-transitive. Connected cubic edge-transitive graphs of orders 6p?, 2p°,
6p>, 8p, 20p? have been classified in diferent articles.In this paper we will
characterize connected cubic edge-transitve graphs of order 40p. In fact we
prove thatif I is a connected cubic semisymmetric graph of order 40p, p prime,
then either p = 3 and I’ is isomorphic to the cubic semisymmetric graph of
order 120 in [2] or p =31 and I' = C(L,(31);S4,S4). So precisely, we shall prove
the following theorem.

Theorem 1.1. Let p be a prime and p # 3,31. Then a connected cubic edge-transitive
graph of order 40p, is vertex-transitive.
2. preliminaries

Let G be a subgroup of Aut(T), if the action of G on V(T'), E(T') and arc(T)
be transitive, I' is called respectively G-vertex transitive, G-edge transitive and

* speaker

En - 240



G-arc transitive. I is called G-semisymmetic if it is regular and G- edge transi-
tive but not G-vertex transitive. Furthermore, I' is called symmetric if it is both
G-vertex transitive and G-arc transitive. When G = Aut(I'), we usually re-
move G and say I' is vertex-transitive, edge transitive, arc transitive, semisem-
metric or symmetric. A G-semisymmetric graph is bipartite, let Ug and Wg
be its bipartitions, then |Ug| = |Wg|. There is only one cubic symmetric graph
of order 40 which is denoted by F40 ( see [2] ) and it is bipartite. According
to [2], for p = 3 there is only one cubic semisymmetric graph of order 120 and
for p =5,7,11,13 and 17 there is no cubic semisymmetric graph of order 40p.
Thus we can assume that p > 19. Here are some important results that we will
use in this article. A finite simple group is called K;-group, when its order is
divisible by exactly n distinct primes. In the following theorem, we determine
all K3 and K4-groups.

Theorem 2.1. We have

i) A K3-group is isomorphic to one of the following groups:

As, Ag,L2(7),L2(2°), L2(17), L3 (3), Us(3), Ua(2)

ii) A Kq-group is isomorphic to one of the following groups:

(1) Az, Ag, Ag, Arg, M11, M12, ]2, L2 (24)/ L, (52)/ L, (72)/
(34) 15(97),L2(3°),L2(577),L3(22),L3(5),L3(7),

L3(2 ) L3(17) L4(3),U3(2%),U5(5), Us(7), U3(2%),

Us(3 ) 4(3), U5( ),84(2%),54(5),54(7),84(3%),

56(2),05 (2),G2(3),52(2°),52(2°),° Da(2),” Fa(2);
(2) Ly( ) where 1 is a prime and r*> — 1 = 2°.3bs,s > 3 is a prime, a,b € N;
(3) La(2™), where m, 2™, 23 are primes grater 3;
(4) Ly(3™) where m, 3 4+1 3" 2_1 are odd primes.

Corollary 2.2. There are only three simple Ky-groups of order 2.3.5.p, for some prime
p,p>5andi €N, 2<i<9and theyare Ly(2%),L,(11) and Ly(31).

Proposition 2.3. Let G be a finite group and N < G. If |N| and | G| are relatively
prime, then G has a subgroup H such that G=NH,NNH =1ie G=HwgpN.

Theorem 2.4. Every group of order p°qP is solvable, where p,q are distinct primes
and a,b € N

Theorem 2.5. [3] Let T be a connected cubic G-semisymmetric graph. Then order of
the stabilizer of each vertex v is 2".3, where 0 < r <7. Furthermore, for each edge u,v,
(Gu, Gy) is one of the following pairs or their inverses and Gy N Gy is of index 3 in
Gy and Gy:

(Z3,23),(53,53),(S3,Z6),(D12,D12), (D12, A4),(S4,D24),(S4, Z3 < Dg),

(A4 X Zz,Du X Zz),(S4,S4),(S4 X Zz,Dg X 53),(54 X Z2,54 X Zz),

(Ags, Bos ), (A192,B192), (C192, D192), (A3ss, Baga)-
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Theorem 2.6. [4] Let T be a connected cubic G-semisymmetric graph for some
G < Aut(T) and N 2 G. If % is not divisible by 3, then I' is N-semisymmetric
graph.

Theorem 2.7. [5] Let T be a connected cubic G-semisymmetric graph for some
G < Aut(T'). Then I'= K33 or G acts faithfully on each of the bipartition sets of
I.

Theorem 2.8. [6] Let T be a connected cubic G-semisymmetric graph, {U, W} be a
bipartition of I', and N < G. If The actions of N on both U and W are intransitive,
then N acts semiregularly on both U and W and T'y is %—semisymmetric.

The next corollary drives directly from theorem 2.8.

Corollary 2.9. Let I be a connected cubic G-semisymmetric graph with {U, W} as a
bipartition and N < G. Then either |N| divides |U| or |U| divides |N|.

In the following, we will introduce the coset graphs and mention some
important properties about them. Let G be a group and H,K be two finite
subgroups of G. The coset graph C(G; H,K) of G is a bipartite graph with sets
of vertices {Hg, ¢ € G} U {Kq, g €} and two vertices, Hg and K,/ are adjacent
if and only if Hy N Ky # @. The following theorems can be extracted from [7]
and [8].

Proposition 2.10. Let G be a finite group and H, K be two subgroups of G. The coset
graph C(G; H,K) has the following propeties:

(i) C(G; H,K) is regular if and only szLILm'K = H}%‘KI =d;

(ii) C(G; H,K) is connected if and only if G =< H,K >;

(iii) G acts on C(G; H,K) with multiple of right and this action faithfull if and only
if

Coreg(H N K) =1, in this case C(G; H,K) is G-semisymmetric.

Theorem 2.11. Let T be a reqular graph and G < Aut(T). If T is G-semisymmetric,
then T = C(G; Gy, Gy) where u,v are adjacent vertices.

3. main result
In this section, we prove theorem 1.1. First we state and prove some
lemmas.

Notation and Assumptions: In the remaining of this paper I' is a cubic
connected semisymmetric graph of order 40p , where p > 19 is a prime. Set
A = Aut(T).

Lemma 3.1. If Op(A) =1, then A does not have normal subgroup of orders 10 and
20.
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Lemma 3.2. We have either |Oy(A)| = por p=31and T = C(Ly(31);54,54).

By lemma above, in the remaining of this paper we assume that p # 31.
Then a Sylow p-subgroup of A is normal in A.

Lemma 3.3. Let M be the Sylow p-subgroup of A and % = G. Then we have
(i) For each vertex u, A, is isomorphic to a subgroup of G.
(ii) A = My G for some homomorphism ¢ : G — Aut(M).

Lemma 3.4. Let M be the Sylow p-subgroup of A. Then % is not isomorphic to As.
Lemma 3.5. Let M be the Sylow p-subgroup of A. Then % is not isomorphic to Ss.

Now we can prove our main theorem. We note that by F40 we mean the
Foster graph of order 40 which is the unique cubic symmetric graph of this
order.

The proof of theorem 1.1: Let I be a connected cubic semisymmetric graph
of order 40p. By [2] we assume that p > 19. Let A = Aut(T') and M be a Sylow
p-subgroup of A. We have |A| =2"72.3.5.p and by lemma 3.2, either M < A
or I'= C(Ly(31);S4,S4). So we assume that M is normal in A. Let U,W be a
bipartition of I'. Then we have |U| = |W| = 20p and M is on both U and W

intransitive. Now by theorem 2.8, Iy is a connected cubic %-semisymmetric

graph of order 40. Set G = 4. Since 'y is G-semisymmetric, we get by [2]

that it is G-edge transitive and hence it is symmetric. Thus I'y; = F40 and G is
isomorphic to a subgroup of Aut(F40). By [2] we get that |Aut(F40)| = 480, so
we have |G| = 2"+2.3.5 < 480. This implies that 2" "2 < 32 and G is intransitive
on U. Therefore |G| < 480 and 2 < r < 4. Hence |G| = 60,120 or 240 and
G is transitive on both Uy and W) This gives us that G is a transitive
permutation group of degree 20 and of order 60,120 or 240. We note that
Aut(F40) has a subgroup H = A5 x Z; X Z, of index 2 and G is a subgroup
of Aut(F40). So G N H is a subgroup of index at most 2 in G. Assume that
|G| = 60. Then using Gap we get that G = A5 or Zs x Ay. The first case
due to lemma 3.4 is not true and by the structure of Aut(F40) we get that
G is not isomorphic to Zs x As. Now assume that |G| = 120. Again using
Gap we obtain that G = S5,Zy X As,Z5 > S4,Z5 X S4 or Djy X Ay. By lemma
3.5, G is not isomorphic to Ss. By the structure of Aut(F40), we get that the
only possibility for G is to be isomorphic to Z, x As. If G = Z; x As, then G
has a normal subgroup K = A5 and 3 does not divide the order of % This
implies that I'ys is K-semisymmetric which is impossible. Now assume that
|G| = 240. Then G is a subgroup of index 2 in Aut(F40). By this and Gap we
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getthat G = Zy X S5,Z4 X As,Zy X Zy X As or Zy > As. Assume that G = Z; x S5
and set T = Z(G). Then T = Z; and (I'j)7 is %-semisymmetric. Now let
B =%. Then B = S5 and for each edge {u,0} in I’ we have |B,| = |B,| = 12,
also each subgroup of B of order 12 is isomorphic to A4. This gives us that
(Bu,By) = (A4, As) that by theorem 2.5 is impossible. A similar argument
shows that G is not isomorphic to Zy > As,Zy X As or Zy x Zy x As. This
completes the proof of theorem 1.1. i
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W-neat rings

F. RASHEDI*

Abstract

In this paper, we offer a new generalization of the neat ring that is called a w-neat ring. A ring R
is said to be weakly clean if every r € R can be writtenasr = u +eorr = u — e where u € U(R)
and e € Id(R). We define a w-neat ring to be one for which every proper homomorphic image
is weakly clean. We obtain some properties of w-neat rings.

Keywords and phrases: Weakly clean ring, W-neat ring.
2010 Mathematics subject classification: 13A99, 13F99.

1. Introduction

Let R be a commutative ring with identity. The ring R is said to be clean if
for each r € R there exist u € U(R) and e € Id(R) such that r = u + e [6].
Clean rings were introduced as a class of exchange rings [6]. A ring R is said
to be neat if every proper homomorphic image is clean [7]. A ring R is said to
be a weakly clean if for each ¥ € R there exist u € U(R) and e € Id(R) such
thatr =u +eorr =u—e[l,3-5]. In[1] it is shown that every homomorphic
image of a weakly clean ring is again weakly clean. This leads to our definition
of a w-neat ring. We define a w-neat ring to be one for which every proper
homomorphic image is weakly clean. We obtain some properties of w-neat
rings.

2. Main Results

In [1] it is shown that every homomorphic image of a weakly clean ring is
again weakly clean. This leads to our definition of a w-neat rings.

Definition 2.1. Let R be a ring. Then R is said to be w-neat if every proper
homomorphic image is a weakly clean ring.

Example 2.2. Let R=2Z 3 NZi5 ={r/s|r,s€Z,s#0,34s,54s} Thus R
is a weakly clean ring, by [1]. Since every homomorphic image of a weakly clean ring
is again weakly clean, R is a w-neat ring.
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F. RASHEDI

It is clear that every neat ring is a w-neat ring but every w-neat ring is not
a neat ring. The following exapmle shows that every w-neat ring need not to
be a neat ring.

Example 2.3. Let R = Z 3y N Z ). Thus by Example 2.2, R is a w-neat ring but
R is not clean since an indecomposable clean ring is quasilocal, by [2, Theorem 3].
Therefore R is not a neat ring.

Lemma 2.4. Every homomorphic image of a w-neat ring is a w-neat ring.
PROOF. It is straightforward. o
Lemma 2.5. Let R be a domain with dim(R) = 1. Then R is w-neat.

PROOF. Since R is a domain with dim(R) = 1. Thus every homomorphic
image of R is a zero-dimensional ring. Then every homomorphic image of R
is weakly clean. Thus R is w-neat. o

Corollary 2.6. Every PID is a w-neat ring.
PROOF. Follows from Lemma 2.5. o

The following exapmle shows that every w-neat ring need not to be a
weakly clean ring.

Example 2.7. Let F be a field and R = F[x,y|. Since by [1, Theorem 1.9],
R/Ry = F[x] is not a weakly clean ring, R is not w-neat. F|x] is w-neat by the
Lemma 2.5 which is not a weakly clean ring.

Lemma 2.8. Let R be a w-neat ring which is not weakly clean. Then R is reduced.

PROOF. Assume that R is a w-neat ring which is not weakly clean and
Nil(R) # 0. Since R is a w-neat ring, R/Nil(R) is weakly clean. Thus R is
weakly clean by [1, Theorem 1.9], a contradiction. Then Nil(R) = 0. O

Theorem 2.9. Let R be a ring. Then the following statements are equivalent.

(1) R isaw-neat ring.

(2)  Thering R/rR is weakly clean for every 0 # r € R.

(3)  Let {P)} ren be a collection of nonzero prime ideals of R and I = e Py # 0.
Then the ring R/ 1 is weakly clean.

(4) Thering R/rR is w-neat for every r € R.

(56)  Thering R/ I is weakly clean for every nonzero semiprime ideal I of R.

PROOF. The proof is similar to [7, Proposition 2.1]. O

Corollary 2.10. Let R be a w-neat ring which is not weakly clean. Then R is
semiprime.

PROOF. Follows from Theorem 2.9. O
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Proposition 2.11. Let R = I @ ] for some ideals I and | of R such that at most one I
and | is not clean. Then R is w-neat if and only if R is weakly clean.

PROOF. Suppose that there is are ideals I and | of R such that R = I @ J.
Assume that R is a w-neat ring. Thus by Theorem 2.9 ] = R/l and I = R/] are
weakly clean. Thus R is a direct product of weakly clean rings. Therefore R is
weakly clean, by [1, Theorem 1.7]. Conversely, is clear. i

(1]
(2]
(3]
(4]
5]
(6]
(7]
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The conductor ideal of simplicial affine semigroups

RAHELEH JAFARI and MARJAN YAGHMAEIL*

Abstract

In this paper we investigate the normality of R and, to detect a generating set for the conductor
of R, Cg = (R :7 R), where T denotes the total ring of fractions of R.

Keywords and phrases: simplicial affine semigroup, conductor, normality, Apéry set .
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1. Introduction

Thorough this section, S C IN“ is a simplicial affine semigroup with mgs(S) =
{ay,...,a4.,}, where ay,...,a; are the extremal rays of S. Let R = K|[S]
be the affine semigroup ring. Recall that the normalization of an integral
domain R is the set of elements in its field of fractions satisfying a monic
polynomial in R[y|. Then R = K|[S] is an integral domain with normalization
R =K][group(S) N cone(S)] [4, Proposition 7.25]. Recall that the conductor of
R, Cgr = (R :7 R), where T denotes the total ring of fractions of R, is the largest
common ideal of R and R, [3, Exercise 2.11].

The integral closure of S in group(S), S = {a € group(S) ; na € S for some n €
IN'}, is called the normalization of S. As a geometrical interpretation, one can see
that S = cone(S) N group(S). The semigroup S is normal when S = S, equiv-
alently K[S] is a normal ring, [1, 2]. Since S is finitely generated, cone(S) is
generated by finitely many rational vectors, i.e. it is the intersection of finitely
many rational vector halfspaces, [5, Corollary 7.1(a)]. By Gordan’s lemma, S is
also finitely generated.

The conductor of S is defined as ¢(S) = {b € S; b+ S C S}. The conductor,
¢(S), is the largest ideal of S that is also an ideal of S, [1, Exercise 2.9]. Recall
that The Apéry set of an element b € S is defined as Ap(S,b) ={a€S;a—b¢
S}. Throughout the paper, E = {a,...,a;} will denote the set of extremal rays
of S. Then Ap(S,E) = N%_, Ap(S, a;).
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The fundamental (semi-open) parallelotope of S is the set

d
Ps={Y Aaj; A €Q,0< A <1fori=1,...,d}.
i=1

2. Main Results

Remark 2.1. As ¢(S) is an ideal of S, we have S = S precisely when 0 € ¢(S). In
other words, S is normal if and only if ¢(S) = S.

Lemma 2.2. Asan affine semigroup, S is generated by (Ps Ngroup(S)) U{ay,...,a;},
and Ps N group(S) = {r(w) ; w € Ap(S,E)}.
As an immediate consequence of Lemma 2.2,

«(S)={aeS;a+r(w)eSforallwe Ap(S,E)}.

Definition 2.3. The element b — Y%, a;, where b € Max<, Ap(S,E), is called a
Quasi-Frobenius element. The set of Quasi-Frobenius elements of S is denoted by

QF(S).

Let relint(S) denote the elements of R? that belong to the relative interior
of cone(S),

d

relint(S) = {b € cone(S) ; b= ) Aja; with A; € Ry forall i = 1,...,d}.
i=1

Theorem 2.4. The following statements are equivalent.

1. Sisnormal;

2. —QF(S) C Snrelint(S);
3.  —QF(S) Crelint(S);

4. Ap(S,E)C Ps.

Our next aim is to find a generating set for ¢(S) as an ideal of S. Suppose
that C; = {w € Ap(S,E) ; r(w) = b;}, for j =0,...,k, where r(Ap(S,E)) =
{r(w); we Ap(S,E)} ={0=Dbg,by,...,b}. Forany (wy,...,wy) € C; X --- X
Cy, we consider the vector

d
f(w1r~~~/wk) = Zfiai’
i=1
where f; = max{[w; —r(wj)];; j=1,...,k}, fori=1,...,d. Note that
fi= max{L[w]-L-J ;i=1,...,k},

fori=1,...,d, where | [w;];] denotes the greatest integer less than or equal to
[wil;.
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Theorem 2.5. Let ¢ be a minimal generator of ¢(S). Then there exist (wW1,..., W) €
Cp X -+ x Cy such that ¢ = £y, w,) —bj+ Y4 Lia; for some I; € {0,1} and
j €{0,...,k}. Moreover, at least for one i, we have I; = 0.
Example 2.6. Let a; = (3,0),a, = (0,3),a3 = (5,2),a4 = (2,5). we have
Ap(S, E) = {0/ a3, da4,4a3 + a4/2a3/2a4}
= {0,w1 = (5,2), w2 = (2,5), w3 = (7,7),wa = (10,4), w5 = (4,10)}
and r(Ap(S,E)) = {0,b; = (1,1),b, = (2,2)}. Note that C; = {w3, Wy, W5},
= {w1,wa} and f, ) = 2a1 + 22y = (6,6), f(w,w,) = 3a1 +a = (9,3),
f(W5,Wi) =aj;+3a, = (3,9),f01’ i=1,2.
As {(6,6) — (1,1),(9,3) — (1,1),(3,9) — (1,1) } + r(Ap(S,E)) C S, we have
{(55),(8,2),(28)} C<(S).
If ¢(S) #{(5,5),(8,2),(2,8)} + S, the other generators of ¢(S) are among
{(9,3),(3,9),(6,6)} +{lia; — (2,2) ; I € {0,1},i = 1,2},
by Theorem 2.5. Since the above set which equals

{(71),(1,7),(44),(10,1),(1,10),(4,7),(7,4)},
has no element in S, <(S) is generated by {(5,5),(8,2),(2,8)} = {f(wsw,) —
b1, f(w,w,) — b1 f(wsw,) — b1}, as an ideal of S = ((3,0),(0,3),(1,1)).

The following example shows that the summand Z’f:l [;a; in the statement
of Theorem 2.5 can not be removed.

Example 2.7. Let a; = (5,2),a = (2,2),a3 = (2,1),a4 = (5,3). Then Ap(S,E) =
{0, w1 =(2,1),wa=(4,2), w3 =(6,3),ws = (8,4), w5 = (5, 3)}ﬂ”dr(AP( E)) =
{0,b; = (2,1), b2 = (4,2),bs = (1,1),bs = (3,2),bs = (5,3)}. Note that C; =
{wi} fori=1,...,5and £y, ) = a1. By Theorem 2.5, the generators of «(S) are
among

Wi,..., W5

{a1 —b;,2a; —bj,ay+ap —b;;i=0,.. .,5}.
The only elements of the above set, that belong also to S are

{(52),(10,4),(5,3),(2,1),(7,4),(4,2),(6,3)}-
Notethat (2,1)+(1,1) ¢S, {(5,2),(4,2)} +r(Ap(S,E)) C S, {(10,4),(7,4),(6,3)} C
(5,2) + S and (5,3) = (4,2) + bs. Therefore, ¢(S) is generated by {(5,2), (4,2)
{£(wy,..,ws) E(wy,..,ws) T a2 — by}, as an ideal of S=1{((1,1),(2,1),(5,2)).
Proposition 2.8. Assume that there is a fixed class C; such that for any w € C;
and w' € Ap(S,E) \ Cj, one has max_(w, w’) = w. If either C; is a singleton
orb; =min< (r(Ap(S,E)) \ {0}), then c( ) is generated by

{w—-b;we Ci,b EHLax{bl,...,bk}},

as an ideal of S.
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Applying the above proposition to the semigroup in Example 2.6, provides
an easier argument to find the minimal generating set of ¢(S).

Example 2.9. Let a; = (3,0),ap = (0,3),a3 = (5,2),a4 = (2,5). As we have

seen in Example 2.6, Ap(S,E) = {0,wy = (5,2),wp = (2,5),w3 = (7,7),wy =
(10,4),W5 = (4,10)}, T(Ap(S,E)) = {0,b1 = (1,1),1)2 = (2,2)}, C1 = {W3,W4,W5}

and C; = {wy,wy}. Note that max< {w;,w;} = w; for i = 1,2 and j = 3,4,5.
Therefore, ¢(S) is generated by {ws — (2,2),ws — (2,2),ws —(2,2)} ={(5,5),(8,2),(2,8) },
as an ideal of S = ((3,0),(0,3),(1,1)).

Corollary 2.10. If K[S] is a Gorenstein ring and max=_(r(Ap(S,E))) has a single
element, then c(S) is a principal ideal of S .

The following is an example of a Cohen-Macaulay simplicial affine semi-
group, for which max<_ Ap(S, E) is a singleton but ¢(S) is not principal.

Example 2.11. Let a; = (3,0),ap = (0,3),a3 = (2,1). Then Ap(S,E) = {0,w; =
(2,1),wy = (4,2)} and r(Ap(S,E)) = {0,b; = (2,1),by = (1,2)}. Since C; =
{w;} for i = 1,2, K[S] is Cohen-Macaulay. Moreover, max< {wq,wy} = {w}
and max<, r(Ap(S,E)) = {by,ba}. By Proposition 2.8, ¢«(S) is generated by
{wy —by,wy — by} ={(2,1),(3,0)} as an ideal of S = ((3,0),(0,3),(1,2),(2,1)).
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New results on Condition (P’) and (PF"")-cover

P. KHAMECHI*

Abstract

In this paper, we give a necessary and sufficient condition for cyclic act to have a (PF”)-cover
and give some classes of monoids that all cyclic right S-acts have a Condition (PF")-cover. We
show that every weakly pullback flat cover is also (PF”)-cover and every (PF")-cover is (P')-
cover, but the converses are not true.

Keywords and phrases: Acts, Condition (PF"), Covers.
2010 Mathematics subject classification: Primary: 20M30; Secondary: 20M50.

1. Introduction

For a monoid S, with 1 as its identity, a set A (we consider nonempty) is called
aright S-act, usually denoted by Ag (or simply A), if S acts on A unitarian from
the right, that is, there exists a mapping A x S — A, (a,s) — as, satisfying the
conditions (as)t = a(st) and al =4, for all a € A and s,t € S. Left acts are
defined dually. The study of flatness properties of S-acts in general began in
the early 1970s.

In [4] the authors defined Condition (PF”), which lies strictly between
weak pullback flatness and Condition (P’), and proved that Condition (PF")
coincide with the conjunction of Condition (P’) and Condition (E’).

In [5] Qiao and Wang investigated the weak pullback flatness cover of
cyclic acts over monoids, and in [2] Irannezhad and Madanshekaf considered
Condition (P’)-cover of cyclic acts over monoids. Naturally, we restrict our
attention to (PF")-covers.

Let X be a class of right S-acts. We assume that X’ is closed under isomor-
phisms, i.e., if A€ X and B = A, then B € X. For a right S-act A, an S-act
X € X is called an X-cover of A if there is a homomorphism ¢ : X — A such
that the following hold:

(1) for any homomorphism ¢ : X’ — A with X’ € X, there exists a homo-
morphism f : X’ — X with ¢ = ¢f. In other words, the following diagram
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commutes:

(2) If an endomorphism f : X — X is such that ¢ = ¢f , then f must be an
automorphism.

If (1) holds, we call ¢ : X — A an X-precover.

2. Main Results

In this section, at first, we give a necessary and sufficient condition for a
cyclic act to have a (PF”)-cover.

Definition 2.1. We say a right S-act Ag satisfies Condition (PF") if for any a,a’ € A
and s,s',t,t,z,w € S, as = a's’, at = a't', and sz = tw = Y'w = §'z imply a =
a"u,a’ = a"v for some a” € A, u,v € S with us = vs’ and ut = ot'.

Lemma 2.2. Let p be a right congruence on a monoid S. Then the cyclic right S-act
S/ p satisfies Condition (PF") if and only if it satisfies Condition (P') and

(Vs,s',z € S)(sps' ANsz=5"z=> (Fu € S)(upl Aus =us")).

Lemma 2.3. Let p be a right congruence on a monoid S such that the right S-act S/ p
satisfies Condition (PF") and R = [1],. Then R is a weakly left collapsible.

Theorem 2.4. Let R be a weakly left collapsible submonoid of S. Set
H={(p,q) € RxR[Fz€S;pz =gz} U{(p,1)|p € R}

and let o = o(H) be the right congruence on S generated by H. Then S/ o satisfies
Condition (PF").

Theorem 2.5. Let S be a monoid. Then the cyclic S-act S/o has a (PF")-cover
if and only if [1], contains a weakly left collapsible submonoid R such that for all
uc[llpuSNR#Q.

Proposition 2.6. Let S be a monoid. Then the every cyclic S-act has a (PF")-cover
if and only if every left unitary submonoid T of S contains a weakly left collapsible
submonoid R such that for allu € T,uS N R # @.
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Since commutative monoids are necessarily weakly left collapsible, thus
every cyclic S-act, for commutative monoid S, has a (PF")-cover.

Definition 2.7. We say a right S-act Ag satisfies Condition (P') if for any a,a’ € A
and s, t,z € S,as =a'tand sz =tz imply a = a"'u,a’ = a"v for some a’’ € A, u,v €S
with us = vt.

Remark 2.8. Let S be a monoid.

(1) If S is idempotent, then every cyclic right S-act satisfying Condition (P') satisfies
Condition (PF").

(2) If S is right collapsible, then every cyclic right S-act satisfying Condition (PF")
is weakly pullback flat.

(3) The one-element S-act ©g satisfies Condition (PF") if and only if S is a weakly
left collapsible monoid.

It is clear that every weakly pullback flat cover is (PF”)-cover and every
(PF")-cover is (P')-cover. Now we give examples to show that the converses
are not true.

Example 2.9. Let X = {x,y} and S = X*. Then S is a cancellative monoid and so it
is weakly left collapsible. By Remark 2.8 the one-element S-act ®g has (PF")-cover,
but ©g has no weakly pullback flat cover, since if the one-element S-act ©g has weakly
pullback flat cover, then the one-element S-act ®g has (P)-cover, by [2, Lemma 2.9],
which is a contradiction.

Example 2.10. From [4, Example 12], Condition (P'") does not imply Condition
(PF"). Therefore, not every (P")-cover is a (PF")-cover.

Theorem 2.11. Let S be an idempotent monoid. Then every cyclic S-act S/p has a
(P")-cover if and only if S/ p has a (PF"")-cover.

Theorem 2.12. Let S be a right collapsible monoid. Then every cyclic S-act S/p has
a (PF")-cover if and only if S/ p has a weakly pullback flat cover.

Theorem 2.13. Let S be a monoid. Then every indecomposable S-act satisfying
Condition (PF") is locally cyclic if S satisfies any of the following condition:

(1) S is a right collapsible monoid.

(2) S is a right reqular band, that is, a%2 = a and aba = ba, fora,b € S.

PROOF. (1) By Remark 2.8, we see that Condition (PF”) implies weakly
pullback flat, so the result is obvious.

(2) Let A be an indecomposable S-act satisfying Condition (PF”), and S be a
right regular band. Let a,a’ € A. Since A is indecomposable, there exists a set
of equations

a=ajlq

101 = axup
4/
ay,v, =a'.
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Since A satisfies Condition (PF”), from a = ayu; and lu; = u; = uquy,
we conclude that there exist by € Ag,s1,t1 € S with a = bysy,a; = bif; and
s1 = tjuy. Hence (byt1)v; = apup, and since S is a right regular band,
we have up(f101u2) = uz(t101)uz = (t1o1)uz = (ho1tor)up = to1(ho1u2).
Hence there exist by, € Ag,sy,t, € S with by = bysy,a, = bytp and sptiv =
toup. Continuing in this way, we deduce that 1,1 (t,0ntty 1) = (bnOn)Upys1 =
(bnOntn0n)tys1 = tn0n(bn0ntty 11 ). Therefore there exist b, 11 € As, Sy11,tp11 €
S with by, = by118,41,4 = by1ty1 and s, 11 (8,0) = t,41. Consequently, a =

!/
bi1s1 = bysps1 = ... = bySy...5p51 = by 118541505251 and a’ = by, 1t,11, as re-
quired. Therefore A is locally cyclic. o
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A note on automorphism groups of cubic semisymmetric
graphs of special order

S. FALLAHPOUR™ and M. SALARIAN

Abstract

A simple graph is called semisymmetric if it is regular and edge-transitive but not vertex-
transitive. The class of semisymmetric graphs was first introduced by Folkman [2]. By using
group theoretic methods, Iofinova and Ivanov [4] in 1985 classified cubic semisymmetric graphs
whose automorphism group acts primitively on both biparts. This was the first classification
theorem for such graphs. In this paper we examine the results for automorphism groups of
semisymmetric connected cubic graph of order 44p, p prime.

Keywords and phrases: edge-transitive, vertex-transitive, Semisymmetric, Automorphism groups,
Cubic graphs .

2010 Mathematics subject classification: Primary: 22D15, 43A10; Secondary: 43A20, 46H25.

1. Introduction

Group and graph theory both provide interesting and meaninful ways of ex-
amining relationships between elements of a given set. This investigation be-
gins with automorphism groups of common graphs and an introduction of
Frucht’s Theorem, followed by an in-depth examination of the automorphism
groups of generalized Petersen graphs and cubic Hamiltonian graphs in LCF
notation. In the present study, S,, Ay, Z, and Dy, represent the symmetric
and the alternating groups of degree 1, the cyclic groups of order n and the
dihedral groups of order 2n respectively. In addition, we denote a projective
special linear group by L,(q) and U,(q) refers to aprojective special unitary
group. Let G be a subgroup of Aut(X). If action G on V(X),E(X) and Arc(X)
be transitive, X is called respectively G-vetex transitive, G-edge transitive and
G-Arc transitive. X is called G-semisymmetic if it is regular and G-edge tran-
sitive but not G-vertex transitive. Furtheremore X is called symmetric if both
G-vertex transitive and G-arc transitive. For G = Aut(X), we usually remove
G and say X is vertex-trasitive, edge transitibe, arc transitive, semisemmetric
or symmetric.
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In the following we discussed about some important findings that are used in
the present study.

Theorem 1.1. [1, 3]
i) A Ksz-group is isomorphic to one of the following groups:

As, As,L2(7),L2(2%),1,(17), L3(3), Us(3), Us(2)
ii) A Kq-group is isomorphic to one of the following groups:

(1)A7, Ag, Ag, A1g, M11, M2, ]2, Lo (24), L2 (5%), L2(72) Lz( *),L2(97), L(3°),
L2(577),L5(2%),L3(5),Ls(7),L3(2%),L3(17), La(3), U3 (2 ) Us(5), Us(7), U5 (2%),
U3(3%),U4(3),Us(2),54(22),54(5),54(7),54(32),56(2),08 (2),G2(3),52(23),
52(2°) D4(2), 2Eu(2);

(2) Ly(r)where r is a prime and r> — 1 =27.3.s,5 > 3 is a prime, a,b € N;
(3) Lp(2™), where m,2™, 2m3+1 are primes grater 3;
(4)Ly(3™) where m, 2 4+1, i -1 are odd primes.

It is important to note that only nonabelian simple groups of order less than
300 are As and Ly (7).

The theorem below is also well-known see [6] Let G a finite group and
N < G. If [N| and |§ | are relatively prime, then G has a subgroup H such that
G=NH,NNH=1ie G=HwyN.

Theorem 1.2. [5] Let X be a connected cubic G-semisymmetric graph and {U, W}
be a bipartition of X furthermore, N < G. If The actions of N on both U and W are
intransitive, then N acts semireqularly on both U and W , Xy is %-semisymmetric
and X is a regular N covering of Xy.

2. Main Results

We first provide a general discussion on G-semisymmetric graphs. Let X
be a connected cubic G-semisymmetric graph of order n. It is very clear that
X is regular and bipartite. Moreover, it is G-edge transitive and hence edge-
transitive. If X is vertex transitive, then it is symmetric cubic of order 7, since
according to [7] a cubic vertex and edge-transitive graph is necessarily sym-
metric. Therefore, X is either a bipartite cubic symmetric graph of order n or
it is a cubic semisymmetric graph of order n.

In the following, we will examine the largest normal p-subgroup of automor-
phism X.

Theorem 2.1. There are only two groups, simple Ky-group whose orders of the form
2'.3.11.p for some prime p, p >5and i € N,1 <i <8:L,(11),L,(23).
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Theorem 2.2. If X be a connected cubic semisymmetric graph of order 44p and
Aut(X) = A, then We have |O,(A)| = p or p = 23.

Let {U, W} be a bipartition for X. Then |U| = |W| =20p and |A| =2"+23.11.p
some r,0 < r < 7. Let N be a minimal normal subgroup of A then N = TX, where
T be a simple group. If T is nonabelian, and since the powers 3,5 in |A| equal 1,
then k =1 and N = T. Eithere |N| divides |U| = 20p or |U| divides |N|. In first
case, since | N| is divisible by at least three distinct primes so |N| = 2.11.p and hence
N is a simple K3-group but the order of such groups, listed in 1.1 is divisible by 3.
Therfore |N| is divisible by 22p. According to 1.1, N must be a simple K4-group
of order 21.3.11.p. N = L(11),L2(23), these groups correspond to p = 5,p = 23.
Since p > 19,N = L,(23) and the order of % does not divisible by 3. X is N-
semisymmetric graph for each u € U and v € W and we have Ny, = N, = D1,. We
conclude that N =< D15, D1y > which is imposible. So N is solvable and we result it

is elementary abelian and hence it follows Xy is a connected cubic %—semisymmetrie
graph of order A‘MWF;. We claim |Op(A)| = p. Suppose that X is a semisymmetric
cubic graph of the order 44p, p prime, which p > 7 is an odd number. Consider
A = Aut(x). Also, suppose that Q = Op(A), then the order of Q is equal to p. Take
{U, W} to be a bipartition for X. Then |U| = |W| = 22p. Since A acts transitionally
on X- bipartition using Orbit-Stabilizer theorem and according to theorem 1, it can
be concluded that |A| = 2"+1.3.11.p. Now suppose that Q = Op(A) is a normal
maximal subgroup of A, we are intended to solve |Q| = p. First, we assume that
|Q| =1and N is a normal minimal subgroup of A. We claim that A is solvable. As
if not, the factor of composition series A must be a simple non-abelian group with the
first 4 factors of p,2,3,11. Therefore, according to the classification of simple finite
groups, these factors should be isomorphism with one of the simple groups of L,(11)
,L>(23). But this is not possible, as p > 7. Therefore, A is soluble and N is soluble. So
N is elementary abelian group. Clearly, 22p 4 N, hence N operates non-transitionally
on both bipartition X. As a result on both of them, N should be semi-reqular. By
counting the number of N, it can be concluded that the order N is equal to 2 or p.
But as |Q| =1, N must be equal to 2. Now we consider |Xy| = 22p. Xy is a semi-
symmetric cubic graph and {U(Xy),W(Xn)} are collections of Xy, each with two

M A
bipartitions and |U(Xy)| = |[W(Xy)|. Suppose N is a N minimal subgroup. As
A M
N is solvable, N is also solvable and is elementary abelian group. Hence, we should
M
have |ﬁ| = p. Hence, M is a normal sub-collection of A, ranked 22p. Suppose P is

a p — Sylow subgroup of M, then we can simply prove that P is normal in M, and is
an characteristic subgroup of M. As M > A, P is normal in A. Then, A has a normal
sub-group, ranked as p, which is in contrast to the Q = 1. Therefore, |Q| = p. ]
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When is a local homeomorphism a full subsemicovering?

MAJID KOWKABI* and HAMID TORABI

Abstract

In this paper, by reviewing the concept of subsemicovering maps and full subsemicovering
maps, we present some conditions under which a local homeomorphism becomes a full sub-
semicovering map.

Keywords and phrases: fundamental group, semicovering map, subsemicovering map.
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1. Introduction

Let p: X — X be a local homeomorphism. We are interested in finding
some conditions on p or X under which the map p can be extended to a
semicovering map g : Y — X. We recall that Steinberg [3, Section 4.2] defined
amap p: X — X of locally path connected and semilocally simply connected
spaces as a subcovering map (and X a subcover) if there exist a covering map
p’ 1Y — X and a topological embedding i : X — Y such that p’ oi = p.

The following definition is stated in [2, Definition 3.1].

Definition 1.1. Let p : X — X be a local homeomorphism. We say that p can be
extended to a local homeomorphism q : Y — X, if there exists an embedding map
¢ : X < Y such that q o ¢ = p. In particular, if q is a covering map, then p is called a
subcovering map (see [3, Section 4.2]) and if q is a semicovering map, then we call the
map p a subsemicovering map. Moreover, if p.(711(X, %)) = g« (711 (Y, o)), then we
call the map p full subcovering and full subsemicovering, respectively.

Note that since every covering map is a semicovering map, every subcov-
ering map is a subsemicovering map. Also, if p : (X, %)) — (X,x() can be ex-
tended to g : (Y,7) — (X,x0) via ¢ : (X,%y) — (Y,7o), then p.(71(X, %)) is a
subgroup of g. (71 (Y, o))

The following theorem can be found in [2, Theorem 3.8].
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Theorem 1.2. Let p: (X, %) — (X, x0) be a map such that p. (7, (X, %o)) is an open
subgroup of n‘lﬁw (X,x0). Then p is a subsemicovering map if and only if
1. p:(X %) — (X,x0) is a local homeomorphism;
2. if fisapathin X with p o f null homotopic (in X), then f(0) = f(1).
The following theorem is stated in [4, Theorem 3.7].

Theorem 1.3. For a connected, locally path connected space X, there is a one-to-one
correspondence between its equivalent classes of connected covering spaces and the
conjugacy classes of subgroups of its fundamental group 711 (X, xo) with open core in

8P (X, xp).
The following theorem can be found in [1, Theorem 2.21].

Theorem 1.4. Suppose that X is locally path connected and xy € X. A subgroup
H C m11(X, xp) is open in ﬂ?tof? (X, x0) if and only if H is a semicovering subgroup of
us| (Xr XO)'

The following corollary is a consequence of the above theorem (see [1,
Corollary 3.4]).

Corollary 1.5. Every semicovering subgroup of 7t1(X, xq) is open in n?tap (X, xp).

Theorem 1.6. Amap p: (X,%0) — (X,xq) is a full subsemicovering map if and only
if

1. p:(X %) — (X,x0) is a local homeomorphism;

2. if fisapathin X with p o f null homotopic (in X), then f(0) = f(1);

3. p«(m1(X,%0)) is an open subgroup of ni’toP(X, Xo)-

PROOF. Since every full subsemicovering map is a subsemicovering map, the
necessity of conditions (1) and (2) are obtained by Theorem 1.2. To prove
condition (3), let p can be extended to a semicovering map q : (Y,7) —
(X, x0) such that p.(7r1(X,%0)) = g (m1(Y,70)). Hence p.(m(X, %)) is open

in ngtOP(X,xo) since g.(m1(Y,7o)) is open in ﬂ;ﬁw(X,xo) by Corollary 1.5.
Sufficiency is obtained similar to the proof of Theorem 1.2. O

The following theorem can be concluded by the classification of connected
covering spaces of X, Theorem 1.3, and Theorem 1.2.
Theorem 1.7. Amap p: (X, %) — (X, x0) is a full subcovering map if and only if

1. p:(X, %) — (X,x0) is a local homeomorphism;
2. if fisapathin X with p o f null homotopic (in X), then f(0) = f(1);
3. p«(m1(X, %)) contains an open normal subgroup of nitOP(X, Xo)-
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2. Main Results

In the following, we are going to find a sufficient condition for extending a
local homeomorphism to a semicovering map. For this purpose first, note that
Steinberg in [3, Theorem 4.6] presented a necessary and sufficient condition
for a local homeomorphism p : X — X to be subcovering. More precisely,
he proved that a continuous map p : X — X of locally path connected and
semilocally simply connected spaces is subcovering if and only if p: X — X
is a local homeomorphism and any path f in X with p o f null homotopic
(in X) is closed, that is, f(0) = f(1). We show that the latter condition on a
local homeomorphism p : (X, %) — (X, x) is a sufficient condition for p to be
full subsemicovering provided that p.(7t1(X, %)) is an open subgroup of the

. . qtop
quasitopological fundamental group ;" (X, xo).
The following theorem can be concluded by Theorem 1.4 and Theorem 1.6.

Theorem 2.1. Let X be simply connected, locally path connected and connected, then
an onto map p: (X, %g) — (X, xq) is a full subsemicovering map if and only if

1. p:(X, %) — (X,x0) is an local homeomorphism;
2. if fisapathin X with p o f null homotopic (in X), then f(0) = f(1).

PROOF. We must show that p.(71(X,%))) contains an open subgroup of
n?tOp(X, xp). It is enogh to show that n?wp (X, xp) is semilocally simply con-
nected space. Let x be a point of X. Since p: (X, %)) — (X, x) is an onto local
homeomorphism, there exist an open neighborhood U of % € p~!(x) such that
p(U) is an open neighborhood of x and p|y; : U — p(u) is a homeomorphism. If
« is an arbiterary loop in p(U), then [p~!(a)] is an loop in U. Since X is simply
connected, [p~!(a)] =1and so 1= p.[p~ (a)] = [po p~'(a)] = [«]. Therefore
n?top (X, xp) is semilocally simply connected space. i

We need the following proposition for the next example.

Proposition 2.2. Let p : X — X be a local homeomorphism. Suppose that X is
Hausdorff and that every null homotopic loop a in X is of the form T\, a;, where

o ) fioi)(t),  te[0,a],
wi(t) = 1
(fi ovi)(t), tela,l],
in which 0 < a; <1, f;is a path in X, A; : [0,a;] — [0,1] is defined by A;(t) = ﬂii/

and vy; : [a;, 1] — [0,1] is defined by v;(t) = i:”;’i,for every i € IN. Then p has the
condition (%) in Theorem 1.2.

The following example shows that the condition (%) is not a sufficient
condition for p to be subsemicovering. Hence we cannot omit openness of
p«(1(X, %p)) from the hypotheses of Theorem 1.6.
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Example 2.3. Let X = HE = U,en{(x,y) € RY[(x — 1)2 + 42 = %} be the

Hawaiian Earring space. Put Wi = Uy e (i,i+13)1 (¥,2) € R?|(y—1)2+22 = nl—z}
and

S ={(5,2)l(y— (1 - D)2+ 2= (%2> 0}
w2l — (= )P+ = ()2 <0)

for every i € N. Let X = ((0,1) x {0} x {0}) U2, ({1 — 73} x (W;US))) bea
subset of R3 (see Figure 1). We define p : X — X by
(y,2), x=1-:4,i€N,
p(xy,z) =
Tl +cos(£%)sin(£%)), 1—1<x<1l—g4,ieN.
It is routine to check that p is a local homeomorphism that has UPLP. Let o : [ — X
be a loop defined by

w(f) = {(0,0), teloiju{l},

F1+cos(#5),sin(£5)), 1-1<t<1-5,ieN\{1}.

The loop « has no lifting with starting point (3,0,0) and the incomplete lifting of «
with starting point (,0,0) is & : [0,1) — X defined by

_ (2,00, telol],
“(t)_{(f,o,m, fe L),

En - 263



By using Proposition 2.2, p has the condition (% ).Also, the path « has no lifting with
starting point (,0,0) and the incomplete lifting of a with starting point (1,0,0) is
&:[0,1) — X. Hence & does not have any strong neighborhood. Therefore p is not
subsemicovering.

References

[1] J. Brazas, Semicoverings, coverings, overlays, and open subgroups of the quasitopologi-
cal fundamental group, Topology Proc. 44, (2014), 285-313.

[2] M. Kowkabi, B. Mashayekhy and H. Torabi, On semicovering, subsemicovering, and
subcovering maps, Journal of Algebraic Systems 7 (2020), 227-244.

[3] B. Steinberg,The lifting and classification problems for subspaces of covering
spaces,Topology Appl.133 (2003), 15-35.

[4] H.Torabi, A. Pakdaman, B. Mashayekhy, On the Spanier groups and covering and
semicovering map spaces, arXiv:1207.4394v1.

MAJID KOWKABI,
Department of Pure Mathematics, University of Gonabad, Gonabad, Iran.

e-mail: majid.kowkabi@gonabad.ac.ir

HAMID TORABI,

Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O.Box
1159-91775, Mashhad, Iran.

e-mail: h.torabi@ferdowsi.um.ac.ir

En - 264



27" |ranian Algebra Seminar
Persian Gulf University, Bushehr, Iran

18-19 Esfand 1400 (March 9-10, 2022)

Principal right congruences over completely 0-simple
semigroups

M. SEDAGHATJOO*

Abstract

Regarding that completely simple and completely 0-simple semigroups involve classes namely
right groups, left groups, right zero semigroups, left zero semigroups and rectangular bands, in
this paper we identify principal right congruences on such semigroups.

Keywords and phrases: completely 0-simple semigroup, principal right congruence.
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1. Introduction

Considering Birkhoff’s theorem, stating that any algebra A is isomorphic to a
subdirect product of subdirectly irreducible algebras (which are homomorphic
images of A), structure of subdirectly irreducible semigroups (semigroups
with least nondiagonal congruences) was a matter of interest in semigroup
theory. Accordingly, investigating semigroups possessing least nondiagonal
right congruences, termed right subdirectly irreducible semigroups, was ini-
tiated by Rankin et al. [3], who presented a general account on such semi-
groups. This class of semigroups is indeed a subclass of subdirectly irreducible
semigroups on which the first investigations were pioneered by the efforts of
Thierrin [7] and Schein [6]. This work is a basic part of the project character-
izing right subdirectly irreducible completely (0-)simple semigroups in terms
of identifying principal right congruences on such semigroups. We recall from
[1] that a completely (0-)simple semigroup is indeed a (0-)simple semigroup
containing a (0-)minimal left ideal and a (0-)minimal right ideal. In what fol-
lows we present preliminary notions and terminologies needed in the sequel.

Throughout this paper, S will denote a semigroup. To every semigroup
S we can associate the monoid S! with the identity element 1 adjoined if

S if S has an identity element,
SU{1} otherwise,
where11 =1, 1s =s =sl forall s € S.

necessary. Indeed, S! =

* speaker
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Recall that a semigroup S is called simple (6-simple) if S contains no
(nonzero) ideal other than itself. An equivalence relation p on a semigroup
S is called a right congruence if a p a’ implies (as) p (a’s) for every a,a’,s € S
and the class of a under p is denoted by a,. For a semigroup S the diagonal
relation {(s,s)|s € S} on S is a right congruence on S which is denoted by
Ag. Also if I is a right ideal of S, then the right congruence (I x I) U Ag on
S is denoted by p; and is called the Rees congruence by the right ideal I. For
a,b € S, the principal right congruence on S generated by the pair (a,b) is
denoted by p(a,b). The following known result is frequently applied in the
next arguments.

Lemma 1.1.  Let S be a semigroup and a,b € S. Then for x,y € S, xp(a,b)y if
and only if x = y or there exist p1,p2, ..., Pn, 91,92, -+, Gn, W1, W2, ..., Wy € st
where for everyi =1,2,...,n,(p;, q;) € {(a,b), (b,a)}, with the following sequence
of equalities:
X =p1w1 oW = p3wW3 -+ JuWn =Y,
1wy = p2wz

between x and y, which shall be called of length n.

(1)

For a thorough account on the preliminaries, the reader is referred to
[1,2,5].

2. Main Results

This section is devoted to characterize principal right congruences over
completely 0-simple semigroups. First we recall Rees matrix semigroups
briefly to present completely 0-simple semigroups.

Let G be a group with the identity element ¢, and let I, A be nonempty sets.
Let P = (p);) bea A x [ matrix with entries in the 0-group G°(= GU {0}). Let
S = (I x G x A)U{0} and define a composition on S by

(i,a,A\)(j, b, u) = (i,aprjb,u) if prj 20,
0 lf p/\] = 0’

(i,a,A)0 = 0(i,a,A) = 00 = 0.

The semigroup S constructed in this fashion is called an I x A Ress matrix
semigroup over the 0-group G and is denoted by MP[G; I, A; P]. The matrix
P is called regular if no row or column of P consists entirely zeros. It can
be routinely checked that M°[G; I, A; P] is regular if and only if P is regular.
Moreover, a Rees matrix semigroup without zero element over a group is
constructed in the same fashion and is denoted by M|G; I, A; P]. Recalling
Rees Theorem [4], any completely O-simple semigroups is isomorphic to a
regular Rees matrix semigroup over a O-group. Therefore in the sequel,
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the term MPY[G; I, A; P] with regular matrix P, stands for a completely 0-
simple semigroup. It is known that there is a one to one order preserving
correspondence between subsets of I and right ideals of MO [G; I, A; P], given
by @+ {0} and @ # I' — Ty = {(i,a,A)|i € I')a € G,A € A} U{0} for any
@ # I C I. The next result follows immediately from the rule of multiplication
defined in Rees matrix semigroups over 0-groups.

Lemma 2.1. Let S = MC[G;I,A;P] and m = (i,a,A),n = (i,b,5),p =
(i,c,0) € S. Then mn = mp # 0 implies that n = p.

Take the binary relation e on A givenby (A, u) € e if {i € I|py; =0} =
{i € I'|pui = 0}. Ttis known that e 5 is an equivalence relation on A ([1, Section
3.5]).

Lemma 2.2.  Let p be the principal right congruence on S = M°O[G;I, A;P]
generated by the pair (m,n) where m = (i,a,A) and n = (j,b,u). 0p = 0 if and
only if (A, i) € en. In the case that (A, u) & €, p is the Rees congruence T

So in what follows, we will identify principal right congruences generated
by the pairs (m,n) where m = (i,a,A), n = (j,b,u), m # nand (A, u) € ex. In
such situations all terms p;w; and g;w; in (1) are nonzero. Thus for an arbitrary
element t € I, if p); # 0 then py; # 0 and in this case the elements ap);(bpy;) !
and p ,\tp;tl in G are denoted by X; and Y} respectively.

To reach our target we will identify class of an arbitrary element s € S
for the principal right congruence p(m, ). Note that regarding the argument
after Lemma 1.1, for any element 3 = (k,z,6) where z € G and § € A and
ke I\{i,j}, p; = {3}. So in the following arguments we just identify classes of
elements of the form 3 = (k,z,6) where k = i or j.

We proceed in two cases.

Case 1:1 # j. First we identify the class m (identically n). Let p € m,.

Set 9 = {Yi|t € I}, 97! = {Y;'|t € I} and % = (YD), the
subsemigroup of G generated by 99 ! which is indeed a subgroup of G. We
have p € m, if and only if

i,an,A) or
i,anx, y) or
J, bx~'n,A) or
j by~ tnx, )

k=1
I
~ /~ —~

forsome x,y € Y,n € N.
Now we identify the class of an arbitrary element 3 = (i, z,0) not involved
in m, where z € G and 6 € A. We have p € 3, if and only if

- {(i, ana~'z,0) or 3)

(j,bx 'na=1z,0)
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for some x,y € 9,n € N. Similarly we can prove that for 3 = (j,z,0) not
involved in m, where z € G and 6 € A, p € 3, if and only if

b {(i, anxb~1z,0) or

4
(j,bx 'nyb~1z,0) @

forsome x,y € Y, n € N.

Case 2:1 = j.

Setting ¥ = {X; |t € I} and M = (X), the subgroup of G generated by X,
p € m, if and only if

- {(i, ma,A) or 5)

(i, mb, )

for some m € M.

Now we identify the class of an arbitrary element 3 = (7, z,6) not involved
in m, where z € G and 6 € A. We get p € 3, if and only if p = (i, mz,0) for
some m € M. Now we present the main result of the paper.

Theorem 2.3.  Let S = MO[G; I, A; P] be a completely 0-simple semigroup and
a,b € S. Let p be the principal right congruence on S generated by the pair (m,n),
where m = (i,a,A) #n = (j,b, ). If (A, u) ¢ € then p is the Rees congruence on S
by the right ideal mS UnS. If (A, u) € e, p is identified as follows:

i) Ifi#j, (a,b) € pifand only if a = b or both a and b are elements of the form
stated in 2 or 3 or 4.

ii) Ifi =7, (a,b) € pifand only if a = b or both a and b are elements of the form
stated in 5 or a = (i,myz,0),b = (i, myz,0), for some my,my € M,z € G,0 €
A.

The next theorem is an straightforward result of the above theorem.

Theorem 2.4. Let S = MI[G; I, A\;P| be a completely simple semigroup and

a,b € S. Then the principal right congruence p on S generated by the pair (m,n),

where m = (i,a,A) # n = (j, b, u) is identified as follows:

i) Ifi#j, (a,b) € pifand only if a = b or both a and b are elements of the form
stated in 2 or 3 or 4.

il) Ifi =7, (a,b) € pifand only if a = b or both a and b are elements of the form
stated in 5 or a = (i,myz,0),b = (i, myz,0), for some my,my € M,z € G,0 €
A.
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In this note, we completely determine all submodules of the set of rational numbers.
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1. Introduction

The study of the set of rational numbers and its submodules is an interesting
subject for mathematicians. In this work, we investigate submodules of the
set of rational numbers in some new aspect. First, we recall some basic
terminologies and results. We denote the set of rational numbers and integers
respectively by Q and Z. Note that every abelian group can be viewed as a
Z-module and so its subgroups are exactly its Z-submodules. We refer the
reader to [1] and [2] for undefiend terms and notions.

Definition 1.1. A submodule K of a nonzero Z-module M is said to be essential in
M, in case for any nonzero submodule L of M one has KN L # (0).

Definition 1.2. A Z-module M is called torsion, if for every x € M, there exist a
positive integer n such that nx = 0.

Itis well known that any torsion Z-module can be decomposed into a direct
sum of its p-primary components.

Theorem 1.3. Let M be a nonzero torsion Z-module and P be the set of prime
numbers, then M = @ ,cp M(p), where

M(p) = {x € M | p"x = 0 for some positive integer n}.

In the theorem above, M(p) is calle the p-primary component of M. For
an explicite example, consider the torsion Z-module Q/Z. Then we have
Q/Z = @ pcp Zp~, where
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Zpoo:%(p) :{%—FZ]m,neZananO}.

We know that for any number p, the proper submodules of Z~ are cyclic
and form a chain

HyCH CHC--,

where Hy = (0) and H, = (pl—,, +2Z), foreach n > 1. Note that for each positive
inreger n, wehave H, = Z/p"Z = Zyn.

Let f: Q — Q/Z be the natural epimorphism and p be a prime number,
then

f4aw)=€%pmn62m@nzm
and for each positive integer k,

f%H@:{%\mn62mnogngu.

2. Main Results

Now we are ready to characterize the submodules of Q elementwise. Let K
be a proper submodule of Q containing Z. Then K/Z is a proper submodule
of Q/Z and so K/Z is a torsion Z-module and we have

7 - D5
peP
It is easily seen that & (p) C %(p) = Zpeo. Thus 5 (p) = Zpe or for some
integer n > 0, we have 5 (p) = (% + Z). For each prime number p let
g(K,p) = wif 5(p) = Zpoo and g(K,p) = nif 5(p) = (% + Z) for some
integer n > 0. So,

K m
~(p) = {WJFZ |m,ne€Z,0<n<g(Knp)}

Thus by considering the natural map f : Q — % we have
1, K _ K _1,K
K= = D5 =L 50
peP peP

and so -
K=Y {—|mneZ0<n<gKnp)}
peP p
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Hence

m
p1"ip2"2 ... pr

where P = {p1, p2, p3, . .. } is the set of prime numbers. Therefore, we have
poved the following theorem.

Theorem 2.1. Let K be a submodule of Q containing Z. Then
m
p1ipa"2 .. py

where P = {p1,p2, p3,. ..} is the set of prime numbers and for any p € P, we
have & (p) = {pﬂ,1 +Z | mneZ,0<n<gKp)}

K=

ol mony g,y € 2,0 <mp < g(Kopi),r > 13,

K={ - | m,ny,ny,...,n, € Z,0<n; <g(K,p;),r>1},

Corollary 2.2. Let K be a submodule of Q containing Z. Then K is cyclic if and only
if for each prime number p, one has g(K,p) # coand {p € P | g(K,p) # 0} isa
finite set.

Note that in the corollary above, if {p € P | ¢(K,p) #0} = {q91,92,---,9s},
then

1

K= s ®an s g

Now we consider the general case for submodules of Q. Let K be a nonzero
submodule of Q. Since Z is an essential submodule of Q, there exist a positive
integer t such that KNZ = tZ. Thus tZ < Kand so Z < t~1K and + 'K is a
submodule of Q containing Z, then by Theorem 2.1, we have

m
p1’ipa"2 .. py
So we have the following theorem.

Theorem 2.3. Let K be a nonzero submodule of Q such that KN Z = tZ for some
positive integer t. Then

1K = { - | m,ny,ny,...,n, € Z,0<mn; < g(t_lK, pi),r>1}.

tm
pi"ip2"2 ... pr
where P = {p1,p2, p3,... } is the set of prime numbers and for any p € P, we
have %(p) = {pﬂn +Z|mneZ,0<n<g(t 'K p)}

K={

o | m,ny,np,...,np € Z,0<1n; < g(t_lK,pi),r >1},

Similar to Corollary 2.2, we have the following result.

Corollary 2.4. Let K be a nonzero submodule of Q such that KN Z = tZ for some
positive integer t. Then K is cyclic if and only if for each prime number p, one has
g(t71K,p) #ocoand {p € P | g(t7'K, p) # 0} is a finite set.
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Observing that in the above corollary, if {p € P | g(t7'K,p) # 0} =
{‘hz 42/ e /%}/ then
t
qlg(tflKr%)ng(fflKﬂZ) .. qsg(tflKr‘is)

K= ).
In this case the integer ¢ is relatively prime to each of 1,42, ..., gs.
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Abstract

Let R be a commutative ring with identity and M an R-module. The Scalar Product Graph of
M is the graph with M as the vertex set and every edge in this graph is xy such that x = ry
or y = rx for some r belong to R . In this paper exact formula for first Zagreb index of Scalar-
product graph of some modules will be presented.
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1. Introduction

Throughout this paper we consider connected graphs without loops and
multiple edges. Let G = (V,E) be a graph of order n with vertex set V(G) =
{v1,v2,...,0n} , EC P5(V) and |E| = m. For a graph G, the degree of a vertex
v is the number of edges incident to v and denoted by degc(v). The distance
between the vertices u and v of G is denoted by d(u,v). The join Gy + G; of
two graphs G; and G is a graph obtained from G; and G; by joining every
vertex of G to all vertices of G. The automorphism group of a graph G is
denoted by Aut(G).

A topological index is a numeric quantity derived from the structure of a graph
which is invariant under automorphisms of the considered graph. Suppose
¥ denotes the class of all graphs, then a function A : £ — R™ is called a
topological index if G = H implies A(G) = A(H). Usage of topological indices
in chemistry began in 1947 [6] when chemist Harold Wiener developed the
most widely known topological descriptor. The first Zagreb indices [2] of a
graph G are defined as:

Mi(G)= Y deg(v)® (1)
veV(G)
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Let R and M be a commutative ring with identity and an R-module, Also
W(R) is the set of all non-unit elements of R. In [1] authors investigate cozero-
divisor graphs on R-module M which vertices from Wgr(M)* = Wr(M) \ {0}
and two distinct vertices m and n are adjacent if and only if m ¢ Rn and n ¢ Rm,
and they studied girth, independent number, clique number and planarity of
this graph. In [4] Nouri-Jouybari and et al. introduce a new class of graphs
arising from modules, namely Scalar-product graph of R-module, denoted by
Gr(M). In Ggr(M), vertices are elements of M and two distinct vertices x and
y are adjacent if and only if there exists r belong to R that x = ry or y = rx.
Properties of these graph have been expressed in [4], [5]. In next section, we
present computing first Zagreb indices of scalar product graphs of some Z-
modules by join of two graphs.

2. Main Results

In this section, we compute first Zagreb index of Gz(Z5,) which p is prime
number.

Lemma 2.1. Let G and H be graphs. Then we have:

1.  1E(G+H) I=1E(G)I+IEH) I+ V(G| | V(H)I
0 u=vo

2. deyu(u,v) =<1 uve€E(G)oruve E(H)or (ueV(G)&v e V(H))
2 otherwise

Theorem 2.2. [3] Let Gy,Gy,..., Gy be graphs with V; = |V(G;)|, E; = |E(G;)|,
1<i<n,G=G1+Gy+...+Gpand V= |V(G)|.Then:

n

Mi(G) = Y (Mi(G) + ViV = Vi D? +4] E [ (V= 1Vi]) @

i=1

Corollary 2.3. Let Gy, Gy be two graphs with V; = |V(G;)|, E; = |E(G;)|, i =1,2.
Then:

M (G +G2) =Mi(GI)+| Vi [| V2 P +4 | Er || V2 |
+Mi(G)+ | V2 || Vi P +4 | E2 || 1 |

Definition 2.4. Let R be a commutative ring with non-zero identity and M be an
unitary R module. We define Scalar-product graph of R-module M, namely Gg(M),
which vertices of Gr(M) are elements of M and two distinct vertices x and y are

adjacent if and only if there exists r belong to R that x = ry or y = rx. For example of
this type of graphs see Fig 1.

Remark 2.5. According to definition of cozero-divisor graph over modules in above
we have the followings:
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i¢ > _
\/ 3

3

FIGURE 1. Scalar-product graph of Z-modules Z¢

(1) If M is an R-module, the subgraph of Gr(M) which vertices are Wr(M)* is
complement of cozero-divisors graph of M.

(2) We have Gr(M) = G1 + Gy where Gy is a complete graph with | Wr(M)* |
vertices and Gy is complement of cozero-divisor graph of M.

Lemma 2.6. Let p be a prime number. Then, My (K,) = p(p —1)? , My (Ky,p—1) =
(p—1)(p—2)7°

PROOF. Every vertices of K, has p — 1 degrees. By definition, the first Zagreb
index of K, is p(p —1)?. Degrees of vertices of Ky ,_1 is 0 or p —2. By
definition, the first Zagreb index of Ky ,_1 is (p — 1)(p — 2)%. m

Theorem 2.7. Let p > 3 be a prime number and G be Scalar-product graph of Z-
modules Z,, . Then My(G) = 8p> — 15p* + 13p — 4.

PROOF. By remark 2.5 we have Gz(Z,p) = K;, + G, that K}, is complete graph
with p vertices and G is complement of cozero-divisor graph of Z,, which be

Kj,p—1. By corollary 2.3 we have:
M1(Gz(Z2p)) =M1 (Kp + Ky p—1) = My(Kp)+ | V(Kp) | V(K p—1)? |
+4|E(Kp) || V(Ky,p-1) | +M1(Ky,p-1)
+ | V(Kpp—1) [ V(Kp) [P +4] E(Kypo) || V(Kp) |
by lemma 2.6 we have:
Mi(Kp) = p(p = 1)%, Mi(Kpp—1) = (p = 1)(p — 2)?

By computing we have:
M (Gz(Z2p)) =8p> —15p* +13p — 4 O
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Results on signless Laplacian spectral characterization of
broken graphs

MOHAMMAD REZA OBOUDI*, NARGES MAMASANIZADEH and REZA
SHARAFDINI

Abstract

A graph G is said to be (DLS) DQS if there is no other non-isomorphic graph with the same
(Laplacian spectrum) signless Laplacian spectrum as G. A sun graph SG(p) is obtained by
appending a pendant vertex to any vertices of a cycle C, and a broken sun graph BSG(p, q) is
a graph obtained by deleting p — ¢ pendant vertices of a sun SG(p). We obtain some results
related to the graphs that their signless Laplacian eigenvalues are the same as the signless
Laplacian eigenvalues of a broken sun graph.

Keywords and phrases: Broken graph; DQS graph.
2010 Mathematics subject classification: Primary: 05C50.

1. Introduction

Graphs that are determined by their spectrum have received more attention,
since they have been applied to several fields, such as randomized algorithms,
combinatorial optimization problems and machine learning. An important
part of spectral graph theory is devoted to determining whether given graphs
or classes of graphs are determined by their spectra or not. So, finding and
introducing any class of graphs which are determined by their spectra can be
an interesting and important problem. Let G = (V, E) be a simple graph with
vertexset V. = V(G) = {v1,--- ,v,} and edge set E = E(G) = {e1, - ,em},
where |V(G)| = nand |[E(G)| = m.

Let A(G) and D(G) be the adjacency matrix and the diagonal matrix of
degree sequence of a graph G, respectively. The signless Laplacian matrix of
G denoted by Q(G) is the matrix Q(G) = D(G) + A(G) (also D(G) — A(G)
is called the Laplacian matrix of G). The multiset of eigenvalues of Q(G) is
called the signless Laplacian spectrum of G. A graph G is said to be (DLS)
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DQS if there is no other non-isomorphic graph with the same (Laplacian spec-
trum) signless Laplacian spectrum as G.

A sun graph SG(p) is obtained by appending a pendant vertex to any
vertices of a cycle C, and a broken sun graph BSG(p,q) is a graph obtained
by deleting p — g pendant vertices of a sun SG(p). A consecutive broken sun
graph, CBSG(p,q), is a broken sun graph such that subgraph induced by the
vertices with degree 2 is a path on p — g vertices. See the references for more
details. Here we obtain that some kinds of broken graphs that are DQS.

2. Main Results

First we recall some results. The first result shows that two Q-spectral
graphs have the same number of vertices and the same number of edges.

Lemma 2.1. Let H and G be two Q-spectral graphs. Then the following hold:
(i) G and H have the same number vertices.

(ii) G and H have the same number edges.

(iii) " d2(G) = ¥, d2(H).
i=1 i=1

1

(i0) 6NG(C3) + ¥ d3(G) = 6Ny(C3) + > d;} (H).
i=1 i=1

We note that all signless Laplacian eigenvalues of any graph are non-
negative. There is a well known result related to the multiplicity of zero as
an signless Laplacian eigenvalue of graphs.

Lemma 2.2 ([3]). For every graph the multiplicity of the eigenvalue 0 in the Q-
spectrum is equal to the number of the bipartite components.

Now let us state our main results without proof.

Lemma 2.3. If H is Q-cospectral with T = BSG(p, q), then det(H) € {0,4}.

Lemma 2.4. If H is Q-cospectral with T = BSG(p,q) and p > 3 is odd, then H is a
connected graph.

Corollary 2.5. If H is Q-cospectral withT = BSG(p,q) and p > 3 is odd, then H
has at most one triangle.
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Theorem 2.6. If H is Q-cospectral withT = BSG(p,q) and p > 5 is odd, then they
have the same degree sequence.

Lemma 2.7. If H is Q-cospectral withT = BSG(p, q) and p = 3, then they have the
same degree sequence.

Corollary 2.8. If H is Q-cospectral withT = BSG(p,q) and p > 3 is odd, then H
is a broken sun graph.

We close the paper by the following result.

Theorem 2.9. For p > 2 even and 0 < q < p, the consecutive broken sun graph
IT = CBSG(p, q) is DQS.
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Fair domination polynomial of a graph

SAEID ALIKHANI and MARYAM SAFAZADEH®

Abstract

A dominating set of a simple graph G = (V,E) is a subset D C V such that every vertex not
in D is adjacent to at least one vertex in D. The cardinality of a smallest dominating set of G,
denoted by 7(G), is the domination number of G. The neighbourhood of a vertex v in G, N(v)
is the set of all of the vertices adjacent to v. For k > 1, a k-fair dominating set (kFD-set) in G, is a
dominating set S such that [N(v) N D| = k for every vertex v € V \ D. A fair dominating set, in
G is a kFD-set for some integer k > 1. Fair domination polynomial of G is denoted by Df(G, x)

is defined as Y df(G, ) xt, where d (G, 1) is the number of fair dominating sets of G of size i. In
this paper, after presenting preliminaries, we study this polynomial for some specific graphs.

Keywords and phrases: domination number, fair domination polynomial, cycle.
2010 Mathematics subject classification: Primary: 05C25 .

1. Introduction

Let G = (V,E) be a simple graph with n vertices. A set D C V is a
dominating set, if every vertex in V\D is adjacent to at least one vertex in
D. The domination number (G) is the minimum cardinality of a dominating
set in G. The neighbourhood of a vertex v in G, N(v) is the set of all of the
vertices adjacent to v. For k > 1, a k-fair dominating set (kFD-set) in G, is a
dominating set D such that |[N(v) N D| = k for every vertex v € V' \ D. The k-
fair domination number of G, denoted by fdy(G), is the minimum cardinality
of a kFD-set. A kFD-set of G of cardinality fdi(G) is called a fdi(G)-set. A
fair dominating set, abbreviated FD-set, in G is a kFD-set for some integer
k > 1. The fair domination number, denoted by fd(G), of a graph G that is
not the empty graph is the minimum cardinality of an FD-set in G. An FD-
set of G of cardinality fd(G) is called a fd(G)-set. By convention, if G = Ky,
we define fd(G) = n. By the definition it is easy to see that for any graph G
of order 1, v(G) < fd(G) < n and fd(G) = n if and only if G = K. Caro,
Hansberg and Henning in [5] showed that for a disconnected graph G (without
isolated vertices) of order n > 3, fd(G) < n — 2, and they constructed an
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infinite family of graphs achieving equality in this bound. The corona G o Kj,
is the graph constructed from a copy of G, where for each vertex v € V(G),
a new vertex v/ and a pendant edge vv’ are added. Caro, Hansberg, and
Henning in [5] proved that if T is a tree of order n > 2, then fd(T) < %
with equality if and only if T = T’ o K; for some tree T'. We know that if
S is a dominating set of G and S C S’ then S’ is a dominating set, too. But
this is not true for the fair dominating sets. As an example consider the cycle
Cy with V(Cg) = {1,2,...,9}. Observe that there are three fair dominating
sets with cardinality three for Cy, but there is no dominating set of Co with
cardinality four. This notation shows that study the fair dominating sets
and finding the number of fair dominating sets of a graph with arbitrary
cardinality is not easy problem. Regarding to enumerative side of dominating
sets, Alikhani and Peng have introduced the domination polynomial of a
graph. The domination polynomial of graph G is the generating function for
the number of dominating sets of G, i.e., D(G, x) = ZEZSG” d(G,i)x! (see[l,3]).
This polynomial and its roots has been actively studied in recent years (see for
example [4, 7]). It is natural to count the number of another kind of dominating
sets ([2]). In this paper we consider the fair domination polynomial of a graph
and count the number the fair dominating sets of certain graphs. We denote
the set {1,2,...,n} simply by [n].

2. Main Results

In this section, similar to the domination polynomial, we state the defini-
tion of the fair domination polynomial. Then, we count the number of fair
dominating sets of specific graphs such as complete bipartite graph K;, ,, and
cycles.

2.1. Fair domination polynomial In this subsection, we state the definition
of the fair domination polynomial.

Definition 2.1. Let Df(G, i) be the family of the fair dominating sets of a graph G
with cardinality i and let d¢(G,i) = |D¢(G,i)|. The fair domination polynomial
D¢ (G, x) of G is defined as

vl
Df(G,x) = ) ds(G,i)x,
i=fd(G)

where fd(G) is the fair domination number of G.

2.2. Results for K, ,, and C, In this subsection, we study the number of fair
dominating sets of complete bipartite graph Kj, , and the cycle graph C,. We
start with K, ;.
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Fair domination polynomial of a graph

Theorem 2.2. (i) Ifr > 2is odd, then
2; ifr=mn,

0; ifr <m,

n
2 ; } .
<r—n)' ifr>n

(i) Ifr > 2is even, then

2
n .
(r/Z) ; ifr <m,

2
df(Kn,n,r) = (rn ) +2; if?":Tl,

n \? n \? )
(r/Z) +<r—n>; ifr > n.

A partition of a positive integer n, is a way of writing n as a sum of
positive integers. Two sums that differ only in the order of their summands
are considered the same partition. A summand in a partition is also called a
part. The number of partitions of 1 is given by the partition function p(n). A
partition of n into exactly k parts is an unordered sum of n that uses exactly
k positive integers. The number of such partitions will henceforth be denoted
by p(n,k). For example, p(5,3) = 2as5 =1+2+2and5 =1+1+3
are the only two sums of 5 that can be formed using three positive integers.
Let to denote by P(n; x?,x;z,..., xltf ), the partition of n into exactly k parts
X1, ..., Xx, where t; is the number of x; in the partition. Note that the equality
n = t1x1 + tpxa + ... + kxy is true. For example P(5,11,2%) is correspond
to the partition of 5 = 1+ 2 + 2. To construct the fair dominating sets of
Cy with V(C,) = [n] of size k, we consider the partition of the number k
to n — k natural numbers, when n — k is odd or n — k = k and consider

the partition of the number k to ”T_k natural numbers, when n — k is even.

We consider P(k; xil,xéz,..., x;”_*,’z). We define the family A C [n], based on

ty
P(k; xil, xéz, ., X, F) as follows:

A=A1UAU..UA, 4,

where the set A; contains x1 consecutive numbers from [n], the set A, con-
tains x, consecutive numbers from [n] \ A; and finally the set A, j con-
tains x,,_; consecutive numbers from [n] \ (A1 U Ay U ..U A,_;_1) and also
d(G[A], G[Ai1]) = 2.
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tp

N‘
L

We define the family B C [n], based on P(k; xil, xéz, . X, 2 ), as follows:

=~

n—

N‘

B=BiUByU...UB,,
2

where the set By contains x; consecutive numbers from [n], the set B, con-
tains x, consecutive numbers from [n] \ B; and finally the set B, con-

n—
2

tains x, « consecutive numbers from [n] \ (B UByU...U B, ;) and also

2 T
d(G[Bi], G[Bi1+1]) = 3.
The following theorem gives the number of fair dominating sets of cycles:

Theorem 2.3. Let Cy,,n > 3, be the cycle of order n.

(i) Ifn—kisevenand n < 2k, then d¢(Cy, k) = n(|A| + |B]).
(i) Ifn—kisevenand n > 2k, then d¢(Cy, k) = n|B|.

(iii) Ifn —kis odd and n < 2k, then d¢(Cy, k) = n|Al.

(iv) Ifn —kisodd and n > 2k, then df(Cn,k) =0.
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On eccentric adjacency index of graphs and trees

VAHID HASHEMI*, FATEME PARSANEJAD and REZA SHARAFDINI

Abstract

The eccentric adjacency index (for short, EAI) of a connected graph G is defined as

&G =Y. Sg(ueg(u)™!,

ueV(G)

where S¢ (1) denotes sum of degrees of vertices adjacent to the vertex 1 and e (u) is defined
as the maximum length of any minimal path connecting u to any other vertex of G. Inspired
from [Jelena Sedlar, On augmented eccentric connectivity index of graphs and trees, MATCH
Commun. Math. Comput. Chem. 68 (2012) 325-342.], we establish all extremal graphs with
respect to EAl among all (simple connected) graphs, among trees and among trees with perfect
matching.

Keywords and phrases: eccentricity, tree, eccentric adjacency in index..

1. Introduction

Let G be any simple connected graph with the vertex set V(G) and the edge
set E(G). For two vertices 1 and v in V(G) their distance d(u,v) is defined as
the length of a shortest path connecting u and v in G.

The degree d(u) of the vertex u in G is defined as the number of neighbors
of uin G, ie., d(u) = [{v € V(G)|d(u,v) = 1}|. The eccentricity e(u) of the
vertex u of G is the distance from u to any vertex farthest away from it in G,
ie., e(u) = max,cy(c)d(u,v). The maximum eccentricity over all vertices of G
is called the diameter of G and is denoted by D(G); the minimum eccentricity
among the vertices of G is called the radius of G and is denoted by R(G). The
set of all vertices of minimum eccentricity is called the center of G and such
vertices are called central.

The eccentric adjacency index of a connected graph G is defined as [3]

¢(G)= Y Sclueg(u)™,

ueV(G)
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where S (1) denotes sum of degrees of vertices adjacent to the vertex u and
eg(u) is defined as the maximum length of any minimal path connecting u to
any other vertex of G.

Let us now define some special kinds of graphs. First, K;, will denote a
complete graph on n vertices. Special class of graphs which will be of interest
are trees. A tree T is a simple connected graph with no cycles. It is easily seen
that a tree has only one central vertex if D(T) is even, and two central vertices
if D(T) is odd. We say that a vertex in tree T is a leaf if its degree is 1, otherwise
we say that a vertex is non-leaf. Also, we say that a vertex in a tree is branching
if its degree is equal or greater than 3. Now, P,, will denote a path on n vertices
and S,, will denote a star on n vertices.

2. Extremal trees

In this section, we want to establish trees with minimum and maximum
value of EAL

First, we will do the minimum. To do so, we recall the following transfor-
mation of trees which increases the diameter, but decreases the value of EAI
This transformation was inspired from [4] in which the augmented eccentric
connectivity index of trees was considered.

Transformation A ([4]). Let T # Py, be a tree of order n and with diameter D, and let

Pp =vgvy - - -vp be a diametric path in T chosen so that the first branching vertex is

furthest possible from vy. We consider the following cases:

(A1) vy is branching, while v, is not. In this case, we set u = vy;

(A2) Both vy and v; are branching vertices. In this case, we set u = vy;

(A3) vy is not branching. In this case, we set u = v;, where v;, i # 1 is the first
branching vertex on Pp.

Let wy, ..., wy be the k = d(u) — 2 neighbors of u outside of Pp. Let T’ be the tree

obtained from T by deleting edges uws, ..., uwy and adding edges vowy, ..., vowy, See

Figure 1.

Lemma 2.1. Let T’ be a tree obtained from tree T # P, applying Transformation A.
Then

¢™(T) > g™(T").

Applying Transformation A consecutively, we arrive at a tree of order n
having no branching vertex, namely P,;, which by Lemma 2.1 has the least
value of &%,

Lemma 2.2. Let T # P, be a tree with n vertices. Then
EUT) > &(Py).

Now, we can summarize our results in the following theorem.
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FIGURE 1. Transformations A

Theorem 2.3. Let T be a tree on n vertices. Then

6 1
ad >
6 (T)_n—2+4(n—1

+2Hy 35— Hygjg = Hjwa ),

with equality if and only if T = P,,.
Let us find the tree with maximum value of EAI To do so, we need to

introduce a transformation that increases the value EAI of trees.

Transformation B. Let T be a tree of diameter D > 4 with a center u. If w is a non-
leaf and non-central vertex adjacent to u. Let w1, ..., wy be the non-central neighbors
of w, Let T’ be the tree obtained from T by deleting edges wwy, ..., wwy and adding
edges uwy, ..., UWy.

Lemma 2.4. Suppose that T is a tree of order n with diameter D(T) > 4. Let T' be a
tree obtained from T applying Transformation B. Then

g™(T) < &"(T").

Applying Transformation B consecutively, we arrive at a tree of order n and
diameter 3, but it is not a maximal tree with respect to EAL Therefore, we need
to introduce another transformation.

Transformation C. Let T be a tree of diameter D(T) = 3, where u and v are the
central vertices. Let wy, ..., wy and zy,...,z; be the neighbors of u and v respectively.
The star T' is obtained by deleting edges uwy, ..., uwy and adding edges vwy, ..., vwy.

Lemma 2.5. Suppose that T is a tree of order n with diameter D(T) = 3. Let T' be a
tree obtained from T applying Transformation C. Then

g(T) < &™(T").
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Theorem 2.6. Let T be a tree on n vertices. Then

(n—1)242(n—1)
5 ,

¢MI(T) <
with equality if and only if T = S,,.

3. Extremal graphs

Let us now establish extremal graphs among all simple connected graphs.
Those results will follow easily from results for trees.

Proposition 3.1. For a connected graph G on n vertices, we have
¢"(G) <n(n—1)?,
with equality if and only if G = K,,.
In the following proposition we establish minimal graphs.

Proposition 3.2. For a connected graph G on n vertices, we have

6 1
4
n—2+ (n—l

with equality if and only if G = P,,.

(G > +2Hn*3_HL%J*1_HL"T—1J)'

4. Extremal trees with perfect matching

A matching in a graph G is collection of edges S from G such that no vertex
from G is incident to two edges from S. We say that a matching S is perfect if
every vertex from G is incident to one edge from S. Obviously, only graphs
with even number of vertices can have a perfect matching.

J. Sedlar in [4] introduces some interesting classes of graphs with diameter
4. We say that a tree T is degree balanced if its diameter is 4 and all neighbors
of (the only) central vertex differ in degree by at most one. With TB,, ; we will
denote the degree balanced tree on 7 vertices in which the degree of its central
vertex is k, see for example Figure 2.

Now let us introduce a transformation that increases the EAI of trees with
a perfect matching.

Transformation D. Let T be a tree with a perfect matching and Pp a diametric path
in T. We label the vertices in Pp in a way that v; and v;,q are adjacent, vy is a leaf
vertex, and we name the central vertex with the smallest index, u. Let w1, ..., wy be all
the vertices adjacent to vy that d(w;) = 2, except for vs. The tree T' is obtained by
deleting edges vow; and adding edges uw;.

Lemma 4.1. By applying Transformation D on a tree T of diameter D(T) > 5:
§(T) < g*(T").
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FIGURE 2. The degree balanced tree TB1y¢

Theorem 4.2. Let T be a tree with perfect matching on n > 6 vertices. Then

2 —
&d(T) < n +1112n 16,

with equality if and only if T = TB,, ».
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On finite p-groups whose absolute central automorphisms are
all nth autoclass-preserving

RASOUL SOLEIMANTI*

Abstract

Let G be a group and L(G) denotes the absolute center of G. An automorphism « of G is called
an absolute central automorphism if x 'x* € L(G), for each x € G. Let G be an autonilpotent
finite p-group of class n + 1, where n > 1. We call an automorphism « of G an nth autoclass-
preserving if for all x € G, there exists an element gx € K,,_1(G) such that x* = g7 'xgy, where
K,—1(G) is the n — 1th autocommutator subgroup of G. In this paper we obtain a necessary and
sufficient condition for an autonilpotent finite p-group of class n + 1 such that each absolute
central automorphism an nth autoclass-preserving.

Keywords and phrases: Automorphism group, nth autoclass-preserving automorphism, absolute
center, finite p-group.

2010 Mathematics subject classification: Primary: 20D45; Secondary: 20D25, 20D15.

1. Introduction

Throughout the paper all groups are assumed to be finite and p denotes a
prime number. By G/, Z(G), Inn(G) and Aut(G), respectively we denote the
commutator subgroup, the center, the group of all inner automorphisms and
the group of all automorphisms of G. For each x € G and « € Aut(G), the
element [x,a] = x~!x* is called the autocommutator of x and «. Also for
n > 1, the autocommutator of higher weight inductively as follows:

[x/ X1, K2, ..y “n] = [[xl K1, %2, ...y an—l]r “n]/

for all w1, a,...,an, € Aut(G) and x € G. In 1994, Hegarty [2] introduced the
concepts of absolute center and autocommutator subgroups of a group G, as
follows:

L(G)={xe G| [x,a] =1,Va € Aut(G)},
K(G) =[G, Aut(G)] = ([x,a] | x € G,a € Aut(G)).

* speaker
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It is easy to check that these are characteristic subgroups of G. Assume that
Ko(G) = Gand K1(G) = K(G), then forn > 1,

Ky (G) = [K;,—1(G), Aut(G)] = ([x, a1, a2, ..., an]| | x € G,a; € Aut(G)),

which is called nth autocommutator subgroup of G. One can easily see that
forn >0, v,41(G) < Ky, (G), where 7,,41(G) is the (n + 1)th term of the lower
central series of G, and also K, (G) is a characteristic subgroup of G. Therefore,
we obtain the following descending series of G,

G= Ko(G) D) K](G) D) KQ(G) 2.2 Kn(G) 2.,

which is called the lower autocentral series of G.
Next, let L1(G) = L(G) and for n > 2, the nth absolute center of G is defined
inductively as

Ly(G)={x € G| [x,a1,a2, ..., 4] = 1, V1,7, ..., 0, € Aut(G)}.

Hence, we obtain an ascending chain of characteristic subgroups of G as
follows:
{1} = Lo(G) C L1(G) C Lr(G) € ... C Lu(G) C ...

Itis easy to see that L,(G) < Z,(G), wheren > 0 and Z,(G) is the nth center of
G. Also K, (G) = v44+1(G) and L,(G) = Z,(G), when all the automorphisms
a;, (1 < i < n), are taken to be the inner automorphisms of G. A group G is
said to be autonilpotent of class 7 if 7 is the smallest natural number such that
L,(G) = G. Moreover L,(G) = G if and only if K,(G) = 1. Let us denote by
M, (n, m) for the minimal non-abelian p-group of order p"*" defined by

(a,b|a" =b"" =1,a" = aHp’H),

where n > 2, m > 1 and xH the conjugacy class of all ¥ = h~'xh, where
H is a subgroup of G, x € G and h € H. Recall an abelian finite p-group
A has invariants or is of type (17, n, ..., ng) if it is the direct product of cyclic
subgroups of orders p"1, p"2, ..., p"k, where ny > np > ... > n > 0.

An automorphism « of G is called an absolute central automorphism if
[x,a] € L(G), for all x € G. The absolute central automorphisms of G,
denoted by Autt(G), fix G’ element-wise and form a normal subgroup of the
automorphism group of G. An automorphism « of G is called class preserving
automorphism if x* € xC, for all x € G. The set of all class preserving
automorphisms of G, denoted by Aut.(G).

Now, let G be an autonilpotent finite p-group of class n + 1, where n > 1.
We call an automorphism « of G an nth autoclass-preserving if for each x € G,
x* € xKi-1(6) where K,,_1(G) is the n — 1th autocommutator subgroup of G.
We note that the set Aut/,.(G) of all nth autoclass-preserving automorphisms
of G is a normal subgroup of Aut(G). There are some results on the absolute
center and autocommutator subgroups of a finite group G, see for example [2],
[3], [4] and [5].
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2. Main Results

In this section, we give a necessary and sufficient condition for an au-
tonilpotent finite p-group G of class n + 1 where n > 1, such that every ab-
solute central automorphism an nth autoclass-preserving. We observe that
Aut)) (G) = Aut.(G) forn = 1.

Lemma 2.1. Let G be an autonilpotent finite p-group of class n + 1. Then K, (G) <
L(G).

Lemma 2.2. Let G be an autonilpotent finite p-group of class n + 1 and Aut}, (G) =
Autl(G). Then

Aut].(G) = Hom(G/G',K,(G)) = Hom(G/Z(G), K, (G))
= Hom(G/Ky(G),Kx(G)).
Let G be an autonilpotent finite p-group of class n + 1. Also G/G’, L(G)
and K, (G) are of types (a1, az, ..., ax), (b1, ba, ..., b;) and (cq, ¢2, ..., ).
By fixed the above notation, we have the following result.

Theorem 2.3. Let G be an autonilpotent finite p-group of class n + 1. Then the
following statements are equivalent:
(i)  Aut’.(G) = Aut*(G);
(i) Aut}.(G) = Hom(G, K,,(G)) and one of the following conditions holds:
(1) Ku(G) =L(G)or
(2) Kn(G) < L(G), m =land a; < ct, where t is the largest integer between
1 and m such that by > c;.

Corollary 2.4. Let G be an autonilpotent finite p-group of class 2. Then Aut.(G) =
Autt(G) if and only if Aut.(G) = Hom(G/G',K(G)) and G’ = K(G) = L(G).
In the following theorem, let Aut(G) denote the set of all automorphisms

of G, which centralizes G/K(G) element-wise.

Theorem 2.5. Let G be a non-abelian autonilpotent finite p-group of class 2. Then
Autf(G) = Inn(G) if and only if K(G) is cyclic and Z(G) = K(G)GP" where
exp(K(G)) = p".
Lemma 2.6. Let G be an autonilpotent finite p-group of class 2. Then
exp(G/L(G))|exp(K(G))

As an application of Theorem 2.5, we have the main result of [6].

Corollary 2.7. [6, Theorem 3.2] Let G be a non-abelian autonilpotent finite p-group
of class 2. Then Autt(G) = Inn(G) if and only if L(G) = Z(G) and L(G) is cyclic.

We end the paper by giving an example of a group which satisfies the
hypothesis of Theorem 2.3. Its GAP id is 452 ([1]).
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Example 2.8. Let G = (f1, f2, f3, fu, f5, fe, f7, fs) be a 2-group of order 28 with the
following relations:

RB=L=fufs=Fff=ffi="fofi’=frfe=fs.f2 = falfo fol =
o, frl = fa fal = [fa fs] = [fs fr]l = afsl = fafrl = LA 2] =
fafsfs, [f1, f3l = fsfz. [f1, fs] = fofs, [f1, fr) = fs, [fo, fal = fs.

In this group, Z(G) = (fe) = Cy. Also L(G) = (fg) = C2, L2(G) = (fe, f7) =
C4 X C2,L3(G) = <f4,f5> = Cg X C4, L4(G) = <f3,f4,f5> = C16 X C4, L5(G) =
(f2, fa) = M>(5,2). Finally, Ls(G) = G, which shows that G be an autonilpotent
group of class 6.

On the other hand, K(G) = (f2, fa) = M(5,2),Ka(G) = (fs, f5,f6) =
C16 X CZ,K3(G) = <f5> = Cg,K4(G) = f7> = C4,K5(G) = <f8> = Cz and
K¢(G) = (1). Hence K5(G) = L(G).

Now we observe that Aut),(G) = Aut!(G).
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Abstract

_ HGy)eGxGl(xy) <5, G ¥xyeGl
B G2

and the sylow graph I'c(V,E) = I's, is defined by the set of all vertices of E(Tsy) = {{x,y} |
(%,y) <sy G}.In this seminar, we establish some properties of the sylow graph defined by group
D5, and study the relation between I's, and P, (G).

Let G be a finite group. The sylowility degree is given by Py, (G)

Keywords and phrases: Sylow Graph, Sylowility Degree, Dihedral Group.
2010 Mathematics subject classification: Primary: 22D15, 43A10; Secondary: 43A20, 46H25.

1. Introduction

It will-known the cyclic group is define by C, = (a’|1 < i < n), Shelash and
Ashrafi introduced all Sylow subgroups of some of finite groups. We will
present in this paper in this seminar parameter to compute the Sylowility
degree Sy(Cj) of cyclic group.

2. Main Results

In this seminar we will present a new parameters about dihedral group to
study the relationship between those parametrise.

Definition 2.1. [Sylg(g)| = [{y € G|(g,y) <sy G}| is the number of all elements in
group G such that (g,y) is a sylow subgroup on G.

Definition 2.2. [Syl,(G)| = [{y € G|(g,y) <sy G}|.

Definition 2.3. [Syl(G)| = ¥i_; |Syly,(G)| is the number of all elements in group
G such that (g,y) is a sylow subgroup on G.

Proposition 2.4. If n = p*, then |Syl(Cpa )| = %;
Theorem 2.5. Let n =TT;_, p;" be an integer number, the following are held:

* speaker
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1. Forany p; | n, the degree |Syl(c, ,\(e)| = p(p*);
2. Forany p;' | n, the degree ‘Syl(cn,pi)(ﬂﬁﬂ =" o(p);
3. Forany p!|nandt < a;, the degree |5yl(c,,,p,)(f1p7)\ = o(p");

Proposition 2.6. Let I's, be a simple and sylow graph, The number of degree vertices
deg(v) for any v € V(T's) when G = C, is given by the following: if v = a', then
deg(v) = [Ng(v)| - 1;

Theorem 2.7.

2|E(Tgy)| +n
Pysy(G) = W

Lemma 2.8. Let n = p* be an integer number, the following are held:

1. If p | i, then Syc,(a') = {a/ | Ged(i,j) = 1}, |Syc,(a')| = @(p*) and
#Lli — pa—l;
2. Ifpti, then Syc, (ai) = {af |1<j<n}, ]Sycn(ai)\ =p"* and #a'l = p(ph).

Example 2.9. Consider the cyclic group Cqy:

g 10 11 11 11 11 11 11 11 11 11 11
e a {12 a3 {14 &l5 a6 {17 aS a9 1110

e o 1 1 1 1 1 1 1 1 1 1

a 1 1 1 1 1 1 1 1 1 1 1

a2 11 1 1 1 1 1 1 1 1 1

a3 11 1 1 1 1 1 1 1 1 1

a* 11 1 1 1 1 1 1 1 1 1

a° 11 1 1 1 1 1 1 1 1 1

a® 11 1 1 1 1 1 1 1 1 1

a’ 1 1 1 1 1 1 1 1 1 1 1

a8 11 1 1 1 1 1 1 1 1 1

a’ 11 1 1 1 1 1 1 1 1 1

al0 11 1 1 1 1 1 1 1 1 1

Syc(¢){ |10 11 11 11 11 11 11 11 11 11 11
|deg(g)] | 9 10 10 10 10 10 10 10 10 10 10

Syc,, (e)| =10,|Syc,, (a')| = 11,for eachl < i < 11,
and
|Sylp(C11)| =10+ (10) *11 =120
120
then Syl(Cu) = 1
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Abstract

Let G be a finite non-solvable group with solvable radical Sol(G). The solvable graph I, (G) of
group G is a graph with vertex set V(I'y,;) = {¢ | ¢ € G} and two distinct vertices 07 and 0, are
adjacent if and only if (07,07) is solvable group, so the solvability degree of G is define by the
number of all elements such that {(¢1,02) € G x G | {¢7,02) <go/ G} on the number (G)%. We
show that the relation between I'y,;(G) and the solvability degree of G.

Keywords and phrases: Solvable group, Solvable graph, Solvability degree. .
2010 Mathematics subject classification: Primary: 22D15, 43A10; Secondary: 43A20, 46H25.

1. Introduction

Let I'(V,E) be a simple graph. The set of vertices denoted by V(I') and the set
of edges denoted by E(T).

The solvable Graph of a finite group G denoted by I's,;(G) was introduced
by Ma et. all in [? ] in the year 2014. The graph I';,/(G) has vertex set
as elements of the non-solvable group G and any two vertices 0; and o; are
adjacent in Iy, (G) if and only if (0j,07) <g, is solvable subgroup of G. In this
paper we take the generalizer of non-solvable group of type C, x As it is will-
known the As is smallest non-solvable group, thus C, X As is non-solvable
group. It is clear that if group G is a solvable, then I'(G) = K¢ since for any
two elements a,b of G the subgroup (a,b) is solvable in G.

In this paper, we consider a simple graph which is undirected, with no
loops or multiple edges. Let I be a graph. We will denote by V(T') and E(T),
the set of vertices and edges of I', respectively. The degree of a vertex v € V(T')
is denoted by deg(v), and it well-known that deg(v) = |[N(v)|. The degree
sequence of a graph with vertices vy, - - - , v, is d = (deg(v1),- - - ,deg(v,)). Every
graph with the degree sequence d is a realization of d. A degree sequence
is unigraphic if all its realizations are isomorphic. We can present it by

A(r):<ﬂ(”ll) uim) - i
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are multiplicities. The split graph is a graph in which the vertices can be
partitioned into a clique and an independent set.

Suppose that g an element of group G, the solvabilizer of g define by
{y € G| (g y)} <sor in G and denoted by Sol;(g) and the centralizer of g
is given by Centg(g) = {y € G | gy = yg} where Cents(g) C Solg(g) and
|Solg(g)| divided Centg(g) for each g € G for more see [1, 2]. It is clear that
is not necessarily a subgroup of G. It is easy to see that Sol(G) = {(u,v) €
G x G, (u,v) <501 G} = Uyueg Solg(u). Also, Sol(G) is the solvable radical of
G (see [3]).

Let G be a finite non-solvable group. Then the probability that a randomly
chosen pair of elements of G generates a solvable group is defined by:

Py (G) = 1Y ECXCIIRY) Sour GH
|GJ?
Note that Py, (G) is the probability that a randomly chosen pair of elements of
G generates a solvable group (see [4, 5]).
We can present the conjugate definition using the conjugacy class Clg(g),
as follows:

1Sol(G)] = [{(w,v) € GXxG|(wv) <4 G}
U Hee Gl (u0) <. G}
YueG

=Y lelg(u)||solg(u)|

We introduce in this paper, some important relations between the solvable
graph I's;(G) of G and the probability that a randomly chosen pair of elements
of G generates a solvable group Py, (G).

2. Main Results

Proposition 2.1. Suppose that the general element of As is defined by (abcde). Then
the solvability degree of elements are given as follows: Let G = As, the solvability
degree is given by:

L Solss(e) ={g|Vg € As}
2.

8 #(g)

Identity 1

(be)(de), (bd)(ce), (be)(cd), (ab)(ce),

ab)(cd), (ab)(ce), (ac)(de),(ac)(bd),
Solasa)€0) = § (e () e, o), o) )

(ae)(cd), (ae)(bc), (ae)(bd) 15

(abc)*, (abd)*, (abe)*, (cda)®, (cdb)*, (cde)* 12

(abced)*, (abdec)™, (acdbe)*, (aebcd)* 8
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8 #(8)
Identity

1
3. Solys((abe)) = (0D) ()20, 00) )iy is700 (00) (Dicyisgonn 9

(abz)l e’ (ac])] ber (bc])] e 14
%d tit #(lg)
enti
4. Solag((abede)) = 3 (b cd), (ab) (ce), (ac) de), (ad) (be), (ac) (bd) 5
(abcde), (acebd), (adbec), (aedch) 4
Tdentit "
. _ entity
5. Solas((abeed) =4 (41) ce), (ab) (cd), (ac) (de), (ad) (be), (ae) (be) 5
(abced), (acdbe), (adech), (aebdc) 4
Corollary 2.2. 1. Ifg = e, then [Sol s, (e)| = 60
2. Ifg=(ab)(cd), then |Sol s, ((ab)(cd))| =36
3. Ifg = (abc), then |Sol s, ((abc))| = 24
4. Ifg = (abcde), then |Sol o ((abcde))| = 10
5. Ifg = (abced), then |Sol 5, ((abced))| = 10
Proposition 2.3. The following hold:
Cony,(e) = {g| Vg € As}
8 #(g)
(be) (de), (bd) (ce), (be) (cd), (ab) ce),
Cona,((ab)(cd)) = § (ab)(cd), (ab)(ce), (ac)(de), (ac)(bd),
(ac)(be), (ad)(ce), (ad)(be), (ad)(be),
(ae)(cd), (ae) (be), (ac) (bd) 15
#
C be)) — (cde),(ced), (bed), (bee), (bdc), (bde), (bec), (bed), (g
o as((abe)) = (abc), (abd), (abe), (acb), (acd), (ace), (adb), (adc),
(ade), (aeb), (aec), (aed) 20

Cona, ((abede)) = { (abcde), (abdec), (abecd), (acedb), (acbed), (acdbe),
(adceb), (adebc), (adbce), (aedch), (aebdc), (aecbd) 12

Cona, ((abced)) = { %abced), (abdce), (abedc), (acdeb), (acbde), (acebd),
(adecb), (adbec), (adcbe), (aecdb), (aedbc), (aebed) 12

Corollary 2.4. The following held:

1. Ifg=e, then|Cony,(e)| =1

If g = (ab)(cd), then |Con . ((ab)(cd))| =15
If g = (abc), then [Con 4, ((abc))| = 20

If ¢ = (abcde), then |Con . ((abcde))| = 12

Lo
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5. Ifg = (abced), then |Con , ((abced))| =12

Corollary 2.5. The following are obtained for As:

| typesofelement || order || ConjugacyClass(y) || Size || Sol(y) ||
H G [ 0 | 1 [ 60 ]
H G | 2 [ (@b)ed) [ 15 ] 36 ]
H G [ER (abc) | 20 | 24 |
H Gs | 5 [ (abede) ] 12 || 10 ]
[ D1 [ 10 ] (abced) [ 12 ] 10 |
Theorem 2.6.
Psol(G) _ 2‘E(rsol(G))’

PROOF. In the first, the parameters solvablitiy degree is define by Py, (G) =
{(u,v) € G x G, (u,v) < G}
|GJ?
in G and clg(u;) where 1 <i <r, we can used this definition by

,Let |G| = n, suppose that u; and u; are elements

’{(Ml',u]‘) €eGxG, <ui/”j> <s01 G}

Pei(G) = ’GP
~|Solg(uy) U Solg(up) U --- U Solg(uy)|
a GJ?
_ [Solg(u1)| +[Solg (up)| + - - + [Solg (un)|
[efs
_ lelg(ur)l[Solg (ur)| + [elg (u2)|[Solg (uz)| + - - - 4 |clg (ur)||Solg (ur)|
[el5

_ Lacizrlcle(ui)|[Solg (ui)| _ 2|E(Ts0(G))|

[el5 G2

Proposition 2.7. The matrix degree sequences of solvable graph is given by:

59 35 23 9
A(rsal(A5)):<1 15 20 24)

Proposition 2.8. The number of edges of solvable graph is given by:

E(rsol (AS)) =630
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