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Preface

It is our great pleasure and honor to welcome you at the 52nd Annual Iranian Mathematics Conference (AIMC52). The AIMC52 will be

held on 30-31 August & 1-2 September 2021, hosted by the Faculty of Mathematics and Computer & Mahani Mathematical Research Center,

Shahid Bahonar University of Kerman (SBUK), Iran.

The Faculty of Mathematics and Computer of SBUK began its activities in 1995 and currently faculty has five departments: pure mathematics,

applied mathematics, mathematics education, statistics and computer science. It has 56 faculty members, 59 doctoral, 143 master’s degree and

618 undergraduate students. The members of the faculty are also active in the Mahani Mathematical Research Center located on campus. The

mathematics department of the university was established in 1975 and is, in fact, one of the oldest mathematics departments in the country.

It began offering a master’s program in 1984 and doctoral program in 1988 and it is a matter of great pride that the first three doctorates

in mathematics in Iran were awarded to graduates of this department. The faculty, and especially the mathematics department, were also

instrumental in the award of the first honorary doctorate degree in mathematics in 2002 to the late Professor Parviz Shahriari, one of the

pioneers of mathematics education in Iran.

The Iranian mathematics conferences are yearly events, the first conference being held in 1970. Each year a university in the country volunteers

to host the conference together with the Iranian Mathematical Society (IMS). Mathematicians, researches and graduate students from around

the world have attended these conferences where they have presented papers and participated in discussions. SBUK hosted the 13th conference

in 1982 and has been the host and organizer of this conference every 13 years since then. This year (2021), the faculty of mathematics and

computer of SBUK has the honor to organize the 52nd conference.

The AIMC52 received 548 submissions in that each submission was reviewed by some reviewers and one dedicated members of the Scientific

Committee. Finally, 345 submissions were accepted for presentation: 251 as oral presentations and 94 as posters. We are proud to present

a very interesting program. The conference program included 4 plenary talks, 12 invited talks with distinguished speakers, two panels, two

workshops, and annual gathering of women.

Finally, we immensely thank the authors for submitting their research papers to the AIMC52, and are grateful to the members of the Scientific

Committee for dedicating their attention and time to assessing the papers. We are also very thankful to the members of the Executive Committee

for their efforts in the arrangement, promotion, and organization of the conference.

Conference Organizing Committee
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Linearity in the resolution of monomial ideals

David Eisenbud∗

Department of Mathematics, University of California, Berkeley, US

Abstract. A well-known theorem of Froeberg describes the square-free quadratic
ideals with linear resolutions, and this was extended in a paper of mine with Mark
Green, Klaus Hulek and Sorin Popescu to tell when the resolution is linear for the
first few steps; but no such result is known for monomials of degree greater than 2. I
will recall these results, and discuss some new results of Hai Long Dao and myself
on the "opposite" case of primary monomial ideals.

∗Speaker. Email address: de@math.berkeley.edu
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Logic and its necessity

Esfandiar Eslami∗

Department of Pure Mathematics, Shahid Bahonar University of Kerman, Kerman,
Iran

Abstract. In this talk, we first review some general definitions of logic. Their
common aspects together with a short history of logic is given. We show how human
thinking paradigms give rise to different logics. Some logics with special domains of
their applications are discussed. Each logic has a set of inference rules. Using these
rules correctly in appropriate domains, we get true logical results. Otherwise we fall
in the trap of fallacies. Some very common fallacies are mentioned. At the end, we
introduce some modern non-classical logics which are used in Artificial Intelligence
(AI). We will emphasize on the needs of future goals of AI to appropriate logics.

∗Speaker. Email address: esfandiar.eslami@uk.ac.ir
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New developments in the symplectic embedding problem

Dusa McDuff∗

Department of Mathematics, Barnard College, Columbia University, New York, US

Abstract. I will discuss the question of when a four dimensional symplectic ellipse
embeds into a target manifold such as a ball or a blow up of the complex projective
plane. I will explain some recent work (due to Cristofaro-Gardiner, Holm, Magill
and Weiler, among others) that exhibits the close connections between this question
and properties of Pell equations and continued fractions. The talk will be elementary,
and accessible to nonspecialists.

∗Speaker. Email address: dmcduff@barnard.edu
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Billiards and Moduli Spaces

Curtis Tracy McMullen∗

Harvard University, USA

Abstract. The moduli space Mg of compact Riemann surface of genus g has been
studied from diverse mathematical viewpoints for more than a century. In this talk,
intended for a general audience, we will discuss moduli space from a dynamical per-
spective. Wewill present general rigidity results, provide a glimpse of the remarkable
curves and surfaces in Mg discovered during the last two decades, and explain how
these algebraic varieties are related to the dynamics of billiards in regular polygons,
L-shaped tables and quadrilaterals. A variety of open problems will be mentioned
along the way.

∗Speaker. Email address: ctm@math.harvard.edu
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Stochastic Calculus Without Probability: An Analytical
Viewpoint

Rama Cont∗

Mathematical Institute, University of Oxford, England

Abstract. Stochastic calculus was introduced by Kiyosi Ito and developed by Kunita,
Watanabe, Meyer as a calculus for functions of stochastic processes with irregular
trajectories, using a probabilistic definition for the stochastic integral. However, Ito’s
calculus may be alternatively seen as a calculus for causal functionals of systems
with rough trajectories. We show that the main ingredients of the Ito calculus may
be developed in a purely analytical framework, free of any probabilistic ingredients
or assumptions, and sketch the foundations of a causal functional calculus which
extends the Newton-Leibniz differential calculus to functionals of systems with rough
trajectories of arbitrary irregularity [1, 2].
[1]HChiu, RCont (2020)Causal FunctionalCalculus, https://arxiv.org/abs/1912.07951.
[2] R Cont, N Perkowski (2019) Pathwise integration and change of variable for-
mulas for continuous paths with arbitrary regularity, Transactions of the American
Mathematical Society (Series B), Volume 6, 161-186.

∗Speaker. Email address: rama.cont@maths.ox.ac.uk
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Pure and Applied Mathematics: Confrontation or Interaction?!

Hamid Reza Ebrahimi Vishki∗

Ferdowsi University of Mashhad, Iran

Abstract. The subject of comparing pure and applied sciences has long been dis-
cussed, and there have been different views on their interaction. In particular, this
comparison has been in the spotlight by those who work in mathematics, and there
are different ideas for convergence or confrontation of these two tendencies. Indeed,
the question may be raised as to which one is the other prerequisite? Should pure
mathematics be at the forefront of the applied one, and its direction be determined
by applied research and industry needs? Or the problematic nature of knowledge
requires that pure mathematics be developed as a product of free thought beyond its
immediate applications, leading to expanding the frontiers of knowledge? In this
talk, we first give a brief introduction to these two trends and ideas in describing
the duties of pure and applied mathematicians. Then we will discuss the existing
challenges (especially in Iran) and focus on the more comprehensive question: "Pure
or applied mathematics? Or both?".

∗Speaker. Email address: vishki@um.ac.ir
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Least-squares spectral methods for solving operator eigenvalue
problems1

Behnam Hashemi∗

Faculty of Mathematics, Shiraz University of Technology, Shiraz, Iran

Abstract. Wedevelop spectral methods for solving operator eigenvalue problems that
are based on a least squares formulation of the problem. The key tool is a method for
rectangular matrix pencils, which we extend to quasimatrices and objects combining
quasimatrices and matrices. When applied to important eigenvalue problems like the
standard Orr-Sommerfeld and Sturm-Liouville equations, the accuracy and speed of
our methods are similar to typical spectral methods. The strength of the approach
is its flexibility, allowing e.g. the basis functions to be chosen arbitrarily, and often
giving high accuracy. It is particularly useful for solving challenging problems with
boundary conditions depending affinely on the unknown spectral parameter. Such
problems appear in a variety of applications e.g., in fluid and structural mechanics.

1This talk is based on joint work with Yuji Nakatsukasa (University of Oxford)
∗Speaker. Email address: hashemi@sutech.ac.ir
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Absolute value programming

Milan Hladik∗

Department of Applied Mathematics, Charles University, Prague, Czech Republic

Abstract. Absolute value programming is quite recent and intensively developing
discipline. It refers to systems of equations and inequalities and to mathematical
programming problems involving absolute values. We focus primarily on absolute
value equations Ax − b = |x |, which is the most frequently studied problem in this
area, but we will also mention some extensions. Due to their relation to the linear
complementarity problem, absolute value equations highly attracted the optimization
community. Wewill discuss not only this relation, but also computational complexity
issues, the structure of the solution set, and connections to other areas of mathemat-
ics. Important questions are those addressing solvability; we will present various
conditions for (unique) solvability or unsolvability. Since the discipline is relatively
new, there are many open and challenging problems; we pose some of them, too.

∗Speaker. Email address: hladik@kam.mff.cuni.cz
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Expanding Properties of Graphs and its Applications in Ramsey
Theory

Ramin Javadi∗

Department of Mathematical Sciences, Isfahan University of Technology, Isfahan,
Iran

Abstract. Given a positive number α, a graph G on n vertices is called an α-expander
if the size of the external neighborhood of every vertex set U of size at most n/2 is
at least α |U |. Expander graphs have been studied widely in the literature and are
proved to have significant applications in a wide range of fields such as computer
science, computational complexity and coding theory. It is well-known that binomial
random graphs are good expanders with high probability. Also, building regular
expanders and regular bipartite expanders with an explicit construction is a central
and well-studied problem in the context. Recently, some structural properties of
expanders are studied and it is proved that expander graphs contain some families
of sparse graphs such as trees and cycles of different lengths as subgraphs. In this
talk, we explore some of these properties of expanders and then we present some
important applications of these properties in Ramsey theory. Given a graph G and
an integer r ≥ 2, the multicolor size-Ramsey number of G, denoted by R̂(G, r), is the
smallest integer m such that there is a graph H with m edges for which, in every edge

∗Speaker. Email address: rjavadi@cc.iut.ac.ir
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coloring of H with r colors, H contains a monochromatic copy of G. The problem
of finding the value of the size-Ramsey number of sparse graphs such as paths, trees
and cycles, initiated by Paul Erdős, is a long-standing and well-known problem in
Ramsey theory. Using expanding properties of random graphs, we give some results
regarding the size-Ramsey numbers of paths and cycles.
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Variational analysis: What is this about?

Boris Mordukhovich∗

Wayne State University, USA

Abstract. Absolute value programming is quite recent and intensively developing
discipline. It refers to systems of equations and inequalities and to mathematical
programming problems involving absolute values. We focus primarily on absolute
value equations Ax − b = |x |, which is the most frequently studied problem in this
area, but we will also mention some extensions. Due to their relation to the linear
complementarity problem, absolute value equations highly attracted the optimization
community. Wewill discuss not only this relation, but also computational complexity
issues, the structure of the solution set, and connections to other areas of mathemat-
ics. Important questions are those addressing solvability; we will present various
conditions for (unique) solvability or unsolvability. Since the discipline is relatively
new, there are many open and challenging problems; we pose some of them, too.

∗Speaker. Email address: boris@math.wayne.edu
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Interpretability and Explainability in Data Analytics: From Data
to Information Granules

Witold Pedrycz∗

Department of Electrical & Computer Engineering, University of Alberta, Canada

Abstract. In data analytics, system modeling, and decision-making models, the
aspects of interpretability and explainability are of paramount relevance, just to refer
here to explainable Artificial Intelligence (XAI). They are especially timely in light
of the increasing complexity of systems one has to cope with. We advocate that there
are two factors that immensely contribute to the realization of the above important
features, namely, (i) a suitable level of abstraction along with its hierarchical aspects
in describing the problem and (ii) a logic fabric of the resultant construct. It is
shown that their conceptualization and the following realization can be conveniently
carried out with the use of information granules (for example, fuzzy sets, sets, rough
sets, and alike). Concepts are building blocks forming the interpretable environment
capturing the essence of data and key relationships existing there. The emergence of
concepts is supported by a systematic and focused analysis of data. At the same time,
their initialization is specified by stakeholders or/and the owners and users of data.
We present a comprehensive discussion of information granules-oriented design of
concepts and their description by engaging an innovative mechanism of conditional

∗Speaker. Email address: wpedrycz@ualberta.ca
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(concept)-driven clustering. A detailed case study of enhancement of interpretability
of functional rule-based models with the rules in the form "if x is A then y = f (x)".
The interpretability mechanisms are focused on the elevation of interpretability of the
conditions and conclusions of the rules. It is shown that augmenting interpretability
of conditions is achieved by (i) decomposing a multivariable information granule
into its one-dimensional components, (ii) their symbolic characterization, and (iii)
linguistic approximation. A hierarchy of interpretation mechanisms is systematically
established. We also discuss how this increased interpretability associates with the
reduced accuracy of the rules and how sound trade-offs between these features are
formed.
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Codes and designs in Johnson graphs1

Cheryl Elisabeth Praeger∗

University of Western Australia

Abstract. The Johnson graph J(v, k) has, as vertices, all k-subsets of a v-set V , with
two k-subsets adjacent if and only if they share k−1 common elements ofV . Subsets
of vertices of J(v, k) can be interpreted as the block-set of an incidence structure, or
as the set of codewords of a code, and automorphisms of J(v, k) leaving the subset
invariant are then automorphisms of the corresponding incidence structure or code.
This approach leads to interesting new designs and codes. For example, numerous
actions of the Mathieu sporadic simple groups give rise to examples of Delandtsheer
designs (which are both ag-transitive and anti-ag transitive), and codes with large
minimum distance (and hence strong error-correcting properties). In my talk I will
explore links between designs and codes in Johnson graphs which have a high degree
of symmetry, and I will mention several open questions.

1This talk is based on joint work with R. A. Liebler, M. Neunhoeffer, and more recently J.
Bamberg, A. C. Devillers and M. Ioppolo

∗Speaker. Email address: cheryl.praeger@uwa.edu.au
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Local and nonlocal equations with gradient constraints

Mohammad Safdari∗

Department of Mathematical Science, Sharif University of Technology, Tehran, Iran

Abstract. We consider the questions of existence and regularity of fully nonlin-
ear local or nonlocal equations with gradient constraints, which appear in singular
stochastic control problems. We do not assume any regularity about the constraints,
so in particular they need not be strictly convex. We will also consider local or
nonlocal double obstacle problems which naturally arise in this study.

∗Speaker. Email address: safdari@sharif.ir
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Dynamics of perfect gases: a statistical approach

Laure Saint-Raymond∗

Department of Mathematics, École Normale Supérieure, University of Lyon, France

Abstract. The evolution of a gas can be described by different models depending on
the observation scale. A natural question, raised by Hilbert in his sixth problem, is
whether these models provide consistent predictions. In particular, for rarefied gases,
it is expected that statistical models of kinetic theory can be obtained directly from
molecular dynamics governed by the fundamental principles of mechanics. In the
case of hard sphere gases, Lanford showed that the Boltzmann equation corresponds
indeed to the law of large numbers in the low density limit, at least for very short times.
The objective of this survey is to present recent progresses in the understanding of
this limiting process, providing a complete statistical description of these dynamical
systems.

∗Speaker. Email address: laure.saint-raymond@ens-lyon.fr
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Cohen-Macaulayness in a Fixed Codimension

Siamak Yassemi∗

Department of Mathematics, University of Tehran, Tehran, Iran

Abstract. A concept of Cohen-Macaulay in codimension t is defined and character-
ized for arbitrary finitely generated modules and coherent sheaves by Miller, Novik,
and Swartz in 2011. Soon after, Haghighi, Yassemi, and Zaare-Nahandi defined and
studied CMt simplicial complexes, which is the pure version of the above mentioned
concept and naturally generalizes both Cohen- Macaulay and Buchsbaum properties.
The purpose of this talk is to survey a number of recent studies of CMt simplicial
complexes. We focus on the Stanley-Reisner ring of a simplicial complex, the shape
of the Betti diagram of the Stanley-Reisner ideal of a simplicial complex in special
cases and the independence simplicial complex of a simple graph. In the final step,
we introduce the CMt property for an unmixed monomial ideal of a polynomial ring.
This research program has produced many exciting results and, at the same time,
opened many further interesting questions and conjectures.

∗Speaker. Email address: yassemi@ut.ac.ir
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weighted composition operators from Sp spaces into Bloch
spaces

Ebrahim Abbasi1, and Mostafa Hassanlou2∗

1Department of Mathematics, Mahabad Branch, Islamic Azad University, Mahabad, Iran
2Engineering Faculty of Khoy, Urmia University of Technology, Urmia, Iran

Abstract. In this paper we give conditions for the boundedness and compactness of
weighted composition operators between spaces of functions with derivative in Hardy
spaces and Bloch spaces. As a result we find similar conditions for composition operators
and multiplication operators.

Keywords: Hardy spaces, Bloch spaces, weighed composition operators

AMS Mathematics Subject Classification [2010]: Primary 47B38, 46E15; Sec-
ondary 30D55.

1. Introduction

By D we mean the open unit disk in the complex plane and H(D) be the space of all
analytic functions on D. Let S(D) be the space of analytic functions from D into itself.
Given ϕ ∈ S(D) and u ∈ H(D), the weighted composition operator is defined by

uCϕf = u(f ◦ ϕ), f ∈ H(D).

The class of weighted composition operators include multiplication operators Muf = uf
and composition operators Cϕf = f ◦ ϕ. The main subject concerning these opera-
tors on the spaces of analytic functions is investigating the operator properties such as
boundedness, (weak) compactness, closed range and · · · . Such a properties is related to
function properties of u and ϕ. In this paper we are going to find some conditions for
the boundedness and compactness of weighted composition operators between the spaces
with derivative in Hardy spaces and Bloch spaces. For 1 ≤ p < ∞, the Hardy space Hp

consists of all analytic functions f ∈ H(D) for which

‖f‖Hp =

(
sup

0<r<1
Mr(f, p)

)1/p

=

(
sup

0<r<1

1

2π

∫ 2π

0
|f(reiθ)|pdθ

)1/p

<∞.

These spaces are Banach with the norm ‖ · ‖Hp .

∗Speaker. Email address: m.hassanlou@uut.ac.ir
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Let 1 ≤ p < ∞ and n ∈ N0 = {0, 1, 2, ...}. We denote by Sp, the space of analytic
function on D such that derivative in Hardy spaces. So,

Sp = {f ∈ H(D) : f ′ ∈ Hp}.
It can be see that Sp is a Banach space with the norm ||f ||Sp = |f(0)|+ ||f ′||Hp . Theorem
3.11 of [3] implies that if f ∈ S1 then f extends continuously to D. Thus Sp ⊂ A, where
A is the disc algebra consisting all analytic functions on D and continuous on D with the
norm ||f ||A = supz∈D |f(z)|. Also the inclusion map Sp ↪→ A is bonded for 1 ≤ p ≤ ∞, [2].
Another space which we use here is Bloch space which

B = {f ∈ H(D) : sup
z∈D

(1− |z|2)|f ′(z)|} <∞,

and the Banach norm for the space is

||f ||B = |f(0)|+ sup
z∈D

(1− |z|2)|f ′(z)|.

Here we just use the weight function (1 − |z|2). But it can be generalized to the weights
(1 − |z|2)α for 0 < α < ∞ or even more for general weight functions which are known in
the literature.

If f ∈ Hp then

|f(z)| ≤ ||f ||Hp

(1− |z|2)1/p .

So if f ∈ Sp then

|f ′(z)| ≤ ||f ′||Hp

(1− |z|2)1/p ≤
||f ||Sp

(1− |z|2)1/p ,

and |f(z)| ≤ c||f ||∞ where ||f ||∞ = supz∈D |f(z)| and c is a positive constant.
Weighted composition operators and the Sp spaces have been investigated in [2]. In [5]

the authors studied Volterra type operators on these spaces. For complete characterization
on some properties of composition and multiplication operators on S2 we can refer to [4].
For more information about Hardy spaces see [3].

2. Main results

In this section we give necessary and sufficient conditions for the compactness and
bondedness of weighted composition operators from Sp spaces into Bloch spaces.

Theorem 2.1. Let 1 ≤ p < ∞, u ∈ H(D) and ϕ ∈ S(D). Then uCϕ : Sp → B is
bounded if and only if u ∈ B and

sup
z∈D

(1− |z|2)|u(z)ϕ′(z)|
(1− |ϕ(z)|2)1/p <∞.

Corollary 2.2. Let 1 ≤ p < ∞, u ∈ H(D) and ϕ ∈ S(D). Then the composition
operators Cϕ : Sp → B is bounded if and only if

sup
z∈D

(1− |z|2)|ϕ′(z)|
(1− |ϕ(z)|2)1/p <∞,

and the multiplication operators Mu : Sp → B is bounded if and only if u ∈ B and

sup
z∈D

(1− |z|2)|u(z)|
(1− |z|2)1/p <∞.
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Theorem 2.3. Let 1 ≤ p < ∞, u ∈ H(D) and ϕ ∈ S(D). Then uCϕ : Sp → B is
compact if and only if

lim sup
|z|→1

(1− |z|2)|u′(z)| = 0

lim sup
|ϕ(z)|→1

(1− |z|2)|u(z)ϕ′(z)|
(1− |ϕ(z)|2)1/p = 0.

Corollary 2.4. Let 1 ≤ p < ∞, u ∈ H(D) and ϕ ∈ S(D). Then the composition
operators Cϕ : Sp → B is compact if and only if

lim sup
|ϕ(z)|→1

(1− |z|2)|ϕ′(z)|
(1− |ϕ(z)|2)1/p = 0,

and the multiplication operators Mu : Sp → B is compact if and only if

lim sup
|z|→1

(1− |z|2)|u′(z)| = 0

lim sup
|ϕ(z)|→1

(1− |z|2)|u(z)|
(1− |z|2)1/p = 0.
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The use of artificial neural network (ANN) to simulate HIV
infection model

Mostafa Abbaszadeh1,, Romina Hashami2∗ and Mehdi Dehghan3

1Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences,

Amirkabir University of Technology, No. 424, Hafez Ave.,15914, Tehran, Iran

Abstract. In this work we implement an artificial neural network for the approximate
solution of the mathematical model which describes the behavior of CD4+ T-cells, in-
fected CD4+ T-cells and free HIV virus particles after HIV infection. Also, the effect of
constant and different variable source terms used for supplying the new CD4+ T-cells
from thymus on the dynamics of CD4+ T-cells, infected CD4+ T-cells and free HIV virus
are investigated.

Keywords: Artificial neural network, Ordinary differential equations, Numerical analy-
sis.

AMS Mathematics Subject Classification [2010]: 65MX

1. Introduction

The acquired immunodeficiency syndrome (AIDS) is a communicable disease and hu-
man immunodeficiency virus (HIV) is the causative agent for AIDS which damages ability
of body to fight against diseases and leave it open to attack from usual innocuous infec-
tions. On entering the body HIV infects a large amount of CD4+ T-cells and replicates
quickly. The recent decade, researchers have proposed several models for human immune
system to understand HIV dynamics, HIV infection, disease progression and interaction
of the immune system with HIV. In the current paper, we consider the following model

dT (t)

dt
= s0 − µTT (t) + αT (t)

(
1− T (t) + I(t)

Tmax

)
− βV (t)T (t),(1)

dI(t)

dt
= βV (t)T (t)− µII(t),

dT (t)

dt
= γµII(t)− µV V (t),

with initial conditions

(2) T (0) = T0, I(0) = I0, V (0) = V0.

In model (1)-(2), we have

∗Speaker
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(1) The new supply rate of healthy T-cells from thymus, s0 = 0.1,
(2) Growth rate of healthy T-cells population, α = 3,
(3) Turnover rate of healthy T-cells, µT = 0.02,
(4) Turnover rate of infected T-cells, µI = 0.3,
(5) Turnover rate of free virus, µV = 2.4,
(6) The infection rate, β = 0.0027,
(7) Maximum population level of healthy T-cells, Tmax = 1500,
(8) Number of virus produced by infected T-cells, γ = 10.

We want to solve this model using the Artificial neural network [3]. Artificial neural
network (ANN) is one of the popular areas of artificial intelligence (AI) research and also
an abstract computational model based on the organizational structure of the human brain.
ANN is a data modeling tool that depends to different parameters and learning methods.
ANN acquires knowledge through learning, and this knowledge is stored within interneuron
connections” strength, which is expressed by numerical values called “weights.” These
weights are used to compute output signal values for a new testing input signal value.
Patterns are presented to the network via the “input layer,” which communicates to one
or more “hidden layers,” where the actual processing is done via a system of weighted
“connections.” Figure 1 demonstrates the hidden layers then link to an output layer where
the answer is output.

2. Proposed Method

We start with a system of differential equations with initial conditions which are in-
troduced in equations (1.1) to (1.4). The goal is to learn THI model by using Artificial
Neural Network (ANN) approach. We have chosen an Artificial Neural Network with an
architecture of a fully connected network with one Hidden layer of neurons, three inputs
and three outputs. see Figure 2 .The activation function chosen is a purelin function which
is linear and is defined as a = x. The BFGS algorithm is used as an optimizer here and
is proposed in the next section. The stopping criteria is the maximum iteration amount
of 1000. It means that when the neural networks learning has reached the number of
iterations, the learning process will stop, if the number of iterations is less than 1000, the
learning will continue.

3. BFGS Algorithm

In this article, we are going to use a variant of gradient descent method known as
Broyden-Fletcler-Goldfarb-Shanno (BFGS) optimization algorithm. The BFGS algorithm
overcomes some of the limitations of plain gradient descent by seeking the second derivative
of the cost function. Obiviously, BFGS method is one of the most effective methods for
unconstrained optimization [1] . This method is one of the quasi-Newton methods which
was successfully used for minimizing errors on Artificial Neural Networks and is useful
when the calculation of the Hessian matrix is difficult or time-consuming. This method
has a faster convergence in comparison with the method of gradient descent.
The following problem can be solved by BFGS algorithm which is introduced as below.

minf(xk)(3)

(1) Input x0, ε (stopping criteria) and kmax.
(2) Set an initial iteration k = 0 and B = I, where I is an identity matrix.
(3) Calculate f(xk)
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(4) While (‖∆(xk)‖ ≥ ε) or (k ≤ kmax) do:
a. Calculate dk = −Bkf(xk), where dk is a generating direction.
b. Select α that is able to minimize f(xk + αkdk).
c. xk+1 = xk + αkdk.
d. Calculate Bk+1 by using the following equation.

Bk+1 = Bk −
Bksk(Bksk)

T

sTkBkSk
+
yky

T
k

yTk sk
+ Φk[s

T
kBksk]vkv

T
k(4)

Where Φk ∈ [0, 1], sk = xk+1 − xk, yk = ∇f(xk+1)−∇f(xk) and

vi = [ yk
yTk sk

− Bksk
sTkBksk

]

(5) k=k+1
(6) End while.

4. Numerical Example

In this section, we use the proposed ANN to solve the main model based upon the
mentioned parameters in [2]. Figures 3 and 4 show the graph of T (t), I(t) and V (t) for
one day in which they show a decaying oscillatory behavior. Figure ?? demonstrates the
graph of T (t), I(t) and V (t) for 70 days.

Figure 1. Structure of artificial neural network
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Figure 2. Structure of artificial neural network in THI model

Figure 3. Approximate values of T (t), I(t) and V (t) for one day.
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Figure 4. Approximate values of T (t), I(t) and V (t) for one day.
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Simultaneously Hard Thresholding Algorithms with
Feedbacks and Partially Known Row Support for Multiple

Measurement Vectors

Farshid Abdollahi ∗ and Elahe Soltani †

2Department of Mathematics, Shiraz University, Shiraz, Iran

Abstract. In this paper, we introduce simultaneously hard thresholding feedbacks with
partially known row support (SNST+HT+FB+PKRS) for solving Multiple Measurement
Vector Problem (MMV). This method has higher accuracy than solving the problem by
breaking it apart into independent Single Measurement Vector (SMV) problems and ap-
plying the hard thresholding feedbacks with partially known support (NST+HT+FB+PKS).
Furthermore, we compare it with MMV Orthogonal Matching Pursuit (M-OMP), MMV
Basic Matching Pursuit (M-BMP) and MMV FOCal Underdetermined System Solver
(M-FOCUSS).
Keywords: Multiple measurement vector, Compressed sensing, Restricted isometry prin-
ciple, Fast thresholding algorithm.
AMS Mathematics Subject Classification [2010]: 65F10, 65F50, 15A29.

1. Introduction
The Multiple Measurement Vector Problem (MMV) has wide applications in the neuro-

magnetic inverse problem, nonparametric spectrum analysis of time series and radar imag-
ing. In MMV problem, we are looking for the unknown sparse signal X(X ∈ Rm×l(l < n))
of the linear equation AX = B, where A ∈ Rn×m(n ≪ m) and B ∈ Rn×l are known. If l
is equal to one, this model is called Single Measurement Vector (SMV) model, otherwise it
is called Multiple Measurement vectors (MMV), where the solutions are assumed to have
a common sparsity profile. One way to solve the MMV model which comes to mind is
solving the following l underdetermined systems of equations:

Ax(j) = b(j), j = 1, . . . , l(l < n)

where the solution vectors x(j) have the same sparsity. Some researchers have worked on
the case MMV. For instance, Chen and Huo have proved that OMP, which is a greedy
algorithm, can find the sparset representations for the MMV model under certain con-
ditions [2]. In addition, Cotter et al. offered a variant of FOCUSS algorithm to solve
MMV model [3]. In this research we extend NST+HT+FB+PKS method in the SMV
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model [4] to the MMV model. The rest of this paper is organized as follows. At first, we
express some important definitions. Seconly, we introduce SNST+H+FB+PKRS and the
theoretical analysis of this algorithm. Finally, we study numerical tests and comparisons.
The support of a vector x ∈ Rm is the index set of its nonzero entries, i.e.,

supp(x) = {j ∈ {1, . . . ,m}|xj ̸= 0}.
The vector x ∈ Rm is called s-sparse if at most s of its entries are nonzero, i.e., if
∥x∥0 = |supp(x)| ≤ s, where |supp(x)| is the number of indices in supp(x).

Definition 1.1. (see [5]) The row support set of a matrix X = (x(1), . . . , x(l)) ∈ Rm×l

is,
L = supp(X) := {i ∈ {1, . . . , l}|x(i) ̸= 0}.

The matrix X ∈ Rm×l is called s-row-sparse if at most s of its rows are nonzero.

Here A is assumed to have both full row rank and Gaussian entries. AL is the subma-
trix consisting of columns of A indexed by L, XL includes rows of X indexed by L and
Lc is the set of {1, . . . ,m} \L. We assume that L is PKRS, i.e., L = L0 ∪L1, where L0 is
prior row support set of X and L1 is the unknown part of the row support set. RHL0

l−t(X)
is a nonlinear operator which selects the l− t largest rows of X not indexed in L0 in terms
of magnitude of norm and sets other ones to zero.

To state the convergence results, we first recall the definition of restricted isometry
property (RIP) and preconditioned restricted isometry property (P-RIP) (see [1,6]).

Definition 1.2. For each integer s = 1, 2, . . . , the restricted isometry constant δs of
a matrix A is defined as the smallest number δs such that

(1) (1− δs)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δs)∥x∥22,
holds for all s-sparse vector x.

Definition 1.3. For each integer s = 1, 2, . . . , the preconditioned restricted isometry
constant γs of a matrix A is defined as the smallest number γs such that

(2) (1− γs)∥x∥22 ≤ ∥(AA∗)
−1
2 Ax∥22,

holds for all s-sparse vector x.

2. Main results
In this section, we propose a new algorithm that is designed to recovery of s-row-sparse

matrices X from measurements Y = AX + E. This algorithm is a natural extension of
the NST+HT+FB+PKRS algorithm, which was introduced in [4]. We named this algo-
rithm SNST+HT+FB+PKRS and is implemented as follows. In this algorithm, the k−th
update row support set is Lk and the set L0 is the prior row support set.

In the following theorm, which is an extension of Theorem 1 in [4], theoretical perfor-
mance of the SNST+HT+FB+PKRS method is presented.

Theorem 2.1. Let X ∈ Rm×l be an arbitrary signal. Define L♯ = supp(X [♯]), where
X [♯] is a real s-row-sparse solution of AX + ẽ = Y and L0 is the partially known row
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support set, which meets L0 ⊂ L♯ with |L0| = t. If the P-RIP and RIP constants of A
satisfy δ2s−t +

√
2γ3s−2t < 1, then U [k] in SNST +HT + FB + PKRS satisfies

∥U [k] −X [♯]∥F ≤ ρk∥U [0] −X [♯]∥F + τ
1

1− ρ
∥e[♯]∥F

where ρ =
√
2γ3s−2t

1−δ2s−t
, τ =

√
2+

√
1+δs

1−δ2s−t
and e[♯] = A(X −X [♯]) + ẽ.

Algorithm 1 SNST+HT+FB+PKRS Algorithm
Input: A, Y, s, L0;
Output: X;
Initialization: k = 0, X [0] = A∗(AA∗)−1Y, U [−1] = 0, U [0] = RHL0

l−t(X
[0]), ϵ1 =

10−5, ϵ2 = 10−6

while (∥AU [k]−Y ∥F
∥Y ∥F ≥ ϵ1 and ∥U [k]−U [k−1]∥F

∥U [k−1]∥F ≥ ϵ2) do
Lk+1 = L0 ∪ supp(RHL0

l−t(X
[k] + P(U [k] −X [k])).

U
[k]
Lk+1

= X
[k]
Lk+1

+ (A∗
Lk+1

ALk
)−1A∗

Lk+1
ALc

k+1
X

[k]
Lc
k+1

.

U
[k]
Lc
k+1

= 0.
X [k+1] = X [k] + P(U [k] −X [k]).
k = k + 1.

end while

3. Numerical results
In this section, we compare SNST+HT+FB+PKRSmethod with NST+HT+FB+PKS-

SMV(l), M-OMP, M-BMP and M-FOCUSS methods.

3.1. Table and Figure. In all the comparisons, the measurement matrix A has i.i.d
entries drawn from a standard normal disturbtion with normalized columns. We have
set ϵ1 = 10−5 and ϵ2 = 10−6 as stoping parameters and done 100 repetitions of each
experiment. We have stated the noise-free case here, similar results are obtained for the
noise case. In Test 1, 2 and 3, the signal matrix lenght is assumed as 256 × 10 and in
each repetition its s-row-sparsity level varies. The size of the measurement matrix A is
128×256. In accordance with the probability of successful recovery diagram in Figure 1, in
Test 1, using algorithm SNST+HT+FB+PKRS is better than solving ten linear equations
with NST+HT+FB+PKS algorithm. In Test 2, we cosider X as a Gaussian matrix
and algorithm SNST+HT+FB+PKRS performs close to the M-OMP method. The M-
FOCUSS method works better than other methods and in Test 3, we set X(i, j) = i1.1, i =
1, . . . , 256, j = 1, . . . , 10 and the algorithm SNST+HT+FB+PKRS performs better than
the others. In Figure 2, the row of matrix A varies from 90 to 330 by step 30 and the
signal matrix has s-row-sparsity 50. In addition, the signal matrix lenght is assumed as
1000 × 10. We conclude from Figure 2 that with increasing the percentage of partially
known row support, the probability of successful recovery also increases and the number
of repetitions of SNST+HT+FB+PKRS method decreases.
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(a) Test1 (b) Test2 (c) Test3

Figure 1. Plots of the probability of successful recovery as a function of
the s-row-sparsity.

Figure 2. Plots of the probability of successful recovery and the iteration
numbers as a function of the varying number of measurements with s-row-
sparsity 50.

4. Conclusion
When we break the MMV problem apart into independent SMV problems and apply

NST+HT+FB+PKS, the probability of successful signal reconstruction reduces. More-
over, we conclude that the reconstruction accuracy grows and the iteration number of
SNST+HT+FB+PKRS reduces as the percenntage of known row support increases.
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Abstract. The aim of this work is to design a fifth-order WENO-Z scheme in the
framework of finite difference for Hamilton-Jacobi (HJ) equations. By finding the ex-
treme points of the reconstruction polynomial, the scheme (MWENO-Z) automatically
adapts between the linear upwind scheme and a WENO-Z scheme. By comparing the
numerical results of MWENO-Z and the classical WENO proposed by Jiang and Peng
for HJ, the efficiency and robustness of MWENO-Z is appeared.

Keywords: WENO-Z scheme, finite difference framework, Hamilton-Jacobi equation,
computational efficiency

AMS Mathematics Subject Classification [2010]: 65M06, 35F21

1. Introduction

This research aims at obtaining numerical solutions for 1D HJ equations of the form

(1) φt(x, t) +H(x, t, φ, φx) = 0.

This type of equations are often appeared in many applications such as image processing,
variational calculus, computer vision, material science and geometric optics. Although the
solutions of HJ equations are usually continuous, their derivatives are discontinuous; even
when the initial condition is smooth. Accordingly, it is better to study them in a suitable
weak formulation. Such a weak formulation is presented by so-called viscosity solutions.
Since the HJ equations are well known to be closely related to conservation laws, hence
successful numerical methods for them can be adjusted to approximate the solutions of
the HJ equations. In 2000, Jiang and Peng proposed the first version of WENO in the
framework of finite difference for HJ equations [3]. The design of MWENO-Z has steps
that are given in the following. First, in the big stencil, a fourth degree polynomial is
constructed using the finite differences of φ. Second, the extreme points of the fourth
degree polynomial, found in the previous step, are obtained. Third if in the big stencil the
polynomial has at least one extreme point, then a new WENO-Z reconstruction is employed
to approximate the numerical flux; otherwise, the numerical flux is approximated directly
by the reconstruction polynomial. WENO schemes for HJ equations are concluded from a
semi-discrete form. Accordingly, a uniform mesh with cells Ix = [x −∆x, x] is supposed.

∗Speaker. Email address: rabedian@ut.ac.ir
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Let |Ix| = ∆x to be the length of Ix. Also, the notations φj ≡ φj(t) = φ(xj , t) and
∆−φj = φj − φj−1 are considered. The semi-discretization formula is derived as

(2)
dφj(t)

dt
= −Ĥ(xj , t, φj , φ

−
x,j , φ

+
x,j) = F (φj(t)),

where the term Ĥ := Ĥ(xj , t, φj , φ
−
x,j , φ

+
x,j) is the numerical flux function. In this research

the Lax-Friedrichs flux is used.
Details on how to form the MWENO-Z method are provided in Sect. 2. The numerical

results of the new scheme are presented in Sect. 3 and concluding remarks are presented
in Sect. 4.

2. Modified WENO-Z scheme

This section briefly describes how to design MWENO-Z scheme to solve Eq. (1).
step 1. By considering the big stencil S = {Ixj−2 , . . . , Ixj+2}, the fourth degree recon-
struction polynomial p0 can be easily obtained by making the following condition

(3)

∫

Ii

p0(η)dη = ∆−φj+l, l = −2, · · · , 2.

step 2. Identify the extreme points of p0(x). Since the degree of p′0(x) is at most three,
therefore, the real zero points of p′0(x) can be explicitly solved [2] and one is the extreme
point of p0(x) if it is not a doubled zero point of p′0(x).
step 3. Now if the extreme points of the reconstruction polynomial p0(x) are outside the
big stencil S or there is no extreme point at all, the approximations at the boundaries of
each cell are directly given by φ−upx,j = p0(xj) and φ+upx,j−1 = p0(xj−1) and the procedure
jumps to step 5.
step 4. Now if there is one or more extreme points in the big stencil S, a new WENO
reconstruction is applied to approximate φ−x,j and φ+x,j−1 as follows. The big stencil S

is divided into three smaller stencils S1 = {Ixj−2 , Ixj−1 , Ixj}, S2 = {Ixj−1 , Ixj , Ixj+1} and
S3 = {Ixj , Ixj+1 , Ixj+2} whose community is the same S. Now we need three reconstruc-
tion polynomials pr(x), r = 1, 2, 3 associated to these small stencils. First we find the
polynomial pr(x) such that

(4)

∫

Ixj+l+r−1

pr(x)dx = ∆−φj+l+r−1, l = −2,−1, 0.

The new WENO-Z reconstruction on cell Ixj = [xj−1, xj ] is considered as follow:

(5) R(x) =
w0

d0

[
p0(x)−

3∑

l=1

dlpl(x)
]

+
3∑

l=1

wlpl(x).

Here, the set {d0, d1, d2, d3} is the associated linear weights, and the set {w0, w1, w2, w3}
is the associated non-linear weights. The WENO reconstruction (5) is a non-linear convex
combination of the polynomials pr(x), r = 0, 1, 2, 3, thus their ideal weights can be any
positive constants with only condition that their sum equals to one. The smoothness indi-
cators βr are calculated to measure the smoothness of pr(x) on cell Ixj and are computed
by applying various order derivatives. The smaller βr, the smoother pr(x) is in different
target cells. The smoothness indicators are computed as follows [1]:

(6) βr =
∑

k

∆x2k−1
∫

Ixj

(
dkpr(x)

dxk

)2

dx, r = 0, 1, 2, 3.
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In order to complete the reconstruction of (5), we calculate the non-linear weights based
on the associated linear weights and the smoothness indicators to obtain the fifth-order
accuracy for smooth areas and non-oscillatory performance near singularities and discon-
tinuities. Accordingly, we consider

(7) wr =
αr∑3
k=0 αk

, αr = dr(1 +
τ

∆x2 + βr
), r = 0, 1, 2, 3,

where τ = |β1 − β3|. As mentioned, the linear weights of any convex combination whose
sum is equal to one can be considered. Accordingly, the choice: d1 = d3 = 1

8 , d2 = 1
4 , d0 = 1

2
is supposed. Therefore, the final approximations at the boundaries of each cell are given
by

(8) φ−x,j = R(xj), φ
+
x,j−1 = R(xj−1).

step 5. The semi-discrete scheme (2) is discretized in time by using the third-order total
variation diminishing (TVD) Runge-Kutta scheme [4], which is obtained by

(9)

φ
(1)
j = φnj + ∆tF (φnj ),

φ
(2)
j = 3

4φ
n
j + 1

4φ
(1)
j + 1

4∆tF (φ
(1)
j ),

φn+1
j = 1

3φ
n
j + 2

3φ
(2)
j + 2

3∆tF (φ
(2)
j ).

3. Numerical results

In this section, the numerical results obtained from MWENO-Z are compared with
WENO-JP [3]. Therefore, Eq. (1) with convex hamiltonian H(x, t, φ, φx) = 1

2(φx + 1)2,
known as Burgers equation, with initial condition φ(x, 0) = − cos(πx) is considered for
x ∈ [−1, 1]. In this test case periodic boundary conditions are applied. In Fig. 1, numerical
results are shown. The MWENO-Z use less CPU time to reach certain error levels than
that for the WENO-JP. The MWENO-Z is more efficient and robust than WENO-JP in
this one dimensional non-linear test case. Now, we solve Eq. (1) with H(x, t, φ, φx) = φx,
known as linear advection equation, with the initial condition φ(x, 0) = g(x − 0.5) for
x ∈ [−1, 1] with periodic boundary conditions. Here,
(10)

g(x) = −
(√

3

2
+

9

2
+

2π

3

)
(x+1)+





2 cos(3πx
2

2 )−
√

3, x ∈ [−1,−1
3),

3
2 + 3 cos(2πx), x ∈ [−1

3 , 0),
15
2 − 3 cos(2πx), x ∈ [0, 13),
1
3(28 + 4π + cos(3πx)) + 6πx(x− 1), x ∈ [13 , 1].

The results that were computed at T = 32 with 100 grid points are presented in Fig. 2.
Clearly, in this example the MWENO-Z gives better resolution at the singularities.

4. Conclusion

In this research, we propose a new modified WENO-Z scheme for solving the non-
linear 1D Hamilton-Jacobi equation in finite difference framework. By comparing the new
scheme with WENO-JP, it can be realized that the new proposed scheme is more efficient
and robust by considering a normal CFL constant and without the need for additional
process.
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Figure 1. Top: Computing time and error. Bottom: 80 grid points and t = 3.5/π2.
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Figure 2. Left: linear advection at T = 32 with 100 grid points. Right: zoomed
region of solution.
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Abstract. In this paper, at first, we introduce the concepts of LB-valued general fuzzy
automata and LB-valued operators with t-norm and LB-valued operators with t-conorm,
where L stands for residuated lattice and B is a set of propositions about the GFA.
Further, we study the relationships between the LB-valued operators with t-norm and
the LB-valued operators with t-conorm.
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1. Introduction
It is well-known that the importance of the algebraic study is due to the fact that

the algebraic properties play a vital role in the development of fundamentals of computer
science [2]. In fuzzy set theory, a fuzzy implicator is a generalization of the classical
one to fuzzy logic, much the same way as a t-norm and t-conorm are generalizations of
the classical conjunction and disjunction, respectively; and in literature, there exist many
families of fuzzy implicators (cf., [3,4]).

2. Preliminaries
Definition 2.1. [2] A lattice (L,≤,∧,∨, 0, 1) is called a complete lattice with the

greatest element 1 and the least element 0 if every subset (finite as well as infinite) has
a supremum and infimum.Throughout this paper, we assume that L is a complete lattice
(L,≤,∧,∨, 0, 1) and for a nonempty set X,λ : X → L is an L-fuzzy set in X. Further,
for a nonempty set X,LX denotes the collection of all L-fuzzy sets in X. Furthermore,
for a ∈ L,a, 0, 1 : X → L are the maps such that for all x ∈ X, a(x) = a,0(x) = 0, and
1(x) = 1. Now, let f : X → X ′ be a map. Then according to Zadeh’s extension principle,
f can be extended to the L-fuzzy operators f→ : LX → LX′ and f← : LX′ → LX such
that for all λ ∈ LX , λ′ ∈ LX′ , and x′ ∈ X ′,

f→(λ)(x′) = ∨{λ(x) : x ∈ X, f(x) = x′} and f←(λ′) = λ′ ◦ f.
∗Speaker. Email address: abolpor_kh@yahoo.com
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Definition 2.2. [2] A triangular norm (t-norm, for short) T is a map T : L×L → L
such that the following conditions hold:
(i) T (1, a) = a,∀a ∈ L;
(ii) T (a, b) = T (b, a), ∀a, b ∈ L;
(iii) T (a, T (b, c)) = T (T (a, b), c), ∀a, b, c ∈ L;
(iv) if a ≤ c and b ≤ d, then T (a, b) ≤ T (c, d).
In addition, T is called a left (respectively, right) continuous if for all a, b ∈ L and {aj :
j ∈ J}, {bj : j ∈ J} ⊆ L, T (∨{aj : j ∈ J}, b) = ∨{T (aj , b) : j ∈ J} (respectively,
T (a,∧{bj : j ∈ J}) = ∧{T (a, bj) : j ∈ J}).
For example, let L = [0, 1]. Then for all a, b ∈ L,
(i) Gödel t-norm TG(a, b) = min{a, b}; and
(ii) Łukasiewicz t-norm TL(a, b) = max{0, a+ b− 1}.

Definition 2.3. [2] A triangular conorm (t-conorm, for short) S is a map S : L×L →
L such that the following conditions hold:
(i) S(0, a) = a,∀a ∈ L;
(ii) S(a, b) = S(b, a), ∀a, b ∈ L;
(iii) S(a,S(b, c)) = S(S(a, b), c), ∀a, b, c ∈ L; and
(iv) if a ≤ c and b ≤ d, then S(a, b) ≤ S(c, d). In addition, S is called a left (respectively,
right) continuous if for all a, b ∈ L and {aj : j ∈ J}, {bj : j ∈ J} ⊆ L,S(∧{aj : j ∈ J}, b) =
∧{S(aj , b) : j ∈ J} (respectively, S(a,∨{bj : j ∈ J}) = ∨{S(a, bj) : j ∈ J}.
For example, let L = [0, 1]. Then for all a, b ∈ L,
(i) Gödel t-conorm SG(a, b) = max{a, b}; and
(ii) Łukasiewicz t-conorm SL(a, b) = min{1, a+ b}.

Definition 2.4. [2] A negator N is a decreasing map N : L → L such that N (0) = 1
and N (1) = 0. If N (N (a)) = a,∀a ∈ L, then N is called a strong negator.
For a given negator N , t-norm T and t-conorm S are called dual with respect to N if

S(N (a),N (b)) = N (T (a, b)) and T (N (a),N (b)) = N (S(a, b)), ∀a, b ∈ L.

For example, let L = [0, 1]. Then for all a ∈ L,
(i) standard negator NS(a) = 1− a, which is strong; and
(ii) Gödel negators

NG1(a) =

{
1 if a = 0

0 otherwise;
NG2(a) =

{
0 if a = 1

1 otherwise,

which are non-strong least and greatest negators, respectively.

Definition 2.5. [1] A general fuzzy automaton (GFA) is considered as:

F̃ = (Q,Σ, R̃, Z, δ̃, ω, F1, F2),

where (i) Q is a finite set of states, Q = {q1, q2, . . . , qn}, (ii) Σ is a finite set of input
symbols, Σ = {a1, a2, . . . , am}, (iii) R̃ is the set of fuzzy start states, R̃ ⊆ P̃ (Q), (iv) Z is
a finite set of output symbols, Z = {b1, b2, . . . , bk}, (v) ω : Q → Z is the output function,
(vi) δ̃ : (Q × [0, 1]) × Σ ×Q → [0, 1] is the augmented transition function. (vii) Function
F1 : [0, 1]× [0, 1] → [0, 1] is called membership assignment function. Function F1(µ, δ), as
is seen, is motivated by two parameters µ and δ, where µ is the membership value of a
predecessor and δ is the weight of a transition.
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3. Algebraic characterizations of LB-valued general fuzzy automata
via LB-valued operators
Let F̃ = (Q,Σ, R̃, Z, δ̃, w, F1, F2) be a general fuzzy automaton. If we fix an input

ak ∈ Σ at time ti the proposition α|ak can be computed by µti(qi) if the general fuzzy
automaton F̃ is in the state qi at time ti otherwise α|ak is 0 if F̃ is not in the active state
qi. Accordingly, for each state qi ∈ Q we can assess the truth value of α|ak , it is indicated
by α|ak(qi). As explained above α|ak(qi) ∈ [0, 1]. In this section, we derive the logic B

which is a set of propositions about the general fuzzy automaton F̃ formulated by the
observer and constructing a complete infinitely distributive lattice B = (B,≤,∧,∨, 0, 1).
We can establish the order ≤ on B as follows:
For α, β ∈ B,α ≤ β if and only if α(qi) ≤ β(qi) for all qi ∈ Q. One can instantly check that
the contradiction, i.e., the proposition with constant truth value 0, is the least element and
the tautology, i.e., the proposition with constant truth value 1, is the greatest component
of the B. Note that any component ith of 1 is the maximum membership values of active
states at time ti, for any i ≥ 0.
We define LB-valued subset of Q × Σ × Q, i.e., a map δ : Q × Σ × Q → LB. The range
set LB allows to interpret LB as a map assigning each (q, ak, p) to δ(q, ak, p) : B → L.
This interpretation of transition map δ allows to represent it as the family

{
δα : α ∈ B

}

of L-valued sets δα ∈ LQ×Σ×Q of Q × Σ × Q ordered by the elements of B, where the

L-valued sets δα are defined by δα(q, ak, p) = δ(q, ak, p)(α) =

{
1 if q = p

α(q) ∨ α(p) otherwise.

Definition 3.1. An LB-valued general fuzzy automaton is a 8-tuple F̃ = (Q,Σ, R̃, Z, ω,

δ̃, F1, F2), where
(i) Q is a finite set of states, Q = {q1, q2, . . . , qn},
(ii) Σ is a finite set of input symbols, Σ = {a1, a2, . . . , am},
(iii) R̃ is the set of fuzzy start states, R̃ ⊆ P̃ (Q),
(iv) Z is a finite set of output symbols, Z = {b1, b2, . . . , bk},
(v) ω : Q → Z is the output function,
(vi) δ̃ : (Q×L)×Σ×Q → LB is the LBvalued augmented transition function defined by

δ̃((qi, µ
t(qi)), ak, qj)(α) = F1(µ

t(qi), δ(qi, ak, qj)(α)).

(vii) Function F1 : [0, 1]× [0, 1] → [0, 1] is called membership assignment function.
(viii) Function F2 : [0, 1]

∗ × [0, 1] → [0, 1] is called multi-membership resolution function.

Definition 3.2. Let F̃ be an LB-valued general fuzzy automaton and α ∈ B. Then
the LB-valued operators with t-norm are maps T R, T R−1 : B → (LB)Q such that ∀q ∈
Qact(ti) and ∀λ ∈ B,

T R(λ)(q)(α) = ∨
{
T (λ(p), δ̃∗((p, µtj (p)), u, q)(α))|p ∈ Qpred(q, u), u ∈ Σ∗

}
; and

T R−1(λ)(q)(α) = ∨
{
T (λ(p), δ̃∗((q, µti(q)), u, p)(α))|p ∈ Qsucc(q, u), u ∈ Σ∗

}
.

Proposition 3.3. Let F̃ be an LB-valued GFA and T R, T R−1 : B → (LB)Q be the
LB-valued operators with t-norm.Then for all a ∈ L, λ, µ ∈ B and {λj |j ∈ J} ⊆ B,
(i) T R(a) = a and T R−1(a) = a, if T is a left continuous;
(ii) λ ≤ T R(λ) and λ ≤ T R−1(λ);
(iii) T R(∨{λj |j ∈ J}) = ∨{T R(λj)|j ∈ J} and T R−1(∨{λj |j ∈ J}) = ∨{T R−1(λj)|j ∈
J}, if T is a left continuous;
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(iv) T R(T R(λ)) = T R(λ) and T R−1(T R−1(λ)) = T R−1(λ), if T is a left continuous;
(v) if λ ≤ µ, then T R(λ) ≤ T R(µ) and T R−1(λ) ≤ T R−1(µ); and
(vi) T R(∧{λj |j ∈ J}) ≤ ∧{T R(λj)|j ∈ J} and T R−1(∧{λj |j ∈ J}) = ∧{T R−1(λj)|j ∈
J},

Definition 3.4. Let F̃ be an LB-valued general fuzzy automaton. Then the LB-
valued operators with t-conorm are maps T C, T C−1 : B → (LB)Q such that ∀λ, α ∈ B
and ∀q ∈ Qact(ti),

T C(λ)(q)(α) = ∧
{
S(λ(p),N (δ̃∗((p, µtj (p)), u, q)(α)))|p ∈ Qpred(q, u), u ∈ Σ∗

}
;

and
T C−1(λ)(q)(α) = ∧

{
S(λ(p),N (δ̃∗((q, µti(q)), u, p)(α)))|p ∈ Qsucc(q, u), u ∈ Σ∗

}
.

Proposition 3.5. Let F̃ be an LB-valued general fuzzy automaton and T C, T C−1 :
B → (LB)Q be the LB-valued operators with t-conorm. Then for all a ∈ L, λ, µ ∈ B and
{λj |j ∈ J} ⊆ B,
(i) T C(a) = a and T C−1(a) = a, if S is a left continuous and N is strong;
(ii) T C(λ) ≤ λ and T C−1(λ) ≤ λ;
(iii) T C(∧{λj |j ∈ J}) = ∧{T C(λj)|j ∈ J} and T C−1(∧{λj |j ∈ J}) = ∧{T C−1(λj)|j ∈
J}, if S is a left continuous;
(iv) T C(T C(λ)) = T C(λ) and T C−1(T C−1(λ)) = T C−1(λ), if S is a left continuous, T
and S are dual with respect to N ;
(v) if λ ≤ µ, then T C(λ) ≤ T C(µ) and T C−1(λ) ≤ T C−1(µ); and
(vi) T C(∨{λj |j ∈ J}) ≤ ∨{T C(λj)|j ∈ J} and T C−1(∨{λj |j ∈ J}) = ∨{T C−1(λj)|j ∈
J}.

Proposition 3.6. Let F̃ be an LB-valued general fuzzy automaton, α ∈ B, T and S
be dual with respect to a strong negation N . Then for all λ ∈ B,
(i) N (T R(λ)) = T C(N (λ)), i.e., T R(λ) = N (T C(N (λ))); and
(ii) N (T R−1(λ)) = T C−1(N (λ)), i.e., T R−1(λ) = N (T C−1(N (λ))).

4. Conclusion
This study is an attempt to scrutinize the theory of LB-valued general fuzzy automata

with the help of some LB-valued operators based on t-norm/t-conorm. These LB-valued
operators lead us to characterize some algebraic concepts associated with an LB-valued
general fuzzy automaton.
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Abstract. A matrix polynomial P (λ) is called weakly normal if for every µ ∈ C, the
matrix P (µ) is normal. It is said to be normal if all the eigenvalues of P (λ) are semisimple.
In this note, by using invertibility of the Vandermonde matrix, it is proved that P (λ)
is weakly normal if and only if all its coefficients are normal and mutually commuting.
The relation between normal and weakly normal matrix polynomials are studied and
some results about the polynomial numerical hulls of the companion linearization of the
matrix polynomial P (λ) = λmI −A are given.
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1. Introduction
The normality of matrices and operators arises in many problems in pure and applied

linear algebra, and other branches of mathematics. Matrix polynomials have also some
important applications; for example, their spectral analysis is useful in the study of differ-
ential equations, their numerical ranges are important in overdamped vibration systems
with finite number of degrees of freedom. For more information, see [2].

To set some notation, C denotes the set of complex numbers, and Mn(C) is algebra of
all n× n complex matrices. We consider the matrix polynomial
(1) P (λ) = Amλm +Am−1λ

m−1 + · · ·+A1λ+A0,

where Aj ∈ Mn(C), Am ̸= 0, and λ ∈ C. The number m is the degree and n is the
order of P (λ), respectively. If Am = In the identity matrix, then P (λ) is called monic. A
scalar λ0 ∈ C is called an eigenvalue of of P (λ) if there exists a nonzero vector x0 ∈ Cn

such that P (λ0)x0 = 0. The vector x0 is called an eigenvector of P (λ) corresponding
to the eigenvalue λ0. The set of all eigenvalues of P (λ) is the spectrum of P (λ), i.e.,
σ[P (λ)] = {µ ∈ C : detP (µ) = 0}. A multiple eigenvalue of P (λ) is called semisimple if
its algebraic multiplicity is equal to its geometric multiplicity. A matrix polynomial P (λ)
as in (1), is called weakly normal if for every µ ∈ C, the matrix P (µ) is normal. If all the
eigenvalues of P (λ) are semisimple, then P (λ) is called a normal matrix polynomial.

∗Speaker. Email address: rezagholi@pnu.ac.ir (Sh. Rezagholi), and aghamollaei@uk.ac.ir (Gh.
Aghamollaei)
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In Section 2 of this paper, using the invertibility of the Vandermonde matrix, we
will prove that P (λ) is weakly normal if and only if Aj ’s are normal and AiAj = AjAi

for all i, j. Moreover, we study the relation between normal and weakly normal matrix
polynomials. In Section 3, we study the polynomial numerical hulls of the monic matrix
polynomial P (λ) = λmI − A, where A ∈ Mn(C). In this case, obviously, P (λ) is weakly
normal if and only if A is normal.

2. Weakly normal and normal matrix polynomials
In [3, Corollary 3.6], a characterization for weakly normal matrix polynomials with

nonsingular leading coefficients is given. In the following theorem, we give a new proof
according to the invertibility of the Vandermonde matrix for arbitrary matrix polynomials.
We denote the Vandermond matrix by:

V (x1, x2, . . . , xn) :=




x1 x2 · · · xn
x21 x22 · · · x2n
...

... . . . ...
xn1 xn2 · · · xnn


 .

It is known that det(V (x1, x2, . . . , xn) = (Π1≤j≤nxj)(Π1≤i<j≤n(xj − xi)).

Theorem 2.1. Let P (λ) be a matrix polynomial as in (1). Then, P (λ) is weakly
normal if and only if Aj’s are normal and AiAj = AjAi.

Proof. At first, we assume that P (λ) is a weakly normal matrix polynomial. Then,
for every λ ∈ C, P (λ)P (λ)∗ −P (λ)∗P (λ) = 0. So, we have

∑m
i,j=0 λ

iλ̄j(AiA
∗
j −A∗

jAi) = 0
for all λ ∈ C. Therefore,

V (1, λ, . . . , λm

︸ ︷︷ ︸, λ̄, λ̄λ, . . . , λ̄λ
m

︸ ︷︷ ︸, . . . , λ̄
m, λ̄mλ, . . . , λ̄mλm

︸ ︷︷ ︸)




A0A
∗
0 −A∗

0A0

A1A
∗
0 −A∗

0A1
...

AmA∗
0 −A∗

0Am

A0A
∗
1 −A∗

1A0
...

AmA∗
1 −A∗

1Am
...

A0A
∗
m −A∗

mA0
...

AmA∗
m −A∗

mAm




= 0.

In the above matrix multiplication, we choose the left matrix as a nonsingular Van-
drmonde matrix, and so, we conclude that AiA

∗
j = A∗

jAi for all i, j ∈ {0, 1, . . . ,m}. This
shows that AiA

∗
i = A∗

iAi for all i ∈ {0, 1, . . . ,m}, and so, Ai’s are normal and mutually
commuting.

The converse is trivial, and so, the proof is complete. □

By Theorem 2.1, P (λ), as in (1), is weakly normal if and only if there exists a unitary
matrix U ∈ Mn(C) such that U∗P (λ)U is a diagonal matrix whose every entry of the main
diagonal is a scalar polynomial of degree at most m. So, if each of this scalar polynomials
has exactly m distinct zeros, or equivalently, all the eigenvalues of P (λ) are semisimple,
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then P (λ) is a normal matrix polynomial. Therefore, every normal matrix polynomial is
a weakly normal matrix polynomial; but the converse is not true in general.

3. On polynomial numerical hulls of P (λ) = λmI − A

Let P (λ) = Amλm + Am−1λ
m−1 + · · · + A1λ + A0 be a matrix polynomial as in (1).

For a given positive integer k, the polynomial numerical hull of order k of P (λ) is defined
and denoted, see [1], by

V k[P (λ)] = {µ ∈ C : |q(0)| ≤ ∥q(P (µ))∥ for all q ∈ Pk},
where, Pk is the set of all scalar polynomials of degree k or less, and ∥.∥ is the spectral
matrix norm. For the case P (λ) = λI − A, where A ∈ Mn(C), we see V k[P (λ)] = {µ ∈
C : |q(µ)| ≤ ∥q(A)∥ for all q ∈ Pk} =: V k(A), which is the polynomial numerical hull of
order k of the matrix A.

For the monic matrix polynomial P (λ) = Inλ
m + Am−1λ

m−1 + . . . + A1λ + A0, the
companion linearization of P (λ) is the following matrix:

(2) C =




0 In 0 . . . 0 0
0 0 In . . . 0 0
...
0 0 0 . . . 0 In

−A0 −A1 −A2 . . . −Am−2 −Am−1



∈ Mmn(C).

By [1, Theorem 3.3], C, as in (2), is normal if and only if A1 = A2 = . . . = Am−1 = 0, and
A0 is unitary. In this case, C = π−A0 , where

(3) πA =




0 In 0 . . . 0 0
0 0 In . . . 0 0
...
0 0 0 . . . 0 In
A 0 0 . . . 0 0



.

Note that πA is the companion linearization of the matrix polynomial P (λ) = λmI − A,
where A ∈ Mn(C). In this case, obviously, P (λ) is normal if and only if weakly normal,
if and only if, A is a normal matrix. In the following theorem, we show that V k(πA) has
circular symmetric property. For some other properties, see [1, Section 3].

Theorem 3.1. Let A ∈ Mn(C), and πA be as in (3). Then, for every θ ∈ R,
eiθV k(πA) = V k(πA).

Proof. Let µ ∈ V k(πA). Then, there exist 0 ≤ t1, . . . , td ≤ 1 with
∑d

j=1 tj = 1, and
there are x1, . . . , xd ∈ Cnm with x∗jxj = 1 such that µl =

∑d
j=1 tjx

∗
jπ

l
Axj for l = 1, 2, . . . , k.

Now, by setting Uθ = diag(eimθ, ei(m−1)θ, . . . , eiθ) and yj = (Uθ ⊗ In)xj , we see that
d∑

j=1

tjy
∗
jπ

l
Ayj = e−ilθ

d∑

j=1

tjx
∗
jπ

l
Axj = e−ilθµl = (e−iθ)l,

for l = 1, 2, . . . , k. This shows that e−iθµ ∈ V k(πA), and so, V k(πA) ⊆ eiθV k(πA).
By changing θ by −θ, we conclude that eiθV k(πA) ⊆ V k(πA), and so, the result

holds. □
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Finally, we state the following result.

Theorem 3.2. Let P (λ) = λmI−A, where A ∈ Mn(C), be a normal matrix polynomial.
If A is unitary, then V 2(πA) = σ(πA) if and only if m = 2 and A is a scalar unitary matrix.

4. Conclusion
The normal or weakly normal matrix polynomials have been studied in [3] and its

references. In the present paper, we gave a new proof to study the weak normality of
arbitrary matrix polynomials according to the Vandermonde matrix. We also gave some
results on the polynomial numerical hulls of the block companion linearization of the
(normal) matrix polynomial P (λ) = λmIn −A, where A ∈ Mn(C).
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Abstract. The purpose of the paper is to analyze frames {fk}k∈Z having the form
{T kf0}k∈Z for some bounded linear operator T . We characterize all dual frames which
are representable in terms of iterations of an operator. Moreover, we show that under
some condition a Parseval iteration operator frame has a unique iteration operator dual
frame by the same operator.
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1. Introduction

In this paper we consider frames {fk}k∈Z in a Hilbert spaceH arising via iterated action
of a linear operator T. We say that the form {fk}k∈Z is represented via the operators Tj

(j = 1, . . . J) that is given by the action of a class of bounded linear operators on a single
element in the underlying Hilbert space. In particular, it could be given by iterated action
of a fixed operator on a single element, i.e., as the form

{fk}k∈Z = {T kf0}k∈Z.(1)

Systems of vectors on this form play an important role in mathematical physics, operator
theory and modern applied harmonic analysis [4]. Also this appears in the more recent
context of dynamical sampling [1,2]. The Fourier orthonormal basis, single generator shift
invariant systems and Gabor systems have the form of (1).

In the rest, we will collect some definitions and standard results from frame theory.
A sequence {fk}k∈Z in Hilbert space H is a frame for H if there exist constants A,B > 0
such that

A∥f∥2 ≤
∑

|⟨f, fk⟩|2 ≤ B∥f∥2, (f ∈ H).

If just the right inequality in the above holds, then {fk}k∈Z is called a Bessel sequence. A
sequence F = {fk}k∈Z in a Hilbert space H is called a Riesz sequence if there are constants
A,B > 0 so that for all finite scalars ck we have

A
∑ |ck|2 ≤ ∥∑ ckfk∥2 ≤ B

∑ |ck|2.
∗Speaker. Email address: elahe.moghadam@gmail.com
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In addition, if F is complete in H, then it is a Riesz basis for H. Furthermore, the class of
Riesz bases is precisely the class of frame {fk}∞k=1 for which the equation

∑∞
k=1 ckfk = 0,

{ck}∞k=1 ∈ ℓ2(N), forces that ck = 0 for all k ∈ N. Frequently the latter condition is
expressed by saying that {fk}∞k=1 is ω-independent. This is a much stronger condition
that {fk}∞k=1 being linearly independent, which means that if a finite linear combination
of vectors from {fk}∞k=1 is zero, all the coefficients must be zero. A frame which is not a
Riesz basis is said to be redundant or overcomplete.

If F = {fk}∞k=1 is a Bessel sequence, its synthesis operator TF : ℓ2(N) → H is defined
by

TF {ck}∞k=1 =
∞∑

k=1

ckfk.

It is well known that TF is well-defined and bounded. A central role will be played by the
kernel of the operator TF , i.e., the subset of ℓ2(Z) given by

NT =

{
{ck}∞k=1 ∈ ℓ2(Z) ;

∞∑

k=1

ckfk = 0

}
.

The excess of a frame is the number of elements that can be removed yet leaving a
frame. It is well known that the excess equals dim(NT ); see [3]. The adjoint of TF ,
T ∗
F : H → ℓ2(N), which is called the analysis operator, is given by T ∗

F f = {⟨f, fk⟩}k∈k∈Z.
Moreover, SF : H → H the frame operator of F , is given by

SF f = TFT
∗
F f =

∞∑

k=1

⟨f, fk⟩fk.

If F is a frame, then SF is invertible and AF ≤ SF ≤ BF . The sequence F̃ = {S−1
F fk}k∈Z,

which is also a frame, is called the canonical dual frame. A frame {gk}∞k=1 is called a dual
of {fk}∞k=1 if

f =

∞∑

k=1

⟨f, gk⟩fk, (f ∈ H).

Also, if F = {fk}∞k=1 is a frame, then every dual frame of F is of the form of F d =

{S−1
F fk + uk}∞k=1 where {uk}∞k=1 is a Bessel sequence such that

∞∑

k=1

⟨f, fk⟩uk = 0, (f ∈ H).(2)

In the rest, we bring a few results which are used in the following [5]. The next theorem
shows that any frame which is norm-bounded below is a linear union of iterated operator
actions on certain elements.

Theorem 1.1. [5] Consider a frame {fk}∞k=1 which is norm-bounded below. Then the
following hold:

(1) The frame {fk}∞k=1 can be decomposed as a finite union

{fk}∞k=1 =

J∪

j=1

{f (j)
k }k∈Ij ,

where each of the sequences {f (j)
k }k∈Ij is an infinite Riesz sequences.
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(2) There is a finite collection of vectors from {fk}∞k=1, to be called φ1, . . . , φj and
the corresponding bounded operators Tj : H → H which closed range, such that

{fk}∞k=1 =

J∪

j=1

{Tn
j φj}∞n=0.

In the next proposition it is introduced the necessary and sufficient condition for
writing a frame as the iteration operator form and implies that it is independent of the
ordering of the elements in {fk}∞k=1.

Proposition 1.2. [5] Consider a frame {fk}∞k=1 which span{fk}∞k=1 is an infinite-
dimensional subspace. Then the following are equivalent:

(1) The frame {fk}∞k=1 is linearly independent.
(2) There exists a linear operator T : span{fk}∞k=1 → H such that {fk}∞k=1 =

{Tnf1}∞n=0.

Proposition 1.3. [5] Any Riesz sequence {fk}∞k=1 in H has the form {fk}∞k=1 =
{Tnf1}∞n=0 for some operator T ∈ B(H) with close range.

The next proposition shows that if a frame {fk}∞k=1 with finite excess has a represen-
tation {fk}∞k=1 = {Tnf1}∞n=0, the operator T is forced to be unbounded.

Proposition 1.4. [5] Assume that the frame {fk}∞k=1 is linearly independent and has
finite excess. If T is a linear operator and {fk}∞k=1 = {Tnf1}∞n=0, then T is unbounded.

Corollary 1.5. [5] Assume that the frame {fk}∞k=1 is linearly independent, contains
a Riesz basis and has infinite excess. Then, {fk}∞k=1 = {Tnf1}∞n=0, the operator T is
unbounded.

Note that for a frame containing a Riesz basis and having positive excess, a represen-
tation {fk}∞k=1 = {Tnf1}∞n=0 is not possible with a bounded operator T.

2. Main results

In this section we show that dual frames of an iteration operator frame have the same
structure. In [6], it is supposed that a frame {fk}k∈Z = {T kf0}k∈Z, where T ∈ B(H) is
invertible. Then the canonical dual {S−1fk}k∈Z has the form of iteration operator frame
as {S−1fk}k∈Z = {(T ∗)kS−1f0}k∈Z. In the next theorem we remove the invertibility of T
and represent the canonical dual as iteration operator frame.

Lemma 2.1. Let T1 ∈ B(H) and {fk}k∈Z = {T kf0}k∈Z be an iteration operator frame.
Then {gk}k∈Z is the canonical dual of {fk}k∈Z if and only if {gk}k∈Z = {T k

2 g0}k∈Z where

T2 = S−1
F TSF and g0 = S−1

F f0.

In the next theorem we show that under some condition alternate dual of an iteration
operator frame is also of this form.

Theorem 2.2. Let T ∈ B(H) and {fk}k∈Z = {T kf0}k∈Z be an iteration operator
frame, also let {gk}k∈Z = {S−1

F fk + vk}k∈Z be a dual of {fk}k∈Z where {vk}k∈Z is a Bessel
sequence satisfies (2) and TSF vk = SF vk+1. Then {gk}k∈Z is also an iteration operator
frame.

In the next theorem we show the converse holds by some additional condition.
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Theorem 2.3. Let T,W ∈ B(H), T be an injective operator and {fk}k∈Z = {T kf0}k∈Z
be an iteration operator frame. Also, let {gk}k∈Z = {S−1

F fk + vk}k∈Z = {W kg0} be an
iteration operator dual of {fk}k∈Z where {vk}k∈Z is a Bessel sequence satisfies (2) . Then
TSF vk = SF vk+1.

In the last theorem we show that under some condition a Parseval iteration operator
frame has a unique iteration operator dual frame by the same iteration operator.

Theorem 2.4. Let T ∈ B(H) be a self-adjoint operator, {fk}k∈Z = {T kf0}k∈Z a
Parseval iteration operator frame and {gk}k∈Z = {T kg0}k∈Z be a dual of {fk}k∈Z such
that TSG = SGT and ⟨g0, T kf0⟩ is real value for all k ∈ Z. Then {fk}k∈Z has a unique
iteration operator dual frame by the iteration operator T .

In the next theorem we state the duality on iteration operator frames by a condition
on their generator vectors.

Theorem 2.5. Let {fk}k∈Z = {T kf0}k∈Z be an iteration operator frame and g0 ∈ H
such that {(T ∗)kf0}k∈Z and {(T ∗)kg0}k∈Z be a pair of dual frames. Then

⟨SF f0, g0⟩ = ⟨f0, f0⟩.
The converse is true if T 2 = I.

3. Conclusion

Iteration operator frames play a key role in frame theory. Here we study dual of such
frames and characterize their dual by the same structure.
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Abstract. Dedekind-finite rings and modules are an interesting research in the theory
of modules. In this talk, we introduce and study Dedekind-finiteness in the theory of
acts over monoids. we will indicate when Dedekind-finiteness and cohopfian property
are equivalent in the theory of acts over monoids. we present a powerful characterization
of a quasi-injective act in terms of the endomorphisms of its injective envelope.
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1. Introduction

Dedekind [4] defined an infinite set as a set that can be placed in one-to-one corre-
spondence with a proper subset of itself. He then defined a finite set as one that is not
infinite. It follows that a set A is finite if and only if every injective function f : A → A

is an isomorphism of sets. In the theory of modules, a module A (on a unitary ring R)
is said to be cohopfian if every injective endomorphism of A is an automorphism and is
said to be Dedekind-finite if A can never be isomorphic to a proper direct summand of
itself. An easy argument shows that cohopfian property implies Dedekind-finiteness [5]
and [7].

Let S be a monoid with identity 1. Recall that a (right) S-act is a non-empty set A
equipped with a map µ : A× S → A called its action, such that, denoting µ(a, s) by as,
we have a1 = a and a(st) = (as)t, for all a ∈ A, and s, t ∈ S. An element θ ∈ A is called
a zero of A if θs = θ for every s ∈ S. Let A be an S-act and B ⊆ A a non-empty subset.
Then B is called a subact of A if bs ∈ B for all s ∈ S and b ∈ B. Clearly S itself is an
S-act with its operation as the action. An equivalence relation ρ on an S-act A is called
a congruence on A if aρa′ implies (as)ρ(a′s) for a, a′ ∈ A and s ∈ S. Let f : A → B be an
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S-homomorphism. Then the kernel equivalence relation of f, ker f, defined by a(kerf)a′

if and only if f(a) = f(a′) for a, a′ ∈ A, is an act congruence which is called the kernel
congruence of f .

Throughout this paper, S is a monoid with 0, all S-acts will be right S-acts with
unique zero θ and any subact of an S-act contains the zero θ. The category of all S-
acts with unique zero θ and S-homomorphisms preserving zero (i.e., f : A → B with
f(as) = f(a)s, for s ∈ S, a ∈ A and f(θ) = θ), is denoted by Act0-S. Note that for each
A ∈ Act0-S we have A0 = {θ}.

Recall that the category Act0-S has coproducts of any non-empty families of S-acts.
More precisely, if I is a non-empty set, Xi ∈ Act0-S, i ∈ I, and θi be the zero of Xi, then
by [6, Proposition 2.1.15] the coproduct of {Xi : i ∈ I} is

⨿

i∈I
Xi = (

∪̇

i∈I
(Xi\{θi}))∪̇{θ}

with xis = θ, if xis = θi in Xi, θs = θ for s ∈ S. Likewise, if B and C are two subacts
of an S-act A such that A = B ∪C and B ∩C = {θ}, then we write A = B ⊕C. In this
case A = B ⊕ C is called a decomposition of A. Otherwise, A is called indecomposable.
By [6, Theorem 1.5.10], every S-act A has a unique decomposition into indecomposable
subacts. For more information about S-acts we encourage the reader to see [6].

In this talk, we are going to study Dedekind-finiteness on Act0-S. In Theorem 2.6,
we will indicate when Dedekind-finiteness and cohopfian property are equivalent. In
Theorem 2.8, we present a powerful characterization of a quasi-injective act in terms of
the endomorphisms of its injective envelope. By this theorem we show that Dedekind-
finiteness of A implies Dedekind-finiteness of E(A) (injective envelope of A), if A is a
quasi-injective torsion free act and its injective envelope is strongly faithful.

2. Main results

We begin with a definition.

Definition 2.1. By a Dedekind-finite S-act we mean an S-act A which is not iso-
morphic to any proper direct summand of itself. Equivalently, A is Dedekind-finite if
and only if B = {θ} is the only S-act for which A

⨿
B ∼= A.

The next example shows how one can obtain a non-Dedekind-finite act from an
indecomposable act.

Example 2.2. [1] Let S be a monoid. Take a non-zero indecomposable S-act A

and an arbitrary infinite set I. Then B =
⨿

i∈I
Ai, in which Ai = A for any i ∈ I, is not

Dedekind-finite, because B
⨿

A ∼= B but A ̸= {θ}.

Definition 2.3. Let A be an S-act. Then A is called cohopfian if every injective
endomorphism of A is an automorphism.

Lemma 2.4. [1] If an S-act A is cohopfian, then A is Dedekind-finite.
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Definition 2.5. Let A be an S-act. Then A is called quasi-injective if, for any subact
B of A, any f ∈ HomS(B,A) can be extended to an endomorphism of A, it means that
the diagram

(1) B

f
��

ı // A

f̃��~~
~~
~~
~~

A

commutes, where ı is the canonical inclusion.

In the following theorem we will show when a cohopfian act is Dedekind-finite and
vice versa. But first let us recall [8] that an S-act A is torsion free if for any x, y ∈ A

and for any element s ∈ S the equality xs = ys implies x = y. Note that in [6] torsion
free is considered in much weaker sense.

Theorem 2.6. [1] Let A be a torsion free and quasi-injective S-act. Then the
following statements are equivalent:
i) A is a Dedekind-finite S-act.
ii) A is a cohopfian S-act.

Recall [6] that a subact A of an S-act B is large in B if any homomorphism g : B → C

such that g|A is a monomorphism is itself a monomorphism. An extension B of A with
the embedding f : A → B is an essential extension of A whenever Imf is large in B.

Moreover, every minimal injective extension of an act A is called an injective envelope of
A. Injective envelope of an S-act A will be denoted by E(A). By [6, Proposition 3.1.24],
every injective envelope of an S-act A is isomorphic to any maximal essential extension
of A.

Next, we will consider the relationship between Dedekind-finiteness of an S-act A

with its injective envelope.

Lemma 2.7. [1] Let A and B be S-acts. Then every isomorphism f : A → B can
extend to an isomorphism f̃ : E(A) → E(B).

Recall [6] that an S-act A is strongly faithful if for s, t ∈ S the equality as = at for
some nonzero element a ∈ A implies that s = t. The next result gives us a powerful
characterization of a quasi-injective act in terms of the endomorphisms of its injective
envelope.

Theorem 2.8. [1] Let A be an S-act in which its injective envelope is strongly
faithful. Then A is quasi-injective iff it is fully invariant in its injective envelope E(A)

(that is, iff any endomorphism of E(A) takes A into A).
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Theorem 2.9. [1] Let A be a quasi-injective torsion free S-act which its injective

envelope is strongly faithful. If A is Dedekind-finite, then so is E(A).

In the sequel we peruse connection between Dedekind-finiteness of an S-act A and
the monoid End(A).

Lemma 2.10. [1] Let A be a torsion free S-act and let e : A → A be a homomorphism
such that e2 = e. Then A\e(A) ∪ {θ} is a subact of A.

Proposition 2.11. [1] Let A be a torsion free S-act. Then the following statements
are equivalent:
i) A is Dedekind-finite.
ii) for any homomorphism e ∈ End(A) in which e2 = e, if e(A) ∼= A then e = idA.

In the next theorem we present the connection between Dedekind-finite of an S-act
A and its endomorphisms monoid. More explicitly:

Theorem 2.12. [1] Let A be an S-act. Then:
i) if A is Dedekind-finite and torsion free, then fg = idA implies gf = idA for any
f, g ∈ End(A).
ii) if fg = idA implies gf = idA for any f, g ∈ End(A), then A is Dedekind-finite.

3. Conclusion

We answer to this question that what relation there exists between Dedekind-finiteness
of an S-act A and the monoid End(A) of endomorphisms of A.
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Abstract. Let FG be the group algebra of a group G over a field F of characteristic
p 6= 2. In this talk we discus on Laurent polynomial identity of U(FG), the unit group of
FG. Particularly, we show that is G is torsion and U(FG) satisfies a normalized Laurent
polynomial identity, then FG satisfies a polynomial identity. For a non-torsion group G,
we also provide some necessary conditions for unit group of semiprime FG to satisfies a
normalized Laurent polynomial identity.
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1. Introduction

Let X = {x1, x2, . . .} be a set of countably many non-commuting variables, F a field
and R an F-algebra. Denote the units group of R by U(R). The free group generated
by X is denoted by 〈X〉 and group algebra of the group 〈X〉 over the field F is denoted
by F 〈X〉. Each element of F 〈X〉 is called a Laurent polynomial. Let L(x1, . . . , xn) be
a nonzero Laurent polynomial. We say that L is Laurent polynomial identity (LPI, for
short) of U(R) (or U(R) satisfies an LPI, L) if L(a1, . . . , an) for every a1, . . . , an ∈ U(R).
In particular if U(R) Satisfies a group identity w(x1, . . . , xn) then U(R) satisfies the LPI
L(x1, . . . , xn) = 1 − w. Recall that if L(x1, . . . , xn) does not involve the inverses of all
xj ’s (i.e., L ∈ F [X], the free algebra of X over F ) and L(a1, . . . , an) = 0 for every
a1, . . . , an ∈ R , then L is a polynomial identity of R (or R satisfies a PI, L).

Let G be a group and F be a field of characteristic p ≥ 0. The condition under
which the group algebra FG satisfies a polynomial identity were determined in classical
results due to Isaacs and Passman. Recall that G is said to be p-abelian if its commutator
subgroup G′ is a finite p-group and that 0-abelian means abelian. Then FG satisfies
a polynomial identity if and only if G has a p-abelian subgroup of finite index (see [4,
Propositoin 1.1.4]).

In the 1980’s, Brian Hartley conjectured that if G is torsion and U(FG) satisfies
a group identity, then FG satisfies a polynomial identity. This Conjecture positively
answered by many authors (see [4, Section 1.2]). However, there are group rings FG such
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that satisfies a polynomial identity but U(FG) does not satisfy a group identity. The
necessary and sufficient conditions for the unit group FG (of torsion groups G) to satisfy
a group identity were found by Liu and Passman in [6]. But for non-torsion groups G,
Giambruno-Sehgal-Valenti [3] proved some necessary conditions for U(FG) to satisfies a
group identity.

Some algebras whose unit groups satisfy an LPI were studied in [1, 2]. The main
result of [2] states that if R is an algebraic algebra over an infinite field and U(R) satisfies
an LPI, then R satisfies a PI [2, Theorem 5]. This yields that if G is a locally finite
group and U(FG) satisfies an LPI then FG satisfies a PI. For torsion groups G and any
field F , in [1] it was showed that if U(FG) satisfies an LPI which is not satisfied by the
units of the relative Free algebra F = F

[
α, β : α2 = β2 = 0

]
, then FG satisfies a PI; this

generalizes Hartley’s conjecture (because, as indicated in [1], U(F) does not satisfy any
group identity).

In this talk we study some kinds of LPI on the units of group algebras. In the next
section, we define the notions of LEI and normalized LPI as kinds of LPI. Particularly,
as a generalization of Hartley’s conjecture, we show that if U(FG) (of torsion groups G)
satisfies an LEI or normalized LPI, then FG satisfies a PI.

2. Main results

Let G be a group. For any x, y in G, define E0(x, y) = x, E1(x, y) = (x, y) = x−1y−1xy
and inductively, En+1(x, y) = (En(x, y), y). The group G is bounded Engel group if for
each x, y in G there exists a positive integer n such that En(x, y) = 1. Let R be a
ring. For any x1, x2 in R, define Lie product [x1, x2] = x1x2 − x2x1 and inductively,
[x1, . . . , xn+1] = [[x1, . . . , xn] , xn+1]. The ring R is bounded Lie Engel if for each x, y in R
there exists a positive integer n such that [x, y, . . . , y︸ ︷︷ ︸

n times

] = 0.

Lemma 2.1. ( [4, Corollary 5.2.13]) Let F be a field and G a torsion group. Then
U(FG) is bounded Engel if and only if FG is bounded Lie Engel.

Lemma 2.2. ( [4, Theorem 3.1.2]) If char F = 0, then FG is bounded Lie Engel if and
only if G is abelian. If char F = p > 0, then FG is bounded Lie Engel if and only if G is
nilpotent and G has a p-abelian normal subgroup of finite p-power index.

Let R be an F-algebra. By the Laurent Engel identity (LEI, for short) on U(R), we
mean an LPI of the form E(x, y) =

∑n
i=0 aiEi(x, y), where ai ∈ F and n ∈ N. Clearly, if

U(R) is a bounded Engel group, then it satisfies an LEI of the form E(x, y) = 1−En(x, y),
for some natural numbers n. We now state one of our main results as

Theorem 2.3. Let F be a field and G a torsion group. If U(FG) Satisfies an LEI,
then FG satisfies a PI.

Let R be an F-algebra whose U(R) satisfies an LPI, p(x1 . . . , xn). Substituting xi =
xiyx−i and then multiplying by suitable power of x−1 from the left and suitable power of
y from the right, if necessary, we may assume that U(R) Satisfies an LPI in 2 variable of
the form p1(x, y) = a1w1 + . . .+ akwk where each non-trivial wi is of the form wi(x, y) =
xai1ybi1 . . . xaisybis , where each aij and bij is nonzero, ai1 < 0 and bis > 0. Once again,

substituting x = x2x
−1
1 and y = x−11 x2, we may assume U(R) satisfies an LPI,

P2 (x1, x2) = a1w1 + . . .+ akwk,
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where each non-trivial wi is of the form

(∗) wi (x1, x2) = x
mi1
1 x

ni1
2 . . . x

mir
1 x

nir
2 , mi1 = nir = 1, mij , nij ∈ {±1,±2}.

Moreover, if wi is as (∗), we say that the length of wi is r and write `(wi) = r. For
example, `(xy−2x3y) = 2.

Definition 2.4. A normalized LPI is an LPI P (x1, x2) = a1w1 + . . . + akwk where
each non-trivial wi is as (∗) and there exists some j such that `(wj) > `(wi) for all i 6= j.

From the above argument, it is clear that if U(R) satisfies a group identity, then it
also satisfies a normalized LPI.

Lemma 2.5. Let F be a field of characteristic p 6= 2. There exists a non-zero polynomial
f(t) ∈ F [t] such that for every F-algebra R whose unit group satisfies a normalized LPI,
we have f(ab) = 0 for every square zero elements a, b ∈ R.

Now, by Lemma 2.5 and [1, Lemma 1.3 and Theorem 1.1], we deduce the following
generalization of Hartley’s Conjecture.

Theorem 2.6. Let F be a field of characteristic p 6= 2 and G a torsion group. If
U(FG) satisfies a normalized LPI, then FG satisfies a PI.

Let us now discuss the semiprime group algebras FG of non-torsion groups G whose
unit groups satisfy a normalized LPI. Note that if p = 0, then FG is semiprime and for
p 6= 0, FG is semiprime if and only if G does not have a finite normal subgroup with order
divisible by p (see [4, Proposition 1.2.9]).

Theorem 2.7. Let F be a field of characteristic p 6= 2 and G a non-torsion group.
Let FG be semiprime. If U(FG) satisfies a normalized LPI, then

(1) every idempotent in FG is central.
(2) the torsion elements of G form a (normal) subgroup T which is either abelian on

Hamiltonian; and,
(3) if p > 0, G is a p′-group and T is abelian.
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Abstract. Assume that R is a commutative ring. The comaximal graph of R, denoted
by Γ(R), is a simple graph whose vertex set consists of all elements of R, and two distinct
vertices a and b are adjacent if and only if Ra + Rb = R. In this paper, we investigate
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1. Introduction
Let G be a simple graph with n vertices, whose vertex set is V (G) = {v1, v2, . . . , vn}.

For a vertex v of G, NG(v) denotes the set of vertices of G that are adjacent to v in
G, and we denote |NG(v)| by deg(v). For two distinct vertices vi and vj of G, we write
vi ∼ vj if vi and vj are adjacent in G. The adjacency matrix of G is the n × n matrix
A(G) = (aij), where aij = 1 if vi ∼ vj , and otherwise aij = 0. Also, D(G) is the diagonal
matrix with the (i, i)-th entry having value deg(vi). The Laplacian matrix L(G) of G is
defined by L(G) = D(G) − A(G), and the eigenvalues of L(G) are called the Laplacian
eigenvalues of G. The spectrum of a square matrix B, denoted by σ(B), is the multiset of
all the eigenvalues of B. Let µ1, µ2, . . . , µr be distinct eigenvalues of B with multiplicities
m1,m2, . . . ,mr, respectively. Then we denote the spectrum of B by

σ(B) =

(
µ1 µ2 . . . µr

m1 m2 . . . mr

)
.

For a graph G, the spectrum of L(G), is called the Laplacian spectrum and it is denoted
by σL(G). The Laplacian spectrum of graphs have been widely studied in [5].

In a graph G, V (G) and E(G) denote the vertex set and edge set of G, respectively.
Also G denotes the complement of G. We say that G is an empty graph if E(G) = ∅ and
it is a null graph if V (G) = ∅. A vertex v is an isolated vertex if deg(v) = 0. Also, Kn

denotes the complete graph on n vertices and Pn denotes the path with n vertices.
Let R be a commutative ring with nonzero identity. We denote the set of all unit

elements and zero divisors of R by U(R) and Z(R), respectively. Also by Z∗(R) we
denote the set Z(R)−{0}. Sharma and Bhatwadekar [7] defined the comaximal graph of
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a commutative ring R, which is denoted by Γ(R). The comaximal graph of R is a simple
graph whose vertices consists of all elements of R, and two distinct vertices a and b are
adjacent if and only if aR+ bR = R, where cR is the ideal generated by c, for c ∈ R. Let
Γ2(R) be an induced subgraph of Γ(R) with nonunit elements of R as vertices. In this
paper, we denote the graph Γ2(R)− {0} by Γ∗

2(R).
Let n > 1 be an integer and let Zn denote the ring of integers modulo n. Recently,

in [2], the authors studied the Laplacian eigenvalues of the zero divisor graph of Zn.
In this paper, we first study the structure of the comaximal graph of Zn and then we

investigate and discuss the Laplacian spectrum of Γ(Zn).

2. Structure of Γ∗
2(Zn) and Γ(Zn)

In this paper, for two integers r and s, the notation (r, s) stands for the greatest
common divisor of r and s. Also we denote the elements of the ring Zn, where n > 1,
by 0, 1, 2, . . . , n − 1. For every nonzero element a in Zn, if (a, n) = 1, then a is a unit
element; otherwise, (a, n) ̸= 1, and so a is a zero divisor. Therefore, |U(Zn)| = ϕ(n) and
|Z(Zn)| = n− ϕ(n), where ϕ is the Euler’s totient function.

An integer d is said to be a proper divisor of n if 1 < d < n and d | n. Now let
d1, d2, . . . , dk be the distinct proper divisors of n. For 1 ⩽ i ⩽ k, set

Adi := {x ∈ Zn | (x, n) = di}.
Clearly, the sets Ad1 , Ad2 , . . . , Adk are pairwise disjoint and we have

Z∗(Zn) = Ad1 ∪Ad2 ∪ · · · ∪Adk

and
V (Γ(Zn)) = {0} ∪Ad1 ∪Ad2 ∪ · · · ∪Adk ∪ U(Zn).

In the rest of the paper, the induced subgraph of Γ(Zn) on the set Adi is denoted by
Γ(Adi), where 1 ⩽ i ⩽ k.

In the following lemma, we investigate some adjacencies in Γ(Zn).

Lemma 2.1. The following statements hold:
(i) Two distinct vertices x and y are adjacent in Γ(Zn) if and only if (x, y) ∈ U(Zn).
(ii) For 1 ⩽ i ⩽ k, Γ(Adi) is isomorphic to Kϕ( n

di
).

(iii) For 1 ⩽ i ̸= j ⩽ k, a vertex of Adi is adjacent to a vertex of Adj if and only if
(di, dj) = 1.

In the following, we introduce a simple graph Gn, which plays an important role in
the rest of the paper. The graph Gn is the simple graph with vertex set {d1, d2, . . . , dk},
where di’s, 1 ⩽ i ⩽ k, are the proper divisors of n, and two distinct vertices di and dj are
adjacent if and only if (di, dj) = 1.

Let n = pα1
1 pα2

2 . . . pαt
t be the factorization of n to its prime powers, where t, α1, . . . , αt

are positive integers and p1, . . . , pt are distinct prime numbers. Every divisor of n is of the
form pβ1

1 pβ2
2 . . . pβt

t , for some integers β1, . . . , βt, where 0 ⩽ βi ⩽ αi for each i ∈ {1, 2, . . . , t}.
Hence the number of proper divisors of n is equal to

∏t
i=1(ni +1)− 2. Therefore we have

k = |V (Gn)| =
∏t

i=1(ni + 1)− 2.
Recall that for two graphs H1 and H2 with disjoint vertex sets, the join H1 ∨ H2 of

the graphs H1 and H2 is the graph obtained from the union of H1 and H2 by adding
new edges from each vertex of H1 to every vertex of H2. The concept of join graph is
generalized (in [6], it is called as a generalized composition graph). Assume that G is a
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graph on k vertices with V (G) = {v1, v2, . . . , vk}, and let H1,H2, . . . , Hk be k pairwise
disjoint graphs. The G-generalized join graph G[H1,H2, . . . , Hk] of H1,H2, . . . , Hk is the
graph formed by replacing each vertex vi of G by the graph Hi and then joining each
vertex of Hi to each vertex of Hj whenever vi ∼ vj in the graph G. Now, if the graph G
consists of two adjacent vertices, then the G-generalized join graph G[H1,H2] coincides
with the join H1 ∨H2 of the graphs H1 and H2.

In the next lemma, we state that Γ∗
2(Zn) is a generalized join of some certain non-empty

graphs.

Lemma 2.2. In the comaximal graph of Zn, we have
Γ∗
2(Zn) = Gn[Kϕ( n

d1
),Kϕ( n

d2
), . . . ,Kϕ( n

dk
)]

and
Γ(Zn) = (K1 ∪ Γ∗

2(Zn)) ∨Kϕ(n).

Example 2.3. Consider the ring Z12. We have d1 = 2, d2 = 3, d3 = 4, and d4 = 6.
Then G12 is the graph 2 ∼ 3 ∼ 4 ∪ {6}, which is isomorphic to P3 ∪K1. Now by Lemma
2.2, we have

Γ2(Z12) = K1 ∪G12[K2,K2,K2,K1].

In the following theorem, which was proved by Cardoso et al. in [1, Theorem 8], the
Laplacian spectrum of a generalized join graph G[H1, . . . , Hk] is determined in terms of
the Laplacian spectrum of the graphs Hi’s and the spectrum of another k×k matrix L(G).

Theorem 2.4. [1] Let G be a graph with vertex set {v1, v2, . . . , vk} and letH1,H2, . . . , Hk

be k pairwise disjoint graphs with m1,m2, . . . ,mk vertices, respectively. Then the Laplacian
spectrum of G[H1,H2, . . . , Hk] is given by

σL(G[H1,H2, . . . , Hk]) =

( k∪

j=1

(Mj + (σL(Hj) \ {0}))
)∪

σ(L(G)),

where
Mj =

{ ∑
vi∼vj

mi if NG(vj) ̸= ∅,
0 otherwise ,

L(G) =




M1 −s1,2 . . . −s1,k
−s1,2 M2 . . . −s2,k

. . . . . .
. . . . . .

−s1,k −s2,k . . . Mk


 ,

and
si,j =

{ √
mimj if vi ∼ vjin G,
0 otherwise.

Note that σL(Hj) \ {0} means that one copy of the eigenvalue 0 is removed from the
multiset σL(Hj), and Mj + (σL(Hj) \ {0}) means that Mj is added to each element of
σL(Hj) \ {0}.

Let G be a vertex weighted graph by assigning the weight mi = |V (Hi)| to the vertex
vi of G, for 1 ⩽ i ⩽ k. Let W (G) = (wi,j) be the k × k matrix, where

wi,j =





−mj if i ̸= j and vi ∼ vj ,∑
vi∼vr

mr if i = j,
0 otherwise.
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The matrix W (G) is called a vertex weighted Laplacian matrix of G. In [3, p. 317],
it is shown that the matrices W (G) and L(G) are similar, and so we have σ(L(G)) =
σ(W (G)). Hence in Theorem 2.4, we can use σ(W (G)) instead of σ(L(G)) for determining
the Laplacian spectrum of G[H1,H2, . . . , Hk].

Suppose that d1, d2, . . . , dk are the proper divisors of n. We assign the weight |Adj | =
ϕ( n

dj
), for 1 ⩽ j ⩽ k, to the vertex dj of the graph Gn. Now the k × k vertex weighted

Laplacian matrix W (Gn) of Gn is given by

W (Gn) =




Md1 −t1,2 . . . −t1,k
−t2,1 Md2 . . . −t2,k

. . . . . .
. . . . . .

−tk,1 −tk,2 . . . Mdk


 ,

where Mdj =
∑

di∈NGn (dj)
ϕ( n

di
), for 1 ⩽ j ⩽ k, and

ti,j =

{
ϕ( n

dj
) if di ∼ dj in Gn,

0 otherwise,
for 1 ⩽ i ̸= j ⩽ k.

In the following theorem, we determine the Laplacian spectrum of Γ2(Zn).

Theorem 2.5. Let d1, d2, . . . , dk be the proper divisors of n. Then the Laplacian
spectrum of Γ2(Zn) is given by

σL(Γ2(Zn)) =

(
0 Md1 Md2 . . . Mdk
1 ϕ( n

d1
)− 1 ϕ( n

d2
)− 1 . . . ϕ( n

dk
)− 1

)∪
σ(W (Gn))

Note that since Γ(Zn) = Γ2(Zn) ∨Kϕ(n) and

σL(Kϕ(n)) =

(
0 ϕ(n)
1 ϕ(n)− 1

)
,

by Theorem 2.5, in order to find the Laplacian spectrum Γ(Zn), it is enough to determine
σ(W (Gn).
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1. Introduction

Today, the role of epidemic diseases is well observed in the society. For this reason,
modelling and analyzing the infectious disease model has attracted the attention of many
scientists. One of the well-known models that is widely used in literature for modelling
infectious diseases is the SIR model [2, 8]. On the other hand, with the development
and application of fractional derivatives, some researchers pay attention to the epidemic
models as a fractional dynamical systems [1, 2]. In this paper, we study the following
model 




DqS(t) = Λ− βSI − (µ+ d)S,
DqI(t) = βSI − (α+ γ + d)I,
DqR(t) = µS + γI − dR,

(1)

where Dq denotes the Caputo or Caputo-Fabrizio fractional derivative of order 0 < q ≤ 1.
In this system, S, I and R denote the susceptible, infective and recovered individuals,
respectively. Λ the recruitment rate, β is the disease transmission rate of susceptible to
infected individuals, µ is the proportion of the susceptible that is vaccinated per unit time,
d is the natural death rate, γ is the recovered rate and α is the disease-induced death rate.

2. Preliminaries

The popular definition of fractional derivatives is the Caputo type which is defined by

(2) CDq
xf(x) =

1

Γ(1− q)

∫ x

0

ḟ(x)

(t− τ)q
dτ,

∗Speaker. Email address: akrami@yazd.ac.ir
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where 0 < q ≤ 1. In 2015 Caputo and Fabrizio defined the new definition of fractional
derivative as follows.

Definition 2.1. [3] Let 0 < q < 1. If a ∈ (−∞, x), the Caputo-Fabrizio fractional
derivative of a function f(x) ∈ H1(a, b), b > a is defined as

(3) CFDq
xf(x) =

M(q)

1− q

∫ x

a
ḟ(s) exp(−q(x− s)

1− q )ds

where M(a) is the normalization function such that M(0) = M(1) = 1.

Now suppose the fractional-order linear system

(4) Dqx(t) = Ax(t),

where x(t) ∈ Rn, A ∈ Rn×n, 0 < q < 1 and D = CD or D = CFD.
Suppose in (4), D = CFD then the characteristic equation of (4) is

(5) det(λ(I − (1− q)A)− qA) = 0.

Theorem 2.2. [5] If (I−(1−q)A) is invertible, then system (4), described by Caputo-
Fabrizio derivative, is asymptotically stable if and only if the real parts of the roots to the
discriminant equation (5) are negative.

Moreover, Li et al. [5] proved the next theorem.

Theorem 2.3. The system (1) described by Caputo-Fabrizio derivative, is asymptoti-
cally stable if eigenvalues λ of matrix A satisfy one of the following conditions:

(i) ‖λ‖ ≥ 1
1−q , λ 6= 1

1−q ;

(ii) Re(λ) > 1
1−q ;

(iii) Re(λ) < 0;
(iv) |Im(λ)| > 1

2(1−q) .

Now, consider system (4) described by Caputo derivative (D = CD), then we have the
following theorem about the stability of the system.

Theorem 2.4. [6] System (4), described by Caputo-Fabrizio derivative, with x(t0) =
x0, is asymptotically stable if and only if | arg(spec(A))| > qπ

2 , where spec(A) is the spec-
trum (set of all eigenvalues) of A.

Suppose the fractional-order nonlinear system

(6) Dqx(t) = f(x(t)),

where, f ∈ C1 is a nonlinear function. We can determine the local dynamics of (6) by
Jacobian linearization about the equilibrium points x∗. In the other words, It suffices to
consider Dqx(t) = Ax(t) where A = Df(x∗). Now we can use two above theorems to
characterize the stability of the nonlinear system (6).

3. Equilibria and stability

By simple calculation, one can obtain that system (1) has always a disease-free equi-

librium (DFE) E0 = ( Λ
d+µ , 0,

µΛ
d(µ+d)) and the basic reproduction number for (1) is defined

by

(7) R0 =
βΛ

(µ+ d)(γ + α+ d)
.

61



Dynamics of a fractional SIR model

The unique endemic equilibrium E1 = (S1, I1, R1) is obtained by

S1 =
γ + α+ d

β
,

I1 =
βΛ− (µ+ d)(γ + α+ d)

β(γ + α+ d)
= (R0 − 1)

µ+ d

β
,

R1 =
µ(γ + α+ d) + γ(µ+ d)(R0 − 1)

βd
.

It is clear that E1 is positive if R0 > 1.

Theorem 3.1. Let 0 < q ≤ 1, in the sense of Caputo and Caputo-Fabrizio derivatives,

(i) The disease free equilibrium E0 is locally asymptotically stable if R0 < 1 and it
is a saddle R0 > 1,

(ii) The endemic equilibrium E1 is locally asymptotically stable if R0 > 1.

Proof. (i) The eigenvalues of the Jacobian matrix evaluated at E0 are λ1 = −d,
λ2 − (d + µ) and λ3 = (α + d + µ)(R0 − 1). Therefore, for R0 < 1 all of eigenvalues
are negative (or the | arg(λi)| > qπ

2 for 0 < q ≤ 1 ). It is obvious for R0 > 1, the third
eigenvalue is positive.
(ii) The Jacobian matrix evaluated at E1 is

J(E1) =



−R0(µ+ d) −(µ+ d+ α) 0
(R0 − 1)(µ+ d) 0 0
µ γ −d


 .

Therefore, the eigenvalues of J(E1) are

λ1,2 =
−R0(µ+ d)±

√
R2

0(µ+ d)2 − 4(R0 − 1)(µ+ d)

2
, λ3 = −d.

If R0 > 1 then λ1,2 ∈ R−. Hence E1 is is locally asymptotically stable. �

4. Numerical simulations and discussion

In this part, we simulate the system (1) numerically. For simulation of the system
with the Caputo derivative, we use the predictor-corrector method of Adams-Bashforth-
Moulton described in [4]. For the Caputo-Fabrizio fractional model we use three-step
Adams-Bashforth predictor method described in [7]

Here we take following numerical values for parameters:

Λ = 0.3, α = 0.1, d = 0.02, β = 0.75, γ = 0.03,

and also we take vaccination rate µ as a changing parameter. According to Theorem 3.1,

we know if µ > βΛ−d(γ+α+d)
γ+α+d = 0.2833 or equivalently R0 < 1, the disease is eradicated in

the society.
Now, we consider two cases. First, let µ = 0.8, then we get E0 = (0.3529, 0, 5.6471)

and R0 = 0.3922. In this case the unique DFE is stable. In other word, trajectories of he
system with the initial in the first octant converge to the DFE, see Figures 1 (a) and 2
(a).
In the second case, take µ = 0.2, then we have E0 = (1.2, 0, 4.8), E1 = (0.9, 0.4167, 3.85)
and R0 = 1.3333. In this case the endemic equilibrium E1 is stable and the DFE is
a saddle, see Figures 1 (b) and 2 (b). The trajectories started out of the plane I = 0
converges to the E1 and trajectories on the plane I = 0 converges to the E0 (see the red
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(a) µ = 0.8 and R0 = 0.3922. (b) µ = 0.2 and R0 = 1.3333.

Figure 1. Phase portrait of system (1) with Caputo derivatives of order
q = 0.95. In (a) there is the stable DFE and in (b) DFE is a saddle and
the endemic equilibrium is stable.

(a) µ = 0.8 and R0 = 0.3922. (b) µ = 0.2 and R0 = 1.3333.

Figure 2. Phase portrait of system (1) with Caputo-Fabrizio derivatives
of order q = 0.9. In (a) there is the stable DFE and in (b) DFE is a saddle
and the endemic equilibrium is stable.

trajectories in Figures 1 and 2). In the other word, plane I = 0 is a stable manifold for
the saddle point E0. Hence, numerical simulations verify the theorems of Section 3.
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Abstract. A set D ⊆ V of a graph G = (V,E) is called an efficient dominating set
of G if every vertex v has exactly one neighbor in D, in an alternative view, the vertex
set V is partitioned to some circles with radius one such that the vertices in D are the
centers of partitions. A generalization of this concept, introduced by Chellali et al. [1], is
called k-efficient dominating set that briefly is partitioning the vertices of a graph with
different radiuses. It leads to a partition set {U1, U2, . . . , Ut} such that each Ui consists a
centre vertex ui and all the vertices in distance di where di ∈ {0, 1, . . . , k}. The problem
of finding minimum set {u1, u2, . . . , ut} is called the Minimum k-efficient domination
problem. Given a positive integer S and a graph G = (V,E), the k-efficient Domination
Decision problem is to decide whether G has an k-efficient dominating set of cardinality
at most S. The k-efficient Domination Decision problem is known to be NP-complete
even for bipartite graphs [1]. Clearly, every graph has a k-efficient Dominating set, but it
is not correct for efficient dominating set. In this paper, we study the NP-completeness
of the k-efficient domination problem in Chordal graphs.
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1. Introduction

Domination problem is one of the most fundamental types of problems that have
been widely explored in computer science. There are many extensions of this problem,
such as independent, total, efficient, mixed, paired, signed, and rainbow dominating sets.
Many experts have investigated finding bounds and designing algorithms to compute the
dominating sets of each kind in various classes of graphs. A discussion of some of these
can be found in [2].

1.1. Definition and notation. Let G = (V,E) be a simple graph. The neighbour-
hood of a vertex v ∈ V is the set of vertices adjacent to v, denoted by N(v), and the
closed neighbourhood of vertex v is defined N [v] = N(v) ∪ {v}. The neighbourhood of a
vertex v ∈ V up to radius i, denoted Ni[v], is the set of all vertices in distance at most i
of v. The notation [t] is used for the set {1, 2, . . . , t}.

∗Speaker. Email address: m.alambardar@ sci.ac.ir
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Domination A set D ⊆ V is a dominating set if every vertex not in D is adjacent to
at least one vertex in D. The domination number, denoted by γ(G), is the cardinality of a
smallest dominating set. Finding a minimum dominating set was one of the first problems
that shown is NP-hard [3].

Efficient Domination A specific version of domination problems is efficient domina-
tion was introduced in [4] as an extension of the perfect error-correcting code in coding
theory. An efficient dominating set in G is a subset of vertices D ⊆ V such that every
vertex v ∈ V is dominated by precisely one vertex from D. Clearly, there exist graphs
without any efficient dominating sets. So, if a graph consists of an efficient dominating set,
it is efficiently dominatable. Vital applications of efficient domination in coding theory
and other branches like parallel processing systems [5] have made it a noticeable domina-
tion. Therefore, the different notions and names of efficient dominating set appeared in
the literature such as: perfect code, 1-perfect code, independent perfect dominating set,
and perfect dominating set. The efficient domination problem is NP-complete even for
restricted graph classes such as bipartite graphs and chordal graphs [6].

k-Efficient Domination To relax the concept of efficient domination, Chellali, Haynes,
and Hedetniemi in [1], introduce the k-efficient domination based on concept k-efficient
partition.

A partition π = {Ni1 [v1], Ni2 [v2], . . . , Nit [vt]} is called a k-efficient partition of V if for
every j ∈ [t], we have ij ∈ {0, 1, . . . , k}. The vertices {v1, v2, . . . , vt} are the centres of
partitions.

Definition 1.1. [1] For any integer k ≥ 0, the k-efficient domination number of G,
denoted εk(G), equals the smallest cardinality of a k-efficient partition of G.

In other words, k-efficient dominating set is the set {v1, v2, . . . , vt} the centres of the
circles with radius d where d ∈ {0, 1, 2, . . . , k} can partition the vertices of the graph.
Clearly, typical efficient domination differs from 1-efficient domination due to in 1-efficient,
we can select a singleton vertex that only dominates itself. It follows that, for instance, C5

has a 1-efficient dominating set but does not have any efficient dominating set. It could
be easily investigate that εj ≤ εi for j > i.

2. NP-complete for chordal graphs

This section shows that the k-efficient domination problem is NP-complete when re-
stricted to chordal graphs. Note that, for k = 1, the problem of k-efficient domination
differs from the typical efficient domination problem, shown is NP-complete for chordal
graphs [6]. We prove the NP-completeness of k-efficient domination by using a reduction
from Exact 3-Cover problem (EX3C), which is known to be NP-complete [3].

Exact 3-Cover problem (EX3C)
Instance: A finite set X with |X| = 3q, where q is a positive integer and a collection

C of 3-element subsets of X.
Question: Is there a sub-collection C ′ of C such that every element of X appears in

exactly one element of C ′.

Theorem 2.1. 1-efficient Domination Problem is NP-complete for chordal graphs.

Clearly, k-efficient Domination Problem for chordal graph is in NP . We describe a
polynomial reduction from EX3C to 1-efficient Domination Problem for chordal graphs.
Given any instance (X,C) of EX3C, we obtain a chordal graph G = (V,E) and an integer
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k such that EX3C has a solution if and only if G has a 1-efficient dominating set of
cardinality at most N .

Let X = {x1, x2, . . . , x3q} and C = {C1, C2, . . . , Ct} be an arbitrary instance of EX3C.
The vertex set of the newly formed graph G = (V,E) constructed of disjoint union three
parts. For each Cp ∈ C, p ∈ [t], we have a path with vertices cp, vp and up. This make the
first part. The second part have a set of 3q vertices {x1, x2, . . . , x3q}, each corresponding
to an element X. We add edges between every pair of vertices in this set to make a clique.
For each vertex xi, i ∈ [3q], we have a claw, induced subgraph of K1,3, centred at a vertex
zi and yi is one of its the pendant. We connect xi to yi. Now we add the edges between
xi and cp if the element corresponding to xi is in cp. Note that degree of each cp is four
for all p ∈ [t]. The construction of G from the instance (X,C) of EX3C is illustrated in
Figure 1. Clearly, the graph G is a chordal graph.

Let N = 4q + t. Theorem 2.1 directly follows from the following result.

x1 x2 x3 x3q−2 x3q−1 x3q
Clique

c1 c2 ct−1 ct

v1

u1

v2

u2

vt−1

ut−1

vt

ut

z1

y1

z2

y2

z3

y3

z3q−1

y3q−1

z3q

y3q

z3q−2

y3q−2

Figure 1. Reducing the EX3C problem to the k-efficient Domination Problem.

Lemma 2.2. EX3C has a solution if and only if G has a 1-efficient dominating set of
cardinality at most N = 4q + t.

Proof. Suppose the instance (X,C) has a solution C ′. Since each element of X is
covered by exactly one element of C ′, |C ′| = q. Let P be the index of the corresponding
vertices in C ′. We claim that the following set D is a 1-efficient dominating set:

D = {ui|i ∈ [P ]}
⋃
{ci|i ∈ [P ]}

⋃
{vi|i ∈ [t]/P}

⋃
{zi|i ∈ [3q]}.

The vertices ui’s only dominate themselves but other vertices in D dominate their adjacent
vertices. One can easily check that D contains 4q + t and forms a 1-efficient domination.

Conversely, assume that G has a 1-efficient dominating set of cardinality at most
N = 4q + t. Since D is a dominating set, in each 3-path uivici where i ∈ [t], at least one
vertex have to appear in D. For a fixed i ∈ [3q] consider the claw that is connected to
xi. To dominate the pendant vertices of it we need to select at least the centre vertex zi
or select all its pendent vertices. So summing up over all i, we get that D contains more
than 3q vertices from selecting pendents. So, the cardinality of D is at least t+ 3q. Now
to complete the proof we shall show that X ∩D = ∅. Since if this is the case then each
xi has to be dominated by a cp ∈ C, p ∈ [t]. We have to dominate the 3q vertices of X
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using at most q vertices, as each ci ∈ C dominates exactly three xis. This is possible only
if there exist q vertices {ci1 , . . . , ciq}, which can dominate the 3q vertices X. Now define
C ′ to be the sets corresponding to these vertices, i.e. C ′ = {ci1 , . . . , ciq}. Clearly C ′ is an
exact cover of X, and has only q sets.

Till now we have only used the fact that D is a dominating set but for showing
D∩X = ∅, we will be crucially using the fact that D is a 1-efficient domination. To reach
a contradiction let us suppose some xi ∈ D. Then the connected vertex yi is dominated.
To dominate the pendent vertices in claw we have to select all pendents, one of them is
1-dominator and the other is self-dominator. So, we need two dominators to dominate this
claw. To dominate other claws we need at least 3q−1. This implies totally the |D| > t+4q
which contradicts the assumption that |D| ≤ N . Therefore D ∩X = ∅. �

3. Conclusion

In this work, the NP-completeness of the k-efficient domination problem, restricted to
chordal graphs, is proven. The problem of k-efficient domination is a generalization of the
typical efficient domination problem.
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and epimorphism radical of an R-module which are larger than that of superfluous sub-
modules and radical of a module, respectively. Then we examine some characteristics
of these submodules on epi-Notherian and epi-Artinian modules. Various examples are
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1. Introduction

Throughout this paper, all the rings we consider are associative rings with identity,
and modules are unitary right modules. A submodule N of an R-module M is superfluous
in M and denoted by N�M , in case for any submodule L of M , L + N = M implies
L = M . In 2015, Babak Amini and Afshin Amini in [2] introduced the notion of strongly
superfluous submodule, and then investigated the basic properties of these submodules
on max rings. A submodule K of an R-module M is said to be strongly superfluous
in M and denoted by K ≤ss M , if

⊕
i∈I K�

⊕
i∈IM for any index set I. Recently,

in 2018, Prakash and Chaturvedi in [6], introduced the notions of epi-Artinian and epi-
Noetherian modules. A module M is epi-Artinian (epi-Noetherian) if for every descending
(ascending) chain M1 ≥ M2 ≥ M3 ≥ · · · (M1 ≤ M2 ≤ M3 ≤ · · · ) of submodules of
M , there exists an index n ≥ 1 such that for every i ≥ n, there exists an epimorphism
φi : Mi → Mi+1 (φi : Mi+1 → Mi), where in [3], Dastanpour and Ghorbani call these
chain conditions epi-ACC (epi-DCC). Also, Ghorbani and Vedadi [5] defined the notion of
epi-retractable modules. The R-module M is called epi-simple (or;epi-retractable) if every
non-zero submodule of M is an epimorphism image of M .

In this paper, we introduce and study epi-superfluous submodules and then, we exam-
ine some properties modules with chain conditions on epi-superfluous submodules.

2. Results

We begin this section by the following definition.
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Definition 2.1. A submodule N of an R-module M is called epi-superfluous in M
and denoted by N ≤epi M , in case for any submodule L of M , L + N = M implies that
L is an epimorphism image of M .

Clearly, every superfluous submodule is epi-superfluous, but not conversely, see Ex-
ample 2.2.

Example 2.2. (1) Every superfluous submodule is epi-superfluous.
(2) 2Z is epi-superfluous in Z, but 2Z is not superfluous in Z.

Lemma 2.3 ( [6], Lemma 3.2). A module M is epi-artinian (epi-noetherian) if and
only if, for every non-empty set F of submodules of M , there exists N ∈ F such that, for
every submodule K ≤ N(N ≤ K), if K ∈ F , then K is a homomorphic image of N (N is
a homomorphic image of K).

Consider EM = {M | N is not an epimorphism image of the R-module M for any
maximal submodule N of M}. In the following example, we show that EM is not an
empty set.

Example 2.4. Let R be a local ring with non cyclic maximal ideal M (for example,
R can be considered as the localization of the ring R = C[x, y] in ideal < x, y >). Then,
there is no R-epimorphism f : R→M , and hence R-module R belongs to the EM set.

Lemma 2.5. Let M be a right R-module such that M ∈ EM. Then, rad(M) = {x ∈
M | xR�M}, where rad(M) is the intersection of all maximal submodules of M .

Proof. See, [1, Proposition 9.13]. �
Proposition 2.6. Let M be a right R-module such that M ∈ EM. If rad(M) is

epi-Noetherian, then for every non-empty set F of epi-superfluous submodules of M , there
exists N ∈ F such that, for every N ≤ K, if K ∈ F , then N is a homomorphic image of
K.

Proof. It suffices to show that N ≤ rad(M) for every epi-superfluous submodules N
of M , and then by Lemma 2.3, the result is proved. Let N ≤epi M and N � rad(M).
Then, there is a maximal submodule K of M such that N � K. So, K + N = M . On
the other hand, N is an epi-superfluous submodules of M , and it follows that K is an
epimorphism image of M , a contradiction. �

Recall that a submodule N of an R-module M is a fully invariant submodule if f(N) ⊆
N for all endomorphisms f of M . A module M is said to be a duo module if every
submodule of M is fully invariant, see [6].

Theorem 2.7. Let M be a right R-module such that M ∈ EM. If rad(M) is epi-
Artinian, then:

(1) Every epi-superfluous submodule of M is epi-Artinian.

(2) If every cyclic submodule of rad(M) is duo, then Soc( rad(M)
N ) ≤e rad(M)

N .

Proof. (1) If L ≤epi M , then we show that L ≤ rad(M). If L � rad(M), then
by [1, Proposition 9.13], there exists maximal submodule K of M such that L � K. So
K + L = M and hence K is an epimorphism image of M , a contradiction. Therefore by
Lemma 2.3, L is epi-Artinian.

(2) Let t ∈ rad(M). Then by (1), tR is epi-Artinian, since tR ≤epi M . So by [6,
Propositions 3.3], for every non-zero proper submodule N of rad(M) such that t /∈ N , it
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follows that tR+N
N = tR

tR∩N is epi-Artinian. Hence by [6, Theorem 3.11], every non-zero

proper submodule of rad(M)
N contains an essential submodule that is a direct sum of epi-

simple modules. Hence, epi-Soc( rad(M)
N ) ≤e rad(M)

N and consequently by [4, Remark 4.3],

Soc( rad(M)
N ) ≤e rad(M)

N . �
Theorem 2.8. Let M be a right R-module such that M ∈ EM. If every cyclic submod-

ule and non-zero proper submodule of rad(M) is duo and finitely generated, respectively,
then rad(M) is epi-Artinian if and only if every epi-superfluous submodule of M is epi-
Artinian.

Proof. (=⇒) is clear by Theorem 2.7(1).

(⇐=) First, we claim that Soc( rad(M)
N ) ≤e rad(M)

N for every proper submodule N of
rad(M). Let t ∈ rad(M). Then by hypothesis and Lemma 2.5, tR is epi-Artinian, since
tR ≤epi M . So by [6, Proposition 3.3 ], for every non-zero proper submodule N of rad(M)

such that t /∈ N , it follows that tR+N
N = tR

tR∩N is epi-Artinian. Hence by [6, Theorem

3.11], every non-zero proper submodule of rad(M)
N contains an essential submodule that is

a direct sum of epi-simple modules. Hence, epi-Soc( rad(M)
N ) ≤e rad(M)

N and consequently

by [4, Remark 4.3], Soc( rad(M)
N ) ≤e rad(M)

N .
Now, suppose that rad(M) is not epi-Artinian. Then rad(M) is not Artinian. So

by [1, Proposition 10.10], the set γ of submodules B of rad(M) such that rad(M)
B is not

finitely cogenerated, is non-empty. Let {Bi : i ∈ I} be any chain of submodules in γ. If

B = ∩i∈IBi and B /∈ γ, then rad(M)
B is finitely cogenerated and hence B = Bi for some

i ∈ I. So, B ∈ γ and by Zorn’s Lemma, γ has a minimal member Z. Let U denote the

submodule of rad(M), containing Z , such that Soc( rad(M)
Z ) = U

Z . Then, U
Z ≤e ( rad(M)

Z )

and hence by [1, Proposition 10.7], U
Z is not finitely generated, which a contradiction by

hypothesis. �
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Abstract. We study the fractional stochastic volatility model in which the volatility is
driven by a fractional Brownian motion and the price is driven by an independent simple
Brownian motion. We relate the option price to a quadratic average of the exponential
fractional Brownian motion and We prove the existence of the Implied Volatilities dis-
tribution density function by using malliavin calculus and we derive the asymptotics of
the mentioned average as t tends to infinity.
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1. Introduction
Implied volatility surface is the plot of the implied volatility (σ) as a two variable

function of moneness (strike price K) and expiration time (T ). This surface is obtained
from empirical data of option prices traded in the options markets. Figure 1 shows the
volatility surface.

Figure 1. Implied volatility surface
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Should Black-Scholes model be the ground truth of the market, the volatility surface
would be flat (which is not the case). Hence the curvature of this surface is an indicator
of how much the Black-Scholes model fits to the market.

So far, one of the challenges of mathematical finance has been to build more sophisti-
cated models that illustrate the same implied volatility as observed in real data.

One of the efforts in this direction has been made using the so called stochastic volatil-
ity models (SVM). These models assume that the volatility is not constant but instead
is a stochastic process in itself. Hence σ(t) also follows a stochastic differential equation
alongside the price process S(t). One of the most famous such models is the following due
to Hull and White (1987).

dS(t)

S(t)
= µ(t, S(t))dt+ σ(t)dw1(t)(1)

d(lnσ(t)) = k(θ − lnσ(t))dt+ γdw2(t)(2)

where w1 and w2 are independent Wiener processes. A simple argument shows that when
conditioned on the trajectory of σ(t), the price at time t of a European option of exercise
date T is indeed the Black-Scholes price where the constant volatility σ is replaced by its
quadratic average over the period σ2

t = 1
T−t

∫ T
t σ2(u)du. Hence the option price can be

obtained by taking expectation of this Black-Scholes price.
Although the SVM models fit better to the volatility surface, they are still far from

a good fit. In recent years a new family of models have been introduced which is a
generalization of SVM models in the sense that they use the fractional Brownian motion
as the noise in the volatility process.

����� 1.1. A fractional Brownian motion (fBm) with Hurst parameter 0 ≤ H ≤ 1 is a
zero-mean Gaussian process (WH

t )t∈R with the covariance

E
[
WH

t WH
s

]
=

1

2

(
|t|2H + |s|2H − |t− s|2H

)

The fractional stochastic volatility model (FSVM) is given by the following system:

dS(t)

S(t)
= µdt+

√
VtdW (t)(3)

d (Vt) = αVtdt+ η.VtdW
H
t(4)

The same argument as in the SVM models implies:

���� 1.2 (see [2]). The European call option price is given by

C(t) = S(t)EQ
t

[
Φ

(
mt

Ut
+

Ut

2

)
|Ft

]
− e−mtEQ

t

[
Φ

(
mt

Ut
− Ut

2

)
|Ft

]

where

mt = ln

(
e−r(T−t)S(t)

K

)
, Ut =

√∫ t

0
σ2(u)du

and Φ is the standard Gaussian distribution function.
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2. Main results
Our ultimate goal is to study the properties of the option prices in the fractional

Hull-White model of the previous section. Theorem 1.2 shows that any information on
the distribution of the variable U(t) could be employed to obtain information on the
distribution of the option price as well. Hence one can study the distributional properties
of U(t).

Article [4] does the same thing in the classical Hull White model and then uses it
to study the asymptotic behaviour of the distribution density of the stock price process.
Following the framework of [4] we define

αt =

∫ t

0
eµs+σWH

s ds

And notice that by the time reversing property of the fBm we have,

αt
d
= eµt+σWH

t

∫ t

0
e−(µs+σWH

s )ds := Vt

Now we want to use the Ito formula. The Ito formula for fBm exists for 0 < H < 1
(except H = 1

2 which is indeed the Bm itself)[see [1]]. By applying Ito formula we find,

dVt =
(
(µ+Ht2H−1σ2)Vt + 1

)
dt+ σVtdW

H
t

����� 2.1. V has the density function called f(v, t).

Proof. Suppose

G =

∫ T

0
eB

H
s ds

It is enough to prove that G has a density function. So for this purpose, we prove G ∈ D1,2.
And for this purpose, we prove[see [5]]

E(∥DG∥2H) =
∑∞

n=1 nn!∥gn∥2L2(Rn
+) < ∞.

That

gn =
1

n!
E(DnG).

So we must find n order Malliavin derivative of G. According to[ [6]]:
BH

s =
∫ s
0 KH(s, u) dBu,

That
KH(t, s) = cHs

1
2
−H
∫ t
s | u− s |H− 3

2 uH− 1
2 du,

cH = [
H(2H − 1)

β(2− 2H,H − 1
2)
]
1
2 ,

According to Malliavin derivative

Dt1,...,tn(e
BH

s ) = eB
H
s KH(s, t1)...KH(s, tn),

⇒ Dt1,...,tn(
∫ T
0 eB

H
s ds) =

∫ T
0 eB

H
s KH(s, t1)...KH(s, tn) ds,

⇒ E(Dt1,...,tn(
∫ T
0 eB

H
s ds)) =

∫ T
0 e

1
2
s2HKH(s, t1)...KH(s, tn) ds = n!gn.

And we have
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∫ t
s |u− s|H− 3

2 du =
∫ t−s
0 uH− 3

2 du =
1

H − 1
2

(t− s)H− 1
2 <

1

H − 1
2

TH− 1
2 ,

⇒ KH(t, s) < c.s
1
2
−H ,

That c is constant. so, as a result:

| n!gn |⩽ cn.t
1
2
−H

1 ...t
1
2
−H

n .

and finally
∫ T
0 ...

∫ T
0 | n!gn |2=

∫ T
0 ...

∫ T
0 t1−2H

1 ...t1−2H
n dt =

( ∫ T
0 t1−2H

1 dt1
)n

=
1

2− 2H
T 2−2H < (c′)n.

So the proposition is proved. □
By using the fractional version of the Kolmogorovs forward equation we the following

partial differential equation governing f :
∂tf = Ht2H−1σ2v2∂2

vf −
(
(µ−Ht2H−1σ2)v + 1

)
∂vf −

(
µ−Ht2H−1σ2

)
f

f(t, 0) = f(t,∞) = 0, f(0, x) = δx0

Questions of interest, regarding the function f(t, x) are its asymptotic behaviour when
t → 0,∞ and also x → 0,∞.

In this article we provide an asymptotic bound for f when t → ∞ and show that under
certain assumptions, it decays exponentially and obtain the rate.

���� 2.2. If for some t0 > 0 and a positive constant M , we have |f(t0, v)| < M , then

f(t, v) ≤ Me
1
2
σ2t2H−µt

For proof we use the result of [3] on asymptotic of the solution of hyperbolic PDEs.

3. Conclusion
We relate the option price to a quadratic average of the exponential fractional Brow-

nian motion and We prove the existence of the Implied Volatilities distribution density
function by using malliavin calculus and we derive the asymptotics of the mentioned av-
erage as t tends to infinity.
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Abstract. In this paper, we investigate the mean-square stability analysis of a stochas-
tic Runge-Kutta (SRK) schemes for stiff SDE systems of Itô types. In this class the
schemes which are not fully implicit, while appropriate for stiff SDEs. For a subclass
of these schemes with stochastic weak second order, the mean-square stability (MS-
stability) is analysed.

Keywords: stiff stochastic differential equations, mean-square stability, stochastic Runge-
Kutta.
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1. Introduction

Most of the problems in modeling of many chemical, physical and economic systems
are formulated in the forms of stiff SDEs [2–4, 7]. The authors in [5] worked on weak
second order SRK methods for Itô SDEs and calculated the coefficients of the schemes
with minimized error constant, but these methods are not A-stable. Also, their SRK
methods are developed as diagonally drift-implicit Runge-Kutta methods for Itô SDEs
in [4] and the stability analysis of them are analysed but all of them are not A-stable
and they may fail for stiff SDEs with high stiffness. So, in this paper, after introducing
a general coefficient matrices of the SRK schemes, we obtain the Butcher table of a fully
specified stochastic weak second order scheme with appropriate MS-stability properties
when applied to the stiff SDEs.

2. Some definitions and preliminary results

Suppose (Ω,F , P ) be a probability space with a filtration (Ft)t≥0. We assume that
the (Xt)t∈I be solution of the Itô SDE

dXt = a(Xt)dt+ b(Xt)dWt, Xt0 = x0, t ∈ I,(1)

where I = [t0, T ] for some 0 ≤ t0 < T < ∞ and a : Rd → Rd is the drift coefficient,
d × m-matrix function b = (bi,j) such that b : Rd → Rd×m is the diffusion coefficient
and {W (t) = (W 1

t , ...,W
m
t )}t≥0 is an m-dimensional Wiener process. Then we split a(Xt)
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into two parts f, g such that a(Xt) ≡ f(Xt) + g(Xt). If we choose f and g as the stiff
and nonstiff parts of the drift function a, respectively, then the numerical method will be
implicit only in terms of the stiff part f and will be explicit with respect to the nonstiff
part g, and the computational cost of the method will be reduced.

3. A class of stochastic weak second order SRK method

In this section, for the weak approximation of the solution of the Itô SDE (1), we
consider a class of stochastic weak second order SRK schemes [1] which are more general
than the class of SRK methods introduced by [4], as follows:

Yn+1 = Yn + h

s∑

i=1

αif(H
(0)
i ) + h

s∑

i=1

βig(Ĥ
(0)
i ) +

s∑

i=1

m∑

k=1

(
γ
(1)
i Î(k) + γ

(2)
i

Î(k,k)√
h

)
bk(H

(k)
i )

+

s∑

i=1

m∑

k=1

(
γ
(3)
i Î(k) + γ

(4)
i

√
h
)
bk(Ĥ

(k)
i ),(2)

for n = 0, 1, ...N − 1 with the stage values,

H
(0)
i = Yn + h

s∑

j=1

A
(0)
ij f(H

(0)
j ) + h

s∑

j=1

B
(0)
ij g(Ĥ

(0)
j ) +

s∑

j=1

m∑

l=1

Î(l)C
(0)
ij b

l(H
(l)
j ),

Ĥ
(0)
i = Yn + h

s∑

j=1

A
(1)
ij f(H

(0)
j ) + h

s∑

j=1

B
(1)
ij g(Ĥ

(0)
j ) +

s∑

j=1

m∑

l=1

Î(l)C
(1)
ij b

l(H
(l)
j ),

H
(k)
i = Yn + h

s∑

j=1

A
(2)
ij f(H

(0)
j ) + h

s∑

j=1

B
(2)
ij g(Ĥ

(0)
j ) +

√
h

s∑

j=1

C
(2)
ij b

k(H
(k)
j ),

Ĥ
(k)
i = Yn + h

s∑

j=1

A
(3)
ij f(H

(0)
j ) + h

s∑

j=1

B
(3)
ij g(Ĥ

(0)
j ) +

s∑

j=1

m∑

l=1
l6=k

Î(k,l)√
h
C

(3)
ij b

l(H
(l)
j ).(3)

for i = 1, . . . , s and k = 1, . . . ,m. Also the random variables Î(j) and Î(i,j) are defined
in [1,6]. Thus, with the help of the B-series analysis, we can derive the stochastic weak
second order conditions for the coefficients of the SRK schemes (2)-(3). For more details
see [1,4].

4. An efficient stochastic weak second order SRK scheme with appro-
priate asymptotic MS-stability properties

In this section to obtain a SRK scheme with suitable asymptotic MS-stability prop-
erties, we suppose that some diagonal elements of the matrices A(0), C(0), C(1), C(2) and
C(3) are nonzero and in order to reduce the computational cost of the method, we take the
coefficients as lower-triangular matrix. Therefore, the corresponding coefficient matrices
can be given as follows:

A
(i)

=



A

(i)
11 0 0

A
(i)
21 A

(i)
22 0

A
(i)
31 A

(i)
32 A

(i)
33


 , B(j)

=




0 0 0

B
(j)
21 0 0

B
(j)
31 B

(j)
32 0


 , C(k)

=




0 0 0

C
(k)
21 C

(k)
22 0

C
(k)
31 C

(k)
32 C

(k)
33


 , A(2)

=




0 0 0

A
(2)
21 0 0

A
(2)
31 0 0


 ,

in which i = 0, 1, j = 0, 1, 2, k = 0, 1, 2, 3. For more reduction in computational cost,
we set A(3) = B(3) = 0. It should be mentioned that by these settings, the scheme is
explicit w.r.t nonlinear part g, because the matrices B(k), k = 1, 2, 3 are considered as to
be strictly lower triangular ones. Now, we consider the scalar SDE test,

dXt = λXtdt+ µXtdWt, t ≥ t0 ≥ 0, Xt0 = x0,(4)
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then we apply schemes (2)-(3) to SDE (4). We can obtain the stability function ΠSRK(x, y)
of SRK schemes as follows:

ΠSRK(x, y) =


x


 α1

1 − A
(0)
11 x

+ α2

(
A

(0)
21 x

1 − A
(0)
11 x

+ 1

)
+

α3(
1 − A

(0)
33 x

)


 A

(0)
31 x

1 − A
(0)
11 x

+
A

(0)
32 x(

1 − A
(0)
22 x

)
(

A
(0)
21 x

1 − A
(0)
11 x

+ 1

)
+ 1




+ 1




2

+


x


 α2(

1 − A
(0)
22 x

)


 C

(0)
22 y(

1 − C
(2)
22 y

)
(

C
(2)
21 y

1 − C
(2)
11 y

+ 1 +
A

(2)
21 x

1 − A
(0)
11 x

)
+

C
(0)
21 y

1 − C
(2)
11 y


 +

1

1 − A
(0)
33 x


α3


 A

(0)
32 x(

1 − A
(0)
22 x

)


 C

(0)
22 y(

1 − C
(2)
22 y

)
(

C
(2)
21 y

1 − C
(2)
11 y

+ 1 +
A

(2)
21 x

1 − A
(0)
11 x

)
+

C
(0)
21 y

1 − C
(2)
11 y


 +

C
(0)
32 y(

1 − C
(2)
22 y

)
(

C
(2)
21 y

1 − C
(2)
11 y

+ 1 +
A

(2)
21 x

1 − A
(0)
11 x

)
+

C
(0)
33 y(

1 − C
(2)
33 y

)


 C

(2)
32 y(

1 − C
(2)
22 y

)
(

C
(2)
21 y

1 − C
(2)
11 y

+ 1 +
A

(2)
21 x

1 − A
(0)
11 x

)
+

C
(2)
31 y

1 − C
(2)
11 y

+ 1 +
A

(2)
31 x
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(0)
11 x


+

C
(0)
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)
+
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(2)
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(2)
32 y(
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(2)
22 y

)
(

C
(2)
21 y

1 − C
(2)
11 y
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A

(2)
21 x

1 − A
(0)
11 x

)
+

C
(2)
31 y

1 − C
(2)
11 y

+ 1 +
A

(2)
31 x

1 − A
(0)
11 x


+

γ
(1)
1 y

1 − C
(2)
11 y




2

+

+
1
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)
(

C
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21 y
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11 y
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A

(2)
21 x

1 − A
(0)
11 x

)
+

γ
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2 y(
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(2)
33 y
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(2)
32 y(
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(2)
22 y

)
(

C
(2)
21 y

1 − C
(2)
11 y

+ 1 +
A

(2)
21 x

1 − A
(0)
11 x

)
+

C
(2)
31 y

1 − C
(2)
11 y

+ 1 +
A

(2)
31 x

1 − A
(0)
11 x


+

γ
(1)
2 y

1 − C
(2)
11 y




2

,

in which x = hλ, y =
√
hµ. Now, we investigate the behavior of the above mentioned

MS-stability function for large amounts of λ and µ, i.e., for x→ −∞, y → ±∞. So, to gain
the effective SRK schemes, we must choose suitable parameters such that the obtained
scheme becomes more suitable for stiff SDEs. Therefore, we choose the parameters such
that the terms of ΠSRK(x, y) vanish for large values of λ and µ. Therefore, for obtaining
the coefficients of an effective scheme of stochastic weak and deterministic order 2 with
appropriate MS-stability properties, we solve the nonlinear system of order conditions
along with this stability condition, by MATLAB numerically. The corresponding method
is denoted by SRK4. The Butcher array of the proposed scheme is then presented in
Table 1. By using the parameters of this scheme and also for DDIRDI4 and DDIRDI5
methods [4] we have

lim ΠSRK4(x, y)
(x,y)→(−∞,±∞)

= 0, lim ΠDDIRDI4(x, y)
(x,y)→(−∞,±∞)

= lim ΠDDIRDI5(x, y)
(x,y)→(−∞,±∞)

=∞.

Therefore, the DDIRDI4 and DDIRDI5 methods may fail for stiff SDEs with high stiffness,
while we can apply the proposed SRK4 scheme to stiff SDEs more appropriately. The MS-
stability regions of the above mentioned methods and the analytical region of SDE are
illustrated in Fig 1. It should be mentioned that as the region of MS-stability of DDIRDI4
is contained in MS-stability region of DDIRDI5, we do not plot its region. Fig 1 shows that
the MS-stability region of the proposed SRK4 scheme is larger than those of DDIRDI4 and
DDIRDI5. Clearly one should expect a better performance of the proposed SRK4 scheme,
compared with DDIRDI4 and DDIRDI5 methods, when applied to the stiff SDEs.
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0.5000 0 0 0 0 0 0 0 0

1.0549 −7.8207 0 0.1481 0 0 0.4652 −.3692 0

−1.6813 −1.4753 6.8786 0.5070 0.5070 0 0.3241e-1 −0.6970e-2 1.0117

0.1764 0 0 0 0 0 0 0 0

0.2265e-1 0.2265e-1 0 0.6978e-1 0 0 −0.6311e− 2 0.5009e-2 0

0.2705 0.2705 0.2705 0.5034 0.5034 0 0.9108e-1 −0.5443e-1 0.9635

0 0 0 0 0 0 6.1780 0 0

−0.2979 0 0 −0.2979 0 0 −0.1854 7.9690 0

0.5064 0 0 0.5064 0 0 −0.3939 0.2501 −0.7551e-3
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1.6609 1.3183 0

0 0 0 0 0 0 1.6610 −1.3183 0

0.3315 0.2054 0.4631 0.54653 −0.4641e-1 0.4999 0.6089e-1 −0.3044e-1 0.9695 0.7525 −0.473963 −0.2785
−4.2588 2.1294 2.1293 0.1662e-3 −1.4593 1.4592

Table 1. Butcher tableau for proposed SRK4 scheme

Figure 1. MS-stability regions: DDIRDI5 method (light-gray), proposed
SRK4 scheme (dark-gray) and SDE (4) (gray: analytical region)
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Abstract. In this paper we generalize the Zero Divisor Conjecture and Rigidity Theo-
rem for k-regular sequence. For this purpose for any k-regular M -sequence x1, ..., xn we
prove that if dimTorR2 (

R
(x1,...,xn)

,M) ≤ k, then dimTorRi (
R

(x1,...,xn)
,M) ≤ k, for all i ≥ 1.

Also we show that if dimExtn+2
R ( R

(x1,...,xn)
,M) ≤ k, then dimExtiR(

R
(x1,...,xn)

,M) ≤ k,
for all integers i ≥ 0 (i ̸= n).
Keywords: k-regular sequence, extension functor, zero divisor conjecture
AMS Mathematics Subject Classification [2010]: 13D45, 13D07

1. Introduction
Throughout this paper, R denotes a commutative and Noetherian ring with non zero

identity, I denotes an arbitrary ideal, M denotes a finitely generated R-module, and
k ≥ −1 an arbitrary integer. In 1961, M. Auslander proposed the zero divisor conjecture
in [5] as follows.

Remark 1.1. (Zero divisor conjecture) Let R be a Noetherian local ring and M be
a finitely generated R module of finite projective dimension over R. If x ∈ R is a non-
zerodivisor on M , then x is a non-zerodivisor of R.

This conjecture was proved by M. Hochster, L. Szpiro, C. Peskin, and P. Robert, in
special cases. Also M. Auslander introduced rigidity concept as a generalization of Zero
Divisor Conjecture.

Definition 1.2. Let R be a Noetherian local ring with maximal ideal m. An R-
module M is called rigid if TorRi (M,N) = 0 for some finitely generated R-module N , then
TorRj (M,N) = 0 for any j ≥ i (see [5]).

He also stated the following theorem.

Theorem 1.3. (Rigidity Theorem.) Let R be a Noetherian regular local ring and M
be a finitely generated R-module. Then M is rigid.

∗Speaker . Email address: sajjad.arda@gmail.com
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The Rigidity Theorem was proved by M, Auslander in unramified case. S. Lichtenbaum
proved the theorem for arbitrary regular local rings in 1966, see [6]. The notion of k-regular
sequence was introduced by Chinh and Nhan [3] which is an extension of the well-known
notion of filter regular sequence introduced by Schenzel, Trung and Cuong [4]. It is known
that for k = −1 any k-regular M -sequence is an M -regular sequence. In this paper we
generalize the Zero Divisor Conjecture and Rigidity Theorem for k-regular sequences.

2. Main results
Theorem 2.1. [1, Theorem 2 · 3] Let R be a Noetherian ring and x1, ..., xn be a

sequence of elements of R. The following statements are equivalent:
(1) x1, ..., xn is a poor k-regular M -sequence;
(2) x1

1 , ...,
xn
1 is a poor regular Mp-sequence in Rp for all p ∈ (SuppM)>k and all

i = 1, ..., n;
(3) xm1

1 , ..., xmn
n is a poor k-regular M -sequence for all m1, ...,mn ∈ N.

Theorem 2.2. Let R be a Noetherian (not necessary local) ring and M be a non zero
finitely generated R-module. Let n ≥ 1 be an integer and x1, ..., xn be a poor k-regular
M -sequence. If dimTorR2 (

R
(x1,...,xn)

,M) ≤ k, then dimTorRi (
R

(x1,...,xn)
,M) ≤ k, for any

i ≥ 1.

Proof. To prove the assertion, we show that Tor
Rp

i (
Rp

(
x1
1
,...,xn

1
)
,Mp) = 0 for all p ∈

(SuppM)>k and all i ≥ 0. Therefore, without loss of generality, we may assume that
(SuppM)>k ⊆ V (x1, ..., xn) and dimM > k. The rest of proof will be done by induction.

□
Theorem 2.3. Let R be a Noetherian (not necessary local) ring, M be a non zero

finitely generated R-module, and I be an ideal of R with k-depth (I,M) = n. Let x1, ...xn be
a maximal k-regular M -sequence in I. If dimExtn+2

R ( R
(x1,...,xn)

,M) ≤ k, then x1, ..., xn ∈ I

is a k-regular R-sequence.

Proof. It is proved by induction on n.
□

3. Conclusion
Theorem 3.1. Let R be a Noetherian (not necessary local) ring, M be a non zero

finitely generated R-module, and I be an ideal of R with k-depth (I,M) = n ≥ 1. Assume
that x1, x2, ..., xn ∈ I is a maximal k-regular M -sequence. If dimExtn+2

R ( R
(x1,...,xn)

,M) ≤ k,
then dim ExtiR(

R
(x1,...,xn)

,M) ≤ k, for all integers i ≥ 0 (i ̸= n).

Proof. Let p ∈ (SpecR)>k. By Theorem 2.3 and 2.1 x1
1 , ...,

xn
1 is a poor regular

Rp-sequence. We show that ExtiRp
(

Rp

(
x1
1
,...,xn

1
)
,Mp) = 0 for all i ≥ n+ 1. For this purpose,

we may assume that p ∈ V (x1, ..., xn). Since

pdRp
(

Rp

(x1
1 , ...,

xn
1 )

) = n,

clearly
ExtiRp

(
Rp

(x1
1 , ...,

xn
1 )

,Mp) = 0
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for all i ≥ n+ 1, and so
dimExtiR(

R

(x1, ..., xn)
,M) ≤ k.

for all i ≥ n+ 1.
□

Corollary 3.2. Let R be a Noetherian (not necessary local) ring, M be a non zero
finitely generated R-module, and I be an ideal of R with k-depth (I,M) = n ≥ 1, assume
that x1, ..., xn ∈ I is a maximal k-regular M -sequence. Then the following statements are
equivalent:

(1) x1, ..., xn is an k-regular R-sequence;
(2) dimExtiR(

R
(x1,...,xn)

,M) ≤ k for all i > n;
(3) dimExtn+2

R ( R
(x1,...,xn)

,M) ≤ k;
(4) dimExt2R(

R
(x1,...,xn)

,Hn
(x1,...,xn)

(M)) ≤ k;
(5) dimExtiR(

R
(x1,...,xn)

,Hn
(x1,...,xn)

(M)) ≤ k for all integers i ≥ 1.

Proof. This is an immediate consequence of [2, Corollary 2 · 5].
□

Corollary 3.3. Let R be a Noetherian ring and M be a non zero finitely generated R-
module and x1, x2, ..., xn be a poor k-regularM -sequence. Then dimTorRi (

R
(x1,x2,...,xn)

,M) ≤
k if and only if dimTorRn+i(

R
(x1,x2,...,xn)

,Hn
(x1,...,xn)

(M)) ≤ k, for all i ≥ 0.

Theorem 3.4. Let R be a Noetherian ring and M be a non zero finitely generated
R-module. Let n ≥ 1 be an integer and x1, ..., xn be a poor k-regular M -sequence. Then
the following statements are equivalent:

(1) dimTorRi (
R

(x1,...,xn)
,M) ≤ k for every i ≥ 1;

(2) dimTorR2 (
R

(x1,...,xn)
,M) ≤ k;

(3) dimTorRi (
R

(x1,...,xn)
,Hn

(x1,...,xn)
(M)) ≤ k for all integers i ≥ n+ 1;

(4) dimTorRn+2(
R

(x1,...,xn)
,Hn

(x1,...,xn)
(M)) ≤ k.

Proof. It is easy consequence Theorem 2.2. □
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Abstract. We introduce the concepts of L∗–Dunford–Pettis and almost L∗–Dunford–
Pettis sets in Banach lattices. We obtain some characterizations of them with respect to
some well known geometric properties of Banach spaces, such as, weak Dunford-Pettis
property, strong relatively compact Dunford-Pettis property and almost Dunford-Pettis
completely continuous operators on such Banach lattices.
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1. Introduction

A subset A of a Banach space X is called Dunford–Pettis (DP), if every weak null
sequence (x∗n) in X∗ converges uniformly on A, that is

lim
n→∞

sup
a∈A
|〈a, x∗n〉| = 0.

Every relatively compact subset of E is DP. If every DP subset of a Banach space X is
relatively compact, then X has the relatively compact DP property (abb. DPrcP). For
example, dual Banach spaces with the weak Radon-Nikodym property and Schur spaces
(i.e., weak and norm convergence of sequences in X coincide) have the DPrcP [3]. Also
we recall that a Banach space X has the DPrcP if and only if every DP and weakly null
sequence (xn) in X is norm null.
In this article, at first we define the concepts of L∗–DP and almost L∗–DP sets in Banach
lattices. At first, we remember some definitions and terminologies from Banach lattice
theory.
It is evident that if E is a Banach lattice, then its dual E∗, endowed with the dual norm
and pointwise order, is also a Banach lattice. The norm ‖.‖ of a Banach lattice E is order
continuous if for each generalized net (xα) such that xα ↓ 0 in E, (xα) converges to 0
for the norm ‖.‖, where the notation xα ↓ 0 means that the net (xα) is decreasing, its
infimum exists and inf(xα) = 0. BE is the closed unit ball of E. The lattice operations in
the Banach lattice E are weakly sequentially continuous if for every weakly null sequence

∗Speaker. Email address: halimeh ardakani@yahoo.com
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(xn) in E, |xn| → 0 for σ(E,E∗). We refer the reader for undefined terminologies, to the
classical references [4].

2. Main results

Following the introducing of the concept DP sets in Banach spaces, we define L∗–DP
and almost L∗–DP sets in Banach lattices.

Definition 2.1. Let E be a Banach lattice. A norm bounded subset B of a Banach
lattice E is said to be an L∗–DP set if every weakly null and DP sequence (xn) of E∗

converges uniformly to zero on the set B, that is supf∈B |f(xn)| → 0.

It is clear that every DP set set in X is L∗–DP and every subset of an L∗–DP set is the
same.
Recall from [2], that a subset A of a Banach lattice E is called almost DP if every disjoint
weakly null sequence (x∗n) in E∗ converges uniformly on A.

Definition 2.2. Let E be a Banach lattice. A norm bounded subset B of a Banach
space E is said to be an almost L∗–DP set if every weakly null and almost DP sequence
(x∗n) of E∗ converges uniformly to zero on the set B, that is supf∈B |f(xn)| → 0.

It is clear that every almost L∗–DP in E is L∗–DP and every subset of an almost L∗–DP
set is the same. The following theorem gives aditional properties of these sets.

Proposition 2.3. (a) Absolutely closed convex hull of an almost L∗–DP set is
an almost L∗–DP set,

(b) relatively weakly compact subsets of a Banach lattice are almost L∗–DP set.

Note that the converse of assertion (b) in general, is false. In fact, the following theorem,
shows that the closed unit ball of c0 is an almost L∗–DP set, but it is not relatively weakly
compact.
A Banach lattice E has the strong DPrcP if all almost DP subsets of E are relatively
compact. It is clear that the strong DPrcP implies the DPrcP.
It is well known that every DP set is conditionally weakly compact. However, B`∞ is indeed
almost DP and by Rosenthal’s `1-theorem, B`∞ is not conditionally weakly compact.
By [4], an element e in a Banach lattice E is called a weak unit if Be = E, where Be is the
band generated by e. For example, C[0, 1] is a Banach lattice with the weak unit u(t) = t.
Banach lattices M [0, 1], of all signed Borel measures on [0, 1] of bounded variation and
(`∞)∗, do not have any weak unit.

Theorem 2.4. [1] Let E be a Banach lattice such that E∗ has a weak unit or E
has order-continuous norm. Then every almost DP set A in E is conditionally weakly
compact.

Theorem 2.5. Let E be a Banach lattice such that E∗∗ has a weak unit or E∗ has
order-continuous norm. Then E∗ has the strong DPrcP iff every bounded subset of E is
an almost L∗–DP set.

Definition 2.6. A bounded linear operator T from a Banach space X into a Banach
space Y is L∗–DP if T (BX) is an L∗–DP set in Y . We denote this class of operators by
L∗DP (X,Y ).

Definition 2.7. A bounded linear operator T from a Banach space X into a Banach
lattice E is almost L∗–DP if T (BX) is an almost L∗–DP set. We denote this class of
operators by L∗aDP (X,E).
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It is easy to see that the operator space L∗aDP (X,E) is a norm-closed subspace of L(X,E).
A Banach space X has the DPrcP if and only if for each Banach space Y , DPcc(X,Y ) =
L(X,Y ).

Theorem 2.8. An operator T is almost L∗–DP if and only if its adjoint T ∗ is DPacc.
Also each weakly compact operator is almost L∗–DP.

A Banach lattice E has the weak DP property if every relatively weakly compact set in E
is almost DP set.

Theorem 2.9. If E∗ has the weak DP property, then each almost L∗–DP set in E is
a DP set.

Proof. Let A be an almost L∗–DP set in E, and let (x∗n) be a weakly null sequence
in E∗. Since E∗ has the weak DP property, then (x∗n) is almost DP and by hypothesis, it
converges uniformly on A. Hence A is a DP set. �

Definition 2.10. A Banach lattice E into a Banach space E is almost L∗–DP property,
if all almost L∗–DP sets in E are relatively weakly compact.

Corollary 2.11. Dual Banach lattice E∗ has the strong DPrcP and E has the almost
L∗–DP property, iff E is reflexive.

Proof. If E is reflexive, then E∗ is reflexive and so it has the strong DPrcP. Clearly,
E has the almost L∗–DP property, since the closed unit ball BE is relatively weakly
compact.
For the converse, if E∗ has the strong DPrcP, then every weakly null and almost DP
sequence in E∗ is norm null; that is, BE is an almost L∗–DP set, and so it is relatively
weakly compact, by the almost L$ˆ*$–DP property of E. Hence E is reflexive. �
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1. Introduction

An structure is called one-step if all of its proper substructures (of the same kind)
are commutative. Aside commutative structures which are obvious examples of one-step
structures, non-commutative structures have only been classified for groups, rings and
semigroups. Note that Wedderburn’s little theorem [4] implies that “Finite one-step skew
fields are commutative”. One should note that finite one-step structures are of great
importance because every finite structure contains at least one one-step substructure, for
in finite states we usually are confronted with a miniaml condition which is one-step [5].
As a generalization of one-step rings we define “one-step plus rings” as the class of one-step
rings such that all of their sub-structures (of the same kind or not) are commutative. In
this paper we show that finite one-step plus unitary rings are commutative. So first we
define:

Definition 1.1. One-step plus rings are the class of all rings such all of their subrings
(of the same kind or not) are commutative.

In this paper, we characterize the structure of finite one-step plus unitary rings and
as our main result show that these rings exclusively are commutative. There is no full
describtion of one-step rings. Real quaternions are an example of infinite one-step non-
commutative rings of finite dimensional over its center. It is proved that if R is one-
step non-commutative ring and finite dimensional module over its center then R is finite
[9]. A result due to M. Ikeda [3] states that if N is the Jacobson radical of a one-step
non-commutative ring R such that R/N is finite over its center, then R is a finite ring.
The structure of nilpotent and non-nilpotent finite one-step non-commuatative rings are
characterized in [5] [13, p. 753]. For notations and preliminaries we refer to [4]. In the
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following example we show that no all one-step rings are one step rings. This show that
this class of rings may deserve distict study:

Example 1.2. Consider the ring R = {
(

a b
0 a2

)
; a, b ∈ GF (4)}. This ring is a one-

step unitary ring but it has the following non-commutative subring (which is not the same

kind since it has no unity element) {
(

0 b
0 a2

)
; a, b ∈ GF (4)}. So there are one-step

unitary rings in which some of their subrings (without unity) are not commutative. This
show that R is an one-step ring but is not an one-step plus ring!

2. Main results

To prepare our main results first we remind some theorems and give some lemmas:

Lemma 2.1. [2] Let R be a finite unitary ring of order pn, where p is a prime and n
is a positive integer. If n < 3, then R is a commutative ring.

Lemma 2.2. Let R be a ring and I an ideal of R such that I ⊆ Z(R). If R
I is a finite

field, then R is a commutative ring.

Proof. Since R
I is a finite field, there exists an element a ∈ R such that R

I = {I, a+

I, ..., ak + I}. Let x, y ∈ R. There are r, s ∈ I and two integers m,n such that x = s+ an

and y = r+ am. Since I ⊆ Z(R), we have xy = (s+ an)(r+ am) = (r+ am)(s+ an) = yx.
This show that R is commutative. □

Now, we give our main result but first note that, an additive subgroup S of a ring R is
a subring if and only if S is closed under multiplication. Therefore all left or right ideals
of R are considered as subrings of R.

Theorem 2.3. Finite one-step plus unitary rings are commutative.

Proof. The proof is by induction on the order of R or |R|. Let |R| = pα1
1 ...pαk

k be the
regular decomposition of |R| into distinct prime numbers pi, where αi are positive integers
(i = 1, · · · , k). Then

R = R1

⊕
R2

⊕
...

⊕
Rk,

where each Ri is an ideal of order pαi
i [2]. If k > 1, then by assumption each Ri is a com-

mutative ring and hence R = R1
⊕

R2
⊕

...
⊕

Rk is commutative by its componentwise
structure. So we may assume that |R| = pα, where p is a prime number and α is a positive
integer. By Lemma 2.1 every unitary ring of order pα with α < 3 is commutative, so the
base step in our induction process is valid. Now we have |R| = pα, where α ≥ 3 and we
assume that the claim is true for all unitary rings of order pγ , where γ < α. Now first
consider R is a simple ring. Then by Wedderburn-Artin Theorem and Wedderburn’s little
Theorem [4] R ∼= Mr(F ), where F is a finite field and r is a positive integer. If r > 1,
then the set of upper-triangular matrices in Mr(F ) is a non-commutative subring of R,
which contradicts our main assumption, hence r = 1 and R is a field, as desired. Now we
may suppose that R is not a simple ring and let I be a nontrivial minimal ideal of R. By
induction hypothesis R

I is a commutative ring and we have the following two cases:

Case 1. First suppose that R is a local ring. Let M be the maximal ideal of R. Clearly
M as a subring of R is commutative but is not central, otherwise by Lemma 2.2, R is
commutative. Let x ∈ M \ Z(R), then if R is not commutative there is an element
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w ∈ R \M = R∗ such that xw ̸= wx. Since R
I is a commutative ring, we have [R,R] ⊆ I,

so 0 ̸= [w, x] ∈ I and the non-commutative subring generated by {x,w} is not a proper
subring, in other words R = ⟨x,w⟩. Since R

M is a finite commutative simple ring it is a

field and we may assume that ( R
M )∗ = ⟨w + M⟩, where o(w + M) = n = pβ − 1, for we

may consider | RM | = pβ, where β < α. To follow the proof we separating the argument in
two subcases regarding Z(R) ∩ I ̸= 0 or = 0, where both lead to contradiction.

Case2. Suppose that R is not a local ring. Suppose that M and L are two non-central
maximal ideals of R. Since M and L are commutative rings and R = M + L, we have
M ∩ L ⊆ Z(R). If R is not commutative there are y ∈ L \M and x ∈ M \ L such that
xy ̸= yx, so R = ⟨x, y⟩. Since 0 ̸= xy − yx = [x, y] ∈ Z(R), the ideal I = annR([x, y]) is a
two sided proper ideal, for 1 /∈ I. We have 0 = (yx)y−y(yx) = y(xy−yx), therefore y ∈ I
and by the same way x ∈ I. Therefore R = ⟨x, y⟩ ⊆ I, which is a contradiction. [1] □

References

1. M. Amiri, M. Ariannejad, Finite unitary rings in which every subring is commutative, are commutative,
Journal of Algebra and its Applications, (2020) 2150152.

2. K.E. Eldridge, Orders for finite non-commutative rings with unity, The American Mathematical
Monthly, 75:5 (1968) 512-514.
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Abstract. In this paper, stability and Hopf bifurcation in a diffusive predator-prey
system are discussed. The interaction term is Holling type II. The local behavior is first
discussed for the corresponding homogeneous system. Then, the diffusive system’s linear
stability is discussed around a homogeneous equilibrium state followed by bifurcations in
the infinite-dimensional system. By choosing a proper bifurcation parameter, we prove
that a Hopf bifurcation occurs in both the homogeneous and nonhomogeneous systems.
We compute the normal form of this bifurcation up to the third order and obtain the
direction of the Hopf bifurcation. Finally, we provide numerical simulations to illustrate
our analytical conclusions.

Keywords: Stability, Hopf bifurcation, Reaction-diffusion system, Predator-prey model
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1. Introduction

One of the crucial topics in theoretical biology/ecology and applied mathematics is the
dynamic relationship between predators and their prey due to its importance in population
dynamics. Non-linear differential systems are usually used to describe predator-prey inter-
actions. The interaction between the two population can be divided into several types, as
Holling I-III types, Crowley-Martin Type, Bedington-Deangelis type, and Hasell-Varley
type. In this paper, we consider a well-motivated model in population dynamics. The
model is a reaction-diffusion system with a Holling type II functional response in the re-
action term, motivated by applications in spatial ecology. From the biological point of
view, it is more interesting to study the dynamical behavior of the positive equilibrium
points. The main result is to show that there is a Hopf bifurcation at an internal steady
state. We construct a center manifold to study the bifurcation and establish that the Hopf
bifurcation is generic. The periodic solution arising in the Hopf bifurcation corresponds
to an oscillating biological interaction between two species, prey and predator, in an iso-
lated environment. From a biological/ecological perspective, the stable periodic solution
keeps the population densities in balance. When the direction of the Hopf bifurcation
is supercritical, the bifurcating periodic solution is stable, and when the direction of the
Hopf bifurcation is subcritical, the bifurcating periodic solution is unstable. The biological
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motivation for studying the Hopf bifurcation in the model is to maintain balance in the
ecosystem. Almost all mathematical models constructed for predator-prey systems have
either a stable equilibrium point or a stable limit cycle. The observable oscillations in bio-
logical systems are usually modeled by the limit cycles of the corresponding mathematical
model. The basic predator-prey model with logistic growth in the prey and a Holling type
II response function is given by

{
dX
dt = rX(1− X

N )− αXY
1+thαX

,
dY
dt = −sY + cαXY

1+thαX
,

(1)

where X(t) denotes the prey and Y (t) the predator. The parameter r is the prey’s growth
rate, N is its carrying capacity, and s is the predator’s natural death rate in the absence
of prey. The parameter α is the search efficiency of Y for X, c is the consumption rate,
and th is the average handling time for each prey. Upon rescaling the variables and the
parameters of (1) as

x =
X

N
, y =

α

r
Y, t =

τ

r
, s̄ =

s

r
, ᾱ = thαN, c̄ = cα

N

r
,

it becomes {
x′ = dx

dτ = x(1− x)− xy
1+ᾱx ,

y′ = dy
dτ = −s̄y + c̄ xy

1+ᾱx .
(2)

To study the impact of spatial diffusion, we consider, in this paper, the following system




∂u
∂t = d1

(
∂2u
∂x2 + ∂2u

∂y2

)
+ u(1− u)− uv

1+αu ,

∂v
∂t = d2

(
∂2v
∂x2 + ∂2v

∂y2

)
− v(1− ρ u

1+αu),
(3)

in which d1, d2, ρ, α are positive constants, and W = (u, v) is a function of (x, y, t) ∈
(0, 1)× (0, 1)× R, together with the Neumann boundary conditions

∂W

∂x
(0, y, t) =

∂W

∂x
(1, y, t) =

∂W

∂y
(x, 0, t) =

∂W

∂y
(x, 1, t) = (0, 0).(4)

2. Main results

Our main results are stated in the following theorems.

2.1. Consider system
{

u̇ = u(1− u)− uv
1+αu ,

v̇ = −v(1− ρ u
1+αu),

(5)

on the first quadrant, with the positive parameters ρ, α. Then
(i) The boundary equilibrium point at the origin (u, v) = (0, 0) is always a hyperbolic saddle.
(ii) The boundary equilibrium point at (u, v) = (1, 0) is a stable node when ρ

α+1 < 1, a

hyperbolic saddle when ρ
α+1 > 1, and a saddle-node point when ρ

α+1 = 1.

(iii) When ρ > α+ 1, then there exists a nontrivial (positive) equilibrium point at (u, v) =
(ū, v̄), with

ū =
1

ρ− α
, v̄ =

ρ(ρ− (α+ 1))

(ρ− α)2
.
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(iv) If ρ > α(α+1)
α−1 , then the positive equilibrium point (ū, v̄) is an unstable strong focus, and

in this case, there exists an asymptotically stable limit cycle. If 1 + α < ρ < α(α+1)
α−1 , then

the previous limit cycle disappears and the fixed point (ū, v̄) becomes a stable strong focus.

(v) When ρ = α(α+1)
α−1 , the positive equilibrium point (ū, v̄) is a stable weak focus of order

one.
(vi) The point ρ = α(α+1)

α−1 , with α > 1, is the Hopf bifurcation value for system (5).

2.2. Consider system (3), with the positive parameters d1, d2, ρ, α. Then, the following
holds:
(i) When ρ > α+1, then there exists a nontrivial steady-state solution (u, v) = (ū, v̄), with

ū =
1

ρ− α
, v̄ =

ρ(ρ− (α+ 1))

(ρ− α)2
.

(ii) The point ρ = α(α+1)
α−1 , with α > 1, is the Hopf bifurcation value for system (3).

(iii) When ρ > α(α+1)
α−1 , then there exists a unique periodic solution which is stable, and the

nontrivial steady-state solution (u, v) = (ū, v̄) is unstable.

(iv) When 1 + α < ρ ≤ α(α+1)
α−1 , then the steady-state solution (u, v) = (ū, v̄) is stable.

3. Numerical results

In this section, we provide numerical simulations to validate the main results given in
Theorems 2.1 and 2.2.

3.1. Let us consider system (5) with α = 2 and ρ = 8. Then, its phase portrait on the
first quadrant is as in Figure 1. In this figure, the positive equilibrium point E∗ = (16 ,

10
9 )

is an unstable strong focus, and there exists a stable limit cycle around it arising from the
Hopf bifurcation.

Figure 1. The phase portrait of system (5) in the first quadrant for (α, ρ) = (2, 8).

3.2. Let us consider system (5) with α = 2, and ρ = 6. Then, its phase portrait on the
first quadrant is as in Figure 2. In this figure, the positive equilibrium point E∗ = (14 ,

9
8)

is a stable weak focus of order one.

3.3. Let us consider system (3) with d1 = d2 = 1, α = 2 and ρ = 8. Then, the
solution of system (3) with the initial values (u0, v0) = (0.17, 1) is shown in Figure 3 for
0 ≤ t ≤ 1500. In this figure, the steady state (u, v) = (16 ,

10
9 ) is unstable. Moreover, there

exists a stable periodic solution emerging from the Hopf bifurcation.
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Figure 2. The phase portrait of system (5) in the first quadrant for (α, ρ) = (2, 6).

(a) Plots of (t, x, u(x, t)) for 0 ≤ x ≤ 3 and
0 ≤ t ≤ 1500

(b) Plots of (t, x, v(x, t)) for 0 ≤ x ≤ 3 and
0 ≤ t ≤ 1500

Figure 3. The graph of the functions u = u(x, t) and v = v(x, t) as a solution
of (3) for (d1, d2, α, ρ) = (1, 1, 2, 8), and with the initial values (t0, x0, u0, v0) =
(0, 0, 0.17, 1).

3.4. The periodic solution of system (3) with the initial values

(u0, v0) = (0.664764172873410, 0.140596846060007)

is shown in Figure 4 for 0 ≤ t ≤ 1500.

4. Conclusion

In this paper, we considered a spatially extended prey-predator model with Holling type II
functional response and investigated the local behaviors of spatially homogeneous steady
states. By employing the linearization technique, the existence of Hopf bifurcation for
both the non-spatial and spatial systems has been established. Further, we determined
the stability and direction of the Hopf-bifurcating periodic solutions by using the cen-
ter manifold and normal form theories. Finally, some numerical simulations have been
provided to corroborate the obtained theoretical results.
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(a) Plots of (t, x, u(x, t)) for 0 ≤ x ≤ 3 and
0 ≤ t ≤ 1500

(b) Plots of (t, x, v(x, t)) for 0 ≤ x ≤ 3 and
0 ≤ t ≤ 1500

Figure 4. The graph of the functions u = u(x, t) and v = v(x, t) as a solution
of (3) for (d1, d2, α, ρ) = (1, 1, 2, 8), and with the initial values (t0, x0, u0, v0) =
(0, 0, 0.664764172873410, 0.140596846060007).
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Abstract. In this article, we study the existence of Killing and affine vector fields on the
Riemannian manifold H2 ×R. We also classify the matter collineations of this manifold.
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1. Introduction
The study of symmetries in general relativity has long been considered due to they are

interesting both from the mathematical and the physical point of view (see for example
[7]). The term ”symmetry” here refers to a one-parameter group of diffeomorphisms
of Riemannian manifold (M, g), which leaves a special mathematical or physical quantity
invariant. This statement is equivalent to the Lie derivative of the geometry quantity under
the vector field X vanishes, i.e., one has the field equation LXT = 0. If T has geometrical
or physical significance, then those special vector fields under which T is invariant will
also be of significance. Isometries are a well known example of symmetries, for which
T = g is the metric tensor, the corresponding vector field X is then a Killing vector field.
Homotheties and conformal motions on (M, g) are also examples of symmetries. A vector
field X on (M, g) preserving Levi-civita connection ∇ is known as an affine vector field.
It is obvious that if X preserves g, then it also preserves ∇, but the opposite is not always
ture. Recently, other types of symmetries including curvature collineations (T = R being
the curvature tensor), Ricci collineations (T = ρ being the Ricci tensor) and etc., have
been studied. Some examples may be found in [2,3].

A matter collineation of a Riemannian manifold (M, g) is a vector field X, correspond-
ing to a symmetry of the energy-momentum tensor T = ρ− τ

2
g, where τ displays the scalar

curvature. Since the Ricci tensor is constructed from the connection of the metric tensor,
Ricci collineations have geometrical importance [8]. However, matter collineations are
more related to a physical viewpoint [4,5]. These physical and geometric concepts give a
single meaning in a particular case, for example, when the meter tensor has a zero scalar
curvature.
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Due to the physical significance of symmetries, they have been investigated in several
classes of Lorentziam manifold. Furthermore, the three-dimensional case has also been
considerd as an interesting source of examples and different behaviours. Some examples
may be found in [1,6] and references therein.

Our goal in this article is to present a whole classification of Killing and affine vector
fields of the Riemannian manifold H2 ×R. We also classify the matter collineation of this
manifold. All calculations have also been checked using Maple16©.

2. Connection and curvature of the Riemannian manifold H2 × R
Assume H2 be expressed by the upper half-plane model {(x, y) ∈ R2 | y > 0} equipped

with the metric gH2 = 1
y2
(dx2 + dy2). Therefore, the left invariant product metric on the

Riemannian manifold H2 × R is given by

g =
1

y2
(dx2 + dy2) + dz2.(1)

We will denote by ∇ the Levi-civita connection of (H2 ×R, g), by R its curvature tensor,
taken with the sign contract R(X,Y ) = [∇X ,∇Y ] − ∇[X,Y ] and by ρ the Ricci tensor of
(H2 × R, g), which is defined by ρ(X,Y ) = tr{Z 7→ R(Z,X)Y }. The Ricci operator Ric
is given by ρ(X,Y ) = g(Ric(X), Y ) and the scalar curvature τ = trg ρ is the metric trace
of the Ricci tensor.

The non-zero components of the Levi-civita connection ∇ of the Riemannian manifold
H2 × R are given by

∇∂x∂x = 1
y∂y, ∇∂x∂y = − 1

y∂x, ∇∂y∂y = − 1
y∂y.(2)

The non-zero component of the curvature tensor R is given by

R(∂x, ∂y)∂y = − 1

y2
∂x,

and the non-zero components of the Ricci tensor are ρ11 = ρ22 = − 1
y2
.

3. Killing and affine vector fields of the Riemannian manifold H2 × R
In this section, we want to classify the Killing and affine vector fields of (H2 × R). In

general, we have the following theorem.

Theorem 3.1. Assume X = X1∂x +X2∂y +X3∂z be an arbitrary vector field on the
Riemannian manifold (H2 × R). Then

(i) X is a Killing vector field if and only if

X1 =
1

2
c1(x

2 − y2) + c2x+ c3, X2 = (c1x+ c2)y, X3 = c4,

(ii) X is an affine, non-Killing vector field if and only if
X1 = c1(x

2 − y2) + c2x+ c3, X2 = (−2c1x+ c2)y, X3 = c4z + c5,

In the above expressions, ci is arbitrary real number, for any indices i.

Proof. A straightforward computations displays that Lie derivative of g is given by

LXg =
2

y3
(y∂xX

1 −X2)dxdx+
2

y2
(∂xX

2 + ∂yX
1)dxdy
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+
2

y2
(y2∂xX

3 + ∂zX
1)dxdz +

2

y3
(y∂yX

2 −X2)dydy

+
2

y2
(y2∂yX

3 + ∂zX
2)dydz + 2∂zX

3dzdz.

By seeting all the cofficients in the LXg equivalent to zero and solving the system of PDEs,
the killing vector fields is obtained which gives the case (i).

To specify the affine vector fields, we require to compute the Lie derivative of the
Levi-civita connection ∇. By (2) we prove that the possibly non-zero components of the
LX∇ are assumed with

LX∇(∂x, ∂x) = −1

y
(2∂xX

2 − y∂2
xxX

1 + ∂yX
1)∂x +

1

y2
(2y∂xX

1 + y2∂2
xxX

2 − y∂yX
2 −X2)∂y

+
1

y
(y∂2

xxX
3 − ∂yX

3)∂z,

LX∇(∂x, ∂y) =
1

y2
(−y∂yX

2 + y2∂2
yxX

1 +X2)∂x +
1

y
(∂yX

1 + y∂2
yxX

2)∂y

+
1

y
(∂xX

3 + y∂2
yxX

3)∂z,

LX∇(∂x, ∂z) = −1

y
(∂zX

2 − y∂2
yxX

1)∂x +
1

y
(∂zX

1 + y∂2
zxX

2)∂y + ∂2
zxX

3∂z,

LX∇(∂y, ∂y) =
1

y
(−∂yX

1 + y∂2
yyX

1)∂x +
1

y2
(−y∂yX

2 + y2∂2
yyX

2 +X2)∂y

+
1

y
(y∂2

yyX
3 + ∂yX

3)∂z,

LX∇(∂y, ∂z) =
1

y
(−∂zX

1 + y∂2
zyX

1)∂x −
1

y
(∂yX

2 − y∂2
zyX

2)∂y + ∂2
zyX

3∂z,

+
1

y
(y∂2

yyX
3 + ∂yX

3)∂z,

LX∇(∂z, ∂z) = ∂2
zzX

1∂x + ∂2
zzX

2∂y + ∂2
zzX

3∂z.

Affine vector fields are specified by solving the system of PDEs, obtained from the van-
ishing of the cofficients of the LX∇. This yelds the case (ii) and ends the proof. □

4. Matter collineations
We formerly remembered that an arbitrary vector field X on a Riemannian manifold

(M, g) is nameed a matter collineation when T = ρ − τ

2
g. Now, We classify matter

collineations on Riemannian manifold (H2 × R).

Theorem 4.1. Assume X = X1∂x+X2∂y+X3∂z be an arbitrary smooth vector field
on the Riemannian manifold (H2 × R, g). Then, X is a matter collineation if and only if
X1, X2 are arbitrary and X3 = c, where c is a real constant.

Proof. A straightforward computation displays that only the non-zero component of
the tensor field T is T (∂z, ∂z) = 1. Now, we compute the Lie derivative of the tensor field
T . We have

LXT = 2∂xX
3dxdy + 2∂yX

3dydz + 2∂zX
3dzdz.
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Requiring that LXT = 0. So, we attain the system of PDEs, which solutions specify the
matter collineations of (H2 ×R, g). Thus, X is a matter collineation if and only if X1, X2

are arbitrary and X3 is a real constant and this completes the proof. □
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Abstract. In this paper, we employ a spectral collocation method based on Legendre
polynomials (LPs) to solve the nonlinear time-fractional stochastic beam equation (NTFSBE).
This method is applied to convert the solution of NTFSBE to the solution of a nonlinear
system of algebraic equations. The numerical approach is completely described. Finally,
a test example is implemented to validate the robustness of the proposed scheme.
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1. Introduction
There are many phenomena in physics, chemistry, and engineering that appear ran-

domly and are explained by stochastic processes [1–3]. Stochastic behaviour arises natu-
rally in many different phenomena where the effects of random ”noise” perturbations to
a system are being considered. For this reason, in recent years, the theory of stochastic
partial differential equations has attracted more attention of scholars.

In this paper, we focus on the following NTFSBE
(1) ρ∂2

t u(x, t)+∂α
t u(x, t)+∂4

xu(x, t)−µ∂2
xu(x, t) = F(x, t, u)Ḃ(t)+g(x, t), in Ω×(0, T),

with the initial and boundary conditions
u(x, t) = 0, in ∂Ω× (0, T),(2)
u(x, 0) = ζ0(x), in Ω,(3)

where ρ, µ ∈ R+, Ḃ(t) := dB(t)
dt denotes a time white noise and F ∈ C1(Ω × (0, T) × R)

satisfies the Lipschitz condition with respect to u. Moreover, L, T ∈ R+, Ω := [0, L], ζ0(x)
is the continuous function and the operator ∂α

t [·] denotes Caputo fractional derivative of
order α ∈ (0, 1) [4],

∂α
t u(x, t) =

1

Γ(1− α)

∫ t

0
(t− s)−α∂u

∂s
(x, s)ds,(4)

where Γ(·) shows the Gamma function.
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2. The Shifted LPs and Their Properties
Definition 2.1. ( [5]) The shifted LPs on [a, b] are defined by explicit analytic form

(5) θa,bi (t) =

[ i2 ]∑

r=0

i−2r∑

m=0

m∑

j=0

ϖa,b
r,m,j tj ,

where
ϖa,b

r,m,j =
(−1)r−j+m2m−ibm−j(2i− 2r)!

(b− a)m(i− r)!r!(i− 2r −m)!j!(m− j)!
.

Theorem 2.2. ( [5]) Suppose that Ω̃ := [0, L] × [0, T], Cn+1,m+1(Ω̃) is the space of
functions with continuous partial derivatives and let f(x, t) ∈ Cn+1,m+1(Ω̃) satisfies the
conditions

max
(x,t)∈Ω̃

∣∣∣∂
n+1f

∂xn+1
(x, t)

∣∣∣ ≤ β1, max
(x,t)∈Ω̃

∣∣∣∂
m+1f

∂tm+1
(x, t)

∣∣∣ ≤ β2, max
(x,t)∈Ω̃

∣∣∣ ∂n+m+2f

∂xn+1∂tm+1
(x, t)

∣∣∣ ≤ β3,

where β1, β2 and β3 are positive constants. Let fn,m(x, t) is an approximation of f(x, t)
defined by fn,m(x, t) =

n∑
i=0

m∑
j=0

ci,jθ
0,L
i (x)θ0,Tj (t), then

∥f − fn,m∥2 ≤
β1L

n+1

(n+ 1)!22n+1
+

β2T
m+1

(m+ 1)!22m+1
+

β3L
n+1Tm+1

(n+ 1)!(m+ 1)!22n+2m+2
.

3. Description of the Collocation Approach
To find a numerical solution of Eq.(1), assume

(6) un,m(x, t) =
n∑

i=0

m∑

j=0

ci,jθ
0,L
i (x)θ0,Tj (t) = Θ(x)TCΘ̃(t),

where Θ(x) = [θ0,L0 (x), · · · , θ0,Ln (x)]T and Θ̃(t) = [θ0,T0 (t), · · · , θ0,Tm (t)]T. Also

C :=
[
ci,j

]
(n+1)×(m+1)

, i = 0, 1, ..., n, j = 0, 1, ...,m,

is an (n+ 1)× (m+ 1) unknown coefficients matrix that must be determined. According
to Eqs. (1) and (6), we have

R(x, t) ≜ ρΘ(x)TCΨ̃2(t) + Θ(x)TCΨ̃α(t) + Ψ4(x)TCΘ̃(t)

− µΨ2(x)TCΘ̃(t)− F(x, t,Θ(x)TCΘ̃(t))
dB(t)

dt
− g(x, t) ≃ 0,(7)

where Ψ̃α(t) is the Caputo fractional derivative of the vector Θ̃(t) and is obtained by
(8) Ψ̃α(t) = ∂α

t Θ̃(t) = [0, ϑα
1 (t), ..., ϑ

α
m(t)]T ,

in which for j = 1, ...,m, we have

ϑα
j (t) := ∂α

t

(
θ0,Tj (t)

)
=

[ j
2
]∑

r=0

j−2r∑

k=0

k∑

j=0

Γ(j + 1)ϖ0,T
r,k,j

Γ(j + 1− α)
tj−α.

Also

Ψ̃2(t) = [
d2

dt2
θ0,T0 (t), · · · , d

2

dt2
θ0,Tm (t)]T,(9)
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Ψr(x) = [
dr

dxr
θ0,L0 (x), · · · , dr

dxr
θ0,Ln (x)]T, r = 2, 4.(10)

Let x0 = 0, xn = L and {xi; i = 1, ..., n− 1} are the roots of θ0,Ln−1(x). Also, suppose
{tj ; j = 1, ...,m} are the roots of θ0,Tm (t). By evaluating Eq. (7) at collocation points
(xi, tj), i = 1, ..., n− 1, j = 1, ...,m, we have

R(xi, tj) = ρΘ(xi)
TCΨ̃2(tj) + Θ(xi)

TCΨ̃α(tj) + Ψ4(xi)
TCΘ̃(tj)

− µΨ2(xi)
TCΘ̃(tj)− F(xi, tj ,Θ(xi)

TCΘ̃(tj))
B(tj)− B(tj−1)

tj − tj−1
− g(xi, tj).(11)

Also, from Eqs.(2)-(3) and (6), we have
Λ1
j ≜ Θ(x0)

TCΘ̃(tj) ≃ 0, j = 1, ...,m,(12)
Λ2
j ≜ Θ(xn)

TCΘ̃(tj) ≃ 0, j = 1, ...,m,(13)
Πi ≜ Θ(xi)

TCΘ̃(0)− ζ0(xi) ≃ 0, i = 0, ..., n.(14)
Hence, we solve the following system of (n+ 1)× (m+ 1) nonlinear algebraic equations

(15)





(tj − tj−1)R(xi, tj) = 0, i = 1, ..., n− 1, j = 1, ...,m,

Λr
j = 0, r = 1, 2, j = 1, ...,m,

Πi = 0, i = 0, ..., n,

by using the Newton’s iterative technique [6]. As a result, an approximate solution
un,m(x, t) can be attained from (6).

4. Numerical test example
In this section, we investigate our proposed approach for solving the TFSACE. We

evaluate the numerical solution u(x, t) along p discretized Brownian paths. Also, the
arithmetic mean of u(x, t) over these paths is considered. The codes are written in Matlab
software and the computations are performed on a machine using a 1.70 GHz processor.

Consider the Eq.(1) with ρ = 2, µ = 1 and F(x, t, u) = σ sin(u)Ḃ(t). Note that the
exact solution of this example is u(x, t) = t2x4. Figure 1 shows the exact and numerical
solution of u(x, t) with p = 80, σ = 0.05, α = 0.5 and n = m = 8. Figure 2 indicates the
numerical solution of u(x, T) along p = 100 different discretized Brownian paths (Blue)
and their arithmetic mean (Red) and Figure 3 displays the absolute error and contour plot
of u(x, t) with σ = 0.02, when α = 0.45, p = 100 and n = m = 9.
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Figure 1. The exact and numerical solution of u(x, t) with α = 0.5.
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Figure 2. The numerical solution of u(x, T) along p = 100 different dis-
cretized Brownian paths (Blue) and their arithmetic mean (Red).
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Figure 3. The absolute error and contour plot of u(x, t) with σ = 0.02.
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Numerical solution of an inverse diffusion-convection
problem based on the Chebyshev-collocation method
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Abstract. In this work, we consider an inverse diffusion-convection problem with an
unknown function in the boundary condition. Since, in the sense of stability, this inverse
problem is generally ill-posed, a mollification regularization technique is utilized. Then,
a sixth-kind Chebyshev-collocation method will be introduced to solve the resulted mol-
lified problem. At the end, to validate the accuracy of the proposed method a numerical
example is investigated.
Keywords: Inverse problem. Diffusion-convection equation. Collocation method. Mol-
lification technique.
AMS Mathematics Subject Classification [2010]: 35R30, 65M70, 41A50

1. Introduction
In this article, we investigate the diffusion-convection equation in the form

(1) ut(x, t) = uxx(x, t) + η(x)ux(x, t) + f(x, t), (x, t) ∈ Ω× T,

with the conditions

u(x, 0) = u0(x), x ∈ Ω,(2)
u(0, t) = φ0(t), u(1, t) = φ1(t), t ∈ T,(3)

such that η(x) is a known coefficient, f(x, t) is the source term, and u0(x) and φ0(t) show
two known continuous functions. Also, let Ω := (0, 1), T := (0, 1). In this problem φ1(t)
is an unknown boundary function. To find the solution of this inverse problem, we need
an additional condition. Here, the condition

(4) u(x̂, t) = β(t), t ∈ T,

is used at an interior point x̂ ∈ Ω.

∗Speaker. Email address: s.sahar.jalalian@gmail.com
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1.1. Mollification method. The inverse problem with unknown boundary condition
is sensitive to the noisy input data and is generally ill-posed [1,2]. In practice, we have only
a perturbed approximation of the input function β(t) in the condition (4). Thus, using an
appropriate regularization method is necessary to find a stable numerical solution. Here,
we employ the mollification regularization technique. This method utilizes a convolution
of the input data and a smooth function, to filter the high-frequency components of the
noisy data. So, the noise will be controlled and the resulted problem becomes well-posed.
Let δ > 0 and p > 0 such that pδ < 0.5 and Ap =

( ∫ p
−p exp(−s2)ds

)−1
. Suppose φ(t) is a

locally integrable function over [0, 1] and t ∈ Iδ = [pδ, 1− pδ]. Then

Jδφ(t) = (ρδ,p ∗ φ)(t) =
∫ t+pδ

t−pδ
ρδ,p(t− s)φ(s)ds,

is the δ-mollification [3] of φ and in which the Gaussian kernel

ρδ,p(t) =

{
Apδ

−1exp(− t2

δ2
), |t| ⩽ pδ,

0, |t| > pδ.

is a non-negative C∞(−pδ, pδ) function. Now, suppose that we have a discrete version of
φ(t). Then, to obtain the mollification of this function, let K = {tj : j ∈ M} ⊂ T and
∆t = sup{(tj+1 − tj) : j ∈ M, tj+1 − tj > d > 0} where M is a set of integers, and d is a
positive constant. Let B = {φ(tj) = φj : j ∈ M} be a discrete function defined on K. We
set sj = (tj + tj+1)/2, j ∈ M. The discrete mollification of B [4] is defined as follows:

JδB(t) =
∞∑

j=−∞

(∫ sj

sj−1

ρδ(t− s)ds
)
φj.

Assume that in (4), instead of β(t), some noisy function βε ∈ C0(T) is in hand, such
that ∥β − βε∥∞,T ≤ ε. Consider a set of sample points {t̃r := rh; r = 0, ..., m̃}, where m̃ is
a positive integer and h = 1/m̃ is the mesh size. So, by applying the mentioned discrete
mollification approach on {βε(tr); r = 0, ..., m̃}, a mollified function {Jδ [β

ε] (tr); r =
0, ..., m̃} will be resulted where the smoothing parameter δ is determined automatically
by the generalized cross-validation (GCV) criterion [3]. At the end, interpolating these
values results a stabilized approximation B(t) of the additional noisy function βε.

2. Numerical procedure
Definition 2.1. The shifted sixth-kind Chebyshev polynomials are defined by [5]
θ0(t) = 1, θ1(t) = 2t− 1, θi+1(t) = tθi(t) + Πi θi−1(t), i = 2, 3, ...,

on [0, 1], where

Πi :=
−i2 + 2i(−3− (−1)i)− 3(1− (−1)i)

(−2i− 4)(−2i− 2)
.

To obtain a numerical approximation of the solution of (1), assume

(5) u(x, t) ≃
n∑

i=0

m∑

j=0

ci,jθi(x)θj(t) = Θ(x)TCΘ(t),

where Θ(x) := [θ0(x), ..., θn(x)]
T, Θ(t) := [θ0(t), ..., θm(t)]T and C :=

[
ci,j

]
(n+1)×(m+1)

,
i = 0, ..., n, j = 0, ...,m is an unknown coefficients matrix that should be determined. So,
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according to (5) and (1), we have
Θ(x)TCΘt(t) = Θxx(x)

TCΘ(t) + η(x)Θx(x)
TCΘ(t) + f(x, t),(6)

where Θt(t) := [θ′0(t), ..., θ
′
m(t)]T and Θxx(x) := [θ′′0(x), ..., θ

′′
n(x)]

T. Let x0 = 0, xn = x̂ and
{xi : i = 1, ..., n− 1} be the roots of θn−1(x) and {tj : j = 1, ...,m} be the roots of θm(t).
Now, by evaluating (6) at (n − 1) × m collocation points {(xi, tj) : i = 1, ..., n − 1, j =
1, ...,m}, we have
(7) Θ(xi)

TCΘt(tj) = Θxx(xi)
TCΘ(tj) + η(xi)Θx(xi)

TCΘ(tj) + f(xi, tj),

Also, with collocating (2) at {xi : i = 0, ..., n}, and collocating (3) and (4) at {tj : j =
1, ...,m}, we have

Θ(xi)
TCΘ(0) = u0(xi),(8)

Θ(0)TCΘ(tj) = φ0(tj),(9)
Θ(x̂)TCΘ(tj) = B(tj).(10)

Let
Ψ1 = [Θ(x1), ...,Θ(xn−1)]

T
(n−1)×(n+1) , Ψ2 = [Θxx(x1), ...,Θxx(xn−1)]

T
(n−1)×(n+1) ,

Ψ3 = [Θx(x1), ...,Θx(xn−1)]
T
(n−1)×(n+1) , Φ1 = [Θ(t1), ...,Θ(tm)](m+1)×m,

Φ2 = [Θt(t1), ...,Θt(tm)](m+1)×m , Dη = diag [η(x1), ..., η(xn)] ,

F = [fi,j ](n−1)×m , fi,j := f(xi, tj), i = 1, 2, ..., n− 1, j = 1, 2, ...,m.

Using the Kronecker product, Eq. (7) is equivalent to
(11) λ1X = Z,

where λ1 = ΦT
2 ⊗ Ψ1 − ΦT

1 ⊗
(
Ψ2 + DηΨ3

)
, X = vec(C) and Z = vec(F). From Eqs.

(8)-(10), we have
(12) λ2X = S, λ3X = H0, λ4X = Hx̂,

where λ2 = Θ(t0)
T⊗Ψ4, λ3 = ΦT

1 ⊗Θ(x0)
T, λ4 = ΦT

1 ⊗Θ(x̂)T, Ψ4 = [Θ(x0), ...,Θ(xn)]
T,

S = [u0(x1), ..., u0(xn)]
T, H0 = [φ0(t1), ..., φ0(tm)]T and Hx̂ = [B(t1), ...,B(tm)]T. Thus,

from (11)-(12), we obtain
(13) AX = F,

where A = [λT
1 ,λ

T
2 ,λ

T
3 ,λ

T
4 ]

T and F = [ZT,ST,HT
0 ,H

T
x̂ ]

T. The relation (13) gives a
system of (n + 1)(m + 1) linear algebraic equations which can be solved. Solving this
system leads to an approximate solution of u(x, t) in the form (5). Finally, to obtain an
estimation of the unknown boundary function φ1(t), we have

(14) φ1(t) = u(1, t) ≃
n∑

i=0

m∑

j=0

ci,jθi(1)θj(t).

3. Numerical test Example
In this section, we consider Eqs.(1)-(4) with η(t) = 2, u0(x) = x2 and φ0(t) = 0.

The exact solution to this problem is u(x, t) = x2exp(−t). Let x̂ = 0.7, Figure 1 shows
the exact and numerical solution and Figure 2 shows the absolute error of u(x, t), when
N = M = 9, ε = 0.01 and ε = 0.05. Table 1 displays the l2-norm error for several values
of ε and n = m.
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Figure 1. Exact solution (left) and numerical solution (right).
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Table 1. The l2−norm errors.

N=M 5 7 9
ε = 0.01 0.003 0.001 0.001
ε = 0.05 0.008 0.005 0.005
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Groups with few p-parts of co-degrees of irreducible
characters
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Abstract. For a character χ of a finite group G, the number χc(1) = [G:Kerχ]
χ(1)

is called

the codegree of χ. Let p be a prime and let e be a positive integer. In this talk, we first
show that the p-parts of co-degrees of non-principal irreducible characters of G are same
if and only if G is an elementary abelian p-group. Next, we show that if G is a p-solvable
group such that pe+1 ∤ χc(1), for every irreducible character χ of G, then the p-length of
G is not greater than e. Finally, we study the finite groups satisfying the condition that
p2 does not divide the co-degrees of their irreducible characters.

Keywords: co-degree of a character, p-length, p-solvable group.

AMS Mathematics Subject Classification [2010]: 20C15, 20D10, 20D05

1. Introduction

Throughout this paper, G is a finite group and p is a prime number. For a positive
integer a, |a|p denotes the p-part of a. For a p-solvable group G, the p-length of G,
denoted by ℓp(G), is the minimum possible number of factors that are p-groups in any

normal series of G which every factor is either a p-group or a p
′
-group. Let Irr(G) denote

the set of the (complex) irreducible characters of G. For a character χ of G, the number

χc(1) = [G:Kerχ]
χ(1) is called the co-degree of χ (see [6]). Set Codeg(G) = {χc(1) : χ ∈ Irr(G)}.

Some properties of χc(1) have been studied in [1–4,6].

2. Main results

J.G. Thompson proved that if the degree of every nonlinear irreducible character of G
is divisible by p, then G has a normal p-complement. In [3, Proposition 2.3 and Theorem
1.1], it has been shown that:

Theorem 2.1. Let G be a finite p-solvable group.

(i) If p | χc(1) for every non-principal character χ ∈ Irr(G), then G is solvable.
(ii) Suppose that p is neither 2 nor a Mersenne prime. Then p | χc(1) for every

non-principal character χ ∈ Irr(G) if and only if G is a p-group.

∗Speaker. Email address: Roya.Bahramian98@gmail.com
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Alizadeh et al. proved thatG is an elementary abelian group if and only if |Codeg(G)| =
2 (see [2] and the references cited in it.). In [3, Theorem 1.2], we have considered the ana-
logues of this result for p-parts of co-degrees of irreducible characters and we prove that:

Theorem 2.2. For every non-principal irreducible character χ of G, χc(1)p = pe if
and only if e = 1 and G is an elementary abelian p-group.

In [1], it has been proven that the p-length of a p-solvable group is not greater than
the number of the distinct co-degrees of its irreducible characters which are divisible by p.
In [4, Theorem 1], we have found the other bound for the p-length of a p-solvable group
in terms of the co-degrees of its irreducible characters, as follows:

Theorem 2.3. If G is a p-solvable group and pe+1 ∤ χc(1), for every χ ∈ Irr(G), then
ℓp(G) ⩽ e.

In [5] and the references cited in it, it has been shown that if p2 ∤ χ(1), for every
χ ∈ Irr(G), then [G : O(G)]p ⩽ p3. In [4, Theorems 1,2], we investigate the same problem
for irreducible character co-degrees and we prove that:

Theorem 2.4. If χc(1)p ⩽ p, for every irreducible character χ of G, then either
|G|p = p or G is a p-solvable group of p-length one.
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Abstract. In this paper, we study a relative N-weight linear codes over Rα1 ×Rβ2 , where
R1 and R2 are finite chain rings. We introduce the concept of relative N-weight code
overRα1 ×Rβ2 as a generalization of one- weight and two- weights codes. It is shown that
the Gray image of N-distance of relative N-weight is a N-distance code and that the Gray
image of a relative N-weight code is a linear relative N-weight code.

Keywords: Codes over chain rings, Linear code, Gray image, Relative N-weight code
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1. Preliminaries

A relative one-weight code was first introduced in [2] in order to study the relative
generalized Hamming weight [5]. Let C be a linear q-ary code and C1 be a linear subcode
of C. If all the codewords C \ C1 = {c : c ∈ C and c /∈ C1} have the same weight, then
C is called a relative one-weight code with respect to the subcode C1. The other special
classes are two-weight codes and three-weight codes introduced in [3], [4], and these two
classes of codes are useful in the wire-tap channel of type II with multiple users [5].

We introduce the concept of relative N-weight codes overRα1 ×Rβ2 .

In [1] codes over Rα1 × Rβ2 are defined. In general case we let R1 and R2 be chain rings
with maximal ideal 〈γ1〉,〈γ2〉 and nilpotency indices e1 and e2, respectively. Moreover, we

will suppose that R1 and R2 have the same residue field Fq = R1
〈γ1〉 = R2

〈γ2〉 , and e1 ≤ e2.

Also, suppose that T1 = {r0, . . . , rq−1} and T2 = {r′0, . . . , r′q−1} are the Teichmüller sets
of representatives of R1 and R2, respectively. One can see that there exists the natural
surjective ring homomorphism π from R2 to R1 such that π(γ2) = γ1 and π(r′j) = rj .
Using this map, the scalar multiplication ∗ can be defined as follows:

(1) a ∗ u = (π(a)u0, π(a)u1, . . . , π(a)uα−1|au′0, . . . , au′β−1),

for all a ∈ R and u = (u|u′) = (u0, . . . , uα−1|u′0, . . . , u′β−1) ∈ Rα1 × R
β
2 . Consider injective

map ι : R1 → R2 by definition ι(γ1) = γ2 and ι(rj) = r′j . It is obvious that πι = Id.

∗Speaker. Email address: mina.moeini@gmail.com
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It is asserted that Rα1 ×Rβ2 is an R2-module with respect to the scalar multiplication
defined in (1); see [1].

Definition 1.1. A subset C over Rα1 × Rβ2 is a linear code if it is a submodule of

Rα1 ×Rβ2 .

Now we define the weight of u = (u|v) as w(u|v) = wt(u) + wt(v).

Definition 1.2. The inner product of vectors u and v in Rα1 ×Rβ2 is defined by

< u,v >= γe2−e12 ι(u.v) + u′.v′ ∈ R2,

where u.v and u′.v′ are standard inner product.

Then we define the dual code of a linear code C over Rα1 ×Rβ2 as

C⊥ = {v ∈ Rα1 ×Rβ2 : < u,v >= 0, for all u ∈ C }.

2. Relative N-weight codes over Rα
1 ×Rβ

2

Throughout in this paper we denote the calligraphic C as a code in Rα1 × Rβ2 and the

standard C as a code over the Fq
e1−1α+qe2−1β
q , where residue field of chain rings R1 and

R2 is Fq.

Definition 2.1. Let C A nonzero code over Rα1 × Rβ2 and C1 be a k1 dimensional
subcode of C , C2 be a k2 dimensional subcode of C,..., CN be a kN dimensional subcode
of C satisfying in relation

C1 ⊂ C2 ⊂ · · · ⊂ CN−1 ⊂ CN = C.
Then C is called a relative N-weight with respect to C1, C2, · · · , CN , where C1, C2 \ C1, C3 \
C2, · · · , CN \ CN−1 are all constant weights codes.
If these N-constant weight codes have weights m1, · · ·mN ,respectively, then the relative
N- weight code C is denoted by C(m1,m2, · · · ,mN ).(mi > 0)

Example 2.2. C is called a relative two-weight code with respect to a subcode C1 and
C \ C1 are both constant weight codes. If these two constant weight codes have weights
m1 and m2, then the relative two-weight code C is denoted by C(m1,m).
If C1 be a k1 dimensional subcode of C, and C2 be a k2-dimensional subcode of C, satisfying
C1 ⊂ C2 ⊂ C, then C is called a relative three-weight code with respect to C1 and C2,provided
that C1,C2 \ C1, C \ C2 are all constant weight codes.If these three constant weight codes
have weights m1,m2 and m respectively, then the relative three- weight code C is denoted
by C(m,m1,m2).

Definition 2.3. A non zero linear code C in Rα1 ×Rβ2 is called N-distance if there exist
N distinct positive integers m1, · · · ,mN , such that for any two distinct codwords ci, cj ∈ C
,d(ci, cj) ∈ {m1, · · · ,mt}.

Lemma 2.4. The linear code C in Rα1 ×Rβ2 is a relative N-distance code if and only if
C is a relative N- weight code.

Proof. Let the linear code C is relative N-weight code with respect to C1,· · · ,CN with
wights m1,m2, · · · ,mN . Then for two distinct codwords ci, cj ∈ C, we are different cases:
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First case:
If ci, cj ∈ C1 then, w(ci = w(c)j = m1 therefore

d(ci, cj) = w(ci − cj) = m1 ∈ {m1, · · · ,mt}.
Two case:
If ci, cj ∈ Ci \ ci−1,(1 ≤ i ≤ n) then

d(ci, cj) = mi ∈ {m1, · · · ,mN}.
Three case:
If ci ∈ Ci \ Ci−1 , c2 ∈ C2 \ Cj−1 where i 6= j, then

d(ci, cj) = w(ci − cj) ∈ {{m1, · · · ,mN}.
Therefore in any case C is N-distance code.
Vice versa If C is N-distance code ,then for two distinct codwords we have:

∃mi,mj ∈ {m1, · · · ,mN}, such that, d(ci, 0) = w(ci) = mi, d(cj , 0) = w(cj) = mj .

So there exist subcode C〉 of C , such that for ci ∈ Ci, w(ci) = mi. And for cj ∈ C〉 ∈ C|,
w(cj) = mj (1 ≤ i, j ≤ n). There fore C is relative N-weight code. �

Theorem 2.5. If C is a N-distance linear code over Rα1×Rβ2 with distance {m1, · · · ,mN},
then ϕ(C)is a N-distance code with the same distance {m1, · · · ,mN}, where ϕ is arbitrary

isometry gray over Rα1 ×Rβ2 .
Proof. Let c1, c2 ∈ C are two distinct codwords. then ϕ(c1), ϕ(c2) ∈ ϕ(C). It is clear

that ϕ(c1) 6= ϕ(c2). By Lemma 2.4 C is N-distance code so d(c1, c2 ∈ {m1, · · · ,mN} but
ϕ is isometric then

d(ϕ((c1), ϕ(c2)) = d(c1, c2) ∈ {m1, · · · ,mN}.
Therefore ϕ(C) is N-distance with weights {m1, · · · ,mN}. �

If C is a N-relative weight linear code, then C⊥ need not be so.

Example 2.6. Let C = 〈(0|1)〉 be a linear code in Z2 × Z2[u]. Then C is a C(2, 1)
relative two-weight code and its dual code C⊥ = 〈(1, 0)〉 is not a relative two-weight linear
code.

Theorem 2.7. Let C be a C(m1, · · · ,mN ) code in Rα1 × Rβ2 , then the Gray image C
is a relative N-weight code C(m1, · · ·mN ) in Fq

e1−1α+qe2−1β
q .

Proof. Let x ∈ (Ci) \ (Ci−1) ,(1 ≤ i ≤ n), then there exists c ∈ Ci \ Ci−1 such that
x = ϕ(c). Since wt(ϕ(c)) = wt(c) for all c ∈ C. Therefore, wt(x) = wt(ϕ(x)) = wt(c) =
mi.Let x ∈ ϕ(Ci with x 6= 0, then there exists0 6= ci ∈ C such that x = ϕ(ci). Therefore,
wt(x) = wt(ϕ(ci) = wt(ci) = mi. Hence ϕ((C))(m1, · · · ,mN ) relative N-weight code in

Fq
e1−1α+qe2−1β
q . �

Theorem 2.8. Let C be a C(m1, · · · ,mN ) code in Rα1 × Rβ2 . Then for any positive

integer t, there exists a relative N-weight code D(tm1, · · · , tmN ) in Rtα1 ×Rtβ2 .

Proof. Let C be a relative N-weight code C(m1, · · · ,mN ) with subcodes C1, · · · , CN .
Define

D = {(u, · · · , u︸ ︷︷ ︸
t times

| v, · · · , v)︸ ︷︷ ︸
t times

|(u, v) ∈ C} ⊂ Rtα1 ×Rtβ2 ,
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and
Di = {((u, · · · , u︸ ︷︷ ︸

t times

| v, · · · , v)︸ ︷︷ ︸
t times

|(u, v) ∈ Ci},

it is clear that, Di ⊂ D is a linear code in Rtα1 ×Rtβ2 and also D1 ⊂ D2 ⊂ · · · ⊂ DN . Now
Let

(x|y) = (x, · · · , x︸ ︷︷ ︸
t times

| y, · · · , y︸ ︷︷ ︸
t times

) ∈ Di \ Di−1, 1 ≤ i ≤ n.

Then (x|y) ∈ Ci \ Di−1, wt(x|y) = mi and hence wt(u|v) = tmi.
Therefore ,D(tm1, tm2, · · · , tm) is a relative N-weight code with subcodes D1, · · · ,DN . �

Theorem 2.9. Let C be a linear code over Zαpr × Zβps. If C(m1, · · · ,mN ) is a relative
N-weight code, then pr|m1.

Proof. Let c = (u|v) ∈ C, and C1 is a subcode of C.Since C1 is a linear one weight
subcode with weight m1

c+ c+ · · ·+ c︸ ︷︷ ︸
pr

= (pru|prv) = (0|prv) ∈ C1.

On other hand prv ∈ Zβps , so pr|wt(0|prv). Therefore wt(c) = wt(prc) and pr|w(c) then
pr|m1. �

Theorem 2.10. Let C be a linear code over Zαpr×Zβps. Then the weight of all codwords

of C are multiple pr if and only if

(
pr−1α |ps−1β

)
∈ C⊥, where pr−1α = (pr−1, · · · , pr−1) ∈ Zαpr

and ps−1β = (ps−1, · · · , ps−1) ∈ Zβps.

Proof. Let (u|v) ∈ C, where u ∈ Zαpr and v ∈ Zβps . Let take u = (u1, · · · , uα) and
v = (v1, · · · , vβ), then we have

〈(pr−1α |ps−1β ), (u|v)〉 = ps−r(
α∑

i=1

pr−1ui) +

β∑

j=1

ps−1vj ∈ Zβps .

It is clear that 〈(pr−1α |ps−1β ), (u|v)〉 = 0 if and only if pr|wt(u|v), hence, the weight of all

codewords in C are multiple pr iff

(
pr−1α |ps−1β

)
∈ C⊥ �

Corollary 2.11. Let C(m1, · · · ,mN ) be a relative N-weight code over Zαpr×Zβps. Then

the weights of all codewords of C are multiple pr if and only if

(
pr−1α |ps−1β

)
∈ C⊥
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Abstract. The notion of an L-fuzzy filter in a quantale is introduced. After that
some properties are given, using the notion of a closure operator, the lattice structure
of these substructures is studied. Particularly, it is shown that this lattice is a complete
Brouwerian lattice and so is a complete Heyting lattice.
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1. Introduction and Preliminaries
Quantales were introduced by Mulvey [3] to provide a lattice-theoretic setting for

studying non-commutative C∗-algebras as well as a constructive foundations for quantum
mechanics. Some familiar examples of quantales are frames, complete Boolean algebras,
ideal lattices of rings, the power set of a semigroup and also C∗-algebras. Now, we give
some difinitions and results from [2,4,5,9].

Definition 1.1. A Quantale is a relational structure Q = ⟨Q, ∗,≤⟩, where ⟨Q,≤⟩ is
a complete lattice (with top element ⊤ and bottom element ⊥) and ⟨Q, ∗⟩ is a semigroup
satisfying

(1) a ∗
(∨

i∈I
bi

)
=
∨

i∈I
a ∗ bi,

(∨

i∈I
bi

)
∗ a =

∨

i∈I
bi ∗ a

for all a, b, ai, bi ∈ Q with (i ∈ I).
Quantal Q is called unital if it has a unit with respect to the operation ∗; i.e., there

exists an element 1 ∈ Q such that a ∗ 1 = 1 ∗ a = a, for all a ∈ Q. Q is called strictly
two-sided if a ∗ ⊤ = ⊤ ∗ a = a. Obviously, any strictly two-sided quantal is unital with
⊤ = 1. Because of (1), the operation ∗ has two adjoints ⇝ and → which satisfy
(2) a ∗ c ≤ b ⇔ c ≤ a → b ⇔ a ≤ c⇝ b.

For the simplicity of reference, let’s denote a → 0 and a ⇝ 0 by ¬a and ∼ a, respec-
tively. Some basic properties of quantales are as follows:

(1) a ∗ ⊥ = ⊥ ∗ a = ⊥, a → ⊤ = a⇝ ⊤ = ⊤.
(3) a ≤ b → c if and only if b ≤ a⇝ c.

∗Email address: bakhshi@ub.ac.ir
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(4) a ∗ (a → b) ≤ b and (a⇝ b) ∗ a ≤ b. Particularly, a ∗ ¬a = 0 =∼ a ∗ a = 0.
(5) b ≤ a → (a ∗ b) and b ≤ a⇝ (b ∗ a).
(6) a ≤ b implies that c ∗ a ≤ c ∗ b and a ∗ c ≤ b ∗ c.
(7) (x → y) ∗ (y → z) ≤ x → z, (y ⇝ z) ∗ (x⇝ y) ≤ x⇝ z.
(8) if Q is two-sided, x ∗ y ≤ x and x ∗ y ≤ y and so x ≤ y ⇝ x and y ≤ x → y.
(9) if Q is two-sided, x → x = x⇝ x = ⊤.

(10) If Q is two-sided, a ≤ b if and only if a → b = a⇝ b = ⊤.
(11) (a ∗ b) → c = b → (a → c) and (a ∗ b)⇝ c = a⇝ (b⇝ c).
(12) b → c ≤ (a → b) → (a → c) and b ⇝ c ≤ (a ⇝ b) ⇝ (a ⇝ c). Particularly, if Q

is strictly two-sided, a ≤ b implies that c → a ≤ c → b and c⇝ a ≤ c⇝ b.
(13) (a ∨ b) → c = (a → c) ∧ (b → c) and (a ∨ b)⇝ c = (a⇝ c) ∧ (b⇝ c).
(14) b → c ≤ (a ∗ b) → (a ∗ c), b⇝ c ≤ (b ∗ a)⇝ (c ∗ a).
Definition 1.2. [4] A nonempty subset F of quantale Q is said to be a filter if it is

closed with respect to the operation ∗ and it is an upper set; i.e. a ≤ b and a ∈ F imply
that b ∈ F .

For more details about lattices, fuzzy sets and L-fuzzy sets , we refer to references [6],
[8] and [1].

In this paper, L will denote a complete lattice.

2. Main results
Definition 2.1. [9] A non-zero L-fuzzy set µ of quantale Q is called an L-fuzzy filter

if for all a, b ∈ Q it satisfies
(LF1) µ(a) ∧ µ(b) ≤ µ(a ∗ b).
(LF2) a ≤ b implies that µ(a) ≤ µ(b).
Let LS(Q) and FF(Q) be the set of all L-fuzzy sets and L-fuzzy filters of Q, respec-

tively.
Example 2.2. [7] Consider the quantale ⟨Q, ∗,≤⟩ in which Q = {⊥, a, b,⊤} which

is a complete lattice with the ordering ⊥ < a, b < ⊤ and the operation ∗ is defined as
in Table 1. We define L-fuzzy sets µ and ν by µ(⊥) = µ(b) = s, µ(a) = µ(⊤) = t and

Table 1. Cayley table of ∗

∗ ⊥ a b ⊤
⊥ ⊥ ⊥ ⊥ ⊥
a ⊥ a b ⊤
b ⊥ b b b
⊤ ⊥ ⊤ b ⊤

ν(⊥) = ν(a) = s, ν(b) = ν(⊤) = t, where s, t ∈ L with s > t. It is easily verified that µ
and ν are L-fuzzy filters of Q.

Proposition 2.3. An L-fuzzy set µ of strictly two-sided Q is an L-fuzzy filter if and
only if for all a, b ∈ Q

(LF3) µ(1) ≥ µ(a).
(LF4) µ(b) ≥ µ(a) ∧ µ(a → b) (or µ(b) ≥ µ(a) ∧ µ(a⇝ b)).
Proposition 2.4. An L-fuzzy subset µ of Q is an L-fuzzy filter if and only if any

nonempty level subset µt (with t ∈ [0, 1]) is a filter of Q.
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It is easy to verify that the intersection of any family of L-fuzzy filters of Q is again
an L-fuzzy filter of Q. It follows that for an L-fuzzy subset µ of Q, the L-fuzzy filter
of Q generated by µ; i.e., the intersection of all L-fuzzy filters of Q which contain µ,
exists. We show it by ⟨µ⟩. We observe that ⟨0⟩ = χQ. Generally, ⟨·⟩ satisfies the following
properties: (1) µ ⊆ ⟨µ⟩, (2) µ ⊆ ν implies that ⟨µ⟩ ⊆ ⟨ν⟩, (3) ⟨µ⟩ = µ if and only if µ
is an L-fuzzy filter of Q. Thus, the mapping µ 7→ ⟨µ⟩ is a closure operator on LS(Q),
where closed subsets of LS(Q) are L-fuzzy filters of Q. For more details about closure
operators and their properties, we refer the reader to [6]. Hence, by [6, Theorem I.5.2],
LS(Q)C = FF(Q) is a complete lattice in which infimum and supremum are defined as
(3) ⊓i∈I µi = ∩i∈Iµi, ⊔i∈Iµi = ⟨∪i∈Iµi⟩.

From the above observations, it follows that the intersection of any family of filters
of Q is again a filter. So, observing the previous explanations, for subset X of Q, the
mapping X 7→ ⟨X⟩ is a closure operator on 2Q, the power set of Q. Hence

Corollary 2.5. (F(Q),⊔,⊓) is a complete lattice, where F(Q) denotes the set of all
filters of Q.

Now, we give a characterization of L-fuzzy filter generated by an L-fuzzy subset of Q.

Theorem 2.6. Let µ be an L-fuzzy subset of Q. Then the L-fuzzy filter η of Q
generated by µ is as follows: for all x ∈ Q,

⟨µ⟩(x) =
∨

{µ(a1) ∧ µ(a2) ∧ · · · ∧ µ(an) : x ≥ a1 ∗ a2 ∗ · · · ∗ an, n ∈ N, a1, . . . , an ∈ Q}

Corollary 2.7. The filter of Q generated by a subset X of Q is characterized as
⟨X⟩ = {x ∈ Q : x ≥ a1 ∗ a2 ∗ · · · ∗ an, n ∈ N, a1, a2, . . . , an ∈ X}

Proposition 2.8. For subset X of Q we have

⟨X⟩ =
∪

{⟨A⟩ : A ⊆ X is finite }.
That is ⟨·⟩ is an algebraic closure operator.

Theorem 2.9. If Q is strictly two-sided, then FF(Q) = (FFFF (Q),⊔,⊓) is a complete
Brouwerian lattice.

Proof. Let µ and ηi (i ∈ I) be L-fuzzy filters of Q. All we need is to prove that
µ ⊓ (⊔i∈Iηi) ⊆ ⊔i∈I(µ ⊓ ηi). Let x ∈ Q and ϵ > 0 be arbitrary. Then there exist n ∈ N
and a1, a2, . . . , an ∈ Q such that x ≥ a1 ∗ a2 ∗ · · · ∗ an and

(⊔ηi)(x) < ϵ+ (⊔ηi)(a1) ⊓ (⊔ηi)(a2) ⊓ · · · ⊓ (⊔ηi)(an).
By the definition of ⊔ηi we get (⊔ηi)(ai) < ηj(aj) + ϵ, for at least one j. Without loss of
generality, we can assume that

(⊔ηi)(a1) < η1(a1) + ϵ, (⊔ηi)(a2) < η2(a2) + ϵ, . . . , (⊔ηi)(an) < ηn(an) + ϵ.
Hence, (⊔ηi)(x) < nϵ+ η1(a1) ⊓ η2(a2) ⊓ · · · ⊓ ηn(an) and so

µ ⊓ (⊔ηi)(x) < nϵ+ (µ(x) ⊓ η1(a1)) ⊓ · · · ⊓ (µ(x) ⊓ ηn(an)).

On the other hand (a1 ∗ a2 ∗ · · · ∗ an) → x = (a1 ∗ a2 ∗ · · · ∗ an)⇝ x = ⊤.
Now, let bn = (a1 ∗ a2 ∗ · · · ∗ an−1) → x, bn−1 = (bn ∗ a1 ∗ a2 ∗ · · · ∗ an−2) → x, ...,

b2 = (b3 ∗ · · · ∗ bn−1 ∗ bn ∗ a1) → x and b1 = (b2 ∗ b3 ∗ · · · ∗ bn) → x.
We observe that (b1 ∗ b2 ∗ · · · ∗ bn) → x = b1 ⇝ ((b2 ∗ · · · ∗ bn) → x) = b1 ⇝ b1 = ⊤,

whence x ≥ b1 ∗ b2 ∗ · · · ∗ bn.
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On the other hand,
an → bn = an → ((a1 ∗ a2 ∗ · · · ∗ an−1) → x) = (a1 ∗ a2 ∗ · · · ∗ an) → x = ⊤,

which implies that an ≤ bn. Similarly,
an−1 → bn−1 = an−1 → ((bn ∗ a1 ∗ a2 ∗ · · · ∗ an−2) → x) = (bn ∗ a1 ∗ a2 ∗ · · · ∗ an−1) → x

= bn ⇝ ((a1 ∗ a2 ∗ · · · ∗ an−1) → x) = bn ⇝ bn = ⊤,

which implies that an−1 ≤ bn−1. Also,
a1 → b1 = a1 → ((b2 ∗ b3 ∗ · · · ∗ bn) → x) = (b2 ∗ b3 · · · ∗ bn ∗ a1) → x

= b2 ⇝ ((b3 · · · ∗ bn ∗ a1) → x) = b2 ⇝ b2 = ⊤.

Hence, for i = 2, . . . , n− 1 we have
ai → bi = ai → ((bi+1 ∗ bi+2 ∗ · · · ∗ bn) → x) = (bi+1 ∗ bi+2 ∗ · · · ∗ bn ∗ ai) → x

= bi+1 ⇝ (bi+2 ∗ · · · ∗ bn ∗ ai) → x) = bi+1 ⇝ bi+1 = ⊤,

whence bi ≤ ai. Hence, for all i ∈ {1, 2, . . . , n} we have bi ≤ ai and so ηi(bi) ≤ ηi(ai).
Obviously,

x → bi = x → (bi+1 ∗ bi+2 ∗ · · · ∗ bn) → x = (bi+1 ∗ bi+2 ∗ · · · ∗ bn)⇝ (x → x)

= (bi+1 ∗ bi+2 ∗ · · · ∗ bn)⇝ ⊤ = ⊤,

whence x ≤ bi and so µ(x) ≤ µ(bi), for all i ∈ {1, 2, . . . , n}. Thus for all i ∈ {1, 2, . . . , n},
µ(x) ⊓ ηi(ai) ≤ (µ ⊓ ηi)(bi) and so

µ ⊓ (⊔ηα)(x) < nϵ+ (µ ⊓ ηα1)(b1) ⊓ · · · ⊓ (µ ⊓ ηαn)(bn).

Obviously, (µ ⊓ ηi)(bi) ≤ [⊔(µ ⊓ ηi)](bi), ∀i ∈ {1, 2, . . . , r}. Thus
µ ⊓ (⊔ηα)(x) < nϵ+ ⊓n

i=1[⊔(µ ⊓ ηα)](bi) ≤ nϵ+ [⊔(µ ⊓ ηα)](x).

Since ϵ is arbitrary, we have µ ⊓ (⊔ηi)(x) ≤ ⊔(µ ⊓ ηi)(x). □
Corollary 2.10. If Q is strictly two-sided, then FF(Q) = (FF(Q),⊔,⊓) is a complete

Heyting lattice.

3. Conclusions
In this paper, we conclude that the set of all L-fuzzy filters of a quantale under the set-

theoretic inclusion forms a lattice, and if Q is strictly two-sided, this lattice is a complete
Brouwerian lattice and so a complete Heyting lattice.
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Abstract. We consider two types of block preconditioners and the corresponding it-
erative methods for the solution of the weighted Toeplitz least-squares problems. We
show that the proposed iterative methods are convergent unconditionally. These two
preconditioners can be used to accelerate the convergence rate of the Krylov subspace
methods. Numerical results are given for GMRES.
Keywords: Least-squares problems, Weighted Toeplitz matrix, preconditioner.
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1. Introduction
This paper is devoted to the study of the numerical solution of the weighted Toeplitz

least-squares problem is described by:

(1) min
x∈Rn

||Bx− b||22, B =

(
ΞK√
vIn

)
, b =

(
Ξf
0

)
,

where Ξ ∈ Rm×m is a symmetric positive definite (SPD) matrix (as a weighting matrix),
K ∈ Rm×n (m ≥ n) is a full-rank Toeplitz matrix, In ∈ Rn×n is the identity matrix,
v > 0 is a regularization parameter and f ∈ Rm is a given vector. Because of the spatially
variant property of the weighted Toeplitz matrix ΞK, its displacement rank is very large.
Therefore, reasonable preconditioning techniques need to be considered for solving such
weighted Toeplitz regularized least-squares problems.

Let M = (ΞTΞ)−1 and y = ΞTΞ (f −Kx), then the system (1) are expressed as-

(2)
(
M K
KT −vIn

)(
y
x

)
=

(
f
0

)
,

where M ∈ Rm×m is an SPD matrix. The linear system (2) can also be reformulated as

(3) A z ≡
(

M K
−KT vIn

)(
y
x

)
=

(
f
0

)
≡ b.

There are many efficient iterative methods devoted to solving the linear system (3) over the
past few years, such as the Hermitian and skew-Hermitian splitting (HSS) iterative method

∗Speaker. Email address: farbakrani@gmail.com
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[1], the Krylov subspace methods [5] and so on. The HSS method and its corresponding
HSS preconditioner [2] have received further attention. For solving linear system (3),
several preconditioners have been introduced in recent years. For instance, according to
special properties of weighted Toeplitz matrix, Ng and Pan [4] established a new HSS
(NHSS) iterative method and constructed corresponding preconditioner of the form

(4) PNHSS =

(
1
2α (αIm +M) 0

0 In

)(
αIm K
−KT vIn

)
, α > 0.

By introducing the other parameter in the NHSS scheme, a generalized NHSS (GNHSS)
method and the corresponding GNHSS preconditioner were developed in [3]. More pre-
cisely, the following preconditioner has been suggested

(5) PGNHSS =

( 1
α+β (αIm +M) 0

0 In

)(
βIm K
−KT vIn

)
, α, β > 0.

In the sequel we present two preconditioners for solving weighted Toeplitz regularized
least-squares problems. Consider the following splittings for the coefficient matrix A in
(3):

A = P1 − R1 =

(
M 2K

−KT 2vIn

)
−
(
0 K
0 vIn

)
,(6a)

A = P2 − R2 =

(
M (1 + v

α)K
−KT vIn

)
−
(
0 v

αK
0 0

)
, α > 0.(6b)

Then, the iterative methods based on the splittings (6a) and (6b) can be derived as follows:

Method: Let z(0) = (y(0);x(0)) ∈ Cm+n be an initial guess. By using the following it-
erative scheme, for k = 0, 1, 2, . . . , compute z(k+1) = (y(k+1);x(k+1)) until z(k) = (y(k);x(k))
converges:

(
M 2K

−KT 2vIn

)(
y(k+1)

x(k+1)

)
=

(
0 K
0 vIn

)(
y(k)

x(k)

)
+

(
f
0

)
,(7a)

(
M (1 + v

α)K
−KT vIn

)(
y(k+1)

x(k+1)

)
=

(
0 v

αK
0 0

)(
y(k)

x(k)

)
+

(
f
0

)
.(7b)

We define the iterative schemes (7a) and (7b) to solve linear system (3) as follows:

(8) z(k+1) = Γz(k) + c, k = 0, 1, 2, . . . ,

where Γ is the iteration matrix and c = Γ−1b.

2. Main results
It is well-known that iterative methods (8) are convergent for any initial guess z(0) if

and only if ρ(Γ) < 1, where ρ(Γ) is the spectral radius of the iteration matrix. For the
splitting in (6a), the iteration matrix is given by

(9) Γ1 =

(
M 2K

−KT 2vIn

)−1(
0 K
0 vIn

)
=

(
0 0
0 1

2In

)
.

Theorem 2.1. let M ∈ Rm×m be an SPD matrix, K ∈ Rm×n be a full-rank Toeplitz
matrix, and Γ1 be defined as in (9). Then ρ(Γ1) < 1, that is, the iterative scheme in (7a)
converges to the solution of (3) unconditionally.
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Proof. Let λ be an arbitrary eigenvalue of Γ1 = P−1
1 R1. From (9), it is easy to

check that the matrix Γ1 has eigenvalues λ = 0, 12 with multiplicity m and n, respectively.
The result follows immediately from the fact that max |λ| < 1. □

Remark 2.2. Under the same assumptions of Theorem 2.1, the eignvaluse of P−1
1 A

are θ = 1, 12 .

The preconditioner P2 in (6b) can be factorized as

(10) P2 =

(
M 0
0 In

)(
Im 0

−KT In

)(
Im 0
0 S

)(
Im (1 + v

α)M
−1K

0 In

)
,

where S = vIn + (1 + v
α)K

TM−1K. Then the iteration matrix for this preconditioner is
obtained as

(11) Γ2 = P−1
2 R2 =

(
0 Ω
0 Φ

)
,

where Φ = v
α S−1KTM−1K. As the form Ω is not the focus in argument, we do not write

it here.

Theorem 2.3. Let the conditions in Theorem (2.1) be satisfied. Then it holds that
ρ(Γ2) < 1, i.e., the iterative scheme in (7b) converges to the solution of (3) unconditionally.

Proof. From (11), it is clear that Γ2 has an eignvalue 0 with algebraic multiplicity
m and its remaining eigenvalues are given by those of Φ. Let (ξ, x) be the eigenpair of the
matrix Φ. Without loss of generality, we can assume that ||x||2 = 1. Then, we have

(12) vKTM−1Kx = αξSx.

Multiplying both sides of the relation (12) on the left by xT , we obtain

(13) v xTKTM−1Kx = αξ
(
vxTx+ (1 +

v

α
) xTKTM−1Kx

)
.

We set quantity η = xTKTM−1Kx. It then follows from (13) that ξ = vη
vη+α(v+η) . In view

of the positive definiteness of KTM−1K, we can see that |ξ| < 1, which completes the
proof. □

Remark 2.4. From (11), we can obtain

(14) P−1
2 A = I − Γ2 =

(
I −Ω
0 I − Φ

)
,

then the m eigenvalues of matrix P−1
2 A are equal to 1 and other eigenvalues are of the

form λ = α(v+η)
vη+α(v+η) .

Now we will give the implementation of these two preconditioners within a Krylov
subspace method. Let r = (r1; r2) and z = (z1; z2) with r1, z1 ∈ Rm and r2, z2 ∈ Rn. We
have the following algorithms for these two iterative methods.

Algorithm 1: Computation of z = P−1
1 r

1. Compute d = r1 − 1
vKr2;

2. Solve (M + 1
vKKT )z1 = d;

3. Compute z2 =
1
2v (K

T z1 + r2).

Algorithm 2: Computation of z = P−1
2 r

1. Compute d = r1−ωKr2; with ω = α+v
αv ,

2. Solve (M + ωKKT )z1 = d;
3. Compute z2 =

1
v (K

T z1 + r2).
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3. Numerical results
Let us now consider the one-dimensional examples which are tested in [3,4], where K

is a square Toeplitz matrix defined by

K = (tij) ∈ Rn×n with tij =
1√

|i− j|+ 1
,(a)

K = (tij) ∈ Rn×n with tij =
1√
2πσ

e
−|i−j|2

2σ2 .(b)

The matrix K is well-conditioned in case (a), and it is highly ill-conditioned for case (b)
with σ = 2. In our tests, we choose Ξ as a positive diagonal random matrix and scale its
diagonal entries so that its condition number is around 103. The initial guess is the zero
vector and the right-hand side vector is b = (f ; 0) with f being the vector of all entries
equal to one. The iteration will be stopped whenever ||b − A z(k)||2/||b||2 < 10−6. Two
methods are applied as preconditioners with GMRES method. The linear sub-systems in
preconditioning step are solved by the Cholesky factorization. Computations were done
on a 64-bit 1.80 GHz core i7 processor and 12.00GB RAM using Matlab version 2017a.

n Pre α IT CPU
P1 – 1 0.0952

210

P2 0.1 1 0.0910
P1 – 1 0.5306

211

P2 0.1 1 0.5410
Table 1. Numerical results for case (a)

n Pre α IT CPU
P1 – 2 0.1530

210

P2 0.1 3 0.1721
P1 – 1 0.5448

211

P2 0.1 3 0.7412
Table 2. Numerical results for case (b)

n A P−1
1 A P−1

2 A

210 4.6627e+16 2.0660 1.0104
211 1.2713e+15 2.000 1.6189

Table 3. Condition number for case (b)

In Tables 1 and 2, we report the number of iterations (IT) and the CPU time (CPU)
for preconditioned GMRES Method with values of n = 210, 211 and v = 0.001. Table 3
shows the estimated condition number, as computed by MATLAB’s condest function, for
the related systems in case (b). Numerical results confirmed the effciency of the propsed
preconditioners.
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Abstract. Let S = K[x1, . . . , xn] be a polynomial ring over a field K. In this paper, we
give some results for sum, product and colon of clean (pretty clean) monomial ideals. We
also generalize Soleyman Jahan’s result from monomial ideals with at most 3 variables
to monomial ideals with number of arbitrary variables. Indeed, we prove that if I = uJ
is a monomial ideal of S, where u is a monomial in S, and J is a monomial ideal of
height ≥ 2, then I is pretty clean if and only if J is pretty clean.
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1. Introduction

Throughout this paper, K is a field and I is a monomial ideal of the polynomial ring
S = K[x1, . . . , xn].

A chain
F : I = I0 ⊂ I1 ⊂ · · · ⊂ Ir = S

of monomial ideals is called a monomial prime filtration of S/I, if for all i = 1, . . . , r
there exists a monomial prime ideal pi such that Ii/Ii−1

∼= S/pi. The set of prime ideals
p1, . . . , pr is denoted by Supp(F). Let Min(I) denotes the set of minimal prime ideals of
Supp(S/I). Then, we have

Min(I) ⊆ Ass(S/I) ⊆ Supp(F) ⊆ Supp(S/I).

A prime filtration F of S/I is called clean (cf. [1]) if Supp(F) = Min(I). It is pretty
clean (cf. [2]) if for all i < j for which pi ⊆ pj it follows that pi = pj . Furthermore I
is called pretty clean (clean) if S/I admits a pretty clean (clean) prime filtration. It is
clear that if I is clean, then it is pretty clean. For a squarefree monomial ideal I, Since
Ass(S/I) = Min(I), it follows by [2, Corollary 3.5], I is clean if and only if I is pretty
clean.

Our aim of this paper is to investigate clean and pretty clean monomial ideals. We
study sum, product and colon of clean (pretty clean) monomial ideals. We also generalize
Soleyman Jahan’s result ( [3, Lemma 1.9]) from monomial ideals with at most 3 variables
to monomial ideals with number of arbitrary variables. Indeed, we prove that if I = uJ

1Speaker. Email address: somayeh.bandari@yahoo.com and s.bandari@bzte.ac.ir
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is a monomial ideal of S, where u is a monomial in S, and J is a monomial ideal of
height ≥ 2, then I is pretty clean if and only if J is pretty clean.

2. Main results

A simplicial complex ∆ on the vertex set [n] = {1, . . . , n} is a collection of subsets of
[n] with the property that if F ∈ ∆, then all subsets of F are also in ∆. An element of
∆ is called a face of ∆, and the maximal faces of ∆, under inclusion, are called facets.
We denote by F(∆) the set of all facets of ∆. When F(∆) = {F1, . . . , Fr}, we write
∆ =< F1, . . . , Fr >. For each F ∈ ∆, we set dimF = |F | − 1. A simplicial complex ∆ is
called pure if all facets of ∆ have the same dimension.

The Stanley-Reisner ideal I∆ is a monomial ideal of S = K[x1, . . . , xn] generated by all
squarefree monomials xi1xi2 · · ·xik such that {i1, . . . , ik} is not a face of ∆. For F ⊆ [n],
we set XF =

∏
i∈F xi.

Definition 2.1. Let ∆ be a simplicial complex on [n] = {1, . . . , n}. We say that ∆ is
(non-pure) shellable if there exists an order F1, . . . , Fr of ∆ such that for i = 2, . . . , r
the simplicial complex 〈F1, . . . , Fi−1〉 ∩ 〈Fi〉 is a pure (dimFi − 1)-dimensional simplicial
complex.

Theorem 2.2. ( [1, Theorem on page 53]) A simplicial complex ∆ is (non-pure) shellable
if and only if I∆ is a clean ideal.

Lemma 2.3. Let I and J be monomial ideals of S. Then we have the following:

a) I and J are clean (pretty clean) ; IJ is clean (pretty clean).
b) I and J are clean (pretty clean) ; I ∩ J is clean (pretty clean).

Let I = (x1, x2) and J = (x3, x4). Then I and J are clean (pretty clean). Since
∆ =< {1, 2}, {3, 4} > is not shellable, so by Theorem 2.2, IJ = I ∩ J = I∆ is
not clean (pretty clean).

c) I and J are clean (pretty clean) ; I + J is clean (pretty clean).

Let I = I∆1 and J = I∆2, where ∆1 =< {1, 2, 3}, {3, 4}, {4, 5}, {5, 6}, {4, 6} >
and ∆2 =< {1, 2}, {1, 5}, {5, 6}, {2, 6} >. Since ∆1 and ∆2 are shellable, it fol-
lows by Theorem 2.2 that I and J are clean (pretty clean). But ∆1 ∩ ∆2 =<
{1, 2}, {5, 6} > is not shellable. So I + J is not clean (pretty clean), because,

I + J = I∆1 + I∆2 = (XF | F /∈ ∆1) + (XF | F /∈ ∆2)

= (XF | F /∈ ∆1 ∩∆2) = I∆1∩∆2 .

The saturation Ĩ of I is defined to be Ĩ = I : m∞ =
⋃
k I : mk, where m = (x1, . . . , xn)

is the graded maximal ideal of S.

Lemma 2.4. ( [3, Lemma 1.1]) Let I be a monomial ideal of S. The ideal I is pretty

clean if and only if Ĩ is pretty clean.

Lemma 2.5. Let I be a monomial ideal of S. Then Ĩ = Ĩmi for all i ∈ N.

Proof. It is enough to show that Ĩ = Ĩm. Since Im ⊆ I, it implies that Ĩm ⊆ Ĩ. Now

let u ∈ Ĩ, so umk ⊆ I for some k. Then umk+1 ⊆ Im, which implies that u ∈ Ĩm. �
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Proposition 2.6. Let I be a monomial ideal of S. Then I is pretty clean if and only if
Imi is pretty clean for all i ∈ N.

Proof. Let i ∈ N. By Lemma 2.4 and Lemma 2.5, we have that

I is pretty clean ⇔ Ĩ is pretty clean

⇔ Ĩmi is pretty clean

⇔ Imi is pretty clean.

�

Lemma 2.7. Let I be a monomial ideal of S. Then Ĩ = Ĩ : mi for all i ∈ N.

Proof. Let i ∈ N, so I ⊆ I : mi ⊆ Ĩ. Hence Ĩ ⊆ Ĩ : mi ⊆ ˜̃I = Ĩ. Then Ĩ = Ĩ : mi. �
Proposition 2.8. Let I be a monomial ideal of S. Then I is pretty clean if and only if
I : mi is pretty clean for all i ∈ N.

Proof. Let i ∈ N. By Lemma 2.4 and Lemma 2.7, we have that

I is pretty clean ⇔ Ĩ is pretty clean

⇔ Ĩ : mi is pretty clean

⇔ I : mi is pretty clean.

�
Remark 2.9. Let the chain of monomial ideals

F : I = I0 ⊂ I1 ⊂ · · · ⊂ Ir = S,

be a monomial prime filtration of S/I. Then it is satisfies in the following conditions:

a) Ii = (Ii−1, ui), where ui is a monomial of S for i = 1, . . . , r,
b) Ii/Ii−1

∼= S/pi, where pi = (Ii−1 : ui) is a monomial prime ideal of S for i =
1, . . . , r.

In the next, we generalize Soleyman Jahan’s result ( [3, Lemma 1.9]) from monomial
ideals with at most 3 variables to monomial ideals with number of arbitrary variables.

Proposition 2.10. Let I be a monomial ideal of S = K[x1, . . . , xn]. If I = uJ , where u
is a monomial in S, and J is a monomial ideal of height ≥ 2, then I is pretty clean if and
only if J is pretty clean.

Proof. Let I be a pretty clean ideal. So by Remark 2.9, there exists a pretty clean
filtration

F : I = I0 = uJ ⊂ I1 ⊂ · · · ⊂ Ir = S

of S/I such that

a) Ii = (Ii−1, ui), where ui is a monomial of S for i = 1, . . . , r,
b) Ii/Ii−1

∼= S/pi, where pi = (Ii−1 : ui) is a monomial prime ideal of S for i =
1, . . . , r.

If Ii : u 6= Ii−1 : u, then

Ii : u

Ii−1 : u
=

(Ii−1 : u) + ((ui) : u)

Ii−1 : u
∼= S

(Ii−1 : uv)
=
S

pi
,

where v = ui/ gcd(u, ui).
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The last equality follows from the fact that u/gcd(u, ui) 6∈ pi. If u/gcd(u, ui) ∈ pi,
then uv = uui/gcd(u, ui) ∈ Ii−1, so v ∈ (Ii−1 : u). Therefore

Ii : u = (Ii−1, ui) : u = (Ii−1 : u) + ((ui) : u) = (Ii−1 : u) + (v) = Ii−1 : u,

which is a contradiction.
Therefore

F ′ : J = I : u ⊆ I1 : u ⊆ · · · ⊆ Ir : u = S,

is a monomial prime filtration of S/J with Supp(F ′) ⊆ Supp(F). Hence J is a pretty
clean ideal .

Converse follows by [3, Lemma 1.9]. For convenience, we bring the proof. Let J be a
pretty clean ideal. By [2, Corolarry 3.4], there is a prime filtration

F : J = J0 ⊂ J1 ⊂ · · · ⊂ Jr = S,

such that Ji/Ji−1
∼= S/pi, where pi ∈ Supp(S/I) = Ass(S/J), so height pi ≥ 2. By the

prime filtration F , there exists a chain of monomials

F1 : I = uJ ⊂ uJ1 ⊂ · · · ⊂ uJr = (u),

such that uJi/uJi−1
∼= S/pi.

On the other hand, there exists a prime filtration

F2 : (u) = uJr ⊂ Jr+1 ⊂ · · · ⊂ Jr+l = S,

of S/(u), where Jr+k are principal monomial ideals with Jr+k/Jr+k−1
∼= S/qk and where

qk ∈ Ass(S/(u)) has height 1 for k = 1, . . . , l. In fact, if u = u0 =
∏s
t=1 x

at
it

and uj =∏s
r=j+1 x

ar
ir

for j = 1, . . . , s− 1, then the prime filtration F2 is the following:

F2 : Jr = (u) ⊂ (x
ai−1

i1
u1) ⊂ (xai−2

i1
u1) ⊂ · · · ⊂ (u1) ⊂ (xa2−1

i2
u2) ⊂ · · · ⊂ (u2) ⊂ · · ·

⊂ (xis) ⊂ S.
Therefore F2 is a pretty clean filtration. Now composing the above filtration F1 and F2

we obtain a pretty clean filtration of S/I. �
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Abstract. In this paper, the Banach algebras which can be assumed as generalized
matrix Banach algebras will be characterized. Then we show that there is a Banach
algebra A which can not be assumed as a triangular Banach algebra, but H1(A,A) = 0.
This example gives a negative answer to the open question raised by Bennis and Fahid
”Does the condition H1(A ⊕X,A ⊕X) = 0 imply that A ⊕X has a triangular matrix
representation?”
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1. Introduction

Let A and B be two Banach algebras, M be an (A,B)-module (i.e. a left A-module
and a right B-module with compatible actions) and N be a (B,A)-module (i.e. a left
B-module and a right A-module with compatible actions). Also, let Φ : M ×N → A and
Ψ : N × M → B be two bounded bilinear mappings which are bimodule morphisms on
each of their coordinates and satisfying the following equalities.

m(Ψ(n,m′)) = (Φ(m,n))m′ and n(Φ(m,n′)) = (Ψ(n,m))n′ (n, n′ ∈ N,m,m′ ∈ M).

Then G =
[

A M
N B

]
is a Banach algebra with the norm

∥∥∥ a m
n b

∥∥∥
G
= ||a||+ ||m||+ ||b||+ ||n||,

which is called a generalized matrix Banach algebra.
The generalized matrix algebras were introduced by Sands in [4]. Obviously, when

M = 0 or N = 0, G exactly degenerates to the so-called triangular algebra. When Φ = 0
and Ψ = 0 such kinds of generalized matrix algebras are called trivial generalized matrix
algebras. For example, the module extension Banach algebra (A+̇B)⊕ (M+̇N), which is
defined in [5], where (A+̇B) is the direct l1-sum of Banach algebras A and B, and (M+̇N)
as an l1-direct sum of modules is an (A+̇B)−module with the module actions

(a, b).(m,n) = (am, bn), (m,n).(a, b) = (mb, na) (a ∈ A, b ∈ B,m ∈ M,n ∈ N),

∗Speaker. Email address: s.barutkub@ub.ac.ir

123



S. Barootkoob

is a trivially generalized matrix algebra.
Let A be a Banach algebra and let X be a Banach A-module. The dual X ∗ of X with

the module operations

(fa)(x) = f(ax), (af)(x) = f(xa), (a ∈ A, x ∈ X , f ∈ X ∗);

is a Banach A-module. Also, the second dual X ∗∗ of X under the module operations

(aF )(f) = F (fa), (Fa)(f) = F (af), (a ∈ A, f ∈ X ∗, F ∈ X ∗∗);

is a Banach A-module. Similarly, the n-th dual X (n) of X may be considered as a Banach
A-module. In particular, for X = A, A(n) is a Banach A-module.

A derivation D is a bounded linear operator D : A → X such that

D(ab) = D(a)b+ aD(b), (a, b ∈ A).

A derivation D is called an inner derivation if there exists x ∈ X such that

D(a) = δx(a) = ax− xa, (a ∈ A).

Let Z1(A,X ) be the linear space of all derivations from A into X , and N1(A,X ) be the
linear subspace of all inner derivations from A into X . Then the cohomology group of A

with coefficients in X is denoted by H1(A,X ) = Z1(A,X )
N1(A,X )

.

The concept of n-weak amenability and permanent weak amenability of Banach algebras
were introduced by Dales et al [3]. A Banach algebra A is called n-weakly amenable

if H1(A,A(n)) = 0, and A is said to be permanently weakly amenable if it is n-weakly
amenable for all n ≥ 1.

In this paper, we try to investigate the Banach algebras which can be considered as
generalized matrix Banach algebras. That is the Banach algebras such as A, that there
exist the algebras A,B, (A,B)-module M and (B,A)-module N such that A is isometric

isomorphic to
[

A M
N B

]
.

Note that we can consider every Banach algebra as a (trivial) generalized matrix Ba-
nach algebra withM = 0, N = 0 and B = 0. But the purpose of this paper is to investigate
the Banach algebras which have the (non-trivial) generalized matrix representations.

2. Main results

The following theorem characterizes all unital Banach algebras which may be consid-
ered as a generalized Matrix Banach algebra.

Theorem 2.1. A unital Banach algebra A can be considered as a generalized Matrix
Banach algebra if and only if it has a non-trivial idempotent.

Note that if eae = a for each a ∈ A, and eA(1− e), (1− e)Ae, and (1− e)A(1− e) are
zero, then A has the trivial generalized Matrix representation and e = 1.

Corollary 2.2. [2, Theorem 5.1.4] A unital Banach algebra A has a triangular
representation if and only if it has a non-trivial idempotent e such that (1− e)Ae = 0.

Theorem 2.3. Let A be a unital Banach algebra and let X be a unital Banach A-
module. Then the module extension Banach algebra A⊕X can be considered as a gener-
alized Matrix Banach algebra if and only if A can be considered as a generalized Matrix
Banach algebra.
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If we denote the nontrivial idempotents of the algebra A by I(A), then the Theorems
2.1 and 2.3 imply the following corollary.

Corollary 2.4. I(A⊕X) = ∅ if and only if I(A) = ∅.
Theorem 2.5. Let G be a locally compact group. Then ℓ1(G) doesn’t have any matrix

representation and in addition H1(ℓ1(G), ℓ(G)(n)) = {0}, for each n ∈ N ∪ {0}.
Now Theorems 2.3 and 2.5 imply the following theorem, which gives a negative answer

to the question raised in [1].

Theorem 2.6. There is a permanently weakly amenable module extension Banach
algebra A⊕X without any (triangular) matrix representation.

3. Conclusion

The only unital Banach algebras which have generalized Matrix representations are
those which have at least one non-trivial idempotent. matrix representation of the module
extension Banach algebra A ⊕X depends only on the matrix representation of A. Even
permanently weakly amenable module extension Banach algebras may not have a matrix
representation.

References

1. D. Bennis and B. Fahid, Derivations and the First Cohomology Group of Trivial Extension Algebras,
Mediterr. J. Math. (2017)

2. G. F. Birkenmeier, , J. K. Park, S. T. Rizvi, Extensions of Rings and Modules. Birkhauser, New York
(2013)

3. H. G. Dales, F. Ghahramani and N. Grønbæk, Derivations into iterated duals of Banach algebras, Studia
Mathematica 128 (1),(1998).

4. A.D. Sands, Radicals and Morita contexts, J. Algebra 24 (1973) 335–345.
5. Y. Zhang, Weak amenableility of module extension of Banach algebras, Trans. Amer. Math. Soc. 354

(2002) 4131-4151.

125



M−ideals in MV−algebras

Mahta Bedrood1,*, Farhad Sajadian2 and Arsham Borumand Saeid1

1Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar

University of Kerman, Kerman, Iran
2Department of Pure Mathematics and Calculations, Faculty of Mathematics, Higher Education

Complex of Bam, Kerman, Iran

Abstract. In this paper M−ideals has been introduced and their properties have been
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1. Introduction

MV−algebras are introduced by C. C. Chang in 1958 [1] as an algebraic counterpart
of the  Lukasiewicz infinite valued propositional logic. In order to keep the paper brief, we
refer the reader to [1,6] for results on MV−algebras. In particular, emphasis has been
put the ideal theory of MV− algebra [3]. F. Forouzesh et al, introduced obstinate ideals
of an MV− algebra [5]. In this paper, we introduce M−ideals and provide equivalent
conditions for it. In addition, it has been investigated some relationships between such
ideals and Minimal prime ideals. It is also shown that every prime ideal of an MV−
algebra contains a minimal prime ideal We recollect some definitions and results which
will be used in the sequel:

Definition 1.1. [1] An MV−algebra is a structure (A, ⊕, *, 0) where ⊕ is a binary
operation, *, is a unary operation, and 0 is a constant such that the following axioms are
satisfied for any x, y ∈ A :
(MV 1) (A, ⊕, 0) is an abelian monoid;
(MV 2) (x∗)∗ = x;
(MV 3) 0∗ ⊕ x = 0∗;
(MV 4) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x.

Note that we have 1 = 0∗ and the auxiliary operation � which are as follows:

x� y = (x∗ ⊕ y∗)∗.

*Speaker. Email address: Bedrood.m@gmail.com
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We recall that the natural order determines a bounded distributive lattice structure such
that

x ∨ y = x⊕ (x∗ � y) = y ⊕ (x� y∗) and x ∧ y = x� (x∗ ⊕ y) = y � (y∗ ⊕ x).

Also for any two elements x, y ∈ A, x ≤ y if and only if x∗⊕y = 1 if and only if x�y∗ = 0.
Obviously, ≤ is a partial order on A which is called the natural order on A.

In this paper, A is an MV−algebra.

Definition 1.2. [2] An ideal of A is a nonempty subset I of A satisfying the following
conditions:
(I1) If x ∈ I, y ∈ A and y ≤ x, then y ∈ I,
(I2) If x, y ∈ I, then x⊕ y ∈ I.
We denote by Id(A) the set of all ideals of A.

Definition 1.3. [2] Let I be an ideal of A. If I 6= A, then I is a proper ideal of A.
• [2] A proper ideal I of A is called prime ideal if for all x, y ∈ A, x∧ y ∈ I, then x ∈ I or
y ∈ I.
We denote by Spec(A) the set of all prime ideals of an MV−algebra A.
• [2] An ideal P of A is called a minimal prime ideal of A when:
1)P ∈ Spec(A);
2) If there exists Q ∈ Spec(A) such that Q ⊆ P, then P = Q.
We denote by Min(A) the set of all minimal prime ideals of A.
• [6] A proper ideal I of A is called maximal if and only if for each ideal J 6= I, if I ⊆ J,
then J = A.
We denote by Max(A) the set of all maximal ideals of A.

Note: Minimal prime ideal P of A is called minimal prime ideal over ideal I, if
1) I ⊆ P ;
2) If there exists Q ∈Min(A) such that I ⊆ Q ⊆ P, then P = Q.
We denote by Min(I) the set of all minimal prime ideals over ideal I.

Corollary 1.4. [6] Every prime ideal of A is contained in a unique maximal ideal
of A.

Theorem 1.5. [6] Let S be a ∧−closed system of A and I ∈ Id(A) such that I∩S = ∅.
Then there exists a prime ideal P of A such that I ⊆ P and P ∩ S = ∅.

Note: Let a ∈ A. Define Pa =
⋂{P : P ∈Min(A), a ∈ P}.

Ma =
⋂{M : M ∈Max(A), a ∈M} M(a) = {M : M ∈Max(A), a ∈M}

2. M−ideals
Definition 2.1. A proper ideal I of A is called an M−ideal if Ma ⊆ I, for each a ∈ I.

Example 2.2. (1) Let A = {0, a, b, c, d, 1}. where 0 < a, c < d < 1 and 0 < a < b < 1.
Define ⊕ and ∗ as follows:

∗ 0 a b c d e f 1
1 f e d c b a 0
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⊕ 0 a b c d e f 1
0 0 a b c d e f 1
a a a c c e e 1 1
b b c b c f 1 f 1
c c c c c 1 1 1 1
d d e f 1 f 1 f 1
e e e 1 1 1 1 1 1
f f 1 f 1 f 1 f 1
1 1 1 1 1 1 1 1 1

Then (A,⊕, ∗, 0, 1) is an MV -algebra [6]. It has four ideals: I0 = {0}, I1 = {0, c}, I2 =
{0, a, b}, I3 = A. Obviously, I0, I1 and I2 are M−ideal.
(2) Let R∗ be a nonstandard model of real numbers with natural order and ε be a positive
infinitesimal element of R∗. Let ε2 = ε.ε, ..., εn = ε.ε...ε(n − times), where is the usual
product in the field R∗; then εi > 0, for any i ∈ N and εi 6 εj , for i > j.
The unit interval [0, 1]∗ ⊆ R∗ is an MV−algebra under the operations: x⊕y = min{1, x+
y}, x∗ = 1 − x. Let N be the ordered set of positive natural numbers. For every n ∈ N,
let En be the subalgebra of [0, 1]∗ generated by {ε, ε2, ..., εn} and E be the subalge-

bra
⋃

n∈N
En we recall that [4], E =< (εi) | i ∈ N >. The set of all ideals of E are

{0}, < ε >, ..., < εi > ...,where i ∈ N and < εi >⊆< εj >, for any i > j. Obviously, < ε2 >
is not an M−ideal.

Theorem 2.3. Let I be a proper ideal of A. Then the following statements are equiv-
alent:
(1) I is a M−ideal in A,
(2) M(a) ⊆M(b) and a ∈ I, imply that b ∈ I,
(3) M(a) = M(b) and a ∈ I, imply that b ∈ I.

Proof. 1⇒ 2) Let M(a) ⊆M(b) and a ∈ I. Then Mb ⊆Ma, so b ∈ I.
2⇒ 1) Let there exists a ∈ I such that Ma * I. Then there exists b ∈Ma such that b /∈ I.
Obviously, M(a) ⊆M(b) so b ∈ I, which is a contradiction.
2⇒ 3) It is clear.
3 ⇒ 2) Let M(a) ⊆ M(b) and a ∈ I. Obviously, a ∧ b ∈ I and M(b) = M(a ∧ b), hence
b ∈ I. �

Proposition 2.4. Let f : A→ B be a MV−homomorphism. Then every M−ideal of
B contracts to an M−ideal of A if and only if every maximal ideal of B contracts to an
M−ideal.

Proof. Let J be an M−ideal of B,MA(a) = MA(b) and a ∈ Jc. Then f(a) ∈ J. We
show that MB(f(a)) = MB(f(b)). Let M ∈Max(B) and f(a) ∈M. Then a ∈M c, hence
b ∈M c so f(b) ∈M imply that MB(f(a)) ⊆MB(f(b)). Similarly, MB(f(b)) ⊆MB(f(a)).
Hence MB(f(a)) = MB(f(b)), so f(b) ∈ J then b ∈ Jc. The converse is clear. �

Theorem 2.5. Let I be a proper ideal of A and P ∈ Spec(A) such that I ⊆ P. Then
there exists P ∗ ∈Min(I) such that P ∗ ⊆ P.

Proof. Set Γ = {P ′ ∈ Spec(A) : I ⊆ P
′ ⊆ P}. Since P ∈ Γ, then Γ 6= ∅. We define

≤ on Γ by ∀P ′
, P

′′ ∈ Γ ; P
′ ≤ P ′′ ⇐⇒ P

′′ ⊆ P ′
. Obviously, ≤ is a partial order on Γ.
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Let β = {Pi}i∈I be a nonempty chain of elements of Γ. Put Q =
⋂

i∈I
Pi. It is claimed that

Q ∈ Spec(A). Since β 6= ∅, then Q 6= A. Let r ∧ r′ ∈ Q and r /∈ Q. Thus there exists i ∈ I
such that r /∈ Pi. If Pj such that j ∈ I is an arbitrary element of β, then we consider two
cases:
Case 1. if Pi ⊆ Pj , then r ∧ r′ ∈ Pi and r /∈ Pi so r

′ ∈ Pi ⊆ Pj . Thus r
′ ∈ Pj .

Case 2. if Pj ⊆ Pi, then r /∈ Pj and r ∧ r′ ∈ Pj , so r
′ ∈ Pj .

So r
′ ∈ Pj , for all j ∈ I, implies that r

′ ∈ Q. Obviously, I ⊆ Q ⊆ P. Hence Q is an upper
bound of chain β in Γ, so by Zorn,Lemma Γ has a maximal element P ∗ such that P ∗ ∈ Γ.
Now it is shown that P ∗ ∈ Min(A) such that I ⊆ P ∗. Let Q∗ ∈ Spec(A) be such that
I ⊆ Q∗ ( P ∗. Then Q∗ ∈ Γ and P ∗ ≤ Q∗, which is a contradiction. �

Theorem 2.6. Every M−ideal of A is the intersection of the minimal prime ideals
containing it.

Proof. It is clear that I ⊆ PI . Since I is an M−ideal, so Mx ⊆ I, for each x ∈ I.
Obviously, MI ⊆ I. On the other hand by Corollary 1.4 and Theorem 2.5, PI ⊆MI , thus
PI ⊆ I. This implies that I = PI �

Theorem 2.7. Let I be an M−ideal of A. Then every minimal prime ideal over I is
an M−ideal.

Proof. Let Q be a minimal prime ideal over I and there exists b ∈ Q such that
M(b) ⊆ M(a) and a ∈ A \Q. Put S = (A \Q) ∪ {c ∧ b|c ∈ A \Q}. Obviously, S is a ∧−
closed system of A. It is claimed that I ∩ S = ∅. Let c ∧ b ∈ I such that c /∈ Q. We show
that M(c ∧ b) ⊆ M(c ∧ a). If M ∈ Max(A) such that c ∧ b ∈ M, then c ∈ M or b ∈ M
hence M(c∧b) ⊆M(c∧a), which implies that c∧a ∈ I. Thus c∧a ∈ Q, so c ∈ Q or a ∈ Q,
which is a contradiction. Hence I ∩ S = ∅. By Theorem 1.5, there exists Q

′ ∈ Spec(A)

such that Q
′ ∩ S = ∅ and I ⊆ Q′

. Obviously, Q
′ ( Q which is a contradiction. �

Obviously, in Example 2.2(1), I0 is an M−ideal but is not a minimal prime ideal of A.

3. Conclusion

We concluded if I is an M−ideal of A, then every minimal prime ideal over I is an
M−ideal. By giving counter example, it is showed that the posite is not true. Also, It is
proved every M−ideal is the intersection of the minimal prime ideals containing it.
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Abstract. In this talk, we give a classification of 2-designs admitting flag-transitive
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1. Introduction
A 2-(v, k, λ) design D is a pair (P,B) with a set P of v points and a set B of b blocks

such that each block is a k-subset of P and each two distinct points are contained in λ
blocks. The replication number r of D is the number of blocks incident with a given point.
We always assume that D is nontrivial, that is to say, 2 < k < v. An automorphism
of D is a permutation on P which maps blocks to blocks and preserving the incidence.
The full automorphism group Aut(D) of D is the group consisting of all automorphisms
of D. A flag of D is a point-block pair (α,B) such that α ∈ B. For G ⩽ Aut(D), G is
called flag-transitive if G acts transitively on the set of flags. The group G is said to be
point-primitive if G acts primitively on P.

2. Main results
In this talk, we present a recent achievement on a classification of flag-transitive 2-

designs with gcd(r, λ) = 1. Zieschang [10] proved that a flag-transitive automorphism
group of a 2-designs with gcd(r, λ) = 1 is point-primitive of almost simple or affine type.
Such designs admitting an affine automorphism group have been determined in [4–6]. The
case where a 2-design with gcd(r, λ) = 1 admits an almost simple automorphism group has

∗Speaker. Email address: adanesh@basu.ac.ir
†The main results presented in this talk are part of joint papers with my colleague Seyed Hassan Alavi

and my PhD students Mohsen Bayat and Fatemeh Mouseli at Bu-Ali Sina University.
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been studied in [1–3,7–9]. In conclusion, all 2-designs with gcd(r, λ) = 1 admitting flag-
transitive automorphism groups are known except for those admitting one dimensional
affine type automorphism groups.

Theorem 2.1. Suppose that G is a flag-transitive automorphism group of the non-
trivial 2-designs D with gcd(r, λ) = 1. Then either (D, G) is known, or D has q = pa

points with p prime and G is a subgroup of the group AΓL1(q) of 1-dimensional semilinear
affine transformations.
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Abstract. We extend the notion of approximate convexity for set-valued mappings and
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lation between approximate solution for optimization problem and approximate solution
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1. Introduction

Optimization problems and variational inequalities have played a crucial role for solv-
ing engineering and economics problems. The standard optimality concept in multiob-
jective optimization goes back to 1881 and 1906. Set-valued optimization problem deals
with the problem of finding efficient elements of a set-valued function. Actually, set-valued
optimization problem generalizes the concept of scalar optimization and vector optimiza-
tion. In scalar optimization, there is a solution which generates the smallest function
value. But, due to the lack of a total order in Rn or a topological vector space, there are
several elements which cannot be compared. Hence, the pioneer work in the theory of
vector variational inequalities in 1980 began by Giannessi [4] that extended the classical
variational inequality for vector-valued functions in addition, Giannessi introduced Minty
variational inequality in 1998. In the last decades, many problems with different constraint
in engineering and economics have been considered that as mathematical modeling and
these models can be considered as optimization problems and variational inequalities.

On the other hand, set-valued maps are of interest both theoretically and in prac-
tice and in recent years, as generalization of mathematical problems such as the vector
variational inequalities and optimization problems, different types of problems for set-
valued maps were intensively studied and many results on the existence of solutions for
these problems were obtained, see [1]. Ngai et al in 2000, were introduced the concept of
approximately convexity, Bhatia et al. [6] introduced new classes of approximate pseudo-
convex functions, then Mishra and Laha in [3] and Gupta and Mishra in [2] considered

∗Speaker. Email address: m.darabi@iut.ac.ir
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the approximate pseudoconvexity assumption and by Stampacchia and Minty variational
inequalities characterized an approximate efficient solution of the scalar and vector opti-
mization problems. Here, we generalized the approximate convexity concepts and focus
on set-valued mappings and relation between set valued optimization problems and Minty
variational inequalities.
In this section, we define an optimization problem and some preliminary definitions and
results which are utilized in the following. In section 2, we obtain some relations between
solution of parametric optimization problems for set-valued maps and Minty variational
inequalities. Let X and Y be normed spaces and P be a topological space. Let A and B be
nonempty closed convex subsets of X and Y, respectively, η : A×A −→ A is a continuous
function such that η(x, y) = −η(y, x) and C : X×P −→ 2Y be a set-valued mapping such
that for any x ∈ X and for any p ∈ P , C(x, p) is a closed, convex and pointed cone in
Y such that intC(x, p) 6= ∅. Assume that e : X × P −→ Y is a continuous vector valued
mapping satisfying e(x, p) ∈ intC(x, p). Hence, suppose that K1 : A × P −→ 2A and
K2 : A×P −→ 2B. Let the machinery of the problems be expressed by F : A×P −→ 2Y .
Consider the following parametric vector optimization problem, for given p ∈ P :

(V OP (p)) Find x̄ ∈ clK1(x̄, p) such that, ∃ȳ ∈ F (x̄, p) ∩K2(x̄, p) :

∀x ∈ K1(x̄, p) (F (x, p)− ȳ) ∩ (−intC(x̄, p)) = ∅.
We denote the set of solutions of the above problems (V OP (p)) by S(p). Special cases
of the above problems are considered in [2] and [3]. For existence results of the above
problems in topological vector spaces and its special cases, we refer to [1]. In the sequal,
we recall some concepts of approximately convexity.

Definition 1.1. [5] f on A, is said to be approximately convexity if

∀a ∈ A, ∀ε > 0, ∃δ > 0 : ∀x, y ∈ Bδ(a), ∀λ ∈ (0, 1)

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) + εt(1− t)‖x− y‖.
Bhatia et al. [6] extended approximately convexity concept and defined new versions

of this concept. We extended approximately convex concept for set-valued functions, that
generalize definitions [2,6].

Definition 1.2. Let F : A −→ 2Y , function F is said to be

• approximately pseudoconvex (strictly approximately pseudoconvex) of type I cor-
responding to η at x0 if for all ε > 0 there exists δ > 0, that if x, y ∈ Bδ(x0)
and

〈x∗, η(x, y)〉 ⊆ C(x0, p)(intC(x0, p)) ∃x∗ ∈ ∂F (x, p),

then

∃y0 ∈ K2(x0, p) ∩ F (x, p) : ∀y ∈ K1(x0, p) F (y, p)− y0 + εe(x0, p)‖x− y‖ ⊆ C(x0, p).

• approximately pseudoconvex (strictly approximately pseudoconvex) of type II
corresponding to η at x0 if for all ε > 0 there exists δ > 0, that if x, y ∈ Bδ(x0)
and

〈x∗, η(x, y)〉+ εe(x0, p)‖x− y‖ ⊆ C(x0, p)(intC(x0, p)) ∃x∗ ∈ ∂F (x, p),

then

∃y0 ∈ K2(x0, p) ∩ F (x0, p) : ∀x ∈ K1(x0, p) y0 − F (x, p) ⊆ C(x0, p).
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Remark 1.3. (i) For the case when f : X −→ Y , approximate pseudoconvex of type
I is the same as the approximate pseudoconvex defined in [5]. Obviously, one can deduce
the concept of approximate pseudoconvex of type I from approximate pseudoconvex of
type II.
(ii) Bhatia et al. [6] showed that Converse of the above statement was not true.

The following definition provided by Song in 2003, Aubin and Frankowska in 1990 and
Chen and Jahn in 1998.

Definition 1.4. • Let x̄ ∈ clA (closure of A) a given element. The contingent
cone TA(x̄) is defined by

TA(x̄) = {u ∈ X : lim
h↘0

inf
dA(x̄+ hu)

h
= 0},

where dA(u) = infv∈A ‖u− v‖.
• Let F : X −→ 2Y and (x̄, ȳ) ∈ gr(F ). A set-valued map DF (x̄, ȳ) : X −→ 2Y

whose graph equals the contingent cone to the graph of F at (x̄, ȳ), i.e.

gr(DF (x̄, ȳ)) = Tgr(F )(x̄, ȳ)

• Let (x, y) ∈ gr(F ). We say that the set-valued map D↑F (x, y) : X −→ Y defined
by

D↑F (x, y)(u) := MinD(F + C)(x, y)(u)

is the contingent epiderivative of F at (x, y).
• Let F : X −→ 2Y be a set-valued mapping, x0 ∈ domF and y0 ∈ F (x0). Assume

that F is contingently epidifferentiable at (x0, y0). The set

∂F (x0, y0) = {T ∈ L(X,Y ) : Tu 6∈ D↑F (x0, y0)(u) + intC(x0, p),∀u ∈ X}
is called weak contingent generalized gradient of F at (x0, y0).

2. Main results

In this section, we obtain some relations between existence of solution of vector para-
metric optimization problems for set-valued maps and Minty variational inequalities. The
following definitions generalize definitions of approximate efficient solutions for optimiza-
tion problems that were introduced in [3].

Definition 2.1. (a) A vector x0 ∈ X is said to be an approximate efficient solution
of type one of the Problem (V OP (p)) if and only if for all ε > 0, there isn’t δ > 0 such
that for all x ∈ k1(x0, p) ∩Bδ(x0) \ {x0}
∃y0 ∈ K2(x0, p) ∩ F (x0, p) : (F (x, p)− y0 − εe(x0, p)‖x− x0‖) ∩ −intC(x0, p) = ∅.

(b) A vector x0 ∈ X is said to be an efficient solution of type two of the Problem (V OP (p))
if and only if for all ε > 0, there exists δ > 0 such that for any x ∈ Bδ(x0) ∩K1(x0, p),

∃y0 ∈ K2(x0, p) ∩ F (x0, p) : F (x, p)− y0 + εe(x0, p)‖x− x0‖ ⊆ Y \ −intC(x0, p).

(c) A vector x0 ∈ X is said to be an efficient solution of type three of the Problem
(V OP (p)) if and only if for all ε > 0, there exists δ > 0 such that for any x ∈ Bδ(x0) ∩
K1(x0, p),

∃y0 ∈ K2(x0, p) ∩ F (x0, p) : (F (x, p)− y0 − εe(x0, p)‖x− x0‖) ∩ (−intC(x0, p)) = ∅.
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In the sequel, we define approximate efficient solutions for Minty variational inequali-
ties that extend concepts approximate efficient solutions for Minty variational inequalities
were given by Mishra and Laha in [3].

Definition 2.2. (a) A vector x0 ∈ clK1(x0, p) is said to be an approximate efficient
solution of type one of Minty variational inequality if and only if for all ε > 0, there isn’t
δ > 0 and for all x ∈ K1(x0, p) ∩Bδ(x0) \ {x0}

∀z ∈ ∂F (x, p) < z, η(x0, x) > −εe(x0, p)‖x− x0‖ ∈ −intC(x0, p).

(b) A vector x0 ∈ clK1(x0, p) is said to be an efficient solution of type two of Minty
variational inequality if and only if for all ε > 0, there exists δ > 0 such that for any
x ∈ K1(x0, p) ∩Bδ(x0),

∀z ∈ ∂F (x, p) < z, η(x0, x) > +εe(x0, p)‖x− x0‖ ∈ Y \ −intC(x0, p).

(c) A vector x0 ∈ X is said to be an efficient solution of type three of Minty variational
inequality if and only if for all ε > 0, δ > 0 and for any x ∈ k1(x0, p) ∩Bδ(x0),

∀z ∈ ∂F (x, p) < z, η(x0, x) > −εe(x0, p)‖x− x0‖ ∈ Y \ −intC(x0, p).

Theorem 2.3. Let F : X −→ 2Y be a function. Then

• (i) if F is approximately pseudoconvex of type II at x0 ∈ X and x0 is an efficient
solution of type one of the Problem (V OP (p)), then x0 is also an efficient solution
of type one of Minty variational inequality.
• (ii) if F is approximately pseudoconvex of type II at x0 ∈ X and x0 is an efficient

solution of type two of the Problem (V OP (p)), then x0 is also an efficient solution
of type two of Minty variational inequality.
• (iii) if F is approximately pseudoconvex of type II at x0 ∈ X and x0 is an effi-

cient solution of type three of the Problem (V OP (p)), then x0 is also an efficient
solution of type three of Minty variational inequality.
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Abstract. We propose a new class of tests for central symmetry around a known point
based on the center-outward depth ranking. The asymptotic distribution of the proposed
tests under the null distribution is derived. This class includes the celebrated Wilcoxon
signed-rank test as a special case in the univariate setting. For illustration, we apply the
tests to a well-known data set to illustrate the method developed in this paper.
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1. Introduction
Testing the departures from multivariate symmetry is important subject in statis-

tics. For the multivariate case, there are several notions of symmetry including spherical,
elliptical, central or diagonal and angular symmetry, in increasing order of generality.
Specifically, we consider testing for central symmetry about a known point. The random
vector X is centrally symmetric around µ provided X−µ and µ−X have the same distri-
bution. Let X1, ...,Xn denote independent copies of the random vector X = (X1, ...,Xd)

T

from a continuous d−variate population. The problem is to test the hypothesis

H0 : X − µ0
d
=µ0 − X,

against general alternatives. Without loss of generality, we can take µ0 = 0, if it is not,
consider Xi − µ0 instead of Xi (i = 1, ..., n).

For testing central symmetry about known center, most tests have been developed by
employing the empirical characteristic functions, or the empirical distribution function.
Recently, [1] introduced an affine invariant class of tests for central symmetry based on
depth function.

In this paper, we aim to propose a class of tests based on the comparison of center-
outward ranks of points in opposite regions. The proposed class of tests is asymptotically
distribution-free under the null hypothesis and do not require any moment assumption.
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2. The proposed test statistics
According to the signed-rank test in univariate cases, extending such test in multivari-

ate problem requires the multidimentional version of rank and sign. Indeed, the univariate
signed-rank test is defined based on the rank of absolute value of observations and the sign
of the orginal data. Then, dealing with the multivariate case, we need to obtain an order-
ing which simultaneously captures the centrality and the relative magnitude of deviation
and an appropriate sign vector. Employing the depth function provides the requirements
of such ordering.

Associated with a given distribution F on Rp, a depth function is designed to provide
a center-outward ordering of points x in Rp. Indeed, a notion of data depth is used to
measure centrality/outlyingness of a point with respect to given data cloud or distribution.
Let X = (X1, ..., Xp)

T be a random vector on a probability space (Ω,F , P ) and F denote a
distribution function corresponding to P . Zuo and Serfling [4] provided a formal definition
of statistical depth function as a function D(., F ) : Rp → R satisfying the four properties
including affine invariance, maximised somewhere in the center of the distribution F ,
quasi-concavity and vanishing at infinity. Various depth functions have been proposed for
ranking multivariate data, among which the more popular are Tukey, Mahalanobis, spatial
and projection depth functions.

The Tukey depth of x ∈ Rp with respect to F is defined as

HD (x, F ) = inf
H

{P (H) : H is a closed halfspace in Rp and x ∈ H} .

The Mahalanobis depth of x with respect to F is given by

MD (x, F ) =
1

1 + (x − µ)T Σ−1 (x − µ)

where µ and Σ are the mean vector and dispersion matrix of F distribution, respectively.
The spatial depth of x with respect to F is given by

SD(x, F ) = 1− ||E(S(x − X))||
where

S (x) =
{ x

||x|| x ̸= 0

0 x = 0

and X ∼ F .
The projection depth of x with respect to F is given by

PD (x, F ) =
1

1 +OP (x, F )
,

where OP (x, F ) = sup
∥u∥=1

∣∣∣u
T x−µ(Fu)
σ(Fu)

∣∣∣ with µ(.) and σ(.) as univariate location and scale

measures, respectively and Fu is the distribution of uTX.
Now, we present the definition of center-outward ranking of data points.

Definition 2.1. Assume that X1, ...,Xn is a random sample from distribution func-
tion F in Rp. The center-outward rank Xi within the sample X1, ...,Xn is

# {Xj ∈ {X1, ...,Xn} : D (Xj , Fn) ≥ D (Xi, Fn)}
where Fn is the sample distribution function.
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Let the random sample X1, ..., Xn, with sample distribution function Fn comes from
p-dimensional distribution function F. The sample depth function will be obtained by
replacing F with the sample distribution Fn. Based on the sample depth function D(., Fn),
the center-outward rank of Xi, i = 1, ..., n is defined as

# {Xj ∈ {X1, ...,Xn} : D (Xj , Fn) ≤ D (Xi, Fn)} .

Let D(., F ) be a depth function on Rp associated with a distribution function F . The
proposed test compares the sum of the depth-based ranks in the opposite regions with
respect to the origin in space Rp. We need to order the multivariate points in such a
way that the difference between the center-outward ranks in the opposite regions detects
depurtures from the null symmetry point. More precisely, the center-outward rank of
points relative to the null symmetry center should be obtained instead of relative to the
median of X1, ...,Xn. Let Fn and F s

n denote the sample distribution function of random
sample X1, ...,Xn and the symmetrized sample (±X1, ...,± Xn), respectively. Then, we
have ordered X1, ...,Xn based on D(., F s

n) rather than D(., Fn). More precisely, define

Ri = # {Xj ∈ {X1, ...,Xn} : D (Xj , F
s
n) ≥ D (Xi, F

s
n)} , i = 1, ..., n.(1)

For each data point Xi, the coresponding componentwise sign vector is defined as δi =
(δ1i , ..., δ

p
i )

T where

δji =

{
1 if Xij ≥ 0
−1 otherwise

with Xij is jth component of the vector Xi, i = 1, ..., n, j = 1, ..., p. The signed-rank
vector is proposed as

Vi =
Ri

n+ 1
δi, i = 1, ..., n,

Now, the peoposed class of test statistics is introduced as

Wn,D = nV̄
′
n

(
1

n

n∑

i=1

ViV′
i

)−1

V̄ n

where V̄ n = 1
n

n∑
i=1

Vi. It is clear that, the large values of the test statistic Wn,D reject H0

in favor of alternative hypothesis.
To complete the procedure of test, we need to obtain the exact or asymptotics distri-

bution of Wn,D under the null distribution. If the sample depth function satisfies affine
invariance property, then under the null hypothesis of centrally symmetric about 0, Wn,D

converges in distribution to a chi-square random variable with p degree of freedom. There-
fore, for a sufficiently large sample size n, the null hypothesis will be rejected at level α
when

Wn,D ≥ χ2
p,1−α

where χ2
p,1−α denotes the 1 − α quantile of the chi-square distribution with p degree of

freedom.
It is worth to mentioning that in the special case p = 1 and defining the proposed test

based on the halfspace depth, Wn,D is equivalent to the two-sided Wilcoxon signed-rank
test which is a popular nonparametric test in the univariate case.
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Table 1. Analysis of the real data example

Wn,MD Wn,SD Wn,PD Wn,HD

Test statistics 3.657 3.5514 7.3142 5.8349
P-value 0.744 0.756 0.422 0.648

3. A real data example
In this section, the proposed class of tests is illustrated with a well-known real data

set on the health survey of paint sprayers in a car assembly plant presented by [2]. This
data set consists of six measurements including haemoglobin concentration, PCV packed
cell volume, white blood cell count, lymphocyte count, neutrophil count and serum lead
concentration for 103 black worker. The data were analyzed earlier by some authors.
Specifically, the test of [2] confirms that the data are not following from a multivariate
normal population such that the p-value of the test is approximately equal to 0. In the
sequal, [3] designed to test the elliptical symmetry and obtained the p-value of 0.11 where
results that it is not unreasonable to assume that the data are from an elliptical distri-
bution. We determined four versions of Wn,D, derived through the Mahalanobis, spatial,
projection and halfspace depths as Wn,MD, Wn,SD, Wn,PD and Wn,HD, respectively. The
value of test statistics and p-values are presented in Table 1. All tests show no statistical
evidence against the null hypothesis of central symmetry of data.
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Abstract. In this study, we consider Hermite-Hadamard type of isosceles orthogonality
(HH-I-orthogonality) in normed linear spaces. We prove that the existence property
of HH-I-orthogonality in the sense of Alonso and Benítez. In conclusion, some new
characterizations of real inner product spaces in terms of HH-I-orthogonality and its
relationship with Birkhoff-James orthogonality are presented.
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1. Introduction
Let (X, ⟨·, ·⟩) be a real inner product space. We say that a vector x ∈ X is orthogonal

to a vector y ∈ X, denoted by x ⊥ y, if their inner product is zero, that is ⟨x, y⟩ = 0.
However, there are various notions of orthogonality in a normed linear space, if the norm
is not induced by an inner product. One of the most well-known concept of orthogonality
in normed linear spaces is Birkhoff-James orthogonality [6]. Let (X, ∥·∥) be a real normed
linear space. A vector x ∈ X is said to be orthogonal to a vector y ∈ X in the sense of
Birkhoff-James, written as x ⊥B y, if

∥x+ λy∥ ≥ ∥x∥ (∀λ ∈ R).

Also, James introduced isosceles orthogonality in normed linear spaces [5]. A vector x ∈ X
is said to be isosceles orthogonal to a vector y ∈ X, written as x ⊥I y, if

∥x− y∥ = ∥x+ y∥.
Some main properties of the orthogonality in inner product spaces do not always carry over
to generalized orthogonalities in normed linear spaces, such as Birkhoff-James orthogonal-
ity and isosceles orthogonality. Taking this into account different types of orthogonalities
provide a good tools for studying the geometric properties of normed linear spaces. Also,
there are interesting characterizations of inner product spaces connected with the notions
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of orthogonality in normed linear spaces; see e.g., [2]. For example, it is known that isosce-
les orthogonality is not homogeneous and James [5] proved that isosceles orthogonality in
a real normed linear space X is homogeneous if and only if X is an inner product space.
Moreover, it is well known that Birkhoff-James orthogonality is not symmetric, and so the
following characterization of inner product spaces has been proved in [6]:

Theorem 1.1. [6] A normed linear space X, whose dimension is at least three, is an
inner product space if and only if Birkhoff-James orthogonality is symmetric in X.

In 2010, Kikianty and Dragomir introduced the Hermite-Hadamard type of isosceles
orthogonality by utilizing the 2-HH-norm in [4]. Precisely, a vector x ∈ X is called HH-I-
orthogonal to y ∈ X, denoted by x ⊥HH−I y, if and only if

∫ 1

0
∥(1− t)x− ty∥2dt =

∫ 1

0
∥(1− t)x+ ty∥2dt.

The main properties of HH-I-orthogonality were determined in [4]. In particular, it was
proved by [4] that HH-I-orthogonality in a real normed linear space X is homogeneous if
and only if X is an inner product space. Some characterizations of the real inner product
spaces using the notion of HH-I-orthogonality and by considering its relationship with
Birkhoff–James orthogonality have been obtained in [3].

In this paper, first we prove that HH-I-orthogonality is existent in the Alonso and
Benítez sense (Theorem 2.1). Next, some new characterizations of real inner product
spaces in terms of HH-I-orthogonality and its relation with Birkhoff-James orthogonality
are given. In particular, a characterization of inner product spaces by using some weakened
hypothesis of the homogeneity of HH-I-orthogonality are presented.

2. Main results
James [5] proved that isosceles orthogonality has the α-existence property, i.e., for

every linearly independent vectors x, y ∈ X, there is α ∈ R such that x ⊥I (αx + y).
Another existence property for isosceles orthogonality was stated by Alonso and Benítez
in [1]. Alonso proved that if (X, ∥ · ∥) be normed linear space and Y is a two-dimensional
subspace of X, then for every x ∈ Y and every γ > 0 there exists y ∈ Y such that ∥y∥ = γ
and x ⊥I y. Furthermore, it was proved in [4] that HH-I-orthogonality has the α-existence
property, but Alonso and Benítez noticed that since HH-I-orthogonality is nonhomoge-
neous, the α-existence of HH-I-orthogonality is not equivalent to their definition. In the
next result we prove that HH-I-orthogonality is existence in the Alonso and Benítez sense.

Theorem 2.1. Let (X, ∥ · ∥) be a normed linear space and let Y be a two-dimensional
subspace of X. Then for every x ∈ Y and every γ > 0, there exists y ∈ Y such that
∥y∥ = γ and x ⊥HH−I y.

Before stating our next result, we recall the following characterization of strictly convex
normed linear spaces with respect to left uniqueness of Birkhoff-James orthogonality.

Theorem 2.2. [6, Theorem 4] Let X be a normed linear space. Then the following
statements are equivalent:

(i) X is strictly convex.
(ii) The Birkhoff–James orthogonality is unique at left, i.e., for every x, y ∈ X, with

x ̸= 0 there exists a unique α ∈ R such that (αx+ y) ⊥B x.
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Also, note that the α-uniqueness of Birkhoff-James orthogonality is equivalent to its
uniqueness in the sense of Alonso and Benítez in strictly convex normed linear space
(X, ∥ · ∥). Indeed, if Y is a two dimensional subspace of X, x ∈ Y and γ > 0, then for
y ∈ Y which is linearly independent of x, there is a unique α ∈ R such that (αx+y) ⊥B x.
Now, let z = γ αx+y

∥αx+y∥ . Then z is a unique vector in Y such that ∥z∥ = γ and z ⊥B x,
by homogeneity of Birkhoff-James orthogonality. Conversely, assume that x, y ∈ X are
linearly independent vectors and Y = span{x, y}. Then there is a unique z ∈ Y such that
∥z∥ = ∥y∥ such that z ⊥B x. Now, let z = λx + µy (λ, µ ∈ R). Then (αx + y) ⊥B x for
which α = λ

µ (if µ = 0, then x = 0, which is impossible).

Theorem 2.3. Let (X, ∥ · ∥) be a strictly convex normed linear space whose dimension
is at least 3. If

x ⊥HH−I y ⇒ x ⊥B y (∀x, y ∈ SX),

then Birkhoff-James orthogonality is symmetric in X, and therefore X is an inner product
space.

Proof. Let x, y ∈ SX such that x ⊥B y and let Y = span{x, y} be the two dimensional
subspace of X generated by x and y. Then there is a vector z ∈ SY such that y ⊥HH−I z,
by Theorem 2.1, and so z ⊥B y. Then remarks preceding this theorem and Theorem 2.2
imply that z = x. Thus y ⊥B x. Therefore Birkhoff-James orthogonality is symmetric in
X, and so Theorem 1.1 concludes that X is an inner product space. □

Corollary 2.4. Let (X, ∥ · ∥) be a strictly convex space whose dimension is at least
3. If for all x, y ∈ SX there is δ > 0 such that

x ⊥HH−I y ⇒ x ⊥HH−I λy (∀|λ| < δ),

then X is an inner product space.

Proof. Let x, y ∈ SX such that x ⊥HH−I y. Then there is δ > 0 such that x ⊥HH−I

λy for all λ with |λ| < δ. Define the mapping φ : R → R by

φ(λ) =

∫ 1

0
∥(1− t)x+ λty∥2dt.

Since x ⊥HH−I λy for all λ such that |λ| < δ, we have ϕ(λ) = φ(−λ) for all λ ∈ (−δ, δ).
On the other hand, φ is a continuous and convex function. Then φ attains its minimum
at zero, that is

φ(λ) ≥ φ(0) =

∫ 1

0
∥(1− t)x∥2dt.

It follows that ∥(1 − t)x + λty∥ ≥ ∥(1 − t)x∥ for almost all t ∈ [0, 1]. It follows from the
continuity property of Birkhoff-James orthogonality that (1 − t)x ⊥B ty for all t ∈ [0, 1].
Thus x ⊥B y, since Birkhoff-James orthogonality is homogeneous. Therefore we have
proved that ⊥HH−I⊆⊥B on SX . Consequently, Theorem 2.3 implies that X is an inner
product space. □

3. Conclusion
There are interesting characterizations of inner product spaces connected with the

notions of orthogonality in normed linear spaces. In this paper the Hermite-Hadamard
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type of isosceles orthogonality (HH-I-orthogonality) is investigated. Considering HH-I-
orthogonality and Birkhoff-James orthogonality, some new characterizations of real inner
product spaces are presented.
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Abstract. The current paper studies an improved adaptive cubic regularized method
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regularization algorithm using cubics. we present a two-step version of adaptive cubic
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gence analysis is investigated under appropriate conditions. Several numerical results
are given to illustrate the efficiency and robustness of the suggested method.
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1. Introduction

Let us consider the unconstrained optimization problem:

min
x∈Rn

f(x),(1)

where f : Rn → R is a twice continuously differentiable function. We assume that the so-
lution set of (1) is nonempty. Classical iterative methods for optimization can be classified
into two categories: line search and trust region methods [5]. In line search methods (LS),
for a given xk, we have xk+1 = xk +αkdk where dk ∈ Rn is a descent search direction and
αk is called the step size. The standard trust region (TR) method is a prominent class
of iterative methods to solve the optimization problems. Similar to line search method,
iterative formula to solve (1) is generally in the following form:

x0 ∈ Rn, xk+1 = xk + dk, k ≥ 0,

in which dk satisfies the following minimization problem:

min
d∈Rn

mk(d) = fk + gTk d+
1

2
dTBkd,(2)

s.t. ∥d∥ ≤ σk,

where g(x) = ∇f(x), H(x) = ∇2f(x) and σk > 0 is the TR radius. Also, B is an
approximation of H. Here, we adopt the notations f(xk) := fk, g(xk) := gk, H(xk) :=
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Hk, B(xk) := Bk. Using the ratio

ρk =
fk − f(xk + dk)

mk(0)−mk(dk)
,

the classical TR algorithms evaluate an agreement between the model mk and the function
fk. The step dk is accepted whenever ρk ≥ µ (constant µ > 0). This leads us to the new
point xk+1 = xk + dk. Otherwise, the step dk is rejected and the problem (2) must be
solved again [5]. In recent years, adaptive regularized methods have been investigated
as an alternative to classical globalization methods for constrained and unconstrained
minimization problems [1, 2]. Nesterov and Polyack [4] were the first researchers who
analysed the Newton method by a cubic regularization approach to theoretically solve the
unconstrained minimization problems and prove the convergence results. They showed a
worst-case iteration count of order O(ϵ−3/2) to get ∥∇fk∥ ≤ ϵ. Cartis et al. [2] introduced
an adaptive regularization method (ARC) with a cubic model mk for the unconstrained
minimization problems.

2. The proposed algorithm

This section presents a two-step nonmonotone type of the ARC algorithm. For this
purpose, first, we give a brief review of the basic ARC algorithm as mentioned in [2]. The
key feature of the ARC method is the calculation of the step d by minimizing a cubic
overestimator of the function f . The cubic model is as follows:

mk(d) := fk + dT gk +
1

2
dTBkd+

1

3
σk∥d∥3,(3)

which was used by Cartis et al. in [2]. The step d is computed as an approximate minimizer
of mk(d). The cubic model mk(d) is used as an approximation of f(x) and the subproblem

min
d∈Rn

mk(d),

is solved. Zhang and Hager [6] proposed a nonmonotone line search, such that the step
size αk satisfying the following inequality:

f(xx + αkdk) ≤ Ck + βαkg(xk)
Tdk,(4)

where 0 < β < 1,

Ck =

{
fk k = 0,

(ηk−1Qk−1Ck−1 + fk) /Qk k ≥ 1,
(5)

and

Qk =

{
1 k = 0,

ηk−1Qk−1 + 1 k ≥ 1.
(6)

Here, we use a variable ηk in definition of Qk :

ηk =

{ η0
2 , k = 1,

ηk−1+ηk−2

2 , k ≥ 2,
(7)
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where 0 ≤ ηmin ≤ ηk−1 ≤ ηmax < 1. Here, we present a two-step nonmonotone ARC
algorithm as follows:

Algorithm 1: A two-step nonmonotone ARC algorithm (two-step-NARC).
Input: Let x0 ∈ Rn, σ0 > 0, 0 < η0 < 1, γ2 ≥ γ1 > 1, 0 < ϵ < 1 and µ2 ≥ µ1 > 0, k = 0.
Step 1. If ∥gk∥ ≤ ϵ stop.
Step 2. Compute an approximate minimizer dk of mk such that

mk(dk) ≤ mk(d
c

k),
where d

c

k is the Cauchy point defined by the equation as follow:
d
c

k = −α
c

kgk and α
c

k = argminα∈R+ mk(−αgk).
Set yk = xk + dk

Step 3. Compute an approximate minimizer d̂k of mk such that

mk(d̂k) ≤ mk(d
c

k),
where d

c

k is the Cauchy point due to yk by (3).

Step 4. Compute ρk = Ck−f(xk+dk+d̂k)
Predk

.

Step 5. Set xk+1 =





xk + dk + d̂k, ρk ≥ µ1,

xk, otherwise.

Step 6. Update σk+1 as

σk+1 =





[0, c1σk] , ρk > µ2,

[σk, γ1σk] , µ1 ≤ ρk ≤ µ2,

[γ1σk, γ2σk] , otherwise.

Step 7. Set k = k + 1 and go to Step 1.

3. Global convergence

We first give the following assumptions.
(A1). The mapping f is twice continuously differentiable, below bounded and the level
set L0 = {x ∈ Rn|f(x) ≤ f(x0)} is bounded.
(A2). g(x) is Lipschitz continuous, that is, there exists positive constant L such that

∥g(y)− g(x)∥ ≤ L∥y − x∥, x, y ∈ Rn.(8)

(A3). The matrix sequence {Bk} is uniformly bounded.

Lemma 3.1. [2] Suppose that the step dk satisfies mk(dk) ≤ mk(d
c

k). Then for all
k ≥ 0 we have

f(xk)−mk(dk) ≥
∥gk∥
6
√
2
min

{ ∥gk∥
1 + ∥Bk∥

,
1

2

√
∥gk∥
σk

}
.

For simplicity, we define two index sets I = {k | ρk ≥ µ1} and J = {k | ρk < µ1}.
Lemma 3.2. Let {xk} be the sequence generated by Algorithm 1. Then f

k+1
≤ C

k+1
≤

C
k
holds for all k ∈ I ∪ J.

Lemma 3.3. Suppose that (A3) holds and the step dk satisfies mk(dk) ≤ mk(d
c
k), for all k ≥

0. Then

∥dk∥ ≤ 3

σk
max(M,

√
σk∥gk∥).
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Theorem 3.4. Suppose that (A1), (A2) and (A3) hold. Then the sequence {xk}
generated by Algorithm 1 satisfies

lim inf
k→∞

∥gk∥ = 0.

4. Numerical results

In this part, we report some results on the following numerical results for the proposed
algorithm. We also compare the effectiveness of the proposed method with the classical
monotone ARC algorithm [2] and NARC [3]. We start with σ0 = 0.1, µ1 = 0.1, µ2 = 0.9,
γ1 = 1.1, γ2 = 2, η0 = 0.75. The number of evaluations of the objective function Nf

and the number of evaluations of its gradient Ng. As regards the CUTEr collection, we
selected a set of 20 CUTEr medium-sized unconstrained problems. All algorithms have
been compared by means of the performance profiles. The results are plotted in Fig. 1.
Obviously, the proposed algorithm has a better performance than the ARC algorithm [2]
and NARC [3] based on Nf + Ng and the number of iterations. Generally the proposed
algorithm has better numerical results in comparison with the other two algorithms.
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Figure 1. (a) Performance profiles for Nf +Ng (b) The number of iterations.

5. Conclusions

In this paper, combing with nonmonotone line search, we present a two-step ARC
method for unconstrained optimization problem. Convergence of the method is analyzed
under some suitable assumptions. The numerical results have shown the effectiveness of
the presented algorithm.
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Abstract. In this paper, the notions of partially projective modules and locally par-
tially free sheaves are introduced. These notions are generalizations of projective modules
and locally free sheaves respectively, and have some interesting properties in common
with projective modules and locally free sheaves. As in the Serre-Swan theorem, the
relationship between partially projective modules and locally partially free sheaves is
obtained.

Keywords: faithful surjection, partially projective module, partially free module, locally
partially free sheaf.
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1. Introduction

Since introduced in 1956 in the influential book [1], projective modules have played
an important role in both ring and module theory. In the characterization of rings, the
celebrated theorem of Auslander-Buchsbaum and Serre which states that a commutative
Noetherian local ring is regular if and only if it has finite global dimension (see e.g. [2,
Theorem 19.12]) is an outstanding example. This article concerns a generalization of
projective modules. (See for example [7] for complete discussion on projective modules).
In section 2, we extend the notion of projective modules as follows: We call a surjection
of R-modules g : A → B faithful, if for any maximal ideal P of R and for any b ∈ B, if
P = AnnR(b) then there exists some a ∈ A such that P = AnnR(a) and g(a) = b. The
idea is to replace the surjective map, in the definition of projective module, by a faithful
surjection. We call the resulting modules “partially projective” (p-projective for short),
as in some situations they are not projective, but they have a projective submodule as a
direct summand (see Theorem 2.9). p-projective modules have some interesting properties
in common with projective modules. For example, the class of p-projective R-modules
is closed under direct sums and summands and every p-projective module is a direct
summand of a “partially free module” (see Definition 2.6). In section 3, we define locally
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partially free modules and, study the relationship between partially projective modules
and locally partially free sheaves.

Throughout this paper all rings are commutative with unity and all modules are unital.
We denote the set of all maximal ideals of a ring R by Max(R) and the set of all associated
prime ideals of an R-module G by AssR(G). By a regular element t ∈ R we mean a
nonzero-divisor, i.e. tr = 0 implies r = 0. We define the torsion submodule of an R-
module G as T(G) = {x ∈ G : tx = 0, for some regular element t ∈ R}.

2. Definition and basic properties of p-projective modules

In this section, we illustrate some properties of p-projective modules. First, some
definitions:

Definition 2.1. Let P be a maximal ideal of R. An R-module epimorphism g : A→ B
is called P -surjective whenever for any b ∈ B, if P = AnnR(b) then there exists some a ∈ A
such that P = AnnR(a) and g(a) = b.
An R-module epimorphism g : A → B is called a faithful surjection if for all maximal
ideals P of R, g is P -surjective.

Definition 2.2. An R-module G is called partially projective (p-projective for short),
if for every faithful surjection g : A → B and any R-module homomorphism f : G → B,
there exists an R-module homomorphism f̄ : G→ A such that gf̄ = f .

Proposition 2.3. every direct sum of p-projective modules is p-projective.

Remark 2.4. Let P be a maximal ideal of R. We show that R/P is a p-projective
R-module. Suppose g : A → B is a faithful surjection and f : R/P → B is a nonzero R-
homomorphism. Thus b := f(1+P ) is annihilated by P and since b 6= 0 and P is maximal,
hence AnnR(b) = P . The P -surjectivity of g implies that there exists some a ∈ A such
that P = AnnR(a) and g(a) = b. Now we define f̄ : R/P → A by f̄(r+ P ) = ra for every
r ∈ R. Obviously f̄ is an R-homomorphism and gf̄ = f . Therefore R/P is a p-projective
R-module. Since every R/P -vector space V (P ) is a direct sum of copies of R/P , hence
Proposition 2.3 implies that V (P ) is a p-projective R-module. So we have the following.

Proposition 2.5. Let F be a free (projective or p-projective) module and let {Pλ}λ∈Λ

be a family of maximal ideals of R. For any λ ∈ Λ, let V (Pλ) be an R/Pλ-vector space.
Then F ⊕⊕λ∈Λ V (Pλ) is a p-projective module.

Definition 2.6. Let {Pλ}λ∈Λ be a family of maximal ideals of R. An R-module G is
called partially free, if G ∼= F ⊕⊕λ∈Λ V (Pλ) where F is a free R-module and the V (Pλ)
are R/Pλ-vector spaces.

Proposition 2.7. every R-module M is a homomorphic image of a partially free
module G such that the surjection is faithful. Furthermore, if G = F ⊕⊕λ∈Λ V (Pλ), then
the maximal ideals Pλ (if any) may be considered in AssR(M).

Theorem 2.8. Let G be an R-module. Then the following conditions are equivalent:

(1) G is p-projective;

(2) every exact sequence 0 // N // M
g // G // 0 with g a faithful surjec-

tion, splits;
(3) G is a direct summand of a partially free module;
(4) G is a direct summand of a p-projective module.
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Theorem 2.9. Let G be an R-module such that Σ = Max(R) ∩ AssR(G) is a finite
set and I =

⋂
P∈Σ P contains a regular element. Then G is p-projective if and only if

G ∼= H ⊕ K where H is a projective R-module and K is a direct summand of a free
R/I-module.

Proof. Let Σ = {P1, . . . , Pn}. We have R/I = R/∩ni=1Pi
∼= R/P1 × · · · × R/Pn and

so by Remark 2.4 and Proposition 2.3, every free R/I-module is a p-projective R-module.
Thus by Theorem 2.8, (4)→(1), every projective R/I-module is a p-projective R-module.
Now let G ∼= H ⊕K where H and K are R-modules such that H is projective and K is a
direct summand of a free R/I-module. As mentioned above, K is a p-projective R-module
and then by Proposition 2.3, G is p-projective.
Conversely, assume that G is a p-projective R-module. By Theorem 2.8, there exist a free
R-module F0 and for each i ∈ {1, . . . , n}, an R/Pi-vector space Vi such that

(1) F0 ⊕
n⊕

i=1

Vi ∼= G⊕M

where M is an R-module. by hypothesis, there exists a regular element t ∈ ∩ni=1Pi. Thus
by (1), we have tF0

∼= tG⊕ tM . Since t is regular, tF0 is a free R-module and so H := tG
is projective. Again from (1) we have

n⊕

i=1

Vi = T(F0 ⊕
n⊕

i=1

Vi) ∼= T(G)⊕ T(M).

Therefore for every x ∈ G, tx = 0 if and only if x ∈ T(G). Thus the sequence

0 // T(G) // G
t // tG // 0 is exact. As H = tG is projective, we have G ∼=

H⊕T(G). On the other hand, K := T(G) is a direct summand of
⊕n

i=1 Vi and it is easily
seen that

⊕n
i=1 Vi is a direct summand of a free R/I-module. So K is a direct summand

of a free R/I-module and G ∼= H ⊕K as desired. �

3. Locally partially free module

In this section, we define locally partially free modules and study the relationship be-
tween p-projectives and locally partially free sheaves.

Definition 3.1. Let R be a ring and M an R-module. We say that M is locally
partially free if we can cover spec(R) by standard opens D(fi), i ∈ I such that Mfi is a
partially free Rfi-module for all i ∈ I

Lemma 3.2. Let M be a locally partially free Rm-module .Then Mp is a partially free
Rp-module for all p ∈ Spec(R).

Proposition 3.3. Let R be a Noetherian ring and M be a finitely generated locally
partially free R-module. Then M be a partially projective R-module.

Lemma 3.4. Let M be a partially free R-module and p ∈ specR.Then Mp is a partially
free Rp-module. If p ∈ SpecR \MaxR then Mp is free Rp-module.

Lemma 3.5. Let M be a partially projective R-module and p ∈ specR.Then Mp be a
partially projective Rp-module. If p ∈ specR \MaxR then Mp is projective Rp-module.

Definition 3.6. Let X = Spec(R) and (X,OX) be affine scheme. Let G be a sheaf of
OX -modules. We say G is locally partially free sheaf if we can cover Spec(R) by standard

opens D(fi), i ∈ I such that G|D(fi)'
⊕

OX |D(fi)⊕(
⊕
OX/J̃)|D(fi), for some J ∈Max(R)
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In the following result, we give a scheme analog of the Serre-Swan Theorem[3.7]. For
more information on sheaves and scheme see [3].

Theorem 3.7. Let X = SpecR be an affine scheme and Let G be an R-module such
that Σ = Max(R) ∩ AssR(G) is a finite set and I =

⋂
P∈Σ P contains a regular element.

G is a p-projective module if and only if G̃ is a locally partially free sheaf.

References

1. H. Cartan, S. Eilenberg, Homological Algebra, Princeton University Press, 1956.
2. D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-verlag, New

York, 1995.
3. R.Hartshorne, Algebraic Geometry, Springer-verlag, New York, 1977.
4. J.J. Rotman, An Introduction to Homological Algebra, Springer-verlag, New York, 2009.

151



A Numerical Method for The Two-Asset Black-Scholes PDE

Razieh Delpasand1,∗, Mohammad Mehdi Hosseini2

1Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran
2Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract. In this paper, an efficient hybrid numerical method for solving two-asset
option pricing problem is presented based on the Crank-Nicolson and the radial ba-
sis function methods. For this purpose, the two-asset Black-Scholes partial differential
equation is considered. Also, the convergence of the proposed method are proved and im-
plementation of the proposed hybrid method is specifically studied on Call on maximum
Rainbow options. In addition, this method is compared to the explicit finite difference
method as the benchmark and the results show that the proposed method can achieve a
noticeably higher accuracy than the benchmark method.
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1. Introduction

The financial markets are becoming more complex with trading many types of financial
derivatives. A financial derivative is a contract with a value dependant on one or several
underlying assets. Black-Scholes and Merton introduced a parabolic partial differential
equation (PDE) that the price of the European option satisfies under certain assumption.
During the last decades, researchers have been presenting some numerical methods in
order to solve Black-Scholes equation [2–5]. RBFs method is known as a powerful tool
for interpolation of scattered data. The main advantage of radial basis functions method,
is its meshless characteristic. In this paper we applied RBFs in order to solve the two-
asset Black-Scholes PDE for Call on maximum model. In order to this purpose we use
Multiquadratic radial basis functions. The rest of this paper is organized as follows: In
section 2, a proposed method based on θ method and RBFs method for solving two-assets
Black-Scholes PDE is presented. In addition, convergence of the proposed method are
proved in section 3. Call on maximum Rainbow option are introduced in section 4. The
proposed method is applied to solve these problems and their obtained numerical results
are presented.
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2. Proposed method for two-asset option pricing

In this paper we consider two-asset Black-Scholes PDE

∂U

∂t
(x, y, t)− 1

2
σ2
1x

2∂
2U

∂x2
(x, y, t)− σ1σ2ρxy

∂2U

∂x∂y
(x, y, t)− 1

2
σ2
2y

2∂
2U

∂y2
(x, y, t)

− rx
∂U

∂x
(x, y, t)− ry

∂U

∂y
(x, y, t) + rU(x, y, t) = 0.(1)

where σ1 and σ2 are the volatility of assets x and y, respectively, ρ is the correlation
coefficient between x and y and r is the risk-free rate. E is the strike price. The do-
main for each asset price is [0,+∞), but in a numerical method, we usually truncate
the domain to [0, L1] and [0, L2] respectively. The choice of L1 and L2 usually de-
pends on the evaluation area we are interested in. We consider (1) with initial condition
U(x, y, 0) = payoff(x, y), and boundary conditions are defined according to the exact
solution of (1). We discretize the domain with N division in x-axis and y-axis, not nec-
essarily uniform as {xi}Ni=1and{yi}Ni=1, and M time steps, so interval [0, T ] is discretized

with ∆t =
T

M
, that T denotes the expiration time. Now, we approximate function U

with RBF method according to U(x, y, t) =
∑N2

i=1 λi(t)ϕi(x, y). where ϕ is a radial basis
function. By defining

(2) D = −1

2
σ2
1x

2 ∂2

∂x2
− σ1σ2ρxy

∂2

∂x∂y
− 1

2
σ2
2y

2 ∂2

∂y2
− rx

∂

∂x
− ry

∂

∂y
+ r,

we can rewrite (1) to
∂U

∂t
(x, y, t) +DU(x, y, t) = 0. Using the θ method

(3)

(
U(x, y, t+∆t)− U(x, y, t)

∆t
+O(∆t)

)
+(1− θ)DU(x, y, t+∆t)+ θDU(x, y, t) = 0,

where the parameter θ is chosen in interval [0, 1]. By rearranging (3) we have

(4) [1 + (1− θ)∆tD]Un+1 = [1− θ∆tD]Un,

where Un = U(x, y, tn). Defining A = 1 + (1− θ)∆tD and B = 1− θ∆tD, we obtain

(5) AUn+1 = BUn.

By using RBF approximation, we find

Un+1 =

N2∑

i=1

λn+1
i ϕi(x, y),(6)

Un =
N2∑

i=1

λn
i ϕi(x, y).(7)

Substituting values from (6) and (7) into (5) for all interial and boundary points of collo-
cation points, we get the scheme in matrix form:

(8) AΦλn+1 = BΦλn + gn+1,

where Φ = [ϕ(ri,j)]
N
i,j=1 and gn+1 is a N2× 1 vector, such that according to interial points

its components are equal to zero and its other componets are obtained by substituting
boundary points into their boundary conditions. Subsequently (8) can be written as
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λn+1 = (AΦ)−1(BΦ)λn + (AΦ)−1gn+1. So, λn+1 = Hλn + G, where H = (AΦ)−1(BΦ)
and G = (AΦ)−1gn+1, it follows that

(9) Un+1 = ΦHΦ−1Un +ΦGn+1.

In above relation U0 vector is obtained using initial condition.

3. The convergence of the proposed method

In this section, we prove the convergence of the scheme (9). We define matrix E =

ΦHΦ−1. The components of the matrix E depends on the constant γ =
∆t

hs
, where h is the

distance between any two nodes, and s is the highest order of partial differential operator,
where s is equal to 2 for mentioned problem (1). We know that |Ut(x, y) − ut(x, y)| ≤
βlh

l−1|u|Nφ(Ω), where l ∈ N, Nφ(Ω) is a native space of RBF φ and un(x, y) is the exact
solution of (1) at time n∆t. [6] We assume that (9) is accurate of order p, it yields that

(10) un+1 = ΦHΦ−1un +ΦGn+1 +O((∆t) + hp), ∆t → 0, h → 0, ∀n
Now we define en(x, y) = un(x, y)− Un(x, y). By subtracting (9) from (10) we get:

(11) en+1 = Een +O((∆t) + hp), ∆t → 0, h → 0

By Lax-Richtmyer definiton of convergency the scheme in (9) is convergent if ∥E∥ ≤ 1,
hence, there exist a constant η such that ∥en+1∥ ≤ ∥E∥∥en∥+η((∆t)+hp). It is seen that
e0 = 0, using the initial condition. So we have ∥en+1∥ ≤

(
1 + ∥E∥2 + ...+ ∥E∥n+1

)
η((∆t)+

hp). By considering the convergency condition, we obtain ∥en+1∥ ≤ nη((∆t)+hp). So con-
vergence of the scheme is proved.

4. Implementation of the proposed method

In this section we introduce Rainbow options. The numerical solutions for them are
further considered using the proposed method.

4.1. Rainbow option. Rainbow option is based on a combination of various assets
like a rainbow is a combination of various colors. There are different forms of Rainbow
option. In this paper we consider Call on maximum option. The exact solution is:

C(S1, S2, t) = S1[N(δ1)−N ′(−d1, δ1, ρ1)] + S2[N(δ2)−N ′(−d2, δ2, ρ2)]

+ Ee−r(T−t)N ′(−d1 + σ1
√
T − t,−d2 + σ2

√
T − t, ρ)− Ee−r(T−t),

where

di =
ln(

Si

E
) + (r +

1

2
σ2
1)(T − t)

σi
√
T − t

i = 1, 2, δ1 =
ln(

S1

S2
) + (

1

2
σ2)(T − t)

σ
√
T − t

,

δ2 =
ln(

S2

S1
) + (

1

2
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√
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σ

σ =
√
σ2
1 + σ2
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1√
2π

∫ δ

−∞
e
−
z2

2 dz.

N ′(d, δ, ρ) =
1

2π
√

1− ρ2

∫ d

−∞

∫ δ

−∞
e
−
x2 − 2ρxy + y2

2(1− ρ2) dxdy.
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4.1.1. An example of Call on maximum option. Here we consider PDE (1) with initial
and boundary conditions consistent with Call on maximum Rainbow option when, E =
10, σ1 = σ2 = 0.2, T = 0.5, ρ = 0.1, r = 0.1, L1 = L2 = 40. In order to use the proposed
method we suppose N = 10,M = 30 and θ = 0.5. This problem is solved by the proposed
method by MQ RBF and appropriate shape parameter. The results of the proposed
method and the explicit finite difference method with ∆S = 0.4,∆t = 0.005 as benchmark,
are shown in table 1, which is shown the high accuracy of the proposed method. In case

Table 1. Results for a Call on maximum option example

S1 S2 Approx by proposed method Approx by explicite FDM Exact solution
16 16 7.696995177509 7.694959078947 7.696995177078
20 8 10.487706098473 10.487772099135 10.487706094291
20 16 10.687059187097 10.686378201908 10.687059187049

of S1 = 20, S2 = 8 the effect of the time step size (∆t) to the computational accuracy is
shown in figure 1 .

Figure 1. Variation of the absolute error with ∆t

5. Conclusion

Two-asset options whose payoff depends on two underlying assets. In this paper,
an efficient hybrid numerical method for solving PDE (1) was introduced based on the
Crank-Nicolson and the radial basis functions methods. Furthermore, the convergence of
the proposed method were proved. The proposed method were used for pricing of Rainbow
options. The merit of the proposed hybrid method is its ability to achieve high accuracy
without the need to use high computational cost.
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Abstract. A sufficient and a necessary condition for non- total imprisonment on Lorentzian
length spaces is given. Some properties of these kind of length spaces are investigated.
In addition it is proved that any non-totally imprisoning locally causally closed and
d-compatible Lorentzian length space which contains a lightlike line is causally discon-
nected.
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1. Introduction
Non- imprisonment is an important causality condition in general relativity. Non- to-

tal imprisoning and non- partial imprisoning space-times are studied widely in [3]. In this
paper we investigate these conditions on length spaces as a generalization of space-times.
Let us recall some definitions and theorems which are needed in the second section.
Suppose that X is a set with reflexive and transitive relation ≤ and ≪ a transitive relation
contained in ≤. Then (X,≤,≪) is called a causal space [1].
I+(x) = {y ∈ X : x ≪ y} and I−(x) = {y ∈ X : y ≪ x}
J+(x) = {y ∈ X : x ≤ y} and J−(x) = {y ∈ X : y ≤ x}
We write x < y if x ≤ y and x ̸= y.

Definition 1.1. [1] Let (X,≤,≪) be a causal space and d a metric on X. Let
τ : X ×X → [0,∞] be a lower semi-continuous map that satisfies:

τ(x, z) ≥ τ(x, y) + τ(y, z)

For all x, y, z ∈ X with x ≤ y ≤ z. Moreover, suppose that τ(x, y) = 0 if x ≰ y and
τ(x, y) > 0 ⇔ x ≪ y. Then (X, d,≪,≤, τ) is called a Lorentzian pre-Length space and τ
is called a time separation function.

Definition 1.2. [1] Let I ⊆ R be an interval. A non-constant curve β : I → X
is called future directed causal (timelike) if β is locally Lipschitz continuous and for all
t1, t2 ∈ I, t1 < t2 we have β(t1) ≤ β(t2) (β(t1) ≪ β(t2)). Furthermore, a future directed
causal curve is called null if no two points on the curve are related with respect to ≪.

∗Speaker. Email address:n_ebrahimi@uk.ac.ir
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Before defining a length space we need the following two definitions.

Definition 1.3. [1] A Lorentzian pre-length space (X, d,≪,≤, τ) is called causally
path connected if for every x, y ∈ X with x ≪ y there is a future directed timelike curve
from x to y and for x < y there is a future directed causal curve from x to y.

Definition 1.4. [1] A Lorentzian pre-length space (X, d,≪,≤, τ) is called localizable
if ∀x ∈ X there is an open neighborhood Ωx of x in X with the following properties:

• There is C > 0 such that Ld(β) ≤ 0 for all causal curve β contained in Ωx,
• There is continuous map ωx : Ωx × Ωx → [0,∞) such that (Ωx, d|Ωx×Ωx ,≪
|Ωx×Ωx ,≤ |Ωx×Ωx , ωx) is a Lorentzian pre-length space with the following con-
dition: For every y ∈ Ωx we have I±(y) ∩ Ωx ̸= ∅,

• For all p, q ∈ Ωx with p < q there is a future directed causal curve βp,q from p to
q that is maximal in Ωx and satisfies

Lτ (βp,q) = ωx(p, q) ≤ τ(p, q),

(That the curve βp,q is maximal in Ωx means that for every other future directed
causal curve λ connecting p and q with image contained in Ωx we have that
Lτ (βp,q) ≥ lτ (λ))
We call such a neighborhood Ωx a localizing neighborhood of x. If in addition,
the neighborhood Ωx can be chosen such that

• Whenever p, q ∈ Ωx satisfy p ≪ q then βp,q is timelike and strictly longer than
any future directed causal curve in Ωx from p to q that contains a null segment.

Definition 1.5. [1] Let (X, d,≪,≤, τ) be a locally causally closed, causally path
connected and localizable Lorentzian pre-length space and let x, y ∈ X. Then set
ρ(x, y) = sup{Lτ (β) : β future directed causal from x to y}, if the set of future -directed
causal curves from x to y is not empty. Otherwise ρ(x, y) = 0. We call X a Lorentzian
length space if ρ = τ .

Definition 1.6. [1] Let −∞ ⩽ a < b ⩽ ∞ and let β : [a, b) → X be a future
directed causal curve. It is called extendible if there exists a future directed causal curve
β̂ : [a, b] → X such that β̂|[a,b) = β. The curve β is called inextendible if it is not
extendible.

The following two theorems are used in section 2, to find a new characterization for
non- total imprisonment.

Theorem 1.7. [1] Let (X, d,≪,≤, τ) be a locally closed Lorentzian pre-length space.
Let −∞ < a < b ⩽ ∞ and let β : [a, b) → X be a future directed causal curve parameterized
with respect to d- arc length. If (X, d) is a proper metric space or the image of β is contained
in a compact set then β is inextendible if and only if b = ∞ . In this case, Ld(β) = ∞.
Moreover β is inextendible if and only if lim↗bβ(t) does not exists.

Theorem 1.8. [1] Let (X, d,≪, , τ) be a locally causally closed and d-compatible
Lorentzian pre-length space. Let βn be a sequence of future directed causal curves βn :
[0, Ln) → X that are parameterized with respect to d- arc length with Ln = Ld(βn) → ∞.
If there is a compact set that contains every βn([0, Ln]) or if d is proper and βn(0) → x
for some x ∈ X, then there is a subsequence (βnk

) of βn and a future directed causal curve
β : [0,∞) → X such that βnk

→ β locally uniformly. Moreover, β is inextendible.
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Definition 1.9. [1] Let (X, d,≪,≤, τ) be a Lorentzian pre-length space. A future
directed causal curve β : [a, b] → X is maximal if Lτ (β) = τ(β(a), β(b)).

Null curves are always maximal on any compact interval.

2. non- imprisonment condition
Definition 2.1. [1] A Lorentzian length space (X, d,≪,≤, τ) is called:

non- total imprisoning if for every compact subset K of X there is a C > 0 such that the
d- arc length of all causal curves contained in K is bounded by C.

Theorem 2.2. Let (X, d,≪,≤, τ) be a locally causally closed and d-compatible Lorentzian
length space.

• If for every compact set K and every future inextendible causal curve β : [a, b) →
X there is t0 ∈ [a, b) such that for every t ≥ t0, β(t) /∈ K then X is non- total
imprisoning,

• If X is non- total imprisoning then for every compact set K, every future inex-
tendible causal curve β : [a, b) → X and every t0 ∈ [a, b), there is t ≥ t0 such that
β(t) /∈ K.

Proof. For the first part suppose by contradiction that there is no C > 0 as in the
definition of non- total imprisoning Lorentzian length spaces for a compact set K. Using
theorem 1.8 there is an inextendible limit curve β in K and this is a contradiction.
To prove the second part let X be non- total imprisoning. Suppose by contradiction that
there is a compact set K, an inextendible causal curve β : [a, b) → X and t0 ∈ [a, b) such
that for every t ≥ t0, β(t) ∈ K. By using of theorem 1.7 this is a contradiction since the
d-arc length of β is not finite. □

Definition 2.3. A lightlike line is an achronal inextendible causal curve.
The following definition is similar to what we have for Lorentzian space times [2].
Definition 2.4. A Lorentzian length space (X, d,≪,≤, τ) is causally disconnected by

a compact set K if there are sequences pn and qn, pn ≤ qn going to infinity such that for
each n every continuous causal curve connecting pn to qn intersects K.

Remark 2.5. Suppose that (X, d,≪,≤, τ) be a pre-length space. x ≪ y and y ≤ z
implies that x ≪ z, for x, y, z ∈ X. [1]

Theorem 2.6. Any non-totally imprisoning locally causally closed and d-compatible
Lorentzian length space which contains a lightlike line is causally disconnected.

Proof. Let β : (a, b) → M be a lightlike line. Theorem 2.2 implies that there are
sequences sn and tn, sn → a and tn → b such that β(sn) = pn and β(tn) = qn scapes every
compact set. There is no causal curves from pn to qn without intersecting K = {β(0)}.
Suppose by contradiction that there is such a curve, η. Then there is timelike curve from
pn+1 to qn+1 by following β from pn+1 to pn then following η from pn to qn and finally
the curve β from qn to qn+1, which is a contradiction by using of remark 2.5, since β is
ligthlike. □

The following two sets were used for characterization of non total imprisoning space-
times in general relativity [3].
Ωf (β) =

∩
β(t,∞]

Ωp(β) =
∩
β((−∞, t])
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Theorem 2.7. Let (X, d,≪,≤, τ) be a Lorentzian length space. If β : R → X be
an inextendible causal curve then the set Ωf (β) is closed. For every causal curve β, the
closure of its image is given by β = Ωf (β) ∪ β ∪ Ωp(β).

Proof. Since the intersection of closed sets is close, Ωf (β) is close. Suppose that the
domain of β is (a, b) and x ∈ β. There is a sequence sn ∈ (a, b) such that β(sn) → x.
There are three cases. Either sn admits a subsequence which converges to s0 ∈ (a, b), in
this case by using of continuity x = β(s0) ∈ β, or there is a subsequence which converges
to b, in this case x ∈ Ωf (β) or finally, there is a subsequence which converges to a which
implies that x ∈ Ωp(β). On the other hand it is obvious that Ωf (β) ∪ β ∪ Ωp(β) ⊂ β. □

Remark 2.8. If (X, d,≪,≤, τ) be a length space then I±(.) is open since:
• x ≪ y ⇔ τ(x, y) > 0,
• τ is lower semi continuous.

Theorem 2.9. Let (X, d,≪,≤, τ) be a causal length space and β be a future inextendible
causal curve then:

• Ωf (β) is an achronal set,
• If α be a lightlike line that α ⊂ Ωf (β) then Ωf (α) ∪ Ωp(α) ⊂ Ωf (β).

Proof. Suppose by contradiction that Ωf (β) is not achronal then there are x1, x2 ∈
Ωf (β) such that x2 ∈ I+(x1). Since X is length space remark 2.8 implies that I+ is open.
Hence there are neighborhoods U1 and U2 of x1 and x2 such that U1 × U2 ⊂ I+. There
are, t1, t2 such that t2 < t1, β(t2) ∈ U2 and β(t1) ∈ U1, thus β(t2) ∈ J+(β(t1)) and
β(t1) ∈ I+(β(t2)). This is a contradiction with the fact that X is causal.
To prove the second part suppose that x ∈ Ωf (α) ∪ Ωp(α) and U is a neighbourhood of
x. There is s such that α(s) ∈ U . But α(s) ∈ Ωf (β) and U is a neighborhood for α(s).
Hence for an arbitrary T , there is t > T , such that β(t) ∈ U . T and U are arbitrary and
consequently x ∈ Ωf (β). □
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dependent partial differential equations

Ali Ebrahimijahan1∗, Mehdi Dehghan 1

1Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences,
Amirkabir University of Technology, No. 424, Hafez Ave.,15914, Tehran, Iran

Abstract. The integrated radial basis function (RBF) method is a universal mesh-free
method for the numerical solution of partial differential equations. Both global and local
forms of this method achieve a higher order of accuracy. In this paper, we take advantage
of the mesh-free property of the methods and use an adaptive algorithm to choose the
location of the collocation points. An adaptive algorithm is used for Burgers equation
and it is shown that it leads to high accuracy with fewer collocation points.
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1. Introduction
There are many methods for solving the partial differential equation. Known main

methods can be categorized to finite difference method, finite element method, and finite
volume method. The common feature of these methods is that they depend on grid and
this limits their implementation for irregular areas. Meshless methods based on radial basis
functions for solving partial differential equations have better features than the mentioned
methods [1,2]. Some problems have high degree of space or time, steep gradients, corners,
and physical changes resulting from nonlinearity, adaptive methods may be preferable to
fixed grid methods. The purpose of adaptive methods is to find the PDE solution as
well with a small number of the basis functions. Whereas integrated radial basis function
(IRBF) method is completely meshfree, requiring just interpolation nodes and a set of
points called center defining the basis functions, implementing adaptivity in terms of
refining and coarsening nodes is very straightforward [3].

1.1. A brief review of the integrated radial basis functions method. First, a
few primitive definitions are represented.

Definition 1.1. Radial function [4]: A function : Rd → R is declared to be radial if
there exists a function ϕ : [0,∞] → R such that Φ(x) = ϕ(∥x∥2) for all x ∈ Rd.

∗Speaker. Email address: ebrahimijahan_ali@aut.ac.ir
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The approximation of a distribution S(x), using radial basis functions, may be im-
pressed as a linear combination of N radial functions; commonly it takes the next form:

(1) S(x) ≈
N∑

l=1

ℓlϕϵ(∥x− xl∥) + P (x), for x ∈ Ω ⊂ Rd,

where N is the number of data points, x = (x1, x2, . . . , xd), d is the dimension of the
problem, ℓ’s are unknown coefficients to be determined, ∥.∥ is Euclidean norm and ϕϵ is
the radial basis function and depends on ϵ in which ϵ is shape parameter. The IRBFs
method employs integrating idea instead of derivating approach [5,6].

2. Implementation of IRBF method for Burgers equation
Consider Burgers equation as follows

(2) ∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ (a, b), t > 0,

with the boundary and initial conditions

u(x, 0) = f0(x), x ∈ (a, b), u(a, t) = g1(t), u(b, t) = g2(t), t > 0,(3)

where f0, g1, g2 are given functions. As seen from Eq. (2) , the order of PDE is two. Ac-
cording to the IRBF, the second- and first- derivatives and itself function are approximated
as follows
(4)
∂2u(x)

∂x2
=

N∑

l=1

βl(t)ψ(x),
∂u(x)

∂x
=

N∑

l=1

βl(t)ϕl(x)+µ1(t), u(x) =
N∑

l=1

βl(t)φl(x)+µ1(t)x+µ2(t),

where
ϕ(x) =

∫
ψ(x)dx, φ(x) =

∫
ϕ(x)dx,

and µ1(t) and µ2(t) are the constants of integration at per time step. Collocating grid
nodes in the associated stencil gives the following matrix

U = Φ[0]

(
β(t)
µ(t)

)
= C

(
β(t)
µ(t)

)
,

(
β(t)
µ(t)

)
= C−1U,(5)

where Φ[0] is aN×(N+2)matrix, U = (u(x1), u(x2), . . . , u(xN ))T , β(t) = (β1(t), β2(t), . . . , βN (t))T ,
and µ(t) = (µ1(t), µ2(t))

T and C denotes conversion matrix. Substituting (5) into the fol-
lowing relation

Uxx = Φ[2]

(
β(t)
µ(t)

)
= Φ[2]C−1U = DxxU, Ux = Φ[1]

(
β(t)
µ(t)

)
= Φ[1]C−1U = DxU,(6)

where Uxx = (∂
2u(x1)
∂x2 , . . . , ∂

2u(xN )
∂x2 ), Ux = (∂u(x1)

∂x , . . . , ∂u(xN )
∂x ) and Dxx, Dx are N × N

matrices and putting (6) into (2) gives

dU

dt
+ U. ∗DxU = νDxxU, or more explicitly dU

dt
= νDxxU − U. ∗DxU,

where .∗ is dot product.
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2.1. Descripition of the adaptive method. For time-dependent PDEs, the adap-
tive algorithm is explained in the following algorithm.

INPUT: x,N, θrefine and θcoarsen and initial shape parameter;
for i = 1 : Tfinal do

Calculate the IRBF derivatives of u for x;
Compute approximation of u by nemurical method for solving ODE in i-th
time step ;

while All residual are less than θrefine do
Calculate the global IRBF interpolant matrix for x;
y = x(1 : N − 1) + 0.5(diff(x)) % ”diff” is a MATLAB command that
calculates differences between adjacent elements of x ;

Calculate the global IRBF interpolant su for y;
Compute residual Res := |u− su|;
if Res < θcoarsen then

Find points and remove them;
end
if Res > θrefine then

Find points and add them to x;
end
Adapt the shape parameters;

end
Apply the boundary conditions;
Update x, approximation of u and shape paramters;

end
OUTPUT: Approximation solution of u at final time;

Algorithm 1: Adaptive IRBF for time-dependent PDE

3. Numerical results
Example 3.1. Investigate Eq. (4) with the following initial and boundary condition

u(0, t) = u(1, t) = 0, u(x, 0) = sin(2πx) +
1

2
sin(πx).

This method is solved by the presented technique and the obtained results will be compared
with method suggested in [3]. Fig. 1 depicts numerical solution of Burgers equation with
adaptive-IRBF method (right panel) and technique of [3] (left panel). According to this
figure, it can be seen that the number of points used for the proposed method is less than
the method of [3]. For sample, the method of [3] with ν = 0.001 at T = 0.3, 1, the number
of points created in this technique is N = 153, N = 99. Whereas the proposed method
with N = 84 and N = 59 gives the same result. Also for ν = 0.0005, the number of points
created by the presented technique and technique of [3] are N = 91, 76 and N = 179, 114,
respectively at times T = 0.3 and T = 1.
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Figure 1. Numerical solution of Burgers equation with adaptive-IRBF
method (right panel) and technique of [3] (left panel).

4. Conclusion
Integrated radial basis function method combined with an adaptive algorithm is used

to solve Burgers equation. The inherent flexibility of the IRBF method allowed the node
location to be chosen adaptively in a way that retained the desired accuracy but used
significantly fewer centers. We compared the obtained results by the presented technique
with technique in [3]. Our future research will concern the use of adaptive grid IRBF
method in two and three space dimensions.
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Abstract. A novel operational matrix of the integral operator with respect to the
variable-order fractional Brownian motion is applied to solve nonlinear stochastic differ-
ential equations. In addition, the convergence of the new method is investigated. Finally,
the accuracy and efficiency of the new method are confirmed by solving a well-known
model.
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1. Introduction

In this research, we consider a class of nonlinear stochastic differential equations (NS-
DEs) given by:

{
dy(t) = F (t, y(t))dt+G(t, y(t))dBH(t)(t), t ∈ [0, `],
y(0) = y0,

(1)

where

dBH(t)(t) = WH(t)(t),(2)

is a multi-fractional Gaussian noise. Here, y0 is a given initial value; and the unknown
function y(t) is a stochastic process on probability space (Ω,F ,P); F , G are given func-
tions; and BH(t)(t) is a variable-order fractional Brownian motion (fBm) of the Riemann-

Liouville type with the time-dependent Hölder exponent H(t) ∈ (1
2 , 1) defined by Sheng

et al. [4]:

BH(t)(t) =
1

Γ
(
H(t) + 1

2

)
∫ t

0
(t− ς)H(t)− 1

2dB(ς),

where B(ς) is a Brownian motion (Bm) process.
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The analytic solution of the above stochastic problem can not be obtained usually.
Therefore, we present a new approach to provide approximate solution for the above
problem.

2. Background

2.1. The GHFs are defined on the interval [0, `] by [5]:

ψ0(t) =





h− t
h

, 0 ≤ t < h,

0, otherwise,

ψj(t) =





t− (j − 1)h

h
, (j − 1)h ≤ t < jh,

(j + 1)h− t
h

, jh ≤ t < (j + 1)h,

0, otherwise,

j = 1, 2, . . . , n− 2,

ψn−1(t) =




t− (`− h)

h
, `− h ≤ t ≤ `,

0, otherwise,

where h = `
n−1 .

2.2. We can approximate an arbitrary function y(t) by the GHFs as follows:

y(t) ' yn(t) =
n−1∑

j=0

y(jh)ψj(t)
∆
= Ŷ TΨ(t),(3)

Ŷ = [ y(0) y(h) y(2h) · · · y(`) ]T ,

Ψ(t) = [ ψ0(t) ψ1(t) ψ2(t) · · · ψn−1(t) ]T .

3. The presented method

In this section, by converting Eq. (1) in integral form and using (3) we obtain:

Ŷ T − y0e
T − F (T̂ T , Ŷ T )P −G(T̂ T , Ŷ T )Ps ' 0,(4)

where P and Ps are operational matrices of integration and integration with respect to
the variable-order fBm [1], respectively, which for a sake of briefness we will not able to
explain them in detail.

To determine unknown vector Y , existing in Eq. (4), we solve the above system.
Substituting this vector in Eq. (3), an approximate solution can be obtained for Eq. (1).

4. Error bound

Here, we theoretically investigate an error bound for the proposed method. We recall
that the definition of sup-norm for any continuous function y on the interval [0, `] is as
follows:

‖y‖ = sup
t∈[0,`]

|y(t)| .

4.1. Let y(t) be an exact solution of Eq. (1) and yn(t) be the GHFs expansion of y(t).
Assume that F and G are Lipschitz continuous such that
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(C1) |F (ς, y(ς))− F (ς, yn(ς))| ≤ η1 |y(ς)− yn(ς)|,
(C2) |G(ς, y(ς))−G(ς, yn(ς))| ≤ η2 |y(ς)− yn(ς)|,

where η1, η2 are positive constants. Let α = ` (η1 + η2 ‖WH‖) where

‖WH‖ = sup
t∈[0,`]

∣∣WH(t)(t)
∣∣ .

Then lim
n→∞

‖y − yn‖ = 0 provided that α < 1.

Proof. Suppose that yn(t), defined in (3), is an approximate solution of (1), then
yn(t) satisfies the equation

yn(t) =y0 +

∫ t

0
F (ς, yn(ς))dς +

∫ t

0
G(ς, yn(ς))dBH(ς)(ς)

=y0 +

∫ t

0
F (ς, yn(ς))dς +

∫ t

0
G(ς, yn(ς))WH(ς)(ς)dς.

From (C1) and (C2), we obtain

|y(t)− yn(t)| ≤
∣∣∣∣
∫ t

0
(F (ς, y(ς))− F (ς, yn(ς))) dς

+

∫ t

0
(G(ς, y(ς))−G(ς, yn(ς)))WH(ς)(ς)dς

∣∣∣∣

≤
∫ t

0
|F (ς, y(ς))− F (ς, yn(ς))| dς

+

∫ t

0
|G(ς, y(ς))−G(ς, yn(ς))|

∣∣WH(ς)(ς)
∣∣ dς

≤η1

∫ t

0
|y(ς)− yn(ς)| dς

+ η2

∫ t

0
|y(ς)− yn(ς)|

∣∣WH(ς)(ς)
∣∣ dς.(5)

Taking sup-norm of both sides of inequality (5) yields

‖y − yn‖ ≤`η1 ‖y − yn‖+ `η2 ‖y − yn‖ ‖WH‖ ,(6)

therefore,

(1− `(η1 + η2 ‖WH‖)) lim
n→∞

‖y − yn‖ ≤ 0.

Let α = ` (η1 + η2 ‖WH‖) < 1, therefore, lim
n→∞

‖y − yn‖ = 0 and this completes the proof.

�

5. Mathematical application

Stochastic logistic equation. We consider the stochastic logistic equation driven
with the variable-order fBm and introduced in [2] as follows:

dy(t) = µ(t)y(t)

(
1− y(t)

κ

)
dt+ σ(t)y(t)

(
1− y(t)

κ

)
dBH(t)(t),(7)

y(0) = y0.

We apply our proposed method to solve Eq. (7), where y0 = 0.3, κ = 1, µ(t) = 0.2,
σ(t) = 0, 0.21 + 0.2 sin(t), and t ∈ [0, 40]. Also, we assume that N = 600, n = 8. The
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graphs of the approximate solutions are plotted in Figure 1 for H(t) = 0.5+0.3 cos(1000t)
and H(t) = 0.3 + 0.3e−t, which illustrate the efficiency of our method.

Figure 1. Plots of the approximate solutions with H(t) = 0.5 +
0.3 cos(1000t) (left), H(t) = 0.3 + 0.3e−t (right) for the logistic equation.

6. Conclusion

In this research, a novel method was presented to determine numerical solutions of
NSDEs. By using the stochastic operational matrix, these equations were reduced to
systems of equations and solved by the Newton method. Convergence of the approach has
been analyzed. Also, the method was evaluated by solving a well-known model. We can
deduce that our method is an efficient numerical tool for solving NSDEs.
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Abstract. Let p ∈ [1,∞) and I be a non-empty set. We denote by ℓp(I) the Banach

space of all functions f : I → R with ∥f∥p :=
(∑

i∈I |f(i)|p
) 1

p
< ∞. In this work, we

investigate the existance of the strictly positive doubly stochastic operators in ℓp(I) for
finite and infinite I. We prove that there is a doubly stochastic operator in ℓp(I) which
is strictly positive if and only if I is countable. Also, some properties of such operators
are considered.
Keywords: Strictly positive operator, Doubly stochastic operator, Matrix form
AMS Mathematics Subject Classification [2010]: 47A56, 47B60

1. Introduction
Let p ∈ [1,∞) and I be a non-empty set. We denote by ℓp(I) the Banach space of all

functions f : I → R with ∥f∥p :=
(∑

i∈I |f(i)|p
) 1

p
< ∞. Let ei : I → R be defined by

ei(j) = δij , the Kronecker delta. It can be represented f ∈ ℓp(I) by
∑

i∈I f(i)ei.
Suppose that p ∈ [1,∞) and D : ℓp(I) → ℓp(I) be a bounded linear operator. Then D

can be represented by a matrix [dij ], where dij = (Dej)(i) and for all f ∈ ℓp(I) and i ∈ I,
we have

(Df)(i) =
∑

j∈I
dijf(j).

From now on we incorporate D to its matrix form [dij ].
A bounded linear operator D : ℓp(I) → ℓp(I) is said to be positive if f ≥ 0 implies

Df ≥ 0, for f ∈ ℓp(I). It is known that D is positive if and only if dij ≥ 0 for all i, j ∈ I.
Similarly, D is said to be strictly positive if and only if for all i, j ∈ I, we have dij > 0.

Let us recall the definitions of a doubly stochastic operator.

Definition 1.1. Let p ∈ [1,∞) and I be a non-empty set. Then a positive bounded
linear operatorD = [dij ] : ℓ

p(I) → ℓp(I) is called doubly stochastic operator if
∑

i∈I dij = 1
for all j ∈ I and

∑
j∈I dij = 1 for all i ∈ I.

∗Speaker. Email address: bayati.ali@sku.ac.ir
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We denote by Ω(ℓp(I)), the set of all doubly stochastic operators in ℓp(I) and Ωs(ℓp(I))
denotes the set of all strictly positive doubly stochastic operators in ℓp(I).

In many areas of mathematics, physics and stochastic analysis, the finite and infinite
matrices appear in functional equation, linear algebra, quantum mechanic and Markov
chain. The doubly stochastic matrices play main role in the study of the doubly stochastic
operators in the Banach space ℓp(I). On this subject we refer the reader to the books [5,6]
and papers [1–4]. In this work, we prove that Ωs(ℓp(I)) is a non-empty set if and only if
I is a countable set. Also, some properties of such operators are considered.

2. The existence of strictly positive doubly stochastic operator
In this section, we discuss on the existence of a doubly stochastic operator in ℓp(I)

that all of its entries are strictly positive. In fact, we know that the answer is yes for finite
I. The simplest example which has this property, is D := 1

nJn×n, where Jn×n is the n× n
matrix of ones. Finding such example for infinite I is rather difficult.

Theorem 2.1. If I is an uncountable set and D = [dij ] : ℓ
p(I) → ℓp(I) is a doubly

stochastic operator, then
(i) for all i ∈ I, there is j ∈ I such that dij = 0,
(ii) for all j ∈ I, there is i ∈ I such that dij = 0.

Proof. Assume that i ∈ I is arbitrary. Then we have
∑

j∈I dij = 1. Since I is an
uncountable set and dij ≥ 0, then there exists j ∈ I such that dij = 0. The other case is
similar. □

Remark 2.2. As in Theorem 2.1, for uncountable set I, there is no strictly positive
doubly stochastic operator in ℓp(I) i.e., Ωs(ℓp(I)) = ∅.

Theorem 2.3. There is a strictly positive doubly stochastic operator D : ℓp(I) → ℓp(I)
if and only if I is countable.

Proof. Suppose that I is a countable set. If I is a finite set, then we have seen that
all entries of the operator D := 1

nJn×n are positive and D is a strictly positive doubly
stochastic operator. Now suppose that I is infinitely countable. For simplicity of notation,
we assume that I = N. Suppose that D : ℓp → ℓp is defined by the matrix form

D =




1
2

1
4

1
8

1
16

1
32 · · ·

1
2

1
4

1
8

1
16

1
32 · · ·

0 1
2

1
4

1
8

1
16 · · ·

0 0 1
2

1
4

1
8 · · ·

0 0 0 1
2

1
4 · · ·

0 0 0 0 1
2 · · ·

...
...

...
...

... . . .




.

Then it is easily verified that 1
2(D +Dt) : ℓp → ℓp, where Dt is the transpose of D, is the

doubly stochastic operator that all entries are positive. The converse is obtained by using
Theorem 2.1. □

In the next example, we obtain that how we can constract a strictly positive doubly
stochastic operator from D ∈ Ωs(ℓp).

Example 2.4. Let n ∈ N and D = [dij ] ∈ Ωs(ℓp). Put Dij =
dij
n Jn×n, where Jn×n is

the n× n matrix of ones. Clearly, [Dij ] ∈ Ωs(ℓp).
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Remark 2.5. In the following we obtain some properties of strictly positive doubly
stochastic operators in ℓp(I).

(i) Ωs(ℓp(I)) is a convex subset of Ω(ℓp(I)).
(ii) If D1, D2 ∈ Ωs(ℓp(I)), then D1D2 ∈ Ωs(ℓp(I)).
(iii) D ∈ Ωs(ℓp(I)) if and only if Dt ∈ Ωs(ℓp(I)).
(iv) If card I ≥ 2, then Ωs(ℓp(I)) ⫋ Ω(ℓp(I)).
(v) If I is an uncountable set, then Ωs(ℓp(I)) = ∅.
(vi) For I = N, we have card Ωs(ℓp) = N1.

3. Conclusion
In Theorem 2.1, we show that for uncountable set I, there is no strictly positive doubly

stochastic operator in ℓp(I). In Theorem 2.3, we prove that there is a strictly positive
doubly stochastic operator D : ℓp(I) → ℓp(I) if and only if I is countable. In Example
2.4, we show that how one can constract a strictly positive doubly stochastic operator
from D ∈ Ωs(ℓp). We consider that card Ωs(ℓp) = N1. Also, Ωs(ℓp(I)) is a convex subset
of Ω(ℓp(I)) which is closed under composition and transposition. If I is a non-empty set
with at least two elements, then there exists a doubly stochastic operator in ℓp(I) which
is not strictly positive.
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Abstract. In this article we extend the notion of orthogonal metric space to strongly
orthogonal metric space. Also, the aim of this research is to define ⊥-proximally increas-
ing mapping and obtain several best proximity point results concerning this mapping in
the framework of new spaces, which is called strongly orthogonal metric space.
Keywords: Best proximity point, O-set, strongly orthogonal
AMS Mathematics Subject Classification [2010]: 47H10; 54H25

1. Introduction
Recently, Eshaghi and et. [2] introduced the notion of orthogonal sets and orthogonal

metric spaces. They also prove an existence of Banach fixed point theorem in orthogonal
metric spaces [2] and generalizations of this theorem has been obtained in [1].
In 1969, Ky Fan [3] expressed fixed point problem for non-self mapping. In fact, the main
idea of the theory the best proximity point. Clearly, a best proximity point theorem is a
natural generalization of a fixed point theorem.

Definition 1.1. ( [2]) Let X be a non-empty set and ⊥ be a binary relation defined
on X ×X. If ⊥ satisfies the following condition

∃x0; ((∀y; y⊥x0) or (∀y;x0⊥y)),

it is called an orthogonal set. The element x0 is called an orthogonal element.

Let d be a usual metric on X. Then (X,⊥, d) is called an orthogonal metric space. ��

Example 1.2. ( [4]) Let X = [2,∞), we define x⊥y if x ≤ y then by putting x0 = 2,
(X,⊥) is an O-set.

Definition 1.3. ( [2]) Let (X,⊥) be an orthogonal set (O-set). Then a sequence
{xn}n∈N is called orthogonal sequence (briefly O-sequence) if

((∀n ∈ N;xn⊥xn+1) or (∀n ∈ N;xn+1⊥xn)).

∗Speaker. Email address: shirin.eivani@gmail.com
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Similarly, a Cauchy sequence {xn} is said to be a Cauchy O-sequence if
((∀n ∈ N;xn⊥xn+1) or (∀n ∈ N;xn+1⊥xn)).

Definition 1.4. [2] A mapping T : X −→ X is called orthogonal preserving (⊥-
preserving) if x⊥y implies T (x)⊥T (y) for all x, y ∈ X.

Definition 1.5. ( [5]) Let (X,⊥) be an orthogonal set (O-set). Then a sequence
{xn}n∈N is called strongly orthogonal sequence (briefly SO-sequence) if

((∀n, k ∈ N;xn⊥xn+k) or (∀n, k ∈ N;xn+k⊥xn)).

Definition 1.6. ( [5]) Let (X,⊥) be an orthogonal set , then X is strongly orthogonal
complete (briefly SO-complete) if every Cauchy SO-sequence is convergent.

It is easy to see that every complete metric space is SO-complete and the converse is
not true. ( [5])

Definition 1.7. ( [5]) A mapping T : X −→ X is strongly orthogonal continuous
(SO-continuous) in x ∈ X if for each SO-sequence {xn}n∈N in X such that xn −→ x then
T (xn) −→ T (x). Also T is SO-continuous on X if T is SO-continuous in each x ∈ X.

It easy to see that every continuous mapping is SO-continuous, but [5] shows that the
converse is not true.
Now, let A and B be two non-empty subsets of a metric space (X, d) and T : A → B be a
non-self mapping. The point x ∈ A is the best proximity point of T if d(x, Tx) = d(A,B),
where d(A,B) = inf{d(x, y);x ∈ A, y ∈ B}. Clearly, a best proximity point theorem is a
natural generalization of a fixed point theorem.

For given two non-empty subsets A and B, we consider A0 and B0 by the following
sets A0 = {x ∈ A : d(x, y) = d(A,B) for some y ∈ B} and B0 = {y ∈ B : d(x, y) =
d(A,B) for some x ∈ A}.

Definition 1.8. ( [6]) Let (A,B) be a pair of non-empty subsets of (X, d) such that
A0 ̸= ∅. Then the pair (A,B) is said to have the P-property if and only if

{
d(x1, y1) = d(A,B)

d(x2, y2) = d(A,B)} ⇒ d(x1, x2) = d(y1, y2),

where x1, x2 ∈ A0 and y1, y2 ∈ B0.

2. Main results
We start with the following definition.

Definition 2.1. A mapping T : A −→ B is a said to be ⊥-proximally increasing if it
satisfies the condition that




y1⊥y2

d(x1, T y1) = d(A,B)

d(x2, T y2) = d(A,B)

⇒ x1⊥x2,

where x1, x2, y1, y2 ∈ A.

Theorem 2.2. Let (X,⊥, d) is strongly orthogonal complete metric space and (A,B)
be a pair of non-empty closed subset of the space (X,⊥, d) with A0 ̸= . Let T : A −→ B
be a map such that
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i) T is a ⊥-preserving and ⊥-proximally increasing such that T (A0) ⊆ B0, (A,B)
satisfies the P-property;

ii) There exist orthogonal elements x0 and x1 in A0 such that d(x1, Tx0) = d(A,B);
iii) T is a SO-continuous function on A such that

d(Tx, Ty) ≤ φ(d(x, y))(1)
for any point x and y in A such that x⊥y and φ : R+ → R+ non-decreasing
function with limn→∞ φn(t) = 0, for each t > 0.

Then T has a best proximity point x∗ ∈ A such that d(x∗, Tx∗) = d(A,B).

Proof. By (ii), there exist x0 and x1 in A0 such that d(x1, Tx0) = d(A,B) and x0⊥x1.
Since Tx1 ∈ T (A0) ⊆ B0, there exist element x2 in A0 such that d(x2, Tx1) = d(A,B).
Since T is a ⊥-preserving and ⊥-proximally increasing, we get x1⊥x2. Continuing this
process, we can construct a sequence {xn} in A0 such that

d(xn+1, Txn) = d(A,B) , for all n ∈ N,(2)
with x0⊥x1, x1⊥x2, x2⊥x3, . . . , xn⊥xn+1, . . . .

Thus {xn} is an O-sequence and consequently SO-sequence. Since (A,B) satisfies P-
property, for any n ∈ N, we have

(3)
{
d(xn+1, Txn) = d(A,B),

d(xn, Txn−1) = d(A,B)
=⇒ d(xn+1, xn) = d(Txn, Txn−1).

We claim that {xn} is a Cauchy SO-sequence. Now, since x0⊥x1, we have d(x2, x1) =
d(Tx1, Tx0) ≤ φ(d(x1, x0)) and since x1⊥x2, we have

d(x3, x2) = d(Tx2, Tx1) ≤ φ(d(x2, x1)) ≤ φ2(d(x1, x0)).

By induction d(xn+1, xn) ≤ φn(d(x1, x0)) → 0, as n → ∞. Let ε > 0 be fixed. Choose
N ∈ N so that d(xn+1, xn) < ε− φ(ε), for all n ≥ N .
We denote a ball with center x and radius ε by B[x, ε]. Since xN+1 ∈ B[xN , ε], so
d(xN+1, xN ) < ε. Thus, from (1) and (3), we have

d(TxN+1, TxN−1) ≤ d(TxN+1, TxN ) + d(TxN , TxN−1)

≤ φ(d(xN+1, xN )) + d(xN+1, xN ) < φ(ε) + (ε− φ(ε)) = ε.(4)
Therefore, TxN+1 ∈ B[TxN−1, ε]. From (2), d(xN+2, TxN+1) = d(A,B) with xN+2 ∈ A0

and d(xN , TxN−1) = d(A,B). From (3), we have d(xN+2, xN ) = d(TxN+1, TxN−1). By
(4), d(xN+2, xN ) < ε, so xN+2 ∈ B[xN , ε] with xN+2 ∈ A0, therefore

xN+2 ∈ B[xN , ε] ∩A.(5)
Again, from (1), (3) and (5), we get

d(TxN+2, TxN−1) ≤ ε.(6)
Therefore, TxN+2 ∈ B[TxN−1, ε]. From (2), d(xN+3, TxN+2) = d(A,B) with xN+3 ∈ A0

and d(xN , TxN−1) = d(A,B). From (3), we get d(xN+3, xN ) = d(TxN+2, TxN−1). By (6),
d(xN+3, xN ) < ε. So xN+3 ∈ B[xN , ε] with xN+3 ∈ A0, therefore xN+3 ∈ B[xN , ε] ∩ A.
Continuing this process, we have d(TxN+n+1, TxN−1) ≤ ε. So, we can conclude that
xN+m ∈ B[xN , ε] ∩ A, for all m ∈ N. Then we get {xn} is a Cauchy SO-sequence in A.
Since {xn} is a Cauchy SO-sequence in A, X is a SO-complete and A is a closed subset of
X, the SO-sequence {xn} convergence to x∗ ∈ A. Since T is a SO-continuous map on A, we
have Txn → Tx∗. By the continuity of the mapping d, we get d(xn+1, Txn) → d(x∗, Tx∗).
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But ( 2 ) shows that sequence is a constant sequence converges to d(A,B). Therefore,
d(x∗, Tx∗) = d(A,B); that is, x∗ ∈ A is a best proximity point for T . □

Theorem 2.3. Suppose condition (i) and (ii) are true in Theorem 2.2, and we sub-
stitute the following condition instead of condition (iii), and the rest of the conditions are
true. Then T has a best proximity point x∗ ∈ A such that d(x∗, Tx∗) = d(A,B).

iii′) T is a SO-continuous function on A such that
d(Tx, Ty) ≤ φ(Q(x, y))(7)

where
Q(x, y) = max{d(x, y), d(x, Tx)− d(A,B), d(y, Ty)− d(A,B),

1

2
[d(x, Ty) + d(y, Tx)− 2d(A,B)],

1

2
[d(x, Tx) + d(y, Ty)− 2d(A,B)]}

for any point x and y in A such that x⊥y and φ : R+ → R+ non-decreasing
function with limn→∞ φn(t) = 0, for each t > 0.

Proof. Similar to proof of Theorem 2.2, since (A,B) satisfies P-property and by (7),
we have d(xn+1, xn) = d(Txn, Txn−1) ≤ φ(Q(xn, xn−1)), where

Q(xn, xn−1) = max{d(xn, xn−1), d(xn, Txn)− d(A,B), d(xn−1, Txn−1)− d(A,B),

1

2
[d(xn, Txn−1) + d(xn−1, Txn)− 2d(A,B)],

1

2
[d(xn, Txn) + d(xn−1, Txn−1)− 2d(A,B)]}.

We now claim
d(xn+1, xn) ≤ φ(d(xn, xn−1)).(8)

Now, by using (2) and (3), we have Q(xn, xn−1) ≤ max{d(xn, xn−1), d(xn, xn+1)}. Thus,
using the above inequality, (2), (3) and (7), we get

d(xn+1, xn) ≤ φ(max{d(xn, xn−1), d(xn, xn+1)}), ∀n ∈ N.
Suppose that max{d(xn, xn−1), d(xn, xn+1)} = d(xn, xn+1) and since φ(t) < t for all t > 0,
we have d(xn+1, xn) ≤ φ(d(xn, xn+1)) < d(xn, xn+1), which is a contraction. Thus, for
all n ∈ N, we have max{d(xn, xn−1), d(xn, xn+1)} = d(xn, xn−1), Thus d(xn+1, xn) ≤
φ(d(xn, xn−1)), ∀n ∈ N. So, (8) holds. By induction, we have

d(xn+1, xn) ≤ φn(d(x1, x0)), ∀n ∈ N.
So limn→∞ d(xn+1, xn) = 0. The continue of the proof is similar to the Theorem 2.2. □
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Abstract. In this work we consider a generalized dissipative ZK equation. The asso-
ciated linear part produces both semigroup and group. As the dissipation is directional,
we use a regularization method to study the associated initial value problem in Sobolev
spaces Hs (Rn) and some weighted spaces Fs,p

r . We also prove an ill-posedness result in
the two-dimensional case.
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1. Introduction
In this paper, we study of the following evolution equation

(1) ut + (Lα + f(u))x = 0, t ∈ R+,

where Lα = ∆u − αux is the ZK operator with a directional dissipation. Here, α ∈ R,
f is a differentiable real-valued function on R such that f(0) = 0 and f ′(0) = 0 and
we consider u = u(x, y, t) such that (x, y) ∈ R × Rn−1, n ≥ 2. We also assume that
f(x) = O(xp+1), for p ∈ N. The evolution equation (1) is known as the ZKB equation
when f(u) = u2/2, because of appearing the ZK operator and the Burgers-type dissipation.
The ZKB equation (1) describes asymptotically the propagations of nonlinear dust acoustic
waves in a nonuniform magnetized dusty plasma [2,4]. By neglecting the dissipative term
in (1), we will get the so-called ZK equation.
(2) ut + (∆u+ f(u))x = 0.

In this work, we are going to study the Cauchy problem associated to (1) in Sobolev
spaces. Our strategy is to use a regularization by applying more dissipative terms to the
equation; in fact, we will consider the following regularized ZKB (rZKB) problem:
(3) ut + (∆u+ f(u)− αux)x − β∆⊥u = 0,

where β ∈ R+ and △ = ∂2
x + △⊥. Next, by using the semigroup properties of (3), we

endeavor to prove a well-posedness result in Hs(R2) spaces for s > 2 and show our results
hold in weak topology as the parameter β tends to zero. In dimension two, we will also
show that (1) is well-posed in the weighted spaces Hs(W) (see Definition 2.1) for some
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suitable weight functionsW. Regarding on the ill-posedness issue, we are not able to derive
a criterion to anticipate the minimum index of local well-posedness due to the directional
dissipation; but we establish that the flow-map of equation (1) fails to be C2 in Hs,0(R2)
for s < −3

4 .

2. Main results
Now we summarize our main results skipping several propositions and technical lem-

mas.

Definition 2.1. We denote by L2(W) the space of all real-valued functions f such that
∥f∥2L2(Wdx) =

∫
f2(x)W(x) dx < ∞, where Hs = Hs(Rn) is the nonhomogeneous Sobolev

space. Especially, for W(x) = 1 +
n∑

i=1
x2rii and r = (r1, · · · , rn) ∈ Rn, we denote Fs

r the

space of all real-valued measurable functions f such that ∥f∥Fs
r
= ∥f∥Hs +∥f∥L2(W) < ∞.

Similarly for any p ≥ 1, one can define Fs,p
r = Hs ∩ Lp(W). For r ∈ R, we denote Fs

r as
Fs
r,··· ,r and Hs(W) = Hs ∩ L2(W).

Using properties of the semigroup associated to the linear problem, we can obtain the
our main local well-posedness theorem.

Theorem 2.2. Let s > 2. Then for any initial data u0 ∈ Hs, there exist T s
α,β =

T (α, β, ∥u0∥Hs) and a unique solution of the initial value problem (3), uα,β(·), defined in
the interval

[
0, T s

α,β

]
satisfying

uα,β ∈ C
([
0, T s

α,β

]
;Hs

)
∩ C1

([
0, T s

α,β

]
;Hs−2

)
.

Moreover,
uα,β ∈ C

((
0, T s

α,β

]
;H∞)

.

Furthermore, the theorem is true for β = 0 (in the weak topology sense) and α = β = 0.

To prove Theorem 2.2, we use the following estimates. The semigroup associated with
(1) is denoted by Uα,β.

Lemma 2.3. Let α, β > 0 and s ∈ R, then for any δ ≥ 0 and all t > 0, Uα,β(t) ∈
L(Hs,Hs+δ). Moreover there exists Cs > 0 such that

(4) ∥uα,β(t)∥Hs+δ ≤ Cs

√
1 + t−smax{α−s, β−s} ∥u0∥Hs ,

for any u0 ∈ Hs.

Lemma 2.4. Let U0
α,β(t) = Uα,β(t)δ0, m = (m1,m2), k = (k1, k2) ∈ (Z+)

2, x ∈ R2 and
t > 0, where δ0 is Dirac delta.
i) If 2 ≤ p ≤ ∞, then there exists C(α, β) > 0 such that

(5)
∥∥∥xkDmU0

α,β(t)
∥∥∥
Lp

≤ C(α, β)⟨t⟩ 1
2
|k| t

− 1
2
|m|−2

(
1− 1

p

)
.

ii) If 1 ≤ p ≤ 2, then there exists C(α, β) > 0 such that

(6)
∥∥∥xkDmU0

α,β(t)
∥∥∥
Lp

≤ C(α, β)⟨t⟩ 1
2
(|k|−1) t

−2
(
1− 1

p

)
− |m|

2 ,

where |k| = k1 + k2, |m| = m1 +m2 and ⟨t⟩ =
(
1 + t2

)1/2.
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iii) uα,β(t) ∈ Lp for any 2 ≤ p ≤ ∞, if u0 ∈ L2. Moreover,
∥uα,β(t)∥Lp ≲ t−θ∥u0∥Lp ,

where θ = θ(p) = 1− 2
p .

Now, we use the properties of the Kato-Ponce commutator [3]. Let Js be is the Bessel
potential of order −s and S(R2) is the Schwartz class.

Lemma 2.5. If f, g ∈ S(R2), s > 0 and p ∈ (1,+∞), then
∥[Js,Mf ]g∥Lp ≲

(
∥∇f∥Lp1

∥∥Js−1g
∥∥
Lp2

+ ∥Jsf∥Lp3 ∥g∥Lp4

)
,(7)

∥fg∥Lp ≲ (∥f∥Lp1 ∥Jsg∥Lp2 + ∥Jsf∥Lp3 ∥g∥Lp4 ) ,(8)
where p2, p3 ∈ (1,+∞) such that

1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
.

Theorem 2.6 (Continuous Dependence). There exists a metric space Es
α,β such

that for R > 0, the correspondence u0 → uα,β that associates to u0 ∈ BR the solution uα,β
of (3) with initial data u0 is continuous mapping of BR to Es

α,β, where BR is the ball of
radius R centered at the origin of Hs.

To study the well-posedness in the weighted spaces, we need to understand the behavior
of our semigroup in such spaces.

Remark 2.7. One can obtain the explicit form of X (t), T s and AT . Indeed,

X (t) =
2

2
p ∥u0∥2Hs

(
2− cstp∥u0∥pHs

) 2
p

,

T s =
2(

csp∥u0∥2Hs

) and AT =
2

1
p ∥u0∥Hs

(
2− cspT∥u0∥pHs

) 1
p

, for any T ∈ (0, T s).

Lemma 2.8. Let p,m ∈ N, β > 0, t > 0 and ω = (ω1, ω2) ∈ R2. Then there exists
C (m,β, |ω|) > 0 such that for any f ∈ F0,p

0,m,

∥DωUα,β(t)f∥F0,p
0,m

≤ C (m,β, |ω|)
(
1 + t−

|ω|
2 + t

m−|ω|
2

)
∥f∥F0,p

0,m

Theorem 2.9 (Well-posedness Result in Weighted Spaces). Let W be a weight
with all its first and second derivatives bounded and such that |W(x, y)| ≤ Cεe

ε(x2+y2), for
all (x, y) ∈ R2 and any ε ∈ (0, ε̃), for some ε̃ > 0 and Cε > 0. Let also u0 ∈ Hs (W),
s > 2. Then the solution uα,β of the equation (3) corresponding to the initial data u0 is in
C
([

0, T s
α,β

)
;Hs (W)

)
. Moreover, the continuous dependence of solutions of the equation

(1) holds in Hs (W).
Theorem 2.10 (Persistence of Solutions). Let s ∈ N, s ≥ 3 and β ≥ 0. Also

suppose that uα,β ∈ C
([

0, T s
α,β

)
;Hs

)
is the maximal solution of the rZKB equation

corresponding to the initial data u0 ∈ Fs,2
1,s . Then uα,β ∈ C

([
0, T s

α,β

)
;Fs,2

1,s

)
.

Next, we show that the Picard iteration method cannot be used to obtain a solution
of (1). Indeed, we construct a sequence of initial data that will ensure the irregularity of
the flow map for s < −3/4.
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Theorem 2.11 (Ill-posedness Result). Let s < −3
4 andHs,0(R2) be the x-directional

Sobolev space. Then there is no T > 0 such that the ZKB equation (1), with f(u) = u2/2,
admits a unique solution u in C([0, T ];Hs,0(R2)) for any initial data in the same ball of
Hs,0(R2) centered at the origin and the map ϕ → u is C2-differentiable at the origin from
Hs,0(R2) to C([0, T ];Hs,0(R2)).

To prove the above theorem, we notice that contrary to the ZKB equation, there is a
the minimum index of local well-posedness for the gZK with power law nonlinearity
(9) ut +∆ux + upux = 0, u = u(x, y, t), (x, y) ∈ R× Rn−1.

More precisely, we establish that one cannot obtain local well-posedness of the gZK equa-
tion (9) for data in Hs(Rn) for s ≤ n

2 − 2
p and p ≥ 4/n. To proceed with this result, we

use the ideas of Birnir et al. [1].
In the light of this comment, we show an nonexistence of traveling wave of the form

u(x, y, t) = φ(x− ct, y) of the gZKB equation in the plane.

Theorem 2.12. There is no solution φ of gZKB satisfying




Dβφ → 0 as |(x, y)| → +∞ such that β ∈ N2 and |β| ≥ 1,

φ → a as x → +∞,

φ → b as x → −∞,

φ → d as |y| → +∞,

for any a, b and d ∈ R.
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Embedding theorems on Bergman spaces with admissible
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Abstract. Let H(D) denote the space of analytic functions on the open unit disk D
and ω be a radial weight defined on D. For 0 < p < ∞, the weighted Bergman space Ap

ω

consists of functions f ∈ H(D) for which

∥f∥pAp
ω
=

∫

D
|f(z)|pω(z)dA(z) < ∞,

where dA(z) = dxdy/π stands for the normalized area measure in D. We describe those
positive Borel measures µ in the unit disc D such that the Bergman space Ap

ω ⊂ Lq(µ),
0 < p ≤ q < ∞, where ω belongs to a large class of weights which includes the standard
weights and the exponential type weights.
Keywords: Carleson measures; weighted Bergman spaces; compact operators
AMS Mathematics Subject Classification [2010]: Primary 47B33; Secondary 47B35

1. Introduction
Let D be the unit disk in the complex plane C and H(D) denote the space of analytic

functions on D. Given a positive integrable function ω on [0, 1), we extend it by ω(z) =
ω(|z|), z ∈ D, and call such ω a weight function. Our results are stated for weights
satisfying the following conditions.:

(W1) ω is non-increasing,
(W2) ω(r)(1− r2)−(1+δ) is non-decreasing for some δ > 0.

A weight ω is called admissible if ω satisfies (W1) and (W2). For example, the standard
weights ω(r) = (1−r2)α, α > −1 and the exponential type weights ω(r) = (1−r2)α exp(1−
r2)β, α, β > 0 are admissible weights.

For 0 < p < ∞, the weighted Bergman space Ap
ω consists of functions f ∈ H(D) for

which

∥f∥pAp
ω
=

∫

D
|f(z)|pω(z)dA(z) < ∞,

where dA(z) = dxdy/π stands for the normalized area measure in D.
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Note that Ap
ω is the closed subspace of Lp(D, ωdA) consisting of analytic functions and

for 1 < p < ∞, (Ap
ω, ∥ · ∥Ap

ω
) is a Banach space. If ω(r) = (1− r2)α, α > −1, the standard

Bergman spaces Ap
α are obtained.

For a ∈ D, by φa we mean the automorphism of the unit disc given by

φa(z) =
a− z

1− az
, z ∈ D,

and E(a, r) := {z ∈ D : |φa(z)| < r} denotes the pseodohyperbolic disc of radius r centered
at a. It is well-known that for all a ∈ D and z ∈ E(a, r) with r ∈ (0, 1), 1− |a|2 ≈ 1− |z|2,
where the constants depend only on r. Moreover,

|φ′
a(z)| =

1− |a|2
|1− az|2 =

1− |φa(z)|2
1− |z|2 .

It is also well-known that for each z ∈ E(a, r),
1

|1− az|2 ≥ 1− r2

(1− |a|2)(1− |z|2) .(1)

Let X be a space of analytic functions on the unit disc D. A positive Borel measure
µ in D is said to be a q-Carleson measure for X if the embedding X ⊂ Lq(µ), 0 < q < ∞
is continuous. It means for some positive constant M

(∫

D
|f(z)|qdµ(z)

)1/q

≤ M∥f∥X .

A description of (vanishing) Carleson measures have been obtained for several spaces of
analytic functions (see e.g. [1, 3–6]). Here we obtain a complete description of the q-
(vanishing) Carleson measures for Ap

ω when 0 < p ≤ q < ∞. Our results can be used
in order to study several related questions such as the characterization of boundedness
and compactness of composition operators and integral operators on weighted Bergman
spaces.

Recall that the norm of the bounded operator T : X → Y is denoted by ||T ||X→Y and
the notation A ≈ B means that cB ≤ A ≤ CB for some constants c and C.

2. Main results
We use the following lemmas frequently for obtaining our main results.

Lemma 2.1. Let ω be a weight satisfying (W1) and (W2). Then for each r ∈ (0, 1),
a ∈ D and z ∈ E(a, r) we have ω(a) ≈ ω(z) and∫

E(a,r)
ω(z)dA(z) ≈ ω(a)

∫

E(a,r)
dA(z) ≈ ω(a)(1− |a|2)2.

Lemma 2.2. [7] Let ω be a weight satisfying (W1) and (W2). Then
∫

D

ω(z)dA(z)

|1− az|p(1+δ)+2
≈ ω(a)

(1− |a|2)p(1+δ)
.

For obtaining our main results we need some auxiliary results.

Proposition 2.3. If ω satisfies conditions (W1) and (W2), then there exists a positive
constant C (independent of f and z) such that for each f ∈ Ap

ω and z ∈ D,

|f(z)|p ≤ C
∥f∥pAp

ω

(1− |z|2)2ω(z) .
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We need the following family of test functions in Ap
ω in order to characterize the

q-Carleson measures.
For a ∈ D, let fa(z) = (1−|a|2)1+δ

ω(a)1/p(1−az)1+δ+2/p . It can be shown that {fa : a ∈ D} is a
bounded subset of Ap

ω.
We will need the following decomposition of D into equal-sized squares in the pseudo-

hyperbolic metric.

Lemma 2.4. [2, Lemma 12] For each pseudohyperbolic radius r, there exist a sequence
{zn} of points in D satisfying the following two conditions:

(i) D = ∪∞
n=1E(zn, r);

(ii) There is a positive integer N such that each point z ∈ D belongs to at most N of
the sets E(zn, 2r).

Theorem 2.5. Let µ be a positive Borel measure on D, ω satisfies (W1) and (W2),
0 < p ≤ q < ∞ and r ∈ (0, 1). Then the following statements are equivalent:

(i) ∥µ∥ω = supa∈D
µ(E(a,r))

(1−|a|2)2q/pω(a)q/p < ∞,

(ii) µ is a q-Carleson measure for Ap
ω and Id : Ap

ω → Lq(µ) is bounded with norm
equivalent to ∥µ∥ω.

As an immediate consequence of Theorem 2.5 we have the following corollary.

Corollary 2.6. Let µ be a positive Borel measure on D and ω satisfies (W1) and (W2).
Then µ is q-Carleson if and only if for each pseudohyperbolic radius r, there exist a sequence
{zn} of points in D such that D = ∪∞

n=1E(zn, r) and M = supn∈N
µ(E(zn,r))

(1−|zn|2)2q/pω(zn)q/p < ∞.

For the standard Bergman spaces Ap
α , the statement of Theorem 2.5 also holds, and

one can see [4, Theorem 2.2]. Now we characterize the q-vanishing Carleson measures for
Ap

ω. Before stating our main theorem, we need the following lemma.

Lemma 2.7. For every bounded sequence in Ap
ω, there is a subsequence which converges

uniformly on compact subsets of D to an element of Ap
ω.

Theorem 2.8. Let µ be a positive Borel measure on D, ω satisfies (W1) and (W2),
0 < p ≤ q < ∞ and r ∈ (0, 1). Then the following statements are equivalent:

(i) µ is a q-vanishing Carleson measure for Ap
ω (i. e. Id : Ap

ω → Lq(µ) is compact),
(ii) lim sup|a|→1−

µ(E(a,r))

(1−|a|2)2q/pω(a)q/p = 0.
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Abstract. In this paper, an interpolation operator based on the orthogonal fractional
Legendre functions is introduced and employed to develop a high-order collocation ap-
proach for the numerical solution of a class of non-linear systems of fractional differential
equations. The applicability and validity of the method are justified by a prototype ex-
ample.
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1. Introduction
We intend to provide a highly accurate numerical approach for solving the following

non-linear system of fractional differential equations (FDEs)  

(1)




Dγ

Cyj(t) =
n∑

i=1
pj,i(t)y

ki
i (t) + pj,n+1(t), j ∈ ℵn = {1, 2, ..., n},

yj(0) = y0j , ki ∈ N, t ∈ Λ = [0, 1],

  where γ = η
λ ∈ (0, 1) is a positive rational number described by the co-prime integers

η ≥ 1 and λ ≥ 2. Dγ
C is known as Caputo fractional derivative of order γ defined by [1]  

Dγ
C(.) = I1−γ∂t(.),

 in which I1−γ denotes the Riemann-Liouville fractional integral operator of order (1− γ)
[1].

The rest of this paper is organized as follows. In the next section, we introduce the
fractional Legendre functions and design a fractional interpolation operator. A novel
fractional Legendre collocation method is developed to approximate the solution of (1) in
Section 3. In Section 4, a prototype example is conducted to show the efficiency of the
proposed method.
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2. The fractional Legendre functions

The fractional Legendre functions L(τ)
n (t) with τ ∈ (0, 1] and t ∈ Λ are defined from the

Legendre polynomials Ln(x) through the coordinate transform t = 2xτ − 1 as follows [4]

L(τ)
n (t) = Ln(2x

τ − 1).

These functions are mutually orthogonal concerning the weight function w(τ)(t) = tτ−1,
i.e., ∫

Λ
L(τ)
m (t)L(τ)

n (t)w(τ)(t)dt =
1

τ(2n+ 1)
δmn, m, n ≥ 0.

We have the following result on fractional Legendre-Gauss quadrature.

Lemma 2.1. [4] Suppose that {xj , wj}Nj=0 are the Legendre-Gauss quadrature nodes

and corresponding weights respectively [3]. Considering t
(τ)
j =

(
xj+1
2

)1/τ
and w

(τ)
j = wj,

we have
∫

Λ
u(t)w(τ)(t)dt =

N∑

j=0

u(t
(τ)
j )w

(τ)
j , ∀u ∈ ϕ

(τ)
2N+1,

where
ϕ
(τ)
2N+1 = Span{L(τ)

n (t) : 0 ≤ n ≤ 2N + 1}.

Further properties of Legendre polynomials and the fractional Legendre functions can
be found in [3] and [4], repectively.

The fractional Legendre interpolation operator I
(τ)
N : L2

w(τ)(Λ) → ϕ
(τ)
N is introduced as

follows (
I
(τ)
N u

)
(t

(τ)
j ) = u(t

(τ)
j ), 0 ≤ j ≤ N.

Since I
(τ)
N u ∈ ϕ

(τ)
N , we can write

(
I
(τ)
N u

)
(t) =

N∑

j=0

ũjL
(τ)
j (t),

where the unknown coefficients ũj are obtained from ũj = τ(2n+ 1)⟨u, L(τ)
j ⟩N,w(τ) , 0 ≤

j ≤ N . Here, ⟨u, v⟩N,w(τ) is the fractional Legendre-Gauss discrete inner product formula.
Clearly, from Lemma 2.1, we have

⟨u, v⟩N,w(τ) = (u, v)w(τ) , ∀uv ∈ ϕ
(τ)
2N+1.

3. Fractional Legendre collocation method
We set τ = 1

λ and consider the fractional Legendre collocation solution as

yj,N (t) =

N∑

l=0

aj,iL
(τ)
i (t) = ajL

(τ) = ajL
(τ)T t, aj = [aj,0, aj,1, . . . , aj,N ], j ∈ ℵn,

(2)
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where L(τ) = [L
(τ)
0 (t), L

(τ)
1 (t), . . . , L

(τ)
N (t)]T is the vector of fractional Legendre functions,

L(τ) is an invertible lower triangular matrix and T t = [1, tτ , . . . , tNτ ]T . Consider

pj,i(t) ≃ pj,i,N (t) =

N∑

l=0

p̄j,i,l t
τl = p̄

j,i
T t, p̄

j,i
= [p̄j,i,0, p̄j,i,1, . . . , p̄j,i,N ], j ∈ ℵn, i ∈ ℵn+1,

(3)

Now, we give the following lemma which transforms ykii,N (t), i ∈ ℵn into a suitable matrix
form.

Lemma 3.1. The following relation holds

(4) ykii,N (t) = aiL
(τ)Mki−1

i T t, i ∈ ℵn,

where Mi is the following infinite upper-triangular matrix

Mi =




aiL
(τ)
0 aiL

(τ)
1 aiL

(τ)
2 . . .

0 aiL
(τ)
0 aiL

(τ)
1 . . .

0 0 aiL
(τ)
0 . . .

...
...

... . . .



,

with L
(τ)
s = {L(τ)

m,s}∞m=0, s = 0, 1, . . . .

Employing the relations (2), (4) and (3) into the equivalence system of Volterra integral
equations of (1) yields

(5) ajL
(τ)T t = y0j +

n∑

i=1

aiL
(τ)Mki−1

i

(
N∑

l=0

p̄j,i,l I
γ
(
tτlT t

))
+ p̄

j,n+1
Iγ (T t) , j ∈ ℵn.

Therefore, Computing Iγ
(
tτlT t

)
and Iγ (T t) the relation (5) can be written as

ajL
(τ)T t = y0j +

n∑

i=1

aiL
(τ)Mki−1

i T j,i,t + p̄
j,n+1

T j,t, j ∈ ℵn,

where

T j,i,t :=

N∑

l=0

p̄j,i,l

[
Γ(τ(l + k) + 1)

Γ(τ(l + k) + γ + 1)
tγ+τ(l+k)

]N

k=0

,

T j,t :=

[
Γ(τk + 1)

Γ(τk + γ + 1)
tγ+τk

]N

k=0

, i, j ∈ ℵn.

are the vectors of order N + 1. Defining a
j
= ajL

(τ) = [aj,0, aj,1, . . . , aj,N ], we have

(6) a
j
(T t −Mkj−1

j T j,j,t) = y0j +
n∑

i=1,i̸=j

a
i
Mki−1

i T j,i,t + p̄
j,n+1

T j,t, j ∈ ℵn,
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such that the matrix Mki−1
i , i ∈ ℵn has the following upper-triangular Toeplitz structure

[2]

(7)




Mki−1
i,0,0 Mki−1

i,0,1 . . . Mki−1
i,0,N

0 Mki−1
i,0,0 . . . Mki−1

i,0,N−1
...

... . . .
...

0 0 . . . Mki−1
i,0,0




where {Mki−1
i,0,s }Ns=0 are non-linear functions of the elements ai,0, ai,1, . . . , ai,s. In this

step, setting the fractional Legendre-Gauss nodes {t(τ)r }Nr=0 introduced in Lemma 2.1 into
(6), a non-linear system of algebraic equations of order n(N + 1) is achieved which is
solved by the well known iterative quasi Newton method. Consequently, obtaining a

j
, the

approximate solutions (2) can be characterized by solving a
j
= ajL

(τ).

4. Numerical example
Consider the following example.
Example 4.1. 




D
1
2
Cy1(t) = 2t y41(t) +

1
2 sin(t) y2(t) + p1,3(t),

D
1
2
Cy2(t) = E 1

2
(−t

1
2 ) y1(t)− t

3
2 y32(t) + p2,3(t),

y1(0) = y2(0) = 0,

where the forcing functions pj,3(t), j = 1, 2 are derived such that the exact solutions are
y1(t) = sin(t

1
2 ) and y2(t) = t

5
2 . Here, Eσ(t) is the well-known Mittag-Leffler function.

This problem is solved via suggested approach ,  and the numerical consequences are
depicted in Table 1. To derive the desired numerical errors , 200-terms of the Mittag-Leffler
functions are considered .

Table 1. Obtained errors for Example 4.1 for different values of N .
N ∥ϵ1,N∥L2

wτ
∥ϵ2,N∥L2

wτ

2 8.01× 10−2 4.08× 10−1

4 3.33× 10−3 4.08× 10−1

8 8.64× 10−7 9.56× 10−16

16 6.18× 10−16 1.42× 10−16

5. Conclusion
In this paper, a suitable fractional collocation approach based on the fractional Le-

gendre functions was implemented, and the high accuracy of the method was emphasized
through the numerical solution of an example.
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Abstract. A convex polynomial is a convex combination of the monomials {1, z, z2, ...}.
A bounded linear operator T on a Banach space X is called superconvex-cyclic if there
is a vector x ∈ X such that {λp(T )x| λ ∈ C, p is a convex polynomial} is dense in X.
Some spectral properties of superconvex-cyclic operators are obtained. It is proved that
positive multiples of superconvex-cyclic operators are superconvex-cyclic. It is shown
that the convex-cyclicity of an operator T is equivalent to the superconvex-cyclicity of
IC ⊕ T . Also, we discuss superconvex-cylicity of matrices.

Keywords: convex polynomial, convex-cyclic operator, superconvex-cyclic opera-
tor.
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1. Introduction and Preliminaries
Let B(X) denote the algebra of all bounded linear operators on a separable Banach

space X. Also, N is referred to {0, 1, 2, . . .}, and D is the open unit disc in the complex
plane C.

For an operator T ∈ B(X) and a vector x ∈ X, by the orbit of x under T we mean
orb(T, x) := {Tnx|n ∈ N}.

Let CP denote the convex hull of monomials {1, z, z2, . . .}. That is,

CP := {
m∑

i=0

aiz
i : ai ⩾ 0 for all 0 ⩽ i ⩽ m, and

m∑

i=0

ai = 1}.

The elements of CP are called convex polynomials.

An operator T ∈ B(X) is called
(1) cyclic with a cyclic vector x, if the linear span of orb(T, x), i.e., {p(T )x| p ∈ P},

is dense in X for some x ∈ X;
(2) hypercyclic with a hypercyclic vector x, if orb(T, x) is dense in X for some x ∈ X;
(3) supercyclic with a supercyclic vector x, if C.orb(T, x) is dense in X for some

x ∈ X;

∗Speaker. Email address: faghiha@shirazu.ac.ir
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(4) convex-cyclic with a convex-cyclic vector x, if co(orb(T, x)) = {p(T )x| p ∈ CP}
is dense in X for some x ∈ X;

(5) superconvex-cyclic with a superconvex-cyclic vector x, if C.co(orb(T, x)) is dense
in X for some x ∈ X.

In this presentation, we describe some known results about hypercyclic, supercyclic,
and convex-cyclic operators and then present similar new results for superconvex-cyclic
operators. Then we focus on superconvex-cyclicity of matrices.
The concept of convex-cyclicity is introduced by Rezaei in [6] and then it has been studied
more by authors in [2], [3], and [5]. The concept of superconvex-cyclicity, introduced
by authors in [4] in the weak sense, lies between cyclicity and convex-cyclicity or super-
cyclicity. So every convex-cyclic or supercyclic operator is superconvex-cyclic and every
superconvex-cyclic operator is cyclic. Indeed, we have shown that the inclusions are strict.
We denote the set of all superconvex-cyclic vectors and the set of all convex-cyclic vectors
for T , as SCC(T ) and CC(T ), respectively.

2. Superconvex-cyclicity versus other kinds of
cyclicity
The connection between dynamics of a linear operator and the point spectrum of its

adjoint, denoted by σp(T
∗), is studied a lot in literature.

Proposition 2.1. Suppose that T ∈ B(X).
(i) If T is hypercyclic then σp(T

∗) = ∅ [1].
(ii) If T is supercyclic then σp(T

∗) is empty or consists of exactly one nonzero number
λ. In the latter case, dim ker (T ∗ − λ) = 1 [1].

(iii) If T is convex-cyclic, then σp(T
∗) ∩ (D ∪ R) = ∅. Besides, if λ1, λ2 ∈ σp(T

∗),
then λ2 ̸= λ1. ( [3])

We have obtained a related result for superconvex-cyclic operators that runs as follows.
Theorem 2.2. Let T ∈ B(X). If T is superconvex-cyclic, then σp(T

∗) contains at most
one real number, and if it contains λ ≥ 1, then σp(T

∗)∩D = ∅. Besides, if λ1, λ2 ∈ σp(T
∗),

then λ2 ̸= λ1.
It has been proved that if T is hypercyclic and |c| = 1, then so is cT . Besides every

nonzero multiple of a supercyclic operator is supercyclic. The next result gives a similar
statement for a convex-cyclic operator.

Proposition 2.3. (Proposition 2.4 of [2]) If T is a convex-cyclic operator on a locally
convex space X, and if c > 1, then cT is also convex-cyclic. Furthermore, CC(T ) = CC(cT ).

We have proved a similar result for superconvex-cyclic operators.
Theorem 2.4. If T is a superconvex-cyclic operator on a Banach space X, then so is

cT for every scalar c > 0. Furthermore, SCC(T ) = SCC(cT ).
A connection between convex-cyclic operators and superconvex-cyclic ones is obtained

in the next result.
Theorem 2.5. Let H be a Hilbert space. An operator T ∈ B(H) is convex-cyclic if

and only if IC ⊕ T is superconvex-cyclic on C⊕H.
We remark that if T is a convex-cyclic operator then IC ⊕ T is not convex-cyclic,

because 1 ∈ σp((IC ⊕ T )∗). This along with the preceding theorem shows that convex-
cyclic operators form a strict subclass of superconvex-cyclic operators.
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3. Superconvex-cyclicity of matrices
It is known that for any matrix A on Cn, there are unique commuting matrices B

and C such that B is diagonalizable, C is nilpotent, and A = B + C. So a method
for investigating the superconvex-cyclicity of matrices, is to discuss the problem for sum
of two such matrices. In this connection, we first consider the superconvex-cyclicity of
nilpotent perturbation of multiples of the identity on Cn for n > 1. Note that, in light
of Proposition 1(iii), since the spectrum of a nilpotent matrix consists of zero, it is not
convex-cyclic. Also, λI is not superconvex-cyclic on Cn. For their sum, we have obtained
the following result.

Theorem 3.1. Suppose that Q is a nonzero nilpotent matrix on Cn for n > 1.
(a) If λ ∈ R, then λI +Q is not superconvex-cyclic.
(b) If λ /∈ R, then λI +Q is superconvex-cyclic if and only if dimker(Q) = 1.

Next, we consider the sum of a diagonal matrix and a nilpotent one. The following
result is obtained.

Theorem 3.2. Suppose that diag(λ1, · · · , λn) is a diagonal matrix on Cn and Q is a
nilpotent matrix commuting with D. If at least two λj’s are distinct real numbers, then
D +Q is not superconvex-cyclic.
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Abstract. In this paper, we are going to specify a relation between the Lie algebras of
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subgroups.
Keywords: generalized Lie group, Lie algebra, right-invariant vector field
AMS Mathematics Subject Classification [2010]: 22E60, 17B60, 17B66

1. Introduction
Lie theory is a section of mathematics that relates to various branches of mathemat-

ics and physics namely algebra, non-associative algebras, quasi-groups, geometry, math-
ematical physics, combinatorics, H-spaces and related systems, operad theoretical and
cohomological methods, jet theory, number theory and quantum theory. The notion of
Lie algebra is one of the fundamental concepts of modern mathematics and mathematical
physics. The general theory of Lie algebras leads to a rich assortment of important explicit
examples of geometric objects. So importance of Lie algebras leads to importance of their
generalizations. There are different kinds of generalizations of Lie algebras, such as hom-
Lie algebras, hom-Lie superalgebras, color hom-Lie algebras, etc. [1,4,7]. A Lie group is,
roughly speaking, an analytic manifold with a group structure such that the group opera-
tions are analytic. Lie groups provide a way to express the concept of a continuous family
of symmetries for geometric objects. Some generalized structures of Lie groups such as Lie
groupoids and generalized Lie groups have been defined through the recent century. The
notion of a generalized Lie group or a top space was first introduced by Molaei [5]. In this
generalized setting, several authors studied various aspects and concepts of generalized
groups and top spaces [2,3,6].

First, we recall the definition of a generalized group and a generalized Lie group.
Definition 1.1. [5] A generalized group is a nonempty set G admitting an operation

called multiplication which satisfies the following conditions:
• (g1.g2).g3 = g1.(g2.g3) for all g1, g2, g3 ∈ G.

∗Speaker. Email address: farhang@shirazu.ac.ir

189



M. R. Farhangdoost and A. R. Attari Polsangi

• For any g ∈ G there exists a unique e(g) in G such that
g.e(g) = e(g).g = g.

• For any g ∈ G there exists h ∈ G such that
g.h = h.g = e(g).

Remark 1.2. For any generalized group G and any g ∈ G,
e−1(e(g)) = {h ∈ G|e(h) = e(g)},

has a canonical group structure.

A generalized Lie group (a top space) is a smooth manifold whose points can be
(smoothly) multiplied together by a generalized group operation and generally its identity
is a semigroup morphism, i.e.,

Definition 1.3. [2] A top space T is a Hausdorff d-dimensional differentiable manifold
which is endowed with a generalized group structure such that the generalized group
operations:

• . = T × T → T by (t1, t2) 7→ t1.t2 which is called the multiplication map;
• −1 : T → T by t 7→ t−1 which is called the inverse map are differentiable and it
holds that

• e(t1.t2) = e(t1).e(t2) for all t1, t2 ∈ T.

Now we state a theorem that plays an important role in our problem.

Theorem 1.4. Let T be a top space and let the cardinality of e(T) be a natural number.
Then the set of right-invariant vector fields on T, is a Lie algebra under the Lie bracket
operation.

Let T is a top space and e(T) is a finite set, then Theorem 1.4 implies that there exists
a Lie algebra corresponding to T. According to this Lie algebra there is a Lie group.

Definition 1.5. [6] Let T is a top space. A curve ϕ : R → T is called one-parameter
subgroup of top space T if it is satisfies the condition ϕ(t1 + t2) = ϕ(t1) + ϕ(t2); for all
t1, t2 ∈ R.

Lemma 1.6. Assume ϕ : R → T is a one-parameter subgroup of T, then ϕ(0) ∈ e(T ).
Moreover ϕ(s)ϕ(−s) ∈ e(T ); for all s ∈ R.

Proposition 1.7. Let ϕ : R → T is a one-parameter subgroup of T and X is a vector
field such that dϕµ(t)

dt = Xµ(ϕ(t)), where Xµ denotes a component of X in a coordinate
system. Then vector fleld X is a right-invariant vector field.

Proposition 1.8. Let X be a right-invariant vector field on top space T. Then there
exist one-parameter subgroups on T corresponding to X.

Remark 1.9. Note that the correspondence between one-parameter subgroups of T
and right-invariant vector fields on T is not one-to-one and we can find for every right-
invariant vector field X, |e(T )| one-parameter subgroup of T.

Example 1.10. Let T = R, with the product (a, b) 7→ a. We know that card(e(T )) =
∞. Then by the previous assertion there exists infinite right-invariant vector fields on T.
Note that the vector field X on T is a right-invariant vector field if and only if X : T → R

is defined by X(u) = cu, for some constant number c ∈ R. It is obvious that for every
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one-parameter subgroup ϕ, ϕ(R) is a commutative subgroup of T. By setting ϕ(0) ∈ e(T ),
we have a commutative subgroup of T. Therefore we can find a correspondence between
right-invariant vector field and free commutative group

∏∗
ϕ(0)∈e(T ) ϕ(R).

Definition 1.11. Let T be a top space and let G be a topological group. Then a
covering projection P : T → G is called a top space covering projection if P satisfies the
following conditions:

(1) P (t) = e, for all t ∈ e(T ), where e is identity element;
(2) P (t1t2) = P (t1)P (t2), for all t1, t2 ∈ T.

Theorem 1.12. Let P is a top space covering projection for a top space T and a
topological group G and let |e(T )| < ∞. Then there exists a correspondence (but not
necessarily one-to-one) between one-parameter subgroups G and one parameter subgroups
of T.

Corollary 1.13. Let T is a top space with |e(T )| < ∞, and G is a Lie group
and P : T → G a top space covering projection for G, then there exists a one-to-one
correspondence between right-invariant vector field G and right invariant vector fields of
T. Moreover the Lie algebra created by the right invariant vector fields of T is isomorphic
to the Lie algebra of G.

Proof. Let X be a right-invariant vector field, then there exist |e(T )| one-parameter
subgroups of T correspondence to X, and all of these one-parameter subgroups of T corre-
spond to some one-parameter subgroups of G. Since G is a Lie group then there exists only
one right-invariant vector field correspondence with that one-parameter subgroups. □

Corollary 1.14. Let T and G be connected sets and e(t0) ∈ T be fixed. Moreover let
P : T → G be a top space covering projection for G. Then there exists a unique Lie group
structure on T such that e(t0) is identity element and Lie algebra of T (as a Lie group) is
equal to the Lie algebra of right invariant vector fields of T (as a top space).
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Abstract. In this paper, we introduce the notions of Noetherian and Artinian PMV -
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1. Introduction

A. Dvurecenskij and A. Di Nola in [1] introduced the notion of PMV -algebras, that is
MV -algebras whose product operation (·) is defined on the whole MV -algebra. This op-
eration is associative and left/right distributive with respect to partially defined addition.
They showed that the category of product MV -algebras is categorically equivalent to the
category of associative unital l-rings. In addition, they introduced and studied MV F -
algebras [1]. They also introduced ·-ideals in PMV -algebras. Then they showed that:
Any MV F -algebra is a subdirect product of subdirectly irreducible MV F -algebras [ [1],
Corollary 5.6]. Thus they concluded that a product MV -algebra is an MV F -ring if and
only if it is a subdirect product of linearly ordered product MV -algebras [ [1], Theorem
5.8]. By the notion of MV F -algebra, they can introduce PMV -algebras.
Also, in [4], F. Forouzesh introduce the notions of Noetherian and Artinian MV -modules
and they study some equivalent definition of Noetherian MV -modules.

2. preliminaries

In this section, we summarize the basic concepts PMV -algebras. For more details on
these concepts, we refer the reader to [3] and [7].

Definition 2.1. [1] A productMV -algebra (or PMV -algebra, for short) is a structure
(A, ⊕, *,·, 0), where (A, ⊕, *, 0) is an MV -algebra and · is a binary associative operation
on A such that the following property is satisfied:
if x+ y is defined, then x · z + y · z and z · x+ z · y are defined and

(x+ y) · z = x · z + y · z, z · (x+ y) = z · x+ z · y,
∗Speaker. Email address: frouzesh@bam.ac.ir
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where, + is a partial addition on an MV -algebra A as follows: For any x, y ∈M , x+ y is
defined if and only if x ≤ y∗ and in this case,

x+ y := x⊕ y.
The partial addition was defined [2].

If A is PMV -algebra, then a unity for the product is an element e ∈ A such that
e · x = x · e = x for any x ∈ A. A PMV -algebra that has unity for the product will be
called unital.

In the sequel, an lu-ring will be a pair (R, u) where (R,⊕, ·,≤) is an l-ring and u is a
strong unit of R such that u · u ≤ u. The last conditions imply that the intrval [0, u] of
an lu-ring (R, u) is closed under the product of R. Thus, if we consider the restriction of
· to [0, u]× [0, u], then the interval [0, u] has a canonical PMV -algebra structure:

x⊕ y := (x+ y) ∧ u, x∗ := u− x, x · y := x · y,
for any 0 ≤ x, y ≤ u. We shall denote this structure [0, u]R.

If UR is the category of lu-rings, whose objects are pairs (R, u) as above and whose
morphisms are l-rings homomorphisms which preserve the strong unit, then we get a
functor

Γ : UR → PMV,
Γ(R, u) := [0, u]R, for any lu-ring (R, u),

Γ(h) := h |[0,u] for any lu-rings homomorphism h.

In [1] is proved that Γ establishes a categorical equivalence between UR and PMV. We
recall that in an MV -algebra M , the Chang distance function is
d : M ×M −→M, d(a, b) := (a� b∗)⊕ (b� a∗).

Lemma 2.2. If A is a PMV -algebra, then the following properties hold for any x, y, α ∈
A,
(a) (nx) · y = x · (ny), for any n ∈ N, where nx = x+ · · ·+ x,
(b) x · y∗ ≤ (x · y)∗,
(c) (x · y)∗ = x∗ · y + (1 · y)∗,
(d) (α · x)� (α · y)∗ ≤ α · (x� y∗),
(e) α · (x⊕ y) ≤ α · x⊕ α · y,
(f) d(α · x, α · y) ≤ α · d(x, y),
Moreover, if A is a unital PMV -algebra, then
(x · y)∗ = x∗ · y + y∗.

Definition 2.3. [1] A ·-ideal of PMV -algebra A is an ideal I of MV -algebra A such
that if a ∈ I and b ∈ A entail a · b ∈ I and b · a ∈ I.
We denote by Idp(A) the set of ·-ideals of a PMV -algebra A. The set of all maximal
ideals of an MV -algebra A is denoted by Max(A).

Definition 2.4. [5] Let P be a ·-ideal of of a PMV -algebra A. P is called a ·-prime
ideal, if (i) P 6= A and (ii) for every a, b ∈ A, if a · b ∈ P , then a ∈ P or b ∈ P .

Lemma 2.5. [1] If A is PMV -algebra, then for any a, b ∈ A,
(i) a · 0 = 0 = 0 · a,
(ii) if a ≤ b, then for any c ∈ A, a · c ≤ b · c and c · a ≤ c · b.

Lemma 2.6. [4] If A is PMV -algebra and x, y ∈ A, then (x] ∨ (y] = (x⊕ y].

———————————————————————————–
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3. Noetherian and Artinian PMV -algebras

Definition 3.1. A PMV -algebra A is called Noetherian (Artinian), if for every in-
creasing (decreasing) chain of its ·-ideals like I1 ⊆ I2 ⊆ . . . (I1 ⊇ I2 · · · ), there exists n ∈ N
such that Ii = In, for all i ≥ n.

The following examples show that Noetherian (Artinian) PMV -algebras exists and
any PMV -algebra may not be a Noetherian (Artinian) PMV -algebra.

Example 3.2. Let M2(R) be the ring of square matrices of order 2 with real elements
and 0 be the matrix with all element 0. If we define the order relation on components A =

(aij)i,j=1,2 ≥ 0 iff aij ≥ 0 for any i, j, such that v =

(
1/2 1/2
1/2 1/2

)
, then A = Γ(M2(R), v)

is a PMV -algebra. Then Idp(A) = {(0, 0), A}. Hence A is a Noetherian and Artinian
PMV -algebra.

Example 3.3. Let G = ⊕{Zi/i ∈ N} be the lexicographic product of denumerable
infinite copies of the abelian l-group Z of the relative integers and ei ∈ G such that eik = 0
if k 6= i and eik = 1 if k = i.

Also, G with the usual product is an lu-ring. It follows from [1] that A = Γ(G, u) =
[0, u] is a PMV -algebra, where Γ is a functor from the category of abelian lu-ring to the
category PMV -algebras and u = (1, 0, 0, 0, . . .) is the strong unit of A, where ≤ is the
lexicographic order on G.
If we set Pi =< (0, ei) >, then Pi ⊆ Pj , for i > j. Since P1 ⊇ P2 ⊇ P3 ⊇ · · · ⊇ Pn ⊇ · · · ,
hence A is not a Artinian PMV -algebra.

Theorem 3.4. Let A be a PMV -algebra. The following conditions are equivalent:
(i) Any non-empty collection of ·-ideals of A has a maximal element.
(ii) A is a Noetherian.
(iii) Every ·-ideal of A is principal.

Proof. (i) ⇒ (ii) Let {Ii}i∈J be any increasing sequence of ·-ideals of A, and I1 ⊆
I2 ⊆ · · · ⊆ In ⊆ · · · be given. Consider the collection Σ = {Ii}i∈N . This collection has a
maximal element Im. Then Ik = Im, for all k ≥ m.
(ii) ⇒ (iii) Let I be a ·-ideal of A. Choose any x1 ∈ I. If (x1] 6= I. Choose x2 ∈ I,
x2 /∈ (x1]. If (x1] ∨ (x2] 6= I, continue this process. By assumption (ii), after a finite
number of steps, we have

(x1] ∨ (x2] ∨ · · · ∨ (xn] = I.

Thus by Lemma 2.6, It follows that

I = (x1 ⊕ x2 ⊕ · · · ⊕ xn].

Therefore every ·-ideal of A is principal.
(iii)⇒ (ii) Consider any increasing sequence of ·-ideals of A like I1 ⊆ I2 ⊆ · · · ⊆ Im ⊆ · · · .
Then Their union I = ∪ni=1Ii is a ·-ideal of A which is a principal by (iii). Hence there
exists a ∈ A such that I = (a]. Choose m such that I = (a] ⊆ Im. Then Ik = Im, for all
k ≥ m.
(ii) ⇒ (i) Let Σ be a non-empty collection of ·-ideals of I. Choose any I1 ∈ Σ. If I1 is
not maximal, choose I2 ∈ Σ, I1 ⊆ I2. If I2 is not maximal continue this process. After a
finite number of steps there exists some Im ∈ Σ, which is maximal. �

Theorem 3.5. A is a Noetherian PMV -algebra if and only if every ·- ideal of A is
finitely generated.

194



F. Forouzesh

Lemma 3.6. Let A be a Noetherian (Artinian) PMV -algebra and I ∈ Id(A). Then
A/I is a Noetherian (Artinian) PMV -algebra.

Theorem 3.7. Let A be a Noetherian Boolean PMV -algebra. Then every ·-ideal of A
is intersection of finitely many ·-prime ideals of A.

Theorem 3.8. Let A be a Boolean PMV -algebra. Then A is a Noetherian PMV -
algebra if and only if every ·-prime ideal of A is finitely generated.

We recall that a proper ideal of A is called an obstinate ideal of A if x, y /∈ I implies
x � y∗ ∈ I and y � x∗ ∈ I, for all x, y ∈ A [6, Definition 2.1]. Also, it is proved that if I
is a proper ideal of A, then I is an obstinate ideal if and only if x ∈ I or x∗ ∈ I, for all
x ∈ A [6].

Theorem 3.9. The set of obstinate ideals of an MV -algebra A, satisfies both of the
ascending chain condition and descending chain condition.

Proof. Let I1 ⊆ I2 ⊆ · · · be an increasing chain of obstinate ideals of A. Put
S = {Ii}i∈N. Since S is a non-empty set, we claim that S has maximal element, like In,
that is Ii = In, for all i ≥ n.
Assume that there is j ≥ n such that In $ Ij , hence there exists a ∈ Ij and a /∈ In.
Since In is an obstinate ideal, a∗ ∈ In, so a∗ ∈ Ij . Hence 1 = a ⊕ a∗ ∈ Ij , which is a
contradiction. Thus In = Ii, for all i ≥ n. Therefore the set of obstinate ideals of A
satisfy the ascending chain condition. Similarly, the set of obstinate ideals of A satisfy the
descending chain condition. �

Like Cohen’s theorem on rings (Hungerford 1974), we have to the following theorem
in MV -algebras:

Theorem 3.10. Let A be an PMV -algebra. Then A is a Noetherian PMV -algebra if
and only if every prime ·-ideal of A is finitely generated.

4. Conclusion

In this paper, we introduced the notions of Noetherian and Artinian PMV -algebras
and we stated some equivalent definitions of Noetherian PMV -algebras.
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Abstract. Let G be the Frobenius group of order pq, where p and q are two distinct
primes and Γ(G) be the conjugacy class graph of G. In this paper, we show that Γ(G) is a
disconnected graph with two connected components. Also, we compute the characteristic
polynomial, the energy and the Laplacian energy of Γ(G).
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1. Introduction

A graph Γ is a finite nonempty set of objects called vertices together with a set of unordered
pairs of distinct vertices of Γ called the edges. The vertex-set of Γ is denoted by V (Γ), while
the edge-set is denoted by E(Γ). Let Γ be a graph with set of vertices V (Γ) = {1, . . . , n}
and the set of edges E(Γ) = {e1, . . . , en}. The adjacency matrix of Γ denoted by A(Γ),
is an n × n matrix defined as follows: the rows and the columns of A(Γ) are indexed
by V (Γ). If i 6= j, then the (i, j)-entry of A(Γ) is 0 for nonadjacent and 1 for adjacent
vertices i and j. The (i, i)-entry of A(Γ) is 0 for i = {1, . . . , n}. The degree of vertex i
is denoted by dΓ(i) and the degree matrix on the other hand denoted by ∆(Γ) is defined
as ∆(Γ) = diag(dΓ(1), dΓ(2), . . . , dΓ(n)) which is the diagonal matrix of vertex degrees.
Then, the Laplacian matrix of Γ is denoted by L(Γ) which satisfies L(Γ) = ∆(Γ)−A(Γ).

Let λ1, λ2, . . . , λn be the eigenvalues of the adjacency matrix of Γ, and let µ1, µ2, . . .
, µn be the eigenvalues of the Laplacian matrix of Γ. The energy of the graph Γ is defined
as the sum of the absolute values of the eigenvalues of the adjacency matrix of Γ, i.e.,
E(Γ) =

∑n
i=1 |λi|. Also, the Laplacian energy of the graph Γ is defined as the sum of the

absolute values of the difference between the Laplacian matrix eigenvalues and the ratio
of twice the edges number divided by the vertices number, i.e., LE(Γ) =

∑n
i=1 |µi − 2m

n |,
where n is the vertices number and m is the edges number of the graph Γ.

Let G be a finite group and V (G) be the set of all non-central conjugacy classes of G.
From orders of representatives of conjugacy classes, the following conjugacy class graph
Γ(G) was introduced in [5]: its vertex set is the set V (G) and two distinct vertices xG and
yG are connected with an edge if (o(x), o(y)) > 1.

∗Speaker. Email address: zforouzanfar@gmail.com, z foruzanfar@bzte.ac.ir
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In this paper, we compute the characteristic polynomial, the energy and the Laplacian
energy of the conjugacy class graph of a Frobenius group of order pq, where p and q are
two distinct primes. Recall that the Frobenius group with kernel K and complement H
is denoted by K of H. Also, Kn is the complete graph with n vertices.

2. Preliminaries

In this section, we give some preliminary results that will be used in the proof of our main
results.

Definition 2.1. The spectrum of a graph Γ is the set of numbers which are eigenvalues
of A(Γ), together with their multiplicities. If the distinct eigenvalues of A(Γ) are λ0 >
λ1 > . . . > λs−1, and their multiplicities are m(λ0),m(λ1), . . . ,m(λs−1), then we shall
write

Spec Γ =

(
λ0 λ1 . . . λs−1

m(λ0) m(λ1) . . . m(λs−1)

)

As a straightforward result of Proposition 3.5 of [3], we have the following remark.

Remark 2.2. Let Γ be a complete graph Kn. Then

Spec Γ =

(
n− 1 −1

1 n− 1

)

Lemma 2.3. (Lemma 4.3 of [4]) Let G be a Frobenius group with Abelian Frobenius
kernel N , and H be its Frobenius complement. Let N be the disjoint union of t + 1
G-conjugacy classes. Then
(i) All non-central conjugacy classes contained in N are of same length |H|, and hence
|N | = 1 + t|H|.
(ii) If in addition H is also Abelian with |H| = s + 1, then any non-central conjugacy
class of G is of length either s+ 1 or (s+ 1)t+ 1. Moreover, the numbers of all different
G-conjugacy classes with length s+ 1, (s+ 1)t+ 1 are respectively t, s.

Proposition 2.4. ( [2]) The multiplicity of 0 as eigenvalue of L(Γ) is equal to the
number of connected components of the graph.

Proposition 2.5. ( [1]) The Laplacian matrix of the complete graph Kn has eigen-
values 0 with multiplicity 1 and n with multiplicity n− 1.

3. Main results

Let G be a Frobenius group with Frobenius kernel Zq and Frobenius complement Zp,
where p and q are two distinct primes. Also let t be the number of non-central conjugacy
classes of G contained in Zq and s be the number of non-central conjugacy classes of G

contained in Zp. Therefore t = q−1
p and s = p − 1. In this section, we present our main

results.

Proposition 3.1. Let G = ZqofZp and Γ(G) be the conjugacy class graph of G. Then
Γ(G) is a graph with two connected components Kt and Ks, the number of the vertices of

Γ(G) is n = t+ s and the number of edges of Γ(G) is m = t(t−1)
2 + s(s−1)

2 .

Proposition 3.2. Let G = Zq of Zp and Γ(G) be the conjugacy class graph of G.
Then we have:
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(i) The adjacency matrix eigenvalues of Γ(G) are λ = −1 with multiplicity s + t − 2,
λ = t− 1 with multiplicity 1 and λ = s− 1 with multiplicity 1.
(ii) The Laplacian matrix eigenvalues of Γ(G) are µ = 0 with multiplicity 2, µ = t with
multiplicity t− 1 and µ = s with multiplicity s− 1.

Theorem 3.3. Let G = Zq of Zp and Γ(G) be the conjugacy class graph of G. Then
we have
(i) The characteristic polynomial of Γ(G) is χ(Γ(G);λ) = (λ+1)t+s−2(λ−t+1)(λ−s+1).
(ii) The energy of Γ(G) is E(Γ(G)) = 2(t+ s− 2).

(iii) The Laplacian energy of Γ(G) is LE(Γ(G)) = 2[ t(t−1)+s(s−1)
t+s ]+(t−1)|t− t(t−1)+s(s−1)

t+s |+

(s− 1)|s− t(t−1)+s(s−1)
t+s |.

References

1. R.B. Bapat, Graphs and Matrices, New York: Springer, 2010.
2. L. W. Beineke and R. J. Wilson, Topics in algebraic graph theory, New York: Cambridge University

Press, (102) (2004).
3. N. Biggs, Algebraic graph theory, New York: Cambridge University Press, (1994).
4. M. Fang and P. Zhang, Finite groups with graphs containing no triangles, J.Algebra, (264) (2003),

613–619.
5. X. You and G. Qian, A new graph related to conjugacy classes of finite groups, (Chinese) Chinese Ann.

Math. Ser. A, (28)(2007), no. 5, 631–636.

198



The Epiperimetric Inequality Approach for the Regularity
of a Free Boundary Problem

Morteza Fotouhi∗

Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran

Abstract. We apply the epiperimetric inequality approach and show C1,β-regularity
for the free boundary ∂{|u| > 0} at asymptotically flat points of the problem ∆u =
|u|q−1u+ g(x, u), where g is Hölder continuous and vanishes faster than |u|q as u → 0.
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1. Introduction
We study the regularity of the free boundary of local minimzers u of the functional

J(u) =

∫

B1

(
|∇u|2 + 2F (x, u)

)
dx, u− u0 ∈ W 1,2

0 (B1),

where B1 is the unit ball in Rn (n ≥ 2), u0 ∈ W 1,2(B1)∩L∞(B1). This minimizer satisfies
the semilinear problem
(1) ∆u = f(x, u), in B1,

where f is the derivative of F with respect to the variable u, i.e. f = Fu. Here, we assume
that f(x, u) = |u|q−1u+ g(x, u) for some q ∈ (0, 1) and g satisfies

(H1) g(x, u) is Hölder continuous with respect to the both variables x and u,
(H2) limu→0

g(x,u)
|u|q = 0 for every fixed x ∈ B1.

We also use the notation Γ = ∂{|u| > 0} which is referred to as the free boundary. We
can consider the equation (1) as a perturbation of the problem
(2) ∆u = f0(u) = |u|q−1u, in B1.

As a especial case, the classical form of the obstacle problem consider the semilinear
elliptic equation

∆u = χ{u>0}.

The optimal C1,1
loc regularity for the solution is obtained in [2]. Caffarelli in his seminal

papers [3,4] shows that points of the free boundary are divided into two different classes:
∗Speaker. Email address: fotouhi@sharif.edu
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regular points and singular points. Near the regular points, the solution behaves like
half-space solutions and satisfies

lim sup
r→0

|Br(x0) ∩ {u = 0}|
|Br|

> 0.

It is well-known that free boundary is an analytic hypersurface at regular points, [3]. The
singular class contains points at which the solution behaves like quadratic polynomials
and

lim
r→0

|Br(x0) ∩ {u = 0}|
|Br|

= 0.

Already, there is an example in dimension two in which the singular part is a cantor
set. In general the singular part of free boundary cannot be a smooth manifold but is
covered by manifolds with some regularity. In [4], it has shown that the singular part is
locally contained in a C1 manifold. This result has been improved in dimension two by
Weiss [10] using the epiperimetric inequality. He proves the singular part is contained
in a C1,α curve. In [5], they show a logarithmic epiperimetric inequality to obtain C1,log

regularity of singular part in higher dimension. Finally, Figalli and Serra improved the
result to an optimal C1,1 regularity up to the presence of some “anomalous” points of
higher codimension, [6].

2. Main results
The regularity of solutions of (1) and (2) is well studied and we expect to have the

optimal regularity C [κ],κ−[κ], where κ = 2/(1− q) (for the details of result refer to [7–9]).
However, there are few results for the regularity of free boundary Γ = ∂{|u| > 0}. In [9], it
has been shown that for f(u) = (u+)q the free boundary ∂{u > 0} has locally finite Hn−1-
Hausdorff dimension. Then the non-coincident set {u > 0} has locally finite perimeter
and we are able to define the reduced part of free boundary, ∂red{u > 0}, where a tangent
plane exists in a weak sense. Alt and Phillips shows ∂red{u > 0} is a C1,α surface, [1].
They also prove C1,α-regularity of the free boundary near the regular points.

One of the main difficulties encountered in studying the regularity of the free boundary
in problem (1) is classification of global solutions. In dimension two, we are able to present
a fairly good analysis of global homogeneous solutions, and hence a better understanding
of the behavior of the free boundary, [7,8]. In higher dimensions the problem becomes
quite complicated, but we are still able to obtain partial results; e.g. we prove that if a
solution is close to one-dimensional solution in a small ball, then in an even smaller ball the
free boundary can be represented locally as two C1-regular graphs ∂{u > 0} and ∂{u < 0},
tangential to each other. It is noteworthy that the above problem (in contrast to the case
q = 0) introduces interesting and quite challenging features, that are not encountered in
the case q = 0. For example one obtains homogeneous global solutions that are not one-
dimensional. This complicates the analysis of the free boundary particularly in singular
points of free boundary.

Definition 2.1. To investigate the regularity of free boundary, we consider “asymp-
totically one-phase-points” that is, a subset of Γ such that the blow-ups1 belong to

H := {x 7→ αmax(x · ν, 0)κ : ν ∈ Rn is a unit vector} .

1Any limit of the sequence u(x0 + rnx)/r
κ
n when rn → 0 is called a blow-up of solution u at point x0.
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Members of this class are κ-homogeneous global solutions of (2), i.e. u(rx) = rκu(x), and
are called half-plane solutions. We denote by Ru the set of all (regular free boundary)
points x0 ∈ Γ such that at least one blow-up limit of u at x0 is in H.

Our main result concerning the regularity of the free boundary is presented in the
following theorem.

Theorem 2.2. The set of regular free boundary points Ru is locally in B1 a C1,β-
manifold.

3. Epiperimetric inequality
We choose the epiperimetric inequality approach to show the regularity of free bound-

ary.
Theorem 3.1 (The epiperimetric inequality, Theorem 3.1 in [8]). There exist ϵ ∈

(0, 1) and δ > 0 such that if c ∈ W 1,2(B1) is a homogeneous function of degree κ and
∥c− h∥W 1,2(B1) ≤ δ for some h ∈ H, then there exists a function v ∈ W 1,2(B1) such that
v = c on ∂B1 and

M(v)−M(h) ≤ (1− ϵ) (M(c)−M(h)) ,

where M is the boundary adjusted energy

M(u) =

∫

B1

(
|∇u|2 + 2

1 + q
|u|1+q

)
dx− κ

∫

∂B1

|u|2 dσ.

This inequality is a powerful tool in the regularity theory of free boundary and minimal
surfaces. The concept of an epiperimetric inequality was first introduced by Reifenberg
(1964) in the context of minimal surfaces. In [10], Weiss used this approach to study
the free boundary of the obstacle problem in dimension two. Recently, using a direct
argument, a logarithmic version of epiperimetric inequality has been introduced in [5] to
study the regularity of the singular set of free boundary in the obstacle problem.

In order to prove Theorem 2.2, we need to show that the monotonicity formula (which
is established by Weiss in [10] for the classical obstacle problem), holds in the present
setting. See Proposition 5.1 in [8] for a similar formula and the proof.

Proposition 3.2. Let u be a solution of (1) in Br0(x0) and let

Ws(u, y, r) =
1

rn+2κ−2

∫

Br(y)

(
|∇u|2 + 2Fs,y(x, u)

)
dx− κ

rn+2κ−1

∫

∂Br(y)
|u|2 dHn−1,

where Fs,y(x, u) := F (x0+ s(x− y), u). The there exists constants C < ∞ and µ > 0 such
that W1(u, x0, r) + Crµ is increasing for r > 0.

The epiperimetric inequality with the monotonicity formula, Proposition 3.2, provides
an estimate for the rate of convergence ∥u(x0 + ·)− h∥L1(∂Br), where h belongs to H.

Proposition 3.3. Let x0 ∈ B1 ∩ ∂{|u| > 0}, and suppose that the epiperimetric
inequality holds with ϵ ∈ (0, 1) for each

cr(x) := |x|κur(
x

|x|) =
|x|κ
rκ

u(x0 +
r

|x|x)

and for all r ≤ r0 < 1. Finally let u0 denote an arbitrary blow-up limit of u at x0. Then
there exists constants C and Λ depending only on n and ϵ such that∫

∂B1

|ur(x)− u0(x)|dHn−1 ≤ C|W1(u, x0, r0)−W1(u, x0, 0+)|1/2( r
r0
)Λ.
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Proposition 3.3 proves the uniqueness of blow-ups provided ur remains in a δ-neighborhood
of H, where δ is the constant introduced in the epiperimetric inequality. The definition
of Ru assures that this condition is satisfied during the blow-up process. Moreover, we
imply that Ru is open relative to Γ.

Proof of Theorem 2.2. For every x0 ∈ Ru, assume that hx0(x) = αmax(x·ν(x0), 0)κ
is the blow-up limit of u at x0 which is a half-plane solution, for some ν(x0) ∈ ∂B1(0) ⊂ Rn.
Recall that the uniqueness of blowup to see x0 7→ ν(x0) is well-defined. ν(x0) is the or-
thogonal vector on free boundary and we show that it is Hölder continuous with exponent
β = Λ/(2κ+ Λ). Here, Λ is the exponent defined in Proposition 3.3.

We can show easily by an indirect argument that there exists the constant c(n) such
that

c(n)|ν(x1)− ν(x2)| ≤
∫

∂B1

∣∣max(x · ν(x1), 0)κ −max(x · ν(x2), 0)κ
∣∣ dHn−1,

for every x1, x2 ∈ Ru. Now choose γ := (κ+ Λ)−1, r := |x1 − x2|γ and apply Proposition
3.3 to see that

αc(n)|ν(x1)− ν(x2)| ≤
∫

∂B1

|u(x1 + rx)/rκ − hx1(x)|+ |u(x1 + rx)− u(x2 + rx)|/rκ

+ |u(x2 + rx)/rκ − hx2(x)| dHn−1

≤2CrΛ/2 +

∫

∂B1

∫ 1

0

∣∣∣∇u (x1 + rx+ t(x2 − x1))
∣∣∣ |x1 − x2|

rκ
dtdHn−1

≤ 2CrΛ + C1
|x1 − x2|

rκ
≤ (2C + C1)|x1 − x2|γΛ,

For the detail of proof refer to [8]. □
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Abstract. Let (X, ∥ · ∥) be a normed space and X∗ be its dual. In this paper we
introduce the space CBSE(X

∗) consisting of all functions σ : X∗ → C which satisfy
in a certain relation like the Bochner-Schoenberg-Eberlein property. Using the Helly
theorem, we characterize this space and as an application we give some results on the
real line R. Indeed, we give a characterization of (continuous) linear functions on R.
Keywords: Banach algebra, BSE-function, character space
AMS Mathematics Subject Classification [2010]: 46H05, 46J10

1. Introduction
Suppose that A is a semi-simple commutative Banach algebra and ∆(A) is the charac-

ter space of A, i.e., the space of all non-zero homomorphisms from A into C. A bounded
continuous function σ on ∆(A) is called a BSE-function if there exists a constant M > 0
such that for each φ1, . . . , φn ∈ ∆(A) and complex numbers c1, . . . , cn the inequality

∣∣∣∣∣
n∑

i=1

ciσ(φi)

∣∣∣∣∣ ≤ M

∥∥∥∥∥
n∑

i=1

ciφi

∥∥∥∥∥
A∗

holds. Let CBSE(∆(A)) be the set of all BSE-functions. BSE-functions for the first time
introduced and investigated by Takahasi and Hatori; see [4] and two notable works [1,2].

In this paper for a normed space X with dual X∗, we study the space of all functions
σ : X∗ −→ C such that are w∗-continuous and satisfy in the following relation:

There exists an Mσ > 0 such that for all n ∈ N we have
∣∣∣∣∣

n∑

i=1

ciσ(x
∗
i )

∣∣∣∣∣ ≤ Mσ

∥∥∥∥∥
n∑

i=1

cix
∗
i

∥∥∥∥∥
X∗

(x∗1, . . . , x
∗
n ∈ X∗, c1, . . . , cn ∈ C).

We give a characterization of functions which belong to this space. Then using this char-
acterization, for a continuous function f : R −→ R we give a condition that is equivalent
to the linearity of f .

∗Speaker. Email address: fozouni@gonbad.ac.ir
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2. Main Results
Suppose that A is a semi-simple commutative Banach algebra. Clearly, ∆(A) ⊆ A∗

and A∗ is a normed space. We know that each σ ∈ CBSE(∆(A)) defined on ∆(A). One
may ask this question:

Whether σ can be extended to A∗ and satisfies∣∣∣∣∣
n∑

i=1

ciσ(a
∗
i )

∣∣∣∣∣ ≤ M

∥∥∥∥∥
n∑

i=1

cia
∗
i

∥∥∥∥∥
A∗

(a∗1, a
∗
2, a

∗
3, . . . , a

∗
n ∈ A∗), (1)

where M > 0 is a constant?
In this section we study the complex-valued functions which defined on the dual of a

normed space and satisfy in a similar relation as 1.
Let (X, ∥ · ∥) be a normed space and X∗ be its dual. Let Cw∗(X∗) show the space of

all complex-valued functions on X∗ which are continuous respect to the w∗-topology of
X∗. By CBSE(X

∗) we show the space consisting of all the complex-valued functions σ in
Cw∗(X∗) with this property:

There exists an Mσ > 0 such that for each x∗1, x
∗
2, x

∗
3, . . . x

∗
n ∈ X∗ and complex numbers

c1, c2, c3, . . . , cn the following relation holds:
∣∣∣∣∣

n∑

i=1

ciσ(x
∗
i )

∣∣∣∣∣ ≤ Mσ

∥∥∥∥∥
n∑

i=1

cix
∗
i

∥∥∥∥∥
X∗

. (2)

Clearly CBSE(X
∗) is a vector space.

Remark 2.1. Using relation 2, one can see that each σ ∈ CBSE(X
∗) satisfies σ(0X∗) =

0 where 0X∗ is the zero element of X∗. Therefore, the constant function 1 is not in
CBSE(X

∗). So, CBSE(X
∗) ⊊ Cw∗(X∗).

Remark 2.2. Obviously, for each bounded subset of X∗ like ∆, one can see that
the restriction of σ ∈ CBSE(X

∗) to ∆ is in Cb(∆). Also, in the case that X = A is a
commutative Banach algebra, we have

CBSE(A
∗)|∆(A) = {σ|∆(A) : σ ∈ CBSE(A

∗)} ⊆ CBSE(∆(A)).

To proceed further, we recall the Helly theorem.

Theorem 2.3. (Helly) Let (X, ∥ · ∥) be a normed linear space over C. Suppose that
M > 0, x∗1, . . . , x∗n are in X∗ and c1, . . . , cn are in C. Then the following are equivalent:

(1) for all ϵ > 0, there exists xϵ ∈ X such that ∥xϵ∥ ≤ M + ϵ and x∗k(xϵ) = ck for
k = 1, . . . , n.

(2) for all a1, . . . , an ∈ C,
∣∣∣∣∣

n∑

i=1

aici

∣∣∣∣∣ ≤ M

∥∥∥∥∥
n∑

i=1

aix
∗
i

∥∥∥∥∥
X∗

.

Proof. See [3, Theorem 4.10.1]. □

As an application of Helly’s theorem, we give the following characterization.

Theorem 2.4. CBSE(X
∗) is equal to the set of all σ ∈ Cw∗(X∗) for which there exists

a bounded net {xα} in X with σ = w∗ − limα x̂α.
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Proof. Suppose that σ ∈ Cw∗(X∗) is such that there exists β < ∞ and a net {xα} ⊆
X with ∥xα∥ < β for all α and limα x

∗(xα) = σ(x∗) for all x∗ ∈ X∗. Let x∗1, . . . , x∗n be in
X∗ and c1, . . . , cn be complex numbers. Then we have

∣∣∣∣∣
n∑

i=1

ciσ(x
∗
i )

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑

i=1

cix
∗
i (xα)

∣∣∣∣∣+
∣∣∣∣∣

n∑

i=1

ci(x
∗
i (xα)− σ(x∗i ))

∣∣∣∣∣

≤β

∥∥∥∥∥
n∑

i=1

cix
∗
i

∥∥∥∥∥+
n∑

i=1

|ci||x∗i (xα)− σ(x∗i )|

Taking the limit with respect to α, we conclude that σ ∈ CBSE(X
∗).

Conversely, let σ ∈ CBSE(X
∗). Suppose that Λ is the net consisting of all finite

subsets of X∗. By Helly’s theorem, for each ϵ > 0 and λ ∈ Λ, there exists x(λ,ϵ) ∈ X with
∥x(λ,ϵ)∥ ≤ Mσ + ϵ and x∗(x(λ,ϵ)) = σ(x∗) for all x∗ ∈ λ. Clearly, {(λ, ϵ) : λ ∈ Λ, ϵ > 0} is a
directed set with (λ1, ϵ1) ⪯ (λ2, ϵ2) iff λ1 ⊆ λ2 and ϵ1 ≤ ϵ2. Therefore, we have

lim
(λ,ϵ)

x∗(x(λ,ϵ)) = σ(x∗) (x∗ ∈ X∗).

□

We continue with the following question:
Is there any continuous function f : R −→ R such that satisfies in the following

relation:
There exists anM > 0 such that for all n ∈ N, r1, r2, r3, . . . , rn ∈ R and x1, x2, x3, . . . , xn ∈

R we have ∣∣∣∣∣
n∑

i=1

rif(xi)

∣∣∣∣∣ ≤ M

∣∣∣∣∣
n∑

i=1

rixi

∣∣∣∣∣ (3)

Obviously, each linear function on R satisfies in the above condition. In the following
corollary we show that if a function f satisfies in the above relation, it should be of the
form f(x) = αx where α is in R, i.e., f is a linear function.

Corollary 2.5. The only functions which satisfy in 3 are of the form f(x) = αx
where α is in R.

Proof. Let a function f satisfy in relation 3. So, for each c1, . . . , cn ∈ C and
x1, . . . , xn ∈ R we have ∣∣∣∣∣

n∑

i=1

cif(xi)

∣∣∣∣∣ ≤ M

∣∣∣∣∣
n∑

i=1

cixi

∣∣∣∣∣ .

On the other hand, we know that R ∼= R∗ (isometrically isomorphic) with t → gt where
gt(x) = tx. Therefore the function σ defined by σ(gt) := f(t) is in CBSE(R∗), because for
each c1, . . . , cn ∈ C and x1, . . . , xn ∈ R we have

∣∣∣∣∣
n∑

i=1

ciσ(gxi)

∣∣∣∣∣ =
∣∣∣∣∣

n∑

i=1

cif(xi)

∣∣∣∣∣ ≤ M

∣∣∣∣∣
n∑

i=1

cixi

∣∣∣∣∣ ≤ M

∥∥∥∥∥
n∑

i=1

cigxi

∥∥∥∥∥
R∗

.

Using Theorem 2.4, there exists a bounded sequence {sn} ⊆ R such that for each t ∈ R
we have

f(t) = σ(gt) = lim
n

gt(sn) = lim
n

tsn = t lim
n

sn = tσ(g1) = tf(1).

Taking α = f(1), the proof is complete. □
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Abstract. In this paper we introduce the notion of polygroup action on polygroup from
which we are able to build a regular hypergroup and among other results it is proved
that actions of polygroups are associated with hyperrepresentations. Hypermatrix rep-
resentations of multivalued structures were studied by T. Vougiouklis. Representations
of polygroups were studied by R. Ameri and et. This study is more general.
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1. Introduction

The theory of algebraic hyperstructures is a well-established branch of classical alge-
braic theory. Hyperstructure theory was first proposed in 1934 by Marty, who defined
hypergroups and began to investigate their properties with applications to groups, ra-
tional fractions and algebraic functions [4]. It was later observed that the theory of
hyperstructures has many applications in both pure and applied sciences; for example,
semi hypergroups are the simplest algebraic hyperstructures that possess the properties of
closure and associativity. The theory of hyperstructures has been widely reviewed ( [2], [3]
and [6]).

In this paper we introduce the notion of polygroup action on polygroup from which we
are able to build a regular hypergroup and among other results it is proved that actions of
polygroups are associated with hyperrepresentations. Hypermatrix representations of mul-
tivalued structures were studied by T. Vougiouklis in [6]. Representations of polygroups
were studied by R. Ameri and et. in [1]. This study is more general.

In this section we give some notions and results of hypergroupoids, which we need to
develop our paper.

Definition 1.1. Let H be a set. A map · : H ×H −→ P ∗(H) is called hyperoperation or
join operation, where P ∗(H) is the set of all nonempty subsets of H. The join operation
is extended to subsets of H in natural way, so that A ·B is given by

A ·B =
∪

{a · b : a ∈ A and b ∈ B}.
the notations a · A and A · a are used for {a} · A and A · {a} respectively. Generally, the
singleton {a} is identified by its element a.

∗Speaker. Email address: kghadimi@pnu.ac.ir
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Definition 1.2. A hypergroupoid is a set H endowed with a hyperoperation · : H×H −→
P ∗(H). A quasihypergroup is a hypergroupoid such that x ·H = H ·x = H, for all x ∈ H,
(the reproduction axiom), where H · x =

∪
h∈H h · x.

Definition 1.3. [2] A hypergroup is a set H equipped with an associative hyperoperation
· : H ×H −→ P ∗(H) which satisfies the property x ·H = H · x = H, for all x ∈ H. If the
hyperoperation · is associative then H is called a semihypergroup. In the above definition
if A,B ⊆ H and x ∈ H then we define

A ·B =
∪

a∈A,b∈B
a · b, x ·B = {x} ·B and A · x = A · {x}.

Definition 1.4. [2] A hypergroup (H, ·) is called a regular hypergroup, if it has at least
an identity element and all element of H has at least an inverse. In other words, there
exists e ∈ H, such that for all x ∈ H, we have x ∈ (x · e) ∩ (e · x) and for all x ∈ H there
exists x−1 ∈ H such that e ∈ (x · x−1) ∩ (x−1 · x).
Definition 1.5. [3] A polygroup is a special case of a hypergroup. A polygroup is a
system P = ⟨P, ·, e,−1 ⟩, where e ∈ P , −1 is a unary operation on P , · maps P × P into
nonempty subsets of P , and the following axioms hold for all x, y, z ∈ P :
(P1) (x · y) · z = x · (y · z),
(P2) x · e = e · x = x,
(P3) x ∈ y · z implies y ∈ x · z−1 and z ∈ y−1 · x.

The following elementary facts about polygroups follow easily from the axioms: e ∈ x ·
x−1∩x−1 ·x, e−1 = e, (x−1)−1 = x, and (x·y)−1 = y−1 ·x−1, where A−1 = {a−1 : a ∈ A}.

A polygroup in which every element has order 2 (i.e., x−1 = x for all x) is called sym-
metric. As in group theory it can be shown that a symmetric polygroup is commutative.

Definition 1.6. [5] If (H,⊗) and (H ′,⊙) are two hypergroupoids, then a function φ :
H −→ H ′ is called a good homomorphism if and only if φ(x⊗ y) = φ(x)⊙φ(y), ∀(x, y) ∈
H2.

Definition 1.7. [5] Let (G,⊙) be a hypergroupoid. The action of (G,⊙) on a nonempty
set A is a map • : G×A −→ P ∗(A) such that for all (g1, g2) ∈ G×G, a ∈ A:
(i)

∪
t∈g1·g2 t • a =

∪
s∈g2•a g1 • s,

(ii) there exists e ∈ G such that a ∈ e • a.

2. Main results

Definition 2.1. If ⟨P1, ·, e1,−1 ⟩ and ⟨P2, ∗, e2,−I ⟩ are two polygroups, then a function φ :
P1 −→ P2 is called a good homomorphism if and only if φ(x·y) = φ(x)∗φ(y), ∀(x, y) ∈ P 2

1 .

Definition 2.2. Let ⟨P, ·, e,−1 ⟩ be a polygroup. The action of ⟨P, ·, e,−1 ⟩ on a nonempty
set A is a map • : P ×A −→ P ∗(A) such that for all (g1, g2) ∈ P × P, a ∈ A:
(i)

∪
t∈g1·g2 t • a =

∪
s∈g2•a g1 • s,

(ii) a ∈ e • a.

Proposition 2.3. Let ⟨P, ·, e,−1 ⟩ be a polygroup and AP ∗(A) be the set of all functions

from A to P ∗(A), endowed with the composition operation ◦, then φ : P −→ AP ∗(A) defined
by φ(g)(a) = g • a is a homomorphism.
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The homomorphism φ : P −→ AP ∗(A) is called a hyperrepresentation associated with
the polygroup action. this process is reversible in the sense that if φ : P −→ AP ∗(A) is any
homomorphism then the map from P × A −→ P ∗(A) defined by g • a = φ(g)(a) satisfies
the properties of a polygroup action of P on A.

Definition 2.4. Let ⟨H, ·, e1,−1 ⟩ and ⟨K,⊗, e2,
−I ⟩ be two polygroups and φ : K −→

HP ∗(H) be a hyperrepresentation determined by the polygroup action • of K on H. Let
G be the set of ordered pairs (h, k) where (h, k) ∈ H ×K and define the following hyper-
operation on G by

(h1, k1) ∗ (h2, k2) = (h1 · φ(k1)(h2), k1 ⊗ k2).

Clearly this hyperoperation makes G into hypergroupoid which is denoted by H
∫
φK =

(H ×K, ∗)φ.
Remark 2.5. h1 · φ(k1)(h2) =

∪
t∈φ(k1)(h2)

h1 · t where φ(k1)(h2) = k1 • h2.
Definition 2.6. In the above definition φ is closed if h ∈ φ(k)(h), for all h ∈ H.

Proposition 2.7. Let ⟨H, ·, e1,−1 ⟩ and ⟨K,⊗, e2,
−I ⟩ be two polygroups and φ : K −→

HP ∗(H) be a hyperrepresentation determined by the polygroup action • of K on H. Then
H

∫
φK is a regular hypergroup if φ is closed.

Proposition 2.8. Let ⟨H, ·, e1,−1 ⟩ and ⟨K,⊗, e2,
−I ⟩ be two polygroups and K is acting

trivially on H, that is k • h = e2 • h. Then H
∫
φK is a regular hypergroup.

Definition 2.9. Let ⟨K,⊗, e2,
−I ⟩ be a polygroup acting on the polygroup ⟨H, ·, e1,−1 ⟩.

K is called acting reversibly on H if the following implication holds:

a ∈ φ(k)(b) ⇒ ∃k′ ∈ K ; b ∈ φ(k
′
)(a).

Proposition 2.10. Let ⟨H, ·, e1,−1 ⟩ and ⟨K,⊗, e2,
−I ⟩ be two polygroups. If K is acting

reversibly on H. Then the relation on H defined by aRb if and only if a ∈ φ(k)(b) for
some k ∈ K, is an equivalence relation.

Remark 2.11. Let Ca = {φ(k)(a) : k ∈ K} denote the class of the element a and let
Ha = {k ∈ K : a ∈ φ(k)(a)} denote the stabilizer of a in H, then we have

Corollary 2.12. Let ⟨H, ·, e1,−1 ⟩ and ⟨K,⊗, e2,
−I ⟩ be two polygroups. The action of K

on H is transitive if and only if Ca = Ha.

3. Conclusion

In this paper, we have considered the notion of hyperrepresentation associated with
the polygroup action as a new concept. As concerning future works, we will generalize
these notions.
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Abstract. Let G be a locally compact group, L1(G) be group algebra and M(G) be
measure algebra of G. In this paper, we investigate the homological properties of Banach
left module L1

µ(G) over algebras L1(G) and M(G). We show that L1
µ(G) is injective

Banach left L1(G)−module if and only if G is discrete and amenable.
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1. Introduction

Throughout this paper, G denotes a locally compact group with a fixed left Haar
measure λ. As usual, let L1(G) denote the group algebra of G as defined in [4] equipped
with the norm ‖.‖1 and the convolution product “∗” of functions on G defined by

(φ ∗ ψ)(x) =

∫
φ(y)ψ(y−1x)dλ(y)

for all φ, ψ ∈ L1(G) and locally almost all x ∈ G. Let M(G) denote the measure algebra
of G as defined in [4] endowed with the convolution product “∗” and the total norm ‖.‖.
Then M(G) is a Banach algebra with the identity element δe, the Dirac measure at the
identity element e of G. Also for µ ∈ M(G), let L1

µ(G) denote the deformed L1− space

L1
µ(G) given by

L1
µ(G) = µ ∗ L1(G)

with the norm ‖µ ∗ f‖µ = ‖f‖L1(G), see [5].
Let E and F be two Banach spaces and denote by B(E,F ) the Banach space of

all bounded operators from E into F . An operator T ∈ B(E,F ) is called admissible if
T ◦S ◦ T = T for some S ∈ B(F,E). In the case where, A is a Banach algebra and E and
F are Banach left A−modules, AB(E,F ) denotes the closed linear subspace of B(E,F )
of all left A−module morphisms. An operator T ∈ AB(E,F ) is a retraction if there exists
S ∈ AB(F,E) with T ◦ S = IF , the identity operator on F ; in this case, F is called a
retract of E.

∗Speaker. Email address: mi.ghasemi@sutech.ac.ir
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Let us recall that a Banach left A−module P is called projective if, for Banach left A−
modules E and F , each admissible epimorphism T ∈ AB(E,F ) and each S ∈ AB(P, F ),
there exists R ∈ AB(P,E) such that T ◦ R = S. Let also recall that a Banach left
A−module I is called injective if for Banach left A−modules E and F , each admissible
monomorphism T ∈ AB(E,F ) and each S ∈ AB(E, I), there exists R ∈ AB(F, I) such
that R ◦ T = S. A Banach left A−module E is called flat, if its dual E∗ be an injective
Banach right A−module.

Homological properties of Banach modules have been studied by several authors [1–3,
6]. For example, Dales and Polyakov [1] studied homological properties of modules over
group algebras. They gave necessary and sufficient conditions for some Banach left L1(G)−
modules to have homological properties such as projectivity, injectivity and flatness.

In this paper, we investigate the homological properties of the Banach left L1
µ(G)

module over L1(G) and M(G). We show that L1
µ(G) is projective and flat Banach left

L1(G)− module. We also, prove that L1
µ(G) is injective Banach left L1(G)−module if and

only if G is discrete and amenable.

2. Main results

The deformed L1−space L1
µ(G) is a left L1(G)− module (left M(G)− module) with

the module actions defined by

g · (µ ∗ f) = µ ∗ (g ∗ f) (ν · (µ ∗ f) = µ ∗ (ν ∗ f))

for all f, g ∈ L1(G) and ν ∈M(G).
A Banach left A−module E is called essential if AE = E. Also, E is called faithful if

A · x = 0 for all nonzero elements x ∈ E.

Proposition 2.1. The following statements are fulfilled.

(1) L1
µ(G) is essential.

(2) L1
µ(G) is faithful.

Theorem 2.2. Let G be a locally compact group. Then L1
µ(G) is a projective Banach

left L1(G)− module.

Proof. It is well know, each retraction of a projective Banach left L1(G)−module is
projective [2]. We therefore only need to prove that L1

µ(G) is a retraction of L1(G). To

this end, define ρ : L1(G)→ L1
µ(G) by

f 7→ µ ∗ f
for f ∈ L1(G). So it is clear that ρ is a left L1(G)−module morphism. Now, we define
Q : L1

µ(G)→ L1(G) by
µ ∗ f 7→ f.

Then Q is a left L1(G)−module morphism and a right inverse for ρ; indeed, for φ ∈ L1(G)
and µ ∗ f ∈ L1

µ(G), we have

Q(φ · µ ∗ f) = Q(µ ∗ φ ∗ f) = φ ∗ f = φ ·Q(µ ∗ f)

and
ρ ◦Q(µ ∗ f) = ρ(f) = µ ∗ f

for all µ ∗ f ∈ L1
µ(G). Thus L1

µ(G) is projective �
Let us recall that a locally compact group G is called amenable if there is a left

invariant mean on L∞(G).
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Theorem 2.3. Let G be a locally compact group. Then L1
µ(G) is an injective Banach

left L1(G)− module if and only if G is discrete and amenable.

Theorem 2.4. Let G be a locally compact group. Then L1
µ(G) is a flat Banach left

L1(G)− module.

Let E be a Banach left L1(G)− module. A functional Λ ∈ E∗ is called augmentation
invariant if every x ∈ E and φ ∈ L1(G), we have

〈Λ, φ · x〉 = ϕG(φ)〈Λ, x〉,
where ϕG : M(G)→ C is defined by ϕG(µ) = µ(G). Note that the restriction ϕG to L1(G)
has the form

ϕG(φ) =

∫
φ(x)dλ(x)

for all φ ∈ L1(G). In the case where, Λ is a non-zero augmentation invariant functional in
E∗, then E is said to be augmentation invariant.

Theorem 2.5. Let G be a locally compact group. Then L1
µ(G) is augmentation invari-

ant.

Theorem 2.6. Let G be a locally compact group. Then the following statements are
fulfilled.

(1) L1
µ(G) is projective in M(G)− module if and only if L1

µ(G) is projective in L1(G)−
module.

(2) L1
µ(G) is injective in M(G)− module if and only if L1

µ(G) is injective in L1(G)−
module.

Theorem 2.7. Let G be a locally compact group. If L1
µ(G) is flat in M(G)− module,

then L1
µ(G) is flat in L1(G)− module.

3. Conclusion

We summarize our results in the following Table.

Projective Injective Flat

L1
µ(G) all G 2.2 G discrete and amenable 2.3 all G 2.4
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Abstract. One way to derive the governing equations in complex dynamic systems is
to use several intermediate coordinate systems. When the systems also include concen-
trated discrete nodes, can utilize Delta Dirac function in order to apply the properties of
nodes in the equations. In this work, a semi-analytical solution of novel coupled partial
integral differential equations is developed. The extracted equations include parameter-
dependent and time-dependent integral parts which Dirac Delta function is multiplied
by itself several times in the parameter-dependent terms. The validation of results for
the flutter speed shows that there is a proper precision in the presented semi-analytical
solution.
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AMS Mathematics Subject Classification [2010]: 74F10, 45K05, 37M15

1. Introduction
BWA configuration is one of innovative configurations commonly used by airplane de-

signers to reduce the aircraft emissions [1]. The structure is included front wing, rear wing
and winglet that connects to the wings tip as Figure 1 [2]. Where (XY Z)f , (XY Z)r and
(XY Z)0 are un-swept coordinate systems of front and rear wings and coordinate system on
fuselage C.G., respectively. Because of the BWA complicated dynamic, several coordinate
systems are used to extract the governing equations [3]. The equations are obtained via
Hamilton’s variational principle and are as coupled partial integral differential equations
(PIDEs). The equations include parameter-dependent and time-dependent integral parts
which Dirac Delta function is multiplied by itself several times in the parameter-dependent
terms. Furthermore, the time-dependent terms are presented in Wagner unsteady model
that is utilized to apply the aerodynamic forces and moments [4]. In order to simulate the
torsional and longitudinal behavior of the winglet, is used two springs [5]. Therefore in
this article, a semi-analytical solution of the novel equations is presented and in order to
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Figure 1. A schematic of BWA configurations and used intermediate co-
ordinate systems [2]

validate the solution, the obtained results are compared with professional software results.

2. Main results
In this work, plunge and pitch motions are considered for each wing. So, four governing

equations are as follows. It should be noted that w, θ , l, ϕ(t), δD and σ indicate plunge
and pitch motions of the wings, wing length, Wagner function, Dirac Delta function and
parameter of Duhamel integral form, respectively. Furthermore, f and r indexes denote
front and rear wings and Ai to Vi constants are functions of BWA geometry and properties,
springs stiffness and airstream properties.

(1) A1ẅf+B1θ̈f+C1w
(4)

f+
lr∫
0

{Dl wf [δD (xf − lf )]
3δD (xr − lr)−E1wr[δD (xf − lf )]

2

[δD (xr − lr)]
2}dxr + {F1ẅf −G1ẅ

′′
f −H1θ̈

′
f}δD (xf − lf ) = I1θ̇f + J1ẇ

′
f −K1θ̇

′
f

+ [L1ẇf (0) +M1θf (0) +N1w
′
f (0) +O1θ̇f (0) + P1θ

′
f (0)]φf (t)

+
t∫
0

φf (t− σ)[Q1ẅf +R1θ̇f + S1ẇ
′
f + T1θ̈f + U1θ̇

′
f ]dσ

(2) A2θ̈f +B2ẅf −C2θ
′′
f +

lr∫
0

{D2 θf [δD (xf − lf )]
3δD (xr − lr)−E2θr[δD (xf − lf )]

2

[δD (xr − lr)]
2}dxr + {F2θ̈f +G2ẅ

′′
f}δD (xf − lf ) = H2ẇ

′
f + I2θ̇f − J2θ

′
f −K2θ̈f

− L2θ̇
′
f +M2ẇf (0) +N2θf (0) +O2w

′
f (0) + P2θ̇f (0) +Q2θ

′
f (0)

+
t∫
0

ϕf (t− σ) [R2ẅf + S2θ̇f + T2ẇ
′
f + U2θ̈f + V2θ̇

′
f ] dσ

(3) A3ẅr+B3θ̈r+C3w
(4)

r+
lf∫
0

{D3wr[δD (xr − lr)]
3δD (xf − lf )+E3wr[δD (xr − lr)]

3

δD (xf − lf )− F3wf [δD (xf − lf )]
2[δD (xr − lr)]

2}dxf + {G3ẅr −H3ẅ
′′
r

− I3θ̈
′
r}δD (xr − lr) = J3θ̇r +K3ẇ

′
r − L3θ̇

′
r + [M3ẇr (0) +N3θr (0) +O3w

′
r (0) +
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P3θ̇r (0)

+Q3θ
′
r (0)]φr (t) +

t∫
0

φr (t− σ)[R3ẅr + S3θ̇r + T3ẇ
′
r + U3θ̈r + V3θ̇

′
r]dσ

(4) A4θ̈r+B4ẅr−C4θ
′′
r+

lf∫
0

{−D4θf [δD (xf − lf )]
2[δD (xr − lr)]

2−E4θr[δD (xr − lr)]
3

δD (xf − lf ) }dxf+{F4θ̈r+G4ẅ
′′
r}δD (xr − lr) = H4ẇ

′
r+I4θ̇r−J4θ

′
r−K4θ̈r−L4θ̇

′
r

+M4ẇr(0) +N4θr(0) +O4w
′
r(0) + P4θ̇r(0) +Q4θ

′
r(0)

+
t∫
0

ϕr (t− σ) [R4ẅr + S4θ̇r + T4ẇ
′
r + U4θ̈r + V4θ̇

′
r] dσ

2.1. Develop the parameter-dependent terms. A new class of gener-
alized functions was developed by NASA report in 1967 [6]. The functions can
derive from hyperbolic tangent and Gaussian families which based on the hyper-
bolic tangent family, the Heaviside function can be stated as follows:

(5) Hn (x) =
1
2 [1 + tanh (nx)]

where n is the sequence index and the derivative of Eq. (5) will be as follows:

(6) d
dxHn (x) = δn (x) = 2n

[
Hn (x)−H2

n (x)
]

Using further differentiation and reapplication of Eq. (6), can be obtained the
developed relations. The Gaussian representation for delta function is as follows:

(7) δn (x) =
n√
π
e−n2x2

The derivatives of above relation are given by

(8) δn
(α) (x) = (−1)αnαHα (nx) δn (x)

where Hα(nx) are Hermite polynomials of argument nx. The following de-
veloped relations are obtained based on the hyperbolic tangent family.

(9) δ2n (x) =
n δn(x)

3 − δ′′n(x)
12n

(10) δ3n (x) =
2n2 δn(x)

15 − δ′′n(x)
24 + δ(4)n(x)

480n2

(11) δn (x) δ
′
n (x) =

n δ′n(x)
6 − δ(3)n(x)

24n

(12) δn (x) δ
′′
n (x) = −4n3 δn(x)

15 + n δ′′n(x)
6 − δ(4)n(x)

40n

(13) δ′n (x) δ′′n (x) =
4n3 δn(x)

15 − δ(5)n(x)
120n

Therefore, the parameter-dependent terms can be developed using the mentioned relations
and by part integral method.
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2.2. Eliminate the time-dependent terms. Using by part integral method and
some mathematical techniques as Ref. [4], the time-dependent terms are eliminated from
the equations developed in the previous step.

2.3. Transform PDEs to ODEs. The expanded equations from the previous steps,
will be as partial differential equations (PDEs) and transformed to ordinary differential
equations (ODEs) using the assumed modes method [3]. The bending and torsion de-
flections (wf , θf , wr, θr) are expanded by means of series of trial functions which only
must satisfy geometric boundary conditions. The final equations can be written in the
state-space form.

3. Numerical results
There is no numerical solution or experimental data for the studied model so far.

Therefore in this work, the flutter analyses of the BWA is performed in a professional
software and the results are compared as in Table 1. As can be seen, a good agreement is
reported.

Table 1. Validation of flutter speed for BWA configuration

Component Computational Method Flutter Speed (m/s) Mach No.
Front wing Semi-analytical solution 287 0.84
Front wing Professional software solution 289 0.85
Rear wing Semi-analytical solution 274 0.81
Rear wing Professional software solution 271 0.80

BWA Semi-analytical solution 269 0.79
BWA Professional software solution 270 0.79

4. Conclusion
The extracted equations included several parameter/time-dependent integral parts.

Furthermore, Dirac Delta function was multiplied by itself several times. The validation
revealed that can utilize the procedure for the solution of PIDEs which include generalized
functions, parameter-dependent and time-dependent integral parts.
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Abstract. Recently, important inequalities for some operator mean inequalities via
operator monotone and operator monotone decreasing functions have been proved. In
this paper, we extend these inequalities to inequalities for sector matrices which involving
the mean of sector matrices, the positive linear maps and operator monotone functions
or more precisely, operator monotone increasing (decreasing).
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1. Introduction
An operator A ∈ B(H) is called accretive if in its Cartesian (or Toeplitz) decompo-

sition, A = Rz + iIz, Rz is positive, where Rz = A+A∗
2 , Iz = A−A∗

2 . A linear map
Φ : B(H) → B(H) is called positive if Φ(A) ≥ 0 whenever A ≥ 0. If Φ(I) = I, where
I denoted the identity operator, then we say that ϕ is unital. A continuous real valued
function f(resp. g) defined on interval J is said to be operator monotone or more pre-
cisely, operator monotone increasing (decreasing) if for every two positive operators A and
B with spectra in J , the inequality A ≤ B implies f(A) ≤ f(B)(g(A) ≥ g(B)).
At the end of this section, we present the Lemmas we need to prove the main theorems.

Lemma 1.1. [1] If f ∈ m and A,B ∈ M+
n , then

f(A∇tB) ≥ f(A)∇tf(B), 0 ≤ t ≤ 1.

Lemma 1.2. [5] Let α, β > 0, ν ∈ (0, 1), A,B ∈ B(H) and accretive. Then
(αA)♯ν(βB) = α1−νβν(A♯νB)

Lemma 1.3. ( [5], [6]) Let A,B ∈ B(H) be accretive and let ν ∈ [0, 1]. Then
RA♯νRB ≤ R(A♯νB) ≤ sec2(α)((RA)♯ν(RB)).

∗Speaker. Email address: maleki60313@gmail.com
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Lemma 1.4. [4] Let A,B ∈ M , be such that W (A),W (B) ⊂ Sα and ν ∈ (0, 1). Then
Hν(RA,RB) ≤ RHν(A,B) ≤ sec2(α)Hν(RA,RB),

Lemma 1.5. [1] Let f ∈ m and A,B ∈ Sα for some 0 ≤ α < π
2 . Then

RAσfRB ≤ R(AσfB) ≤ sec2 α(RAσfRB).

Lemma 1.6. [3] Let A ∈ Mn are positive , Φ is a unital positive linear mapping and
f ∈ m. Then

Φ(AσfB) ≤ Φ(A)σfΦ(B),

and
Φ(f(A)) ≤ f(Φ(A)).

Lemma 1.7. [1] Let f ∈ m and A,B ∈ Sα for some 0 ≤ α < π
2 . Then

RΦ(f(A)) ≤ sec2 αRf(Φ(A)).

Lemma 1.8. [1] Let f ∈ m and A,B ∈ Sα for some 0 ≤ α < π
2 . Then

f(RA) ≤ R(f(A)) ≤ sec2 αf(RA)

Lemma 1.9. [1, Theorem 6.4] Let A,B ∈ Mn be accretive such that ω(A), ω(B) ⊂ Sα,
for some 0 ≤ α < π

2 . Then for any f ∈ m and ν ∈ (0, 1),
R(f(A)∇νf(B)) ≤ sec2 αRf(A∇νB).

Lemma 1.10. [2, Theorem 2.5] Let 0 < mI ≤ A,B ≤ MI, 0 ≤ ν ≤ 1, !ν ≤ τν ,
σν ≤ ∇ν and Φ be a positive unital linear map. If f is an operator monotone function on
(0,∞), then

f(Φ(AτνB)) ≤ K (f(Φ(A))σνf(Φ(B))) .

Lemma 1.11. [Theorem 2.8] [2] Let 0 < mI ≤ A,B ≤ MI, 0 ≤ ν ≤ 1, !ν ≤ τν ,
σν ≤ ∇ν and Φ be a positive unital linear map. If f is an operator monotone function on
(0,∞), then

Φ(f(A))τνΦ(f(B)) ≤ KΦ(f(AσνB)).

where f : (0,∞) → (0,∞) is an operator monotone function.

2. Main results
Theorem 2.1. Let A,B ∈ Sα such that 0 < mI ≤ A,B ≤ MI, 0 ≤ ν ≤ 1 and ϕ be a

positive unital linear map. If f is an operator monotone function on (0,∞), then
R(Φ(f(A)♯νf(B))) ≤ K sec4 αR (Φ(f(A♯νB))) .

Proof. If in Lemma 1.11 let τν = σν = ♯ν we have
Φ(f(RA))♯νΦ(f(RB)) ≤ KΦ(f(RA♯νRB)) ,

KΦ(f(RA♯νRB)) ≤ KΦ(f(R(A♯νB)) (by Lemma 1.3)
≤ KΦ(R(f(A♯νB)) (by Lemma 1.8)
= KR (Φ(f(A♯νB))) ,

and
Φ(f(RA))♯νΦ(f(RB)) ≥ Φ(f(RA)♯νf(RB)) (by Lemma 1.6)

≥ Φ
(
cos2 αRf(A)♯ν cos

2 αRf(B)
)

(by Lemma 1.8)
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= cos2 αΦ(Rf(A)♯νRf(B))

≥ cos2 αΦ
(
cos2 αR(f(A)♯νf(B))

)
(by Lemma 1.3)

= cos4 αR(Φ(f(A)♯νf(B))).

then
cos4 αR(Φ(f(A)♯νf(B))) ≤ Φ(f(RA))♯νΦ(f(RB))

≤ KΦ(f(RA♯νRB))

≤ K sec2 αR (Φ(f(A♯νB))) .

□
Theorem 2.2. Let A,B ∈ Sα such that 0 < mI ≤ A,B ≤ MI, 0 ≤ ν ≤ 1 and Φ be a

positive unital linear map. If f is an operator monotone function on (0,∞), then
(1) f(Φ(RA♯νRB)) ≤ K sec2 α (R(f(Φ(A∇νB)) .

Proof.
f(Φ(RA♯νRB)) ≤ K(f(Φ(RA))∇νf(Φ(RB)) (by Lemma1.10)

= K(f(R(Φ(A)))∇νf(R(Φ(B)))

≤ K (R(f(Φ(A)))∇νR(f(Φ(B)))) (by Lemma1.8)
= K (R(f(Φ(A))∇νf(Φ(B)))

≤ K sec2 α (R(f(Φ(A)∇νΦ(B)))) (by Lemma1.9)
= K sec2 αR(f(Φ(A∇νB))).

□
Theorem 2.3. Let A,B ∈ Sα such that 0 < mI ≤ A,B ≤ MI, 0 ≤ ν ≤ 1 and Φ be a

positive unital linear map. If f is an operator monotone function on (0,∞), then
f (Φ(RHν(A,B)) ≤ sec2 αKf(Φ(A∇νB)).

Proof. If in Lemma 1.10 let τν = Hν and σν = ∇ν we have
f (Φ(RHν(A,B))) ≤ sec2 αf(Φ(Hν(RA,RB))) (by Lemma 1.4)

≤ sec2 αK (f(Φ(RA))∇νf(Φ(RB))) (by Lemma 1.10)
≤ sec2 αKR (f(Φ(A∇νB)) (by Lemma 1.1).

□
Theorem 2.4. Let 0 < mI ≤ A,B ≤ MI, 0 ≤ ν ≤ 1, !ν ≤ τν , σν ≤ ∇ν and Φ be a

positive unital linear map. If f is an operator monotone function on (0,∞), then
(2) R(Φ(f(A)τνΦ(f(B)) ≤ K sec6 αR(f(Φ(AσνB))).

Proof.
R(Φ(f(A)τνΦ(f(B)) ≤ R(sec2 αΦf(A))τνR(sec2 αΦf(B)) (by Lemma 1.5)

= Φ(sec2 αRf(A))τνΦ(sec
2 αRf(B)) (by Lemma 1.2)

≤ sec4 αΦ(f(RA))τνΦ(f(RB)) (by Lemma 1.8)
≤ sec4 αKΦ(f(RAσνRB)) (by Lemma 1.11)
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≤ sec4 αKΦ(f(RAσνB))) (by Lemma 1.5)
≤ sec4 αKΦ(R(f(AσνB))) (by Lemma 1.8)
= sec4 αKR(Φ(f(AσνB)))

≤ K sec6 αR(f(Φ(AσνB))) (by Lemma 1.7).
□
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Abstract. In this paper we investigate a class of words with low complexity function
and accomplish it to the following problem. For a prime number p, consider a sequence
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the number of subwords of wn of a given length?
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1. Introduction

The following Olympiad problem is widely known, it was designed by Alexei Kanel-
Belov:

We consider a sequence whose nth term is the first digit of 2n. Show that the number
of different words with length of 13 sets of thirteen consecutive digits is 57.

Consider the sequence of w = {ωk}k>0, where ωk is the first digit in the decimal
representation of pk. For p = 2, we study the sequence 124813612512481361251248136 · · · .
In particular, we are interested in the number of factors of length n that may occur in
such a sequence (i.e., the subwords made of n consecutive digits).

Digital problems of this type in Number theory are well-known to be difficult, e.g., in
the literature, least non-zero digit of n! in base 12 (Deshouillers et al. [1]) or digits of nn

have been investigated.
A word over an alphabet A is a sequence taking values in the finite set A. A finite word

of length n is thus a map from {1, · · · , n} to A and a (one-sided) infinite word is just a
map from N to A. Words have a strong representational power: they can encode elements
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of an infinite set using finitely many symbols, e.g., the characteristic sequence of a subset
of integers or the base-d expansion of an irrational number in [0, 1]. They naturally appear
in a variety of contexts: computability theory, symbolic dynamics, algebra, number theory
and numeration systems or theoretical computer science and text algorithms.

It is natural to associate some measures of complexity with infinite words. The most
studied one is the factor complexity studied in 1975 by Ehrenfeucht, Lee and Rozenberg
(see Fig. 1). It counts the number cw(n) of distinct factors of length n (blocks of n
consecutive letters) occurring in an infinite word w. For instance, ultimately periodic
words are characterized, thanks to the Morse-Hedlund theorem, by the fact that cw(n) is
bounded.

Figure 1. The first values of the factor complexity of the Thue-Morse
word [2] (showing fluctuations and a O(n) behavior).

The famous theorem of Morse-Hedlund can also be stated as follows. An infinite word
is ultimately periodic if and only if there exists N such that cw(N) is less than or equal
to N . Therefore, a word is non-periodic if and only if, for all n, cw(n) > n. Remarkably,
Sturmian words can be defined by the fact that cw(n) = n + 1 for all n. They are in
particular over a binary alphabet. In that respect, they are non-periodic words of minimal
complexity.

Theorem 1.1. (Kronecker’s theorem) [3]. Let α be an irrational number. The set

{{nα}n>0|n ∈ N}
is dense in [0, 1].

1.1. Strategy. Moving to the unipotent dynamics of the torus and counting the
number of regions into which the torus is divided by a family of parallel hyperplanes [4].
Here, we consider that one dimensional torus, i.e., circle.

2. Main Results

In this paper, we study a generalization of this problem and prove the following results.

2.1. Linearity.

Theorem 2.1. The factor complexity of leading digits of sequence {pk}k>0, where p
be a one-digit prime number is a linear function; i.e., cw(n) = an+ b.

Proof. Without loss of generality, we prove it for p = 2; For other primes will be
proved similar.
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Let dk be the first digit of 2k. Then,

dk · 10m 6 2k < (dk + 1)10m,

and by taking the logarithm from all sides,

log(dk) +m 6 k log(2) < log(dk + 1) +m.

In the other words,

{k log(2)} ∈ [log(dk), log(dk + 1)),

where {r} denotes the fractional part of the real number r.
The intervals Idk := [log(dk), log(dk + 1)) form a partition of the unit circle S := R/Z,

hence ωk = dk if and only if {n log(2)} ∈ Idk . For example [0, 0.301) ⊂ [0, log(2)) = I1.
Let T be the rotation of the unit circle S by φ := log(2). Then ωk = dk if and only

if, T k(0) ∈ Idk . A word obtained this way is said to have the Interval Coding Property
(ICP), for obvious reasons.

If x1 · · ·xs is a factor of w, then there exists x ∈ S such that x + iφ ∈ I(xi) for

all i = 1, · · · , s. By Bi denote the set T−1(Ii). We have x ∈ ⋂s
i=1Bi =: Vx, this is an

intersection of s intervals and x1 · · ·xs is a factor if and only if, Vx is non-empty. Therefore
to calculate cw(s) we need to consider not only the sets Idk , yet also the inverse rotations
T−i(Idk) for 0 6 i < s and count the size of the obtained partition of S.

Let θi := log(i) and denote by Φ := {θ1, · · · , θ9} the set 9 points. Now let us add
Φ−φ to the set Φ and consider how many new points we get. In principle, we get 9 extra
points when we rotate the boundary points of the Idk over − log(2), yet we have some
dependence. A priori 9 new points, but we double-count points that are expressed both
as θt − φ and as θl for some t, l. This happens for t, l : t = 2l · 10σ, where σ is an integer,
i.e., for

(t, l) ∈ {(1, 5), (2, 1), (4, 2), (6, 3), (8, 4)}.
Hence, we get only 4 new points with each rotation. The same reasoning works when we
proceed with adding sets Φ− 2φ,Φ− 3φ, · · · to the set Φ.

Analogously, for primes 3, 5 and 7, respectively we have 6, 4 and 8.
In the final stage of the proof we have to show why the results make the complexity

function a linear function. According to the concept of finite difference method, since
after finite rotation we reach a constant number of new points in each period, then it can
be claimed that the complexity function of this word is in the form of a polynomial. In
particular, because for all prime numbers, after first rotation, we reach a fixed value at
each stage, these polynomials must be of the first degree, i.e., cw(n) = an+ b. �

2.2. Close formulas.

Corollary 2.2. For w derived from the leading digits of the powers of 2, 3, 5, and
7 the complexity function is cw(n) = 4n + 5, cw(n) = 6n + 3, cw(n) = 4n + 5 and
cw(n) = 8n+ 1, respectively.

Proof. As with the previous theorem, we know that the complexity functions of all
of them is in the form of cw(n) = an+ b. So it is enough to determine the two parameters
of a and b.

1) We first examine the value of a because we have almost done it in the previous
theorem. If we put the numbers 1, 2, 3, etc. in this sequence, then we get the following
sequence:

a+ b, 2a+ b, 3a+ b, · · · .
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With the method of finite differences, we reach this sequence after one step: a, a, a, · · · .
Values of a was the same constant that we obtained after each first rotation in each
rotation. Yields, a for primes 2, 3, 5, and 7, respectively be equal to 4, 6, 4, and 8.

2)Now we look for value of b. We know the value of a, so it is enough to find the value
of cw(1); That is, the number of words in length 1. Obviously, cw(1) = 9 since T k(0) lies
dense, hits every interval Idk . The density of this sequence is based on Kronker’s theorem,
as the angle of rotation log(p) for prime number p is an irrational.

�

3. Conclusion

As a result, all the complexity functions of the first digit of one-digit prime numbers
were found. For instance, 2k, 3k and etc. These problems in the field of word combinations
fall into the realm of words with a function of low factor complexity. As the ultimate goal

is to generalize this problem in different ways. As an example, factor complexity of 2n
3
.
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Abstract. In this paper, a nonlinear chattering-free sliding mode control method is
designed to stabilize uncertain fractional chaotic systems. The main feature of this
controller is rapid convergence to the point of equilibrium and minimize chattering and
resistance against uncertainties. Moreover, in order to prove the stability of the controlled
system based on direct method of Lyapunov theory is used. It is worth noticing that
the proposed fractional-order sliding mode controller can be applied to control a broad
range of fractional-order dynamical systems.
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1. Introduction

Historically, the emergence of fractional calculations has been consistent with the
invention of the theory of integer calculus; But its applications and development are relate
to recent decades [1]. In recent years, differential equations of fractional order (FO)
have been used to represent and model more accurate real-world nonlinear systems. The
control of these type of systems is one of the most important issues in the design of control
systems. In addition to the high accuracy of modeling, the fractional equations, also have
an interesting feature that linear fractional-order systems, in contrast to integer-order
systems, can still remain stable despite the presence of poles on the right side of the
complex plane [2].

Sliding mode control (SMC) is a nonlinear control strategy expressing considerable
properties such as robustness, accuracy, simple implementation and immutability to un-
certainties. Generally, SMC includes two steps

1. Designing an appropriate sliding surface.
2. Designing control input for the closed-loop system by the sliding surface.

In this paper, we introduce a suitable sliding surface and using a suitable controller, we
prove the convergency of all the system state trajectories to the sliding surface. Finally

∗Speaker. Email address: majid.roohi67@gmail.com
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illustrated examples and numerical simulations are presented to demonstrate the validity
of the proposed method.

The rest of this paper is organized as follows. In Section 2, some preliminaries and
problem formulation are given. In Section 3, the design procedure of the proposed FO slid-
ing mode approach is presented. Section 4 gives illustrative example. Finally, concluding
remarks are included in Section 5.

2. Preliminaries

Definition 2.1. The Riemann-Liouville fractional integration of order α is defined as
follows [3]:

(1) t0I
α
t f(t) = t0D

−α
t f(t) =

1

Γ(α)

∫ t

t0

f(τ)

(t− τ)1−α
dτ

In which Γ(.) is the Euler’s gamma function.

Definition 2.2. The αth order Caputo fractional derivative of a continuous function
f(t) : R+ → R is defined as [3]:

(2) t0
CDα

t f(t) = t0D
−(m−α)
t

dm

dtm
f(t) =

1

Γ(m− α)

∫ t

t0

f (m)(τ)(t− τ)m−α−1dτ

Because in practical applications, system dynamics is often influenced by model uncer-
tainties and external disturbances [4], in this paper, we consider the following nonlinear
fractional order system with model uncertainties and external disturbances:

(3)





Dαx1(t) = f1(t, x(t)) + ∆f1(t, x(t)) + d1(t) + u1(t)
Dαx2(t) = f2(t, x(t)) + ∆f2(t, x(t)) + d2(t) + u2(t)

...
Dαxn(t) = fn(t, x(t)) + ∆fn(t, x(t)) + dn(t) + un(t)

Where α ∈ (0, 1) is the order of system, x(t) = [x1, x2, .., xn]T ∈ Rn denote the state vec-

tor, f(t, x(t)) = [f1(t, x(t)), f2(t, x(t)), ..., fn(t, x(t))]T ∈ Rn is the given nonlinear function,
∆f(t, x(t)) = [∆f1(t, x(t)),∆f2(t, x(t)), ...,∆fn(t, x(t))] ∈ Rn is the uncertainty term of
system,
d(t) = [d1(t), d2(t), ..., dn(t)] ∈ Rn is the external disturbance term of the system, and
u(t) = [u1(t), u2(t), ..., un(t)] ∈ Rn is the control input.
Assumption 1: In this paper, the uncertainty term and external disturbance are consid-
ered bounded as follows :

(4) |∆f(t, x(t))|+ |d(t)| ≤ ρ
Where ρ = [ρ1, ρ2, ..., ρn] is vector of positive constants.

3. Controller design

For the fractional system (3), we define the sliding surface as follows:

(5) Si(t) = |xi(t)|+ γixi(t) + kiD
−α |xi(t)|µ tanh(xi(t))
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Where ki > 0, γi > 1, 0 < µ < 1.
Now, we design the control input as shown below and show that the system (3) with the
designed control input converges to the sliding surface (5).

(6) ui(t) = −
(
fi(t, xi(t)) + λi tanh(xi(t)) +

tanh(xi(t))(ki |xi(t)|µ + βi |Si(t)|q)
γi + sgn(xi(t))

+ ρi

)
.

Theorem 3.1. Consider the fractional system (3) with the condition (4) and the slid-
ing surface (5). If the system is controlled by the controller (6), then the system state
trajectories converge to the zero asymptotically.

Proof: We define the Lyapunov function as

(7) V (t, x(t)) = ‖S(t)‖ 1 =
n∑

i=1

|Si(t)|

Now by taking fractional derivation from both side of above equality, we have

DαV (t, x(t)) = Dα
n∑

i=1

|Si(t)| =
n∑

i=1

Dα |Si(t)|(8)

Using Lyapunov stability theorem

DαV (t, x(t)) ≤
n∑

i=1

[sgn(Si(t)) (sgn(xi(t))D
αxi(t) + γiD

αxi(t) + ki |xi(t)|µ tanh(xi(t)))]

(9)

= sgn(Si(t)) (Dαxi(t) (γi + sgn(xi(t))) + ki |xi(t)|µ tanh(xi(t)))(10)

= sgn(Si(t)) [(fi(t, xi(t)) + ∆fi(t, xi(t)) + di(t) + ui(t) + ki |xi(t)|µ tanh(xi(t)))](11)

≤ sgn(Si(t))[(fi(t, xi(t)) + ρi − fi(t, xi(t))− λi tanh(xi(t))b

− tanh(xi(t))(ki |xi(t)|µ + βi |Si(t)|q)
γi + sgn(xi(t))

− ρi) + ki |xi(t)|µ tanh(xi(t))](12)

= −λi tanh(xi(t)) (γi + sgn(xi(t)))− βi |Si(t)|q tanh(Si(t))

− λi tanh(xi(t))− γi.λi tanh(xi(t))sgn(Si(t))(13)

= −λi tanh(xi(t)) (1 + γisgn(Si(t))) < 0(14)

Thus the proof is finished.

4. Numerical simulation

In this section, control of FO Brushless DC Motor system (BLDCM)system is pre-
sented to illustrate the effectiveness of the proposed control method.
Differential equations of the chaotic Brushless DC Motor system (BLDCM) are given as
follows [5]:





Dαx1(t) = −0.875x1(t) + x2(t)x3(t) + u1
Dαx2(t) = −x2(t) + 55x3(t)− x1(t)x3(t) + u2
Dαx3(t) = 4(x2(t)− x3(t)) + u3

(15)

This system for 0.96 < α ≤ 1 is chaotic. So, we consider α = 0.98 and the initial states
x1(0), x2(0) and x3(0) to be 10, -5 and 5, respectively.
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In the design of the sliding surface, the parameters are selected as
µ = [0.7, 0.7, 0.7], γ = [2, 2, 2] and k = [0.1, 0.1, 0.1]. Also, control parameters are selected
as ρ = [0.2 , 0.35, 0.35]T , λ = [1.5, 1.5, 1.5 ] T , q = [0.6, 0.6, 0.6]. The stability of the
FOBLDCM system (15), using the proposed control input is shown in Fig.1. Also, Fig.2
shows the control signals. Clearly, the control efforts are feasible in practice, without
damaging chattering actions.
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5. Conclusion

In this paper, a nonlinear controller method is proposed to control of chaotic FOSs.
The theoretical and analytical results in this paper are based on the direct method of the
Lyapunov stability theory for fractional systems. Stability and high resistance against the
external disturbances and uncertainties of the system and to minimize chattering are the
main features of this method.
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Abstract. In this paper, we give some results for the almost Ricci-harmonic Bour-
guignon solitons which is a generalization of Ricci-harmonic solitons.
We also find some integral equations rely on analytic techniques for the compact gradi-
ent Ricci-harmonic Bourguignon almost solitons and by this we get rigidity result for a
compact gradient Ricci-harmonic Bourguignon almost soliton.
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1. Introduction
Let (M, g) and (N,h) be complete Riemannian manifolds and φ : M −→ N be a

critical point the energy integral E(φ) =
∫
M |∇φ|2gdv, where N is isometrically embeded

in Rd, d ≥ n. By a one parameter family of Riemannian metrics (g(x, t), φ(x, t)), t ∈ [0, T )
and a family of smooth maps φ(x, t), we recall that the Ricci-harmonic Bourguignon flow
defined as

∂

∂t
g(x, t) = −2Ric(x, t) + 2ρR(x, t) + 2α∇φ(x, t)⊗∇φ(x, t),

∂

∂t
g(x, t) = τgφ(x, t).(1)

Here α is positive constant and τgφ is the intrinsic Laplacian of φ which denotes the
tension field of map φ [6]. If in (1) we have α = 0 then it defines Ricci-Bourguignon flow.

The Ricci-harmonic Bourguignon soliton. Let M denote a smooth n-dimensional
manifold, g a Riemannian metric, and X a smooth vector field on M. Then the system
(M, g,X, λ, ρ, φ) is said to define a Ricci-harmonic Bourguignon soliton (RHBS for short)
when it satisfies in the following coupled equation

Ric +
1

2
LXg = λg + ρRg + α∇φ⊗∇φ,

∗Speaker. Email address: s.hajiagasi@gmail.com
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τgφ− LX∇φ = 0,(2)
where λ, α and ρ are constants, R is scalar curvature and φ is a smooth function φ :
(M, g) → (N,h) where M and N are static Riemannian manifolds. Here are some special
examples of solitons:
(1) If in first equation of (2) α = ρ = 0 or ρ = 0 and φ is a constant map then M is Ricci
soliton and equation becomes

Ric +
1

2
LXg = λg.

(2) If α = 0 or φ is a constant map then M is Ricci-Bourguignon soliton and equation
becomes

Ric +
1

2
LXg = λg + ρRg.

(3) If ρ = 0 then M is Ricci-harmonic soliton and equation changes as

Ric +
1

2
LXg = λg + α∇φ⊗∇φ.

Especially if λ be a smooth function then we call manifold in (2) as almost Ricci-harmonic
Bourguignon soliton. We refer the reader to [2–4] for background on Ricci solitons and
their connection to the Ricci flow.
In definition of RHBS if X = ∇f , which f is a smooth function on M , then we say M is
a gradient Ricci-harmonic Bourguignon soliton (GRHBS for short). In this case we have

Ric + Hessf − ρRg − α∇φ⊗∇φ = λg

τgφ− < ∇φ,∇f > = 0.(3)
The function f is called the potential. The GRHBS soliton is steady, expanding or shrink-
ing if λ = 0, λ < 0 or λ > 0 respectively. Note that for all examples of soliton which
we defined above we could define the gradient Ricci soliton. In this paper we denote
Ric−α∇φ⊗∇φ by Sc, its components in local coordinates by Sij := Rij −α∇iφ∇jφ and
the metric trace of Sij by S := R− α|∇φ|2.
Some basic structural equations for compact Ricci and Ricci almost solitons were proved
in [1] and [5]. Actually in [5], S. Dwivedi proved some integral formulas and showed that
a compact gradient Ricci-Bourguignon soliton is isometric to an Euclidean sphere if it has
constant scalar curvature or it associated vectore field be conformal. The aim of this paper
is to generalize the results obtained in those papers for RHBS, GRHBS and almost RHBS
and GRHBS. Motivated by this we prove some identities and integral formula for almost
RHBS and GRHBS.

2. Main results
First we express important propositions and lemmas which is necessary for main the-

orems.

Proposition 2.1. Let (Mn, g, f, λ, ρ, φ) be an almost GRHBS. Then the following
equations hold
(4) (1− nρ)R+∆f = nλ+ α|∇φ|2,

(5) (1− ρ(n− 1))∇iR = Ril∇lf + (n− 1)∇iλ+ α∇i|∇φ|2 − α∇j∇iφ∇jφ,

∇jRik −∇kRij = Rjkil∇lf + ρ(∇jRgik −∇kRgij) + (∇jλgik −∇kλgij)(6)
+α(∇j∇iφ∇kφ−∇k∇iφ∇jφ),
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∇i[(1− 2ρ(n− 1))R+ |∇f |2 − 2(n− 1)λ− 2α|∇φ|2 + 2α∇iφ∇jφ](7)
= (2λ+ 2ρR+ 2α∇iφ∇jφ)∇if.

Proposition 2.2. For an almost GRHBS (Mn, g, f, λ, ρ, α) the following identities
hold

(8) divSc =
1

2
∇S − ατg(φ)∇φ,

(9) g(∇S,∇f) = 2(n− 1)g(∇λ,∇f) + 2(n− 1)ρg(∇R,∇f) + 2Sc(∇f,∇f),

(10) − 1

2
∇S + (n− 1)∇λ+ Sc(∇f, .)− nρ∇R = 0,

(11) ∇(S + |∇f |2) = 2(n− 1)[∇λ+ ρ∇R] + 2λ∇f + 2ρR∇f,

(12)
1

2
∆|∇f |2 = |Hessf |2−(n−2)g(∇λ,∇f)−2(n−1)ρg(∇R,∇f)−Sc(∇f,∇f)+α|g(∇φ,∇f)|2.

Depend on Lemma 2.3 in [5] we prove next Lemma.

Lemma 2.3. Let (Mn, g,X, λ, ρ, φ) be an almost RHBS. Then

(1− nρ)

2
∆|X|2 = (1− nρ)|∇X|2 + (nρ− 1)Ric(X,X) + nρ∇XdivX

+2ρ(1− nρ)g(∇R,X)− (n(2ρ+ 1)− 2)g(∇λ,X)

+2α(1− nρ)g(τg(φ)∇φ,X)− αnρg(∇|∇φ|2, X),(13)

and
(1− nρ)

2
(∆−∇X)|X|2 = (1− nρ)|∇X|2 + λ(nρ− 1)|X|2

+ρ(nρ− 1)R|X|2 + α(nρ− 1)|∇Xφ|2
+nρ∇XdivX + 2ρ(1− nρ)g(∇R,X)

−(n(2ρ+ 1)− 2)g(∇λ,X)

+2α(1− nρ)g(τg(φ)∇φ,X)− αnρg(∇|∇φ|2, X).(14)

For a compact almost GRHBS due to the equations (9), (11) and (12) and using
identity |Hessf − 1

n
g∆f |2 = |Hessf |2 − 1

n
(∆f)2 and integrating over compact M we get

Theorem 2.4. Let (Mn, g, f, λ, ρ, α) be a compact almost GRHBS. Then we have

2

∫

M
|Hessf − 1

n
g∆f |2dv = (

n− 2

n
+ 2nρ)

∫

M
< ∇R,∇f > dv

−n− 2

n

∫

M
α < ∇|∇φ|2,∇f > dv

−2α

∫

M
| < ∇φ,∇f > |2dv + ρ

∫

M
∆Rdv.(15)

By integrating of (13) on compact M we have
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Theorem 2.5. Let (Mn, g,X, λ, ρ, φ) be a compact almost RHBS with n ≥ 3. If ρ ̸= 1

n
and∫

M
[Ric(X,X) +

nρ

nρ− 1
∇XdivX − 2ρg(∇R,X)− (n− (2ρ+ 1)− 2)

nρ− 1
g(∇λ,X)

−2αg(τg(φ)∇φ,X)− αnρ

nρ− 1
g(∇|∇φ|2, X)]dv ≤ 0

then X is a Killing vector field and M is a trivial RHBS.

With identities in proposition 2.2 we estabilish next two theorems.

Theorem 2.6. Let (Mn, g,X, λ, ρ, φ) be a compact almost GRHBS shuch that ∆λ ≤ 0
on M . We put Smin := minM S, then
(1) if M be steady with R = 0, then Smin = 0,
(2) if M be steady and R > 0, then 0 ≤ Smin ≤ nρR,
(3) if M be steady and R < 0, then nρR ≤ Smin < 0.

The next result is the generalization of theorem 2.3 in [1] for Ricci-harmonic soliton
to almost GRHBS.

Theorem 2.7. Let (Mn, g, f, λ, ρ, φ) be an almost GRHBS with n ≥ 3, if∫

M
(Sc(∇f,∇f) + (n− 2)g(∇λ,∇f) + 2(n− 1)ρg(∇R,∇f)dv ≤ 0,

then M is travialiy rigid.

3. Conclusion
We show that some identities and especially integral formulas for Ricci-harmonic

((HR)α for short) and Ricci-Bourguignon (RB for short) solitons could be generalized
for almost RHBS and GRHBS and in especiall case when ∇φ be constant we will con-
clude that if X be a conformal vector feild then for both compact and non-compact M ,
X could be a Killing vector feild.
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Abstract. This paper studies the minimum-maximum programming subject to Bipolar
Fuzzy Relation Equation (BFRE) constraints with the max-product composition. The
characteristics of its feasible domain is expressed. It is shown that there exists an optimal
solution for the problem such that each its component is either the corresponding com-
ponent of the lower or upper bound vector on its nonempty feasible domain. We create
a value matrix based on the useful property and apply a modified branch-and-bound
method to find the optimal solution of the problem.

Keywords: Bipolar fuzzy relation equation, Min-max programming, Branch-and-bound
method.
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1. Introduction

Fuzzy relation equations were first studied by Sanchez [5]. He determined the structure of
its feasible solution set. Its complete solution set can be determined by a maximum solu-
tion and a finite number of minimal solutions. The fuzzy relation programming problem
with a nonlinear objective function has been developing very slowly although many of the
real world problems cannot be formulated in terms of the linear programming problems.
We have to apply the genetic algorithm to obtain an approximate solution. To overcome
the difficulties and finding exact optimal solution, some researchers focused on designing
algorithms for resolution of special classes of the nonlinear optimization problems. The
min-max programming problems provided to FRE constraints have been investigated by
Zhou et al. [6]. We often need to variables with a bipolar characterization in some appli-
cations such as the covering and investing problem and the public awareness in revenue
management. Freson et al. [2] formulated the system of bipolar max-min FREs, for the
first time. The solution set of these equations can be characterized by a finite set of maxi-
mal and minimal solution pairs. Li and Jin [4] showed that checking the consistency of the
system of bipolar max-min FREs is NP-complete. Therefore, the resolution of the linear
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optimization problem with constraints of bipolar FREs will be NP-hard. Some optimiza-
tion problems subject to the BFRE were investigated using the max-Lukasiewicz [3] and
max-product [1] with the negation of Lukasiewicz nl.
As an extension of models [1,6] and its important in wireless communication and BitTorrent-
like Peer-to-Peer file sharing system, we want to study the max-min programming problem
with BFRE constraints:

min Z(x) =
n∨

j=1

(fj(xj)),

s.t. A+ ◦ x ∨A− ◦ ¬x = b,(1)

x ∈ [0, 1]n,

where A+ = (a+ij) and A− = (a−ij) are twom×n fuzzy relation matrices with 0 ≤ a+ij , a−ij ≤ 1

for i ∈ I = {1, 2, . . . ,m} and j ∈ J = {1, 2, . . . , n}. Let b = (b1, . . . , bm)T ∈ [0, 1]m and
x = (x1, . . . , xn)T ∈ [0, 1]n be the vector of decision variables to be determined and
¬x denotes the negation of x, i.e., ¬x = (1 − x1, . . . , 1 − xn)T . Also fj(xj), for each
j ∈ J , are one-variable increasing functions with respect to xj . The operator of ”◦”
represents the max-product composition operator. The notation of S(A+, A−, b) is defined
as {x ∈ [0, 1]n | A+ ◦ x ∨A− ◦ ¬x = b} which consists of finding a set of solution vectors
x ∈ [0, 1]n such that

(2) max
j∈J

max
{
a+ij .xj , a

−
ij . (1− xj)

}
= bi, ∀i ∈ I.

In the rest of paper, we investigate the structure of the feasible domain of the problem in
Section 2. Section 3 presents an interesting property from its optimal solution. In Section
4, an algorithm is proposed to solve the problem based on a value matrix and the modified
branch-and-bound method based on the property. Conclusions are finally given in Section
5.

2. Characteristics of feasible domain of problem (1)

System (2) is called consistent if its solution set is nonempty. Otherwise, it is incon-
sistent. The system (2) is equivalent to a set of vectors x ∈ [0, 1]n satisfying the following
conditions:
(i) ∀i ∈ I, ∀j ∈ J : max{a+ij .xj , a−ij .(1− xj)} ≤ bi and

(ii) ∀i ∈ I, ∃ji ∈ J : max{a+iji .xji , a
−
iji
.(1− xji)} = bi.

The lower and upper bound on the solution set of system (2) are obtained by the following
lemma.

Lemma 2.1. [1] Suppose that S(A+, A−, b) 6= ∅. The vector of x̌ = (x̌1, . . . , x̌n)T is

the lower bound on the solution set of equations (2) where x̌j = max
i∈I

{
1− bi

a−ij
| a−ij > bi

}
,

for each j ∈ J. Also, the vector of x̂ = (x̂1, . . . , x̂n)T is the upper bound on the solution

set of equations (2) where x̂j = min
i∈I

{
bi
a+ij
| a+ij > bi

}
, for each j ∈ J. It is assumed that

max ∅ = 0 and min ∅ = 1 are defined.

If system (2) is consistent, then we have x̌ ≤ x̂. Moreover, If x ∈ S(A+, A−, b), then
x̌ ≤ x ≤ x̂, but its converse is not true. Without loss of generality, we can assume that
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x̌j < x̂j , for each j ∈ J , and bi > 0, for each i ∈ I.

Definition 2.2. [1] Define two characteristic matrices Q+ = (q+ij)m×n and Q− = (q−ij)m×n
such that for each i ∈ I and j ∈ J ,

q+ij =

{
1, if a+ij .x̂j = bi,

0, otherwise,
and q−ij =

{
1, if a−ij .(1− x̌j) = bi,

0, otherwise.

Also, a series of index sets is defined as follows:

I+j (x) = {i ∈ I | xj = x̂j and q
+
ij = 1} and J+

i (x) = {j ∈ J | xj = x̂j and q
+
ij = 1}.

I−j (x) = {i ∈ I | xj = x̌j and q
−
ij = 1} and J−i (x) = {j ∈ J | xj = x̌j and q

−
ij = 1},

for each i ∈ I and j ∈ J . Furthermore, let Ij(x) = I+j (x) ∪ I−j (x), for each j ∈ J .

Let I+j = I+j (x̂), J+
i = J+

i (x̂), I−j = I−j (x̌), and J−i = J−i (x̌), for each i ∈ I and j ∈ J .

The necessary and sufficient conditions for checking the consistency of system (2) is
presented in the following theorem.

Theorem 2.3. [3] A system of bipolar max-Tp FREs A+ ◦ x∨A− ◦ ¬x = b is consistent
if and only if its characteristic boolean formula C =

∧
i∈I
Ci is well-defined and satisfiable,

where Ci =
∨

j∈J+
i

yj ∨
∨

j∈J−
i

¬yj . for each j ∈ J , the value x̂j is labeled with the positive literal

yj and the value x̌j is labeled with the negative literal ¬yj, respectively.

We are now ready to focus on the resolution procedure of problem (1) in the next
section.

3. A procedure for solving problem (1)

First of all, we present an interesting property about the optimal solution of problem
(1) which can help us to find its optimal solution.

Lemma 3.1. Suppose that S(A+, A−, b) 6= ∅. Then there exists an optimal solution
x∗ = (x∗1, . . . , x

∗
n)T for the problem (1) such that for each j ∈ J either x∗j = x̂j or x∗j = x̌j.

Proof. Suppose that x∗∗ is an optimal solution for the problem (1) and there exists
an index k ∈ J such that x̌k < x∗∗k < x̂k and assume that x∗∗j = x̂j or x∗∗j = x̌j , for

each j ∈ J \ {k}. We create a feasible solution x∗ with regard to x∗∗. Put x∗k = x̌k and
x∗j = x∗∗j , for each j ∈ J \ {k}. The vector x∗ is a feasible solution for the bipolar system

of (2). On the other hand, we have:

Z(x∗) =


 ∨

j∈J\{k}

(
fj(x

∗∗
j )
)

∨(fk(x̌k)) ≤


 ∨

j∈J\{k}

(
fj(x

∗∗
j

)

 ∨ (fk(x

∗∗
k )) = Z(x∗∗).

The inequality holds true since fk is an increasing function and x∗∗k > x̌k. Therefore, there
exists an optimal solution x∗ such that for each j ∈ J either x∗j = x̂j or x∗j = x̌j .
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The value matrix of M = (mij)m×2n can be defined based on the objective function of
problem (1) and the characteristic matrices as follows:

(3) mi,2j−1 =

{
fj(x̂j), if q+ij = 1,

∞, otherwise,
and mi,2j =

{
fj(x̌j), if q−ij = 1,

∞, otherwise,

for each i ∈ I and j ∈ J .
We will employ the branch-and-bound method on the value matrix M to solve problem

(1). In this method, along branches from node 0 to node k, we cannot apply both x̂j and
x̌j . The method is terminated if one of the following cases occurs: 1. reaching to the last
row of matrix M , 2. all the selected variables along node 0 to node k together with other
x̌j ’s create a feasible solution, and 3. lack of candidates to satisfy an equation. If the
method terminates, then the remaining variables xj are assigned the corresponding value
of x̌j . An algorithm is now proposed based on the above points.
Algorithm 1. An algorithm for resolution of the problem of (1).

Step 1. Compute the lower and upper bound of x̌ and x̂ using Lemma 2.1.
Step 2. Create two characteristic matrices Q+ and Q− using Definition 2.2.
Step 3. Compute the index sets of I+j , I−j , J+

i , and J−i .

Step 4. Check the consistency of the bipolar system (2) applying Theorem 2.3. If it is
inconsistent, then stop! Otherwise, go to Step 5.

Step 5. Create the value matrix of M using the relation (2.2).
Step 6. Employ the modified branch-and-bound method with the jump-tracking tech-

nique on the matrix of M to solve the optimization problem.
Step 7. Produce the optimal solution and the optimal objective value of the problem of

(1).

4. Conclusion

In this paper, the min-max programming problem subject to bipolar max-product
fuzzy relation equation constraints was studied. An important property was proposed
about one of its optimal solutions. A value matrix was created based the property. The
modified branch-and-bound was applied on the matrix to solve the problem.

References

1. S. Aliannezhadi, and A. Abbasi Molai, A new algorithm for geometric optimization with a single-term
exponent constrained by bipolar fuzzy relation equations, Iranian Journal of Fuzzy Systems, 18(1) (2021),
137-150.

2. S. Freson, B. De Baets, and H.D. Meyer, Linear optimaization with bipolar max-min constraints, Inform.
Sci., 234 (2013), 3-15

3. P. Li and Y. Liu, Linear optimization with bipolar fuzzy relational equation constraints using the
Lukasiewicz triangular norm, Soft Computing, 18 (2014), 1399-1404.

4. P. Li, and Q. Jin, On the resolution of bipolar max-min equations, Kybernetika, 52(4), (2016), 514-530.
5. E. Sanchez, Resolution of composite fuzzy relation equations, Inf Control, 30 (1976), 38-48 .
6. X.-G. Zhou, B.-Y. Cao, and X.-P. Yang, The set of optimal solutions of geometric programming problem

with max-product fuzzy relational equations constraints, International Journal of Fuzzy Systems, 18
(2016), 436-447.

236



Asymptotic expansion of the number of derangements in
terms of Bell numbers

Mehdi Hassani 1,∗

1Department of Mathematics, University of Zanjan, University Blvd., 45371-38791, Zanjan, Iran

Abstract. In this paper we review our study of the differenceDn−n!
e
, whereDn denotes

the number of derangements on n objects. First, we consider some explicit formulas for
Dn. Then, using an integral representation for this reference, we compute the moments
of this difference, and we also get an asymptotic expansion for Dn with coefficients in
terms of the Bell numbers Bn.
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1. Introduction
A permutation of Sn = {1, 2, 3, · · · , n} that has no fixed points is a “derangement”

of Sn. Let Dn denote the number of derangements of Sn. The problem of counting
derangements was first considered by Pierre Raymond de Montmort in 1708, who solved
the problem in 1713, as did Nicholas Bernoulli at about the same time by using the
inclusion-exclusion principle. It is known that

Dn = n!

n∑

i=0

(−1)i

i!
.

For the above information and some more details see [6, p. 702, entry “Derangement”].
Since

∑∞
i=0(−1)i/i! = 1/e, a good approximation for Dn is n!/e. In this paper we review

our study of the sharpness of this approximation, which eventually lead us to an asymptotic
expansion for the number of derangements in terms of Bell numbers. We recall that [6, p.
178, entry “Bell Number”] the number of ways a set of n elements can be partitioned into
nonempty subsets is called a Bell number and is denoted Bn.
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2. Explicit formulas for the number of derangements
The first observation on the difference of Dn and n!/e asserts that their distance never

exceeds 1/2. Indeed, it is known [6, p. 702] that

Dn = n!

n∑

i=0

(−1)i

i!
=

∥∥∥∥
n!

e

∥∥∥∥ ,

where ∥x∥ denotes the nearest integer to the real number x, that is ∥x∥ = ⌊x+1/2⌋. Thus,

Dn =

⌊
n!

e
+

1

2

⌋
.

The author [2,4] proved that this floor-function relation also holds for each n ⩾ 1 if we
replace 1/2 by any η ∈ [1/3, 1/2]. By taking η = 1/e we obtain

Dn =

⌊
n! + 1

e

⌋
.

More precisely, we observe that for each n ⩾ 2,
∣∣∣∣Dn − n!

e

∣∣∣∣ ⩽
1

(n+ 1)
+

1

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)(n+ 3)
+ · · ·

<
1

(n+ 1)
+

1

(n+ 1)2
+

1

(n+ 1)3
· · · = 1

n
.

Therefore, the difference of Dn and n!/e tends to 0 as n → ∞. Finally, we recall that the
author [4, Corollary 2.2] proved the following explicit formula for each n ⩾ 2,

Dn = ⌊(e+ e−1)n!⌋ − ⌊en!⌋.

3. Moments of the difference of Dn and n!/e

Although the above observation shows that |Dn − n!/e| < 1/n for each n ⩾ 2, we can
obtain see even more about the difference Dn−n!/e by considering its moments. Recently,
the author [3, Theorem 2] proved that

∞∑

n=1

(
Dn − n!

e

)
= −1 +

1

e
+

Ei(2)− Ei(1)

e2
≊ −0.218114,

where Ei denotes the exponential integral function defined by the Cauchy principal value
of the integral

Ei(x) = −
∫ ∞

−x

e−z

z
dz,

and
∞∑

n=1

(
Dn − n!

e

)2
= −(e− 1)2

e2
+

4

e2

∫ 1
2

0
h(z) dz ≊ 0.433113,

where
h(z) =

e2z√
1− z2

arctan
z√

1− z2
+

e2−2z

√
2z − z2

arctan
z√

2z − z2
.

Moreover, for each integer k ⩾ 1 the following multiple integral representation holds:
∞∑

n=1

(
Dn − n!

e

)k
= −(e− 1)k

ek
+

1

ek

∫ 1

0
· · ·

∫ 1

0

ex1+···+xk

1− (−1)k x1 · · ·xk
dX,
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where X represents the k-tuple (x1, . . . , xk).
The key idea to prove the above moment results is the following representation of the

difference Dn − n!/e by an integration,

Dn =
n!

e
+ (−1)n

Ln

e
,

for each integer n ⩾ 1, where

Ln =

∫ e

1
logn t dt.

4. Asymptotic expansion of the number of derangements in terms of
Bell numbers
In the last integral, we apply the change of variable z = log t, satisfying t = ez and

dt = ezdz. Accordingly,

Ln =

∫ 1

0
znez dz =

∫ 1

0
zn

∞∑

j=0

zj

j!
dz =

∫ 1

0

∞∑

j=0

zn+j

j!
dz.

Since the last sum converges uniformly for 0 ⩽ z ⩽ 1, we may change the order of sum
and integral. Therefore,

Ln =
∞∑

j=0

∫ 1

0

zn+j

j!
dz =

∞∑

j=0

1

j!(n+ j + 1)
.

Given any positive integer r, an easy computation shows that

1

n+ b
=

r∑

k=1

(−1)k−1 b
k−1

nk
+

(−1)r

n+ b

(
b

n

)r

,

for n+ b ̸= 0. If we take b = j + 1, then

Ln =
∞∑

j=0

r∑

k=1

(−1)k−1

nk

(j + 1)k−1

j!
+ (−1)r

∞∑

j=0

1

j!(n+ j + 1)

(
j + 1

n

)r

=
r∑

k=1

(−1)k−1

nk

∞∑

j=0

(j + 1)k−1

j!
+

(−1)r

nr

∞∑

j=0

(j + 1)r

j!(n+ j + 1)
.

Dobiński’s formula [6, p. 178] states that the k-th Bell number Bk equals

Bk =
1

e

∞∑

j=0

jk

j!
.

On account of this formula, we have
∞∑

j=0

(j + 1)k−1

j!
=

∞∑

j=0

(j + 1)k

(j + 1)!
=

∞∑

j=1

jk

j!
=

∞∑

j=0

jk

j!
= eBk,

and
∞∑

j=0

(j + 1)r

j!(n+ j + 1)
⩽ 1

n

∞∑

j=0

(j + 1)r

j!
=

1

n

∞∑

j=0

(j + 1)r+1

(j + 1)!
=

eBr+1

n
.
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Therefore, given any positive integer r, for any integer n ⩾ 1 we obtain the asymptotic
expansion

Dn =
n!

e
+

r∑

k=1

(−1)n+k−1 Bk

nk
+O

(
1

nr+1

)
,

where Bk denotes the k-th Bell number and the constant of O-term does not exceed Br+1

in both expansions.

5. Conclusion
In this paper we give an example of the power of analytic methods in studying com-

binatorial and counting problems. Analytic methods usually ends in some very surprising
results, which are far from elementary counting methods. The content of the present paper
gives an example of “how we can count by integration!”
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Abstract. Let A be a Banach algebra with the multiplier algebra M(A). It is known
that, for a closed submodule Z of A∗, the quotient space A∗∗/Z⊥ with the product
induced by the first Arens product is a dual Banach algebra if and only if Z ⊆ WAP (A∗).
When M(A) is a dual Banach algebra, under some conditioins, we show that amenability
of A is equivalent to Connes-amenability of A∗∗/Z⊥, where Z is isometrically isomorphic
to some predual of M(A).
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1. Introduction
In [4], the Johnson’s original defintion for general Banach algebras modified in the

sense that it took the dual space structure of a von Neumann algebra into account. This
leads to a notion of amenability which is called Connes-amenability. V. Runde extended
the notion of Connes-amenability to the larger class of dual Banach algebras [5]. As
a result, he proved that for a locally compact group G, the measure algebra M(G) is
Connes-amenable if and only if G is amenable [6].

For a Banach algebra A the set of weakly almost periodic functions on A is denoted by
WAP (A∗). It is known that, for a closed submodule Z of A∗, the quotient space A∗∗/Z⊥

is a dual Banach algebra if and only Z ⊆ WAP (A∗) [2] . So, in case that A∗∗/Z⊥ is a dual
Banach algebra, we are intrested in knowing the answer of this question: Is amenability of
A equivalent to Connes-amenabilty of such dual quotient Banach algebras for some closed
submodules?

In case that the multiplier algebra is a dual Banach algebra and the closed summodule
Z ⊆ WAP (A∗) is isometrically isomorphic to some predual of multiplier algebra, we give
a positive answer to this question.

In general, we note that the answer is not positive. Take E := l2⊗̂l2; the dual of E is
the space B(l2) of all bounded linear operators on l2. K(E) does not have bounded approx-
imate identity [5, Corollary 3.1.5] and, so is not amenable. Take Z = WAP (K(E)∗), since
E is not reflexive, then K(E)∗∗/Z⊥ = WAP (K(E)∗)∗ = {0}; which is Connes-amenable.
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2. Preliminaries
For a Banach algebra A and a Banach A-bimodule E, a continuous linear map D :

A → E such that
D(ab) = Da · b+ a ·Db (a, b ∈ A)

is called a derivation from A into E. The space of all derivations of A into E is denoted
by Z1(A, E). For each x ∈ E, the map a 7→ a · x − x · a is a derivation, and these maps
form the space N1(A, E) of inner derivations.

The quotient space H1(A, E) = Z1(A, E)/N1(A, E) is the first cohomology group of
A with coefficients in E and A is called amenable if H1(A, E∗) = {0}, for every Banach
A-bimodule E, E∗ is a dual Banach A-bimodule via the actions:

⟨x, a · x∗⟩ = ⟨x · a, x∗⟩, ⟨x, x∗ · a⟩ = ⟨a · x, x∗⟩ (a ∈ A, x ∈ E, x∗ ∈ E∗).
A Banach algebra A is called a dual Banach algebra if it is dual as a Banach A-

bimodule. One can see that a Banach algebra which is also a dual space is a dual Banach
algebra if and only if the multiplication map is separately w∗-continuous [5].

The algebra B(E) = (E⊗̂E∗)∗ of all bounded operators on a reflexive Banach space
E, von Neumann algebras, the measure algebra M(G) = C0(G)∗ are all examples of dual
Banach algebras.

For a Banach algebra A, let L2(A;C) stand for the space of all bounded bilinear maps
on A × A . A dual Banach A-bimodule E is called normal if for each x ∈ E, the maps
a 7→ a · x and b 7→ x · b from A into E are w∗-continuous, and Connes-amenable if for
every normal dual Banach A-bimodule E, every w∗-continuous derivation D : A → E is
inner [5].

For a dual Banach algebra A with preual A∗, let ∆A : A⊗̂A → A be the diagonal
operator induced by a ⊗ b 7→ ab, a, b ∈ A. The multiplication in A is separately w∗-
continuous, so ∆∗

A(A∗) ⊂ L2
w∗(A;C). We denote L2

w∗(A;C) for the set of all w∗-continuous
bilinear maps from A⊗̂A into C. Taking the adjoint of ∆∗

A|A∗ , we may extend ∆A to a
A-bimodule homomorphism ∆w∗ on L2

w∗(A;C)∗. An element M ∈ L2
w∗(A;C)∗ is called a

normal, virtual diagonal for A if
a ·M = M · a, a∆w∗M = a (a ∈ A).

Let A be an algebra, the multiplier algebra of A is denoted by M(A) and consists of
all pairs (L,R) where L and R are mappings from A into A with the following property:

L(a)b = aR(b) (a, b ∈ A).

Let A be a Banach algebra, for each µ ∈ A∗, the bounded linear maps Lµ and Rµ from
A into A∗ are defined by

Lµ(a) = µ · a, Rµ(a) = a · µ (a ∈ A).

An element µ ∈ A∗ belongs to WAP (A∗) if and only if Lµ or equivalently Rµ is
weakly compact operator from A into A∗. Let □ and ♢ stand for the first and second
Arens product respectively; by Daws [1, Lemma 2.3],

WAP (A∗) = {µ ∈ A∗ : ⟨Φ□Ψ, µ⟩ = ⟨Φ♢Ψ, µ⟩ Φ,Ψ ∈ A∗∗}.
Let X be a Banach space; for a subspace Y of X, and a subspace Z of X∗, we define

Y ⊥ = {µ ∈ X∗ : ⟨µ, y⟩ = 0 y ∈ Y } and ⊥Z = {x ∈ X : ⟨µ, x⟩ = 0 µ ∈ Z}. It is
well known that if Y is closed, Y ∗ is isometrically isomorphic to X∗/Y ⊥, while (X/Y )∗ is
isometrically isomorphic to Y ⊥.
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3. Main results
The following theorem is due to Daws [1, Proposition 2.4].
Theorem 3.1. Let A be a Banach algebra, and let Z ⊆ A∗ be a closed submodule.

Then the followings are equivalent:
i) the first Arens products drops to a well-defined product on Z∗ = A∗∗/X⊥ turning

(Z∗, Z) into a dual Banach algebra;
ii) Z ⊆ WAP (A∗).

Let A be a Banach algebra with a contractive approximate identity such that its
multiplier algebra M(A) is a dual Banach algebra. We denote its predual with M(A)∗ and
recall that this space is a closed submodule of M(A)∗. Let ι : A → M(A) be the canonical
embeding map, then ι induces a map ι∗ : M(A)∗ → A∗ with

⟨ι∗(µ), a⟩ = ⟨µ, ι(a)⟩ (a ∈ A, µ ∈ M(A)∗)

A net (τα) in M(A) converges to τ in wst-topology if ⟨φ, (τα − τ)b⟩ → 0 for each
φ ∈ A∗, b ∈ A.

Theorem 3.2. Let A be a Banach algebra with a contractive approximate identity and
let M(A) be a dual Banach algebra with predual M(A)∗. Also let the identity map on
M(A) be w∗ − wst-continuous. Then, for Z = ι∗(M(A)∗), the followings are equivalent:

i) A is amenable;

ii) A∗∗/Z⊥ is Connes-amenable;

iii) A∗∗/Z⊥ has a normal, virtual diagonal.
Proof. One can see that ι∗(M(A)∗)) ⊆ ι∗(WAP (M(A)∗)) ⊆ WAP (A∗). Then ι∗∗ :

WAP (A∗)∗ → M(A) is a homomorphism which extends ι.
Define η : (A⊗̂M(A)∗)⊕1 (A⊗̂M(A)∗) → WAP (A∗) by

η((a⊗ µ)⊕ (b⊗ λ)) = a · ι∗(µ) + ι∗(λ) · b (a, b ∈ A, µ, λ ∈ M(A)∗)

and linearity and continuity. It is easy to see that η is a contraction.
Let

X = span{(b⊗ µ · ι(a))⊕ (−a⊗ ι(b) · µ) : a, b ∈ A, µ ∈ M(A)∗}.
Then X ⊆ (A⊗̂M(A)∗)⊕1 (A⊗̂M(A)∗) and η(X) = {0}; so η induces a map

η̃ : Y = (A⊗̂M(A)∗)⊕1 (A⊗̂M(A)∗)/X̄ → WAP (A∗).

One can see that Im(η̃) is a closed submodule of WAP (A∗), so as above (Im(η̃))∗ is a
dual Banach algebra. Indeed, Z = ι∗(M(A)∗) = Im(η̃) and we are going to show that
Im(η̃) is isometric isomorph with M(A)∗. To see, it suffices to prove that η̃ is an isometic
isomorphism onto Z.

Following the same approach presented in [2], let (eα)α be a contractive approximate
identity of A and let Φ0 ∈ A∗∗ be a w∗-accumulation point of it. Consider the map
σ : M(A) → A∗∗ with (L,R) 7→ L∗∗(Φ0). The map σ is a homomorphism for the second
Arens product. Let q : A∗∗ → A∗∗/WAP (A∗)⊥ = WAP (A∗)∗ be the quotient map; q is a
A-bimodule homomorphism. Take σw = q ◦σ, since q is a homomorphism for either Arens
product, it follows that σw : M(A) → WAP (A∗)∗ is a homomorphism.

Let σZ : M(A) → Z∗ be the composition of the map σw and the quotient map
qZ : WAP (A∗)∗ → Z∗. As A has a contractive approximate identity, σZ is a contraction.
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By [2, Theorem 7.1] and its proof, for a, b ∈ A, µ, λ ∈ M(A)∗ and (L,R) ∈ M(A), we
have

⟨η∗ ◦ σZ(L,R), (a⊗ µ)⊕ (b⊗ λ)⟩ = ⟨L∗∗(Φ0), a · ι∗(µ) + ι∗(λ) · b⟩
= ⟨ι∗(µ), L(a)⟩+ ⟨ı∗(λ), R(a)⟩
= ⟨(L,R), (a⊗ µ)⊕ (b⊗ λ)⟩.

Hence η∗ ◦σZ : M(A) → X⊥ is the canonical map, which is an isometric isomorphism.
Therefore σZ : M(A) → Z∗ must be an isometry, and we see that η̃∗ is an isometric
isomorphism between the image of σZ and X⊥.

It follows that η̃ is an isometry and hence an isometric isomorphism onto Z. Indeed,
for τ ∈ (A⊗̂M(A)∗)⊕1 (A⊗̂M(A)∗), we can find T ∈ X⊥ with ∥ T ∥= 1 and ⟨T, τ⟩ =∥ τ ∥,
the norm in the quotient (A⊗̂M(A)∗)⊕1 (A⊗̂M(A)∗)/X̄. Then, there exist Φ ∈ Z∗ in the
image of σZ with η̃∗(Φ) = T and ∥ Φ ∥= 1. Thus

∥ τ ∥= ⟨T, τ⟩ = ⟨Φ, η̃(τ)⟩ ≤∥ η̃(τ) ∥≤∥ τ ∥,
that is, ∥ η̃(τ) ∥=∥ τ ∥ for each τ and so η̃ is isometric. Hence η̃∗ : Z∗ → X⊥ is also an
isometric isomorphism. We conclude that σZ : M(A) → Z∗ is surjective, and is hence an
isometric isomorphism. By [3, Theorem 3.5], the proof is established. □

Example 3.3. Let G be a compact group. Take A = L1(G), then M(A) = M(G) =
C(G)∗ and hence M(A)∗ = C(G). The map ι : A → M(G) is the canonical embedding
which takes f ∈ L1(G) to fλ, where λ is the left Haar measure on G. Also the identity
map on M(G) is w∗-wst-continuous [3, Example 3.6]. Since A = L1(G) is amenable, then
L1(G)∗∗/C(G)⊥ is Connes-amenable and has a normal, virtual diagonal.

�Question. Does there exist any other closed submodule Z ⊆ WAP (A∗) satisfying
Theorem 3.2?

4. Conclusion
This research has made an attempt to prove that, for a Banach algebra A, there exists

a dual quotient Banach algebra A∗∗/Z⊥ such that amenability of A, Connes-amenability
of A∗∗/Z⊥ and the existence of a normal, virtual diagonal for A∗∗/Z⊥ are all equivalent.
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Abstract. In this work, we propose an efficient numerical method based on the Muntz-
Legendre polynomial for solving the generalized Abel-integral equations. This equation
is very important in several branches of Physics, engineering and mathematics. A lot of
works have been done to study this equation. We show that the presented method is
very capable and accurate for solving these kinds of problems. Also, the superiority and
effectiveness of the Muntz-Galerkin method will be shown through an example.
Keywords: Generalized Abel-integral equations, Muntz-Legendre polynomial, Muntz-
Galerkin method
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1. Introduction
The generalized Abel-integral equation in the following form

(1) f(x) =

∫ x

0

K(x, t)

(x2 − t2)α
G
(
t, u(t)

)
dt,

where f(x) is an arbitrary continues function, K(x, t) is the Kernel of integral and
G(t, u(t)) is a linear or nonlinear function will be studied in this work. Also, u(x) is
an unknown function. This equation will be study in the domain I = [0, 1]. The existence
and uniqueness of the solution for this equation on the interval I was studied in [6]. The
author showed that under the following assumptions, these important properties are guar-
antied:

• f ∈ C(I),
• K ∈ C(D) where D = {(x, t) | 0 ≤ x ≤ t < 1} and K(x, t) ̸= 0,
• for all u1, u2 ∈ C(I), there exists nonnegative real number c such that

| G(t, u1(t))−G(t, u2(t)) |≤ c | u1(t)− u2(t) | on I.
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The Abel-integral equation was introduced by Niels Henrik Abel, norwegian mathemati-
cian, in 1823. These types of equations are appeared and used in many branches of sciences
and engineering, such as radio astronomy, radar ranging, plasma diagnostic, X-ray radiog-
raphy and so on. In this work, the Muntz-Legendre polynomials will be used to investigate
the numerical solution of this equation. There are many analytical and numerical methods
for solving equation (1) such as orthogonal polynomials [3], Laplace transform [1], Fourier
transform [2], Hilbert transform [2], Tau method [4] and ....

����� 1.1. Definition For all m = 0, 1, 2, ..., function

(2) Lm(x) =
1

2πi

∫

I

m−1∏

k=0

t+ ξk + 1

t− ξk

xt

t− ξm
dt,

is the m-th Muntz-Legendre polynomials, where I have all the zeros of denominator of the
integrand, 0 = ξ0 < ξ1 < ξ2 < ... < ξm < ... with lim ξm = +∞ and Σ+∞

m=1γmum(t) = +∞.

These polynomials are orthogonal with the weight function w(x) = 1, i.e.,

(3)
∫

I
Lı(x)Lȷ(x)dx =

δı,ȷ
2ξı + 1

, ı ≥ ȷ,

where δı,ȷ is the delta Kronecker function. One can see that the Muntz-Legendre polyno-
mials can be written as follows [5]

(4) Lm(x) =

m∑

k=0

ρk,mxξk ,

where

(5) ρk,m =

∏m−1
j=0 (ξk + ξȷ + 1)∏m
ȷ=0,ȷ̸=k(ξk − ξȷ)

, m = 0, 1, 2, ... .

Therefore, these Muntz-Legendre polynomials are in the Muntz space generated by
Span{1, xξ1 , xξ2 , ...xξm}. Moreover, the Muntz-Legendre polynomials are constructed by
the following recurrence relation [5].

(6) Lm(x) = Lm−1(x)−(ξk+ξj+1)xξm
∫ 1

x
t−ξm−1Lm−1(t)dt, x ∈ (0, 1], m = 0, 1, 2, ... .

2. Method of solution
Let ξı = 2ı, ı = 0, 1, 2, ... and assume

(7) uN (x) =
N∑

ı=0

uıLı(x) = uLX,

where u =
[
u0 u1 u2 . . . uN

]
is a vector of unknowns, L is the Muntz-Legendre

polynomial and X =
[
1 xξ1 xξ2 . . . xξN

]T is the base elements. The functions
f(x) and G

(
t, u(t)

)
will be approximated as follows f(x) ≈ ΣN

ı=0fıx
ξı = fX, where f =[

f0 f1 f2 . . . fN
]T

, and, G
(
t, u(t)

)
≈ ΣN

ℓ=0zℓ(t)u
ℓ(t). Also, we set K(x, t)zℓ(t) =
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∑+∞
ı=0

∑+∞
ı=0 kℓı,ȷx

ıtȷ, ∀ℓϵN.
Substituting the above relations in (1), results in

(8) fX =

∫ x

0

K(x, t)z0(t)

(x2 − t2)α
dt+

+∞∑

ı=0

+∞∑

ȷ=0

N∑

ℓ=1

∫ x

0

kℓı,ȷx
ıtȷ

(x2 − t2)α
uℓNdt.

Using the following formulae
(9) uℓN (x) = uLQℓ−1X, ∀ℓϵN,

(10)
∫ x

0

tȷ+2n

(x2 − t2)α
dt =

Γ(1− α)Γ
(
n+ 1+ȷ

2

)

2Γ
(
n+ ȷ+3

2 − α
) x2n+ȷ+1−2α,

equation (8) can be rewritten as
(11) uLQX =

(
f − z0A0

)
X,

where z0 =
[
z00 z10 z20 . . . zN0

]
, Q =

∑N
ℓ=1Q

ℓ−1Aℓ,

(12) [Aℓ]αα =
∑

ı+ȷ=α

kℓıȷA
α
ȷ , α = 0, 1, 2, ..., An

ȷ =
Γ(1− α)Γ

(
n+ 1+ȷ

2

)

2Γ
(
n+ ȷ+3

2 − α
) ,

(13) Q =




u0 u1 u2 . . . uN
u0 u1 . . . uN−1

u0 . . . uN−2

O
. . . ...

u0



, uı = uLı, ı = 0, 1, 2, ....

In particular case G
(
t, u(t)

)
= uℓ(t), system (11) will be as follows

(14) uLQℓ−1Aℓ = f.

In the case of K(x, t) = ℓ = 1, this system is reduced to
(15) uLA = f,

in which
A = diag

(
π,

π

2
,
3π

8
, ...,

√
πΓ

(
N + 1

2

)

Γ(N + 1)

)
.

The matrices L and A are nonsingular, therefore, equation (14) has a unique solution
u = f(LA)−1. Substituting the obtained vector u in (15), an approximate solution uN (x)
for the equation (1) will be determined.

3. Numerical experiments
In this section we implement our method on an example. All the experiments are done

by using Mathematica 12.2 on a personal computer with operational Windows 10.

���� 3.1. Example We consider the following linear first kind generalized Abel-integral
equation [1]

(16) x2 =

∫ x

0

u(t)√
x2 − t2

dt,
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with the exact solution u(x) = 4
πx

2.
The numerical results by using the Muntz Galerkin method are shown in Table 1 and

Figure 1.

Table 1. the results of the Muntz-Galerkin method for example 3.1.

N Numerical errors
1 0.56941

≥ 2 0.0

Figure 1. The solid line indicates the exact solution and dashes line
indicates the numerical solution for Example 3.1 by the Muntz-Galerkin
method.

4. Conclusion
In this presented work, an efficient numerical algorithm based on the Muntz-Legendre

polynomials for solving the generalized Abel-integral equation was introduced. In this
scheme the Muntz-Galerkin method was used to solve this equation. Also, we investigated
the capability and accuracy of the method by an example. The obtained results showed
that our presented algorithm was efficient with a good accuracy to handle this kind of
equation.
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Abstract. We examine the situations in which every maximal ideal of the classical ring
of quotients q(X) of the ring of real-valued continuous functions on a Tychonoff space
X contains a unique minimal prime ideal. In other words, we present some topological
and algebraic conditions for which q(X) is a PF -ring.
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1. Introduction
In this article, rings are considered to be commutative unitary rings and topological

spaces are assumed to be completely regular Hausdorff (Tychonoff) spaces. We denote by
C(X) the ring of all real-valued continuous functions on a space X. For each f ∈ C(X)
the zero-set Z(f) is the set of zeros of f and its complement, denoted by coz f , is called
cozero-set of f . An element r of a ring R is called regular (non-zerodivisor) if ra = 0,
a ∈ R implies that a = 0. An ideal of a ring is said to be regular if it contains a regular
element. We denote by r(X) the set of all regular elements of C(X) and it is easy to see
that f ∈ C(X) is regular if and only if intXZ(f) = ∅ or equivalently, coz f is dense in
X. The classical ring of quotients q(R) of a ring R is the ring of all equivalence classes
of formal fractions a

r , for a, r ∈ R, where r is regular and the equivalence relation is the
obvious one. q(C(X)) is denoted by q(X) for simplicity.

A ring R is called a PF -ring (or PIF -ring by Matlis [7]) if every principal ideal of
R is a flat R-module. It is known that a commutative ring R is a PF -ring if and only
if R is reduced and every maximal ideal of R contains only one minimal prime ideal;
see [7, Proposition 2.1]. Thus, a reduced ring R is a PF -ring if and only if for every prime
ideal P ⊆ R the ideal O(P ) is prime, where O(P ) is the intersection of all minimal prime
ideals of R contained in P ; see [4, Theorem 8]. We also see in the same paper that O(P ) =
{a ∈ R : ab = 0 for some b /∈ P}. In case R = C(X), Theorem 7.3 in [3] shows that every
maximal ideal is precisely of the form Mp = {f ∈ C(X) : p ∈ clβXZ(f)}, for some p ∈ βX,
where βX is the Stone-Čech compactification of X. Using Part 7.12 of the same reference,
for every p ∈ βX, O(Mp), or briefly Op is of the form {f ∈ C(X) : p ∈ intβXclβXZ(f)}.
Therefore, C(X) is a PF -ring if and only if for every p ∈ βX the ideal Op is prime which

∗Speaker. Email address: a.r.salehi@put.ac.ir
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implies that X is an F -space, i.e., every finitely generated ideal in C(X) is principal or
equivalently any two disjoint cozero-sets of X are completely separated; see [3, Theorem
14.25] for more equivalent conditions.

In literature, there are several equivalent conditions for a ring to be a PF -ring; for
example, see [1, 4, 6, 7]. In this article, using the structure of q(X), we characterize
topological spaces for which q(X) is a PF -ring. Also, we give some algebraic equivalent
conditions on q(X) to be a PF -ring. To do this, We need the following result.

Lemma 1.1. ( [6, Proposition 2.11]) Let R be a ring. Then q(R) is a PF -ring if and
only if for any two elements a, b ∈ R with ab = 0, the ideal AnnR(a) +AnnR(b) is regular.

2. Main results
To prove the main result of this section we need the following lemmas.

Lemma 2.1. The following statements are equivalent for f, g in C(X).
(1) The ideal (f1 ,

g
1) in q(X) is principal.

(2) For every r, s ∈ r(X) the ideal (fr ,
g
s ) in q(X) is principal.

(3) There exists p ∈ r(X) such that the ideal (f |coz p, g|coz p) is principal in C(coz p).

Proof. The equivalence of (1) and (2) is evident.
(1)⇒(3). There exsist k1, ..., k4, h ∈ C(X) and t1, ..., t4 ∈ r(X) such that f

1 = k1
t1

h
1 ,

g
1 =

k2
t2

h
1 and h

1 = k3
t3

f
1 + k4

t4
g
1 . If we take p = t1t2t3t4, then using these equivalities on coz p,

we conclude that the ideal generated by the contraction of f and g on coz p is principal in
C(coz p).

(3)⇒(1). Using the assumption, there exist k1, ..., k4 and h in C(coz p) such that
f = k1h, g = k2h and h = k3f + k4g on coz p. If for every i = 1, ..., 4, we take

k̂i(x) =

{ ki
1+|ki|(x)p(x) x ∈ coz p
0 x ∈ Z(p)

and

k̄i(x) =

{ 1
1+|ki|(x)p(x) x ∈ coz p
0 x ∈ Z(p),

then for every i = 1, ..., 4 we have k̄i, k̂i ∈ C(X) and k̄i ∈ r(X) as coz k̄i = coz p. Similarly,
we define ĥ ∈ C(X) and h̄ ∈ r(X). Now, on coz p we have h̄k̄1f = k̂1ĥ, h̄k̄2g = k̂2ĥ and
h̄k̄3k̄4h = k̂3k̄4h̄f + k̄3k̂4h̄g. Since coz p is dense, these equalites hold on X. But, h̄ and
k̄i’s are regular elements, and thus we are done. □

Lemma 2.2. The following statements are equivalent for every f ∈ C(X).
(1) There exists s ∈ r(X) such that pos f |coz s and neg f |coz s are completely separated

in coz s.
(2) There exist s ∈ r(X) and k ∈ C(coz s) such that f = k|f | on coz s.
(3) There exist s ∈ r(X) such that the ideal generated by the contraction of f and |f |

on coz s is principal in C(coz s).
(4) For any two elements r, s ∈ r(X) the ideal (fr ,

|f |
s ) is principal in q(X).

(5) There exists k
t ∈ q(X) such that f

1 = k
t
|f |
1 .

(6) For any two elements r, s ∈ r(X) there exists k
t ∈ q(X) such that f

r = k
t
|f |
s .
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Proof. The equivalence of (1), (2) and (3) is due to Corollary 14.22 in [3]. Using
the above lemma, (3) and (4) are equivalent, and clearly (5) ⇒ (6) ⇒ (2). To complete
the proof, it is enough to show that (4) ⇒ (5). Let (4) holds. There exists g

p ∈ q(X)

such that (f1 ,
|f |
1 ) = (gp). Thus, there are h1

q1
, ..., h4

q4
∈ q(X) such that f

1 = h1
q1

g
p ,

|f |
1 = h2

q2
g
p

and g
p = h3

q3
f
1 + h4

q4

|f |
1 . Taking t = pq1q2q3q4 and Y = coz t, the ideal generated by the

contraction of f and |f | on Y is principal in C(Y ). Thus by Corollary 14.22 in [3], there
is k ∈ C∗(Y ) such that f

1 (x) = k(x) |f |1 (x), for every x ∈ Y = coz t. Now, if we define

k̂(x) =

{
k(x)s(x) x ∈ coz t
0 x ∈ Z(t),

then k̂ ∈ C(X), and f
1 (x) =

k̂
t (x)

|f |
1 (x) for every x ∈ coz t, which implies that f

1 = k̂
t
|f |
1 . □

Now, we are ready to examine the situation in which every maximal ideal of q(X)
contains only one minimal prime ideal. Notice that for every space X the ring q(X) is
reduced.

Theorem 2.3. The following statements are equivalent for any space X.
(1) q(X) is a PF -ring.
(2) For any two disjoint cozero-sets C1 and C2 in X, there exists zero-sets Z1 and

Z2 such that C1 ⊆ Z1, C2 ⊆ Z2 and intX(Z1 ∩ Z2) = ∅.
(3) If f1, f2 ∈ C(X) and coz f1 ⊆ Z(f2), then there exist g1, g2 ∈ C(X) such that

coz f1 ⊆ intXZ(g1) ⊆ clXcoz g2 ⊆ Z(f2).

(4) For every f ∈ C(X) there exists r ∈ r(X) such that posf |coz r and negf |coz r are
completely separated in coz r.

(5) For any two disjoint cozero-sets C1 and C2 in X, there exists r ∈ r(X) such that
C1 ∩ coz r and C2 ∩ coz r are completely separated in coz r.

(6) For every f ∈ C(X) there exist s ∈ r(X) and k ∈ C(coz s) such that f = k|f | on
coz s.

(7) For every f ∈ C(X) there exist s ∈ r(X) such that the ideal generated by the
contraction of f and |f | on coz s is principal in C(coz s).

(8) For every f ∈ C(X) and any two elements r, s ∈ r(X) the ideal (fr ,
|f |
s ) is principal

in q(X).
(9) The ideal (f1 ,

|f |
1 ) is principal in q(X).

(10) For every f ∈ C(X) and any two elements r, s ∈ r(X) there exists k
t ∈ q(X) such

that f
r = k

t
|f |
s .

Proof. (1)⇒(2). Let C1 = coz f1 and C2 = coz f2. Then C1 ∩ C2 = ∅ implies that
f1f2 = 0. Using Lemma 1.1 there exist g1 ∈ Ann(f1) and g2 ∈ Ann(f2) such that g1+g2 is
regular. Thus, coz f1 ⊆ Z(g1), coz f2 ⊆ Z(g2) and intX(Z(g1)∩Z(g2)) ⊆ intXZ(g1+g2) =
∅.

(2)⇔(3). The equivalence of (2) and (3) is clear since the first, the second and the third
inclusions in part (3) are equivalent to f1g1 = 0, intX(Z(g1) ∩ Z(g2)) = ∅ and f2g2 = 0,
respectively.

(2)⇒(4). Let f ∈ C(X). Since posf = coz f ∧0 := C1 and negf = coz f ∨0 := C2 so it
follows by (2) that there exists zero-sets Z1 and Z2 in X such that C1 ⊆ Z1, C2 ⊆ Z2 and
intX(Z1∩Z2) = ∅. Let r ∈ r(X) be such that Z(r) = Z1∩Z2, then C1∩coz r = Z1∩coz r,
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C2∩coz r = Z2∩coz r and Z1∩Z2∩coz r = ∅, i.e., pos f |coz r and neg f |coz r are completely
separated in coz r by Theorem 1.15 in [3].

(4)⇒(5). Let C1 and C2 be two disjoint cozero-sets. Suppose that C1 = cozu and
C2 = coz v, where 0 ≤ u, v ∈ C(X). If we take f = u − v, then clearly C1 = posf and
C2 = negf as C1 ∩ C2 = ∅. Now, using the hypothesis we are done.

(5)⇒(1). Let u, v ∈ C(X) and uv = 0, or equivalently cozu ∩ coz v = ∅. We want to
show that Ann(u) + Ann(v) is a regular ideal, and thus by Lemma 1.1 we conclude that
q(X) is a PF -ring. Using the hypothesis there exists w ∈ C(coz r), 0 ≤ w ≤ 1, such that
w(cozu ∩ coz r) = 0 and w(coz v ∩ coz r) = 1. Now, we define

wr(x) =

{
r(x)w(x) x ∈ coz r
0 x ∈ Z(r).

It is not hard to see that wr ∈ C(X), cozu = (cozu ∩ coz r) ∪ (cozu ∩ Z(r)) ⊆ Z(wr)
and coz v ⊆ Z(r − wr). Thus, wr ∈ Ann(u) and r − wr ∈ Ann(v), which implies that
Ann(u) +Ann(v) is regular.

To complete the proof, notice that by the above lemmas parts (4), (6), (7), (8), (9)
and (10) are equivalent. □

Using part (2) of the above result and Theorem 6.2 in [5], the following corollary is
now evident.

Corollary 2.4. q(X) is a PF -ring if and only if the space of maximal ideals of q(X)
endowed with the hull-kernel topology is an F -space.

Maximal z◦-ideals of C(X) which are in fact maximal in the realm of ideals consisting
entirely of zerodivisors are in a one-to-one correspondence with the maximal ideals of
q(X). Thus, using the above result we have the following corollary.

Corollary 2.5. q(X) is a PF -ring if and only if the space of maximal z◦-ideals of
C(X) endowed with the hull-kernel topology is an F -space.
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Abstract. In this paper, pseudo-symmetric periodic Jacobi matrices are studied. A
partially described inverse eigenvalue problem is solved and some properties of the such
matrices are proved. The necessary conditions under which the problem is solvable are
given and then a numerical example is given demonstrate efficiency of the method.
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1. Introduction
An inverse eigenvalue problem (IEP) is the problem of reconstructing a matrix with

a special structure from prescribed spectral data. By structure we mean the pattern of
entries that are either zero or nonzero. There are many different types of IEPs and the level
of their difficulty depends on the structure of the matrices which are to be reconstructed
and the available eigen information. In [2] Chu gave a perfect characterization of IEPs and
at present many scholars studied different types of IEPs [4,7]. Periodic Jacobi matrices
are important class of matrices and have been studied in different papers. Heydari et al.
in [5] investigated spectral properties of such matrices and other studies can be found
in [1, 3, 8]. Pseudo-symmetric matrices are mainly appear in perturbation analysis and
investigated by Qifang in [6]

A pseudo-symmetric periodic Jacobi matrix is a real matrix of the following form

(1) An =




a1 ϵ1b1 0 0 · · · ϵnbn
b1 a2 ϵ2b2 0 · · · 0
0 b2 a3 ϵ3b3 · · · 0
... 0

. . . . . . . . . ...
0 0 0 bn−2 an−1 ϵn−1bn−1

bn 0 0 0 bn−1 an



,

where bi > 0 and ϵi = ±1.
In this paper we shall use the following notations:
∗Speaker. Email address: mohammad.heidarei@gmail.com

253



M. Heydari

• An denotes the matrix defined as in (1) and by Aj we denote the j × j leading
principle submatrix of An,

• Bj denotes a (j − 1) × (j − 1) matrix obtained by removing the first row and
column of matrix Aj ,

• ϕj(λ) = det(λIj − Aj), j = 1, 2, . . . , n, i.e, the characteristic polynomial of Aj ,
and Ij denotes the identity matrix of order j, for convenience let ϕ0(λ) = 1,

• χj(λ) = det(λIj−1 −Bj), j = 2, 3, . . . , n− 1, for convenience let χ1(λ) = 1

The following problem will be investigated:
Problem 1 For a given list of real numbers Λ = {λ1, λ2, . . . , λn}, a vector Xn =

(x1, x2, . . . , xn)
T and a real nonzero number c, find an n × n matrix An of form (1) such

that λi is an eigenvalue of Ai, (λn, Xn) is an eigenpair of An and ϵnbn = c.

2. Preliminaries
Lemma 2.1. For any monic polynomial P (λ) of order n such that λ1 and λn are its

minimal and maximal roots, the followings relations are true:
• ∀x > λn : P (x) > 0,
• ∀x < λ1 : (−1)nP (x) > 0.

Lemma 2.2. For a pseudo-symmetric Jacobi matrix Jn, the sequence {ϕj(λ)} of char-
acteristic polynomials satisfies the following relations:

• ϕ1(λ) = λ− a1,
• ϕj(λ) = (λ− aj)ϕj−1(λ)− ϵj−1b

2
j−1ϕj−2(λ), j = 2, . . . , n,

to write the recurrences let ϕ0(λ) = 1.

Proof. The recurrence relations can be verified by expanding the determinant. □
Lemma 2.3. For a pseudo-symmetric Jacobi matrix Jn, There is not two successive

leading principle minors of Jn having common eigenvalues.

Proof. We prove this lemma by contradiction. For any j, 3 ≤ j ≤ n, if for any scalar
λ, ϕj(λ) = ϕj−1(λ) = 0, it implies by Lemma 2.2 that

(λ− aj)ϕj−1(λ)− ϵj−1b
2
j−1ϕj−2 = 0,

since ϵj−1 ̸= 0, bj−1 ̸= 0, hence ϕj−2(λ) = 0. By continuing this way, it will end up with
ϕ2(λ) = ϕ1(λ) = 0, and it implies

(λ− a2)ϕ1(λ)− ϵ1b
2
1 = 0.

Because ϕ1(λ) = 0, therefore ϵ1b
2
1 = 0, which is a contradiction to the conditions of the

pseudo-symmetric Jacobi matrix. □

3. Main results
In this section the main results and the solution to the problem are given.

Lemma 3.1. For a pseudo-symmetric periodic Jacobi matrix An, the sequence {ϕj(λ)}
of characteristic polynomials satisfies the following relations:

• ϕ1(λ) = λ− a1,
• ϕj(λ) = (λ− aj)ϕj−1(λ)− ϵj−1b

2
j−1ϕj−2(λ), j = 2, . . . , n− 1,

• ϕn(λ) = (λ−an)ϕn−1(λ)−ϵn−1b
2
n−1ϕn−2(λ)−bn

∏n−1
i=1 ϵibi−ϵn

∏n
i=1 bi−ϵnb

2
n det(λIn−2−

Bn−1).
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Proof. The recurrence relations can be verified by expanding the determinant. □

Lemma 3.2. Let X = (x1, x2, . . . , xn)
T and (λ,X) be an eigenpair of An, then |x1|+

|xn| > 0 and every component xj , j = 2, 3, . . . , n− 1 of X is given by

(2) xj =
ϕj−1(λ)x1 − χj−1(λ)ϵnbnxn∏j−1

i=1 ϵibi
.

Proof. From the eigenidentity AnX = λX, we obtain the following relations:

a1x1 + ϵ1b1x2 + ϵnbnxn = λx1,(3)
bj−1xj−1 + ajxj + ϵjbjxj+1 = λxj , for j = 2, . . . , n− 1,(4)

bnx1 + bn−1xn−1 + anxn = λxn.(5)

We prove the lemma by induction on xjs. By (3) one has

(6) x2 =
(λ− a1)x1 − ϵnbnxn

ϵ1b1
=

ϕ1(λ)x1 − χ1(λ)ϵnbnxn
ϵ1b1

.

Now let the lemma holds for x2, x3, . . . , xj , we prove it for xj+1 such that j+1 ≤ n−1.
By (4) we get

xj+1 =
(λ− aj)xj − bj−1xj−1

ϵjbj

=
(λ− aj)

ϵjbj
xj −

bj−1

ϵjbj
xj−1

=
(λ− aj)

ϵjbj

(
ϕj−1(λ)x1 − χj−1(λ)ϵnbnxn∏j−1

i=1 ϵibi

)
− bj−1

ϵjbj

(
ϕj−2(λ)x1 − χj−2(λ)ϵnbnxn∏j−2

i=1 ϵibi

)

=
(λ− aj)ϕj−1(λ)x1 − (λ− aj)χj−1(λ)ϵnbnxn∏j

i=1 ϵibi
−

ϵj−1b
2
j−1ϕj−2(λ)x1 − ϵj−1b

2
j−1χj−2(λ)ϵnbnxn∏j

i=1 ϵibi

=
(λ− aj)ϕj−1(λ)− ϵj−1b

2
j−1ϕj−2(λ)∏j

i=1 ϵibi
x1 −

(λ− aj)χj−1(λ)− ϵj−1b
2
j−1χj−2(λ)∏j

i=1 ϵibi
ϵnbnxn

=
ϕj(λ)x1 − χj(λ)ϵnbnxn∏j

i=1 ϵibi
.

□

Theorem 3.3. There is a unique solution to Problem 1 if for j = 2, 3, . . . , n, xj ̸=
0, λj ̸= λj−1 and λn /∈ σ(An−1), and the unique solution is given by

a1 = λ1, ϵnbn = c, bn = |c|,

aj = λj − ϵj−1b
2
j−1

ϕj−2(λj)

ϕj−1(λj)
, j = 2, 3, . . . , n− 1,

ϵj−1bj−1 =
ϕj−1(λn)x1 − χj−1(λn)ϵnbnxn

xj
∏j−2

i=1 ϵibi
, bj−1 = |ϵj−1bj−1|, j = 2, 3, . . . , n,

an = λn − ϵn−1b
2
n−1ϕn−2(λ) + bn

∏n−1
i=1 ϵibi + ϵn

∏n
i=1 bi + ϵnb

2
n det(λIn−2 −Bn−1)

ϕn−1(λn)
.

255



M. Heydari

4. Numerical Results
Let Λ = {1, 2,−3, 4,−7}, X5 = {0,−2,−13, 2,−5}, c = −2, By applying the results of

Theorem 3.3 we get the following as solution:

A5 =




1 5 0 0 −2
5 −23 2.4615 0 0
0 2.4615 −3.2308 −26.9612 0
0 0 26.9612 109.2535 −116.6005
2 0 0 116.6005 −53.6402



.

We compute the spectra of all of the leading principle submatrices of A5.
σ(A5) = {29.8375 + 88.4911i, 29.8375− 88.4911i,−24.3057, 2.0133, -7.0000},
σ(A4) = {−24.2205, 1.8765,4.0000, 102.3666},
σ(A3) = {−24.2769, -3.0000, 2.0461},
σ(A2) = {−24,2},
σ(A1) = {1}.

It is easy to see A5X5 = λ5X5 = (0, 14, 91, 14, 35)T , which verifies that the conditions
of the Problem 1 are satisfied.

5. Conclusion
In this work a PDIEP for pseudo-symmetric periodic Jacobi matrices is studied. The

problem involves construction of the matrix by one eigenvector and one eigenvalue of each
of leading principal minor of the required matrix and one extra piece of data. An algorithm
was derived and a numerical example was given to test the efficiency of the algorithm.
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Abstract. In this paper, we consider a kind of monomorphism, namely vital monomor-
phism and study injectivity with respect to this class of monomorphism, which is denoted
by vital prime injective. We investigate some properties of vital injective and study the
behaviour of vital prime injective with respect to products, coproducts and direct sum.
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1. Introduction
Let S be a monoid. A (right) S-act is a non-empty set A together with a map A×S →

A, (a, s) 7→ as, such that for all a ∈ A, s, t ∈ S, (as)t = a(st) and a1 = a. A non-empty
subset B ⊆ A is called a subact of A if bs ∈ B for all b ∈ B and s ∈ S. An element θ
in an S-act A is said to be a zero or fixed element if θs = θ for all s ∈ S. Let A and B
be two S-acts. A mapping f : A → B is called an S-homomorphism if f(as) = f(a)s for
all a ∈ A, s ∈ S. We denote the category of all S-acts and S-homomorphisms between
them by Act-S. We recall from [3], a subact B of right S-act A is vital, if for every
a ∈ A there exists s ∈ S such that as ∈ B. An S-homomorphism f : A → B is vital
S-homomorphism if f(A) is a vital subact of B. A right S-act M is vital injective if it is
injective relative to vital monomorphisms and it is called right S-act M is (fg ,principally)
weakly vital injective if injective relative to monomorphism of (fg, principally) vital right
ideal to S-act S. Let B be a subact of S-act A, the set (B : A) = {s ∈ S : As ⊆ B} is an
ideal of S, which is called the associated ideal of B. We recall from [7], an subact B of
an S-act A is a prime subact if for any a ∈ A and s ∈ S, the inclusion aSs ⊆ B implies
a ∈ B or s ∈ (B : A). A right ideal I of S is prime if and only if I is a prime subact of S.

2. Main results
Definition 2.1. A prime subact B of S-act A is vital prime subact, abbreviation

v-prime subact, if B is vital subact of A. An S-homomorphism f : A −→ B is said to be
v-prime homomorphism, if f(A) is a v-prime subact of B.

∗Speaker. Email address: Masoomeh.Hezarjaribi@pnu.ac.ir
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Definition 2.2. An S-act A is said to be vital prime injective, shortly v-prime injective
if it is injective relative to v-prime monomorphism.

Example 2.3. Let S be a group. Clearly, any S-act is v-prime injective.
By the definition of v-prime injective the following lemma is clear.
Lemma 2.4. An S-act A is v-prime injective if and only if for any S-act C, for any

v-prime subact B and S-homomorphism f : B −→ A, there exists a S-homomorphism
f : C −→ A which extends f .

Similary to [4, Proposition 3.4.2], the following theorem is clear.
Theorem 2.5. An S-act A is weakly v-prime injective if and only if for any S-

homomorphism f : I −→ S, where I ⊆ S is v-prime right ideal of monoid S, there exists
an element a ∈ A such that f(s) = as for every s ∈ I.

Definition 2.6. An S-act A is called v-prime retract of an S-act B, if for every v-
prime monomorphism f : A −→ B there exists an S-homomorphism g : B −→ A such
that gf = idA.

Theorem 2.7. Every v-prime retract of a v-prime injective S-act is a v-prime injective.
Proof. Let B be a v-prime retract of v-prime injective A. We show that B is a

v-prime injective. Consider the following diagram.

C

f
��

// D

g
��

B

g
##
A

g−1
oo

Since A is a v-prime injective there exists an S-homomorphism g : D −→ A such that
g|C = gf . Let f = g−1g. So, we have f |C = g−1g|C = g−1gf = f .

□
Lemma 2.8. Let A be a v-prime injective and be a v-prime subact of an S-act B, then

A is a v-retract of B.
Proof. It is clear. □
By the [8, Theorem 3.24], we have the following result.
Theorem 2.9. Let {Ai|i ∈ I} be a family of v-prime injective then A =

∏
i∈I Ai is a

v-prime injective S-act.
Theorem 2.10. Let S be a monoid with zero and {Ai|i ∈ I} be a family of right S-acts.

If
∏
i∈ I

Ai is a v-prime injective then any Ai is v-prime injective.

Proof. Let B be a v-prime subact of C and f : B −→ Ak be an S-homomorphism.

Define f : B −→ ∏
i∈ I

Ai such that for every x ∈ B, f(x)(i) =
{
f(x) i = k

θi i 6= k
. Since

∏
i∈I

Ai

is a v-prime injective, f can be extended to g : C −→ ∏
i∈I

Ai. Now, the S-homomorphism

ρkg : C −→ Ai extends f , where k is k th projection S-homomorphism and we have
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ρkg(b) = ρkf(b) = ρk(· · · , λak−1
, f(b), λak+1

, · · · ) = f(b) for any b ∈ B, so Ak is v-prime
injective. □

Theorem 2.11. Let {Ai|i ∈ I} be a family of right S-acts. If A =
⨿

i∈I Ai is a v-prime
injective, then Ai, i ∈ I is a v-prime injective.

Proof. Suppose that
⨿
i∈ I

Ai is a v-prime injective, we show that Ai, i ∈ I is a v-prime

injective. Consider the following diagram
B � � //

f
��

C

f{{

f∗

��

Ai

ιi

��⨿
i∈ I

Ai

Since
⨿
i∈ I

Ai is a v-prime injective, then there exists an S-homomorphism f∗ : C −→ ⨿
i∈ I

Ai

such that f∗|B = ιif . We have f∗(x) ∈ Ai for any x ∈ C. Otherwise if there exists j ∈ I
such that f∗(x) ∈ Aj , then for any s ∈ S we have f∗(xs) = f∗(x)s ∈ Aj . Now since
x ∈ C − B, there exists s ∈ S such that xs ∈ B, so f∗(xs) = ιif(xs) ∈ Ai and we have
f∗(xs) ∈ Ai ∩Aj that contradiction since Ai ∩Aj = ∅, so f∗(x) ∈ Ai.

□
Conversly of Theorrem 2.10, is obtained by similar proof of [4, Proposition 3.1.13]

Theorem 2.12. Let S be a left reversible monoid. All coproducts of family of v-prime
injective S-acts is a v-prime injective S-act.
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Abstract. In this paper, a nonconvex optimization problem which the feasible region
is nonconvex set, is considered. A novel neural network model for solving nonconvex
optimization problem is proposed. It is proved that the equilibrium points of the neural
network model coincides with the alternative optimal solutions of the constrained non-
convex optimization problem. Furthermore, it is shown that under suitable assumptions
this model is globally convergent and stable in the sense of Lyapunov at each equilibrium
points. Numerical simulation for a nonconvex otimization problem is discussed.
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ditions, Invex functions
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1. Introduction and Preliminaries

Consider the following nonconvex constraiend optimization problem:

min f(x )

s.t. G(x ) ≤ 0,(1)

H(x ) = 0, x ∈ C,
where G(x ) = [g1(x ), g2(x ), ..., gm(x )], H(x ) = [h1(x ), h2(x ), ..., hl(x )], f , gi and hj are
continuously differentiable functions and C is a closed and convex subset of Rn. Note that
problem (1) is nonconvex if at least one function from f, gi, i = 1, ...,m, is not convex or at
least one function from hj , j = 1, ..., l, is not affine. Let S = {x ∈ C|G(x ) ≤ 0, H(x ) = 0}
is nonconvex set. The collection of optimal solutions of problem (1) are called alternative
optimal solutions and denoted by S∗. In the optimization context, the conventional way
of tackling this problem is the Lagrangian approach which leads to well-known optimality
conditions like the Kuhn-Tucker necessary conditions or saddle point theorem. Thus a
global optimal solution of the problem must be a KKT point and the KKT points are
easier to characterize. In terms of developing neural network models for solving general
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nonconvex optimization, it is very hard to find global optima at the beginning; and a
more attainable goal at present is to design neural networks for seeking local optima first
with the aid of KKT conditions. In last decade, neurodynamic optimization approaches
have been extended to nonconvex and Min-Max optimization problems [2], [3] and [4].
In this paper a modified neural network model is proposed for searching KKT points
of nonconvex constraint optimization problems. It is shown that any equilibrium point
y∗ of the proposed neural network model corresponds to a KKT point (x ∗, λ∗, µ∗) of
the nonconvex problem and contrariwise. Also under some standard assumptions in the
optimization context, the state of the proposed network converges to the global optimal
solution.

Definition 1.1. [1] Let f : D → R, where D is a nonempty convex set in Rn. The
function f is said to be quasiconvex at x̄ ∈ D if

f(λx̄ + (1− λ)x ) ≤ max{f(x̄ ), f(x )},
for each λ ∈ (0, 1) and each x ∈ D.

Definition 1.2. [1] Let D be a nonempty convex set in Rn, and let f : D → R be a
differentiable onD. The function f is said to be pseudoconvex at x̄ ∈ D if∇f(x̄ )T(x−x̄ ) ≥
0 for x ∈ D implies that f(x ) ≥ f(x̄ ).

Definition 1.3. [1] Assume X ⊆ Rn is an open set.The differentiable function f : X → R
is said to be an η-invex function if there exists some function η : X ×X → Rn such that
for each x 1, x 2 ∈ X,

f(x 2) ≥ f(x 1) +∇f(x 1)
Tη(x 1,x 2).

Moreover, f is said to be an η-pseudoinvex function if ∇f(x 1)
Tη(x 1,x 2) ≥ 0 implies that

f(x 2) ≥ f(x 1). Similiarly f is said to be an η-quasi-invex if f(x 2) ≤ f(x 1) implies that
∇f(x 1)

Tη(x 1,x 2) ≤ 0.

2. Global optimality conditions

From know on let x ∗ be a feasible solution for problem (1) and there exist scalars
λ∗ ∈ Rm+ and µ∗ ∈ Rl such that (xT∗, λT∗, µT∗) is a KKT point. Assume that I =
{i|gi(x ∗) = 0}, I+ = {i ∈ I|λ∗i > 0}, J + = {j|µj > 0} and J − = {j|µj < 0}.
Definition 2.1. [1] A feasible solution x ∗ is said to be a regular point if ∇gi(x ∗), for
i ∈ I, and ∇H(x∗) are linearly independent.

Theorem 2.2. [1] In problem (1), let that the KKT conditions hold at x∗. Then x∗ is a
global optimal solution, if one of the following conditions hold:
(i) f is a pseudoconvex at x∗, gi is quasiconvex at x∗ for i ∈ I, hi
is quasiconvex at x∗ for i ∈ J + and hi is quasiconcave at x∗ for i ∈ J −.
(ii) f is pseudoconvex at x∗ and φ is quasiconvex at x∗, where φ(x) =

∑
i∈I λ

∗
i gi(x)

+
∑l

i=1 µ
∗
ih(x).

(iii) f +
∑

i∈I λ
∗
i gi +

∑l
i=1 µ

∗
ihi is pseudoconvex function.

Theorem 2.3. [1] Suppose that x∗ ∈ int C is a feasible point and x∗, λ∗ and µ∗ satisfy
the KKT conditions. Assume further that

dT∇2
xL(x∗, λ∗, µ∗)d > 0, ∀d ∈ P(x∗), d 6= 0,

where:

P(x∗) = {d ∈ Rn|∇gi(x∗)Td ≤ 0, ∀i ∈ I; ∇H(x∗)Td = 0; ∇gi(x∗)Td = 0, ∀i ∈ I+};
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then x∗ is a strict minimum point of problem (1).

Note 1. Let N (x ∗) = {d ∈ Rn|∇gi(x ∗)Td = 0, ∀i ∈ I, ∇H(x∗)Td = 0} and
N+(x ∗) = {d ∈ Rn|∇H(x∗)Td = 0; ∇gi(x∗)Td = 0, ∀i ∈ I+}. We have N (x ∗) ⊆
P(x ∗) ⊆ N+(x ∗). Note that if in Theorem (2.3) substitute the set P(x ∗) with the set
N+(x ∗), we still have a sufficient condition. Furthermore, if I = I+ then N (x ∗) =
P(x ∗) = N+(x ∗).

Theorem 2.4. [1] Consider problem (1) without H(x) = 0. Let (xT∗, λT∗) be a KKT
point. Then x∗ is a global optimal solution if one of the following conditions hold:

(i) f and gi for i ∈ I are all η-invex.
(ii) f is η-pseudoinvex and gi, i ∈ I, are η-quasi-invex.

3. Neural network model

Let x (.), λ(.), µ(.) and y(.) be some time dependent variables. We propose a modified
recurrent neural network model for solving (1), whose dynamical system for initial point
(xT

0 , λ
T
0 , µ

T
0 )T is defined as follows:

(2) D(y) =




x − PC(∇f(x)− (αλ+ β(λ+G(x ))+)∇G(x )−∇H(x )Tµ))
(λ+G(x ))+ − λ

H(x )


 ,

where α > 0, β > 0 and α+ β = 1. We propose the following neural network model:

(3)





dy
dt = MD(y), Dynamical system;
y(t0) = y0, Initial point;
E(y) = 1

2(y − ỹ)TM−1(y − ỹ), Energy function;

where M ∈ Sn+m+l is nonsingular matrix, y(t) = (x (t)T, λ(t)T, µ(t)T)T is the state vector,
x (t) = (In,0,0)y(t) is the output vector and ỹ is an equilibrium point.

Corollary 3.1. [4] Let Ω∗ be a set of equilibrium points of the recurrent neural model (3)
in Rn+m+l, then y∗ ∈ Ω∗ if and only if y∗ = (x∗T, λ∗T, µ∗T)T satisfies the KKT conditions.

3.1. Stability and convergence analysis.

Lemma 3.2. In model (3), for any initial point y0 = (xT(t0), λ
T(t0), µ

T(t0))
T there exists

a unique continuous solution .

Theorem 3.3. [5] Let there exsists a convex set Y ⊆ Rn+m+l which ∇D(y) � 0 on Y .
Suppose that Ω∗ ⊆ Y and y∗ ∈ Ω∗. Then
(i) y∗ is stable in the sense of Lyapunov.
(ii) y(t) has an upper bound.

(iii) dy
dt converges to 0 and any positive limit point of y(t) is an equlibrium point of (3).

(iv) limt→+∞ dist(y(t),Ω∗) = 0.

Corollary 3.4. Let y∗ ∈ Rn+m+l be an equilibrium point for the RNN model (3). Then
x∗ = (In,0n×m,0n×l)y∗ is an optimal solution for (1) if one of the conditions in Theo-
rems 2.2 and 2.4 hold.
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4. Numerical examples

Example 4.1. Consider the following nonconvex optimization problem:

min f(x) = 4x21 − 2.1x41 +
x61
3

+ x1x2 + 4x42 − 4x22

s.t. (
x1
1.9

)2 + (
x2
1.9

)2 ≤ 1, −x
2
1

2
− x2 ≤ 1,

−(x1 + 0.4)− x22 ≤ 1, (x1 − 0.4)− x22 ≤ 1, −x
2
1

2
+ x2 ≤ 1.

The objective function f(x ) is a Six-Hump Camel Back function. As shown in Fig. 1 (A),
there are two global minima and four additional local minima in this problem. Alternative
optimal solutions S∗ = {(−0.0898, 0.7127), (0.0898,−0.7127), (−1.7036, 0.7961),
(1.7036,−0.7961), (−1.6071,−0.5687), (1.6071, 0.5687)}. Let M = I7 and α = β = 1/2.
All simulation results show that the output trajectory of the proposed model converges
to the collection of optimal solutions of this problem. Since f(x ) is a pseudoconvex
at ±(−0.0898, 0.7127) therefore (−0.0898, 0.7127) and (0.0898,−0.7127) are two global
optimal solutions by Theorem 2.2. Fig. 1 (B) shows that the trajectories of the neural
network model with ten random initial points converge to alternative optimal solutions of
this problem. Figs. 1 (C) and 1 (D) depicte the feasible region and the transient behavior
of x (t) with twenty initial points and the contours of the objective function, respectively.

(a) (b) (c) (d)

Figure 1. (A) Visualization of objective function (B) The output tran-
sient behavior of the neural network mode (3) with ten various initial points
(C) The feasible region and the trajectories of the (x1(t), x2(t)) started from
different points (D) The objective function contours and the feasible region.
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Abstract. In this paper, a meshless local radial point interpolation technique is applied
for solving 2D generalized Gross-Pitaevskii equation. An efficient fourth-order time dif-
ferencing Runge-Kutta method is utilized for the time discretization. The main aim of
this paper is to show that the meshless local radial point interpolation method is an
appropriate technique for solving the non-linear partial differential equations especially
generalized Gross-Pitaevskii equation. To show the efficiency of the proposed method, a
comparison between this method and Lattice Boltzman and RBF-DQ methods is done.

Keywords: Generalized Gross-Pitaevskii equation, Local radial point interpolation tech-
nique, Fourth-order time differencing Runge-Kutta method.
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1. Introduction

The nonlinear Schrödinger equation (NLSE) is a very important equation in physics,
and many problems can be described by this equation. The Gross-Pitaevskii equation
(GPE) is one of the NLSE with trapping potential. The GPE describes the dynamics
of Bose-Einstein Condensate at temperature much smaller than the critical condensation
temperature. The generalized Gross-Pitaevskii equation is as follows [5]:
(1)

iψt(x, t) + β∇2ψ(x, t) + γ|ψ(x, t)|2ψ(x, t) + V (x, t)ψ(x, t) +W (x, t) = 0, x ∈ Ω, t > 0,

with Dirichlet boundary condition

(2) ψ(x, t) = g(x, t), x ∈ ∂Ω, t > 0,

and initial condition

(3) ψ(x, 0) = ψ0(x), x ∈ Ω.

The Gross-Pitaevskii equation is presented for the first time by Gross [2] and Pitaevskii [4]
that describes the ground state of a quantum system of identical bosons using the Hartree-
Fock approximation and the pseudo-potential interaction model. The Gross-Pitaevskii
equation has attracted the attention of many researchers and has been solved by different
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methods. In this paper, we consider the meshless local radial point interpolation technique
for finding the numerical solution of generalized Gross-Pitaevskii equation (GGPE).
In recent years, meshless methods for the solution of partial differential equations (PDEs)
has received more and more attention and have become increasingly popular. This is due
to the fact that, no meshing is generally required in meshless methods. In the meshless
methods, the unknown field is approximated by a linear combination of shape functions
built without having recourse to a mesh of the domain. Instead, nodes are scattered in
the domain and a certain weight function with a local support is associated with each of
these nodes.
One of the most important techniques for approximating unknown field in meshless meth-
ods is moving least-squares (MLS) approximation. Although the MLS based methods are
efficient meshless methods, there exists an inconvenience to enforce the essential bound-
ary conditions because the shape function constructed by the moving least-squares (MLS)
approximation lacks the delta function property [3]. In order to eliminate this shortcom-
ing of the MLS shape functions, the radial point interpolation technique, which has the
Kronecker delta function and consistency properties, can be employed instead of the tra-
ditional MLS approximation to construct the meshless shape functions. In this paper, we
apply the meshless local radial point interpolation method for finding numerical solution
of two-dimensional generalized Gross-Pitaevskii equation. The main aim of this paper is
to show that the meshless local radial point interpolation technique is suitable for solving
non-linear PDEs especially generalized Gross-Pitaevskii equation.

2. Discretization process

In meshless methods, the computational domain Ω is discretized via n = nb +nI scat-
tered points X = {xk}nbk=1 ∪{xk}

nb+nI
k=nb+1, where nb is number of boundary points and nI is

number of interior points. In the meshless radial point interpolation method, trial func-
tions ψ(x, t) are written as a linear combination of RPIM shape functions φ1, φ2, . . . , φn
in the following form

(4) ψ (x, t) =
n∑

j=1

φj (x)ψj(t),

where ψj(t) = ψ (xj , t) and RPIM shape functions are defined as follows

(5) Φ(x) := [φ1(x), ..., φn(x), 0, ..., 0︸ ︷︷ ︸
m

] =
[
r(x) p(x)

] [ R0 P
P T 0

]−1
,

where

(6) r(x) = [r1(x), r2(x), ..., rn(x)],

(7) p(x) = [p1(x), p2(x), ..., pm(x)],

(8) R0 :=




r(x1)
r(x2)

...
r(xn)


, P :=




p(x1)
p(x2)

...
p(xn)


,

In the above relations, ri(x) =
(
‖x− xi‖2 + (αch)2

)q
is a radial basis function (RBF),

pj(x) is the monomial in the space Cartesian coordinates x = [x, y]T , and m is the number
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of monomial basis functions.
By using the approximation (4) in Eq. (1) and collocating interior points xk, k = nb +
1, . . . , n, we obtain the following

(9)
i δk [ψt(x, t)] + β ξk [ψ(x, t)] + γ|δk [ψ(x, t)]|2δk [ψ(x, t)] +

δk [V (x, t)] δk [ψ(x, t)] + δk [W (x, t)] = 0.

where δk are point evaluation functionals at xk and functionals ξk are defined as follows

(10) ξk [ψ (x, t)] =
n∑

j=1

∆φj (xk)ψj(t).

Dirichlet boundary conditions (2) are applied as follows

(11) δk [ψ(x, t)] = g (xk, t) , k = 1, 2, . . . , nb.

According to Eqs. (9), for obtaining the unknown coefficients ψj(t), we have a linear
system of ordinary differential equations as





d
dtΨ(t) = f(Ψ, t),

Ψ(t0) = Ψ0.

We apply the fourth-order Runge-Kutta method for solving this linear first-order ODE.

3. Numerical results

In this example, we consider two-dimensional GGPE (1) with parameters β = 1
2 ,

γ = −1. To simulate the interaction of two-dimensional solitons, we set [5]

(12) V (x, y, t) = exp (V1 + V2) ,

(13)

W (x, y, t) = exp [i (x+ y − t)]





1
2 exp (2V1 + V2) + 1

4 exp (V1 + 2V2) +

exp (3V1) + 1
8 exp (3V2)

+ exp (V1) [2iw1 (a1 + 1) + 2iw2 (a2 + 1) + 2V1 + 2]

+1
2 exp (V2) [2iw3 (a3 + 1) + 2iw4 (a4 + 1) + 2V2 + 2]





,

where

(14) V1 = −w2
1 − w2

2, V2 = −w2
3 − w2

4,

(15) w1 = x+ a1t+ b1, w2 = y + a2t+ b2, w3 = x+ a3t+ b3, w4 = y + a4t+ b4.

Here the exact solution of GGPE (1) is [5]

(16) u(x, y, t) = exp [V1 + i (x+ y − t)] +
1

2
exp [V2 + i (x+ y − t)] .

The initial and Dirichlet boundary conditions are obtained from the above exact solution.
We solve this problem with parameters a1 = a2 = −20, a3 = a4 = 20, b1 = b2 = −8
and b3 = b4 = −12. In this problem the computational domain is [0, 20]2. The numerical
computations are done with q = 1.03, αc = 5, τ = 10−4 and L∞ error norms at T = 0.05

266



M. Ilati

Table 1. L∞ errors at T = 0.05.

Lattice Boltzman method [5]
Mesh size Present method CPU(s) RBF-DQ methd [1] Latic size

∥∥e|u|
∥∥
∞

20× 20 4.0326× 10−3 0.42 2.3190× 10−4 150× 150 3.0443× 10−2

40× 40 2.2434× 10−4 1.35 1.0054× 10−4 200× 200 2.1927× 10−2

60× 60 1.0634× 10−5 3.64 5.4082× 10−5 250× 250 1.7868× 10−2

80× 80 1.1623× 10−6 7.13 2.0417× 10−5 300× 300 1.5705× 10−2

Figure 1. Interaction of two solitons for 2D GGPE.

for different mesh size are shown in Table 1. In addition, Table 1 presents a comparison
between the obtained errors using local radial point interpolation technique and local
RBF-DQ procedure [1] and the Lattice Boltzman method [5] with τ = 10−4 at T = 0.05.
As comes from Table 1, the meshless local radial point interpolation technique gives better
results in comparison with local RBF-DQ procedure [1] and the Lattice Boltzman method
[5]. Figure 1 shows the interaction of two solitons at final times T = 0.025 and T = 0.05.

4. Conclusion

In this paper, the meshless local radial point interpolation method was applied for
solvind 2D generalized Gross-Pitaevskii equation. This method was compared with Lattice
Boltzman and RBF-DQ techniques. The results show that this method is suitable for
solving non-linear PDEs especially generalized Gross-Pitaevskii equation.
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Abstract. A Hankel matrix is a square matrix in which each ascending skew-diagonal
from left to right is constant. A matrix R is called integral row stochastic, if each row has
exactly a nonzero entry, +1, and other entries are zero. In the present paper, we describe
L-ray of a matrix and characterize L-rays of integral row stochastic Hankel matrices. We
provide an algorithm for constructing integral row stochastic Hankel matrices.
Keywords: Majorization; Integral row stochastic; Hankel matrices.
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1. Introduction
In linear algebra, a Hankel matrix, named after Hermann Hankel, is a square matrix in

which each ascending skew-diagonal from left to right is constant. If A = [aij ] is a Hankel
matrix, then we have aij = aji = ai+j−2. If each row of a matrix R has exactly a nonzero
entry, +1, and its other entries zero, R is called integral row stochastic. The collection of
all n-by-n integral row stochastic Hankel matrices is denoted by HR(n). Let Mn be the
set of all n-by-n real matrices, and Rn be the set of all n-by-1 real column vectors. Let
e = (1, . . . , 1)t ∈ Rn. For each 1 ≤ k ≤ n let

L(k) = {(k, 1), (k, 2), . . . , (k, k), (k − 1, k), . . . , (1, k)}.
We observe that L(k) consists of the first k positions in row k and column k.
We define the linear function

σ : Mn → Rn

σ(A) = (σ1(A), σ2(A), . . . , σn(A))
t,

by
σk(A) =

∑

(i,j)∈L(k)

aij .

σ(A) is called the L-ray of A.
In this paper, we investigate the image set σ(A) = {σ(A) : A ∈ A}, for each of the classes
of integral row stochastic Hankel matrices. A main reference concerning majorization
is [2].
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2. Main results
In this section, we provide an algorithm for constructing integral row stochastic Hankel

matrices.
Let Pn = [pij ] be the n-by-n permutation matrix where

p1n = p2n−1 = · · · = pn−12 = pn1 = 1,

and all other entries equal to zero. Let ni be the number of i in the vector x.
Note that x = (x1, x2, . . . , xn)

t ∈ {0, 1, 2}n means that xi ∈ {0, 1, 2} for each 1 ≤ i ≤ n.
Following [1] we use the following variation of majorization.

Definition 2.1. Let x = (x1, x2, . . . , xn)
t, y = (y1, y2, . . . , yn)

t ∈ Rn. Then x ≺∗ y if∑k
i=1 xi ≤

∑k
i=1 yi for k < n and

∑n
i=1 xi =

∑n
i=1 yi.

We can obtain the following proposition directly from the definition of an integral row
stochastic Hankel matrices.

Proposition 2.2. Let A ∈ HR(n). Then
(i) 0 ≤ σ1(A) ≤ 1 and for each 2 ≤ k ≤ n we have 0 ≤ σk(A) ≤ 2.
(ii) There exists 1 ≤ k ≤ n such that A = Pk ⊕ Pn−k, and

σ(A) = (σ1(Pk), . . . , σk(Pk), σ1(Pn−k), . . . , σn−k(Pn−k))
t.

(iii) HR(n) = {Pk ⊕ Pn−k : k = 1, 2, . . . , n}.
(iv) σ(P2k) = {(0, . . . , 0, 2, . . . , 2)t} and σ(P2k+1) = {(0, . . . , 0, 1, 2, . . . , 2)t}, where n0 =
n2.

Suppose t is the number of zeros from the left, and k = n0 = n2. Let x ∈ Rn.
(1) k =

n− 2

2
, n1 = 2, and

x = (0, . . . , 0, 1, 2, . . . , 2, 0, . . . , 0, 1, 2, . . . , 2)t

= et+1 + et+k+2 + 2(
∑2t+1

i=t+2 ei +
∑n

i=t+k+3 ei).

(2) k =
n

2
, n1 = 0, and

x = (0, . . . , 0, 2, . . . , 2, 0, . . . , 0, 2, . . . , 2)t

= 2(
∑2t

i=t+1 ei +
∑n

i=t+k+1 ei).

(1)′ k =
n− 1

2
, n1 = 1, and

x = (0, . . . , 0, 2, . . . , 2, 0, . . . , 0, 1, 2, . . . , 2)t

= et+k+1 + 2(
∑2t

i=t+1 ei +
∑n

i=t+k+2 ei).
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(2)′ k =
n− 1

2
, n1 = 1, and

x = (0, . . . , 0, 1, 2, . . . , 2, 0, . . . , 0, 2, . . . , 2)t

= et+1 + 2(
∑2t+1

i=t+2 ei +
∑n

i=t+k+2 ei).

We observe that in (1) and (2) n is even, and in (1)′ and (2)′ n is odd.
In the following, we will show that the matrix constructed by this algorithm is in

HR(n).
Consider the following Algorithm. Theorem 2.3 ensures that Algorithm offers an

integral row stochastic Hankel matrix A with σ(A) = x. e denotes an all ones vector.

Algorithm
Input: A vector x = (x1, x2, . . . , xn)

t ∈ {0, 1, 2}n, x ≺∗ e, and with one of the cases (1),
(2), (1)′, or (2)′.
1. Initialize: Let A = (aij) = 0n (the zero matrix).
2. for k = 1, 2, . . . , n do

(a) If xk = 1, let akk = 1.
Do not use the used rows.

(b) If xk = 2, let l be maximal with l < k and σl(A) = 0.
Let akl = alk = 1.

Output: A.
In the following theorem we describe L−rays of integral row stochastic Hankel matrices.

Theorem 2.3. σ(HR(n)) = {x ∈ {0, 1, 2}n | x ≺∗ e, and one of (1),(2),(1)′, or (2)′
holds}.

Furthermore, if x ∈ {0, 1, 2}n, x ≺∗ e, and one of the cases (1), (2), (1)′, or (2)′ occurs,
then Algorithm offers an integral row stochastic Hankel matrix A with σ(A) = x.

Proof. First, assume that x ∈ σ(HR(n)). There exists some A ∈ HR(n) such that
x = σ(A). Then

k∑

r=1

xr =
k∑

r=1

σr(A) =
∑

i,j≤k

aij ≤ k

for each k ≤ n, and equality holds for k = n. This shows that x ≺∗ e. Proposition 2.2
ensures that x ∈ {0, 1, 2}n and there exists some 1 ≤ k ≤ n such that A = Pk ⊕Pn−k. We
consider two steps.

Step 1. If n is even; this implies that both k and n− k are even or odd.
Case 1. k and n− k are even. Proposition 2.2 ensures that

σ(P2k) = {(0, . . . , 0, 2, . . . , 2)t}
and

σ(Pn−k) = {(0, . . . , 0, 2, . . . , 2)t},
where n0 = n2. We observe that (2) holds.
Case 2. k and n− k are odd. Similar to case 1, we prove it.

Step 2. If n is odd; In a similar fashion, we can prove it.
For the converse, let x ∈ {0, 1, 2}n, x ≺∗ e, and one of the cases (1), (2), (1)′, or (2)′

occurs. We claim that Algorithm constructs some A ∈ HR(n) such that x = σ(A).
Claim: After each iteration k (of step 2) the present matrix A has the property σi(A) =

xi for each i = 1, 2, . . . , k.
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Proof of Claim: Use induction on k. For k = 1 there is nothing to prove. Suppose
that k ≤ n and the statement holds for k′ < k.
We consider three cases.

Case 1. If xk = 0; then A is not modified, and so σk(A) = 0.
Case 2. If xk = 1, then akk = 1, and so σk(A) = 1.
Case 2. If xk = 2, as x ≺∗ e, we see that

∑k
i=1 xi ≤ k, and hence

∑k−1
i=1 xi ≤ k − 2.

If x1, . . . , xk−1 ̸= 0, we have x1, . . . , xk−1 ≥ 1, and hence

k − 1 =

k−1∑

i=1

1 ≤
k−1∑

i=1

xi.

This follows that k− 1 ≤ k− 2, which is a contradiction. Thus, there exists 1 ≤ i ≤ k− 1
such that xi = 0. Let l be maximal l < k with σl(A) = 0. Algorithm ensures that
akl = alk = 1, and so σk(A) = 2.

We see in each case σk(A) = xk. So the statement holds by induction, and we have
σ(A) = x. One can prove A ∈ HR(n), similarly. □
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Abstract. In this paper, we use Albrecht technique to construct a subclass of vari-
able stepsize general linear methods which have large region of absolute stability. Such
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1. Introduction
Consider the initial-value problem (IVP) for a system of autonomous ordinary differ-

ential equations (ODEs)
{
y′(x) = f(y(x)), x ∈ [x0, x],

y(x0) = y0,
(1)

where f : Rm → Rm, y : R → Rm, and m is the dimensionality of the system and f is suf-
ficiently smooth function. In 1966, Butcher [2] provided general linear methods (GLMs)
as a middle ground between two traditional methods; Runge–Kutta (RK) methods and
linear multistep methods (LMMs). To achieve the optimized calculations and effective
implementation, using the variable stepsize technique is necessary. In this direction, Jack-
iewicz [3] studied a class of variable stepsize diagonally implicit multistage integration
methods with Runge–Kutta stability (RKS) property for the numerical solution of ODEs
by using Albrecht’s technique [1]. The goal of this paper is to construct and implement
a class of variable stepsize GLMs (VS-GLMs) without RKS property which have large
region of stability. Similarly as in [3,4], consider a nonuniform mesh

x−ρ < · · · < x−1 < x0 < x1 < · · · < xN , xN > x̄,(2)

and assume hn = xn+1−xn, n = −ρ, . . . , 0, . . . , N+1, σn,i = hn−i

hn
, i = 1, 2, . . . , ρ. Here, the

points x−ρ, . . . , x−1 are introduced in order to simplify the formulas of order conditions.
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It should be noted that we only consider the grids x0, x1, . . . , xN and start the integration
process at xρ for some integer ρ. In this paper, we are going to find methods of the form

{
Y [n+1] = hn(A(σn)⊗ Im)f(Y [n+1]) + (U(σn)⊗ Im)y[n],

y[n+1] = hn(B(σn)⊗ Im)f(Y [n+1]) + (V (σn)⊗ Im)y[n],
(3)

n = 0, 1, . . . , N − 1 where Y
[n+1]
i ≃ y(xn + ci(σn)hn), i = 1, 2, . . . , s, c(σn) = [c1(σn), . . . ,

cs(σn)]
T and the starting values y

[0]
i , i = 1, 2, . . . , r are approximations to linear combi-

nations of y(x−ρ), y(x−ρ+1), . . ., y(x0). The coefficients matrices A(σn) ∈ Rs×s, U(σn) ∈
Rs×r, B(σn) ∈ Rr×s, V (σn) ∈ Rr×r and the vector c(σn) ∈ Rs depend on the ratios of the
current stepsize and the past stepsizes.
Through the paper, we assume that p = q = r = s = ρ and V (σn) is a rank-one matrix,
i.e V (σn) = ev(σn)

T where v(σn) = [v1(σn) v2(σn) . . . vr(σn)]
T , and v(σn)

T e = 1. The
product of matrices V (σn) determines stability properties of the method (3).

Definition 1.1. The method (3) is zero-stable if the product
∏n

j=0 V (σj) is bounded
uniformly with respect to n, i.e. ∥∏n

j=0 V (σj)∥ ≤ L, where L is a scaler.

2. Order conditions
In this section, to derive the order conditions of VS-GLMs (3), assume that the stage

vector Y [n] is an approximation of order q = p and at least one to the vector z1(xn) :=
y(xn + bhn−1), i.e.

Y [n+1] = y(xn + bhn−1) +O(hp+1),

where y is the solution to system (1) and b = c(σn−1)−e, with c(σn−1) = [c1(σn−1), . . . , cs(σn−1)]
T ,

and e = [1, . . . , 1]T . To obtain the order conditions for VS-GLMs (3), we assume that

y[n] =

ρ∑

l=0

βly(xn−l) +O(hp+1), where h = max
0≤n≤N−1

|hn|,

for the some vectors βl = [βi,l]
r
i=1, and require that

y[n+1] =

ρ∑

l=0

βly(xn−l+1) +O(hp+1),

for the same vectors βl. It means that the correct function is defined by z2(xn) :=∑ρ
l=0 βly(xn−l). This leads to a method of order p and provide a starting procedure

to compute the initial vector y[0] such that

y[0] =

ρ∑

l=0

βly(x−l) +O(hp+1).

Define hnd
[n+1] and hnd̂

[n+1] as the local discretization errors by
{

z1(xn+1) = hnA(σn)f(z1(xn+1)) + U(σn)z2(xn) + hnd
[n+1],

z2(xn+1) = hnB(σn)f(z1(xn+1)) + V (σn)z2(xn) + hnd̂
[n+1].

(4)

By substituting the equivalent values z1(xn+1), z2(xn) and z2(xn+1) into equations (4)
and expanding y(xn + c(σn)hn) and y′(xn + c(σn)hn) around the point xn, after some
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computations, we get




hnd
[n+1] = C0(σn)y(xn) +

p∑

µ=1

Cµ(σn)h
µ
ny

(µ)(xn) +O(hp+1),

hnd̂
[n+1] = Ĉ0(σn)y(xn) +

p∑

µ=1

Ĉµ(σn)h
µ
ny

(µ)(xn) +O(hp+1),

(5)

where coefficients Cµ(σn) and Ĉµ(σn), µ = 0, 1, . . . , p are given by




C0(σn) =

ρ∑

l=0

βl − U(σn)

ρ∑

l=0

βl,

Cµ(σn) =
C(σn)

µ!
−A(σn)

C(σn)
µ−1

(µ− 1)!
− (−1)µ

µ!
U(σn)

ρ∑

l=0

(

l∑

ν=1

σn,ν)
µβl,

and




Ĉ0(σn) = (Ir − V (σn))

ρ∑

l=0

βl,

Ĉµ(σn) =
β0
µ!

− (−1)µ

µ!

ρ∑

l=2

βl(

l−1∑

ν=1

σn,ν)
µ −B(σn)

C(σn)
µ−1

(µ− 1)!
− (−1)µ

µ!
V (σn)

ρ∑

l=1

βl(

l∑

ν=1

σn,ν)
µ,

for µ = 1, 2, . . . , p where Ir is identity matrix of dimension equal to r.

Definition 2.1. The method (3) is said to be preconsistent if C0(σn) = Ĉ0(σn) = 0.
Also, it is said to be consistent if C1(σn) = Ĉ1(σn) = 0.

We constract VS-SGLMs up to order four by using the order conditions (5), and assume
c = [0 1

s−1 · · · s−2
s−1 1]. We will have some free components in the coefficients matrices,

after applying the order and stage order conditions (5). Thus, using MATLAB subroutine
fminsearch, we obtain methods in such a way that the underlying fixed stepsize methods
have large regions of stability. The coefficients of the methods for p = q = r = s = ρ ≤ 4
take the form

[
A(σn) U(σn)
B(σn) V (σn)

]
=




0 0 · · · 0 u1,1 u1,2 · · · u1,r−1 1−∑r−1
j=1 u1,j

a2,1 0 · · · 0 u2,1 u2,2 · · · u2,r−1 1−∑r−1
j=1 u2,j

...
... . . . ...

... . . . ...
...

...
as,1 as,2 · · · 0 us,1 us,2 · · · us,r−1 1−∑r−1

j=1 us,j

b1,1 b1,2 · · · b1,s v1 v2 · · · vr−1 1−∑r−1
j=1 vj

...
... . . . ...

...
... . . . ...

...
br,1 br,2 · · · br,s v1 v2 · · · vr−1 1−∑r−1

j=1 vj




,

where all of the components ai,j , ui,j , bi,j and vj are depend on the σn.
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3. Numerical results
In order to show the efficiency of the constructed method, we solve the non-stiff prob-

lem

(6)
[

y′1(x)

y′2(x)

]
=

[
1 1

−2 −1

][
y1(x)

y2(x)

]
,

[
y1(0)

y2(0)

]
=

[
2

1

]
,

with the exact solution y1(x) = 3 sin(x) + 2 cos(x), y2(x) = cos(x) − 5 sin(x), on the
generated meshes according to the pattern hn+1 = ρθn · hn, n = 0, 1, . . . , N , where θn =
(−1)n sin(5πn/(x − x0)) and ρ = 2, with h0 = (x − x0)/N . Moreover, we provide a
numerical estimation to the order of convergence, p, which is computed by the formula

ON = log
(

ge1
ge2

)
/log

(
N2
N1

)
,

where ge1 and ge2 respectively stand for the global error of the methods corresponding to
N1 and N2 grid points.

Table 1. Numerical results of explicit VS-GLMs (5) up to order four

N 1000 2000 4000 8000 16000
method with p = 1 7.57e−01 3.73e−01 1.80e−01 8.57e−02 4.22e−02

ON 1.02 1.06 1.06 1.02
method with p = 2 5.02e−03 1.26e−03 3.15e−04 7.87e−05 1.97e−05

ON 2.00 2.00 2.00 2.00
method with p = 3 1.07e−06 1.35e−07 1.81e−08 2.31e−09 2.66e−10

ON 3.00 2.89 2.97 3.11
method with p = 4 5.20e−7 3.49e−08 2.19e−09 1.40e−10 1.03e−11

ON 3.90 3.99 3.98 3.77

4. Conclusion
We introduced the GLMs in a variable stepsize environment in which the coefficients

matrices of the methods depend on the rations of the current stepsize and the past step-
sizes. By formulating such methods, we derived their order conditions of order p and high
stage order q = p. Finally, some numerical experiments were provided demonstrating the
efficiency and high accuracy of the proposed methods.
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Abstract. The goal of this paper is to study the application of frames in generalized
minimum residual method for solving the operator equation Lu = f where L : H → H
is a bounded, invertible and self-adjoint linear operator on a separable Hilbert space H.
Convergence rate in this approach is formed by upper and lower bounds of a frame, so we
can control the convergence rate by choosing an appropriate frame with desired values
of bounds.
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1. Introduction and Preliminaries
Projection methods are the most recently practical iterative techniques for solving

large linear system of equations
(1) Lu = f,

where L : H → H is a bounded, invertible and self-adjoint linear operator on a separable
Hilbert space H. By using this approach, we can extract canonically an approximation
un to the exact solution u of the linear system from a subspace K ⊆ H, called search
subspace, provided that

f − Lun ⊥ L,
where L ⊆ H is another (maybe the same) subspace, called the subspace of constraints,
of the equal dimension. we refer the interested reader to the book by Saad [5]. In the
meantime, GMRES (Generalized Minimum Residual Method) is of the great importance
in projection methods which utilizes Krylov subspaces K = Km(L, r0) with Arnoldi or-
thonormal basis.
In this paper we study the application of frames in GMRES method for solving opera-
tor equation (1). In [3,4] some numerical algorithms for solving this system have been
developed by using wavelets and frames. The method is designed on the basic of precon-
ditioning the operator equation Lu = f, using frames and then applying GMRES iteration
method but with an orthonormal basis other than Arnoldi type.
We will now give a brief review about the definitions and basic properties of frames. For

∗Speaker. Email address: jamali@vru.ac.ir
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more information we refer the reader to the book by Christensen [2]. Throughout this
paper H will be a separable Hilbert space and Λ denotes a countable index set. We begin
here defining the concept of the frame.

Definition 1.1. Let (ψλ)λ∈Λ ⊂ H. Then (ψλ)λ∈Λ is a frame for H, if there exist
constants 0 < A ≤ B <∞ such that

A ∥ f ∥2H≤
∑

λ∈Λ
|< f, ψλ >|2≤ B ∥ f ∥2H , ∀f ∈ H.

The constants A and B are called the lower and upper frame bounds, respectively. If
AΨ = BΨ, we call (ψλ)λ∈Λ an A-tigh frame. For a frame Ψ = (ψλ)λ∈Λ, the operator

S =: H → H, S(f) =
∑

λ∈Λ
< f, ψλ > ψλ,

is called frame operator which is positive, self-adjoint and invertible, which satisfies
(2) AIH ≤ S ≤ BIH .

Also it has been shown that if (ψλ)λ∈Λ is a frame for H and if L is a bounded onto operator
on H, then the sequence (L (ψλ))λ∈Λ would be a frame for H too. Moreover, if L is also
a self-adjoint operator and S is the frame operator of (ψλ)λ∈Λ, then LSL is the frame
operator of (L (ψλ))λ∈Λ. For more details we refer the reader to [1,2].
In the reminder of the discussion we consider alternatively the following preconditioned
operator equation

(3) 2

A+B
LSLu =

2

A+B
LSf.

2. GMRES method by using frames
First of all for any given frame Ψ = (ψλ)λ∈Λ with frame bounds A and B and frame

operator S, we note that since LSL is a positive definite operator, we can thus define the
following LSL-norm

∥f∥LSL = ⟨LSLf, f⟩ 1
2 , ∀f ∈ H,

with corresponding inner product
⟨f, g⟩LSL = ⟨LSLf, g⟩ , ∀f, g ∈ H.

To continue, we define the recurrence sequence

(4) vn+1 := LSLvn − ⟨LSLvn, LSLvn⟩
⟨vn, LSLvn⟩

vn − ⟨LSLvn, LSLvn−1⟩
⟨vn−1, LSLvn−1⟩

vn−1 n ≥ 0,

with v−1 = 0, v0 = 2
A+BLSLu. For this sequence, we have some pleasant properties

exhibited in the two following lemmas.

Lemma 2.1. Let u be the exact solution of (3) and let us define the space

Kn := span

{(
2

A+B
LSL

)i

u : 1 ≤ i ≤ n

}
= span

{
(LSL)i u : 1 ≤ i ≤ n

}
,

then for vectors vi defined by (4), we have
(5) {v0, v1, . . . , vn−1} ⊂ Kn.

Lemma 2.2. The system {v0, v1, . . . , vn−1}, forms an orthogonal basis for Kn with
respect to the inner product ⟨·, ·⟩LSL.
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To continue, for each m, we define the tridiagonal matrix Hm = [hij ]m+1×m such that
hij = 0 for each i ̸= j − 1, j, j + 1, and hj−1,j =

⟨LSLvj ,LSLvj−1⟩
⟨vj−1,LSLvj−1⟩ , hjj = ⟨LSLvj ,LSLvj⟩

⟨vj ,LSLvj⟩ , and
hj+1,j = 1. Let Vm denotes the n×m matrix with column vectors v1, . . . , vm.
Concerning to above discussion, if Ψ = (ψλ)λ∈Λ is a frame for H with frame operator S,
and L be as in (1) and if A, B are the frame bounds of the frame LΨ = (L (ψλ))λ∈Λ,
FGMRES can be defined algorithmically as follows:
FGMRES [L, S, ϵ, A,B] → uϵ

(1): i := 0, ui0 = 0, v0 =
2

A+BLSf

(2): Compute ri0 = (LS)f − (LSL)ui0
(3): i := i+ 1, i ≤ m

(4): hi−1,i =
⟨LSLvi,LSLvi−1⟩
⟨vi−1,LSLvi−1⟩ , hii = ⟨LSLvi,LSLvi⟩

⟨vi,LSLvi⟩ , hi+1,i = 1

(5): For j = i− 1, i, i+ 1 Do vi := (LSL)vi−1 + hjivi−1

(6): Put tridiagonal matrix Hi = {hji}i−1≤j≤i+1,1≤i≤m

(7): Compute xi the minimizer of
∥∥Hix− A+B

2 e1
∥∥
LSL

and ui = Vixi.

(8): If
(
B4−A4

B4

)i/2 ∥∥ri0
∥∥
LSL

< ϵ stop and set uϵ := ui, if else set ui0 = ui and Goto
(2).

3. Convergence analysis
Here, we study the convergence of FGMRES under the already known assumption

that LSL is a positive definite operator, where L is as in (1) and S is the frame operator
of a frame (ψλ)λ∈Λ. As one may expect, the convergence rate obtained via FGMRES is
directly computed by using frame bounds of (L (ψλ))λ∈Λ.

First of all, we present here an auxiliary lemma.

Lemma 3.1. [5] Let A be a positive definite operator and assume that L = AK. Then
a vector um is the result of an (oblique) projection method onto K LSL-orthogonally to L
with the starting vector uk0 if and only if it minimizes the LSL-norm of the residual vector
b−Au over u ∈ uk0 +K, i.e., if and only if

∥∥∥b−Auk+1
m

∥∥∥
LSL

= min
u∈uk

0+K
∥b−Au∥LSL .

Theorem 3.2. Let LSL be as mentioned, then for each m the residual vector
rk+1
m = (LS)f − (LSL)uk+1

m ,

of FGMRES method satisfies

(6)
∥∥∥rk+1

m

∥∥∥
LSL

≤
(
B4 −A4

B4

)1/2 ∥∥∥rk0
∥∥∥
LSL

.

Since
(
B4−A4

B4

)1/2
< 1, FGMRES converges to the exact solution of (1) for any initial

guess. This convergence rate suggests also that the more closely to be to a tight frame,
the faster convergence of {un} to the exact solution of (1) is expected.
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Abstract. Let G be a connected graph and W = {w1, w2, . . . , wk} be an ordered subset
of vertices of G. For any vertex v of G, the ordered k-vector

r(v|W ) = (d(v, w1), d(v, w2), . . . , d(v, wk))

is called the metric representation of v with respect to W , where d(x, y) is the distance
between the vertices x and y. A set W is called a resolving set for G if distinct vertices of
G have distinct metric representations with respect to W . A resolving set W is called a
non-isolated resolving set for G if the induced subgraph ⟨W ⟩ of G has no isolated vertices.
The minimum cardinality of a non-isolated resolving set for G is called the non-isolated
resolving number of G and denoted by nr(G). The aim of this paper is to investigate
resolving number of corona product graphs of some families of graphs.
Keywords: non-isolated resolving sets, adjacency dimension, corona product.
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1. Introduction
In this section, we present some definitions and notations which are necessary to prove

main results. Throughout this paper, G is a simple nontrivial graph with vertex set V (G)
and edge set E(G). G denotes the complement of the graph G. The distance between
two vertices u and v, denoted by d(u, v), is the length of a shortest path between u and v.
The number of all neighbors of a vertex v is deg(v). We use symbols (v1, v2, . . . , vn) and
(v1, v2, . . . , vn, v1) for a path of order n, Pn, and a cycle of order n, Cn, respectively.

For an ordered subset W = {w1, . . . , wk} of V (G) and a vertex v of G, the metric
representation of v with respect to W is

r(v|W ) = (d(v, w1), . . . , d(v, wk)).

The set W is a resolving set for G if the distinct vertices of G have different metric
representations, with respect to W . A resolving set W for G with minimum cardinality is
a metric basis of G, and its cardinality is the metric dimension of G, denoted by dim(G).
A resolving set W is called a non-isolated resolving set for G if the induced subgraph ⟨W ⟩
of G has no isolated vertices. The minimum cardinality of a non-isolated resolving set for
G is called the non-isolated resolving number of G and denoted by nr(G).
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The concepts of resolving sets and metric dimension of a graph were introduced inde-
pendently by Slater [6] and by Harary and Melter [3]. Resolving sets have applications
in diverse areas such as coin weighing problem, robot navigation in networks, network
discovery and verification, strategies for mastermind game, and chemical structures in
pharmacy. Several variations of resolving sets were introduced by imposing conditions
on the subgraph induced by a resolving set. One of these variations is the concept of
non-isolated resolving sets. The concepts of non-isolated resolving sets and non-isolated
resolving number were introduced in [5]. The non-isolated resolving number of some fami-
lies of graphs such as paths, complete graphs, bipartite graphs and some friendship graphs
are obtained in [5]. For more results about non-isolated resolving sets see [1,2,5].

The corona product of graphs G and H, denoted by G⊙H, is obtained by taking one
copy of G and n(G) copies of H, and by joining each vertex of the ith copy of H to the
ith vertex of G, 1 ≤ i ≤ n(G).

In this paper we consider non-isolated resolving number of (G ⊙H). Our tool is the
adjacency dimension of graphs.

Definition 1.1. [4] Let G be a graph, and let W = {w1, . . . , wk} ⊆ V (G). For each
vertex v ∈ V (G), the adjacency representation of v with respect to W is the k-vector

r2(v|w) = (aG(v, w1), . . . , aG(v, wk)),

where aG(v, wi) = min{2, d(v, wi)}. The set W is an adjacency resolving set for G if
the vectors r2(v|W ) for v ∈ V (G) are distinct. The minimum cardinality of an adjacency
resolving set is the adjacency dimension of G, denoted by dim2(G). An adjacency resolving
set of cardinality dim2(G) is an adjacency basis of G.

We will show the relation between nr(G ⊙H) and adjacency dimension of H. Using
this relation nr(G⊙H) can be computed for many families of graphs.

2. Main results
This section is aimed to investigate non-isolated resolving number of corona product

nontrivial graphs G and H based on adjacency dimension of graphs. The next Lemma
states the connection between non-isolated resolving number of a graph and its adjacency
dimension.

Lemma 2.1. Let G be a connected graph of order n ≥ 2 and H be an arbitrary graph
of order at least 2. Then

n dim2(H) ≤ nr(G⊙H) ≤ n(1 + dim2(H)).

To find the exact value of nr(G⊙H) we need to recognize adjacency bases of H.

Theorem 2.2. Let G be a connected graph of order n ≥ 2 and H be an arbitrary graph
of order at least 2. Then nr(G⊙H) = n dim2(H) if and and only if H has an adjacency
basis without any non-isolated vertex.

Using Lemma 2.1 and Theorem 2.2 the exact value of nr(G⊙H) can be computed for
many families of graphs. Let us start with some useful results on the adjacency dimension
of graphs.

Lemma 2.3. [4] Let H be a graph of order m.
• If diam(H) = 2, then dim2(H) = dim(H).
• If H is connected, then dim2(H) ≥ dim(H).
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• 1 ≤ dim2(H) ≤ m− 1.
• dim2(H) = m− 1 if and only if H = Km or H = Km.
• dim2(H) = 1 if and only if H ∈ {P1, P2, P3, P 2, P 3}.
• If m ≥ 4, then dim2(Cm) = dim2(Pm) = ⌊2m+2

5 ⌋.
• If Km1,...,mt is the complete t-partite graph with r parts of size at least 2 and the
other parts of size 1 and

∑t
i=1mi = m, then

dim2(Km1,...,mt) = dim(Km1,...,mt) =

{
m− r − 1 if r ̸= t,
m− r if r = t.

Lemmas 2.3, 2.1 and Theorem 2.2 conclude the following corollary.

Corollary 2.4. Let G be a connected graph of order n ≥ 2 and H be a graph of order
m ≥ 2.

• If H is a graph with diam(H) = 2, then n dim(H) ≤ nr(G⊙H) ≤ n(1+dim(H)).
• If H is connected, then nr(G⊙H) ≥ n dim(H).
• 2n ≤ nr(G⊙H) ≤ nm.
• nr(G⊙H) = nm if and only H = Km.
• nr(G⊙Km) = n(m− 1), for m ≥ 3.

If H ∈ {Pm, Pm}, for some m ≥ 2 then nr(G ⊙ H) is obtained by the following
theorem.

Theorem 2.5. Let G be a connected graph of order n ≥ 2. Then

nr(G⊙ Pm) =

{
n⌊2m+2

5 ⌋ if m ≥ 4,
2n if m ∈ {2, 3}.

And
nr(G⊙ Pm) =

{
n⌊2m+2

5 ⌋ if m ∈ {4, 5, 9},
n(⌊2m+2

5 ⌋+ 1) otherwise.

Now we consider nr(G⊙H), in the case H is a cycle or its complement.

Theorem 2.6. Let G be a connected graph of order n ≥ 2. Then

nr(G⊙ Cm) =

{
n⌊2m+2

5 ⌋ if m ≥ 4,
3n if m ∈ {3, 4}.

And
nr(G⊙ Cm) =

{
n⌊2m+2

5 ⌋ if m ∈ {3, 4, 5, 9},
n(⌊2m+2

5 ⌋+ 1) otherwise.

The following theorem computes the non-isolated resolving number of the complete
t-partite graphs.

Theorem 2.7. If Km1,...,mt is the complete t-partite graph with r parts of size at least
2 and the other parts of size 1 and

∑t
i=1mi = m, then

nr(G⊙Km1,...,mt) = n(m− r).

And

nr(G⊙Km1,...,mt) =





n(m− r) if r = t,
n(m− 1) if t = 2, r = 1,
n(m− r − 1) otherwise.

The next lemma gives a lower bound for nr(G⊙H), in terms of order of G and nr(H).
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Lemma 2.8. Let G be connected graph of order n(G) ≥ 2 and H be a graph of order
at least 2. Then

n(G)nr(H) ≤ nr(G⊙H).

A set S ⊆ V (H) is a dominating set for H if for each x ∈ V (H) \S, x has a neighbour
in S. The minimum cardinality of a dominating set, γ(H), is domination number of H. If
B is an adjacency resolving set for H such that the adjacency representation of no vertex
of H is (2, 2, . . . , 2), then B is a dominating set for H. This means dim2(H) + 1 ≥ γ(H).
Therefore we have the following lower bound for nr(G⊙H).

Theorem 2.9. Let G be a connected graph of order at least 2, and H be a graph of
order at least 2. Then

n(G)(γ(H)− 1) ≤ nr(G⊙H).

3. Conclusion
The non-isolated resolving number of corona product of graphs G and H of order at

least two is considered in this paper. The structure of G ⊙K1 is special and there is no
any results about nr(G ⊙ K1) in the context. Therefore the study of nr(G ⊙ K1) is an
interesting work for future.
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Abstract. In this paper, semi-quasidifferentiability, as a generalization of well-known
quasidifferentiability, is considered to obtain some optimality conditions for a nonsmooth
optimization problem. We show that, under some constraint qualifications and a non-
degeneracy condition, the KKT-type optimality conditions are achievable. This is done
without imposing any locally Lipschitz or continuity or convexity assumption on the
objective and constraint functions.
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1. Introduction

The quasidifferentiability notion has experienced significant development in nonsmooth
analysis to deal with nonsmooth optimization problems with directionally differentiable
objective(s) and/or constraint functions. This notion was firstly introduced by Pshenichnyi
[5] and after that was developed by Demyanov and Rubinov [1]. Nonsmooth functions
even under locally Lipschitz condition, which is a necessity condition in many nonsmooth
optimization problems, are not necessarily directionally differentiable. Recently, Kabgani
and Soleimani-damaneh [4] have introduced the notion of semi-quasidifferentiability based
on the quasidifferentiability and the convexificator notion developed by Jeyakumar and
Luc [2]. They have shown that, if f : Rn → R is locally Lipschitz, then f is semi-
quasidifferentiable on a dense subset of Rn. Moreover, Kabgani [3] has shown that semi-
quasidifferentiability is useful for characterization of generalized convex functions. In this
paper, we consider a nonsmooth constrained optimization problem and obtain some KKT
optimality conditions for it. In the rest of this section, we recall some definitions and
preliminaries. The main results are presented in Section 2.
For a set S ⊆ Rn, we use the notations coS and clS to denote the convex hull and the
closure of S, respectively. Throughout the paper, we use the conventions ∞−∞ = ∞,
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0 · ∞ = 0, and ∞ · ∞ = ∞. The notation 〈·, ·〉 is utilized to denote the standard inner
product.

For a nonempty set S ⊆ Rn, the tangent cone to S at x̄ ∈ clS, denoted by TS(x̄) is
defined as

TS(x̄) := {d ∈ Rn : ∃tn ↓ 0, ∃{dn} ⊆ Rn s.t. dn → d, x̄+ tndn ∈ S} .
The polar cone of a set S is defined by

S◦ := {d ∈ Rn : 〈d, x〉 ≤ 0, ∀x ∈ S}.
The convex cone generated by S ⊆ Rn, is defined as follows:

pos (S) :=

{
y ∈ Rn : ∃l ∈ N s.t. y =

l∑

i=1

λiyi, λi ≥ 0, yi ∈ S, i = 1, 2, . . . , l

}
.

The upper Dini directional derivative and the upper Dini-Hadamard directional deriv-
ative of f : Rn → R at x ∈ Rn in direction d ∈ Rn are respectively defined by

f+(x; d) := lim sup
t↓0

f(x+ td)− f(x)

t
,

fDH(x̄; d) = lim sup
d′→d
t↓0

f(x̄+ td′)− f(x̄)

t
.

Definition 1.1. [4] The function f : Rn → R is called DH-regular at x̄ ∈ Rn if
fDH(x̄; d) = f+(x̄; d) for any d ∈ Rn.

The class of DH-regular functions contains convex and locally Lipschitz functions.

Definition 1.2. [4] The function f : Rn → R is said to be semi-quasidifferentiable
at x̄ ∈ Rn if there are two nonempty closed sets ∂∗f(x̄), ∂∗f(x̄) ⊆ Rn such that

f+(x̄; d) = sup
η∈∂∗f(x̄)

〈η, d〉+ inf
ζ∈∂∗f(x̄)

〈ζ, d〉, ∀d ∈ Rn.

The pair of closed sets (∂∗f(x̄), ∂∗f(x̄)) is said to be a semi-quasidifferential (SQD) of f
at x̄. Moreover, ∂∗f(x̄) and ∂∗f(x̄) are called the SQD parts. An SQD is called compact
if both its parts are compact.

2. Main results

We consider the following optimization problem:

min f(x)(1)

s.t. gi(x) ≤ 0, i ∈ I := {1, . . . ,m},
where f, gi : Rn → R for i ∈ I are real-valued functions. The set of feasible solutions of
Problem (1) is

(2) K := {x ∈ Rn : gi(x) ≤ 0, i ∈ I}.
We assume K 6= ∅. For a given x̄ ∈ K, set I(x̄) := {i ∈ I : gi(x̄) = 0}. We do not
impose any locally Lipschitz or continuity or convexity assumption on the objective and
constraint functions. We assume that gi for i ∈ I(x̄) admits an SQD (∂∗gi(x̄), ∂∗gi(x̄)) at
x̄, and define

S(x̄) :=
⋃

i∈I(x̄)

[
∂∗gi(x̄) + ∂∗gi(x̄)

]
.
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Theorem 2.1 provides a necessary optimality condition under DH-regularity.

Theorem 2.1. Assume that f is DH-regular at x̄ and has a compact SQD at x̄ as
(∂∗f(x̄), ∂∗f(x̄)). If x̄ is an optimal solution of Problem (1), [S(x̄)]◦ ⊆ TK(x̄), and
pos(S(x̄)) is closed, then there exist µi ≥ 0, (i ∈ I) such that

0 ∈ co (∂∗f(x̄)) + co (∂∗f(x̄)) +
∑

i∈I
µi (∂∗gi(x̄) + ∂∗gi(x̄)) .

In Theorem 2.5, another necessary optimality condition for optimal solutions in terms
of SQDs is provided. In this theorem, the SQD of the objective function is not necessarily
compact. Assume that ζ̄ = (ζ̄1, . . . , ζ̄m) ∈∏i∈I ∂

∗gi(x̄) is given. Define

Z(ζ̄) :=


 ⋃

i∈I(x̄)

(co (∂∗gi(x̄)) + ζ̄i)


 .

and Q(ζ̄) :=
(
Z(ζ̄)

)◦
.

Definition 2.2. We say that the constraint qualification 1 (CQ1) at x̄ holds if there
exists d ∈ Rn such that

(3) max
η∈∂∗gi(x̄)

〈η, d〉+ max
ζ∈∂∗gi(x̄)

〈ζ, d〉 < 0, ∀i ∈ I(x̄).

Definition 2.3. [4] We say that the constraint qualification 2 (CQ2) at x̄ holds if
for each ζ̄ = (ζ̄1, . . . , ζ̄m) ∈∏i∈I ∂

∗gi(x̄), pos
(
Z(ζ̄)

)
is closed.

Remark 2.4. If there exists d ∈ Rn such that (3) holds, then

0 /∈ co


 ⋃

i∈I(x̄)

(∂∗gi(x̄) + ∂∗gi(x̄))


 .

Thus,

pos


co


 ⋃

i∈I(x̄)

(∂∗gi(x̄) + ∂∗gi(x̄))




 = pos


 ⋃

i∈I(x̄)

(∂∗gi(x̄) + ∂∗gi(x̄))


 ,

is a closed set. Similarly, for each ζ̄ = (ζ̄1, . . . , ζ̄m) ∈∏i∈I ∂
∗gi(x̄), pos

(⋃
i∈I(x̄)(∂∗gi(x̄) + ζ̄i)

)

is closed. Thus, CQ1 implies CQ2.

Consider the Assumptions A as follows.
Assumptions A:
There exists a convex neighbourhood U of x̄ ∈ K such that:
i) For each i ∈ I(x̄), the function gi is semi-quasidifferentiable on U .
ii) For each i ∈ I(x̄), the set-valued mapping ∂∗gi(·) ∪ ∂∗gi(·) is deleted locally bounded
at x̄ with neighborhood U .
iii) For each i ∈ I(x̄), the function gi is lower semicontinuous on U . For each i /∈ I(x̄), gi
is upper semicontinuous at x̄.

Set
Υ(x̄) := {d ∈ Rn : g+

i (x̄; d) < 0, ∀i ∈ I(x̄)},

Ξ(x̄) := {d ∈ Rn : g+
i (x̄; d) ≤ 0, ∀i ∈ I(x̄)}.
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We say the non-degeneracy condition holds at x̄ if

(4) Υ(x̄) 6= ∅ & Ξ(x̄) = cl Υ(x̄).

Theorem 2.5. Assume that f has an SQD at x̄ as (∂∗f(x̄), ∂∗f(x̄)), assumptions A
are fulfilled and the non-degeneracy condition (4) holds at x̄. If x̄ is an optimal solution
of Problem (1), co(∂∗f(x̄)) + co (∂∗f(x̄)) + Q(ζ̄) is a closed set, and CQ1 or CQ2 hold,
then for each (ζ1, . . . , ζm) ∈∏i∈I ∂

∗gi(x̄), there exist some vector (µ1, . . . , µm) ∈ Rm= such

that
0 ∈ co(∂∗f(x̄)) + co (∂∗f(x̄)) +

∑

i∈I
µi(co(∂∗gi(x̄)) + ζi)).

Example 2.6. Consider the following optimization problem:

(5) min f(x) s.t. g(x) ≤ 0,

where

f(x) =

{
|x|, x ∈ Q,
0, otherwise.

g(x) =

{
1− x, x > 0,
x, x ≤ 0.

The feasible set is K = (−∞, 0] ∪ [1,+∞). Let x̄ = 0. Here, f is DH-regular at x̄.
Furthermore, ({−1, 1}, {0}) is an SQD for f . Also, ([0,∞), {1}) is an SQD of g at x̄. We
have TK(x̄) = (−∞, 0], [S(x̄)]◦ ⊆ TK(x̄), and pos (S(x̄)) is closed. Here, x̄ is an optimal
solution and

0 ∈ co (∂∗f(x̄)) + co (∂∗f(x̄)) + µ (co (∂∗g(x̄)) + co (∂∗g(x̄))) ,

for µ = 1.

3. Conclusion

The semi-quasidifferentiability notion, recently introduced by the authors, is a useful
generalization of the well-known quasidifferentiability notion. This paper shows how this
new notion could be applicable to obtain optimality conditions for nonsmooth optimiza-
tion problems whose the objective and/or constraint functions are not necessarily locally
Lipschitz or continuous or convex.
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Abstract. In this paper, we introduce the notion of the binary corona of asymptotic re-
semblance spaces as a new large scale property of asymptotic resemblance spaces (coarse
spaces). In special cases, binary corona can be considered as a generalization of the
notion of space of ends of locally compact Hausdorff topological groups.
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1. Introduction and Preliminaries

The notion of coarse structures has been introduced by Roe and it is widely known
as an appropriate way for defining large scale structures on sets ( [5]). A coarse structure
on a set X is a family of subsets of X ×X with some additional properties and it can be
considered as a large scale counterpart of the notion of uniformity. Honari and Kalantari
defined the concept of asymptotic resemblance as a large scale structure such that it can
be considered as a large scale analogous of the small scale notion proximity ( [3]). From
now on we denote the family of all subsets of a set X by P(X).

Definition 1.1. Let X be a set and let λ be an equivalence relation on P(X). The relation
λ is called an asymptotic resemblance relation (an AS.R) on X if,
i) AiλBi for each i ∈ {1, 2} then (A1 ∪A2)λ(B1 ∪B2).
ii) Aλ(B1 ∪ B2) and B1, B2 6= ∅ then there are A1, A2 ⊆ X such that A = A1 ∪ A2 and
AiλBi, for i ∈ {1, 2}.
If λ is an AS.R on the set X then the pair (X,λ) is called an asymptotic resemblance
space (an AS.R space).

Each coarse structure on a set X can induce an AS.R on X and relatively all concepts
of large scale geometry can be carried out to AS.R spaces (see for example [3]).
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Definition 1.2. Let (X,λ) be an AS.R space. A subset D of X is called bounded if D = ∅
or Dλ{x}, for some x ∈ X. Assume that (X,λ) and (Y, λ′) are two AS.R spaces. A map
f : X → Y is called an AS.R mapping if the inverse image of each bounded subset of Y is
a bounded subset of X and AλB implies f(A)λ′f(B), for all A,B ⊆ X. An AS.R mapping
f : X → Y is called an asymptotic equivalence between AS.R spaces (X,λ) and (Y, λ′) if
there exists some AS.R mapping g : Y → X such that f ◦ g(B)λ′B and g ◦ f(A)λA, for all
A ⊆ X and B ⊆ Y . If there exists an asymptotic equivalence between AS.R spaces (X,λ)
and (Y, λ′) then they are called to be asymptotic equivalent.

Large scale properties are those properties of AS.R spaces that are invariant under
asymptotic equivalences.
Classifying finitely generated groups by using the large scale properties of their Cayley
graphs is one of the main questions in geometric group theory. One of the well-known
such properties is the notion of ends of finitely generated groups defined by Freudenthal
( [2]). The space of ends of a finitely generated group G is a totally disconnected compact
topological space and the cardinality of this space is called the number of ends of G. It
is known that a finitely generated group has 0, 1, 2 or infinitely many ends, and the space
of ends of finitely generated groups do not depend on the choice of generating sets. For
more details about the space of ends of finitely generated groups, see §8 of [1]. It worth
mentioning that the structure of groups with 0, 2 or infinitely many ends is completely
known. By using the Stone Representation Theorem Specker generalized the concept of
ends of finitely generated groups to all locally compact Hausdorff topological groups ( [6]).
Before going further, let us recall that if X is a nonempty set, then P(X) can be considered
as a Boolean ring with two operations mentioned below:

A+B = A∆B = (A \B) ∪ (B \A)

AB = A ∩B
where A,B ⊆ X. Now we can mention Specker’s definition of space of ends.

Definition 1.3. Suppose that G is a locally compact Hausdorff topological group and let
K denote the family of all relatively compact subsets of G. Clearly, K is an ideal in the
Boolean ring P(G). Assume that PG(G) denotes the set of all [A] ∈ P(G)/K such that
AK∆A ∈ K, for all K ∈ K. It can be easily seen that PG(G) is a Boolean ring, and
the Stone representation theorem shows that there exists a totally disconnected compact
topological space E(G) such that the ring PG(G) is isomorphic to the ring of all clopen
subsets of E(G). The topological space E(G) is called the space of ends of the topological
group G, and its cardinality is called the number of ends of G.

Contrary to the geometric way of defining the notion of space of ends of finitely gen-
erated groups, the Definition 1.3 is somehow algebraic. It is also known that each locally
compact Hausdorff topological group has 0, 1, 2 or infinitely many ends.
As we mentioned before, one can try to classify finitely generated groups by large scale
properties of their Cayley graphs, and thus, finitely generated groups are one of the main
objects that large scale geometry tries to investigate. For investigating more general groups
in large scale geometry, we can use the following definition (see [4]).

Definition 1.4. Suppose that G is a group. The subsets F of P(G) is called a generating
family on the group G if F contains a nonempty subset of G and each subset of a member
of F is in F and in addition

A−1, AB,A ∪B ∈ F
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for all A,B ∈ F .

Now let G be a group and assume that F is a generating family on G. If A,B ⊆ G,
define AλFB if there exists some F ∈ F such that A ⊆ BF and B ⊆ AF . It can be shown
that λF defines an AS.R on G and if

⋃
F∈F F = G then the family of all bounded subsets

of (G,λF ) is equal to F .

Example 1.5. Suppose that G is a group, then the family of all finite subsets of G is a
generating family on G. If G is a locally compact group, then the family of all relatively
compact subsets of G is a generating family on G.

2. Definition of binary corona and some results

We begin by defining the binary corona of asymptotic resemblance spaces.

Definition 2.1. Suppose that (X,λ) is an AS.R space. We say two subsets A and B of
X are asymptotically disjoint if L1 ⊆ A and L2 ⊆ B and L1λL2 then L1 and L2 are both
bounded. By this definition each bounded subset of X is asymptotically disjoint from
all subsets of X. We denote the family of all A ⊆ X such that A and Ac = X \ A are
asymptotically disjoint by Dλ(X).

Definition 2.2. Suppose that (X,λ) is an AS.R space and let B denote the family of
all bounded subsets of X. It is easy to see that B is an ideal in the Boolean ring P(X).
Denote the quotient Boolean ring P(X)/B by P∗(X). Assume that Pλ(X) denotes the
family of all [A] ∈ P∗(X) such that A ∈ Dλ(X). It can be shown that Pλ(X) is well
defined, and it is a Boolean ring. By using the Stone representation theorem, there exists
a totally disconnected compact topological space Eλ(X) such that Pλ(X) is isomorphic to
the Boolean ring of the family of all clopen subsets of Eλ(X). We call Eλ(X) the binary
corona of the AS.R space (X,λ).

The following theorem shows that Definition 2.2 offers a large scale property.

Theorem 2.3. Suppose that (X,λ) and (Y, λ′) are two asymptotically equivalent AS.R
spaces. Then Pλ(X) and Pλ′(Y ) are two isomorphic Boolean rings.

Corollary 2.4. Two asymptotic equivalent AS.R spaces have homeomorphic binary coro-
nas.

The following proposition shows that Definition 2.2 is a generalization of the definition
of ends of locally compact Hausdorff topological groups (Definition 1.3).

Proposition 2.5. Suppose that G is a locally compact Hausdorff topological group and let
K denote the family of all relatively compact subsets of G. Assume that λ = λK. Then
E(G) = Eλ(G).

A subset D of an AS.R space (X,λ) is called a large scale continuum if D = D1 ∪D2,
for two asymptotically disjoint subsets D1 and D2 of X, then D1 is bounded or D2 is
bounded.

Proposition 2.6. Suppose that (X,λ) is an AS.R space. Then Eλ(X) is singleton if and
only if X is a large scale continuum.

Example 2.7. Suppose that D denotes the family of all bounded subsets of Q with respect
to the standard metric of Q. It can be easily seen that D is a generating family on G.
Assume that F denotes the family of all finite subsets of Q. Let λ = λD and λ′ = λF . It
can be shown that Eλ(Q) has two elements and Eλ′(Q) has infinite elements.
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Abstract. In this paper, the power boundedness and mean ergodicity of multiplica-
tion operators are investigated on the Hardy spaces Hp(D), 1 ≤ p < ∞. Let D be the
open unit disk on the complex plane C and ψ be a function in the space of holomorphic
functions H(D). We provide the necessary and sufficient conditions under which a mul-
tiplication operator Mψ is power bounded, mean ergodic and uniformly mean ergodic on
the Hardy spaces.
Keywords: mean ergodicity, multiplication operator, Hardy space
AMS Mathematics Subject Classification [2010]: 47B38, 46E15, 47A35

1. Introduction
Let D = {z ∈ C : |z| < 1} be the open unit disk in the complex plane C and H(D) be

the space of all holomorphic functions on D. For 0 < p < ∞, the Hardy space Hp(D) is
defined by

Hp(D) = {f ∈ H(D) : ||f ||pp = sup
0<r<1

1

2π

∫ 2π

0
|f(reiθ)|p <∞}.

When p ≥ 1, Hp(D) is a Banach space with norm ||.||p.
If ψ is a holomorphic function on D, the multiplication operator Mψ on H(D) is defined
by

Mψ(f) = ψf.

Following Proposition states the necessary and sufficient conditions for boundedness of
multiplication operators on the Hardy spaces. For the proof one can refer to [5].

Proposition 1.1. Let 1 ≤ p < ∞ and ψ ∈ H(D). Then Mψ : Hp(D) → Hp(D)
is bounded if and only if ψ ∈ H∞(D). In this case ||Mψ|| = ||ψ||∞, where ||ψ||∞ =
supz∈D |ψ(z)|.

Proof. See [5]. □

∗Speaker. Email address: zkamali@shirazu.ac.ir
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Let L(X) be the space of all linear bounded operators from locally convex Hausdorff
space X into itself and T ∈ L(X). The Cesáro means of T is defined by

T[n] :=
1

n

n∑

m=1

Tm, n ∈ N.

An operator T is mean ergodic if {T[n]}∞n=0 is a convergent sequence in the strong
operator topology and is said to be uniformly mean ergodic if the convergence is in the
norm operator topology. Also T is power bounded if the sequence {Tn}∞n=0 is bounded in
L(X), i.e. supn∈N ||Tn|| <∞.
The study of mean ergodicity of linear operators on Banach spaces goes back to 1931,
when Von Numann proved that for a unitary operator T on a Hilbert space H, there is
a projection P on H, such that T[n] converges to P in the strong operator topology. In
1939 Lorch demonstrated that for reflexive Banach spaces, power bounded operators are
mean ergodic. Dunford in 1943 stated the connection between the spectral properties of
an operator and its uniform mean ergodicity. Recall that by σ(T ) (spectrum of T ) we
mean the set of all λ ∈ C such that T − λI is not invertible. The following Theorem
represent Lorch and Dunford Theorems together.

Theorem 1.2. If an operator T on a Banach space X is uniformly mean ergodic,
then both (||Tn||/n)n converges to 0 and either 1 ∈ C \ σ(T ) or 1 is a pole of order 1
of the resolvent RT : C \ σ(T ) → L(X), RT (λ) = (T − λI)−1. Consequently if 1 is an
accumulation of σ(T ), then T is not uniformly mean ergodic.

Proof. See [1]. □
Bonet and Ricker [3], characterized the mean ergodicity of multiplication operators

in weighted spaces of holomorphic functions and recently Bonet, Jordá and Rodŕiuez [2]
extended the results to the weighted space of continuous functions.
A good reference for information on ergodic theory is the monograph [4].

2. Main results
We first investigate the power boundedness of a multiplication operator acting on

Hp(D), p ≥ 1.

Theorem 2.1. Let ψ ∈ H∞(D) and 1 ≤ p <∞. ThenMψ is power bounded on Hp(D)
if and only if ||ψ||∞ ≤ 1.

Proof. Since for all n ∈ N, ||Mn
ψ || = ||ψn||∞ = ||ψ||n∞, the conclusion follows imme-

diately. □
Theorem 2.2. Let ψ ∈ H∞(D) and 1 ≤ p <∞. Then Mψ is mean ergodic on Hp(D)

if and only if it is power bounded if and only if ||ψ||∞ ≤ 1.

Proof. Suppose Mψ is mean ergodic. Then for all f ∈ Hp(D) we have ||Mn
ψf ||p
n → 0

as n → ∞. Let f ≡ 1, so ||ψn||p
n → 0, on the other hand, for all n ∈ N and all z ∈ D

by [5, Lemma 1] we have:
(1− |z|2)

1
p |ψn(z)|
n

≤ ||ψn||p
n

.

It forces |ψ(z)| ≤ 1 for all z ∈ D or equivalently ||ψ||∞ ≤ 1. In the case 1 < p < ∞,
Hp(D) is a reflexive Banach space and by the Lorch theorem power boundedness implies

293



Mean Ergodic Multiplication operators

mean ergodicity. So in this case there is nothing left to prove. Now, suppose p = 1 and
||ψ||∞ ≤ 1. If |ψ(z0)| = 1 for some z0 ∈ D, by Maximum Modulus Principle ψ ≡ η for
some η ∈ ∂D. If η = 1, clearly (Mψ)[n] = I and ||(Mψ)[n] − I|| → 0 as n → ∞. If η ̸= 1,
(Mψ)[n] =

η(1−ηn)
n(1−η) and ||(Mψ)[n]||p ≤ 2η

n|1−η| → 0. So in both cases Mψ is uniformly mean
ergodic. Let |ψ(z)| < 1 for all z ∈ D. For f ∈ Hp(D) and z ∈ D, we have:

|(Mψ)[n]f(z)| = |ψ(z)f(z)
n

1− ψn(z)

1− ψ(z)
| ≤ 2|f(z)|

n|1− ψ(z)| → 0, as n→ ∞.

Thus the limit of {(Mψ)[n]}n, if exists, has to be zero. For k ∈ N,

||(Mψ)[n](z
k)||1 ≤ ||(Mψ)[n](z

k)||2,
and we have the mean ergodicity of Mψ on H2(D). So ||(Mψ)[n](z

k)||1 → 0, as n → ∞.
By linearity for all polynomial P , ||(Mψ)[n](P )||1 → 0, as n → ∞. Mψ is power bounded
and polynomials are dense in H1(D) so the result follows. □

Theorem 2.3. Let ψ ∈ H∞(D) and 1 ≤ p <∞. Then Mψ is uniformly mean ergodic
on Hp(D), if and only if ||ψ||∞ ≤ 1 and either ψ ≡ η for some η ∈ ∂D or 1

1−ψ ∈ H∞(D).

Proof. Let ||ψ||∞ ≤ 1. If ψ ≡ η for some η ∈ ∂D, it was shown in the proof of
Theorem 2.2, thatMψ is uniformly mean ergodic. If 1

1−ψ ∈ H∞(D), then (1−ψ)−1{0} = ∅.
So for all f ∈ Hp(D) and all z ∈ D, (Mψ)[n]f(z) =

ψ(z)f(z)
n

1−ψn(z)
1−ψ(z) , from this we get

||(Mψ)[n]|| ≤
2||ψ||∞

n||1− ψ||∞
,

and hence ||(Mψ)[n]|| → 0. Conversely, suppose Mψ is uniformly mean ergodic. By
Theorem 2.2, ||ψ||∞ ≤ 1. Suppose ψ is not a uni-modular constant function. By Theorem
1.2 we have 1 /∈ σ(Mψ), so I −Mψ = M1−ψ is an invertible operator from Hp(D) onto
itself. But (M1−ψ)−1 =M 1

1−ψ
, so by Proposition 1.1, 1

1−ψ ∈ H∞(D). □

3. Conclusion
We completely characterized power bounded, uniformly mean ergodic and mean er-

godic bounded multiplication operators on Hp(D) where 1 ≤ p <∞. Mψ is mean ergodic,
if and only if, it is power bounded, if and only if, ||ψ||∞ ≤ 1. Also Mψ is uniformly mean
ergodic, if and only if ||ψ||∞ ≤ 1 and either ψ ≡ η for some η ∈ ∂D or 1

1−ψ ∈ H∞(D).
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The action of automorphisms of groups on fuzzy subgroups
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Abstract. In this paper, we determine fuzzy subgroups of dihedral groups in some
particular cases by the new equivalence relation which has a consistent group theoretical
foundation. In this case, the corresponding equivalence classes of fuzzy subgroups of a
group G are closely connected to the automorphism group and the chains of subgroups
of G.
Keywords: equivalence relation, fuzzy subgroup, chain of subgroups, automorphism
group, dihedral group
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1. Introduction and Preliminaries
The concept of fuzzy sets was introduced by Zadeh and in 1971, Rosenfeld used this

concept to develop the theory of fuzzy groups. A fuzzy subset µ of a group G is called
a fuzzy subgroup if min{µ(x), µ(y)} ≤ µ(xy) and µ(x) ≤ µ

(
x−1

)
, for all x, y ∈ G. Since

the notion of fuzzy group is a generalization of the notion of group, many basic properties
in group theory extended to fuzzy groups. The level subsets defined as U(µ, t) = {x ∈
G | µ(x) ≥ t}, where t ∈ [0, 1], are useful in characterization of fuzzy subgroups.

The number of fuzzy subgroups of a finite group is infinite even for the trivial group
{e}. Therefore, the fuzzy subgroups of G must be classified up to some equivalence
relations on the set FL(G) consisting of all fuzzy subgroups of G. Starting point for
our discussion is the natural equivalence ∼ which is introduced in [6] as follows: for two
fuzzy subgroups µ and η of G, µ ∼ η if and only if for all x, y ∈ G, µ(x) > µ(y) if
and only if η(x) > η(y). According to this equivalence relation, for counting all distinct
fuzzy subgroups of G with respect to ∼ it is sufficient to find the number of all chains of
subgroups of G that terminate in G and this number is denoted by F (G). Utilizing the
above statements, some remarkable papers has treated to the number of fuzzy subgroups
of groups with respect to ∼, for example see [1,3,4]. One of the largest class of groups
for which it was completely solved is constituted by finite cyclic groups.

Theorem 1.1. [3, Corollary 4] If G is a finite cyclic group of order n (that is G ∼= Zn)
and n = pm1

1 pm2
2 . . . pms

s is the decomposition of n as a product of prime factors, then the
∗Speaker. Email address: l.kamali@ardakan.ac.ir

295



L. Kamali Ardekani

number of all distinct fuzzy subgroups of G is given by the equality

F (G) = 2

s∑
α=1

mα
m2∑

i2=0

m3∑

i3=0

. . .

ms∑

is=0

(−1/2)

s∑
α=2

iα
s∏

α=2

(
mα

iα

)(m1 +
α∑

β=2

(mβ − iβ)

mα

)
,

where the above iterated sums are equal to 1 for s = 1.

Recently, Tǎrnǎuceanu has treated the problem of classifying the fuzzy subgroups of
a finite group by a new equivalence relation ≈ introduced in [5] as follows: suppose that
G is a finite group and ρ is the following action of Aut(G) on FL(G):
ρ : FL(G)×Aut(G) −→ FL(G), such that ρ(µ, f) = µ◦f, for all (µ, f) ∈ FL(G)×Aut(G).

We denote by ≈ρ the equivalence relation on FL(G) induced by ρ, namely
µ ≈ρ η if and only if there exists f ∈ Aut(G) such that η = µ ◦ f .

Now, consider the equivalence relation ≈ on FL(G) which is described with chains of
subgroups of G as follows [5]: let µ, η ∈ FL(G) and put µ(G) = {α1, α2, . . . , αn} such
that α1 > α2 > . . . > αn, η(G) = {β1, β2, . . . , βm} such that β1 > β2 > . . . > βm. Then, µ
and η determine the following chains of subgroups of G which ends in G:
Cµ : U(µ, α1) ⊂ U(µ, α2) ⊂ . . . ⊂ U(µ, αn) = G and Cη : U(η, β1) ⊂ U(η, β2) ⊂ . . . ⊂
U(η, βm) = G. The equivalence relation ≈ on FL(G) is defined as follows:

µ ≈ η iff ∃f ∈ Aut(G) such that f(Cη) = Cµ.
Obviously, this is a little more general than ≈ρ. In fact, if µ ≈ η, then their images are not
necessarily equal, but certainly there is a bijection between Im(µ) and Im(η). Moreover,
we also remark that ≈ generalizes the equivalence relation ∼ defined in [3] excepting the
case when G is cyclic which we have ≈=∼.

Next, we will focus on computing the number N of distinct fuzzy subgroups of G
with respect to ≈, that is the number of distinct equivalence classes of FL(G) modulo ≈.
Denote by C̄ the set consisting of all chains of subgroups of G terminated in G. Then, the
previous action ρ of Aut(G) on FL(G) can be seen as an action of Aut(G) on C̄ and ≈ρ

as the equivalence relation induced by this action. An equivalence relation on C̄ which is
similar with ≈ can also be constructed in the following manner: for two chains

C1 : H1 ⊂ H2 ⊂ · · ·Hm = G and C2 : K1 ⊂ K2 ⊂ · · · ⊆ Kn = G

of C̄, we put
C1 ≈ C2 iff m = n and ∃f ∈ Aut(G) such that f(Hi) = Ki, 1 ≤ i ≤ n.(1)

In this case the orbit of a chain C ∈ C̄ is {f(C) | f ∈ Aut(G)}, while the set of all chains
in C̄ that are fixed by an automorphism f of G is FixC̄(f) = {C ∈ C̄ | f(C) = C}. Now,
the Burnside’s lemma leads to the following Theorem:

Theorem 1.2. The number N of all distinct fuzzy subgroups with respect to ≈ of a
finite group G is given by the equality

N =
1

|Aut(G)|
∑

f∈Aut(G)

|FixC̄(f)| .

The above formulas can successfully be used to calculate N for any finite group G
whose subgroup lattice L(G) and automorphism group Aut(G) are known. In [2, 5],
the number N is explicitly determined for some particular classes of dihedral groups, by
Theorem 1.2. But using Theorem 1.2 for counting N (D2n) in the general case, needs
extended calculations. Therefore in the next section, we use the relation (1) and compute
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explicitly the number N of all distinct fuzzy subgroups of dihedral groups with respect to
≈.

2. Main results
First, we recall that the dihedral group D2n (n ≥ 2) is the symmetry group of a regular

polygon with n sides and has the order 2n. More abstractly, one can define the dihedral
group D2n as any group having the presentation

D2n =< x, y | xn = y2 = e, y−1xy = x−1 > .

Note that D4 is considered as a group isomorphic to Z2 × Z2.
By the maximal subgroups described in [4], the structure of the subgroup lattice

of D2n, i.e. L(D2n), is as follows: for every divisor r of n, D2n possesses a subgroup
isomorphic to Zr, namely H0

r =< x
n
r > and n

r subgroups isomorphic to D2r, namely
Hi

r =< x
n
r , xi−1y >, where 1 ≤ i ≤ n

r .
By the properties of automorphism group and the order of elements of D2n, we find

that Aut(D2n) = {fα,β | 0 ≤ α ≤ n− 1 s.t. (α, n) = 1, 0 ≤ β ≤ n− 1}, where

fα,β =

{
x −→ xα

y −→ xβy
.

This implies that |Aut(D2n)| = nφ(n), which φ is Euler’s Totient function [5].
Suppose that V1 is the set of all chains of cyclic subgroups of D2n terminating in D2n.

Also, assume that V is the set of all chains of subgroups of H0
n =< x >∼= Zn terminating

in H0
n, then |V| = F (Zn) which is determined in Theorem 1.1. It is clear that every chain

of V1 is obtained by adding D2n to the end of a chain of V or putting D2n instead of
H0

n in a chain of V. By the structure of V1 and Aut(D2n), all chains of V1 are distinct
under ≈. Consequently, N (V1) = 2 |V| = 2F (Zn). Now, assume that V2 is the set of all
chains of subgroups of D2n which last two elements of them are Hi

1 =< xi−1y > and D2n,
where 1 ≤ i ≤ n. More precisely, the chains terminating in Hi

1 ⊂ D2n and containing the
elements of L(Hi

1). Therefore, we get V2 = {Ci1, Ci2 | 1 ≤ i ≤ n}, where Ci1 : Hi
1 ⊂ D2n

and Ci2 : {e} ⊂ Hi
1 ⊂ D2n. Obviously, for all 1 ≤ i1, i2 ≤ n, there is fα,β ∈ Aut(D2n) such

that fα,β(Ci1j) = Ci2j and this implies that Ci1j ≈ Ci2j , where j = 1, 2. Then, there are two
distinct chains with respect to ≈ in V2 which imply that N (V2) = 2. Similar to the above
discussions, we will determine N (D2n), where n = pm1

1 pm2
2 · · · pms

s is the decomposition of
n as a product of distinct prime factors.

If m1 = m2 = · · · = ms = 1, then by the structure of L(D2n), we get N (D2p1p2···ps) =

N (V1)+N (V2)+
s−1∑
k=1

N (Wk), whereWk is defined as follows: suppose that 1 ≤ j1, · · · , jk ≤

s and for all 1 ≤ i ≤ n
pj1 ···pjk

, consider Wj1,j2,··· ,jk
ki as the set of all chains which the last two

elements of them areHi
pj1 ···pjk andD2n, exactly the chains terminating inHi

pj1 ···pjk ⊂ D2n

and containing the elements of L(Hi
pj1 ···pjk ). Also, assume that Wk is a union of the sets

Wj1,j2,··· ,jk
k , where 1 ≤ j1, j2, · · · , jk ≤ s and

Wj1,j2,··· ,jk
k =

n/(pj1 ···pjk )∪

i=1

Wj1,j2,··· ,jk
ki .
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One can easily show that for all CWj1,j2,··· ,jk
ki1

∈ Wj1,j2,··· ,jk
ki1

there exists CWj1,j2,··· ,jk
ki2

∈

Wj1,j2,··· ,jk
ki2

such that CWj1,j2,··· ,jk
ki1

≈ CWj1,j2,··· ,jk
ki2

, where 1 ≤ i1, i2 ≤ n
pj1 ···pjk

. Then, for

counting the distinct chains with respect to ≈ in Wj1,j2,··· ,jk
k , it is sufficient to determine

N (Wj1,j2,··· ,jk
k1 ) which is equal to N (D2p1p2···pk). Hence, N (Wk) =

(
s
k

)
N (Wj1,j2,··· ,jk

k ) =(
s
k

)
N (D2p1p2···pk). Since N (V1) = 2F (Zp1p2···ps) and N (V2) = 2, by the above results we

get the following theorem.

Theorem 2.1. Let p1, p2, · · · , ps be prime numbers. The number N of all distinct
fuzzy subgroups of the group D2p1p2···ps is given by the equality

N (D2p1p2···ps) = 2F (Zp1p2···ps) + 2 +
s−1∑

k=1

(
s

k

)
N (D2p1p2···pk),

where s ≥ 1 and the above iterated sum is equal to 0 for s = 1.

Similar to the above discussions, we get the following Theorem.

Theorem 2.2. The number N of all distinct fuzzy subgroups of the group D2n with
respect to ≈ is given by the equality

N (D2n) = 2F (Zn) + 2 +
∑

r|n
r ̸=1,n

N (D2r).

In particular,

N (D2pm) = 2m+1 + 2 +
m−1∑

j=1

N (D2pj ),

where the above iterated sum is equal to 0 for m = 1.

3. Conclusion
In this paper, we obtained a recurrence relation that permit us to determine the distinct

fuzzy subgroups of dihedral groups relative to a certain equivalence relation these groups.
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Abstract. Let G and G1, G2 be given graphs. By G→ (G1, G2) we mean if the edges
of G are arbitrarily colored by red and blue, then there is either a red copy of G1 or
a blue copy of G2 in G. The Ramsey number R(G1, G2) is defined as the smallest
positive integer n such that Kn → (G1, G2). Also, the star-critical Ramsey number
R∗(G1, G2) is defined as min{δ(G) : G ⊆ Kr, G → (G1, G2)}, where, r = R(G1, G2).
If G is a connected vertex transitive graph on n vertices and G is a Km-good graph
i.e. R(G,Km) = (n − 1)(m − 1) + 1, then the Ramsey number and the star-critical
Ramsey number of Km versus G+e is determined exactly, where G+e is obtained from
G by adding a leaf to G.

Keywords: star-critical Ramsey number, complete graph, transitive graph
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1. Introduction

In this note, we are only concerned with simple finite graphs and we follow [1] for
terminology and notations not defined here. For a given graph G, we denote its vertex
set, edge set, maximum degree, minimum degree and chromatic number of G by V (G),
E(G), ∆(G), δ(G) and χ(G), respectively. For a vertex v ∈ V (G), we use deg (v) and
N(v) to denote the degree and the set of neighborhoods of v in G, respectively. Also, for
a given subset A of the vertex set of G, we use G[A] to denote the induced subgraph of G
spanned by A and for given disjoint subsets A and B of V (G), we use E[A,B] to denote
the set of all edges in the bipartite graph whose partite sets are A and B. A transitive
graph, is a graph such that every pair of vertices is equivalent under some element of its
automorphism group. The complete graph on n vertices is denoted by Kn and a tree is
an undirected, connected and acyclic graph. A leaf or end-vertex of a tree is a vertex of
degree 1. In addition, for a given red/blue coloring of the edges of a graph G, we use Gr

and Gb to denote the spanning subgraphs of G induced by the edges of colors red and
blue, respectively.

Let G and G1, G2 be given graphs. By G → (G1, G2) we mean if the edges of G are
arbitrarily colored red and blue, then there is either a red copy of G1 or a blue copy of G2

in G. A red/blue coloring of the edges of G is called a (G1, G2)-free coloring if G1 * Gr

and G2 * Gb. The Ramsey number R(G1, G2) is defined as the smallest positive integer
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n such that Kn → (G1, G2). The existence of such a positive integer is guaranteed by the
Ramsey’s classical result [7]. For a survey on Ramsey theory and results in this area, we
refer the reader to the regularly updated survey by Radziszowski [6]. Also, the star-critical
Ramsey number R∗(G1, G2) is defined as min{δ(H) : H ⊆ Kr, H → (G1, G2)}, where
r = R(G1, G2). The concept of the star-critical Ramsey number was first defined by Hook
and Isaak in [3]. For more details check [2,4,8]. Let Kn t K1,k be the graph obtained
from Kn by adding a new vertex v adjacent to k vertices of Kn. It is easy to see that
the star-critical Ramsey number R∗(G1, G2) is equivalent to finding the smallest integer
k such that Kr−1 tK1,k → (G1, G2), where r = R(G1, G2).

For given connected graphs G1 and G2, we say G1 is a G2-good graph if

R(G1, G2) = (χ(G2)− 1)(|V (G1)| − 1) + s(G2),

where s(G2) is the chromatic surplus of G2, i.e., the minimum cardinality of color classes
over all chromatic colorings of V (G2).

2. Main Results

Let G be a connected vertex transitive graph on n vertices which is Km-good graph,
i.e. R(G,Km) = (n−1)(m−1)+1. By G+e we mean the graph obtained from G by adding
a leaf neighbor to a vertex of G. In the following, we determine the Ramsey number of
R(G+e,Km) and also the star-critical Ramsey number R∗(G+e,Km). For this purpose,
first we show that any (G+e,Km)-free coloring of the complete graph Kn(m−1) is unique

and we use this uniqueness to determine the Ramsey number R(G+e,Km).

Definition 2.1. Let m ≥ 2 and n ≥ 3 be given integers. Let F = Kn(m−1) be the
complete graph with the following red/blue coloring.

F : Fr = (m− 1)Kn

Fb = Km−1(n, n, . . . , n).

where Km−1(n, n, . . . , n) is the complete (m− 1)-partite graph with n vertices in each
part.

Lemma 2.2. Let m ≥ 2 and n ≥ 3 be given integers and let G be a connected vertex
transitive graph on n vertices which is Km-good. If c be a (G+e,Km)-free coloring of
Kn(m−1), then c is the coloring described in Definition 2.1.

Proof. LetG be a graph withR(G,Km) = (n−1)(m−1)+1 and c be a (G+e,Km)-free
coloring of F = Kn(m−1). We use induction on m. Let m = 2. Since c is a (G+e,K2)-free
coloring, then c does not contain blue copy of K2 and so, F is a monochromatic red copy
of Kn. Thus, the c coloring is as described in Definition 2.1.

F : Fr = Kn

Fb = K1(n).

Now, let m ≥ 3 and c be a red/blue coloring on F . Since n,m ≥ 3, then n(m− 1) ≥
R(G,Km) and so, c contains either a monochromatic blue copy of G or a monochromatic
red copy of Km. Since c is (G+e,Km)-free coloring, thus, c must contains a red copy of
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G, name this copy as G0. Delete the vertices of red G0 from F and let H be the resulting
graph. We have

V (H) = n(m− 1)− n = n(m− 2).

Let c′ be the induced red/blue coloring of c on the edges of H. Clearly, c′ is a (G+e,Km−1)-
free coloring because otherwise, if there is a blue copy ofKm−1 inH and E[V (G0), V (H)] ⊆
F b, then Km ⊆ F b or if there is red edge e ∈ E[V (G0), V (H)], then e∪G0 form a red copy
of G+e, a contradiction. So, c′ is a (G+e,Km−1)-free coloring on H with |V (H)| = n(m−2),
thus, by the induction hypothesis, c′ is red/blue coloring of H as described in Definition
2.1, such that

H : Hr = (m− 2)Kn

Hb = Km−2(n, . . . , n).

Since G0 is a vertex transitive graph, then an edge xy ∈ E[V (G0), V (H)] of color red
yields a monochromatic red copy of G+e. Thus, E[V (G0), V (H)] ∈ F b and so, c is the
red/blue coloring of F , described in the Definition 2.1. �

In the following, we show that for a given connected vertex transitive Km-good graph
G, we have R(G+e,Km) = n(m− 1) + 1.

Theorem 2.3. Let m ≥ 2 and n ≥ 3 be given integers and let G be an arbitrary
connected vertex transitive Km-good graph on n vertices. Then,

R(G+e,Km) = n(m− 1) + 1.

Proof. Let r be the claimed number for R(G+e,Km). To see r is a lower bound for
R(G+e,Km), we represent a (G+e,Km)-free coloring of H = Kr−1. Since r−1 = n(m−1),
consider the red/blue coloring of Kn(m−1) described in Definition 2.1. Since ∆(Hr) ≤ n−1,

then Hr does not contain G+e. On the other hand, the χ(Hb) ≤ m − 1 and so, Hb does
not contain blue copy of Km. Therefore, Kr−1 9 (G+e,Km).

For the upper bound, let c be an arbitrary red/blue coloring of F = Kr. Delete an
arbitrary vertex v from F and let H be the resulting graph with (r−1) vertices. Let c′ be
the coloring induced by c on H. If c′ contains a red copy of G+e or a blue copy of Km, we
are done. So, we may assume that c′ is a (G+e,Km)-free coloring of H and so, by Lemma
2.2, this coloring is unique as described in Lemma 2.2.

H : Hr = (m− 1)Kn

Hb = Km−1(n, . . . , n).

Now, if the edge vu ∈ F r, for some u ∈ V (H), then we have a red copy of G+e, so,
E[v, V (F )] ∈ F b, which form a blue copy of Km. Therefore, for any red/blue arbitrary
coloring of Kr, we have a red copy of G+e or a blue copy of Km and thus, F → (G+e,Km).

�

In squall, we determine that star-critical Ramsey number R∗(G+e,Km).

Theorem 2.4. If m ≥ 2 and n ≥ 3 be given integers and let G be a connected vertex
transitive Km-good graph on n vertices, then R∗(G+e,Km) = n(m− 2) + 1.
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Proof. Let r = r(G+e,Km) = n(m − 1) + 1 and r∗ be the claimed number for
r∗(G+e,Km). For the lower bound, we represent a red/blue coloring of graph H = Kr−1t
K1,r∗−1, which is (G+e,Km)-free coloring. Partition the vertices of Kr−1 into (m−1) parts
V1, V2, . . . , Vm−1 such that for every i, 1 ≤ i ≤ m− 1, |Vi| = n. Color all edges contained
in Vi, 1 ≤ i ≤ m− 1, by color red and the rest of edges by color blue. Now, add a vertex
v adjacent to every vertex in Vi, 1 ≤ i ≤ m− 2, by color blue. Since χ(Hb) ≤ m− 1, then
Hb does not contain Km as a subgraph. Also, ∆(Hr) ≤ n− 1 and thus, the subgraph Hr

does not contain a red copy of G+e. Therefore, we have a (G+e,Km)-free coloring of H
and so, H 9 (G+e,Km).

For the upper bound, let F = Kr−1 t K1,r∗ and let v0 be the vertex of degree r∗ in
F . Consider an arbitrary red/blue coloring of F which induced a red/blue coloring of
F \ {v0} ∼= Kr−1, called c′. If c′ contains a red copy of G+e or a blue copy of Km, we are
done. So, let c′ be a (G+e,Km)-free coloring of F \ {v0} and by Lemma 2.2, this coloring
is unique as described in Lemma 2.2.

Since G ⊆ Kn and (F \ {v0})r = (m − 1)Kn, if uv0 ∈ F r, for some u ∈ V (F \ {v0}),
then G+e ∈ F r. Therefore, we may assume that all r∗ = n(m− 2) + 1 edges incident with
v0 are color blue. As deg(v0) ≥ r∗, it is easy to see that v0 has at least one neighbour in
each Vi, 1 ≤ i ≤ m− 1, and hence, Km ∈ F b. Thus, F → (G+e,Km). �

In [5] it is proved that the cycle Cn is Km-good graph, i.e. for m ≥ 4 and n ≥ 4m+ 2,
R(Cn,Km) = (n − 1)(m − 1) + 1. Since Cn is a connected vertex transitive graph, then
by Theorems 2.3 and 2.4, we have R(C+e

n ,Km) = n(m − 1) + 1 and R∗(C+e
n ,Km) =

n(m− 2) + 1, for m ≥ 4 and n ≥ 4m+ 2.
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Abstract. In this work, an efficient method is presented for the numerical solution of
the nonlinear Duffing equation as an important equation for the mathematical modeling
of real-life phenomena. The presented method is based upon the two-point Taylor for-
mula. It is tried to utilize the problem structure in order to extract the needed data for
finding the approximate solution. The efficiency and accuracy of the method is demon-
strated through the numerical results.
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1. Introduction

Integro-differential equations frequently appear in the mathematical modeling of real-
life phenomena. A wide range of problems in the fluid mechanics, electromagnetics, neural
networks, nuclear reactors, biological populations, and many other areas of science and
engineering can be modeled with the help of integro-differential equations, (e.g., see [2]).
Hence, many efforts have been devoted to study this diverse class of mathematical equa-
tions. The aim of this paper is to present an approach for the numerical solution of
the Duffing equation involving both integral and non-integral forcing terms which can be
formulated in the following general form:

(1)





u′′(x) + σu′(x) + f
(
x, u(x), u′(x)

)
+

∫ x

0
k (x, t, u(t)) dt = 0, x ∈ [0, 1] ,

p0u(0)− q0u
′(0) = a, p1u(1) + q1u

′(1) = b,

where σ ∈ R − {0}, a, b ∈ R, and p0, q0, p1, q1 ∈ R+. Furthermore, f : [0, 1] × R2 → R,
and k : [0, 1]× [0, 1]×R → R are assumed to be known continuous functions, and u is the
unknown solution of the problem.
Duffing equation is a famous nonlinear model in the interpretation of the periodic orbit
extraction, signal processing, mechanical oscillators, fuzzy modelling, brain modelling,
etc [5]. Over the last few years, the application of the Duffing equation in the simulation
of chaotic phenomena has been significantly considered in the study of the human body
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and the prediction of diseases. The use of the Duffing equation as a mathematical model
to predict the arrhythmia, and to measure the bloodstream speed can be mentioned as
two attractive examples in this field [1]. Moreover, the Duffing equation is an interesting
tool for investigating the efficiency of numerical methods in solving nonlinear integro-
differential equations.

In this paper, the two-point Taylor formula as a certain case of the Hermite interpolant
is utilized to construct a numerical method for solving Eq. (1). In the proposed method,
an approximation of u, the unknown solution of Duffing equation (1), is provided by
estimating the values of u and its derivatives up to an adequate order at x = 0 and x = 1.
In order to estimate these unknown values, the properties of the equation and the existed
boundary conditions are applied. The method of extracting the needed data and the
construction of the approximation are described in the next section.

2. The computational method

In this section, a polynomial interpolant based on some estimated data is presented
to approximate the solution of Duffing equation (1).

Two-point Taylor formula. Two-point Taylor formula is a special case of the Her-
mite interpolant in which the values of a function f , and its derivatives up to (n − 1)th
order at the endpoints of the interval [0, 1] are utilized to obtain a (2n− 1)th degree poly-
nomial P as an approximation of f over this interval. Indeed, in this interpolation method,
f is approximated by polynomial P which satisfies the following interpolation conditions:

P(j)(x) = f (j)(x), j = 0, 1, . . . , n− 1, x ∈ {0, 1}.
In the following theorem, the unique solution of the mentioned interpolation problem is
presented.

Theorem 2.1. [3] Let the values of f ∈ C2n [0, 1] and its first (n− 1) derivatives be
available at x = 0 and x = 1. Then, f can be approximated using the polynomial

P2n−1(f ;x) =
n−1∑

j=0

[
Cn,j(x)f

(j)(0) + (−1)jCn,j(1− x)f (j)(1)
]
,

where

Cn,j(x) =
xj

j!
(1− x)n

n−j−1∑

k=0

(
n+ k − 1

k

)
xk, j = 0, 1, . . . , n− 1.

Furthermore, the error term of the approximation can be computed as

Rn(f ;x) =
f (2n)(ξx)

(2n)!
xn(1− x)n, ξx ∈ (0, 1).

Now, assume that u ∈ C2n [0, 1] is the exact solution of problem (1), then, according
to Theorem 2.1, an approximation of u can be determined as

(2) P2n−1(u;x) =

n−1∑

j=0

[
Cn,j(x)u

(j)(0) + (−1)jCn,j(1− x)u(j)(1)
]
.

It is obvious that since u is unknown, the values of u(j)(x), j = 0, 1, . . . , n − 1, x ∈ {0, 1}
are not generally available. Therefore, the main challenge in computing (2) is to obtain
suitable estimations of these unknown values.
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Computation of derivatives. Let us denote the unknown values u′(0) and u′(1) by
β0 and β1, respectively, then, u(0) and u(1) can be computed from the separated boundary
conditions of (1) as

u(0) =
a+ q0β0

p0
, u(1) =

b− q1β1
p1

.

Moreover, from Eq. (1), u′′(x) can be written in the form

(3) u′′(x) = −
(
σu′(x) + f

(
x, u(x), u′(x)

)
+

∫ x

0
k (x, t, u(t)) dt

)
.

Therefore, u′′(0) and u′′(1) can be obtained as

u′′(0) = −σβ0 − f

(
0,

a+ q0β0
p0

, β0

)
, u′′(1) = −

(
σβ1 + f

(
1,

b− q1β1
p1

, β1

)
+ α0

)
,

where

α0 =

∫ 1

0
k (x, t, u(t)) dt

∣∣∣∣
x=1

.

Indeed, u′′(0) is obtained in one unknown β0, while u′′(1) is determined in two unknowns
β1 and α0. Note that j times differentiating (3) leads to

(4) u(j+2)(x) = −
(
σu(j+1)(x) +

dj

dxj
f
(
x, u(x), u′(x)

)
+

(
Djk

)
(x)

)
, j = 0, 1, . . . n−3,

where

(5)
(
Djk

)
(x) =

j−1∑

i=0

(
∂ik(x, t, u(t))

∂xi

∣∣∣∣
t=x

)(j−i−1)

+

∫ x

0

∂jk(x, t, u(t))

∂xj
dt.

Subsequently, the values of u(j)(0) and u(j)(1) for j = 2, 3, . . . , n − 1 can be calculated
recursively from Eq. (4) in some unknowns. It should be noted that when the derivatives
are computed at x = 0, the integral term of (5) is equal to zero. Thus, all the derivatives

at x = 0 can be obtained in only one unknown β0. However, the values of u(j)(1) for
j = 2, 3, . . . , n− 1 are computed in the unknown values β1 and αj−2, where

αj =

∫ 1

0

∂jk (x, t, u(t))

∂xj
dt

∣∣∣∣
x=1

, j = 0, 1, . . . , n− 3.

Now, we should compute n unknowns β0, β1, and αj , j = 0, 1, . . . , n − 3, to obtain the
needed data for determining (2). Hence, we should construct a system of n equations to
evaluate these unknowns. To this aim, we employ (4) to get n− 2 equations

u(j+2)(b) = −
(
σu(j+1)(b) +

dj

dxj
f
(
x, u(x), u′(x)

)∣∣∣∣
x=b

+
(
D̃jk

)
(b)

)
, j = 0, 1, . . . n− 3,

where
(
D̃jk

)
(x) is obtained by substituting P2n−1 for u in the integral term of (5). Also

the remaining two equations can be constructed as
{
res(x1) = 0,

res(x2) = 0,
, x1, x2 ∈ (0, 1) ,

where res(x) is the residual function defined by substituting P2n−1 for u in Eq. (1). Finally,
by solving the provided system, polynomial (2) can be determined as an estimation of u.
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3. Illustrative examples

In order to study the utility of the method, we apply it to solve two problems and
report the results in this section. The computations are performed by using the Maple
software. It should be emphasized that in order to increase the speed of the algorithm, the
integrals which appear in the approximations are estimated by using the Gauss-Legendre
quadrature formulas.

Example 3.1. [4] As the first example consider




u′′(x)− 1.72u′(x) + e−u(x) −
∫ x

0
(1− 2t)u(t)dt = f(x),

u(0)− 3u′(0) = −1, u(1) + 3u′(1) = −1,

where f is chosen so that the exact solution of the problem is u(x) = 1
3 sin(x− x2).

Example 3.2. The second example is the nonlinear Duffing equation




u′′(x) + u′(x) + u(x)
(
u(x) + u′(x)

)
+

∫ x

0
t2u3(t)dt = f(x),

u(0)− u′(0) = −1, u(1) + u′(1) = 7e,

where f has been chosen such that the exact solution of the problem is u(x) = ex(x+ 2).

The absolute errors of the proposed method for solving both the examples and the
used CPU times for different choices of n are reported in Table 1.

Table 1. The results of the presented method.

Example 3.1 Example 3.2

n Absolute Error CPU time (s) Absolute Error CPU time (s)

4 2.12e-05 0.47 1.00e-06 0.58
8 1.54e-11 1.05 9.00e-16 1.44
12 4.00e-19 3.82 4.00e-30 4.01

4. Conclusion

Two-point Taylor formula was utilized as the basis of a numerical method to approxi-
mate the solution of the Duffing equation. The proposed method is easy to implement and
provides acceptable results without the need to choose a large n. The illustrative examples
demonstrated the utility of the method for solving such integro-differential equations.
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Abstract. In this paper, we study rings in which every nonzero module has a prime
submodule. At first, we show that if every nonzero submodule of an R-module M has
a prime submodule, then N(R) is T -nilpotent on M . Finally, we prove every nonzero
R-module has at least one prime submodule if and only if R is a Max ring.
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1. Introduction

Let R be a commutative ring with non-zero identity, and let M be a unitary R-module.
N(R) will denote nil radical of R, and J(R) will denote Jacobson radical of R. A proper
submodule N of an R-module M is called to be prime whenever rm ∈ N , then m ∈ N or
rM ⊆ N [4]. The concept of prime submodule is important in commutative algebra since
it is used to classify modules. We study modules that have at least one prime submodule.
In Proposition 2.8, it is proved that if every nonzero submodule of M has at least one
prime submodule, then N(R) is T -nilpotent on M . According to Theorem 2.14, every
nonzero R-module has a prime submodule if and only if N(R) is T -nilpotent and R/N(R)
is a von Neumann regular ring.

The ring R is a Max ring if every nonzero R-module M has at least one maximal
submodule.

Hamsher in [2] proved R is a Max ring if and only if J(R) is T -nilpotent and R/J(R)
is a von Neumann regular ring. In Theorem 2.15 shows that every nonzero R-module has
a prime submodule if and only if R is a Max ring.

2. Main results

The proof of the following theorem is routine

Theorem 2.1. Let R be a ring and let {Mα}α∈Λ be a family of R-modules. Then the
following are equivalent:
(i) Every nonzero submodule of Mα has a prime submodule for each α ∈ Λ.
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(ii) Every nonzero submodule of ⊕α∈ΛMα has a prime submodule.
(iii) Every nonzero submodule of

∏
α∈ΛMα has a prime submodule.

Let M be an R-module. Rad(0M ) = ∩{K|K is a prime submodule of M}. For each
ordinal α, we shall define Radα(0M ) in the following manner:
Rad0(0M ) = M ,
Radα+1(0M ) = Rad(Radα(0M )),
Radα(0M ) = ∩β<αRadβ(0M ) when α is limit ordinal.

Example 2.2. Consider Q to be a Z-module. Every nonzero submodule of Q has a
prime submodule. However, Q does not have a maximal submodule.

Theorem 2.3. Let M be an R-module. Then the following statements are equivalent:
(i) Every nonzero submodule of M has a prime submodule.
(ii) Radβ(0M ) has a prime submodule, or is 0, for every ordinal β.
(iii) Radα(0M ) = 0 for some α.

Definition 2.4. Let M be an R-module and I be an ideal of R. I is T -nilpotent on
M if for every x ∈M and every sequence a1, a2, · · · ∈ I there exists an integer n such that
a1a2 . . . an−1anx = 0.

Note that an ideal I of R is T -nilpotent if for every sequence a1, a2, · · · ∈ I there exists
an integer n such that a1a2 . . . an−1an = 0.

Example 2.5. Let Z be a set of integers and p be a prime integer. Put S = Z \ pZ.
N(S−1Z) is T -nilpotent, but J(S−1Z) is not T -nilpotent.

Proposition 2.6. Let M be an R-module. If every nonzero submodule of M has a
prime submodule, then N(R) is T -nilpotent on M .

Proof. Let 0 ̸= x ∈M and let o(x) be the smallest ordinal for which x /∈ Radβ(0M ).
It is clear that 0(x) is not a limit ordinal. Hence for some α, o(x) = α + 1 . We get x ∈
Radα(0M ). Assume P is a prime submodule of Radα(0M ). We have N(R)Radα(0M ) ⊂ P .
As a result, N(R)Radα(0M ) is a subset of Radα+1(0M ). It implies that o(ax) < o(x) for
all nonzero x ∈ M and a ∈ N(R). Assume that a1, a2, · · · ∈ N(R) and a1a2 . . . anx ̸= 0
for all n ∈ N. So o(x) > o(a1x) > . . . is a strictly descending chain of ordinals, which is
a contradiction. Therefore there is an integer n such that a1 . . . anx = 0, and so N(R) is
T -nilpotent on M . □

Proposition 2.7. Assume M is a nonzero R-module. If every nonzero submodule of
M has a prime submodule, then N(R)M ̸= M .

Proof. Assume that N(R)M = M on the contrary. Since M ̸= 0, there are m ∈ M
and a ∈ N(R) such that am ̸= 0. Hence m = Σk

i=1aimi where ai ∈ N(R) and mi ∈ M .
Since am ̸= 0, aalml ̸= 0 for some 1 ≤ l ≤ k. We can produce element a2 ∈ N(R) and
m2 ∈ M with a1a2m2 ̸= 0, since N(R)M ̸= 0. By induction, there exists a sequence
{ai}∞i=1 in N(R) and sequence {mi}∞i=1 in M with a1a2 . . . akmk ̸= 0 for k = 1, 2, . . . . This
contradicts the fact that N(R) is T -nilpotent on M . □

Corollary 2.8. If every nonzero R-module has a prime submodule, then N(R) is
T -nilpotent.

By [2, Theorem] we have the next proposition:
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Proposition 2.9. Let M be an R-module.
(i) If R/Ann(M) is von Neumman regular, then every nonzero submodule of M has a
prime submodule.
(ii) If R is a von Neumann regular ring, then every nonzero submodule of M has a prime
submodule.

Lemma 2.10. Let R be a ring. If every nonzero R-module has a prime submodule,
then every nonzero R/I-module has a prime submodule for any ideal I of R.

Theorem 2.11. Assume every nonzero R-module has a prime submodule. If x is not
a zero divisor element of R, then x is a unit.

Proof. Assume x is an element of R that is not a zero divisor.
Let A = ⊕∞i=1Ryi, with Ryi ∼= R/Rxi. So (0 :R yi) = Rxi. Put B = Σ∞i=1R(yi−xyi+1).

Then A/B = Σ∞i=1Ryi where yi = yi + B. We’ll show that A = B. Assume that A ̸= B.
Then A/B has a prime submodule P/B. So there exists an integer i such that yi /∈ P/B.
Since xiyi = 0, xiyi = 0. We obtain xi(P/B : A/B) because P/B is a prime submodule
and yi /∈ P/B. Therefor yi = xiyi ∈ P/B, which is a contradiction.. As a result, A
equals B. Hence there are r1, r2, . . . , rn ∈ R with y1 = Σn

i=1ri(yi − xyi+1). Since yi’s
are independent, y1 = −r1y1 and ri−1x − ri) ∈ (0 : yi) = Rxi for i = 2, . . . , n and
rnx ∈ (0 : yn+1) = Rxn+1. So there is a ∈ R such that rnx = axn+1. Hence rn ∈ Rxn.
We can conclude rk ∈ Rxk where 2 ≤ k ≤ n. So r1x = r2 = a2x

2 because r2 ∈ Rx2. As
a result, r1 ∈ Rx. Then y1 = −r1y1 = 0. It suggests that R/Rx ∼= Ry1 = 0. Hence x is a
unit. □

Lemma 2.12. Let R be a ring. If every R-module has a prime submodule, then every
prime ideal in R is maximal.

Proof. Let P be a prime ideal of R. Then R/P is an integral domain and every
R/P -module has a prime submodule. According to Theorem 2.11, every nonzero element
of R/P is a unit. Hence R/P is a field. So P is maximal. □

Theorem 2.13. Let R be a ring. The following statements are equivalent:
(i) Every nonzero R-module has a prime submodule;
(ii) N(R) is T -nilpotent and every nonzero R/N(R)-module has a prime submodule;
(iii) There is a cogenerator R-module U such that every nonzero submodule of U has a
prime submodule;
(iv) For every simple R-module S, every submodule of E(S) has a prime submodule.

Proof. (i) =⇒ (ii) By Corollary 2.8, N(R) is T -nilpotent. Every nonzero R/N(R)-
module has a prime submodule, according to Lemma 2.10.
(ii) =⇒ (i) Now assume that N(R) is T -nilpotent and every nonzero R/N(R)-module has
a prime submodule. Let M be an R-module. By Proposition 2.7, N(R)M ̸= M . Thus
M/N(R)M is a nonzero R/N(R)-module. As a result, M/N(R)M has a prime submodule
as R/N(R)-module, and M also has a prime submodule as R-module.
(iii) =⇒ (i) Let M be an R-module. So, there is a nonzero homomorphism f : M −→ U .
f(M) has a prime submodule Q because it is a submodule of U . So f−1(Q) is a prime
submodule of M .
(iv) =⇒ (iii) Let E = ⊕E(S) as S range over all simple R-modules. Then E is a
cogenerator R-module. By Theorem 2.1, every nonzero submodule of E has a prime
submodule. □
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Theorem 2.14. Every nonzero R-module has a prime submodule if and only if N(R)
is T -nilpotent and R/N(R) is a von Neumann regular ring.

Proof. =⇒ According to Theorem 2.13, N(R) is T -nilpotent and every nonzero
R/N(R)-module has a prime submodule. Put S := R/N(R). Let 0 ̸= a ∈ S. Be-
cause there are no nilpotent ideals in S, S ∩ (0 :S a) = 0. Assume T := S/(0 :S a) and
0 ̸= a ∈ S. Since S does not have nilpotent element, Sa∩ (0 :S a) = 0. We shall show that
a + (0 :S a) ∈ S/(0 :S a) is no zero divisor. Assume that (s + (0 :S a))(a + (0 :S a)) = 0
for some s + (0 :S a) ∈ S/(0 :S a). So sa ∈ Sa ∩ (0 :S a) = 0. Hence s ∈ (0 :S a). Thus
s + (0 :S a) = 0. So a + (0 :S a) is not zero divisor. Since by Lemma 2.10 every nonzero
S-module has a prime submodule and a+ (0 :S a) is not a zero divisor, by Theorem 2.11
a + (0 :S a) is a unit. So S(a + (0 :S a)) = S and we have that Sa ⊕ (0 :S a) = S. This
shows that R/N(R) is von Neumann regular.
⇐= By Proposition 2.9, every nonzero R/N(R)-module has a prime submodule. As a
result, according to Theorem 2.13, every nonzero R-module has a prime submodule. □

Theorem 2.15. Every nonzero R-module has a prime submodule if and only if R is a
Max ring.

Proof. =⇒ By Lemma 2.12, every prime ideal of R is maximal. So N(R) = J(R)
and R/N(R) = R/J(R). Hence by Theorem 2.14, N(R) = J(R) is T -nilpotent and
R/N(R) = R/J(R) is a von Neumann regular ring. So, according to [2, Theorem], R is a
Max ring.
⇐= Because the maximal submodule is also the prime submodule, every nonzero R-module
has a prime submodule.

□
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Abstract. Nonlinear weakly singular Volterra integral equations often have non-smooth
solutions, particularly at t = 0: to overcome this difficulty we propose a smoothing change
of variable and then employ Navot’s quadrature formula for solving the transformed equa-
tion. By using smoothing an equation is obtained which, while still weakly singular, can
have a solution as smooth as required. Numerical example shows the efficient of the
method.
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1. Introduction

Volterra integral equations with weakly singular kernels typically have solutions which
are nonsmooth near the initial point of the interval of the integration [2], therefore there
is difficulty for the chosen numerical approach in order to obtain an optimal rate of con-
vergence.
Various regularity and smoothing strategies have been proposed by number of authors
for overcome the difficulty caused by the nonsmooth behavior of the solutions in these
equations. To mention a few most relevant among many, in [3, 5] authors considered
product integration and fractional linear multistep methods. Also Tao and Yong [7] ap-
plied a smoothing change of variable so that the solution of the transformed equation is
smooth. During the last decades there have been some numerical methods for solving
two-dimensional weakly singular Volterra integral equations (for example see [1,6,8]), but
in most of them, authors deal with the linear weakly singular equations or have assumed
that these equations have smooth solutions. In this paper we use the change of variable
technique for smoothing nonlinear two-dimensional weakly singular Volterra integral equa-
tions with nonsmooth solution and then employ a Nystrom method for solving them. For
this purpose consider

u(t, s) = y(t, s) +

∫ t

a

∫ s

b
(t− ξ)α(s− η)βk(t, s, ξ, η, u(ξ, η))dηdξ,

a ≤ ξ ≤ t ≤ T, b ≤ η ≤ s ≤ S.(1)

where −1 < α, β < 0, u(t, s) is an unknown function, y(t, s) and k(t, s, ξ, η, u) are given
continuous functions on [0, T ] × [0, S] and Λ × R (Λ := {(t, s, ξ, η) : a ≤ ξ ≤ t ≤ T, b ≤
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311



R. Katani.

η ≤ s ≤ S}), respectively. Moreover, k(t, s, ξ, η, u) satisfy Lipschitz condition with respect
to u.

The rest of the paper is organized as follows. In the next section we employ smoothing
to eliminate the singularity of the solution. In Section 3, a Nystrom method is constructed
and the numerical results is given in Section 4.

2. Smoothing

Consider the change of variables γ(t) = (t−a)q +a and θ(s) = (s− b)p+ b in equation
(1), with suitable positive constants p, q. Also let ξ → γ(ξ), η → θ(η), then we have

u(γ(t), θ(s)) = y(γ(t), θ(s))

+

∫ t

a

∫ s

b
(γ(t)− γ(ξ))α(θ(s)− θ(η))βk(γ(t), θ(s), γ(ξ), θ(η), u(γ(ξ), θ(η)))dθ(η)dγ(ξ),

a ≤ ξ ≤ t ≤ γ−1(T ), b ≤ η ≤ s ≤ θ−1(S),

(2)

Equation (2) can be simplified as

U(t, s) = Y (t, s) +

∫ t

a

∫ s

b
(t− ξ)α(s− η)βK(t, s, ξ, η, U(ξ, η))dηdξ,(3)

where

Y (t, s) := y(γ(t), θ(s)), U(t, s) := u(γ(t), θ(s)),

K(t, s, ξ, η, U) := δα(t, ξ)δβ(s, η)k(γ(t), θ(s), γ(ξ), θ(η), u(γ(ξ), θ(η)))γ
′(ξ)θ′(η),

with

δα(t, ξ) :=

{
(γ(t)−γ(ξ)

t−ξ )α, t ̸= ξ,

(γ′(t))α, t = ξ,
δβ(s, η) :=

{
( θ(s)−θ(η)

s−η )β, s ̸= η,

(θ′(s))β, s = η,

equation (3) has a kernel which is still weakly singular and has a unique continuous
solution.

3. Nystrom method

Let uniform mesh si = b + ih, i = 0, 1, ..., N , Nh = θ−1(S) − b and tj = a + jτ ,
j = 0, 1, ...,M , τM = γ−1(T )− a. By collocating the equation (3) on the first grid points,
we obtain

U(t, si) = Y (t, si) +

∫ t

a

∫ si

b
(t− ξ)α(si − η)βK(t, si, ξ, η, U(ξ, η))dηdξ, i = 0, 1, ..., N,

(4)

using the Navot’s quadrature rule ( [4]) reduce to

U(t, si) ≃ Y (t, si) +

∫ t

a
(t− ξ)α

[
h

i−1∑

k=0

wik(si − sk)
βK(t, si, ξ, sk, U(ξ, sk))

+ wiihK(t, si, ξ, si, U(ξ, si))] dξ,

where

wik =





1
2 k = 0,
1 0 < k < i,
−hβζ(−β) k = i,
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and ζ(x) is the Rimann-zete function. In the following by collocating on the second grid
points we can write

U(tj , si) ≃ Y (tj , si) + h

i−1∑

k=0

wik(si − sk)
β

∫ tj

a
(tj − ξ)αK(tj , si, ξ, sk, U(ξ, sk))dξ

+ wiih

∫ tj

a
(tj − ξ)αK(tj , si, ξ, si, U(ξ, si))dξ,

Again the Navot’s quadrature rule leads to

Uji = Y (tj , si) + h
i−1∑

k=0

wik(si − sk)
β

[
τ

j−1∑

l=0

ωjl(tj − tl)
αKlk + ωjjτKjk

]

+ wiih

[
τ

j−1∑

l=0

ωjl(tj − tl)
αKli + ωjjτKji

]
, i = 1, 2, ..., N, j = 1, 2, ...,M.(5)

where Uji ≃ U(tj , si), Klk = K(tj , si, tl, sk, Ulk) and

ωjl =





1
2 , l = 0,
1, 0 < l < j,
−ταζ(−α), l = j,

By knowing the values U00 = Y (0, 0), Uj0 = Y (tj , 0), j = 1, 2, ...,M and U0i = Y (0, si),
i = 1, 2, ..., N , we can obtain other values of the unknown function in the mesh points
by solving equation (5) for i = 1, ..., N , j = 1, ...,M . Obviously for nonlinear integral
equations, these equations are nonlinear which can be solved by using Newton’s iterative
method. It is well known that the initial guesses for Newton’s method are very important:
thus we choose Uj−1,i as initial guesses for compute Uj,i.

4. Numerical results

In this section, in order to test experimentally the convergence of the proposed method
and measure the error accuracy, we consider a test problem.

Example 4.1. Consider two-dimensional nonlinear WSVIE

u(t, s) =
√
st− 256

441
(ts)

7
4 +

∫ t

0

∫ s

0

u2(ξ, η)

(t− ξ)0.25(s− η)0.25
dηdξ, 0 ≤ ξ ≤ t ≤ 1, 0 ≤ η ≤ s ≤ 1,

with exact solution u(t, s) =
√
ts.

The Table 1 displays the absolute error and ratios of the errors for h = τ = 0.02 and
h = τ = 0.01 in some mesh points. Note that for p = q = 1 smoothing was not done. As
it shown in table, the error is reduced at the origin with smoothing (p, q = 2, 3). In these
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cases, the ratios can be seen to be close to 5.

Table 1 : Numerical results of Example 4.1
h = τ (ti, si) p = q = 1 Ratio p = q = 2 Ratio p = q = 3 Ratio

(0.02, 0.02) 9.156e−8 2.76 1.951e−12 4.80 4.936e−11 4.85
(0.06, 0.06) 8.366e−7 2.95 4.978e−10 4.12 5.986e−14 4.83
(0.1, 0.1) 2.260e−6 3.02 5.954e−9 3.40 4.859e−12 3.91
(0.3, 0.3) 1.885e−5 3.13 1.885e−6 3.36 6.228e−8 3.36

0.02 (0.5, 0.5) 5.483e−5 3.16 2.809e−5 3.36 5.454e−6 3.36
(0.8, 0.8) 1.889e−4 3.17 4.086e−4 3.36 3.750e−4 3.37
(1, 1) 4.238e−4 3.18 2.148e−3 3.37 4.563e−3 3.38

(0.02, 0.02) 3.312e−8 4.063e−13 1.017e−18
(0.06, 0.06) 2.827e−7 1.206e−10 1.238e−14
(0.1, 0.1) 7.466e−7 1.250e−9 1.241e−12
(0.3, 0.3) 6.018e−6 5.602e−7 1.450e−8

0.01 (0.5, 0.5) 1.733e−5 8.354e−6 1.622e−6
(0.8, 0.8) 5.941e−5 1.213e−4 1.114e−4
(1, 1) 1.330e−4 6.369e−4 1.348e−3

5. conclusion

In this article we considered numerical methods for singular two-dimensional Volterra
integral equations of the second kind where typically non-smooth solutions are the norm.
To overcome this, we employed a smoothing change of variables followed by the idea
of Navot’s quadrature rule. Numerical examples were given to illustrate the theoretical
results.

References

1. P. Assari, F. Asadi-Mehregan, Local multiquadric scheme for solving two-dimensional weakly singular
Hammerstein integral equations, Int. J. Numer. Model. (2018) https://doi.org/10.1002/jnm.2488.

2. H. Brunner,P. van der Houwen, The Numerical Solution of Volterra Equations, Amsterdam etc., North-
Holland 1986.

3. C. Lubich, Fractional linear multistep methods for Abel-Volterra integral equations of the second kind,
Math. Comp. 45 (1985) 463-469.

4. I. Navot, A further extension of Euler-Maclaurin summation formula, J. Math. Phys. 41 (1962) 155-184.
5. A. Palamara Orsi, Product integration for Volterra integral equations of the second kind with weakly

singular kernels, Math. Comp. 65 (1996) 1201-1212.
6. X. Shi, Y. Wei, Convergence analysis of the spectral collocation methods for two-dimensional nonlinear

weakly singular Volterra integral equations*, Lith. Math. J. 58 (2018) 7594.
7. L. Tao, H. Yong, Extrapolation method for solving weakly singular nonlinear Volterra integral equations

of the second kind, J. Math. Anal. Appl. 324 (2006) 225-237.
8. Y. Wei, Y. Chen, X. Shi, A spectral collocation method for multi-dimensional nonlinear weakly singular

Volterra integral equation, J. Comput. Appl. Math. 331 (2017) 52-63.

314



Liouville-type theorems for p-harmonic maps with potential

Seyed Mehdi Kazemi Torbaghan1,∗, Keyvan Salehi 2

1 Faculty of Basic Sciences, Univesity of Bojnord, Bojnord, Iran
2 Central of theoretical physic and chemistry (ctcp), Massey university, Auckland , Newzealand

Abstract. In the present paper, p−harmonic maps with potential from a complete
Riemannian manifold of non-negative Ricci curvature to a complete Riemannian manifold
are studied. First, we compute the first and second variational formulas for this kind of
harmonic maps. Then, a Liouville-type theorem for p-harmonic maps with potential is
given .
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1. Introduction
Harmonic maps with potential between Riemannian complete manifolds are first in-

troduced by Ratto in 1997. This new type of harmonic maps more than usual harmonic
maps plays a key role in many branch of mathematical physics such as Neumann motion
and equilibrium system of ferromagnetic spin chain, [8].
Let f : (P, ρ) −→ (K, ℓ) be a smooth map between complete Riemannian manifolds. The
map f is called harmonic map if f is a critical point of the energy functional

(1) E(f) =

∫

P
e(f)dVρ,

where e(f) = 1
2

∑p
α=1⟨df(eα), df(eα)⟩. Here p is the dimension of P and {eα}α=1,··· ,p is a

local orthonormal frame in P .
Now, regard an extension of energy functional for a smooth function G inC∞(K). Setting

(2) EG(F ) =

∫

P
[e(f)−G ◦ f ]dVρ.

The Euler-Lagrange equation associated to EG(F ) is obtained as follows
(3) τG(f) = τ(f) +∇G(f) = 0

where ∇G is the gradient of G on K and τ(f) = traceρ∇df is the tension field of f . Any
smooth map f satisfying in (2.5) is said to be a harmonic map with potential G . Recently,
many scholars have done research on this topic. For instance, Qun obtained Liouville type
results and gradient estimates for these maps, [2]. In [4], the authors studied the heat
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equation associated to EG(f) and investigated phenomena of blowing up solution.
A natural extension of the concept of harmonic map is that of a p-harmonic map for a
number p > 2. p−harmonic maps are critical points of p− energy functional, which is
defined as follows

Ep(f) =

∫

P
| df |p dVρ

This type of harmonic map is applied in many fields of physics and mechanics such as
glaciology, non-linear elasticity, non-Newtonian fluids, [6]. In the last decade many de-
velopments have been witnessed in the theory of p−harmonic maps. In [7], the relative
Dirichlet problem for any smooth p−harmonic maps from a compact manifold into a neg-
ative sectional curvature is solved. Moreover, in [3], many various geometric applications
of p−harmonic maps from a positive Ricci curvature complete manifolds to manifolds with
bounded sectional curvature are given.
In this paper, motivated by [1] and [5], p−energy functional with potential G is introduced.
Then, the first and second variational formulas are calculated. Finally, a Liouville-type
theorem for p-harmonic maps with potential is given.

2. Main results
In this section, the variational formulas of p−energy functional with potential G is

calculated . Then, a Liouville-type theorem for p−harmonic maps with potential is given.

Let f : (P, ρ) −→ (K, ℓ) be a smooth map between complete Riemannian manifolds.
Throughout this paper, we will denote the Levi-Civita connection of P,K and f−1TK
by P∇,K ∇ and ∇̇. considering that the induced connection ∇̇ on f−1TK defined by
∇̇XZ =K ∇df(X)Z, where X ∈ χ(P ) and Z ∈ Γ(f−1TK).

Definition 2.1. Let G ∈ C∞(K). The p−energy functional of f with potential G is
denoted by Ep,G(f) and defined by

(4) Ep,G(f) =

∫

P
[| df |p −G(f)]dVρ.

The smooth map f is said to be p−harmonic with potential G if it is a critical point of Ep,G.

By considering a local orthonormal frame field {eα} on P , the p−tension field of f
with potential G, τp,G(f), is defined by

(5) τp,G(f) =| df |p−2 τ(f) + df(grad | df |p−2) +K ∇G ◦ f,
where τ(f) is the tension field of f . Based on the above notations, it is obtained that

Lemma 2.2. (The first variation formula) Let f : (P, ρ) −→ (K, ℓ) be a smooth map.
Then

(6) d

dt
Ep,G(ft) |t=0= −

∫

P
ℓ(τp,G(f),W )dVρ,

where W = dft
dt |t=0 .

Definition 2.3. A map f is called p− harmonic with potential G if τp,G(f) = 0.
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Definition 2.4. Let f : (P, ρ) −→ (K, ℓ) be a p−harmonic map with potential G,
and let ft : P −→ K (−ε < t < ε) be a compctly supported variation such that f0 = f

and W =
∂ft
∂t

|t=0. Setting

I(W ) =
d2

dt2
Ep,G(ft) |t=0,

The map f is said to be stable if I(W ) ≥ 0 for any vector field W along f .

By calculating the second variational formula of Ep,G, and make use of Green’s Theo-
rem and divergence theorem, I(W ) is obtained as follows

I(W ) =

∫

P
(p− 2) | df |

p− 4

2 ⟨∇̇W,df⟩2dVρ

+

∫

P
| df |

p− 4

2

{
⟨| ∇̇W |2 −ℓ(traceρ

KR(W,df)df

− (∇K
W gradKG) ◦ f,W )

}
dVρ(7)

where | ∇̇V | denotes the Hilbert-Schmidt norm of the ∇̇W ∈ Γ(T ∗P×f−1TK). According
to the above equations, we have

Theorem 2.5. Let f : (P, ρ) −→ (K, ℓ) be a p− harmonic map with potential G from
a complete manifold with a positive Ricci curvature to a complete Riemannian manifold.
Assume that

(8) ∆ grad(| df |
p− 4

2 ) +
1

2
grad | grad | df |

p− 4

2 |2= 0.

Then, f is a harmonic map.
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Abstract. The matching energy of a graph G, denoted by ME(G), is defined as the
sum of absolute values of the zeros of the matching polynomial of G. In this paper, we
would like to present some lower bounds for ME(G). For any connected graph G, it
is proved that ME(G) ≥ 2µ(G), where µ(G) is the matching number of G. Also it is
shown that if G has no perfect matching, then ME(G) ≥ 2µ(G) + 1, except for K1,2.
Moreover, we characterize some class of graphs whose matching energy is at least equal
to the number of vertices.

Keywords: matching energy, matching polynomial, matching number.
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1. Introduction

All graphs we consider are finite, simple and undirected. Let G be a graph. By order
and size of G, we mean the number of vertices and the number of edges of G, respectively.
We denote the complete graph and the cycle of order n, by Kn and Cn, respectively. A
complete bipartite graph with part sizes m and n is denoted by Km,n. A {1, 2}-factor is
a spanning subgraph of G all of whose components are 1-regular or 2-regular. A traceable
graph, is a graph with a Hamilton path. A graph is called claw-free if it has no induced
subgraph isomorphic to K1,3. An r-matching in a graph G is a set of r pairwise non-
incident edges. The number of r-matchings in G is denoted by m(G, r). The matching
number of G, µ(G), is the number of edges in a maximum matching of G.

Let λ1, . . . , λn be the eigenvalues of a graph G, i.e the eigenvalues of its adjacency
matrix. The energy of the graph G denoted by E(G), is defined as

E(G) =

n∑

i=1

|λi|.

The theory of graph energy is well developed nowadays, for details see [5]. The Coulson
integral formula [2] plays an important role in the study on graph energy, its version for
an acyclic graph T is as follows:
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(1) E(T ) =
2

π

∫ +∞

0

1

x2
ln


∑

r≥0
m(T, r)x2r


 dx.

Motivated by formula (1), Gutman and Wagner in 2012 defined the matching energy
of a graph G as

(2) ME(G) =
2

π

∫ +∞

0

1

x2
ln


∑

r≥0
m(G, r)x2r


 dx,

see [3]. Energy and matching energy of graphs are closely related, and they are two
quantities of relevance for chemical applications, [3]. Recall that the matching polynomial
of G is defined by

α(G, x) =

bn
2
c∑

r=0

(−1)rm(G, r)xn−2r,

where n is the order of G and m(G, 0) is considered to be 1. For any graph G, all
zeros of α(G, x) are real [4]. Furthermore, if µ is a matching zero of G, then so is −µ.
The following result gives an equivalent definition of matching energy:

Theorem 1.1. [3] Let G be a graph and let µ1, . . . , µn be the zeros of its matching
polynomial. Then

ME(G) =
n∑

i=1

|µi|.

Since 2012 matching energy of graphs has been studied by several authors and a series
of results concerning the extremal matching energy of graphs have been obtained. For
details, we refer to [3,7]. In this paper, we present a lower bound for the matching energy
of a graph in terms of the matching number of the graph. We prove that for a connected
graph G, ME(G) ≥ 2µ(G). Also it is shown that if G has no perfect matching, then
ME(G) ≥ 2µ(G) + 1, except for K1,2. Among other results, we characterize some class of
graphs whose matching energy is at least equal to the number of vertices. We prove that
if G is a graph of order n such that G has a {1, 2}-factor, then ME(G) ≥ n. Also we show
that if a connected graph G is traceable or claw-free, then its matching energy exceeds
the number of vertices, except for K2 and K1,2. The following theorems and lemmas are
needed in the sequel.

Lemma 1.2. [1] Let G be a connected graph. If the zeros of α(G, x) are ≥ −1, then
G is either K1 or K2.

Lemma 1.3. [7] If H is a subgraph of G, then ME(H) ≤ME(G), with equality if H
and G are the same except possibly for isolated vertices.

Lemma 1.4. [3] Let G1 and G2 be two vertex disjoint graphs. Then ME(G1 ∪G2) =
ME(G1) +ME(G2).
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Theorem 1.5. [3] The matching energy of a graph G with m edges and matching
number L is bounded as:

2
√
m+ L(L− 1)m(G,L)1/L ≤ME(G) ≤ 2

√
(L− 1)m+ Lm(G,L)1/L.

The following lemma can be easily proved.

Lemma 1.6. If T 6= K1 is a tree with no perfect matching, then T has at least two
maximum matchings.

2. Main results

In this section, we present some lower bounds for matching energy of graphs. Moreover,
we characterize some graphs whose matching energy exceeds the number of vertices.

Theorem 2.1. Let G be a connected graph. Then ME(G) ≥ 2µ(G) and equality holds
if and only if G ∈ {K1,K2}.

Proof. Let G be of order n. Assume that µ1 > µ2 ≥ . . . ≥ µL are all positive zeros
of α(G, x). Hence

α(G, x) = xn−2L(x2L + a1x
2L−2 + · · ·+ aL),

and ME(G) = 2
L∑
i=1

µi. Note that L is the size of the maximum matching of G and

|aL| = m(G,L) ≥ 1. Then the arithmetic-geometric inequality implies that

(3)
µ1 + · · ·+ µL

L
≥ L
√
µ1µ2 · · ·µL = 2L

√
µ21µ

2
2 · · ·µ2L = 2L

√
|aL| ≥ 1.

From (3), it follows that ME(G) ≥ 2L. If G ∈ {K1,K2}, then obviously ME(G) = 2L.
Conversely, suppose that ME(G) = 2L. So the equality holds in (3), that is µ1 = . . . =
µL = 1. Now, by Lemma 1.2, G ∈ {K1,K2}. �

Corollary 2.2. For any connected graph G apart form K1 and K1,i, 1 ≤ i ≤ 3,
ME(G) ≥ 4.

Corollary 2.3. Let G be a connected graph of order n witch has a perfect matching.
Then ME(G) ≥ n and the equality holds only if G = K2.

Theorem 2.4. Let G be a connected graph with at least two vertices. If G has no
perfect matching, then ME(G) ≥ 2µ(G) + 1, except for K1,2.

Proof. Let G be of order n and size m. Let L be the size of the maximum matching
of G. Since G has no perfect matching, 2L ≤ n − 1. If G is a tree, then by Lemma 1.6,
m(G,L) ≥ 2. Now, using Theorem 1.5, we obtain:

ME(G) ≥ 2
√
m+ L(L− 1)m(G,L)1/L ≥

√
4(n− 1) + 4L(L− 1)21/L.
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Note that if L = 1, then by Corollary 2.2 and the facts that ME(K1,2) = 2.82 and

ME(K1,3) = 3.46, we are done. If L ≥ 2, then since 21/L > exp(1/2L) > 1 + 1
2L ≥

1 + 1
4L(L−1) , we have

ME(G) ≥
√

8L+ 4L(L− 1)[1 +
1

4L(L− 1)
] ≥

√
4L2 + 4L+ 1 ≥ 2L+ 1.

If G is not a tree, then Theorem 1.5 implies that

ME(G) ≥
√

4m+ 4L(L− 1) ≥
√

4n+ 4L(L− 1)

≥
√

4L2 + 4L+ 4 ≥ 2L+ 1.

and the proof is complete. �

Lemma 2.5. Let n ≥ 3. Then ME(Cn) > n. In particular, if n is even, then
ME(Cn) > n+ 1.

Theorem 2.6. Let G be a graph of order n. If G has a {1, 2}-factor, thenME(G) ≥ n.
Equality occurs if and only if G = n

2K2.

Theorem 2.7. [6] Let r be a positive integer. Then every r-regular graph has a
{1, 2}-factor.

The following corollary is an immediate consequence of Theorems 2.6 and 2.7.

Corollary 2.8. Let r be a positive integer. If G is an r-regular graph of order n,
then ME(G) ≥ n and equality holds if and only if G is 1-regular.

Theorem 2.9. Let G be a connected traceable graph of order n. Then ME(G) > n,
except for K2 and K1,2.

Theorem 2.10. Let G be a connected claw-free graph of order n. Then ME(G) > n,
except for K2 and K1,2.

3. Conclusion

In this paper, we studied further properties of the matching energy of a graph. For a
graph G, we obtained a lower bound for ME(G) in terms of the matching number of G.
Moreover, we characterized some class of graphs whose matching energy is at least equal
to the number of vertices.
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The discrete variant of a kind of continuous problem
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Abstract. In this paper, we present the following fractional discrete boundary-value
problem

{
−∆

(
1
2 0

∆−β
k (∆u(k)) + 1

2 k
∆−β

T (∆u(k))
)
= λf(k, u(k)), k ∈ [1, T ]N0 ,

u(0) = u(T + 1) = 0,

where T ≥ 2 is a fixed positive integer, 0 ≤ β < 1 and 0∆
−β
k and k∆

−β
T are the β-

th left and right discrete fractional sum, respectively, and ∆u(k) = u(k + 1) − u(k) is
the forward and [1, T ]N0 is the discrete set {1, 2, · · · , T − 1, T} and N0 = {0, 1, 2, · · · },
difference operator f : [1, T ]N0 × R → R is a continuous function, λ > 0 is a parameter.

Keywords: Discrete fractional calculus; Discrete nonlinear boundary value problem;
Continuous nonlinear boundary value problem.

AMS Mathematics Subject Classification [2010]: 26A33, 39A10, 34B15

1. Introduction

There has been surge in the interest for boundary value problems with fractional dif-
ferential equations in many fields because of their applications. This kind of problems play
a fundamental role in different fields of research, such as mechanical, economics, computer
science, physics, chemistry, aerodynamics, ecology and many others. The importance and
role of studies in discrete space requires that we present these types of continuous problems
in a discrete way. The aim of this paper is to apply the continuous model

(1)

{
− d

dt

(
1
20
D−β

t (u′(t)) + 1
2 t
D−β

T (u′(t))
)
= λ∇F (t, u(t)), a.e.t ∈ [0, T ],

u(0) = u(T ) = 0,

to the discrete model

(2)

{
−∆

(
1
20
∆−β

k (∆u(k)) + 1
2k
∆−β

T (∆u(k))
)
= λf(k, u(k)), k ∈ [1, T ]N0 ,

u(0) = u(T + 1) = 0,

where T ≥ 2 is a fixed positive integer, 0 ≤ β < 1 and 0∆
−β
k is the β-th left discrete

fractional sum and k∆
−β
T is the β-th right discrete fractional sum and ∆u(k) = u(k +
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1) − u(k) is the forward and T is a fixed positive integer, [1, T ]N0 is the discrete set
{1, 2, · · · , T − 1, T} and N0 = {0, 1, 2, · · · }, difference operator f : [1, T ]N0 × R → R is a
continuous function, λ > 0 is a parameter.

0D
β
t and tD

β
T are the left and right Riemann-Liouville fractional integrals of order 0 ≤

β < 1 respectively, F : [0, T ] × RN → R is a given function and ∇F (t, x) is the gradient
of F at x and λ > 0 is real number. Jiao and Zhou [1] studied the problem (1) by using
the mountain pass theorem and in [2] the problem (1) with additional nonlinear term
studied by using Nehari manifold. When β = 0, this boundary value problem reduces to
the standard second-order boundary value problem of the following form

(3)

{
−∆2(u(k)) = λf(k, u(k)), k ∈ [1, T ],

u(0) = u(T + 1) = 0,

2. Preliminaries

we recall that the falling factorial is defined as (k − s − 1)−ν−1 = Γ(k−s)
Γ(k−s+ν+1) , hence

for s = k + ν, one has: (−ν − 1)−ν−1 = Γ(−ν)
Γ(1) = Γ(−ν) and for s = k + ν − 1, one has:

(−ν)−ν−1 =
Γ(−ν + 1)

Γ(2)
= Γ(−ν + 1) = −νΓ(−ν).

We define left and right discrete fractional sum operators as follows.

Definition 2.1. ( [4, Definition 3.1]) Let 0 < ν ≤ 1 and u : N0 → R be any real-valued
function the ν-th left discrete fractional sum of u is defined

k∆
−ν
0 (u(k)) =

1

Γ(ν)

k∑

s=0

(k − s− 1)ν−1u(s),

k ≡ ν (mod 1), and the ν-th right discrete fractional sum of u is defined

T∆
−ν
k (u(k)) =

1

Γ(ν)

T∑

s=k+ν

(k − s− 1)ν−1u(s),

k ∈T−ν N = {T − ν, T − ν − 1, T − ν − 2, ...}.

3. Main results

Lemma 3.1. ( [3, Theorem 2.1]) For any ν > 0, the following equality holds:

∆−ν
a ∆f(t) = ∆∆−ν

a f(t)− (t− a)ν−1

Γ(ν)
f(a)

where f is defined on Na = {a, a+ 1, a+ 2, ...}.
Now, corresponding to Lemma 3.1, for right fractional sum of order ν > 0, we provide

next theorem.

Theorem 3.2. For any ν > 0, the following equality holds:

b∆
−ν(∆f(t)) = ∆b∆

−ν(f(t)) +
1

Γ(ν)
(t− b− 1)ν−1f(b+ 1)

where f is defined on bN = {b, b− 1, b− 2, ...}.
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Proof. By similar argument in [3], First recall the summation by parts formula:

∆s((t− s)ν−1f(s)) = (t− s− 1)ν−1∆sf(s)− (ν − 1)(t− s− 1)ν−2f(s)

Indeed,

∆s((t− s)ν−1f(s)) = (t− s− 1)ν−1∆sf(s) + ∆s((t− s)ν−1)f(s)

and by ∆s(t− s)ν−1 = −(ν − 1)(t− s− 1)ν−2, one has

∆s((t− s)ν−1f(s)) = (t− s− 1)ν−1∆sf(s)− (ν − 1)(t− s− 1)ν−2f(s)

Sum by parts to obtain

b∆
−ν(∆f(t)) =

1

Γ(ν)

b∑

s=t+ν

(t− s− 1)ν−1∆sf(s)

=
1

Γ(ν)
(t− s)ν−1f(s)|b+1

t+ν

+
ν − 1

Γ(ν)

b∑

s=t+ν

(t− s− 1)ν−2f(s)

=
1

Γ(ν)
(t− b− 1)ν−1f(b+ 1)− 1

Γ(ν)
(−ν)ν−1f(t+ ν)

+
ν − 1

Γ(ν)

b∑

s=t+ν

(t− s− 1)ν−2f(s)

=
1

Γ(ν − 1)

b∑

s=t+ν

(t− s− 1)ν−2f(s)− 1

Γ(ν)
(−ν)ν−1f(t+ ν)

+
1

Γ(ν)
(t− b− 1)ν−1f(b+ 1)

On the other hand

∆b∆
−ν(f(t)) = b∆

−ν(f(t+ 1))−b ∆
−ν(f(t))

=
1

Γ(ν)

b∑

s=t+1+ν

(t+ 1− s− 1)ν−1f(s)− 1

Γ(ν)

b∑

s=t+ν

(t− s− 1)ν−1f(s)

=
1

Γ(ν)

b∑

s=t+ν

(t− s)ν−1f(s)− 1

Γ(ν)
(t− (t+ ν))ν−1f(t+ ν)

− 1

Γ(ν)

b∑

s=t+ν

(t− s− 1)ν−1f(s)

=
1

Γ(ν)

b∑

s=t+ν

[
(t− s)ν−1 − (t− s− 1)ν−1

]
f(s)− 1

Γ(ν)
(−ν))ν−1f(t+ ν)

=
1

Γ(ν)

b∑

s=t+ν

[
−∆s(t− s)ν−1

]
f(s)− 1

Γ(ν)
(−ν))ν−1f(t+ ν)
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=
1

Γ(ν)

b∑

s=t+ν

[
(ν − 1)(t− s− 1)ν−2

]
f(s)− 1

Γ(ν)
(−ν))ν−1f(t+ ν)

=
1

Γ(ν − 1)

b∑

s=t+ν

(t− s− 1)ν−2f(s)− 1

Γ(ν)
(−ν))ν−1f(t+ ν)

So the desired equality follows. □
Since u(0) = 0 = u(T + 1), hence by Lemma 3.1 and Lemma 3.2, we have

0∆
−β
k (∆u(k)) = ∆0∆

−β
k u(k), k∆

−β
T (∆u(k)) = ∆k∆

−β
T u(k)

Lemma 3.3. ( [6, Lemma 6]) Let f : Na → R be given. For any k ∈ N0 and ν > 0 we
have

∆k∆−ν
a f(t) = ∆k−ν

a f(t), for t ∈ Na+ν .

Therefore by Lemma 3.3, one has ∆0∆
−β
k (u(k)) =0 ∆

1−β
k u(k). Also by Definition 2.1,

one has ∆k∆
−β
T (u(k)) = −k∆

1−β
T u(k). By above properties and putting α = 1 − β, BVP

(2) transforms to
{
−∆

(
1
20
∆α

k (u(k))− 1
2k
∆α

T (u(k))
)
= λf(k, u(k)), k ∈ [1, T ]N0 ,

u(0) = u(T + 1) = 0.

where 0 < α ≤ 1.When α = 1, since k∆
1
Tu(k) = (−∆)u(k) and 0∆

1
ku(k) = ∆u(k), this

boundary value problem reduces to{
−∆

(
1
2∆u(k)− 1

2(−∆)u(k)
)
= λf(k, u(k)), k ∈ [1, T ]N0 ,

u(0) = u(T + 1) = 0,

hence for α = 1, the problem (2) reduces to the standard second-order boundary value
problem (3), this standard second-order boundary value problem has been studied by
many researchers; see, for instance, [5].
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Abstract. Fisher information plays a pivotal role throughout statistical inference espe-
cially in optimal and large sample studies in estimation theory. It also plays a key role in
physics, thermodynamic, information theory and other applications. In this paper, we es-
tablish some new results on residual Fisher information distance (RFID) between residual
density functions of two systems. Further, some results on RFID and their relations to
other reliability measures are investigated along with some comparison of systems based
on stochastic ordering. A lower bound for RFID measure is provided based on quadratic
form of hazards functions. In addition, RFID measure for equilibrium distributions are
studied.
Keywords: Equilibrium distribution; escort distribution; Fisher information distance;
residual density function; stochastic ordering.
AMS Mathematics Subject Classification [2010]: 18A32, 18F20, 05C65

1. Introduction
The Fisher information (FI) is not only integral to statistical inference but also is

considered fundamental in statistics, information theory, physics, and allied disciplines
(see, for example, [4] and [3] ). Let us consider a random variable X (continuous or
discrete) with a distribution function Fθ having a probability density function fθ, where
θ ∈ Θ ⊆ R. We assume throughout the paper that fθ(x) is differentiable with respect to
both θ and x. The Fisher information of random variable X (or distribution Fθ) about
the parameter θ , based on an observation x of X, is defined as

I(θ) = E

[
∂ log fθ(X)

∂θ

]2
.

(1)
If a random variable X has density f(x), under the condition that the derivative of f

exists for all values on its support, the Fisher information of the density is defined as
I(f) = E

[
ρ2(X)

]
,(2)

where ρ(x) = f
′
(x)

f(x) is called the score function corresponding to f .

∗Speaker. Email address: omid.kharazmi@vru.ac.ir
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Given two random variables X and Y with absolutely continuous density functions f
and g, respectively, the Fisher information distance (FID) between X and Y (or f and g)
is defined by

D(f, g) = Ef

[(
ρf (X)− ρg(X)

)2
]
,(3)

where ρf (x) and ρg(x) are the score functions corresponding to f and g, respectively,
for pertinent details, see [1]. Recently, time-dependent version of (2) and (3) have been
proposed by [6]. These information measures so-called RFI and RFID. Recently, the
cumulative versions of information measures in (1), (2) and (3) have proposed by [3].
The authors have provided some interesting connections between proposed measures with
other well-know information quantities such as chi-square, cumulative Kullback-Leibler
and Jefferry’s divergence measures.

The purpose of this work is to establish some new properties of RFID measure between
two residual lifetime distributions. Let X be a nonnegative random variable denoting a
duration such as a lifetime where we assume that it has the distribution function F , and
the probability density function f . The random variable of interest is the residual random
variable, Xt = X|X > t, on the set

St = {x : x > t} t ∈ (0, b) b ≤ ∞.

Hence, the distribution of interest for computing information is the residual distribution
with survival function

(4) F̄t(x) =

{
F̄ (x)
F̄ (t)

x ∈ St

1 otherwise,

provided that F̄ (t) < ∞, where F̄ = 1− F denotes the survival function of X; see [7] for
pertinent details.

In this work, our main objective is to establish some new results for RFID measure.
We examine the relationship between RFID and some of reliability quantities. Moreover,
we study RFID measure for equilibrium and escort distributions.

2. New results for Residual Fisher information distance (RFID)
Assuming that ft(x) and gt(x) denote the density functions corresponding to residual

lifetimes variables X and Y , respectively. We now introduce RFI and RFID measures that
will be used in the sequel.

Definition 2.1. Let Xt be a residual random variable with an absolutely continuous
density function ft(x). The residual Fisher information of ft(x) is defined as

I(f ; t) = E
(
ρ2(X)|X > t

)
,(5)

where t > 0 and b ≤ ∞ the right extremity of the support of X, i.e., F (b) = 1.

Definition 2.2. The RFID between ft and gt is defined as

D(f, g; t) = E

[(
ρf (X)− ρg(X)

)2

|X > t

]
.(6)

Clearly for a non-negative random variable X, RFID reduce to FID, when t → 0.

For more details, see [6]. Next, we establish some new results associated with RFID
measure.
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Theorem 2.3. Given two random variables X and Y with RFID measure D(f, g; t).
Then under the condition of Lemma 2.1 from [20], we have

D(f, g; t) ≥
(
rf (t) + E

(
ρg(X)|X > t

))2

,(7)

where rf (t) =
f(t)
F̄ (t)

is hazard function of variable X.

Given two random variables X and Y with absolutely continuous density functions f
and g, respectively. The variableX is said to be less than Y in hazard rate order, X ≤hr Y ,
if rf (x) ≥ rg(x), for all x in the union of supports of X and Y , where rf (x)(rg(x)) is the
hazard rate of X(Y ). The following theorem provides an interesting lower bound for RFID
measure based on the hazard functions.

Theorem 2.4. Given two random variables X and Y with hazard functions rf (x) and
rg(x), respectively. If ρg(x) is decreasing and X ≤hr Y , then

D(f, g; t) ≥
(
rf (t)− rg(t)

)2
.(8)

In a similar way, we can show that if ρf (x) is decreasing and Y ≤hr X, then
D(g, f ; t) ≥ (rf (t)− rg(t))

2 .

From Theorem 2.4, we have
(
rf (t)− rg(t)

)2

≤ D(f, g; t) +D(g, f ; t)

2
.

Example 2.5. Let Xi, i = 1, 2, be distributed as gamma distribution with density

fi(x) =
λαi

Γ(αi)
xαi−1e−λx, x > 0, αi, λ > 0, i = 1, 2.

For α1 > 2, we have

D(f1, f2; t) = λ2 (α2 − α1)
2Γ(α1 − 2, λt)

Γ(α1, λt)
,

where Γ(α1, t) =
∫∞
t xα1−1e−xdx, is incomplete gamma function.

We now give some theorems corresponding to RFID measure between densities of two
transformed variables.

Theorem 2.6. Given two random variablesX and Y with absolutely continuous density
functions f and g, respectively, and ϕ be a nonnegative increasing, twice differentiable and
invertible function. Then

(9) D(fϕ, gϕ; t) = E

[
1

ϕ′(X)2

[
f ′(X)

f(X)
− g′(X)

g(X)

]2 ∣∣X > ϕ−1(t)

]
.

Let X and Y be continuous variables with density functions f and g, respectively.
Variable X is said to be less than variable Y in likelihood ratio order, X ≤lr Y , if g(x)

f(x) is
increasing in x for all x in the union of supports of X and Y .

Definition 2.7. Let X and Y be two random variables with residual Fisher informa-
tion distance D(f, g; t) and D(g, f ; t), respectively. X is said to be less than Y in residual
Fisher information distance, denoted by X ≤RFID Y , if D(g, f ; t) ≤ D(g, f ; t), for all t.

Theorem 2.8. Let X and Y have densities f and g, respectively.
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(i) Assume that f
g is log-concave. If X ≤lr Y , then X ≤RFID Y,

(ii) Assume that g
f is log-convex. If Y ≤lr X, then X ≤RFID Y .

3. RFID measure for equilibrium distributions
Assume that F̄ (x) is the survival function of a nonnegative continuous random

variable X with finite mean µ. The random variable Xe is said to be the equilibrium
random variable corresponding to the random variable X, if the density function of Xe is
given by

fe(x) =
F̄ (x)

µ
, x > 0.(10)

The equilibrium distributions arise in renewal theory as the asymptotic distributions
of the waiting time till the next event and the time since the last event at time t. Before
presenting the theorem, we recall that the mean residual lifetime (MRL) of continuous
random variable X with survival function F̄ is defined at time t as

m(t) = E(X − t|X > t) =

∫ b
t F̄ (x)dx

F̄ (t)
,

provided that F̄ (t) > 0. Note that m(0) = µ is the mean of X.
Let X and Y be two continuous random variables with density functions f and g and

corresponding equilibrium densities fe and ge, respectively.

Theorem 3.1. The RFID between two equilibrium distributions fe and ge can be
represented as

D(fe, ge; t) =

E

[(
rf (X)−rg(X)

)2
rf (X) |X > t

]

mf (t)
,

where mf (t) denote the MRL of variable X.

4. Conclusion
In this paper, we have considered RFID measure and established some new properties

associated with stochastic ordering in order to compare the lifetimes of two systems. We
have shown that a lower bound for RFID measure can be expressed based on quadratic
form of the corresponding hazard functions. In addition, we have provided some results
of RFID measure in context of equilibrium distributions. Besides, we have shown that
RFID measure between two equilibrium distributions is connected with hazard and mean
residual functions of underlying variable.
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Abstract. In this paper, we consider and solve a mixed type functional equation in
connection with a characterization of inner product spaces. This is applied to give a
solution to the stability problem for the quadratic functional equation in the class of
mappings from a quasi-normed space into a p-Banach space.
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1. Introduction and preliminaries
Lately many researchers have been interested about diverse issues related to quasi-

Banach spaces. These spaces arise in a natural way as a generalization of Banach spaces,
where the triangular inequality of the norm is changed by a weaker condition. Quasi-
Banach spaces are an important class of metrizable topological vector spaces (often, not
locally convex), see [5] for fundamental facts in quasi-Banach spaces.

Let X be a vector space over a real or complex field F. A quasi-norm on X is a function
∥ · ∥ from X to [0,∞) satisfying

(i) ∥x∥ > 0 if x ̸= 0 in X;
(ii) ∥αx∥ = |α|∥x∥ for x ∈ X, α ∈ F;
(iii) ∥x + y∥ ≤ κ (∥x∥+ ∥y∥) for x, y ∈ X, where κ = κ(X) ≥ 1 is a constant, the

modulus of concavity of X.
A quasi-norm is p-subadditive (0 < p ≤ 1), and then is called p-norm, if besides,

(iv) ∥x+ y∥p ≤ ∥x∥p + ∥y∥p for x, y ∈ X.
A quasi-norm clearly defines a metrizable vector topology on X. If such topology is

complete then we say that (X, ∥ · ∥) is a quasi-Banach space. If the quasi-norm is also
p-subadditive, then X is a p-Banach space.

The main difference of a quasi-normed space compared with a normed space is the
modulus of concavity κ ≥ 1. This causes a quasi-norm to not be necessarily continuous [5,
Example 3]. Also, a quasi-normed space is not necessarily normable [5, Examples 1 and 2].
However, every quasi-normed space is p-normable in the sense that there exists a p-norm
equivalent to the given quasi-norm by Aoki-Rolewicz theorem [5, Theorem 1]. Since it is
much easier to work with p-norms, authors often restrict their attention to p-norms.

∗Speaker. Email address: hkhodaei@malayeru.ac.ir, hkhodaei.math@gmail.com
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The most important class of quasi-Banach spaces which are not already Banach spaces
is the class of Lp(µ) spaces for 0 < p < 1 with the usual quasi-norm ∥f∥p =

(∫
|f |pdµ

) 1
p .

In this case, ∥f + g∥p ≤ 2
1
p
−1

(∥f∥p + ∥g∥p), i.e., the modulus of concavity of Lp(µ) is
2

1
p
−1.
The question of how much a function satisfying an equation approximately (for exam-

ple, a difference, differential, functional or integral equation) may differ from a solution
to the equation arises naturally in applications of mathematics. The theory of Ulam sta-
bility provides some effcient tools to evaluate such errors (see [1] for further details and
references).

A functional equation of the form

(1) f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x)

was introduced by Jun and Kim [3] which is said to be a cubic functional equation and
every solution of (1) is called a cubic mapping. One of the solutions of (1) is the function
f defined by f(x) = cx3 for all x ∈ R, where c is an arbitrary real constant. They
proved that a mapping f between two real vector spaces X and Y is a solution of the
functional equation (1) if and only if there exists a mapping C : X ×X ×X −→ Y such
that f(x) = C(x, x, x) for all x ∈ X, and C is symmetric for each fixed one variable and
additive for fixed two variables. The mapping C is given by

C(x, y, z) =
1

24
(f(x+ y + z) + f(x− y − z)− f(x+ y − z)− f(x− y + z))

for all x, y, z ∈ X. They also investigated its stability problem for the functional equation
(1) on Banach spaces.

It is well known [4] that a mapping f : X → Y between two real vector spaces X and
Y satisfies the functional equation

(2) f(x+ y) + f(x− y) = 2f(x) + 2f(y)

if and only if there exists a unique symmetric biadditive mapping B : X ×X → Y such
that f(x) = B(x, x) for all x ∈ X. The biadditive mapping B is given by

B(x, y) =
1

4
(f(x+ y)− f(x− y)) .

It is natural that the functional equation (2) is called a quadratic functional equation. In
particular, every solution of (2) is said to be a quadratic mapping.

The following functional equation

(3) f(x+ y + z) + f(x) + f(y) + f(z) = f(x+ y) + f(y + z) + f(z + x)

was solved by Kannappan [4] in connection with a characterization of inner product spaces.
Let X be a vector space over a field K of characteristic zero (or characteristic different
from 2). He proved that a function f : X → K is a solution of (3) if and only if
there exist a symmetric biadditive mapping B and an additive mapping A such that
f(x) = B(x, x) +A(x) for all x ∈ X.

Chahbi et al. [2] have obtained some results concerning the stability of the k-quadratic
functional equation

f(x+ ky) + f(x− ky) = 2f(x) + 2k2f(y), (k ∈ N),

in the class of mappings from an abelian group into a Lipschitz space.
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As a generalization of all the above functional equations, we treat the mixed type of
cubic, quadratic and additive functional equation

f(x+ y + kz) + f(x− y + kz) + f(x+ y − kz) + f(x− y − kz)

= 2 (f(x+ y) + f(x− y)) + 2k2 (f(x+ z) + f(x− z))− 4k2f(x)
(4)

for any fixed positive integer k > 1. We establish the general solution of (4) in connection
with a characterization of inner product spaces. Furthermore, we give a solution to the
stability problem for the mixed type functional equation (4) in the framework of p-Banach
spaces.

2. Main results
First, we present the general solution of (4) in the class of all mappings between real

vector spaces.

Theorem 2.1. Let X and Y be real vector spaces. A mapping f : X → Y with
f(0) = 0 is a solution of (4) if and only if there exist mappings C : X ×X ×X −→ Y ,
B : X ×X −→ Y and A : X → Y such that

(5) f(x) = C(x, x, x) +B(x, x) +A(x)

for all x ∈ X, where the mapping C is symmetric for each fixed one variable and is additive
for fixed two variables, B is symmetric biadditive and A is additive.

Proof. Let f with f(0) = 0 satisfies (4). We decompose f into the even part and
odd part by putting

fe(x) =
f(x) + f(−x)

2
, fo(x) =

f(x)− f(−x)

2

for all x ∈ X. It is clear that f(x) = fe(x) + fo(x) for all x ∈ X. Since f satisfies (4),
the mappings fe and fo satisfy (4). In (4), replace f by fe and set x = y = 0 to obtain
fe(kz) = k2fe(z) for all z ∈ X. Hence, by [6, Theorems 2.1 and 2.2], we achieve that the
mappings fe and fo are quadratic and cubic-additive, respectively. Therefore there exist
a symmetric bi- additive mapping B : X × X −→ Y such that fe(x) = B(x, x) for all
x ∈ X, and the mapping C : X ×X ×X −→ Y and additive mapping A : X → Y such
that fo(x) = C(x, x, x) +A(x), for all x ∈ X, where the mapping C is symmetric for each
fixed one variable and is additive for fixed two variables. Hence we obtain (5).

Conversely, let f(x) = C(x, x, x)+B(x, x)+A(x) for all x ∈ X, where C is symmetric
for each fixed one variable and is additive for fixed two variables, B is biadditive and A is
additive. By a simple computation one can show that the mappings x 7→ C(x, x, x) and
x 7→ B(x, x) and A satisfy the functional equation (4). So f satisfies (4). □

Now, let us assume that (X, ∥ · ∥) is a real normed space and

∥x+ y + kz∥2 + ∥x− y + kz∥2 + ∥x+ y − kz∥2 + ∥x− y − kz∥2

= 2
(
∥x+ y∥2 + ∥x− y∥2

)
+ 2k2

(
∥x+ z∥2 + ∥x− z∥2

)
− 4k2 ∥x∥2

holds for any fixed positive integer k > 1 and all x, y, z ∈ X. Define g : X → R by
g(x) = ∥x∥2. Then g(0) = 0, g is even, and g satisfies (4). Then, by Theorem 2.1,
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g(x) = B(x, x), where B is a symmetric, biadditive mapping. Also, it is easy to see that
B is bilinear and so X is an inner product space.

Now before taking up the stability of the mixed type functional equation (4), we define
the following difference operator for a given mapping f : X → Y ,

Df (x, y, z) :=f(x+ y + kz) + f(x− y + kz) + f(x+ y − kz) + f(x− y − kz)

− 2 (f(x+ y) + f(x− y))− 2k2 (f(x+ z) + f(x− z)) + 4k2f(x)

for any fixed positive integer k > 1 and all x, y, z ∈ X, where X is a quasi-normed space
with quasi-norm ∥ · ∥X and Y is a p-Banach space with p-norm ∥ · ∥Y .

Theorem 2.2. Assume that α : X × X × X −→ [0,∞) is a function such that
limm→∞ k2mα

(
x
km , y

km , z
km

)
= 0 and β(x) :=

∑∞
i=1 k

2ipαp
(
0, 0, x

ki

)
< ∞ for all x, y, z ∈ X,

where αp(x, y, z) = (α(x, y, z))p. Suppose that an even mapping f : X → Y with f(0) = 0
satisfies the inequality ∥Df(x, y, z)∥Y ≤ α(x, y, z) for all x, y, z ∈ X. Then there exists a
unique quadratic mapping G : X → Y such that ∥f(x)−G(x)∥Y is bounded by

p
√

β(x)

4k2
for

all x ∈ X.

3. Conclusion
This research has made an attempt to analyze the general solution and the stability

problem of a mixed type functional equation in p-Banach spaces.
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1. Introduction

Motivated by the recent results concerning Drazin invertibility preserving maps (see
for example [4, 5, 7, 8]) on operator matrices, we studied, in [3], certain non-linear pre-
server problems concerning Drazin invertibility of 2×2 operator matrices. For an infinite-
dimensional Hilbert space H, the main result of [3] characterizes unital bijections Ψ :
B(H) → B(H), not necessarily linear, preserving Drazin invertible 2 × 2 operator matri-
ces of index one that their generalized Schur complements are either invertible or Drazin
invertible of index one. It was shown that for such a map Ψ there exists a bounded in-
vertible linear or conjugate linear operator U : H → H such that either Ψ(S) = USU−1

or Ψ(S) = US∗U−1 for every S ∈ B(H).
In this note, by considering an additional preserving condition, we give the same result

without assuming that Ψ is unital.
For a complex Banach space X , let X ∗ be its dual space, and B(X ) be the Banach

algebra of all bounded linear operators on X . We denote the identity operator on X by I.
We use the notation N1(X ) for the set of all rank one nilpotent operators in B(X ). Hence
each element of N1(X ) can be written as x ⊗ f for some non-zero x ∈ X and non-zero
f ∈ X∗ with f(x) = 0. We recall that x ⊗ f is the rank one operator on X defined by
(x ⊗ f)(y) = f(y)x for all y ∈ X . For an operator T ∈ B(X ), the notations ran(T ) and

∗Speaker. Email address: h.khodaiemehr@modares.ac.ir
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ker(T ) stand for the range and the kernel of T , respectively, and rank(T ) denotes the rank
of T .

An operator T ∈ B(X ) is called Drazin invertible, if there exists (a unique) operator
TD ∈ B(X ) and a non-negative integer k such that

(1) TTD = TDT, TDTTD = TD, and T k+1TD = T k.

If T ∈ B(X ) is Drazin invertible, then the smallest non-negative integer k satisfying (1) is
called the index of T and it is denoted by Ind(T ).

The notations D(X ) and Dn(X ) will be used for the set of all Drazin invertible op-
erators and the set of all Drazin invertible operators of index n in B(X ), respectively. If
Ind(T ) = 0, then T is invertible and TD is, indeed, the inverse of T . In the case where
Ind(T ) ≤ 1, TD is called the group inverse of T and may be denoted by T#.

We note that if T ∈ B(X ) is a non-zero nilpotent operator, then T /∈ D(X ). In
particular, if x⊗f ∈ N1(X ), then x⊗f /∈ D(X ). However if f(x) = 1, then x⊗f ∈ D1(X )
and its Drazin inverse is x⊗ f itself.

For an operator T ∈ B(X ), by asc(T ) and dsc(T ) we mean the ascent and the descent
of T , respectively which are defined as follows

asc(T ) = inf{n ≥ 0 : ker(Tn) = ker(Tn+1)},
dsc(T ) = inf{m ≥ 0 : ran(Tm) = ran(Tm+1)}.

If no such n or m exists, we set asc(T ) =∞ or dsc(T ) =∞.
In the study of (not necessarily linear) maps on operator algebras that preserve Drazin

invertible operator matrices, it is essential to have a description of Drazin invertible oper-
ator matrices. For invertible operator matrices, such a description is provided by applying
Schur complement.

Let X be a complex Banach space and M =

(
A B
C D

)
be an operator matrix with

entries in B(X ) such that A is invertible. Then the Schur complement of M is the operator
SM ∈ B(X ) defined by SM = D − CA−1B.

Lemma 1.1. [6, Problem 1.6.7] Let X be a complex Banach space and M =

(
A B
C D

)
∈

B(X 2) such that A is invertible. Then M is invertible if and only if SM is invertible. Fur-
thermore, in this case

M−1 =

(
A−1 +A−1BS−1M CA−1 −A−1BS−1M

−S−1M CA−1 S−1M

)
.

It would be convenient if we had a similar result as the above lemma for Drazin in-
vertible operator matrices. In the sequel, we apply the following results from [2], for
determining the Drazin invertibility of an operator matrix and computing its Drazin in-
verse. For any Drazin invertible T ∈ B(X ), the spectral idempotent T π of T corresponding
to {0} is defined by T π = I − TTD.

If M =

(
A B
C D

)
is an operator matrix with entries in B(X ) such that A is Drazin

invertible, then the generalized Schur complement of M , denoted again by SM is defined
by SM = D − CADB. When SM is Drazin invertible, as discussed in [2], the operator
matrix

Γ̃M =

(
AAπ −AπBSDMCAπ AπBSπM

SπMCA
π SMS

π
M

)
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plays a crucial role in determining the representation of M#, especially when Γ̃M = 0.

Theorem 1.2. [2, Theorem 9]Let X be a complex Banach space and M =

(
A B
C D

)

with entries in B(X ) such that A,SM ∈ D(X ), Γ̃M = 0 and CAπB = 0. Then M ∈
D0(X 2) ∪ D1(X 2) if and only if the operator WM = I + ADBSπMCA

D is invertible in
B(X ). Moreover, in this case

M# =

[(
0 AπB

SπMC SπMD

)
R+ I

]
·W ·R ·W ·

[
I +R

(
0 BSπM

CAπ DSπM

)]
,

where W = W−1M ⊕ I and

R =

(
AD +ADBSDMCA

D −ADBSDM
−SDMCAD SDM

)
.

2. Main results

Throughout this section H is an infinite-dimensional complex Hilbert space. We first
introduce certain subsets D∗1(H2) and S0(H2) of B(H2) with D∗1(H2) ∩ S0(H2) = {0}.
Then we characterize bijections Ψ : B(H)→ B(H) preserving D∗1(H2) and S0(H2) in both
directions, in the sense that for the operator matrix

M =

(
A B
C D

)

with entries in B(H) we have M ∈ D∗1(H2) (resp. M ∈ S0(H2)) if and only if

Ψ2(M) =

(
Ψ(A) Ψ(B)
Ψ(C) Ψ(D)

)
∈ D∗1(H2)

(resp. Ψ2(M) ∈ S0(H2)). We should note that such a map Ψ is not assumed to be neither
linear nor unital.

Let Sq(H) stands for the set of all square zero operators in B(H). Now we fix the
following notations:

S0(H2) =

{
N =

(
A1 A2

A3 A4

)
∈ B(H2) : A1 ∈ D(H), N 6= 0, SM ∈ Sq(H)

}
,

D∗1(H2) =

{
M =

(
A1 A2

A3 A4

)
∈ D1(H2) : A1 ∈ D(H), SM ∈ D1(H) ∪ D0(H)

}
,

where SM is the generalized Schur complement of M . Note that S0(H2)
⋂D∗1(H2) = {∅},

since Sq(H) ∩ (D1(H) ∪ D0(H)) = {0}.
Now we state and prove our main result, which is a modification of [3, Theorem 3.7],

under some additional assumption.

Theorem 2.1. Let H be an infinite-dimensional complex Hilbert space and Ψ be a (not
necessarily linear) bijection on B(H), preserving D∗1(H2) and S0(H2) in both directions.
Then there exists a non-zero scalar β ∈ C, a bounded invertible linear or conjugate linear
operator U : H → H such that either

Ψ(S) = βUSU−1 (S ∈ B(H)))

or

Ψ(S) = βUS∗U−1 (S ∈ B(H)).
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Proof. Since by assumption, Ψ preserves D∗1(H2) in both directions, it follows from
step 1 and step 2 in the proof of [3, Theorem 3.7], that Ψ(0) = 0 and Ψ preserves
invertibility and D1(H) in both directions. In particular, Ψ(I) is an invertible operator.
We claim that Ψ(I) is a scalar operator. Assume on the contrary that Ψ(I) is not a scalar
operator. Then, by Theorem 1.4 in [1], there exists x ∈ H such that x and Ψ(I)x are
linearly independent. Choose y ∈ H such that 〈x, y〉 = 1 and 〈Ψ(I)x, y〉 = 0. Then x⊗ y
belongs to D1(H) and (x⊗ y)D = x⊗ y, since x⊗ y is a rank one idempotent. Similarly,
Ψ(I)x⊗ y 6∈ D1(H) since Sx⊗ y is a square zero rank one operator.

Consider the operator matrix

M =

(
x⊗ y x⊗ y
Ψ(I) 0

)
∈ B(H2).

Then SM = −Ψ(I)x ⊗ y which is a square zero operator. Consequently M ∈ S0(H2).
Since by assumption, Ψ preserves S0(H2) in both directions, it follows that

N =

(
Ψ−1(x⊗ y) Ψ−1(x⊗ y)

I 0

)
∈ S0(H2).

But this is a contradiction, since SN = −Ψ−1(x⊗ y)DΨ−1(x⊗ y) ∈ D1(H) with (SN )D =
SN . Hence Ψ(I) = βI for some non-zero complex scalar β. Now the rest of the proof
follows from the same steps in the proof of [3, Theorem 3.7]. �

3. Conclusion

In this paper we introduced a special subset S0(H2) of B(H2) including operator
matrices that their generalized Schur complement are square zero operators. Then we
proved that the assumption of preserving S0(H2) in both directions is a replacement for
the property that Ψ is a unital map.
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Abstract. In this paper we introduce the concept of an X-precover for a class of S-
posets X. Then we prove that for those classes that are closed under isomorphisms
and directed colimits, directed colimits of precovers are precovers. We also provide the
necessary and coefficient conditions for S-posets to have X-precovers. Finally, we show
that every S-poset has a projective precover.
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1. Introduction

A pomonoid S is a monoid equipped with a partial order relation which is compatible
with the binary semigroup operation. Let A be a partially ordered set. We say that A is a
right S-poset if AS is a right S-act A and, in addition, for all s, t ∈ S and a, b ∈ A, if s ≤ t
then as ≤ at, and if a ≤ b then as ≤ bs. An S-subposet of a right S-poset A is a subset
of A that is closed under the S-action. Moreover, S-morphisms are the functions that
preserve both the action and the order. Let f : A→ B be an S-morphism, the subkernel
of an S-morphism f is defined by−→

kerf := {(a, a′) ∈ A×A : f(a) ≤ f(a′)}.
Then ν(

−→
kerf) = ker f := {(a, a′) ∈ A × A : f(a) = f(a′)}. As in the the category of

S-acts, the coproduct of a family {Ai}i∈I of S-posets will be denoted by
∐
i∈I Ai that is

the disjoint union, with S-action and order given componentwise.
Directed colimits of families of right S-posets are introduced in [1]. Then, in [5], it

is proved that every class of S-posets having a flatness property is closed under directed
colimits. Let I be a quasi-ordered (that is, a reflexive and transitive relation) set. A direct
system in Pos-S is a collection of right S-posets (Ai)i∈I and a collection of right S-poset
morphisms φi,j : Ai → Aj (i ≤ j) with the following properties:

(1) φi,i = 1Ai for all i ∈ I;
(2) φj,k ◦ φi,j = φi,k, whenever i ≤ j ≤ k.

The colimit of the system (Ai, φi,j) is a right S-poset AS together with right S-poset
morphisms αi : Ai → A such that

(1) αj ◦ φi,j = αi, whenever i ≤ j;
∗Speaker. Email address: khosrvi@fasau.ac.ir
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(2) If BS is a right S-poset and fi : Ai → B are right S-poset morphisms such
that fj ◦ φi,j = fi whenever i ≤ j, then there exists a unique S-poset morphism
f : A→ B such that the diagram

Ai
αi //

fi
��

A

f~~
B

commutes for all i ∈ I.

Further, if the indexing set I satisfies the Condition that for all i, j ∈ I there exists k ∈ I
such that k ≥ i, j then we say that I is directed. In this case, we call that the colimit
(A, φi) is a directed colimit. In Pos-S, directed colimits of directed systems of S-posets
exist.

A right S-poset AS satisfies condition (P) if, for all a, b ∈ A and s, t ∈ S, as ≤ bt
implies a = a′u, b = a′v for some a′ ∈ A, u, v ∈ S with us ≤ vt, and it satisfies condition
(E) if, for all a ∈ A and s, t ∈ S, as ≤ at implies a = a′u for some a′ ∈ A, u ∈ S with
us ≤ ut. A right S-poset is called strongly flat if it satisfies both conditions (P) and (E).
Projectivity is defined in the standard categorical manner. The reader is referred to the
monograph [4] for a complete discussion of acts over monoids.

In [3], Gould and Shaheen characterized poperfect pomonoids. Then, in [2], pomonoids
over which all (cyclic) S-posets have strongly flat or condition (P) covers are characterized.
For further information of S-posets, we refer the reader to [6] and [1]. In Section 2, we
investigate precover of S-posets over pomonoids. Indeed pomonoids over which all right
S-posets have X-precovers are characterized where X is an S-poset property which is
preserved under isomorphism and coproduct.

2. Main results

Let S be a pomonoid. A right S-poset BS is called a cover of an S-poset AS if there
exists an epimorphism f : BS → AS such that for any proper subposet CS of BS the
restriction f |CS is not an epimorphism. An epimorphism with this property is called a
coessential epimorphism. We say that BS is an X-cover if it also satisfies property X.
In this section we focus our attention on X-precover of S-posets, where X be an S-poset
property which is preserved under coproduct and decompositon.

Definition 2.1. Let X be a class of S-acts closed under isomorphisms. An X-precover
of A is an S-morphism g : P → A for some P ∈ X such that for every S-morphism
h : Q → A, for Q ∈ X, there exists an S-morphism f : Q → P with h = gf , i.e., the
following diagrams commutes.

P
g // A

Q

f

OO

h

??

An object G in the category Pos-S is called a generator if the functor HomS(GS ,−)
is faithful, It is shown that G is generator if and only if there exists an epimorphism
π : G → S. For every S-poset AS and its element a, λa : SS → AS will denote the
S-morphism defined by λa(s) = as for every s ∈ S.
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Proposition 2.2. Let S be a pomonoid and let X be a class of S-posets which contains
a generator G. If g : C → A is an X-precover of A then g is an epimorphism.

From now on we use variable X to indicate the properties that can be transferred from
S-posets to their coproducts and vice versa.

Proposition 2.3. Let S be a pomonoid. Then each S-poset Ai has an X-precover
then

∐
i∈I Ai has an X-precover. The converse is valid when

∐
i∈I Ai has an epimorphic

X-precover

We now show that directd colimits of X-precovers are X-precovers.

Theorem 2.4. Let S be a pomonoid and X be a class of S-posets closed under directed
colimits. Suppose that (Ai, φi,j) is a direct system of S-posets with Ai ∈ X for each i ∈ I
and with colimit (A,αi). If B is an S-poset, and for each i ∈ I, fi : Ai → B is an
X-precover of B such that fjφi,j = fi whenever i ≤ j, then there exists an X-precover
f : A→ B such that fαi = fi for all i ∈ I.

Proof. Suppose that B is an S-poset and (A,αi) is directed colimit of direct system
(Ai, φi,j) of S-posets with Ai ∈ X for each i ∈ I, in addition there exists an X-precover
fi : Ai → B of B with fj ◦ φi,j = fi for i ≤ j. The property of directed colimit implies
that there exists a unique S-morphism f : A→ B such that the diagram

Ai
αi //

fi
��

A

f~~
B

commutes for all i ∈ I. So f ◦ αi = fi for all i ∈ I. To show that f is an X-precover
of B, assume that C ∈ X and g : C → B is an S-morphism. Since fi : Ai → B is an
X-precover of B, there exists hi : C → Ai such that fihi = g for each i ∈ I. Fix i ∈ I and
let h : C → A be given by h = αihi. Therefore, fh = fαihi = fihi = g as required.

�
The monomorphisms are exactly the injective morphisms and regular monomorphisms

are exactly the order embeddings.

Lemma 2.5. Let S be a pomonoid and X a class of S-posets closed under directed
colimits. Let A be an S-poset and suppose that g : P → A is an X-precover of A. Then
there exists an X-precover h : Q → A and an S-morphism f : P → Q with hf = g such
that for any X-precover h′ : Q′ → A and any S-morphism k : Q → Q′ with h′k = h then
k|f(P ) is a regular monomorphism.

Lemma 2.6. Let S be a monoid and X a class of S-posets closed under directed colimits.
Let A be an S-poset and suppose that g : P → A is an X-precover of A. Then there exists
an X-precover h : Q→ A such that for any X-precover h′ : Q′ → A and any S-morphism
k : Q→ Q′ with h′k = h then k is a regular monomorphism.

Let S be a pomonoid. A class X of S-posets satisfies the (weak) solution set condition
if for every S-poset A there exists a set SA ⊆ X such that for each (indecomposable)
X ∈ X and each S-morphism h : X → A there exists Y ∈ SA, f : X → Y and g : Y → A
such that h = gf .

Theorem 2.7. Let S be a pomonoid. Then every S-poset has an X-precover if and
only if
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(1) for every S-poset A there exists B ∈ X such that HomS(B,A) 6= ∅.
(2) X satisfies the weak solution set condition.

Note from the proof of Theorem 2.7 that we can also deduce the following result.

Theorem 2.8. Let S be a pomonoid.Then every S-poset has an X-precover if and only
if

(1) for every S-poset A there exists B ∈ X such that HomS(B,A) 6= ∅;
(2) X satisfies the solution set condition.

Finally, we conclude the following result.

Proposition 2.9. Let S be a pomonoid. Every S-poset has a projective precover.

3. Conclusion

Let S be a pomonoid and X a class of S-posets which is closed under coproducts. This
paper is devoted to study X-precovers of S-posets.We have shown that all S-posets have
projective precovers.
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Abstract. In this paper, we present some new fixed point theorems involving set-
valued contractions in the setting of quasi-ordered metric spaces. We generalize Banach
contraction principle in a different way than in the known results from the literature.
Some examples and an application to the existence of solution of Volterra-type integral
equations are given to support the obtained results. In particular, we refer to the results
of Wardowski [Fixed points of a new type of contractive mappings in complete metric
spaces, Fixed Point Theory and Appl. 2012, 2012:94].
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1. Introduction
In 1969, Nadler [4] extended the Banach contraction principle from single-valued map-

ping to set-valued mapping. Then Ćirić [3] generalized Nadler’s result. In 2011, Amini-
Harandi [1] gave a fixed point theorem for set-valued quasi-contraction maps in metric
spaces.

In 2012, Wardowski [6] gave a new fixed point theorem concerning F -contraction
for single valued mapping. In this paper, we give a fixed point theorem for set-valued
contraction maps in quasi-ordered metric spaces. In the present article, using a mapping
F : R+ −→ R we define a new type of contraction called F -contraction and prove some
new fixed point theorems concerning F -contraction. Throughout this paper, by CB(X)
we denote the family of all nonempty closed and bounded subsets of X and we denote the
family of all nonempty subsets of X by N(X).

Definition 1.1. Let (X, d) be a metric space with a quasi-order “ ⪯ ”. We say that X
is sequentially complete if every Cauchy sequence whose consecutive terms are comparable
in X converges.

Definition 1.2. [5] Let (X,≤) be a partially ordered set, and A and B be two
nonempty subsets of N(X). The relation between A and B are defined as follows:

∗Speaker: e.l.ghasab@gmail.com
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(r1) If for every a ∈ A, there exists b ∈ B such that a ≤ b, then A ⊑1 B.
(r2) If for every b ∈ B, there exists a ∈ A such that a ≤ b, then A ⊑2 B.
(r3) If A ⊑1 B and A ⊑2 B, then A ⊑ B.

Definition 1.3. Let (X, d) be a metric space with a quasi-order “ ⪯ ”. A subset
D ⊂ X is said to be approximative if the set-valued mapping:

PD(x) = {p ∈ D : d(x,D) = d(p, x)},
for all x ∈ X has nonempty value.

The set-valued mapping G : X −→ N(X) is said to have approximative values, AV
for short, if Gx is approximative for each x ∈ X.

The set-valued mapping G : X −→ N(X) is said to have comparable approximative
values, CAV for short, if for each x ∈ X, Gx has approximative values and for each z ∈ X
there exists y ∈ PGz(x) such that y is comparable to z.

The set-valued mapping G : X −→ N(X) is said to have upper comparable approxi-
mative values, UCAV for short (resp. lower comparable approximative values, LCAV for
short) if Gx has approximative values and for each z ∈ X there exists y ∈ PGz(x) such
that y ⪰ z (resp. y ⪯ z).

Definition 1.4. [5] The set-valued mapping G is said to has a fixed point if there
exists x ∈ X such that x ∈ Gx.

Definition 1.5. [5] A set-valued operator G : X → N(X) is called order-closed if
for monotone sequences {xn}, {yn} ⊂ X, x0, y0 ∈ X, xn → x0, yn → y0 and yn ∈ G(xn)
imply y0 ∈ G(x0).

In this paper, we give some fixed point theorems for set-valued F -contraction maps in
quasi-ordered metric spaces.

2. Main result
Definition 2.1. [6] Let F : R+ −→ R be a mapping satisfying :
(F1) F is strictly increasing, i.e., for all a, b ∈ R+ such that a < b, F (a) < F (b),
(F2) for each sequence {an}n∈N of positive numbers limn−→∞ an = 0 if and only if

lim
n−→∞

F (an) = −∞,

(F3) there exists k ∈ (0, 1) such that limα→0+ αkF (α) = 0.
A mapping G : X −→ N(X) is said to be an F -contraction if there exists τ > 0 such that
for all x, y ∈ X,
(1) H(Gx,Gy) > 0 =⇒ τ + F (H(Gx,Gy)) ≤ F (d(x, y)).

Theorem 2.2. Let (X, d,⪯) be a sequentially complete metric space. Suppose that the
map G : X −→ N(X) be a ordered-close set-valued F-contraction and has UCAV. Then G
has a fixed point x∗ ∈ X.

Theorem 2.3. Let (X, d,⪯) be a sequentially complete metric space. Suppose that the
map G : X → N(X) be a ordered-close set-valued F-contraction and has LCAV. Then G
has a fixed point x∗ ∈ X.
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Theorem 2.4. Let (X, d,⪯) be a sequentially complete metric space with the prop-
erty any non-decreasing sequence {xn} with xn → x∗ implies xn ⪯ x∗ for each n ∈ N.
Suppose that the non-decreasing mapping G : X → N(X) be a ordered-close set-valued
F -contraction and has AV . If there exists x0 ∈ X such that {x0} ⊑ Gx0, then G has a
fixed point x∗ ∈ X.

Theorem 2.5. Let (X, d,⪯) be a sequentially complete metric space with the prop-
erty any non-increasing sequence {xn} with xn → x∗ implies x∗ ⪯ xn for each n ∈ N.
Suppose that the non-increasing mapping G : X → N(X) be a ordered-close set-valued
F -contraction and has AV. If there exists x0 ∈ X such that Gx0 ⊑ {x0}, then G has a
fixed point x∗ ∈ X.

Theorem 2.6. Let (X, d,⪯) be a sequentially complete metric space. Suppose that the
map G : X −→ N(X) be a ordered-close set-valued and has UCAV. If we have
(2) F (H(Gx,Gy)) ≤ F (M(x, y))− τ.

Where

M(x, y) = max

{
d(x, y), D(x,Gx), D(y,Gy),

1

2
[D(x,Gy) +D(y,Gx)]

}
.

Then G has a fixed point x∗ ∈ X.

Theorem 2.7. Let (X, d,⪯) be a sequentially complete metric space. Suppose that the
map G : X −→ N(X) is an ordered-close set-valued and has LCAV and

F (H(Gx,Gy)) ≤ F (M(x, y))− τ

where

M(x, y) = max

{
d(x, y), D(x,Gx), D(y,Gy),

1

2
[D(x,Gy) +D(y,Gx)]

}
.

Then G has a fixed point x∗ ∈ X.

Theorem 2.8. Let (X, d,⪯) be a sequentially complete metric space with the property
any non-decreasing sequence {xn} with xn → x∗ implies xn ⪯ x∗ for each n ∈ N. Suppose
that the non-decreasing mapping G : X → N(X) is an ordered-close set-valued and has
AV and

F (H(Gx,Gy)) ≤ F (M(x, y))− τ,

where

M(x, y) = max

{
d(x, y), D(x,Gx), D(y,Gy),

1

2
[D(x,Gy) +D(y,Gx)]

}
.

If there exists x0 ∈ X such that {x0} ⊑ Gx0, then G has a fixed point x∗ ∈ X.

Theorem 2.9. Let (X, d,⪯) be a sequentially complete metric space with the property
any non-increasing sequence {xn} with xn → x∗ implies x∗ ⪯ xn for each n ∈ N. Suppose
that the non-increasing mapping G : X → N(X) be a ordered-close set-valued and has AV
and

F (H(Gx,Gy)) ≤ F (M(x, y))− τ,

where

M(x, y) = max

{
d(x, y), D(x,Gx), D(y,Gy),

1

2
[D(x,Gy) +D(y,Gx)]

}
.

If there exists x0 ∈ X such that Gx0 ⊑ {x0}, then G has a fixed point x∗ ∈ X.
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3. Application
As an application of our results, we will consider the following Volterra type integral

equation:

(3) fx(t) =

∫ t

0
K(t, s, x(s))ds+ g(t), t ∈ I

for all t ∈ I = [0, 1].
Let I = [0, 1] be a given real interval, C(I,R) the Banach space of all real continuous

functions defined on I with the sup norm
||x||∞ = max

t∈I
|x(t)|, x ∈ C(I,R)

and C(I × I ×C(I,R),R) the space of all continuous functions defined on I × I ×C(I,R).
Alternatively, the Banach space C(I,R) can be endowed with Bielecki norm

||x||B = sup
t∈I

{|x(t)|e−τt}, x ∈ C(I,R), τ > 0

and the induced metric dB(x, y) = ||x − y||B for all x, y ∈ C(I,R), see [2]. Define f :
C(I,R) → C(I,R), by the formula

fx(t) =

∫ t

0
K(t, s, x(s))ds+ g(t), g ∈ C(I,R).

Theorem 3.1. Let (C(I,R), dB,⪯) be a sequentially complete metric space. Suppose
G : C(I,R) → N(C(I,R)) is a set valued operator such that G(x) = {fx(t)} and has
UCAV. K ∈ C(I × I × R,R) be an operator satisfying the following conditions

(i) K is continuous;
(ii)

∫ t
0 K(t, s, .), is increasing, for all t, s ∈ I;

(iii) there exists τ > 0 such that for all x, y ∈ C(I,R) and all t, s ∈ I we have
|K(t, s, fx(s))−K(t, s, fy(s))| ≤ e−τ |x(s)− y(s)|.

Then, the Volterra-type integral equation 3 has a solution in C(I,R).
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Abstract. Let R be a Noetherian ring, I and J be two ideals of R, and S be a Serre sub-
category of the category of R-modules satisfying the condition CI . We extend the notion
of S-depth of I on a finitely generated R-module M , denoted by S−depth(I,M), to the
class of ZD-modules. Next, as a generalization of S − depth(I,M) and depth(I, J,M),
the S − depth of (I, J) on a ZD-module M is defined as S − depth(I, J,M) = inf{S −
depth(a,M) : a ∈ W̃(I, J)}, and some properties of this concept are investigated. Also,
the relations between S − depth(I, J,M) and Hi

I,J(M) are studied.
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1. Introduction

Throughout this lecture, R is a commutative Noetherian ring with non-zero identity,
I and J are to ideals of R, M is an R-module, and t is an integer.

An R-module M is called a ZD-module (zero-divisor module) if for any submodule N
of M , the set of zero-divisors of M/N is a finite union of the associated prime ideals of
M/N . According to [3, Example 2.2], the class of ZD-modules contains finitely generated,
Laskerian, weakly Laskerian, linearly compact, Matlis reflexive and minimax modules.
Also, it contains modules whose quotients have finite Goldie dimension, and modules with
finite support, in particular, Artinian modules.

Let S be a Serre subcategory of the category of R-modules. As a generalization of
the regular sequences, Aghapournahr and Melkersson [1] introduced the S-sequences as
follows. An element a of R is called S-regular on M , if 0 :M a ∈ S. A sequence a1, . . . , at
is an S-sequence on M , if ai is S-regular on M/(a1, . . . , ai−1)M for i = 1, . . . , t.

Let S satisfy the condition CI , and M be finitely generated such that M/IM /∈ S.
They showed that all maximal S-sequences on M in I, have the same length equal to
inf{i : ExtiR(R/I,M) /∈ S}. This common length, denoted by S − depth(I,M), is called
the S − depth of I on M . We generalize this concept to the ZD-modules. Let S satisfy
the condition CI , M be a ZD-module, and let I contain a maximal S-sequence on M . It
is shown, in Theorem 2.2, that all maximal S-sequences on M in I, have the same length,
equal to inf{i : ExtiR(R/I,M) /∈ S}. Also, it is proved that if M/IM /∈ S, then I contains
maximal S-sequences on M ; see Proposition 2.4.
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The local cohomology theory has been a useful and significant tool in Commutative
Algebra and Algebraic Geometry. As a generalization of the ordinary local cohomology
modules, Takahashi, Yoshino, and Yoshizawa [6] defined the local cohomology modules
with respect to a pair of ideals. To be more precise, let ΓI,J(M) = {x ∈ M : ∃ t ∈ N, Itx ⊆
Jx}. It is easy to see that ΓI,J(M) is a submodule of M , and ΓI,J(−) is a covariant, R-
linear functor from the category of R-modules to itself. For integer i, the local cohomology
functor H i

I,J(−) with respect to (I, J), is defined to be the i-th right derived functor of

ΓI,J(−). Also H i
I,J(M) is called the i-th local cohomology module of M with respect

to (I, J). If J = 0, then H i
I,J(−) coincides with the ordinary local cohomology functor

H i
I(−).

Let W̃(I, J) = {a ≤ R : It ⊆ J + a for some positive integer t}. One can see that

x ∈ ΓI,J(M) if and only if AnnR(x) ∈ W̃(I, J). Let W(I, J) = {p ∈ Spec(R) : It ⊆
J + p for some positive integer t}. It is shown in [6, Corollary 1.8] that x ∈ ΓI,J(M) if
and only if SuppR Rx ⊆ W(I, J).

The concept of depth of a pair of ideals (I, J) on a finitely generated R-module M was

introduced, in [2], as depth(I, J,M) = inf{depth(a,M) : a ∈ W̃(I, J)}. Let S be a Serre
subcategory of the category of R-modules satisfying the condition CI and M be a ZD-
module. We define the S − depth of a pair of ideals (I, J) on M as S − depth(I, J,M) =

inf{S − depth(a,M) : a ∈ W̃(I, J)}. It is easy to see that S − depth(I, J,M) is a gener-
alization of S − depth(I,M) and depth(I, J,M). We also investigate some properties of
S − depth(I, J,M).

Also, the relations between the local cohomology modules of M with respect to (I, J)
and S − depth(I, J,M) are studied. Let S be a Serre subcategory closed under taking
injective hulls, and M be a ZD-module. As one of the main results of this lecture, it is
shown that S − depth(I, J,M) = inf{i : H i

I,J(M) /∈ S}; see Theorem 2.15.

2. Main results

Throughout this section, S denotes a Serre subcategory of the category of R-modules.

Lemma 2.1. Let S satisfy the condition CI and M be a ZD-module. Then the following
conditions are equivalent:

(i) There is an S-sequence on M in I of length t.
(ii) H i

I(M) ∈ S for all i < t.

Note that an S-sequence a1, . . . , at (contained in ideal I) is maximal (in I), if a1, . . . , at, b
is not an S-sequence for any b ∈ R (b ∈ I).

Theorem 2.2. Let S satisfy the condition CI and M be a ZD-module. Let I contain
a maximal S-sequence on M . Then all maximal S-sequences on M in I have the same
length, and this length is equal to inf{i : ExtiR(R/I,M) /∈ S}.

Definition 2.3. Let S satisfy the condition CI , M be a ZD-module, and let I contain
a maximal S-sequence on M . The common length of all maximal S-sequences on M in I
is called the S − depth of I on M , denoted by S − depth(I,M).

Let S satisfy the condition CI and M be a ZD-module. We complement the above
definition by setting S − depth(I,M) = ∞, whenever there is no maximal S-sequence on
M in I. This is consistent with Theorem 2.2:

S − depth(I,M) = ∞ ⇔ ExtiR(R/I,M) ∈ S for all i.
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The next result provides an important case that I contains a maximal S-sequence on
M .

Proposition 2.4. If M/IM /∈ S, then every S-sequence on M in I can be extended
to a maximal one.

Example 2.5. [1, Example 2.16] Let M be a ZD-module. The following are some
examples of S − depth(I,M).

(a) If S is the class of zero modules, then it is the same as ordinary depth(I,M).
(b) If S is the class of Artinian R-modules, then it is the same as f − depth(I,M)

(filter-depth).
(c) If S is the class of R-modules with finite support, then it is the same as g −

depth(I,M) (generalized depth).

Corollary 2.6. Let S satisfy the condition CI , and M be a ZD-module. Then

S − depth(I,M) = inf{i : ExtiR(R/I,M) /∈ S}
= inf{i : H i

I(M) /∈ S}.
Corollary 2.7. Let p be a prime ideal of R, and let M be a ZD-module. Then

depthMp = inf{i : µi(p,M) ̸= 0}, where µi(p,M) denotes the i-th Bass number of M with
respect to p.

The notion of depth of a pair of ideals (I, J) on a finitely generated module M was

introduced, in [2], as depth(I, J,M) = inf{depth(a,M) : a ∈ W̃(I, J)}. Let S satisfy the
condition CI . We define the S − depth of a pair of ideals (I, J) on a ZD-module M as

S − depth(I, J,M) = inf{S − depth(a,M) : a ∈ W̃(I, J)}. Let S satisfy the condition
CI , and M be a ZD-module. If S is the class of zero modules, then S − depth(I, J,M)
coincides with depth(I, J,M). Also if J = 0, then S − depth(I, J,M) = S − depth(I,M).

Proposition 2.8. Let S satisfy the condition CI . Let M be a ZD-module, and I ′ and
J ′ be two ideals of R. Then

(i) If I ⊆ I ′, then S − depth(I, J,M) ≤ S − depth(I ′, J,M).
(ii) If J ⊆ J ′, then S − depth(I, J,M) ≥ S − depth(I, J ′,M).

(iii) S − depth(I, J,M) = S − depth(
√
I, J,M) = S − depth(I,

√
J,M).

(iv) S − depth(II ′, J,M) = S − depth(I ∩ I ′, J,M).
(v) S − depth(I, JJ ′,M) = S − depth(I, J ∩ J ′,M).

(vi) If a ∈ W̃(I, J), then

S − depth(I, J,M) ≤ S − depth(a, J,M) ≤ S − depth(a,M).

(vi) If a = a1, . . . , at is an S-sequence on M in I, then

S − depth(
I

(a)
,

M

(a)M
) = S − depth(I,

M

(a)M
) = S − depth(I,M)− t.

Proposition 2.9. Let S satisfy the condition CI , and let 0 −→ U −→ M −→ N −→ 0
be an exact sequence of ZD-modules. Then

(i) S − depth(I, J,M) ≥ min{S − depth(I, J, U), S − depth(I, J,N)}.
(ii) S − depth(I, J, U) ≥ min{S − depth(I, J,M), S − depth(I, J,N) + 1}.
(iii) S − depth(I, J,N) ≥ min{S − depth(I, J, U)− 1, S − depth(I, J,M)}.
Now, we study the relations between local cohomology modules of M with respect to

(I, J) and S− depth(I, J,M). It is well-known that if a Serre subcategory is closed under
taking injective hulls, then it satisfies the condition CI ; see [1, Lemma 2.2].

349



M. Lotfi Parsa

Proposition 2.10. Let S be a Serre subcategory closed under taking injective hulls.
Let 0 → M → E0 → E1 → · · · be a minimal injective resolution of M , where Ei ∼=⊕

p∈Spec(R)(ER(R/p))µ
i(p,M) is a decomposition of Ei as the direct sum of indecompos-

able injective R-modules and ER(R/p) denotes the injective hull of R/p. The following
conditions are equivalent:

(i) H i
I,J(M) ∈ S for all i < t.

(ii) ΓI,J(E
i) ∈ S for all i < t.

Proposition 2.11. Let S be a Serre subcategory closed under taking injective hulls,
and M be a ZD-module. Then

inf{i : H i
I,J(M) /∈ S} = inf{depthMp : p ∈ W(I, J) and R/p ̸∈ S}.

Corollary 2.12. Let M be a ZD-module. Then

inf{i : H i
I,J(M) is not Artinian} = inf{i : SuppR H i

I,J(M) ̸⊆ MaxR}.
Corollary 2.13. Let M be a ZD-module. If SuppR ΓI,J(E

i) ⊆ Max(R) for all i < t,
then H i

I,J(M) is Artinian for all i < t.

Now, we get a formula on the relation between S−depth(I, J,M) and local cohomology
modules of M with respect to (I, J).

Lemma 2.14. Let S satisfy the condition CI , and let M be a ZD-module. Then S-
depth(I, J,M) ≥ inf{i : H i

I,J(M) /∈ S}.
Theorem 2.15. Let S be a Serre subcategory closed under taking injective hulls, and

M be a ZD-module. Then S − depth(I, J,M) = inf{i : H i
I,J(M) /∈ S}.

Corollary 2.16. Let S be a Serre subcategory closed under taking injective hull. Let
M be a ZD-module, and J ′ be an ideal of R such that J ′ ⊆ J . Then S − depth(I +
J ′, J,M) = S−depth(I, J,M). In particular, S−depth(I+J, J,M) = S−depth(I, J,M).

Proposition 2.17. Let S be a Serre subcategory closed under taking injective hulls,
and M be a ZD-module. Then

S − depth(I, J,M) = inf{depthMp : p ∈ W(I, J) and R/p ̸∈ S}
= inf{S − depth(p,M) : p ∈ W(I, J) and R/p ̸∈ S}.

Corollary 2.18. Let S be a Serre subcategory closed under taking injective hulls. Let
M be a ZD-module, and I ′ be an ideal of R. Then

S − depth(I ∩ I ′,M) = min{S − depth(I,M), S − depth(I ′,M)}.
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Abstract. Cartan-Brauer-Hua Theorem is a well-known theorem which states that if
R is a subdivision ring of a division ring D which is invariant under all elements of D
or DRD−1 ⊆ R for all d ∈ D\{0}, then either R = D or R is contained in the center of
D. The invariance idea of this basic theorem is the main notion of this paper. We prove
that if D is a division ring with involution ∗ and M is a subspace of D which is invariant
under all symmetric elements of D, then either M is contained in the center of D or is
a Lie ideal of D.
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1. Introduction

Cartan-Brauer-Hua Theorem (briefly CBH Theorem) as follows, is a well known the-
orem due independently to Cartan, Brauer and Hua [5, p. 211].

Theorem 1.1. (CBH Theorem) Let D be a division ring and R a subdivision ring of
D. If dRd−1 ⊆ R for all d ∈ D \ {0}, then either R = D or R is contained in the center
of D.

Let D be a division ring with an involution ∗, that is a map of D into itself satisfying
a∗∗ = a, (a+ b)∗ = a∗+ b∗, (ab)∗ = b∗a∗, for every a, b ∈ D. We consider the field F to be
the center of D or Z(D) = F . The characteristic of D is denoted by char(D) and the group
automorphisms of D is denoted by Aut(D) and the group of F -automorphisms is denoted
by AutF (D). Let S = S(D) = {a ∈ D | a∗ = a} and K = K(D) = {a ∈ D | a∗ = −a}
be the set of symmetric elements and skew-symmetric elements of D, respectively. The
involution is called of the first kind if F ⊆ S and otherwise is called of the second kind [3].
Clearly, D is a vector space over F and all subspaces are considered in this vector space.
For a pair a, b ∈ D we denote by [a, b] = ab− ba the Lie product of a and b. An additive
subgroup I of D is said to be a Lie ideal if [d, i] ∈ I for every d ∈ D and i ∈ I. Also, for
subsets A,B of D we denote by [A,B] the additive subgroup of D generated by all [a, b],
where a ∈ A and b ∈ B. When T is a subset of a group G, then we denote by 〈T 〉 the
subgroup generated by T in G. We denote the cardinality of a set A by |A|.
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An element a ∈ D is said to be algebraic over F if a satisfies a non-zero polynomial
in F [x]. A subset A ⊆ D is called algebraic over F if each of its elements is algebraic
over F . By an algebraic division algebra we mean a division algebra algebraic over its
center. Let A,B be two subsets of D, we say that A is B-invariant if bAb−1 ⊆ A, for
all b ∈ B \ {0}. For two subsets A,B ⊆ D we define the normalizer of A in B by
NB(A) = {b ∈ B \ {0} | bAb−1 ⊆ A} and the centralizer of A in D by C(A) = CD(A) =
{d ∈ D | da = ad for all a ∈ A}. For a subset A ⊆ D let U(A) = A \ {0}. We say a
subset A ⊆ D is self-invariant if ND(A) = A. If a ∈ D, then F (a) denotes the subfield of
D generated by F ∪ {a}.

There are many different generalizations of CBH Theorem, in the literature. For
instance Faith [5, p. 211] proved that the theorem is valid, as well, if the multiplicative
group index [U(D) : ND(R)] is finite. Herstein [4] proved that if D has an involution
and dimFD > 4, then one can reduce the D-invariance of R to the S-invariance or K-
invariance. Schenkman and Scott [6] proved that if R is a subdivision ring of D such that
U(R) is a subnormal subgroup of U(D), then either R = D or R is in the center of D.
Also we need to recall the following theorem of Asano [2], which has a similar idea.

Theorem 1.2. (AS Theorem) Let D be a division algebra with center F which is alge-
braic over an (infinite) field K and let M be a non-central D-invariant K-subspace of D.
Then [D,D] ⊆M . In particular M is a Lie ideal of D.

In this paper we consider some substructures of division rings with a more limited
invariance conditions. For example we show that if T is a self-invariant subfield of D with
a nontrivial automorphism, then T contains at least one non-central proper subfield of D.
Also we are interested in knowing the other substructures of a division ring that may have
a similar property as M has in the AS Theorem. When D has an involution we apply
Herstein’s method [4] to restrict the D-invariant of M to some special subsets. We prove
that if the subspace M is S-invariant, then M is a Lie ideal. We also present a variation
of this theorem when the subspace M is K-invariant.

2. Main results

In this section we consider subfields of a division ring with least D-invariance, in
other words we study self-invariant subfields of a division ring. The Skolem-Noether
Theorem shows that if T is a subfield in finite-dimensional central division algebra D,
then AutF (T ) 6= 1, if and only if ND(T ) 6= T . Naturally a question arises: what would
happen if we remove the finite dimensionality of division ring in this theorem? Clearly,
when ND(T ) 6= T , then always (finite or infinite-dimensional case) AutF (T ) 6= 1. In the
following theorem we study the other direction.

Theorem 2.1. [1] Let D be a non-commutative division ring with center F and T be a
subfield of D with a nontrivial F -automorphism or AutF (T ) 6= 1. If ND(T ) = T , then T
contains at least one non-central proper subfield.

Self-invariant subfields with nontrivial automorphisms in division rings, also have the
following properties.

Theorem 2.2. [1] Let D be a division ring with center F and let T be a self-invariant
subfield of D with a nontrivial F -automorphism or AutF (T ) 6= 1. Then we have the
following:

(i) Any subalgebra K of D either is contained in T or dimTT (K) > ∞, where by
T (K) we mean the division subring generated by T ∪K.
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(ii) If D is algebraic, then all T -invariant finite-dimensional subalgebras of D over F
are contained in T .

We continue with the following lemma that is an extension of a lemma due to Asano [2].

Lemma 2.3. [1] Let D be an algebraic division algebra with center F . If N ⊆ D is an
additive subgroup with |F ∩ N | > ∞ and M is an N -invariant subspace of D, then M
contains [N,M ].

We need the following technical lemma, as well.

Lemma 2.4. [1] Let D be an algebraic non-commutative division algebra with involution
and char(D) 6= 2. Then

(i) [[S, S], S] ⊆ S.
(ii) [[S, S],K] ⊆ [S, S].

(iii) [[S, S],M ] ⊆M for every S-invariant subspace M of D.

Using above lemmas, in the following two theorems we give a generalization of AS
Theorem, based on Herstein method [4] to restrict the D-invariance of a subspace M to
S-invariance and K-invariance.

Theorem 2.5. [1] Let D be an algebraic division algebra with involution and char(D) 6=
2. If M is an S-invariant subspace of D and neither S nor M is contained in F , then M
contains [D,D]. In particular, M is a Lie ideal of D.

Theorem 2.6. [1] Let D be an algebraic division algebra with involution such that
char(D) 6= 2. If M is a subspace of D which is K-invariant and neither S nor M is
contained in F and one of the following conditions holds, then M contains [D,D]. In
particular, M is a Lie ideal of D.

(i) The involution is of the second kind.
(ii) S ⊆ 〈⋃u∈K CS(u),K〉.

(iii) For each y ∈ S, there exists x ∈ K, such that xy = cyx for some c ∈ F \ {−1}.

3. Conclusion

In this paper we consider some substructures of division rings with a more limited in-
variance conditions. Also we give a generalization of AS Theorem 1.2 , based on Herstein
method [4] to restrict the D-invariance of a subspace M to S-invariance and K-invariance.
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Abstract. Obtaining Extreme points of Nonlinear Algebraic Equation is widely used
in various sciences in optimization. Derivatives are often used to find extreme points.
When the function is complex or not derivable, meta-heuristic algorithms can be used to
find the extreme points of Nonlinear Algebraic Equation. In this paper, we first modify
the bisection method in line with the intended purpose, and then present a new method
using the integration of the new bisection method and the Monte Carlo method to find
the extreme points of the functions. The advantage of this method is its use in complex
functions. It is indivisible.
Keywords: Extreme points, Nonlinear Algebraic Equation, Monte Carlo, Bisection
method, R Software
AMS Mathematics Subject Classification [2010]: 11K45, 11H55, 13P25

1. Introduction
Many physical problems in basic sciences and engineering are modeled in the form of

nonlinear equations. In this regard, solving them is a challenge in various sciences, so it is
easier to use numerical methods. The study of solving nonlinear equations is an important
part of applied mathematics. Because the most of real-world phenomena can be modeled
according to a nonlinear equation or systems of nonlinear equations [1].
An efficient method for obtaining extreme points depends on the use of the derivative, but
its use in complex equations is very costly. The lack of analytical answers for such complex
and nonlinear equations has led to the development of numerical solution methods. Today,
due to the development of scientific and computer programs, the use of numerical methods
and simulations in solving complex problems is very practical and efficient [2,5,6].
In this paper, the bisection method is used to find the extreme points of the function.
This method can be efficient in complex equations. The organization of this research is as
follows: In Section 2, some preliminaries are described. In Section 3, the modified bisection
method is first defined, and then the algorithm for using the new bisection method and
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the Monte Carlo method for finding the extreme points of a function are described. Then
the research findings were presented and finally concluded.

2. Some Preliminaries
2.1. Bisection Method. The bisection method is one of the most important meth-

ods in numerical calculations to find the root of a continuous function, which we know has
a different sign at two points. Repeating this method on the functions with the mentioned
feature will take us to the root if they are not equal in the range of the interval. If f(x)
is continuous on [a, b], and f(a), f(b) have opposite signs, then by the intermediate value
theorem it follows that f(c) = 0 for some a < c < b. The bisection method simply checks
the sign of f(x) at the midpoint x = (a+b)/2 of the interval at each iteration. If f(a),
f(x) have opposite signs, then the interval is replaced by [a, x] and otherwise it is replaced
by [x, b]. At each iteration, the length of the interval containing the root decreases by
half. The method cannot fail, and the number of iterations needed to achieve a specified
tolerance is known in advance. If the initial interval [a, b] contains more than one root,
then bisection will find one of the roots. The rate of convergence of the bisection algorithm
is linear [4].

2.2. Monte Carlo methods. Monte Carlo methods refer to a diverse collection of
methods in statistical inference and numerical analysis where simulation is used. Many
statistical problems can be approached through some form of Monte Carlo integration.
For an interesting discussion of the history of the Monte Carlo method and scientific
computing, see Eckhart [3]

3. Method
First we modify the bisection method to find the extreme points, then using the Monte

Carlo method we divide the desired distance into smaller parts. In each section where the
slope function changes, we use the modified Bisection method to find the extreme point.

3.1. Modified bisection method. To find the extreme points, we follow the bisec-
tion method, except that we find the places where the function changes the slope. For any
extreme point in the distance [a, b]:

∃xi s.t : (f(xi + ε)− f(xi) ∗ (f(xi+1 + ε)− f(xi+1) ≤ 0

The bisection method simply checks the sign of f(x) at the midpoint x = (a+b)/2 of
the interval at each iteration. If f(a), f(x) have opposite signs, then the interval is replaced
by [a, x] and otherwise it is replaced by [x, b]. At each iteration, the length of the interval
containing the extreme point decreases by half.

3.2. Proposed algorithm to find the extreme points of the Nonlinear Alge-
braic Equation. Step 1:
Generating random sample numbers from a uniform distribution in the interval.
Step 2:
We use the Modified Bisection method to find the extreme point at distance.
Step 3:
To find the next extreme point, we repeat the first to Second steps with . Until all the
extreme points are found in the distance.
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4. Result and Discussion
The advantage of the proposed method is finding extreme points in the all nonlinear

functions. In other methods, including derivatives and metacognitive algorithms, there are
limitations such as the non-extractability of the function or getting stuck in local optimal
points, but the proposed method has the ability. The advantages of this method can
almost cover the disadvantages of other methods. The proposed algorithm is implemented
in R software and some examples are provided.

5. Conclusion
In this paper, we tried to find the extreme points of the Nonlinear Algebraic Equation

without any restrictions. For this purpose, we first modified the bisection method for the
purpose of the research and then by merging the Monte Carlo method and the modified
Bisection method, we were able to obtain the extreme points of the functions.
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Abstract. Let G be a finite group and cd(G) denote the set of complex irreducible
character degrees of G. Let G be a sporadic quasisimle group or an almost simple group
with socle PSp4(q) or PSL4(q). The main result of this paper is to characterize G by
cd(G).
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1. Introduction
Let G be a finite group and Irr(G) denote the set of complex irreducible characters

of G. The set of irreducible character degrees is indicated by:
cd(G) = {χ(1)|χ ∈ Irr(G)}.

It is known that G cannot completely characterize the structure of G. For example,
two nonisomorphic famous groups, Q8 and D8, not only have the same character degrees,
but also the same character tables. So the set of character degrees does not have enough
power to characterize the structure of groups completely.

However cd(G) has a strong influence on the properties of G and we can extract
useful information from it. In this regard, some researches have been done on cd(G) for
characterizing G or at least finding some properties of it. In this way, group theorists found
that although cd(G) contains some information, but cannot recognize some properties of
groups. For instance cd(G) cannot recognize the solvability or nilpotency of G. For
example Q8 is nilpotent and S3 is solvable, but the set of character degrees of both groups
is {1, 2}.
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Although cd(G) does not generally characterize the group structure up to isomorphism,
in the late 1990, Huppert discussed the possibility of characterizing finite non-Abelian
simple groups:

Huppert’s Conjecture: Let S be a finite non-Abelian simple group and G be a
finite group. Then cd(G) = cd(S) if and only if G ∼= S ×A for an Abelian group A.

Huppert proved his conjecture for some non-Abelian simple groups in [1], [2] and [3].
After him, some other group theorists, tried to prove this conjecture for various non-
Abelian simple groups. For example:

• Huppert verified the conjecture for PSL4(2) ∼= A8.
• Nguyen and his colleagues proved the conjecture for PSL4(q) when q ⩾ 13.
• Huppert verified the conjecture for PSp4(q) when q = 3, 4, 5 or 7.
• Wakefield proved the conjecture for PSp4(q) when q > 7.
• Also this conjecture has been proved for the all sporadic simle groups in papers by

various athors.
However this conjecture is still open. Inpired by the Huppert’s conjecture, there is

growing interest in investigating the similar results for the class of quasisimple and almost
simple groups.

A quasisimple group is a group that is a perfect central extension H of a non-Abelian
simple group H0.

A group H is said to be an almost simple group with socle H0 if H0 ⩽ H ⩽ Aut(H0),
where H0 is a non-Abelian simple group.

Nguyen and his colleagues presented the following conjecture in order to generalize the
Huppert’s conjecture to quasisimple groups:

Conjecture 1.2 of [7]: Let G be a finite group and H a finite quasisimple group with
Mult(H/Z(H)) cyclic. Then cd(G) = cd(H) if and only if G ∼= HoA, a central product
of H and an Abelian group A.

The authors proved their conjecture for SL2(q) and SL3(q) when q ⩾ 5. Also They
pointed out that the condition related to Mult(H/Z(H)) is essential. For example, let
G ∼= 22.Ω+

8 (2) and H = 2.Ω+
8 (2), Then cd(G) = cd(H), but G is not a central product of

H with an Abelian subgroup.
Authors in [9] expressed the following conjecture for characterizing almost simple

groups of Lie type by the set of irreducible character degrees. Also they confirmed it for
projective general linear and unitary groups of dimension 3. Before that, they showed by
giving an example that in contrast to Huppert’s conjecture, the converse of their conjecture
does not necessarily hold. In other words, there exists some finite groups G whose quotient
with an Abelian subgroup is isomorphic to an almost simple group H, but cd(G) ̸= cd(H).

Conjecture 1.1 of [9]: Let G be a finite group, and let H be an almost simple group
of Lie type whith cd(G) = cd(H). Then G/A ∼= H for an Abelian normal subgroup of G.

Clearly any simple group is also an quasisimple and almost simple group. Also central
products and group extensions are generalizations of direct products, so the last two
conjectures are actually generalizations for Huppert’s conjecture.

2. Main results
The main result of this paper is to prove the last two conjectures for sporadic qua-

sisimple groups, projective conformal symplectic groups PCSp4(q) and projective general
linear groups PGL4(q):
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Theorem 2.1. (Theorem 1.3 of [6]) Let G be a finite group and H be a sporadic
quasisimple group except 2 . M12. Then cd(G) = cd(H) if and only if G ∼= H ◦A, a central
product of H and an Abelian group A.

Theorem 2.2. (Theorem 1.3 of [5] and Theorem 1.3 of [4]) Let G be a finite group
and H be a projective conformal symplectic group which is extended from PSp4(q) by
it’s diagonal outomorphism, or a projective general linear group, which is extended from
PSL4(q) by it’s diagonal outomorphism. If cd(G) = cd(H), then G/A is isomorphic to
H, where A is an Abelian normal subgroup of G.

Remark 2.3. Recall that Theorem 2.1, for the case where H = H0 is a sporadic simple
group, has already been settled. Therefore, we only need to consider the remaining cases
where H is a sporadic quasisimple group with Z(H) ̸= 1.

Remark 2.4. If q is even, then PSp4(q) does not have any diagonal outomorphism,
so PCSp4(q) ∼= PSp4(q). But Hupper’t conjecture already has been proved for PSp4(q)
by Huppert for 3 ⩽ q ⩽ 7 in [3] and by Wakefield for q > 7 in [10]. Therefore, we only
need to consider the cases which q is odd and d is the diagonal outomorphism of PSp4(q)
of order 2.

Remark 2.5. If q is even, then PSL4(q) does not have any diagonal outomorphism, so
PGL4(q) ∼= PSL4(q). But Hupper’t conjecture already has been proved for PSL4(2) by
himself in [3] and for PSL4(q) when q ⩾ 13 by Nguyen and his colleagues in [8]. Therefore,
we only need to consider the cases which q is odd and d is the diagonal outomorphism of
PSL4(q) of order (q− 1, 4). Furthermore, we have fixed all the bugs in [8] for 3 ⩽ q ⩽ 11,
so the proof of Huppert’s conjecture for PSL4(q) over these fields, can be another result
of this paper.

3. Conclusion
Sporadic quasisimple groups and almost simple groups with socle PSp4(q) or PSL4(q),

can be characterized by their set of irreducible character degrees.
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Abstract. In this paper, we introduce a local quasi-interpolation operator by general-
ization of the hat functions to Multiquadrics. It possesses linear reproducing property
and preserves positivity and monotonicity. It is an improvement of the piecewise linear
interpolation in the sense that it is in C∞. The local property of the proposed operator
offers an advantage in terms of computational complexity rather than the global Mul-
tiquadric (MQ) quasi-interpolation formula. We also prove that the proposed scheme
converges with a rate of O(h2). Numerical results give an accurate reconstruction of the
original function in the well-known Runge phenomenon.
Keywords: Quasi-interpolation, Multiquardic RBF, Piecewise linear hat functions
AMS Mathematics Subject Classification [2010]: 65D05, 65D15, 65D20

1. Introduction
Given a set of n distinct (scattered) points {xj}nj=0 ∈ Ω ⊆ Rd and corresponding data

values {fj}nj=0 ∈ R, a standard way to interpolate a function f : Ω → R is by using

Lf(x) =
n∑

j=0

λjX (x− xj),(1)

with the coefficients λj determined by the interpolation conditions Lf(xj) = fj , j =
0, . . . , n, where X (·) is an interpolation kernel [7]. Many authors use MQ radial basis
function (RBF) ϕ(r) =

√
r2 + c2 to solve the interpolating problem (1), that is X (x−xj) =

ϕ(∥x − xj∥). Then, the coefficients λj are determined by solving a symmetric linear
system Aλ = f , where A = [ϕ(∥xi − xj∥)]0≤i,j≤n . Although the MQ interpolation is
always solvable, the resulting matrix quickly becomes ill-conditioned as the number of
points increases. So researchers concentrated on a weaker form of (1), known as quasi-
interpolation, that holds only for polynomials of some low degree m, i.e.,

Lpm(xj) = pm(xj), ∀pm ∈ Πd
m,

for all 0 ≤ j ≤ n, where Πd
m denotes the space of polynomials of degree less and equal

to m in Rd. Global MQ quasi-interpolation is constructed by a linear combination of the
∗Email address: m.mohammadi@khu.ac.ir
†Speaker. Email address: Std_M.Heidari@khu.ac.ir
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MQ RBF and low degree polynomials. Since
√
x2 + c2 tends to |x| as c tends to zero,

and RBF interpolation based on |x| is piecewise linear interpolation, the shape-preserving
properties of piecewise linear interpolation can be expected to hold for quasi-interpolation
with Multiquadrics, too. Beatson and Powell [1,5] proposed three univariate global MQ
quasi-interpolations LA, LB, and LC . Later, Wu and Schaback [8] proposed the univariate
global MQ quasi-interpolation LD and proved that the scheme is shape preserving and the
approximation order is two at most. Moreover, MQ quasi-interpolation operator has been
successfully applied in a wide range of fields. For example, Wang and Wu [6] applied the
operator to tackle approximate implicitization of parametric curves. Hon andWu [3], Chen
and Wu [2], Jiang and Wang [4], and other researches provided some successful examples
of using it to solve different types of partial differential equations. In this paper, we devise
a local MQ quasi-interpolation operator based on the piecewise linear hat functions. The
main advantage of the method is that it does not require the solution of any linear system.
Instead, the formula uses the function values fj at xj as its coefficients. The local property
of the proposed operator offers an advantage in terms of computational complexity rather
than the global MQ quasi-interpolation formula.

2. Construction
Definition 2.1. Local quasi-interpolation of a function f : [a, b] −→ R with Multi-

quadrics on the scattered points
a = x0 < x1 < · · · < xn = b, h := max

1≤j≤n
(xj − xj−1)(2)

has the form

(Sf)(x) =
n∑

j=0

f(xj)ψj(x),(3)

where

ψ0(x) =





ϕ1(x)

|x0 − x1|
, x0 ≤ x ≤ x1,

0, o.w

ψj(x) =





ϕj−1(x)

|xj − xj−1|
, xj−1 ≤ x ≤ xj ,

ϕj+1(x)

|xj − xj+1|
, xj ≤ x ≤ xj+1, j = 1, · · · , n− 1

0, o.w

ψn(x) =





ϕn−1(x)

|xn − xn−1|
xn−1 ≤ x ≤ xn,

0 otherwise

ϕj(x) =
√
c2 + (x− xj)2, j = 0, . . . , n, c ∈ R+.

Note that for c = 0 the expression (3) is a piecewise linear function and the basis
functions are cardinal. For a general quasi-interpolation operator S we can state the
following definitions.

Definition 2.2. The quasi-interpolation operator S constructed at the data points
(xj , fj), is called to be positivity-preserving if fj > 0 implies that (Sf) > 0.

2
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Definition 2.3. The quasi-interpolation operator S constructed at the data points
{(xj , fj)}, is called to be monotonicity-preserving, if the first order divided difference
f [xj , xj+1] is nonnegative (non-positive) implies that (Sf)′ is also nonnegative (non-
positive).

Definition 2.4. We say that the quasi-interpolation (Sf)(x) possesses linear repro-
ducing property on [x0, xn], if (Sf)(x) = px + q as fj = pxj + q, j = 0, . . . , n, for all
p, q ∈ R.

Theorem 2.5. The local quasi-interpolation operator S constructed by data points
{(xj , fj)} is positivity preserving.

Proof. Let x ∈ [xj , xj+1] for some j, and fj , fj+1 > 0. Then (Sf)(x) = fjψj(x) +
fj+1ψj+1(x) > 0, due to positivity of the MQ RBF and absolute value function. □

Theorem 2.6. The local quasi-interpolation operator S constructed by data points
{(xj , fj)} is monotonicity preserving for c small enough.

Proof. Let x ∈ [xj , xj+1] for some j, and f [xj , xj+1] =
fj+1−fj
xj+1−xj

≥ 0. Then

(Sf)′(x) = fjψ
′
j(x) + fj+1ψ

′
j+1(x)

= fj
ϕ′j+1(x)

|xj − xj+1|
+ fj+1

ϕ′j(x)

|xj+1 − xj |

=
fj(x− xj+1)

|xj − xj+1|(c2 + (x− xj+1)2)
1
2

+
fj+1(x− xj)

|xj+1 − xj |(c2 + (x− xj)2)
1
2

=
fj+1 − fj
xj+1 − xj

≥ 0,

for c small enough. □

Theorem 2.7. The local quasi-interpolation operator S has the linear reproducing
property for c small enough.

Proof. Let x ∈ [xj , xj+1] for some j, and fj = pxj+q, j = 0, . . . , n, for some p, q ∈ R.
Then

(Sf)(x) = (pxj + q)

√
(x− xj+1)2 + c2

|xj − xj+1|
+ (pxj+1 + q)

√
(x− xj)2 + c2

|xj+1 − xj |
= px+ q,

for c small enough. □

3. Accuracy of the local quasi-interpolation S
Theorem 3.1. For f ∈ C[a, b], the quasi-interpolation operator Sf , at the point set

(2) as h→ 0, converges as follows

∥f − Sf∥∞ ≤ kh2,

where k is independent of h and c, provided that c = O(h3).

Proof. Let Lf be the piecewise linear interpolant of f . Then

∥Sf − f∥∞ ≤ ∥Sf − Lf∥∞ + ∥Lf − f∥∞.

3
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Let x ∈ [xj , xj+1] for some j. Then we have

(Sf − Lf)(x) = fj
ϕj+1(x)

xj+1 − xj
+ fj+1

ϕj(x)

xj+1 − xj
− fj

xj+1 − x

xj+1 − xj
− fj+1

x− xj
xj+1 − xj

=
1

(xj+1 − xj)
[fj (ϕj+1(x)− |x− xj+1|) + fj+1 (ϕj(x)− |x− xj |)]

≤ k
c

h
,

due to the boundedness of f and the inequality
√
c2 + y2 − |y| ≤ c, c ≥ 0, y ≥ 0.

So we get

∥Sf − f∥∞ ≤ kh2,

because of the O(h2) convergence of L and the fact that c = O(h3). □

4. Numerical results
In this section, we use the new local quasi-interpolation operator for interpolating the

Runge function. We take equidistant center points and choose different shape parameters
c and also different step sizes h. We choose m = 200 equidistant evaluation points.

Test problem. (Runge function). Let us consider the Runge function on [−1, 1], that
is f(x) = 1

1 + 25x2
. Figure 1 shows the exact and approximate values of f for c = 0.01, h =

0.1, 0.02. In Figure 1, we see that the Runge phenomenon has disappeared by decreasing h.
Relative errors of the proposed method are shown in Figure 2 for h = 0.02, c = 0.01, 0.001.
Figure 2 shows a steady decrease in the error by decreasing shape parameter c. This
supports the theoretical claims. In Figure 3 the relative errors are plotted by the classical
global MQ RBF interpolation method [7] for h = 0.02, c = 0.01, 0.001. It can be noted
from Figures 2-3 that the proposed method leads to more accurate results by decreasing
c.
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Figure 1. Local quasi-interpolation of f(x) = 1
1+25x2 ; h = 0.1 (a), h = 0.02 (b), and

c = 0.01.

4

364



A local MQ quasi-interpolation operator based on the piecewise linear hat functions

(a) -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8
10-3

(b) -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

0

0.5

1

1.5

2

2.5

3

3.5

R
el

at
iv

e 
er

ro
r

10-4

Figure 2. Relative error of the proposed method: c = 0.01 (a), c = 0.001 (b), and h = 0.02.
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Figure 3. Relative error of the global MQ RBF interpolation method: c = 0.01 (a),
c = 0.001 (b), and h = 0.02.

5. Conclusion
In this paper, we develop a local MQ quasi-interpolation which has the properties

of linear reproducing and positivity and monotonicity preserving. It is based on the
reformulation of the linear spline basis by Multiquadrics. Numerical experiments reveal
that the proposed operator gives accurate results and it does not suffer from the Runge
phenomenon. As a future work we are working on a local Multiquadric quasi-interpolation
operator based on the quadratic spline basis which preserves convexity, too.
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Collocation method for linear and nonlinear Volterra
integro-differential equations
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Abstract. A numerical method based on quintic B-spline is developed to solve the
linear and nonlinear Volterra integro-differential equations up to order 4. The solution
and its derivatives are collocated by quintic B-spline and then the integral equation is
approximated by Gauss-Kronrod-Legendre quadrature formula of degree 2. The error
analysis of proposed numerical method is studied theoretically. Numerical results are
given to illustrate the efficiency of the proposed method which shows that our method
can be applied for large values of N . The results are compared with those obtained by
other methods which show that our method is accurate.
Keywords: Linear and nonlinear Volterra integro-differential equations, Quintic B-spline,
Gauss-Kronrod-Legendre quadrature formula
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1. Introduction
In this paper, we will develop an approximation method based on B-spline to obtain

numerical solution of the following integro-differential equation

(1)
m∑

j=0

Pj(t)y
(j)(t) = f(t) +

∫ t

a

k(t, x, y(x))dx, t ∈ [a, T ], T ∈ (a, b], 1 ≤ m ≤ 4,

with the boundary conditions,

(2)
m−1∑

j=0

[αi,jy
(j)(a) + βi,jy

(j)(b)] = γi, 0 ≤ i ≤ m− 1,

where αi,j , βi,j and γi are given real constants. The given kernel k is continuous on [a, b]
and satisfies a uniform Lipschitz, f(t) and Pj(t) are the known functions and y is un-
known function. To solve the integro-differential equations, several numerical approaches
have been proposed such as [1,2]. In this paper we will use quintic B-spline collocation
to approximate the unknown functions of up to 4th order and Gauss-Kronrod-Legendre
quadrature formula to approximate the integral equation in the boundary value problems
of linear and nonlinear Volterra integro-differential equations of second kind.

∗Speaker. z_mahmoodi_a@yahoo.com

366



Z. Mahmoodi

2. Quintic B-spline collocation method
The construction of the quintic B-spline interpolate s to the analytical solution y for

(1)-(2) can be performed with the help of the ten additional knots such that
t−5 < t−4 < t−3 < t−2 < t−1 and tN+1 < tN+2 < tN+3 < tN+4 < tN+5.

Following [3] we consider a quintic B-spline s(t) of the form

(3) s(t) =

N+2∑

i=−2

ciB
5
i (t),

where 



B0
i (t) =

{
1, if ti ≤ t ≤ ti+1,
0, otherewise

Bk
i (t) = ( t−ti

ti+k−ti
)Bk−1

i (t) + (
ti+k+1−t

ti+k+1−ti+1
)Bk−1

i+1 (t), k ≥ 1,

satisfying the following interpolatory conditions
s(ti) = y(ti), 0 ≤ i ≤ N,

and the end conditions
(4) Djs(t0) = Djs(tN ), j = 1, 2, 3, 4.

3. On quadrature formulas of the Gauss-Kronrod-Legendre
The Gauss-Kronrod quadrature formula is

∫

R
f(x)dµ(x) =

2n+1∑

k=1

δkf(τk) =
n∑

ν=1

δνf(τν) +
n+1∑

ρ=1

δ∗kf(τ
∗
ρ ) +R2n+1(f),

where τν are the Gaussian nodes, i.e., the zeros of the orthogonal polynomial Pn with
respect to µ and the nodes τ∗ρ and weights δν , δ

∗
ρ are chosen so that they maximize the

polynomial degree of exactness of the quadrature formula. It turns out that
En+1Rn(f) = 0 for all f ∈ P3n+1,

(see [4]). Here we use the Legendre polynomial of degree 2 and w(x) = 1, i.e. dµ(x) =

dx, [−1, 1] and we can obtain the weights δν and δ∗ρ by solving the system,
∫ 1
−1 x

jdx =∑2
ν=1 δνx

j(τν) +
∑3

ρ=1 δ
∗
kx

j(τ∗ρ ) j = 0, . . . , 7. Finally we obtain




τ1 =
√
3
3 , τ2 =

√
3
3 , τ∗1 = −

√
6
7 , τ∗2 = 0, τ∗3 =

√
6
7 ,

δ1 = 27
55 , δ2 = 27

55 , δ∗1 = 98
495 , δ∗2 = 28

45 , δ∗3 = 98
495 .

(5)

4. Nonlinear Volterra integro-differential equations
In the given nonlinear Volterra integro-differential equations (1) and (2) we can re-

placed the unknown function and its derivatives by quintic B-spline (4), then we collocate
(1) at collocation points ti = a + ih, h = T−a

N , i = 0, 1, . . . , N, and by partitioning the
interval [a, T] to N equal subintervals we obtain:

(6)





∑m
j=0 Pj(ti)s

(j)(ti) = f(ti) +
∑i−1

p=0

∫ tp+1

tp
k(ti, x, s(x))dx,

i = 1, . . . , N, 1 ≤ m ≤ 4,∑m−1
j=0 [αi,js

(j)(a) + βi,js
(j)(b)] = γi, 0 ≤ i ≤ m− 1.
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For using the Gauss-Kronrod-Legendre formula we need to change each subinterval [tp, tp+1]
to the interval [−1, 1]. Then by the following change of variable, we have x = 1

2 [(tp+1 −
tp)y+(tp+1− tp)], dx =

tp+1−tp
2 dy = h

2dy. To approximate the integral (6) , we can use the
Gauss-Kronrod-Legendre quadrature formula in the case n = 2, then we get the following
(N +m)× (N + 5), nonlinear system

(7)





∑m
j=0 Pj(ti)s

(j)(ti) = f(ti) +
h
2

∑i−1
p=0

∑5
ν=1 δ̄νk(ti, ζpν , s(ζpν)),

1 ≤ m ≤ 4, i = 1, . . . , N∑m−1
j=0 [ai,js

(j)(a) + bi,js
(j)(b)] = di, 0 ≤ i ≤ m− 1,

where ζpν =
(tp+1−tp)τ̄ν+(tp+1+tp)

2 , and we have the nodes τ̄ν and coefficients δ̄ν of previous
section. We need 5−m more equations to obtained the unique solution for equation (7).
We impose the end conditions (4). Hence by associating equation (7) with (4) we have
the following nonlinear system (N + 5)× (N + 5),

(8)





∑m
j=0 Pj(ti)s

(j)(ti) = f(ti) +
h
2

∑i−1
p=0

∑5
ν=1 δ̄νk(ti, ζpν , s(ζpν)),

1 ≤ m ≤ 4, i = 1, . . . , N∑m−1
j=0 [ai,js

(j)(a) + bi,js
(j)(b)] = di, 0 ≤ i ≤ m− 1,

s(j+1)(t0) = s(j+1)(tN ), 0 ≤ j ≤ 4−m,

by solving the above nonlinear system via iterative method we determine the coefficients
ci, i = −2, . . . , N + 2. By substituting ci in (3), we obtain the approximate solution for
(1).

5. Numerical examples
In order to test the viability of the presented method, we consider two linear and

nonlinear Volterra integro-differential equations with the end conditions.

Example 5.1. Consider the following linear Volterra integro-differential equation with
the exact solution y(t) = et.

y′′(t)+ty′(t)−ty(t) = et+
1

2
t cos t− 1

2

∫ t

0
cos te−xy(x)dx, y(0) = 1, y′(0) = 1, 0 ≤ x, t ≤ 1.

Example 5.2. Consider the following nonlinear Volterra integro-differential equation
with exact solution y(t) = et,

y(4)(t) = 1 +

∫ t

0
e−xy2(x)dx, y(0) = 1, y(1) = e, y′′(0) = 1, y′′(1) = e, t ∈ [0, 1].

We apply the system of (8) to solve examples with different values of N , and also we
compare our obtained results with the results in [5,6] that the maximum absolute errors
are tabulated in tables 1 and 2.

6. Conclusions
This paper presents method to compute the solution of linear and nonlinear Volterra

integro differential equations by using Gauss-Kronrod-Legendre quadrature formula and
collocating by quintic B-spline. These equations are converted to a system of linear or
nonlinear algebraic equations in terms of the linear combination coefficients appearing in
the representation of the solution in spline basic functions.
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Table 1. The maximum absolute errors ∥E∥∞ in solution of Example 5.1.

x Our Method Method in [5]
0 1.33447(-14) 0
0.2 2.74185(-09) 1.7613(-04)
0.4 9.67209(-09) 8.0643(-04)
0.6 9.51870(-09) 5.1126(-04)
0.8 5.07328(-07) 4.4919(-03)
1 8.13245(-06) 2.0920(-02)

Table 2. The errors ∥E∥ in solution of Example 5.2 at particular points
for N = 10.

x Our Method Method in [6]
0 1.34337(-14) 0
0.2 1.07163(-05) 1.11470(-03)
0.4 1.74573(-05) 1.88476(-03)
0.6 1.77865(-05) 2.00882(-03)
0.8 1.12839(-05) 1.32855(-03)
1 0 0
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Abstract. Let υ be an analytic function on the unit disk D, and ϕ be a holomorphic
self-map of D. The weighted composition operator with symbols ϕ and υ is defined by
Cυ,ϕ = υfoϕ. In this paper, we characterize the adjoint of certain weighted composition
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1. Introduction
Let D be the unit disk in the complex plane. A weighted Hardy space H2(β) is a

Hilbert space whose elements are functions analytic on D such that the set {zn|n ≥ 0}
constitute a complete orthonormal set in H2(β). In this notation the weight β = {β(j)},
where β(j) = ∥zj∥ for j = 0, 1, 2, · · · and β(0) = 1. If f(z) = Σ∞

0 anz
n belongs to H2(β),

then ∥f∥2 = Σ∞
0 |an|2|β(n)|2 and the inner product is given by ⟨Σ∞

0 anz
n,Σ∞

0 bnz
n⟩ =

Σ∞
0 anbn|β(n)|2. It is well known that the evaluation of functions at w ∈ D is a bounded

linear functional and if kw denotes the unique vector in H2(β) such that f(w) = ⟨f, kw⟩,
then kw(z) = Σ∞

0
wnzn

β(n)2
= k(wz), where k(z) =

∑∞
0

zn

β2
n
and k is analytic on D. Let ϕ and

υ be functions analytic on the unit disk and ϕ(D) ⊂ D. The composition operator with
symbol ϕ defined on H2(β) by Cϕf = f ◦ ϕ and the weighted composition operator by
symbols ϕ, υ is defined by Cυ,φf = υfoφ for each f ∈ H2(β). For more information about
the weighted Hardy spaces see for instance [4] and the references therein. Some classical
examples of such spaces run as follows:

1-The Dirichlet space D is the space of all analytic functions f : D → C such that

∥f∥2D := |f(0)|2 +
∫

D
|f ′(z)|2dA(z) <∞,

∗Speaker. Email address: math.mehrangiz@gmail.com.com
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where A denotes the area measure on D, normalized to have the total mass 1. If f(z) =∑∞
n=0 cnz

n, then

∥f∥2D = |c0|2 +
∞∑

n=1

n|cn|2.

It is easy to see that D is a weighted Hardy space with β(j) = j
1
2 for each positive integer j.

2-The Bergman space A2(D) is the space of all analytic functions f on D for which the
norm

∥f∥A2 = {
∫

D
|f |2dA} 1

2 ,

is finite. The space A2(D) is a Hilbert space with inner product

< f, g >=

∫

D
f(z)g(z)

dA(z)

π
.

The space A2(D) is a weighted Hardy space with β(j) = (j + 1)
−1
2 for each positive integer

j.
In 1988, Cowen determined the formula for C∗

φ on the Hardy space H2, when φ is a
linear fractional self-map of D. He showed that if φ(z) = az+b

cz+d is a linear fractional self
map of D, then

C∗
φ =MϕCσM

∗
ψ,

where σ(z) = az−c
−bz+d is the Kreǐn adjoint of φ, ϕ(z) = (−bz + d)−1, ψ(z) = cz + d and Mϕ

and Mψ are multiplication operators. Later, Hurts [6] obtained the Cowen’s formula on
weighted Bergman spaces. Such formulas initiated more studies of the adjoint of linear
fractional composition operators on different spaces of analytic functions and on H2 for
general rational symbols.

In [5], Gallardo-Gutiérrez and Montes-Rodríguez gave an explicit formula in the Dirich-
let space D for C∗

ϕ, when ϕ is a linear fractional symbol. They have shown that C∗
ϕ acting

on the Dirichlet space is given by the formula
(1.1) C∗

ϕf = f(0)Kϕ(0) − (Cϕ∗f)(0) + Cϕ∗f, f ∈ D.
In 2008, A. Abdollahi consider automorphic composition operators Cϕ acting on the Dirich-
let space. By using the E. Gallardo and A. Montes adjoint formula on the Dirichlet space.
He has completely determined the spectrum, essential spectrum and point spectrum for
self-commutators of such operators. In [1] and [2] the authors do the same work for
monomial symbols on some Hilbert spaces of analytic functions.

For more information about the adjoint of composition operators, we refer the reader
to [3] and the references therein.

2. Main results
In this section we state main theorems and results of the article.

Theorem 2.1. Let H2(β) be a weighted Hardy space, ϕ(z) = zm and υ(z) = a1z
k1 +

a2z
k2 + . . . + alz

kl where m, k1, . . . kl are positive integers and a1, . . . , al are complex
numbers. For an arbitrary point w ∈ D, the adjoint of Cυ,ϕ on H2(β) is given by

C∗
υ,ϕf(w) =

∞∑

n=0

(a1
f (nm+k1)(0)

(nm+ k1)!

β(nm+ k1)
2

β(n)2
+ . . .+ al

f (nm+kl)(0)

(nm+ kl)!

β(nm+ kl)
2

β(n)2
)wn.
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Corollary 2.2. Let υ(z) = zm and ϕ(z) = zn, where m and n are positive integers.
For an arbitrary point w ∈ D, the adjoint of Cυ,ϕ(viewed as an operator on the Dirichlet
space) is given by the formula

C∗
υ,ϕf(w) = m

f (m)(0)

m!
+

∞∑

k=1

(
m

k
+ n)

f (m+nk)(0)

(m+ nk)!
wk.

Corollary 2.3. Let υ(z) = zmk+1 + zmk+3 and ϕ(z) = zl, where k, m and l are
positive integers. For an arbitrary point w = reiθ in D, the adjoint of Cυ,ϕ (viewed as an
operator on the Bergman space) is given by the formula

C∗
υ,ϕf(w) =

∞∑

n=0

(
n+ 1

ln+mk + 2

f (ln+mk+1)(0)

(ln+mk + 1)!
+

n+ 1

ln+mk + 4

f (ln+mk+3)(0)

(ln+mk + 3)!
)wn.

Theorem 2.4. Let υ be any analytic rational function with poles off D and ϕ be an
analytic rational self-map of the unit disk such that Cυ,ϕ is bounded on the Dirichlet space.
Assume that υ̂(z) = υ(1z ), υ̂′(z) = υ′(1z ), ϕ̂′(z) = ϕ′(1z ) and ϕ̂(z) = ϕ(1z ). Then the adjoint
formula for Cυ,ϕ on the Dirichlet space is given by

C∗
υ,ϕf(w) = f(0)υ(0) +

∑
Res(

f(z)υ̂′(z)
z2

, um) +

∞∑

n=1

wn

n
(f(0)υ(0)ϕ(0)n

+
∑

Res(
f(z)υ̂′(z)(ϕ̂(z))n

z2
, vk) + n

∑
Res(

f(z)υ̂(z)ϕ̂′(z)(ϕ̂(z))n−1

z2
, wl)),

where um, vk and wl are respectively poles of the functions f(z)υ̂′(z)
z2

, f(z)υ̂′(z)( ˆϕ(z))n

z2
and

f(z)υ̂(z)ϕ̂′(z)(ϕ̂(z))n−1

z2
in D.

Theorem 2.5. Let υ be any analytic rational function with poles off D and ϕ be an
analytic rational self-map of the unit disk such that Cυ,ϕ is bounded on the Bergman space.
Assume that υ̂(z) = υ(1z ) and ϕ̂(z) = ϕ(1z ). Then the adjoint formula for Cυ,ϕ on the
Bergman space is given by the formula

C∗
υ,ϕf(w) =

∞∑

n=0

(n+ 1)
∑

Res(
F (z)υ̂(z)(ϕ̂(z))n

z2
, zk)w

n,

where F (z) is holomorphic on the unit disk D, such that for each z ∈ D, F ′(z) = f(z),

and zk are poles of the functions F (z)υ̂(z)(ϕ̂(z))n

z2
in D.

Theorem 2.6. If ρ : Ĉ −→ Ĉ denotes inversion in the unit circle, ρ(z) = 1
z , and

υ(z) = 1 and ϕ(z) = z+z2+...+zn

n , then Cυ,ϕ = Cϕ. Assume that w0 ∈ D is a regular value
of ϕe = ρoϕoρ and V ⊂ D is any connected neighborhood of w0 on which are defined n
distinct branches {σj}nj=1 of ϕ−1

e . Then for all non zero w ∈ V the adjoint formula for Cϕ
on the Dirichlet space is given by

C∗
ϕf(w) =

n∑

j=1

f(σj(w))

σj(w)
− (n− 1)f(0),

and for w = 0,
C∗
ϕf(0) = f(0).
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3. Conclusion
In this manuscript under certain conditions on the symbols of a weighted composition

operator, we determined the formula for it’s adjoint, when the spaces is a general weighted
Hardy space, or in particular when the space is the classical Bergman space or the classical
Dirichlet space.
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Abstract. In this paper, we give some generalized and modification categories of topo-
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In particular, we study the properties of some classes of morphisms, such as final, initial,
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1. Introduction
We first give some notions and notations. A mapping γ : P (X) → P (X) defined on

the power set P (X) of a set X is said to be monotone provided that A ⊆ B ⊆ X implies
γA ⊆ γB, where we write γA for γ(A). The pair (X, γ) is called a Γ-space. A set A ⊆ X is
said to be γ-open provided that A ⊆ γA; γ-closed provided that γA ⊆ A and the collection
µγ of all γ-open sets is a generalized topology in the sense of [2], where a subset µ of P (X)
is called a generalized topology (briefly GT) on X and the pair (X,µ) is called a generalized
topological space (briefly GTS) if ∅ ∈ µ and any union of elements of µ belongs to µ. A
GTS (X,µ) is called strong if X ∈ µ. Also the collection µ∗

γ = {A | γ(X − A) ⊆ X − A}
is a GT on X.

A monotone map γ : P (X)→ P (X) is said to be:
(1) idempotent if γ2A = γγA = γA for A ⊆ X;
(2) restricting if γA ⊆ A for A ⊆ X;
(3) enlarging if A ⊆ γA for A ⊆ X;
(4) ∨-additive if γ(A ∪B) = γA ∪ γB for A,B ⊆ X;
(5) ∧-additive if γ(A ∩B) = γA ∩ γB for A,B ⊆ X.

The conjugate of a monotone map γ is defined by γ∗A = X−γ(X−A) for A ⊆ X. Clearly
(X, γ∗) is a Γ-space. If µ is a GT on X, then the interior operator iµ : P (X) → P (X)
defined by iµA =

∪{M ∈ µ | M ⊆ A} is monotone, idempotent and restricting; and the
closure operator cµ : P (X) → P (X) defined by cµA =

∩{N | A ⊆ N,X − N ∈ µ} is
monotone, idempotent and enlarging.

∗Speaker. Email address: gh.mirhosseini@yahoo.com
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A mapping f : (X,µX) → (Y, µY ) between GTS’s is said to be g-continuous if
f−1(B) ∈ µX whenever B ∈ µY [2–4]. We denote by Top and GenTop the category of all
topological spaces with continuous maps; and the category of all generalized topological
spaces with g-continuous maps, respectively. In the following, readers are suggested to
refer to [1] for some categorical notions.

2. Main results
We first present some generalized and modification categories of topological spaces

in terms of closure and interior operators. Recall that every monotone and restricting
operator is called an interior operator, and every monotone and enlarging operator is
called a closure operator.

Definition 2.1. Let f : (X, γ) → (Y, δ) be a mapping between Γ-spaces. We say
that f is i-continuous if f−1(δB) ⊆ γf−1(B) for all subset B of Y ; and c-continuous if
γf−1(B) ⊆ f−1(δB) for all subset B of Y , or equivalently, f(γA) ⊆ δf(A) for all subset
A of X.

We denote by:
(1) Moni and Monc the category of all Γ-spaces and i-continuous maps, and the

category of all Γ-spaces and c-continuous maps, respectively;
(2) Int and Clo the full subcategories of Moni and Monc of all restricting maps,

and of all enlarging maps, respectively;
(3) Int2 and Clo2 the full subcategories of Int and Clo of all idempotent maps,

respectively;
(4) Int2∧ and Clo2∨ the full subcategories of Int2 and Clo2 of all ∧-additive maps;

and of all ∨-additive maps, respectively.
The following diagram summarizes the relation between the above categories, where

we use the notations ∼=, ↑ and ↪→ for isomorphic, full subcategory and reflective full sub-
category, respectively [6].

Moni ←↩ GenTop ↪→ Monc

↑ q ↑
Int ←↩ GenTop ↪→ Clo
↑ q ↑

Int2 ∼= GenTop ∼= Clo2
↑ ↑ ↑

Int∧2 ∼= Top ∼= Clo2∨
In the following, we study the notions of initial, final, open and closed morphisms with

respect to closure and interior operators. In an arbitrary category with a subject structure
and a closure operator, the notions of such morphisms were introduced in [5]. Similarly,
we have the following definitions.

Definition 2.2. A mapping f : (X, γ)→ (Y, δ) between Γ-spaces is called:
(1) c-final if δB = f(γf−1(B)) for all subset B of Y ;
(2) c-initial if γA = f−1(δf(A)) for all subset A of X;
(3) i-final if δ∗B = f(γ∗f−1(B)) for all subset B of Y ;
(4) i-initial if γ∗A = f−1(δ∗f(A)) for all subset A of X.

Definition 2.3. A mapping f : (X, γ)→ (Y, δ) between Γ-spaces is called:
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(1) c-closed or Γ-preserving if f(γA) = δf(A) for all subset A of X;
(2) c-open or Γ-reflecting if f−1(δB) = γf−1(B) for all subset B of Y ;
(3) i-closed or Γ∗-preserving if f(γ∗A) = δ∗f(A) for all subset A of X;
(4) i-open or Γ∗-reflecting if f−1(δ∗B) = γ∗f−1(B) for all subset B of Y .

It is easy to show that c-final, c-initial, c-closed and c-open maps are c-continuous and
i-final, i-initial, i-closed and i-open maps are i-continuous. Thus we study the properties
of c-final, c-initial, c-closed and c-open maps in Monc and its full subcategories (i.e., Clo,
Clo2, Clo2∨); and the properties of i-final, i-initial, i-closed and i-open maps in Moni

and its full subcategories (i.e., Int, Int2, Int2∧).
Theorem 2.4. (1) In the construct Monc or any of its full subcategories, a

mapping f is c-initial if and only if it is an initial morphism.
(2) In the construct Moni or any of its full subcategories, a mapping f is i-initial if

and only if it is an initial morphism.
By Theorem 2.4, we have the following result.
Corollary 2.5. In the construct Top (GenTop) a continuous (g-continuous) map

f : (X, τ)→ (Y, σ) is initial if and only if cτA = f−1(cσf(A)) for every subset A of X.
Remark 2.6. We point out that in the constructs Clo, Clo2 and Clo2∨ finality does

not characterize c-final maps. For example, letX = Y = {1, 2}, τ = {∅, {2}, X}, σ = P (Y )
and f : (X, τ) → (Y, σ) be defined by f(1) = f(2) = 1. Then, f is a final morphism in
Top and hence in GenTop. Since every isomorphism functor between concrete categories
preserves final morphisms, it follows that f : (X, cτ )→ (Y, cσ) is a final morphism in Clo2
and Clo2∨. But cσ{2} = {2} and f(cτf

−1({2}) = ∅. Thus f is not c-final.
Theorem 2.7. (1) In the construct Monc a mapping f is c-final if and only if

it is a final morphism.
(2) In the construct Clo a mapping f is c-final if and only if it is a surjective final

morphism.
(3) In any of the constructs Clo2 and Clo2∨ a mapping f is c-final if it is a bijective

final morphism.
Theorem 2.8. (1) In the construct Moni a mapping f is i-final if and only if it

is a final morphism.
(2) In the construct Int a mapping f is i-final if and only if it is a surjective final

morphism.
(3) In any of the constructs Int2 and Int2∧ a mapping f is i-final if it is a bijective

final morphism.
By Theorems 2.7 and 2.8, the following result holds.
Corollary 2.9. In the construct Int, i-final maps and in the construct Clo, c-final

maps are precisely quotient morphisms.
Theorem 2.10. (1) If f : (X, γ) → (Y, δ) is c-closed in Monc or any of its full

subcategories, then f maps γ-closed subsets to δ-closed subsets.
(2) Let f : (X, γ) → (Y, δ) be a c-continuous mapping in any of the categories Clo2

and Clo2∨. Then f is c-closed if and only if f maps γ-closed subsets to δ-closed
subsets.

(3) If f : (X, γ)→ (Y, δ) is i-closed in Moni or any of its full subcategories, then f
maps γ∗-closed subsets to δ∗-closed subsets.
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(4) Let f : (X, γ)→ (Y, δ) be an i-continuous mapping in any of the categories Int2
and Int2∧. Then f is i-closed if and only if f maps γ∗-closed subsets to δ∗-closed
subsets.

Theorem 2.11. (1) If f : (X, γ) → (Y, δ) is c-open in Monc or any of its full
subcategories, then f maps γ∗-open subsets to δ∗-open subsets.

(2) Let f : (X, γ) → (Y, δ) be a c-continuous mapping in any of the categories Clo2
and Clo2∨. Then f is c-open if and only if f maps γ∗-open subsets to δ∗-open
subsets.

(3) If f : (X, γ) → (Y, δ) is i-open in Moni or any of its full subcategories, then f
maps γ-open subsets to δ-open subsets.

(4) Let f : (X, γ)→ (Y, δ) be an i-continuous mapping in any of the categories Int2
and Int2∧. Then f is i-open if and only if f maps γ-open subsets to δ-open
subsets.

Now, by Theorems 2.10 and 2.11, the following results holds.

Corollary 2.12. Let f : (X, τ) → (Y, σ) be a continuous mapping in any of the
categories Top and GenTop. Then f : (X, cτ )→ (Y, cσ) is c-closed if and only if f maps
cτ -closed subsets to cσ-closed subsets; and f : (X, iτ )→ (Y, iσ) is i-closed if and only if f
maps (i∗τ = cτ )-closed subsets to (i∗σ = cσ)-closed subsets. Thus f is c-closed or i-closed if
and only if f is a closed map.

Corollary 2.13. Let f : (X, τ) → (Y, σ) be a continuous mapping in any of the
categories Top and GenTop. Then f : (X, cτ )→ (Y, cσ) is c-open if and only if f maps
(c∗τ = iτ )-open subsets to (c∗σ = iσ)-open subsets; and f : (X, iτ )→ (Y, iσ) is i-open if and
only if f maps iτ -open subsets to iσ-open subsets. Thus f is c-open or i-open if and only
if f is an open map.

3. Conclusion
We have given some isomorphic and generalized categories of Top and GenTop;

and studied the properties of final, initial, closed and open maps with respect to closure
operators by defining c-final, c-initial, c-closed, c-open maps; and with respect to interior
operators by defining i-final, i-initial, i-closed and i-open maps, respectively.
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Abstract. Let R be a commutative ring with identity.In this paper, we study the
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1. Introduction

Throughout this article, all rings are assumed to be commutative with identity and
F denotes a free R-module of finite rank n (n ⩾ 2). Let R be a commutative domain
and K be the quotient field of R. An integral domain R is a GCD domain if any two
elements of R have a greatest common divisor. A Bézout domain is an integral domain
in which the sum of two principal ideals is again principal. Note that a Bézout domain
is a GCD domain, see [3,4]. Furthermore, by [1, Theorem 4.8], a one dimensional GCD
domain is Bézout. Any PID is a Bézout domain but a Bézout domain need not be a PID
or a UFD. Let R be the ring of entire complex valued functions. By [5, Fact 2.3], R is a
Bézout domain and so is a GCD domain. Since the irreducible elements of R are linear
polynomials and there are functions with infinitely many roots, R is not a UFD.

Note that a one dimensional GCD domain is not necessarily a UFD. For example,
suppose that R is the ring of algebraic integers. By [3, Theorem 102], R is a Bézout
domain and hence is a GCD domain. For every non-zero and non-unit element a ∈ R,
we have a =

√
a
√
a. But

√
a is a non-unit in R and hence R is not a UFD. Moreover,

dim(R) = dim(Z) = 1.
In this paper, we study the existence of primary decomposition of a submodule of F of
finite rank, where R is a domain and characterize its minimal primary decomposition.

*Speaker. Email address: mirzaee0269@yahoo.com
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2. Primary Decomposition of submodules of a free module of finite
rank over a domain.

The following notations and results obtained from [7], will be frequently used in this

article. Let F = R(n) be a free R-module and X = (xi1, . . . , xin) ∈ F, for some xij ∈ R
(1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n, 1 ⩽ m ⩽ n). We put

Bm×n = [X1 . . . Xm] =




x11 x12 . . . x1n
x21 x22 . . . x2n

. . .

xm1 xm2 . . . xmn


 ∈Mm×n(R).

Thus the jth row of the matrix [X1 . . . Xm] consists of the components of element Xj in F .
We use B(j1, . . . , jk) ∈Mm×k(R) to denote the submatrix of B consisting of the columns
j1, . . . , jk ∈ {1, . . . , n}. Setting ψ = {Xi = (xi1, . . . , xin) ∈ F | i ∈ Ω}, where Ω(⊆ N) is an
index set.We use ⟨B⟩ for the submodule of F generated by the rows of B.

Lemma 2.1. [6, Lemma 1.1] Let R be a domain. Suppose that B ∈Mn×n(R), detB ̸=
0 and B′ = (b′ij) be the adjoint matrix of B. Then (x1, . . . , xn) ∈ ⟨B⟩, for some xi ∈ R
(1 ⩽ i ⩽ n) if and only if

∑n
i=1 xib

′
ij ∈ ⟨detB⟩ for every j (1 ⩽ j ⩽ n).

Lemma 2.2. Suppose R is a domain with a principal maximal ideal m = ⟨p⟩, n, s and
α are positive integers such that s < n. Also suppose that A ∈ Mn×s(R), Y ∈ Mn×1(R)
and X = [x1 · · ·xs]T ∈ Ms×1(R). Let C ∈ Mn×(s+1)(R) be the augmented matrix [A : Y ].
If p does not divide the determinant of at least one s× s submatrix of A, then the system
of equations AX ≡ Y (mod pα) has a solution if and only if pα divides the determinants
of all (s+ 1)× (s+ 1) submatrices of C.

Proposition 2.3. Let R be a domain, n be a positive integer and F = Rn (n ⩾ 2).
Suppose that B ∈ Mn×n(R) and 0 ̸= detB has a prime decomposition. Then ⟨B⟩ is a
primary submodule of F if and only if detB = upα for some unit u ∈ R, a prime element
p ∈ R and a positive integer α.

Let m ⩽ n be positive integers and B ∈ Mm×n(R). Suppose that t (1 ⩽ t ⩽ m),

1 ⩽ i1 < · · · < it ⩽ m and 1 ⩽ j1 < · · · < jt ⩽ n be some integers. Then B

[
i1 · · · it
j1 · · · jt

]

denotes the determinant of the t × t submatrix of B consisting of rows i1, · · · , it and
columns j1, · · · , jt.

Theorem 2.4. Let m ⩽ n be positive integers and let B ∈ Mm×n(R). Suppose that

p ∈ R is a prime element and let α be the greatest integer such that pα | B
[
1 · · · m
1 · · · m

]
.

Then there exists an upper triangular matrix A ∈ Mn×n(R) with detA = pα such that
⟨B⟩ ⊆ ⟨A⟩.

Proof. Let Bj (1 ⩽ j ⩽ m) be the submatrix consisting of the first j columns of
B and Bm = (bij). Suppose that α1 ⩾ 0 is the greatest integer such that pα1 | bi1, for
all i (1 ⩽ i ⩽ m). Assume that α1, · · · , αj−1 are defined for some j ⩽ m and define
αj ⩾ 0 to be the greatest integer such that pα1+···+αj divides the determinants of all j × j
submatrices of Bj . Hence α1 + · · ·+ αm = α. By induction on j, we justify the following
assertion:
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for every j (1 ⩽ j ⩽ m), there exist Cj ∈ Mm×j(R) and Aj ∈ Mj×j(R), such that
CjAj = Bj , Aj is upper triangular and detAj = pα1+···+αj .

For j = 1, we put C1 = (
b11
pα1

, · · · , bm1

pα1
)t and A1 = (pα1). Clearly C1A1 = B1. Now

assume the assertion to be true for some j (1 ⩽ j < m). Let 1 ⩽ i1 < · · · < ij ⩽ m be
arbitrary integers. We have

Bj

[
i1 · · · ij
1 · · · j

]
= Cj

[
i1 · · · ij
1 · · · j

]
(detAj)

= Cj

[
i1 · · · ij
1 · · · j

]
pα1+···+αj .

Hence p does not divide the determinant of at least one j × j submatrix of Cj . Also,
it implies that

pα1+···+αj+1 | Bj+1

[
i1 · · · ij+1

1 · · · j + 1

]

= (

j+1∑

k=1

(−1)k+j+1bik(j+1))Bj

[
i1 · · · ik−1 ik+1 · · · ij+1

1 · · · · · · · · · j

]

= (pα1+···+αj
j+1∑

k=1

(−1)k+j+1bik(j+1))Cj

[
i1 · · · ik−1 ik+1 · · · ij+1

1 · · · · · · · · · j

]

for all positive integers i1 < · · · < ij+1 ⩽ m. It follows that

pαj+1 | (
j+1∑

k=1

(−1)k+j+1bik(j+1))Cj

[
i1 · · · ik−1 ik+1 · · · ij+1

1 · · · · · · · · · j

]
.

Let Yj+1 be the (j + 1)th column of B. By Lemma 2.2, there exist
a1(j+1), · · · , aj(j+1) ∈ R such that Cj(a1(j+1), · · · , aj(j+1))

t ≡ Yj+1(mod p
αj+1). Put

Cj+1 =


Cj :

1

pαj+1
(Yj+1 − Cj




a1(j+1)
...

aj(j+1)


)


 , Aj+1 =




a1(j+1)

Aj
...

aj(j+1)

0 · · · 0 pαj+1




It is easy to see that Cj+1Aj+1 = Bj+1, detAj+1 = pα1+···+αj+1 and Aj+1 is upper
triangular. Hence the assertion is true for j + 1 and so by induction for all j (1 ⩽ j ⩽ m).
In particular for j = m, there exist Am, Cm ∈Mm×m(R) such that CmAm = Bm. If m < n
, let B0 be the submatrix consisting of columns m+ 1, · · · , n of B. Let C ∈Mm×n(R) be
the augmented matrix (Cm : B0) and let

A =

(
Am 0
0 In−m

)
∈Mn×n(R).

Clearly A is upper triangular and detA = detAm = pα. Also we have CA = B and so
⟨B⟩ ⊆ ⟨A⟩. □

Theorem 2.5. Let R be a domain and F = R(n). Let B ∈ Mn×n(R) such that

detB is non-unit and non-zero. Suppose that detB = pβ11 · · · pβtt is a prime decomposition,

pi ̸= pj ∈ R and βi ∈ N (1 ⩽ i, j ⩽ t). Let Ak with detAk = pβkk (1 ⩽ k ⩽ t) be the

380



Fatemeh Mirzaei and Reza Nekooei

triangular matrix in Theorem 2.4. Then
⋂t
k=1⟨Ak⟩ is a minimal primary decomposition

of ⟨B⟩.

Example 2.6. Let B =




x+ 2 x+ 2 0
x+ 2 x+ 3 x

x2(x+ 2) x x2


 ∈M3×3(R). We shall find a minimal

primary decomposition of ⟨B⟩. Since detB = x3(x+2)2, by Theorem 2.4, there exist upper
triangular matrices 


1 a12 a13
0 1 a23
0 0 x3


 ,



x+ 2 a′12 a′13

0 1 a′23
0 0 x+ 2




such that C1(a12) ≡ Y2(mod 1) and C ′1(a
′
12) ≡ Y2(mod 1). Where C1 = Y2 = (x + 2, x +

2, x2(x+ 2)) and C ′1 = (1, 1, x2).So

{
(x+ 2)a12 ≡ (x+ 1)(mod 1)

x2(x+ 2)a12 ≡ x2(x+ 2)a12(mod 1)
,

{
a′12 ≡ (x+ 2)(mod 1)

x2a′12 ≡ x2(x+ 2)(mod 1)

A solution for the above systems is a12 = a′12 = 1.
Also C2(a13, a23)

t ≡ Y3(mod x3) and C ′2(a
′
13, a

′
23)

t ≡ Y3(mod x+2), where Y3 = (0, x, x2), C2 =


x+ 2 0
x+ 2 1

x2(x+ 2) −x3 − 2x2 + x


 and C ′2 =




1 x+ 1
1 x+ 2
x2 x− x2


. Then





(x+ 2)a13 ≡ 0(mod x3)

(x+ 2)a13 + a23 ≡ x(mod x3)

x2(x+ 2)a13 + (−x3 − 2x2 + x)a23 ≡ x3(mod x3)
,





a′13 + (x+ 1)a′23 ≡ 0(mod x+ 2)

a′13 + (x+ 2)a′23 ≡ x(mod x+ 2)

x2a′13 + (x− x2)a′23 ≡ x2(mod x+ 2).

A solution for the above systems is

a13 = x3, a23 = −x4 − x3 + x, a′13 = 3x+ 4 and a′23 = −2.

Hence

A1 =




1 1 x3

0 1 −x4 − x3 + x
0 0 x3


 , A2 =



x+ 2 1 3x+ 4

0 1 −2
0 0 x+ 2


 .

By Theorem 2.5, ⟨B⟩ = ⟨A1⟩
⋂⟨A2⟩ is a minimal primary decomposition.
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Abstract. Many model theoretic aspects of the dynamical representations of the action
of the groups (in particular Z) on the spaces of types or models were investigated in a
few works such as the one from the present paper’s author. In this paper, we deal with
higher order and more complex actions raised from more general groups (such as both
automorphism and definable groups) acting on the structures or spaces of types. We
will consider the class of NIP theories (which is is amongst the most important classes
of first order theories studied in model theory) from the point of view of the defined
representations.
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1. Introduction
Investigation of the dynamical representations of the actions of the groups (in partic-

ular for the case of the action of Z) on the spaces of types in the context of model theory
has been carried out in a few works such as [4]. Also, some characterizations for NIP
theories as well as some aspects of the symbolic representations were given by the author
in the paper [4]. In this work, we elaborate those studies and deal with higher order
and more complex actions raised from more general groups G, including both actions of
automorphism groups and definable groups on the structures and spaces of types.

We first recall some essential definitions from stability theory and then introduce some
new notions.

There are certain fundamental classes of theories studied in model theory. The class
of stable theories is an important one of them which had received a lot of attentions in
the classical model theory. One can see [6] as one of the main sources about stable class.
Then, some other classes started to appear as central areas of research. The class of NIP
theories is one of the most important classes of first order theories studied in the nowadays
model theory. In recent years, the machinery of modern stability theory has been used
to analyze several aspects of this class. The interested reader can refer to for example [1]

∗Speaker. Email address: mofidi@aut.ac.ir
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and [2] for more details about the NIP theories. Also in [3], the notion of measures in the
context of models and definable sets are introduced.

From another perspective, the theory of dynamical systems is recently involved with
model theory, in particular stable theories and NIP theories, in several directions.

We will consider the class of NIP theories from the perspective of dynamics of actions
of model theoretic objects and prove some results. These result also helps one to have
more connections between model theory and other fields of mathematics.

We work in the setting of first order logic. Assume that T is a first order theory. Let
ϕ(x, y) be a formula in the theory T . By |x| and |y| we mean the arity of tuples x and y.
We use the notation N for the set of natural numbers starting from 1.

Definition 1.1. We say that ϕ has the independence property or IP if there exists
some model M of the theory T such that for every natural number n ∈ N, there exist
a1, . . . , an, which are all |x|-tuples, such that witness independence property of length n
for ϕ, which means that for every J ⊆ {1, . . . , n}, there exists some |y|-tuple bJ such that
M |= ϕ(ai, bJ) if and only if i ∈ J . A theory is called NIP if no formula in it has IP.

Definition 1.2. A first order theory is called a NIP theory if no formula in that
theory has the independence property.

2. Some definitions and main results
Definition 2.1. By a Keisler measure µ on Mn over parameter set A we mean a

finitely additive probability measure on the set of definable sets with parameters from A
namely, DefA(M

n). When n = 1, we use M instead of M1 in all of the above notations.

Note that one can extract a countable additive Borel probably measure from each
Keisler measure.

Now we want to consider a definable context and also a representation introduced by
Newelski.

Let G be a definable group in model N and C a monster model. SG(N) is a compact
topological space by logic topology. Newelski considers the dynamic of the G-flow obtained
from the (left) action of G on SG(N).

Definition 2.2. Let G be definable group in a model M and Sext,G(M) be the space
of types over external definables of G. Also let p, q ∈ Sext,G(M) and U ∈ Defext,G(M).
Then we let U ∈ p.q if and only if dq(U) ∈ p where dq(U) = {g ∈ G, g.q ∈ U}.

The above product makes Sext,G(M) a semigroup.
Now we introduce the following notions which are the main notions of the present

work. Note that these notions are in the same sprits of the classical convolutions and try
to bring ideas and adapt them to the context of model theory.

Definition 2.3. Let (X,B) be a set equipped with a sigma algebra (in particular the
space of types in a monster model), G be a group acting on X (in particular, a definable
group or subgroup of automorphism group) and A be an G-closed space of measurable real
valued functions on M . Let M(X) be the space of all probably measures on X (usually
Borel when X is a topological space). For every f ∈ A define

πG,f : M(X) → RG

µ → f ∗ µ
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where
f ∗ µ : G → R

g →
∫

M
g−1.f dµ.

We call π the representation of A with respect to G.

Definition 2.4. Define

πG,U (S(M)) := {πG,U (p) : p ∈ S(M)}

and
πG,U (M(M)) := {πG,U (µ) : µ ∈ M(X)}.

Note that πG,U (S(M)) and πG,f (M(M)) are associated dynamical invariant (G-flows).

Remark 2.5. The representation defined in in Definitions 2.3 and 2.4 above generalizes
Newelski’s representations of types and product of external types. More precisely

dq(U) = χU ∗ q.

In the following we give characterization of NIP via above descibed representations.

Theorem 2.6. Let M be a monster model of a theory T and ϕ(x̄, ȳ) be a formula.
Then the followings are equivalent;

(1) ϕ is NIP.
(2) For every instance of ϕ, say U = ϕM (x̄, ā), and every subgroup G of Aut(M)

containing at least one non-periodic element, πG,U (M) is not dense in 2G.
(3) For every instance of ϕ, say U = ϕM (x̄, ā), and every infinite H ⊆ Aut(M), the

set πH,U (M(M)) is not dense in [0, 1]H .

Proof. We give a sketch of the proof and roughly point out the main ideas. The
absence of IP configuration for a formula causes the absence of various configurations in
the orbits of the action ofH as a subgroup of Aut(M). Such absence will be induced on the
space M(M) in a suitable and canonical way. Therefor, the representation πH,U (M(M))
will get the similar property of lacking certain configurations. It implies that πH,U (M(M))

can not be dense in [0, 1]H .
On the other hand, non-density in the space of representations implies that certain

codes are never used in the members since otherwise every possible element would be pro-
duced as a limiting object. Such mentioned codes can be translated model theoretically
in terms of configurations in the indiscernible sequences and causes restriction on indis-
cernibles. In turn, using model theoretic techniques, those restrictions imply the absence
of IP which is indeed the property of NIP. As it is clear, two techniques of Ramsey and
compactness have been used frequently. □
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Abstract. In this article, we compare z◦c -ideals in Cc(X) and z◦-ideals in C(X). Every
minimal prime ideal in Cc(X) is a z◦c -ideal. Also, If X is a CP -space, then every ideal
in Cc(X) is a z◦c -ideal. Every z◦c -ideal is a zc-ideal but the converse is not necessarily
true. We prove that every z◦c -ideal is a contraction of a z◦-ideal. Furthermore,if X is a
strongly zero-dimensional space, then every z◦c -ideal is a contraction of a unique z◦-ideal.
Moreover, in the class of almost CP -spaces, X is strongly zero-dimensional space if and
only if every z◦c -ideal is a contraction of a unique z◦-ideal.
Keywords: zero-dimensional space, strongly zero-dimensional space, z◦c−ideals
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1. Introduction
Let Cc(X) be the ring of all continuous real-valued functions with countable image on

the topological space X, also C∗
c (X) as a subring of Cc(X) is the ring of bounded elements

of Cc(X), i.e., C∗
c (X) = C∗(X) ∩ Cc(X), so we have C∗

c (X) ⊆ Cc(X) ⊆ C(X).We recall
that a zero-dimensional space is a Hausdorff space with a base consisting of clopen sets. It
is shown that for any topological space X, there exists a zero-dimensional space Y which
is a continuous image of X and Cc(X) ∼= Cc(Y ), see [4], so we can assume that X is a
zero-dimensional space.
For each f ∈ Cc(X), the zero-set of f is denoted by Z(f). For each f ∈ Cc(X),the set of
all zero-sets in X is denoted by Zc(X). Also, Zc(X) is closed under countable intersection
property. Furthermore, Zc(X) = Z(X) if and only if X is strongly zero-dimensional,
see [6, Proposition 2.4]. Banaschewski has shown that for every zero-dimensional space
X, there is a unique zero-dimensional compactification, denoted by β0X in which each
continuous function fromX into a compact and zero-dimensional space T , has a continuous
extension from β0X into T . For more results, see [3]. As in C(X), similar to the concept
of the ideal Op, p ∈ βX, for the zero-dimensional space X, we have the ideal Op

c in Cc(X):
Op

c = {f ∈ Cc(X) : p ∈ intβ0X(clβ0XZ(f))} (p ∈ β0X)

Furthermore, Op
c = Ocp = {f ∈ Cc(X) : p ∈ int(Z(f))} if p ∈ X. A space X is a

CP−space when Cc(X) is a regular ring if and only if each prime ideal in Cc(X) is a
maximal ideal. Furthermore, a Tychonoff space X is called strongly zero-dimensional
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if each pair of disjoint zero-sets are contained in disjoint clopen sets. A space X is an
almost CP−space if for each nonempty Z(f) ∈ Zc(X), we have int(Z(f)) ̸= ϕ. An ideal
I in Cc(X) is a zc-ideal if for each f ∈ I, g ∈ Cc(X) and Z(f) = Z(g) we have g ∈ I.
If I is a z-ideal in C(X), then Ic = I ∩ Cc(X) is a zc-ideal. For more results about
CP−space,almost CP−space and zc-ideal,see [3], [4]. The space of minimal prime ideals
of Cc(X) with Zariski topology is denoted by Min(Cc(X)). We recall that a proper ideal I
in a ring R is a z◦-ideal if for each a ∈ I, we have Pa ⊆ I in which Pa =

∩{P : P ∈ V (a)}.
Furthermore, if a is a zero divisor, then Pa is a z◦-ideal that is called a basic z◦-ideal. We
denote P c

f as a basic z◦c -ideal in Cc(X) for each f ∈ Cc(X).
Also, the properties of z◦-ideals in C(X) is considered, see [1], [2].
Similar to the concept of z◦-ideals in C(X), see [1], we introduce z◦c -ideals in Cc(X) and
compare z◦-ideals and z◦c -ideals, also the conditions when the minimal prime ideals in
Cc(X) and prime z◦c -ideals coincide.

2. Main results
Notation 2.1. For each f ∈ Cc(X),

Annc(f) = {g ∈ Cc(X) : fg = 0} is used for an annihilator of f.
,

Vc(f) =
∩

{P ∈ Min(Cc(X)) : f ∈ P} is used for a basic element for open sets in Min(Cc(X)) .
,

Dc(f) =
∩

{P ∈ Min(Cc(X)) : f /∈ P} is used for a basic element for closed sets in Min(Cc(X)) .
and

P c
f =

∩
{P : P ∈ Vc(f)} is used for a basic z◦c -ideal in Cc(X) .

Lemma 2.2. Let f, g ∈ Cc(X), then:

Annc(f) ⊆ Annc(g) if and only if int(Z(f)) ⊆ int(Z(g))

Proposition 2.3. Suppose I is a proper ideal of Cc(X). The following statements are
equivalent:
(1) I is a z◦c -ideal.
(2) If P c

f = P c
g , g ∈ Cc(X), f ∈ I then g ∈ I.

(3) If Vc(f) = Vc(g) , g ∈ Cc(X) , f ∈ I then g ∈ I.
(4) If Annc(f) = Annc(g), g ∈ Cc(X), f ∈ I then g ∈ I.
(5) If int(Z(f)) = int(Z(g)) , g ∈ Cc(X), f ∈ I then g ∈ I.

Proposition 2.4. For each f ∈ Cc(X), we have:
P c
f = {g ∈ Cc(X) : Annc(f) ⊆ Annc(g)}.

Example 2.5. (1) If I is a nonzero ideal in Cc(X), then Annc(I) is a z◦c -ideal.
(2) If A is a regular closed set (cl(intA)) = A) in X, then McA = {f ∈ Cc(X) : A ⊆ Z(f)}
is a z◦c -ideal.
(3) The ideal Ocp for p ∈ X, and more generally the ideal Op

c for p ∈ β0X are z◦c -ideal.

Corollary 2.6. The following statements are valid:
(1) Every minimal prime ideal in Cc(X) is a z◦c -ideal.
(2) If I is a z◦c -ideal in Cc(X) and P ∈ Min(I), then P is a z◦c -ideal.
(3) If X is a CP -space, then every ideal in Cc(X) is a z◦c -ideal.
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Corollary 2.7. Let X be a CP -space and f, g ∈ Cc(X) then we have:

P c
f = P c

g if and only if Dc(f) = Dc(g).

Remark 2.8. (1) Every z◦c -ideal is a zc-ideal. The converse is not necessarily true.
For that, let U be a free ultrafilter on N and

∑
= N ∪ {σ} where σ /∈ N, and define a

topology on
∑

as follows: all points of N are isolated, and neighbourhoods of σ are the
sets U ∪ {σ} for u ∈ U . The space

∑
is extremally disconnected and every closed set in∑

is a zero-set, see [5, 4M]. The ideal Mσ is not a z◦-ideal. Since {σ} is closed, then
it is a zero-set, i.e., Z(f) = {σ} in which f ∈ C(

∑
), so f ∈ Mσ but int(Z(f)) = ϕ.

Furthermore,
∑

is countable, so Cc(
∑

) = C(
∑

) and Mcσ = Mσ. Thus, Mσ is not a
z◦c -ideal. Obviously, Mσ is both z-ideal and zc-ideal. Moreover, if X is a CP -space, every
zc-ideal is a z◦c -ideal.
(2) Each contraction of a z◦-ideal in C(X) is a z◦c -ideal in Cc(X).
(3) Every z◦c -ideal of Cc(X) contracts to a z◦-ideal of C∗

c (X).

Proposition 2.9. Every z◦c -ideal in Cc(X) is a contraction of a z◦-ideal in C(X).

Corollary 2.10. An ideal J in Cc(X) is a z◦c -ideal if and only if it is a contraction
of a z◦-ideal in C(X).

Corollary 2.11. Let X be a strongly zero-dimensional space, then every z◦c -ideal in
Cc(X) is a contraction of a unique z◦-ideal in C(X).

Proposition 2.12. The following statements are equivalent:
(1) The minimal prime ideals in Cc(X) are the only prime ideals-
containing zero-divisors
(2) Every prime z◦c -ideal in Cc(X) is a minimal prime ideal in Cc(X)
(3) qc(X), the classical ring of quotients of Cc(X), is a regular ring.
(4) For each f ∈ Cc(X), Annc(f) is a basic z◦c -ideal.

Proposition 2.13. The following statments are equivalent.
(1) X is an almost CP -space .
(2) Every zc-ideal in Cc(X) is a z◦c -ideal
(3) Every maximal ideal (prime zc-ideal) in Cc(X) is a z◦c -ideal
(4) Every maximal ideal in Cc(X) consists entirely of zero divisors.

Proposition 2.14. Let X be an almost CP -space. The following statements are
equivalent.
(1) X is strongly zero-dimensional.
(2) Every z◦c -ideal in Cc(X) is a contraction of a unique z◦-ideal in C(X).
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Abstract. Partial differential equations have many limitations as well as high perfor-
mance in high dimensions. In this paper, we first use machine learning algorithms to
transfer the high-dimensional challenge in partial differential equations to the machine
learning challenge. Here, we employ the neural network architecture similar to the archi-
tecture for long-short term memory (LSTM) networks and highway networks. Finally,
since the attention mechanism is one of the techniques that can be used to improve
accuracy and specially speed, we apply it to improve the method.
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Networks, Vanilla Options
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1. Introduction

Partial differential equations (PDEs) have a significant role in modeling real-world
problems. Some common and well-known examples are the Hamilton-Jacobi-Bellman
equation in engineering, and the Black-Scholes equation in financial science for pricing
financial derivatives. The finite difference method is one of the traditional and widely used
methods to solve this type of equations. However, it will not meet the researchers needs
in high dimensions due to the creation of the network and as the number of the network
dimensions increases, the computational cost will grow exponentially. Many researchers
were inspired by [1] and today Attention Mechanism is known as an effective method
in deep learning and has been widely used in many fields such as Natural Language
Processing (NLP) and sequence-to-sequence (Seq2Seq) models. Many financial institutions
are interested in pricing options on portfolios with large number of stocks. Therefore, we
study the Attention Mechanism Deep Galerkin method (AttDGM) on a class of partial
differential equations with free boundaries in high dimensions.

2. Black-Scholes Model and AttDGM Algorithm

Suppose that u is an unknown function of time and space on [0, T ]×Ω where x ∈ Ω ⊂
Rd and ∂Ω is the domain boundary of Ω and also suppose that u satisfies the following
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PDE:

∂tu(t, x) + Lu(t, x) = 0, (t, x) ∈ [0, T ]× Ω,(1)

u(0, x) = u0(x), x ∈ Ω,(2)

u(t, x) = g(t, x), x ∈ ∂Ω.(3)

The goal is to approximate the solution of u(t, x) by using the deep neural network
f(t, x; θ) where θ ∈ Rk is the neural network parameter. We know that the solution
of u(t, x) is unknown, but by calculating the L2 error and minimizing it, we can find
an approximation solution. This error consists of three main parts: 1) the differential
operator error, 2) the boundary condition error, and 3) the initial / final condition error
of the problem. The objective function is:

J(f) = ‖∂f
∂t

(t, x; θ) + Lf(t, x; θ)‖2[0,T ]×Ω,υ1

+ ‖f(t, x; θ)− g(t, x)‖2[0,T ]×∂Ω,υ2
+ ‖f(0, x, θ)− u0(x)‖2Ω,υ3 .

Here ‖f(y)‖2Y,υ =
∫
|f(y)|2υ(y) dy where υ(y) is a positive probability density on y ∈ Y.

So, if this value tends more to zero, the solution of the equation will be more accurate.
The algorithm is as follows:

(1) Initialize θ0 and learning rate α0.
(2) Generate random points (tn, xn) on [0, T ]×Ω with probability density υ1, random

points (τn, zn) on [0, T ] × ∂Ω with probability density υ2, and points wn on Ω
with probability density υ3.

(3) Calculate the square error ofG(θn, sn) at random sampled points sn = {(tn, xn), (τn, zn), wn}
such that:

G(θn, sn) =
(∂f
∂t

(tn, xn; θn) + Lf(tn, xn; θn)
)2

+
(
f(τn, zn; θn)− g(τn, zn)

)2
+
(
f(0, wn; θn)− u0(wn)

)2

(4) Take a descending step at the random point sn:

θn+1 = θn − αn∇θG(θn, sn).

(5) Repeat steps 3 and 4 to achieve the desired result.

European call option. European option is a financial derivative on a stock portfolio.
This type of option gives the holder the right, to buy or sell the asset only on the expiration
date itself. Therefore, it can only be exercised by its holder at the expiration date. The
PDE of a one-dimensional European call option is as follows:

∂tg(t, x) + rx.∂xg(t, x) + 1
2σ

2x2.∂xxg(t, x) = r.g(t, x),

g(T, x) = G(x).

Note that the problem has a exact solution in the following form:

g(t, x) = xΦ(d+)−Ke−r(T−t)Φ(d−),

d± =
ln( x

K
)+(r± 1

2
σ2)(T−t)

σ
√
T−t .

where x is the stock price, r is the risk-free interest rate, σ is the volatility, K is the
strike price, T is the expiration date or, in other words, the maturity of the option and
g(x) : Rd → R is the payoff function. Suppose that Xt ∈ Rd is the price of d stocks. If

391



Applying the Attention Mechanism on DGM for Option Pricing Problems

the stock price is Xt = x at T , then the option price will be u(T, x). The u(T, x) price
function satisfies the PDE with free boundary on [0, T ]× Rd.

American option: An American option gives the holder the right, to buy or sell the
option anytime, be it on or before the expiration date. Therefore, the holder is able to
exercise the it more freely over time. The PDE of a one-dimensional American put option
is as follows:

∂tg(t, x) + rx.∂xg(t, x) +
1

2
σ2x2.∂xxg(t, x) = r.g(t, x) {(t, x) : g(t, x) > G(x)}(4)

g(t, x) ≥ G(x) (t, x) ∈ [0, T ]× R(5)

g(T, x) = G(X) x ∈ R(6)

where G(x) = (K − x)+.
Solution: No analytical solution.

Theorem 2.1. (Neural Network Approximation Theorem for PDEs. [5]) Let
the L2 error J(f) measure how well the neural network f satisfies the differential operator,
boundary condition, and initial condition. Define ξn as the class of neural networks with
n hidden units and let fn be a neural network with n hidden units which minimizes J(f).
Also in [5] have proved that there exists fn ∈ ξn such that J(fn) → 0, as n → ∞, and
fn → u as n→∞, in the appropriate sense, for a class of quasilinear parabolic PDEs with
the principle term in divergence form under certain growth and smoothness assumptions
on the nonlinear terms.

3. Numerical results

We trained the network to learn the value of European call option and American put
option. We used S0 = 0.05, K = 50, r = 0.05, σ = 0.25 and T = 1. The value of the
European call option and American put option is approximated by the analytical method
based on the neural network in Figure 1.

Figure 1. Left: European Call Option. Right: American Put Option.
The deep learning solution is in red. The exact solution found via the Black-
Scholes model for European Call Option and the semi-analytic solution
found via Binomial model for American Put Option , are in green. Solutions
are reported at times t = 0 and t = 1 and dimension d = 1.

3.1. System Environment. We used the TensorFlow library in Python to imple-
ment the algorithm. The system environment information is given in the left panel of
Figure 3. In all the examples, we used the network architecture which is introduced in the
right panel of Figure 3. The weights are initialized by using Xavier initialization method.
Adam algorithm is also used to update the parameters. The network is trained for a
number of iterations (Epochs) and this number can be different in each example. In this
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Figure 2. Left: The AttDGM algorithm solution is compared with the
DGM solution for the Black-Scholes model. Right: The reported CPU time
for the AttDGM algorithm and the DGM algorithm are in red and green,
respectively.

paper, every 10 iterations are found appropriate by randomly resampling the points in
the initial and boundary conditions and after many tests, we found α = 0.001 as the best
learning rate for the network training.

Figure 3. Left: System Environment. Right: Attention DGM network
architecture.

4. Conclusion

So far, the deep learning approach has had a significant impact on solving high-
dimensional PDE problems. In this paper, this approach was implemented for European
and American options and compared with Deep Galerkin method. The results showed
that algorithm was improved.
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Abstract. Studying expressions of the form (f(x)D)p, where D =
d

dx
is the derivation

operator, goes back to Scherk’s Ph.D. thesis in 1823. Some new problems in quantum
physics motivated physicists to publish many papers in this area based on combinatorial
methods. This has led some mathematicians and computer scientists to continue such
studies. In this manuscript, we discuss about expansion of (f(x)D)p and related coeffi-
cients. Particularly we discuss about the values and the combinatorial meaning and the
values of these coefficients.
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1. Introduction

The derivative operator d
dx (or briefly D) plays an important role in the theory of

formal power series. There are some results about iterating this operator and related ones
on expressions. The most famous results among these identities are Liebniz and Faà di
Bruno formulas: While the first identity is a generalization of the “product rule”, the
second one is an extension of the “chain rule”. The coefficients appearing in both these
results have combinatorial interpretations.

There are less-famous but much-extensively studied results about expressions of the
form (f(x)D)p. Studying such expressions goes back to Scherk’s Ph.D. thesis in 1823 [9].
Motivated by the normal ordering problem, these studies have been extremely emerged by
some quantum physicists in the three last decades (See [2–7] and the references there in).
They have extensively used combinatorial objects in their studies. These works have been
reviewed and continued by some mathematicians and computer scientists such as Philip
Flajolet [4], Toufik Mansour [6] and others. Several combinatorial objects are considered
and used in these studies, among which, the “increasing trees” are used in this work.
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2. Notation and Definitions

Notation 1. The set of integers (resp. nonnegative integers) is denoted by Z (resp.
N). For integers m and n we denote the set {x ∈ Z : m ≤ x ≤ n} by [m,n]. We denote
the set of infinite row vectors of nonnegative integers by N∞, so each element a ∈ N∞ is
represented as a = (a(0),a(1), · · · ,a(p − 1), · · · ). The vectors j, em,n ∈ N∞ are defined
respectively by j(i) = 1, em(i) = δm,i and n(i) = i for any integer i ≥ 0. The value of fa,
for a vector a ∈ N∞ with finitely many nonzero components, is defined as

fa =
∏

i

(f (i))a(i),

where f (0) = f and for j ≥ 1, we have f (j) = Djf . Also we define the set Λp by

Λp = {a ∈ N∞p : a.j> = p− 1, a.n> < p}.
It is obvious that any vector a ∈ Λp has only finitely many nonzero components; In fact,
from a ∈ Λp, one concludes that a(i) = 0 for each i ≥ p.
Definition 1. Let V be a finite ordered set with v0 = minV (for instance, V can be
considered as a finite set of integers). An increasing tree on V , is a tree T rooted at v0
with V (T ) = V , such that for any v ∈ V , the vertices in the unique v0 − v path P in T ,
appear increasingly. A starlike increasing tree is an increasing tree,in which, any vertex
(except possibly the root) has at most one child. The increasing trees are widely studied
in the literature (See Section 1.3 of [10]; for more information see [1]). For a vertex v of
an increasing tree, we denote the number of its children by d′(v).

3. An expansion of (f(x)D)p

After testing some small cases, one can guess that (fD)p is expressed in the following
form

(1) (fD)p =
∑

∑
i ai=p−1,

∑
i iai<p

γp;a0,a1,··· ,ap−1(f (0))a0+1(f (1))a1 · · · (f (p−1))ap−1Dp−∑i iai ,

where the constants γp;a0,a1,··· ,ap−1 are nonnegative integers. We rewrite this formula in
terms of the notation of the previous section in Theorem 1. Furthermore, we give a
combinatorial description of the coefficients.

Theorem 1.. Let p be a positive integer.

(i) We have

(2) (fD)p =
∑

a

γp;af
a+e0Dp−a.n>

where the summation runs over the elements a ∈ Λp. Equivalently, one can
say that a runs over N∞ but γp;a 6= 0 only if a ∈ Λp.

(ii) the value of γp;a equals the number of increasing trees on {0, 1 · · · , p} in which
(a) The number of the leaves is a(0) + 1.
(b) The number of the nodes which have exactly i children is a(i) for i = 1, · · · , p.

Proof. See Theorem 1 and Proposition 11 of [8]. �
Now we are interested to find a values γp;a based on Part (ii) of the above theorem.

It is notable that the number of all increasing trees on [0, p] is p! [10]. But here we
should count a special subset of these trees which are described by conditions (a) and (b)
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mentioned above. Recall that the number of children of a vertex v in an increasing tree is
denoted as d′(v). The next step is finding the answer of this question: Given a sequence
`1, . . . , `p−1 of nonnegative integers, do these exist increasing trees on V = [0, p] satisfying

d′(i) = `i for i = 1, · · · , p−1? (Note that since d′(p) = 0 and d′(0) = p−∑p−1
i=1 d

′(i), these
values are excluded from the sequence `i.) Both existence and enumeration questions are
answered in Theorem 2 (resp. in Part

(i) and Part (ii)). Before stating that theorem, we introduce some notation.
Notation 2. Let p be a positive integer and let `1, . . . , `p−1 be a given sequence of
nonnegative integers. Then the value g(`1, · · · , `p−1) is defined as

(3) g(`1, · · · , `p−1) = (2− `p−1)∗(3− `p−1 − `p−2)∗ · · · (p− 1−
p−1∑

i=2

`i)∗

where for a real number x, the value of (x)∗ is defined to be x if x > 0 and 0 otherwise.

Theorem 2.. [ [8], Proposition 10] Let `1, `2, · · · , `p−1 be a sequence of nonnegative
integers and let V = [0, p]. Then

(i) There exists an increasing tree T on V = [0, p] with d′T (v) = `v for v = 1, · · · , p−1

if and only if

p−1∑

i=j

`i ≤ p− j for j = 1, · · · , p− 1.

(ii) The number of increasing trees mentioned in part (i) is obtained as
g(`1,··· ,`p−1)
`1!···`p−1!

where g(`1, · · · , `p−1) is as given in (3).

The following theorem gives a nonrecursive formula to compute the coefficient γp;a.

Theorem 3.. [ [8], Theorem 14] The coefficient γp;a can be computed as

γp;a =
1

(0!)a(0)(1!)a(1) . . . ((p− 1)!)a(p−1)
∑

g(`1, `2, . . . , `p−1),

where the summation runs over all (p− 1)-tuple (`1, `2, . . . , `p−1) of integers satisfying

{`1, `2, . . . , `p−1} = {a(0).0,a(1).1, . . . ,a(p− 1).(p− 1)}
which means that the number of i’s appearing in the sequence {`i}1≤i≤p−1 is a(i) for
i = 0, · · · , p− 1.
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Abstract. In this paper, we define the notion of a bilinear 2-operator on the cartesian
product of two subspaces of a 2-normed spaces and obtain some Corollary about it. Also,
we discuss the relationships between 2-functionals and the existence of b-Birkhoff orthog-
onal elements in 2-normed linear spaces. Moreover, we obtain some characterizations of
2-inner product spaces by b-Birkhoff orthogonality.
Keywords: b-Birkhoff orthogonal, 2-functionals, 2-hyperplane, 2-inner product, 2-normed
linear spaces.
AMS Mathematics Subject Classification [2010]: 46C05.

1. Introduction
The concept of 2-normed linear spaces has been investigated by S. Gähler in 1960’s [2]

and has been developed extensively in different subjects by many authors. Let X be a
linear space of dimension greater than 1. Suppose ∥., .∥ is a real-valued function on X×X
satisfying the following conditions:

(1) ∥x, y∥ = 0, if and only if x and y are linearly dependent vectors,
(2) ∥x, y∥ = ∥y, x∥, for all x, y ∈ X,
(3) ∥λx, y∥ = |λ|∥x, y∥, for all λ ∈ R and all x, y ∈ X,
(4) ∥x+ y, z∥ ⩽ ∥x, z∥+ ∥y, z∥, for all x, y, z ∈ X.

Then ∥., .∥ is called a 2-norm on X and (X, ∥., .∥) is called a 2-normed linear space. A
2-norm is non-negative and the basic property of a 2-norm is ∥x, y + αx∥ = ∥x, y∥, for all
x, y ∈ X and all α ∈ R. Note that (X, ∥., .∥) with the formula ∥x, y∥ = ∥x∥∥y∥, for each
x, y ∈ X, is not a 2-normed space. So the relationship ∥x, y + αx∥ = ∥x, y∥, is not valid.
for example, let x ̸= 0 and α ̸= 0. Then

0 = ∥x, 0∥ = ∥x, 0 + αx∥ = ∥x, αx∥ = ∥x∥∥αx∥ = ||α|∥x∥2 > 0.

Example 1.1. Let X = E3 be an Euclidean 3-dimensional linear space. The formula
∥x, y∥ = |x× y| defines a 2-norm on X, where x, y are two vector in E3 and x× y means
the vector product of x and y.
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As an example of a 2-normed space, takeX = ℜ2, equipped with ∥x, y∥ which is defined
as the erea of the parallelogram spanned by the vectors x, y (i.e. the parallelogram whose
adjacent sides are the vectors a and b) which may be given explicitly by the formula
∥x, y∥ =| x1y2 − x2y1 |, where x = (x1, x2), y = (y1, y2).
Along with the 2-norm, we have the standard 2-inner product space. Let X be a real
vector space of dimension≥ 2. The real-valued function ⟨., .|.⟩ : X ×X ×X → R, which
satisfies the following properties on X3 is called 2-inner product on X:

(1) ⟨x, x|z⟩ ⩾ 0 for every x, z ∈ X and ⟨x, x|z⟩ = 0 if and only if x and z are linearly
dependent,

(2) ⟨x, y|z⟩ = ⟨y, x|z⟩ for every x, y, z ∈ X,
(3) ⟨x, x|z⟩ = ⟨z, z|x⟩ for every x, z ∈ X,
(4) ⟨αx, y|z⟩ = α⟨x, y|z⟩ for every x, y, z ∈ X and α ∈ R,
(5) ⟨x1 + x2, y|z⟩ = ⟨x1, y|z⟩+ ⟨x2, y|z⟩ for every x1, x2, y, z ∈ X.

Under these conditions, the pair (X, ⟨., .|.⟩) is called an inner product space [1]. Also, we
observe that ∥x, y∥ = ⟨x, x|y⟩1/2 and the Cauchy-Schwarz inequality ⟨x, y|z⟩2 ⩽ ∥x, z∥2∥y, z∥2
for every x, y, z ∈ X is valid.
In [4], Khan and Siddiqui defined the notion of P, I, and BJ-orthogonality in 2-normed
spaces (X, ∥., .∥) as follows:

P-orthogonality: x ⊥P y if only if ∥x+ y, z∥2 = ∥x, z∥2 + ∥y, z∥2 for every z.

I-orthogonality: x ⊥I y if only if ∥x+ y, z∥ = ∥x− y, z∥ for every z ̸= 0.

BJ-orthogonality: x ⊥BJ y if only if ∥x+αy, z∥ ⩾ ∥x, z∥ for every z ̸= 0 and α ∈ R.

Also we have the followin definition in [6].
Definition 1.2. Let (X, ∥., .∥) be a 2-normed space and x, y ∈ X. If there exists

b ∈ X such that ∥x, b∥ = 0 and ∥x, b∥ ⩾ ∥x + αy, b∥ for each scalar α ∈ ℜ, then x is
b-orthogonal to y (denoted by x ⊥b y).

Now, let (X, ∥., .∥) be a 2-normed space and W1 and W2 be two subspaces of X. A
map f : W1 ×W2 → R is called a bilinear 2-functional ( [6]) on W1 ×W2 whenever for all
x1, x2 ∈ W1, y1, y2 ∈ W2 and all λ1, λ2 ∈ R, we have

(1) f(x1 + x2, y1 + y2) = f(x1, y1) + f(x2, y2) + f(x2, y1) + f(x2, y2),
(2) f(λ1x1, λ2y1) = λ1λ2f(x1, y1).

A bilinear 2-functional f : W1 ×W2 → R is called bounded if there exists a non-negative
real number M (M is called a Lipschitz constant for f ) such that |f(x, y)| ⩽ M∥x, y∥ for
all x ∈ W1 and all y ∈ W2. Also, the norm of a bilinear 2-functional is defined by

∥f∥ = inf{M ⩾ 0 : M is a Lipschitz constant forf}.
For example, Let (E3, ∥, ∥) be the 2-normed space with ∥x, y∥ = |x × y|. Define

f(x, y) = x · y, where x · y is the dot product of vector analysis. Then f is an unbounded

linear 2-functional. Now, define f(x, y) = (|x|2|y|2 − |(x.y)|2)
1

2 , where |a| denotes the
length of a. Since |x|2|y|2 − |(x.y)|2 = |x× y|2 so, f is a bounded 2-functional.
For a 2-normed space (X, ∥., .∥) and 0 ̸= b ∈ X, we denote by X∗

b the Banach space of all
bounded bilinear 2-functionals on X × ⟨b⟩, where ⟨b⟩ is the subspace of X generated by b
( [5]).
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2. Existence of b-Birkhoff orthogonal elements
Let X be a 2-normed linear space. Also, let 0 ̸= b ∈ X and 0 ̸= f be a nonzero

bilinear 2-functional on X × ⟨b⟩. Then we define the 2-hyperplane H through the origin
by H = {x ∈ X; f(x, b) = 0}.

Theorem 2.1. Under the above conditions, |f(x, b)| = ∥f∥∥x, b∥ if and only if x ⊥b H,
where H is a 2-hyperplane of all h for which f(h, b) = 0.

Example 2.2. LetX = (E3, ∥, ∥) be the 2-normed space with ∥x, y∥ = |x×y|. Suppose
b = (1, 0, 0) and define f : X× < b >→ R with f(x, y) = |x × y|, where x ∈ X and
y ∈< b >. So ∥f∥ = 1 and for each x ∈ X, we have |f(x, b)| = ∥f∥∥x, b∥. On the other
hand, the 2-hyperplane H through the origin is as follows:

H = {x ∈ X; f(x, b) = 0} = {x ∈ X; |x× b| = 0} = {x ∈ X;x = (a, 0, 0),∀a ∈ R}.
Now, for each α ∈ R, (x, y, z) ∈ X and h = (a, 0, 0) ∈ H, we have

∥x+ αh, b∥ = ∥(x+ αa, y, z), (1, 0, 0)∥ =
√
z2 + y2 = ∥x, b∥.

That means x ⊥b H.

Now, let X be a 2-normed linear space. For X0 ⊆ X, put
M b

X0
= {f ∈ X∗

b ; ∥f∥ = 1, f(x, b) = ∥x, b∥,∀x ∈ X0}.
One can find the proof of the following theorem in [6].

Theorem 2.3. Let X be a 2-normed linear space, b ∈ X, y ∈ X and x ∈ X \ ⟨b⟩.
Then x ⊥b y if and only if there exists f ∈ M b

x such that f(y, b) = 0.

Example 2.4. LetX = R3, W = {(0, x, x), x ∈ R} and
∥(x1, x2, x3), (y1, y2, y3)∥ = max{|x1y2 − x2y1|+ |x1y3 − x3y1|, |x1y2 − x2y1|+ |x2y3 − x3y2|}
for all (x1, x2, x3), (y1, y2, y2) ∈ X. Then ∥·, ·∥ is a 2-norm on X. If x = (1, 0, 1) and
b = (2, 2, 0), it is clear that x ⊥b W .

Theorem 2.5. Let X be a 2-normed linear space and (0 ̸=)b ∈ X. Then there exist
an element b-orthogonal to each closed 2-linear subset of X if and only if for each bilinear
2-functional f defined on X × ⟨b⟩, there is an element x with f(x, b) = ∥f∥∥x, b∥.

3. Characterization of 2-Inner Product Spaces by b-Birkhoff Orthog-
onality
Definition 3.1. let (X, ∥., .∥), (Y, ∥., .∥) be two 2-normed spaces, and W1 and W2 be

two subspaces of X. A map T : W1×W2 −→ Y is called a bilinear 2-operator on W1×W2

whenever for all x1, x2 ∈ W1 and y1, y2 ∈ W2 and all λ1, λ2 ∈ R,
i) T (x1 + x2, y1 + y2) = T (x1, y1) + T (x1, y2) + T (x2, y1) + T (x2, y2),
ii) T (λ1x1, λ2y2) = λ1λ2T (x1, y1).

Note thar if Y = R, then T is called a bilinear 2-functional. Also, a bilinear 2-operator T
is called a 2-projection if T 2 = T .

Theorem 3.2. let X be a 2-normed linear space and 0 ̸= b ∈ X. For any x, y ∈ X,
there exists a number a such that ax + y ⊥b x. This number a is a value of k for which
∥kx+ y, b∥ takes on its absolute minimum.
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Proof. By Definition 1.2, ax+ y ⊥b x if and only if ∥(ax+ y) + kx, b∥ ⩾ ∥ax+ y, b∥,
for each k, or if and only if ∥ax+y, b∥ is the smallest value of ∥kx+y, b∥. Since ∥kx+y, b∥
is continuous in k, it must take on its minimum. □

Theorem 3.3. Let X be a 2-normed space and 0 ̸= b ∈ X. If dim X ⩾ 3, then
b-orthogonality is symmetric if and only if a 2-inner product can be defined in X.

Proof. Suppose that dim X0 = 3 where X0 is a subspace of X. Also, let x1 and x2
be any two elements of X0 \ (⟨b⟩) and H0 be the linear hull of x1 and x2. By Theorem
2.5 and Theorem 2.1, there is an element y ∈ X0 that is b-orthogonal to H0. Conversely,
suppose that b-orthogonality is symmetric. Then H0 ⊥b y and by Theorem 3.2, there is a
number az such that we can define P : X0 × ⟨b⟩ −→ H0 × ⟨b⟩ by P (z, b) = (z − azy, b) for
each z ∈ X0. So P is a bilinear 2-operator. Also, since H0 is the linear hull of x1 and x2
and H0 ⊥b y, we have

∥P (z, b)∥ = ∥z − azy, b∥ ⩽ ∥z, b∥ ∀z ∈ X0.

Thus, ∥P∥ = 1. In addition, since P (azy, b) = 0 for each z ∈ X0, we have
P 2(z, b) = P (P (z, b)) = P (z − azy, b) = P (z, b)− P (azy, b) = P (z, b).

Therefore, P is a 2-projection of X0 × ⟨b⟩ on H0 × ⟨b⟩ with ∥P∥ = 1. Now, according
to the points stated before this theorem, a 2-inner product can be defined in a 2-normed
linear space of three or more dimensions if there is a 2-projection of norm 1 on any given
closed linear subspace. Thus a 2-inner product can be defined in any three-dimensional
subspace of X and hence in X itself. □

Corollary 3.4. Let x and y in a 2-normed space X with dim X ⩾ 3, and 0 ̸= b ∈ X.
If there exists a nonzero bilinear 2-functional f with f(x, b) = ∥f∥∥x, y∥ and f(y, b) =
0, then there exists a nonzero bilinear 2-functional g such that g(y, b) = ∥g∥∥y, b∥ and
g(x, b) = 0.

Corollary 3.5. Let X be a 2-normed space and 0 ̸= b ∈ X, and x, y ∈ X. If f is
a bilinear 2-functional such that f(x, b) = ∥f∥∥x, b∥, then ∥ax + y, b∥ is minimum when
a = −f(y, b)

f(x, b)
.
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Abstract. Given modules M and A, M is called A-FC-pure-subinjective if for every
FC-pure extension B of A, each homomorphism from A to M can be extended to a
homomorphism from B to M . The FC-pure-subinjectivity domain of M is defined to be
the collection of all modules A such that M is A-FC-pure-subinjective. Basic properties
of FC-pure-subinjectivity domains are investigated. In particular, we obtain charac-
terizations for various types of rings and modules, including f-injective modules, von
Neumann regular rings, Köthe rings, semisimple rings, and right Noetherian rings in
terms of FC-pure-subinjectivity domains.
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1. Introduction

In [1], Aydoğdu and López-Permouth studied the notion of subinjectivity. Namely,
a module M is called A-subinjective if for every extension B of A, every homomorphism
from A to M can be extended to a homomorphism from B to M . For a module M , the
subinjectivity domain of M , I−1(M), is defined to be the collection of all modules A such
that M is A-subinjective. In contrast to the notion of pure-injectivity, López-Permouth et
al. studied in [5] the notion of pure-subinjectivity. Namely, a module M is called A-pure-
subinjective if for every pure extension B of A, every homomorphism from A to M can
be extended to a homomorphism from B to M . For a module M , the pure-subinjectivity
domain of M , PI−1(M), is defined to be the collection of all modules A such that M is A-

pure-subinjective. Clearly, the subinjectivity domain I−1(M) of a module M is contained
in PI−1(M).

The concept of FC-pure submodule, with the related notions of FC-pure projective and
FC-pure injective module, was introduced by Puninski, use the phrase W-purity (Warfield
purity) to mean FC-purity. The goal of this paper is to initiate the study of an alternative
perspective on the analysis of the FC-pure injectivity of a module. In contrast to the well-
known notion of FC-pure injectivity, we introduce the notion of FC-pure-subinjectivity.
Namely, a module M is said to be A-FC-pure-subinjective if for every FC-pure extension
B of A, every homomorphism from A to M can be extended to a homomorphism from

∗Speaker. Email address: a.moradzadeh@shr.ui.ac.ir
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B to M . For every module M , the FC-pure-subinjectivity domain of M consists those
modules A such that M is A-FC-pure-subinjective.

Throughout this paper, R denotes an associative ring with identity and all modules
will be assumed to be unitary. In what follows E(M), PE(M) and FCE(M) denote
the injective hull, the pure injective hull and the FC-pure injective hull of a module M ,
respectively. A cyclic right R-module MR

∼= R/I is called finitely presented cyclic if I is a
finitely generated right ideal of R.

2. Main Results

Recall that an exact sequence 0 −→ A −→ B −→ C −→ 0 of right R-modules is said
to be pure exact (resp., FC-pure exact) if the induced homomorphism HomR(M,B) −→
HomR(M,C) is surjective for any finitely presented (resp., finitely presented cyclic) right
R-module M . A submodule A of a right R-module B is called a pure submodule (resp., FC-
pure submodule) if the exact sequence 0 −→ A ↪→ B −→ B/A −→ 0 is pure (resp.,
FC-pure). An R-module M is said to be pure-injective (resp., FC-pure injective) if it is
injective with respect to pure exact (resp., FC-pure exact) sequences. Also, an R-module
M is said to be pure-projective (resp., FC-pure projective) if it is projective with respect
to pure exact (resp., FC-pure exact) sequences (see [4], [2] and [6]).

Definition 2.1. Given modules M and A, we say that M is A-FC-pure-subinjective
if for every FC-pure extension B of A, every homomorphism from ϕ : A→M there exists
a homomorphism φ : B → M such that φ|A = ϕ. The FC-pure-subinjectivity domain of
a module M , FCI−1(M), is defined to be the collection of all modules A such that M is
A-FC-pure-subinjective.

Proposition 2.2. For any right R-modules M and A, the following are equivalent:

(1) A ∈ FCI−1(M).
(2) Every homomorphism from A to M can be extended to a homomorphism from

FCE(A) to M .
(3) There exists an FC-pure injective extension B of A such that every homomor-

phism from A to M can be extended to a homomorphism from B to M .

Applying Proposition 2.2 to the identity M → M , one sees that a module M is M -
FC-pure-subinjective if and only if it is FC-pure injective. Thus, we have:

Corollary 2.3. For any right R-module M , M is FC-pure injective if and only if
FCI−1(M)= Mod-R, if and only if, M ∈ FCI−1(M).

Since every pure exact is FC-pure exact, for a module M , we have the following
relationships: I−1(M) ⊂ FCI−1(M) ⊂ PI−1(M).

Recall that a ring R is called right pure-semisimple (resp., right Köthe) if every right R-
module is a direct sum of finitely generated (resp., cyclic) right R-modules. The following
example shows that the above relationships need not be equal (see [3]).

Example 2.4. (a) Assume that R is a pure-semisimple ring that is not Köthe. Thus,
every R-module is pure-injective and so by [4, Theorem 3.10], there exists a right (left)
R-module M that it is pure-injective and is not FC-pure injective. So, by Corollary 2.3,
M ∈ PI−1(M) \ FCI−1(M).
(b) Assume that M := Z2. Thus M is a FC-pure injective Z-module and so M ∈
FCI−1(M) by Corollary 2.3. But M is not an injective Z-module and so M /∈ I−1(M).
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Recall that for a module M , its injectivity domain, denoted by I−1(M), consists of
all modules N such that M is injective relative to N (or N -injective). Also, the FC-pure
injectivity domain (resp., pure-injectivity domain) of a module M , denoted by FCI−1(M)
(resp., PI−1(M)), consists of those modules N such that M is N -FC-pure-injective (resp.,
N -pure-injective). So, we have I−1(M) ⊂ FCI−1(M) ⊂ PI−1(M).

Proposition 2.5. A ring R is von Neumann regular if and only if for every R-module
M , FCI−1(M) ⊆ I−1(M), if and only if, for every R-module M , FCI−1(M) ⊆ I−1(M).

Recall that a right R-module A is f-injective if Ext1R(R/I,A) = 0 for all finitely
generated right ideal I of R. In the next theorem, we see that A-FC-pure-subinjectivity
and A-subinjectivity coincide for an f-injective module A. Moreover, this condition is a
characterization of A being a f-injective module.

Theorem 2.6. The following statements are equivalent for any right R-module A:

(1) A is an f-injective module.
(2) Every module MR is A-FC-pure-subinjective if and only if it is A-subinjective.
(3) FCE(A) is A-subinjective.

Proof. (1) ⇒ (2) Assume that M is an A-FC-pure-subinjective right R-module and
f : A→ M homomorphism. Since A is f-injective, [4, Proposition 2.15], A is an FC-pure
submodule of E(A). Thus, by hypothesis, the homomorphism f can be extended to a
homomorphism from E(A) to M . Therefore, by [1, Lemma 2], M is A-subinjective. The
converse is clear.

(2)⇒ (3) By Corollary 2.3, FCI−1(FCE(A))= Mod-R. Hence, FCE(A) is A-FC-pure-
subinjective and so by hypothesis, FCE(A) is also A-subinjective.

(3) ⇒ (1) Assume that FCE(A) is A-subinjective and i1 : A ↪→ E(A) and i2 :
A ↪→ FCE(A) are the inclusion maps. By hypothesis, there exists a homomorphism
ϕ : E(A)→ FCE(A) such that ϕi1 = i2. Since i1 is an essential monomorphism and ϕi1 is
a monomorphism, ϕ is also a monomorphism. Also, A = ϕ(A) ⊆ ϕ(E(A)) ⊆ FCE(A). It
follows that ϕ(A) is an FC-pure submodule of ϕ(E(A)). So, since ϕ is a monomorphism, A
is also an FC-pure submodule of E(A). Therefore, by similar to the proof of [2, Proposition
2.1], we can obtain that A is an f-injective module, as required. �

Proposition 2.7. A right R-module M is FC-pure injective if and only if FCI−1(M)

is closed under FC-pure submodules, if and only if, FCI−1(M) ⊆ FCI−1(M).

Theorem 2.8. For a ring R, the following statements are equivalent:

(1) R is a Köthe ring.
(2) For every right and left R-module M , FCI−1(M) ⊆ FCI−1(M).

(3) For every right and left R-module M , FCI−1(M) = PI−1(M).

(4) For every right and left R-module M , PI−1(M) ⊆ FCI−1(M).

Proof. (1) ⇔ (2) follows from Proposition 2.7 and [4, Theorem 3.10].
(1) ⇒ (3) and (1) ⇒ (4) Assume that R is a Köthe ring. Thus, by [4, Theorem

3.10], every right and left R-module is FC-pure injective. It follows that FCI−1(M) =

Mod − R = PI−1(M) and FCI−1(M) = Mod − R = PI−1(M) since always every pure
exact is FC-pure exact.

(3) ⇒ (1) Assume that K is a (right or left) R-module. Since PE(K) is pure-
injective, Mod−R = PI−1(PE(K)) by [5, Theorem 2.3]. Thus, by hypothesis, Mod−R =
FCI−1(PE(K)) and so PE(K) is FC-pure injective. So, PE(K) ∈ FCI−1(K) ⊆ PI−1(K).
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Thus, K is PE(K)-pure-injective and so [5, Theorem 2.2] implies that K ∈ PI−1(K).

Hence, by [5, Theorem 2.3], K is pure injective, i.e., PI−1(K) = Mod−R. So, by hypoth-
esis, FCI−1(K) = Mod− R and so by Corollary 2.3, K is FC-pure injective. Since every
right and left R-module is FC-pure injective, R is a Köthe ring by [4, Theorem 3.10].

(4) ⇒ (1) Assume that K is a (right or left) R-module. Since every FC-pure in-
jective module is pure-injective, FCE(K) ∈ PI−1(K). Thus, by hypothesis, FCE(K) ∈
FCI−1(K), i.e., K is FCE(K)-FC-pure-injective and so Proposition 2.2 implies that K ∈
FCI−1(K). Hence, by Corollary 2.3, K is FC-pure injective. Since every right and left
R-module is FC-pure injective, R is a Köthe ring by [4, Theorem 3.10]. �

Recall that a right R-module M is called absolutely pure if Ext1R(N,M) = 0 for every
finitely presented right R-module N .

Proposition 2.9. A right R-module M is injective if and only if FCI−1(M) ⊆
I−1(M), if and only if, M is absolutely pure and FCI−1(M) ⊆ PI−1(M), if and only

if, M is f-injective and PI−1(M) ⊆ FCI−1(M).

Corollary 2.10. A ring R is semisimple if and only if for every R-module M ,
FCI−1(M) ⊆ I−1(M), if and only if, for every R-module M , FCI−1(M) = I−1(M).

Corollary 2.11. A ring R is right Noetherian if and only if for every absolutely pure
right R-module M , FCI−1(M) ⊆ PI−1(M).

Note that FC-pure-subinjectivity domain of a module M is not closed under factor
modules in general. Now, we have the following two results:

Proposition 2.12. For right R-modules M and A, if every factor of FCE(A) is FC-
pure injective and M is A-FC-pure-subinjective, then M is A/K-FC-pure-subinjective for
any K ≤ A.

Theorem 2.13. For a ring R, the following statements are equivalent:

(1) Every factor of FC-pure injective right R-modules is FC-pure injective.
(2) The FC-pure-subinjectivity domain of each right R-module is closed under factors.

Proposition 2.14. If A is an FC-pure submodule of right R-module M such that
A ∈ FCI−1(M), then FCE(A) is a direct summand of M .

Corollary 2.15. If A is an f-injective submodule of right R-module M and A ∈
FCI−1(M), then M = E(A)⊕ L for some submodule L of M

Corollary 2.16. A is an FC-pure submodule of M and A ∈ FCI−1(M) if and only

if M = FCE(A)⊕ L for some submodule L of M and A ∈ FCI−1(L).
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Abstract. Let R be a commutative Noetherian ring, M a finitely generated R-module
and a be an arbitrary ideal of R. For an arbitrary integer k ≥ −1, we introduce a
generalization of projective dimension named the k-projective dimension denoted by k-
pdRM . The finite k-projective dimension of M is at least k-depth(a,R)−k -depth(a,M ).
If N is a finitely generated R-module, in certain conditions, it is shown that dimN ≤ k -
pdRM which is a generalization of the Intersection Theorem.
Keywords: local cohomology modules, generalized projective dimension, the Auslander-
Buchsbaum formula, the Generalized Intersection Theorem
AMS Mathematics Subject Classification [2010]: 13D22

1. Introduction
Throughout this paper, R denotes a commutative Noetherian ring with non-zero iden-

tity, M denotes a finitely generated R-module, and k ≥ −1 is an arbitrary integer. For a
subset T of SpecR, we set

(T )>k := {p ∈ T | dimR/p > k},
(T )≤k := {p ∈ T | dimR/p ≤ k}.

This paper is essentially devoted to generalize an interesting conjecture in commutative
algebra, which deal with the concept of depth of a module. An effective instrument for
the computation of the depth of a module is the Auslander-Buchsbaum Formula which
is related to its projective dimension. There are various generalizations of the depth of a
module. The notion of k-regular sequence was introduced by Chinh and Nhan [2] which
is an extension of the well-known notion of filter regular sequence introduced by Schenzel,
Trung, and Cuong [4] and the notion of regular sequence as well.
To generalize the Intersection Theorem, we need to generalize the Auslander-Buchsbaum
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†Speaker. Email address: r.hosseini663@gmail.com
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Formula. For this purpose, firstly, we introduce the concept of k-projective dimension
which is an extension of the well-known notion of projective dimension (for k ≥ −1).

2. Main results
In this section, we shall deal with a particular generalization of the concept of projective

dimension called k-projective dimension.
Definition 2.1. Let M be an R-module. The k-projective dimension of M denoted

by k-pdRM , is defined
k-pdRM = sup{i ∈ N0|∃N ̸= 0 , (SuppN )>k ̸= ∅ s.t dimExtiR(M ,N ) > k},
if sup exists; otherwise, we define k-pdRM = ∞.

In the case k = −1, the notion of k-pdRM is the same as pdRM , the projective
dimension of M .

By the above definition, we have the following results.
Lemma 2.2. Let M be an R-module and t be a non-negative integer. Then k-pdRM ≤

t if and only if dimExtiR(M ,N ) ≤ k , for all i > t and all R-modules N ̸= 0 with
(SuppN )>k ̸= ∅.

Remark 2.3. For every R-module M , if j ≥ k is an integer, then j-pdRM ≤ k -pdRM .
Specially, j-pdRM ≤ pdRM for all j ≥ −1.

Example 2.4. It is notable that, the k-projective dimension of an R-module is not
necessarily equal to its projective dimension. It is clear that Z2 is not projective module
over Z, in fact pdZZ2 = 1 ; but 0-pdZZ2 ̸= 1 .

Now, we give a relation between the concept of projective dimension and k-projective
dimension.

Proposition 2.5. Let M be a finitely generated R-module. Then
k-pdRM = sup{pdRpMp | p ∈ (SuppM )>k}.

The following theorem is a generalization of a part of the Auslander-Buchsbaum For-
mula. This formula shows the relation between k-depth and k-pd.

Theorem 2.6. Let M be a finitely generated R-module with finite k-projective dimen-
sion, and a be an ideal of R such that (SuppR/a)>k ̸= ∅. Then

k-pdRM ≥ k -depth(a,R)− k -depth(a,M ).

Proof. We prove by induction on k-pdRM = n. □
In case of k = −1, we get a relation between the projective dimension of a finitely

generated R-module, with the depth of an ideal on an arbitrary (not necessarily local)
ring.

Corollary 2.7. Let M be a finitely generated R-module with pdRM < ∞ and a be
an proper ideal of R. Then

pdRM ≥ depth(a,R)− depth(a,M ).

In 1965, Serre [5] proved the following theorem.
Theorem 2.8. (Dimension Inequality). Let R be a regular local ring, M and N be

finitely generated R-modules with ℓ(M ⊗N ) < ∞. Then
dimM + dimN ≤ dimR.
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Applying the above inequality, Serre concluded that dimN ≤ pdRM .

Definition 2.9. Let a be an ideal of R with (SuppM /aM )>k ̸= ϕ. The k-height of a
with respect to M is defined by

k-htM a = min{htMp|p ∈ (SuppM /aM )>k}.
For an ideal a of R with (SuppM /aM )>k = ϕ, we set k-htM a = ∞. In the case

k = −1, the notion of k-htM a is the same as htM a, the height of ideal a with respect to
M .

Definition 2.10. Let M be a finitely generated R-module. M is called a k-Cohen-
Macaulay module, and denoted by k-C.M., if either k-depth(a,M ) = k -htM a for all ideal
a of R with (SuppM /aM )>k ̸= ϕ or (SuppM )>k = ϕ.
In the case k = −1, (−1)-modules are exactly Cohen-Macaulay modules.

Theorem 2.11. (Generalized Intersection Theorem). Let R be a k-Cohen-Macaulay
ring. Let M and N be finitely generated R-modules and a be an ideal of R with
(SuppR/a)>k ̸= ∅, such that dimM + dimN ≤ k -htRa. Assume that k-pdRM < ∞.
Then

dimN ≤ k -pdRM .

Proof. As R is a k-Cohen-Macaulay ring, by using Theorem 2.6, we deduce the
result. □

3. Conclusion
The Intersection Theorem shows that k-projective dimension of M might be more near

upper bound for dimN than projective dimension of M .
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Abstract. Let A be a C∗−algebra, a ∈ A and Mn = Mn(C). The C∗−algebra
n−dimensional matrix range of a, is defined as all matrices of the form φ(a) where
φ range over all completely positive linear maps of C∗(a) into Mn which preserve the
identity. In this paper we discuss some properties of Vn(a),

1. Introduction
Let T be a Hilbert space operator, and let C∗(T ) denote the C∗-algebra generated by

T and the identity. It is well known that, as φ runs over the state space of C∗(T ), the
complex numbers φ(T ) fill out the closure of the numerical range of T . The following
definition generalizes this notion.

Definition 1.1. Let T be a Hilbert space operator, and let n be a positive integer.
Wn(T ) is defined as all n×n matrices of the form φ(T ) where φ ranges over all completely
positive linear maps of C∗(T ) which preserve the identity. Completely positive maps are
discussed in [1] and [5]

If n = 1, W1(T ) = W (T ) and thus Wn(T ) is a generalization of the numerical range.
In [4] Pollack uncover information about Wn(T ). These facts are recorded here.

Let T ∈ B(H) and ∥T∥ = 1 and denoted by Bn the solid unit ball of B(Hn).

Proposition 1.2. If T ∈ B(H) and ∥T∥ = 1, then the following conditions are
equivalent:

(i) ∥αT + βI∥ = |α|+ |β| for all α, β ∈ C,
(ii) Wn(T ) = Bn for all n,
(iii) Wn0(T ) = Bn0 for some n0.

Recall that the numerical radius w(T ) := sup{|λ| : λ ∈ W (T )} and the relation
1
2∥T∥ ≤ w(T ) ≤ ∥T∥ [3]. If we analogously define |Wn(T )| := sup{∥S∥ : S ∈ Wn(T )} for
n ≥ 2, we have

Proposition 1.3. |Wn(T )| = ∥T∥ for n ≥ 2.

∗Speaker. Email address: heydari@yu.ac.ir
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Proposition 1.4. Let T be a normal operator and let n be a positive integer. Then
Wn(T ) is the closure of the set

{Σr
i=1λiKi : r ≥ 1, λi ∈ σ(T ), Ki ∈ B(Hn), Ki ≥ 0,Σr

i=1Ki = I}
If T is self-adjoint, then since completely positive maps preserves adjoint, Wn(T )

consists entirely of self-adjoint operators. There are several natural questions. Is the
converse true? When does Wn(T ) consists entirely of normal operators? If Wn(T ) consists
of normal operators must T be normal? The next propositions resolves these questions.

Proposition 1.5. If T ∈ B(H), the following conditions are equivalent:
(i) Wn(T ) consists entirely of normal operators for all n,
(ii) Wn0(T ) consists entirely of normal operators for some n0 ≥ 2,
(iii) T is normal and σ(T ) is contained in a line.
Proposition 1.6. If Wn(T ) consists entirely of self-adjoint operators. Then T is

self-adjoint.
Definition 1.7. For an arbitrary T ∈ B(H), n ≥ 1 Sn(T ) is the closure of the set

{Σr
i=1λiKi : r ≥ 1, λi ∈ σ(T ), Ki ∈ B(Hn), Ki ≥ 0,Σr

i=1Ki = I}
Proposition 1.8. If T ∈ B(H), then Sn(T ) ⊂ Wn(T ) for all n.

One more important property of the numerical range map, A → W (A) is the continu-
ity of it. For the convergence of compact subsets of the plane, we use the topology induced
by the Hausdorff metric. Recently in [2] the authors extended this result to matrix range,
indeed, they have shown that the matrix range of a tuple generating a continuous field
of C∗−algebras is continuous in the sense that every level is continuous in the Hausdorff
metric.

2. Main results
Let A be a C*-algebra and a ∈ A. We define C*-algebra n−dimensional matrix range

for an element a ∈ A (generalization of n−dimensional matrix range of operators) by
Vn(a) := {φ(a) : φ ∈ CP(C∗(a), Hn ; 1)},

where C∗(a) is the C*-algebra generated by {a, 1},Hn, for positive integer n, the n−dimensional
Hilbert space and CP(C∗(a), Hn; 1) is the set of all completely positive maps of C∗(a)
into B(Hn) which preserve the identity.

We analogously define |Vn(a)| := sup{∥S∥ : S ∈ Vn(a)} for n ≥ 2, and Sn(a) is the
closure of the set

{Σr
i=1λiKi : r ≥ 1, λi ∈ σ(a), Ki ∈ B(Hn), Ki ≥ 0,Σr

i=1Ki = I}
Theorem 2.1. Let A be a C*-algebra and a ∈ A. Then

(1). If ∥a∥ = 1, the following conditions are equivalent:
(i) ∥αa+ β1∥ = |α|+ |β| for all α, β ∈ C,
(ii) Vn(a) = Bn for all n,
(iii) Vn0(a) = Bn0 for some n0.

(2). |Vn(a)| = ∥a∥ for n ≥ 2.
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(3). If a is normal, V (a) = convh(σ(a))(i.e. a is convexoid), in general, if a is
hyponormal(i.e. a∗a ≥ aa∗) then a is convexoid.

(4). The following conditions are equivalent:
(i) Vn(a) consists entirely of normal operators for all n,
(ii) Vn0(a) consists entirely of normal operators for some n0 ≥ 2,
(iii) a is normal and σ(a) is contained in a line.

(5). If Vn(a) consists entirely of self-adjoint operators. Then a is self-adjoint.

(6). Sn(a) ⊂ Vn(a) for all n.

(7). Let a ∈ A be normal and let n be a positive integer. Then Vn(a) is the closure of
the set

{Σr
i=1λiKi : r ≥ 1, λi ∈ σ(a), Ki ∈ B(Hn), Ki ≥ 0,Σr

i=1Ki = I}
Proof. It is trivial that Vn(a) = Wn(Ta), where Ta = φ(a) and φ is the faithful

representation of A on some Hilbert space constructed by GNS. Then the proof follows
from above propositions and isometry of faithful representations(i.e. ∥a∥ = ∥Ta∥). Details
have been omitted for brevity □

Remark 2.2. If Jn denoted the n×n shift matrix and k is an integer with 1 ≤ k ≤ n−1,
then

V (Jk
n) = D̄(0; cos(

π

[(n− 1)/k] + 2
)).

If k fix and n large enough, then V1(J
k
n) = B1. Since ∥Jk

n∥1 = ∥Jk
n∥∞ = 1, we have

Vm(Jk
n) = Bm for all positive integer m.
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Abstract. Let D be the open unit disk in the complex plane C, and let ϕ be a holo-
morphic function from disk Dm into Dn. We study the composition operator Cϕ on
the weighted variable exponent Bergman space with classical radial weight and give a

sufficient condition for the boundedness of this operator on A
p(·)
α (Dn).
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1. Introduction

Let Ω ⊂ Rn be a subset of Rn. We mean by a variable exponent, a measurable function
p : Ω→ [1,∞). We shall write

p+ = p+
Ω := ess supx∈Ω p(x),

p− = p−Ω := ess infx∈Ω p(x).

Let P(Ω) denote the set of all variable exponents p(·) for which p+ <∞. For a complex-
valued measurable function f : Ω → C and the weight ω : Ω → [0,∞) we define the
modular ρp(·),ω by

ρp(·),ω(f) :=

∫

Ω
ω(x)|f(x)|p(x)dµ(x)

where µ is the Lebesgue measure on Ω. The norm induced by this modular is given by

‖f‖
L
p(.)
ω

:= inf

{
λ > 0 : ρp(.),ω

(
f

λ

)
≤ 1

}
.

Definition 1.1. The weighted variable exponent Lebesgue space L
p(·)
ω (Ω) consists of

all complex-valued functions f : Ω→ C for which ρp(·),ω(f) <∞.
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It is well-known that if p(·) ∈ P, then L
p(·)
ω equipped with the above norm is a Banach

space [1]. Moreover, the dual of Lp(·) is Lp
′(·) where the conjugate exponent p′(·) satisfies

1

p(x)
+

1

p′(x)
= 1.

It can also be verified that the conjugate exponent satisfies the following equalities:

p′(·)+ :=
(
p′(·)

)
+

= (p−)′ ,

p′(·)− :=
(
p′(·)

)
− = (p+)′ .

Definition 1.2. A function p : Ω→ R is said to be locally log-Holder continuous on
Ω if there exists a positive constant C such that for all x, y ∈ Ω that |x− y| < 1

2 , we have

LH0 : |p(x)− p(y)| ≤ C

log( 1
|x−y|)

.

and is log-holder continuous at infinity if there exists p∞, 1 < p∞ <∞, such that

LH∞ : |p(x)− p∞| ≤
C

log (e+ |x|) .

We denote by P log(Ω) the set of all locally log-Holder continuous functions in Ω for
which 1 < p− ≤ p+ <∞.

Definition 1.3. Given f ∈ L1
loc(Ω), the weighted Hardy-Littlewood maximal function

of f is defined by

Mf(x) = sup
r>0

1

|B(x, r)|

∫

B(x,r)
|f(y)|dµ(y), x ∈ Ω.

It is known that for each f : Ω→ C we have |f(x)| ≤Mf(x) (see [1]).

Definition 1.4. we say the weight ω is of class A1 and denote ω ∈ A1 if

[ω]A1 := ess supz∈Dn
Mω(z)

ω(z)
<∞.

Theorem 1.5. ( [1]) Let p(·) ∈ P(Ω) satisfy 1 < p− ≤ p+ < ∞. Then Hardy-
Littlewood maximal function M is bounded on Lp(·)(Ω) if and only if M is bounded on

Lp
′(·)(Ω).

Theorem 1.6. (The Rubio de Francia extrapolation)( [1]): Suppose that for some
p0 ≥ 1 the family F (of non-negative measurable pairs of functions) is such that for all ω
in the Muckenhoupt weight class A1 there exists C0 > 0 such that∫

Ω
F (x)p0ω(x)dx ≤ C0

∫

Ω
G(x)p0ω(x)dx; F,G ∈ F .

Let p(·) ∈ P(Ω), p0 ≤ p− ≤ p+ <∞ and the maximal operator M is bounded on the space

L

(
p(.)
p0

)′
(Ω). Then there exists Cp(·) such that

‖F‖Lp(·) ≤ Cp(·)‖G‖Lp(·) .
We now turn to the n-dimensional complex plane, and consider the unit polydisk

Dn = D× · · · × D = {z = (z1, ..., zn) ∈ Cn : |zk| < 1, 1 ≤ k ≤ n}
in Cn. From now on, we assume that Ω = Dn, so that we can use all the above arguments
with x ∈ Ω replaced by z ∈ Dn.
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Definition 1.7. For p ∈ P(Dn) and −1 < α < ∞, the weighted variable exponent

Bergman space A
p(·)
α consists of all holomorphic functions f : Dn → C for which∫

Dn
|f(z)|p(z)dυα(z) <∞

where

dυα(z) = dυα(z1, ..., zn) = dAα(z1) · · · dAα(zn),

and

dAα(zk) =
α+ 1

π
(1− |zk|2)

α
dxk dyk, zk = xk + iyk.

Note that with Ω = Dn, the maximal operator M takes the form

Mf(z) := sup
z∈Q

1

|Q|

∫

Q
|f(z)|dυα(z), z ∈ Dn,

where the supremum is taken over all cubes Q with sides parallel to the coordinate axes
and containing z.

2. Composition operators

We fix two positive integers m and n. We consider a holomorphic mapping ϕ : Dm →
Dn given by

ϕ(z1, z2, ..., zm) = (ϕ1(z1, z2, ..., zm), ...., ϕn(z1, z2, ..., zm))

where for each 1 ≤ k ≤ n , ϕk : Dm → D is a holomorphic function. We study the
composition operator

Cϕ : Ap(·)α (Dn)→ A
p(·)
β (Dm)

defind by

Cϕ(f) = f ◦ ϕ, f ∈ Ap(·)α (Dn).

Definition 2.1. Let µ be a positive Borel measure on Dn. We say that µ is a Carleson
measure forAp(·)(Dn) if there exist a constant C > 0 such that

∫

Dn
|f(z)|p(z)dµ(z) ≤ C

∫

Dn
|f(z)|p(z)dυα(z).

It is well-known that the Carleson measure does not depend on the exponent.

Theorem 2.2. ( [2,5]): Suppose α > −1 and µ is a positive Borel measure on Dn.
Then, the following two conditions are equivalent.
(a) µ is a Carleson measure for Apα(Dn) for some p > 0,
(b) µ is a Carleson measure for Apα(Dn) for every p > 0.

This was used by Stessin and Zhu to prove the following theorem on the boundedness
of composition operators on usual (constant exponent) Bergman spaces of the polydisk.
Indeed, Stessin and Zhu proved that the operator Cϕ maps Apα(Dn) boundedly into Apα(Dn)
if and only if µϕ,α is Carleson measure for Apα(Dn); here µϕ,α(E) =

∫
ϕ−1(E) dvα. Moreover,

Theorem 2.3. ( [3]) Suppose p > 0, α > −1 and ϕ : Dn → Dn is an analytic self-map
of the unit polydisk. Then the operator Cϕ : Apα(Dn)→ Apα(Dn) is bounded.

For different weights, they even found the best possible constants determining the
weights; that is, α and beta.
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Theorem 2.4. ( [3]) For any p > 0 and α > −1 the composition operator Cϕ maps

A
p(·)
α (Dn) boundedly into A

p(·)
β (Dn) where β = n(2 + α)− 2.

The main result of this paper is to generalize some of the above results to variable

exponent Bergman space A
p(·)
α (Dn). To do this we need to study the Muckenhoupt weight

classes, and its relevance to Carleson measures in this new setting. Indeed, we prove that

Theorem 2.5. Let ϕ : Dm −→ Dn be a holomorphic function and p(·) ∈ P log(Dn).

Then the composition operator Cϕ : A
p(·)
α (Dn) −→ A

p(·)
β (Dm) is bounded on A

p(·)
α where

β = n(α+ 2)− 2.
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Abstract. In this paper, we find the coefficient bounds for meromorphic bi-univalent
functions of subclass NΣB(λ, β, α) by using the Faber polynomial expansions which will
be defined on the domain ∆ = {z ∈ C : 1 < |z| < ∞}. The results presented in this
paper would generalize and improve some works of earlier authors.
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1. Introduction

Let Σ denote the family of meromorphic univalent functions f of the form

f(z) = z + b0 +
∞∑

n=1

bn
zn

,(1)

which defined on the domain ∆ = {z ∈ C : 1 < |z| < ∞}. Since f ∈ Σ is univalent, it has
an inverse f−1, that satisfy

f−1(f(z)) = z (z ∈ ∆)

and

f(f−1(w)) = w (M < |w| < ∞, M > 0) .

Furthermore, the coefficients of g, the inverse map of f , are given by the Faber polynomial
( [1,11]):

g(w) = f−1(w) = w +
∞∑

n=0

Bn

wn
= w − b0 −

∞∑

n=1

1

n
Kn

n+1

1

wn
,(2)

where M < |w| < ∞,

Kn
n+1 = Kn

n+1(b0, b1, ..., bn) = nbn−1
0 b1 + n(n− 1)bn−2

0 b2 +
1

2
n(n− 1)(n− 2)bn−3

0 (b3 + b21)
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+
n(n− 1)(n− 2)(n− 3)

3!
bn−4
0 (b4 + 3b1b2) +

∑

j≥5

bn−j
0 Vj

and Vj with 5 ≤ j ≤ n is a homogeneous polynomial of degree j in the variables b1, b2, ..., bn.
A function f ∈ Σ is said to be meromorphic bi-univalent if f−1 ∈ Σ. The family of all
meromorphic bi-univalent functions is denoted by ΣB.

Estimates on the coefficient of meromorphic univalent functions were widely studied
in the literature; for instance, the estimate |b2| ≤ 2/3 for meromorphic univalent functions
f ∈ Σ with b0 = 0 was obtained by Schiffer [9] and the inequality |bn| ≤ 2/(n + 1) for
f ∈ Σ with bk = 0, 1 ≤ k ≤ n/2 was proven by Duren [3].

For the coefficients of the inverse of meromorphic univalent functions, Springer [10]
proved that

|B3| ≤ 1 and |B3 +
1

2
B2

1 | ≤
1

2

and conjectured that

|B2n−1| ≤
(2n− 2)!

n!(n− 1)!
(n = 1, 2, 3, ...).

In 1977, Kubota [6] has proved that the Springer’s conjecture is correct for n = 3, 4, 5
and afterwards sharp bounds for the coefficients B2n−1, 1 ≤ n ≤ 7 were obtained by
Schober [7].

The goal of the present paper is to define a general subclass of meromorphic bi-
univalent functions which includes the two subclasses of meromorphic bi-univalent func-
tions studied in [2,4,5,8,12]. For this subclass, we find bounds for |b0| and |b1| to show
the unpredictability of the coefficients of meromorphic bi-univalent functions.

2. Main results

In this section, we define and investigate the general subclass MΣB
(λ, µ, γ, α).

Definition 2.1. For λ ≥ 1, 0 ≤ µ < 1, γ ∈ C− {0} and 0 ≤ α < 1, a function
f(z) ∈ ΣB given by (1) be in the class MΣB

(λ, µ, γ, α), if the following conditions are
satisfied:

f ∈ ΣB, Re

{
1 +

1

γ

[
(1− λ)

(
f(z)

z

)µ

+ λf ′(z)
(
f(z)

z

)µ−1

− 1

]}
> α(3)

and

Re

{
1 +

1

γ

[
(1− λ)

(
g(w)

w

)µ

+ λg′(w)
(
g(w)

w

)µ−1

− 1

]}
> α,(4)

where z, w ∈ ∆ and the function g is the inverse of f given by (2).

Remark 2.2. There are many selections of the parameters λ, µ and γ which would
provide interesting subclasses of the meromorphic bi-univalent function class ΣB. For ex-
ample:
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If we put γ = λ = 1 and µ = 0, the class MΣB
(λ, µ, γ, α) changes to the class Σ∗

B(α)
that was defined by Hamidi et al. [5].

If we put γ = λ = 1, the class MΣB
(λ, µ, γ, α) changes to the class B(α, µ) that was

defined by Halim et al. [4].
If we put γ = 1, the class MΣB

(λ, µ, γ, α) changes to the class MΣ(λ, µ, α) that was
studied by Bulut et al. [2].

Theorem 2.3. Let f(z) ∈ ΣB given by (1) be in the class MΣB
(λ, µ, γ, α) (λ ≥ 1, 0 ≤

µ < 1, γ ∈ C− {0}, 0 ≤ α < 1). Then

|b0| ≤





2
√

(1−α)|γ|
|(µ−2λ)(µ−1)| ; 0 ≤ α < 1− (µ−λ)2

|γ||(µ−2λ)(µ−1)|

2(1−α)|γ|
|µ−λ| ; 1− (µ−λ)2

|γ||(µ−2λ)(µ−1)| ≤ α < 1

and

|b1| ≤
2(1− α)|γ|
|µ− 2λ| .

If we put γ = λ = 1 in Theorem 2.3, we get the subsequent corollary.

Corollary 2.4. Let f(z) ∈ ΣB given by (1) be in the class B(α, µ) (0 ≤ α < 1, 0 ≤
µ < 1). Then

|b0| ≤





2
√

(1−α)
(2−µ)(1−µ) ; 0 ≤ α < 1

2−µ

2(1−α)
1−µ ; 1

2−µ ≤ α < 1

and

|b1| ≤
2(1− α)

2− µ
.

If we put µ = 0 in Corollary 2.4, we get the subsequent corollary.

Corollary 2.5. Let f(z) ∈ ΣB given by (1) be in the class Σ∗
B(α) (0 ≤ α < 1). Then

|b0| ≤





√
2(1− α); 0 ≤ α < 1

2

2(1− α); 1
2 ≤ α < 1

and

|b1| ≤ 1− α.

Remark 2.6. The above bounds for |b0| and |b1| demonstrate that Corollary 2.5 is an
improvment of the bounds given by Hamidi et al. [5, Theorem 2].
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Abstract. Let A and B be Banach algebras. Linear maps T, S : A → B are called
jointly separating whenever a · b = 0 implies Ta · Sb = 0, for all a, b ∈ A. In this paper,
first we generalize the definition of jointly linear separating maps to Banach module
cases. Then we give the characterization of such maps. Finally, we prove that under
certain conditions on Banach modules, both jointly separating maps are continuous if at
least one of them is bijective.
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1. Introduction

The well-known notion, separating maps between two spaces of the function A and B,
is defined such that f.g = 0 implies Tf.Tg = 0 for all f, g in A. It is equivalent to this
fact that coz(Tf)∩ coz(Tg) = ∅ if coz(f)∩ coz(g) = ∅, for all f, g in A. In recent years the
definition of separating maps has been generalized to different kinds of spaces, see [1,5–7].
In [8,9], we generalized this concept for Banach module cases. In [10], authors studied a
pair of linear maps S, T from a subspace A(X,E) of C(X,E) to C(X,F ), called jointly
separating operators in the sense that coz(Tf) ∩ coz(Sg) = ∅, if coz(f) ∩ coz(g) = ∅, for
all f, g in A(X,E), when E is a Banach space and F is a locally convex topological vector
space. In this paper, we generalize the notion of jointly linear separating maps to Banach
module cases, and then we prove some results and automatic continuity of these maps

2. Preliminaries

Let A be a commutative Banach algebra with or without unit. The set of all non-zero
multiplicative linear functional on A, is denoted by σ(A), and is called maximal ideal
space of A. We identify the maximal ideal space of A1 ( the standard unitization of A)
by σ0(A) = σ(A) ∪ {0}. For a commutative Banach algebra A, recall that a left Banach
A-module X is essential if it is the closure of linear span of the set {a.x : a ∈ A, x ∈ X}.
Obviously, each unital left Banach module is essential. Let A be a commutative Banach
algebra, and X be a left Banach A-module, following [2, 4], for a point ϕ ∈ σ0(A) a
functional ξ ∈ X∗ is called a point multiplier at ϕ, if 〈ξ, a.x〉 = ϕ(a)〈ξ, x〉, for all a ∈ A
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and x ∈ X. By [3] the kernel of each non-trivial point multiplier is a closed left submodule
of X with codimension one which is called a hyper maximal left submodule. Conversely,
each closed hyper maximal left submodule P of X is the kernel of some point multiplier
ξ ∈ X∗ at some ϕ ∈ σ0(A), see( [3], Prop. 4.3). The set of all closed hyper maximal left
submodules of X is denoted by ∆A(X) and is called the hyper maximal left submodule
space, see [4]. Supposing X an essential left Banach module, it is seen there is no non-
trivial point multiplier at 0. Hence each closed hyper maximal left submodule of X is
the kernel of a point multiplier at some point of σ(A). In this case, the natural map
νX : ∆A(X) → σ(A) is defined so that it associates to each P ∈ ∆A(X) a unique point
νX(P ) in σ(A) [4]. Supposing, ∆1

A(X) = ∆A(X)∪X we define the extended natural map
by ν̃X : ∆1

A(X)→ σ0(A), which ν̃X(X) = 0. It is possible that ∆A(X) = ∅, (see examples
4.4, 4.8 in [4]). In this paper we regard essential left Banach modules with non-empty hyper
maximal left submodule spaces. Let A be a commutative Banach algebra and X be a left
Banach A-module. For each x ∈ X, we set Coz(x) = νX({P ∈ ∆A(X) : x 6∈ P}). Suppose
A and B are commutative Banach algebras and X and Y are two left Banach modules over
A and B, respectively with non empty hyper maximal left submodule spaces. A linear map
T : X −→ Y is called separating if Coz(x1)∩Coz(x2) = ∅ implies Coz(Tx1)∩Coz(Tx2) = ∅
for all x1, x2 ∈ X, [8]. A bijective linear map T : X −→ Y is a biseparating map when
both T and T−1 are separating [9].

Definition 2.1. Let A and B be commutative Banach algebras, and X and Y be
essential left Banach modules over A and B, respectively. Linear maps T, S : X → Y are
called jointly separating whenever, Coz(x1)∩Coz(x2) = ∅ implies Coz(Tx1)∩Coz(Sx2) = ∅,
for all x1, x2 ∈ X. In addition, if T, S are bijective jointly separating maps such that
T−1, S−1 : Y → X are jointly separating, then T, S are called jointly biseparating maps.

3. Jointly linear Separating maps between Banach Modules

In this section, we suppose that A and B are commutative Banach algebras, X and
Y are essential left Banach modules over A and B with non-empty hyper maximal left
submodule spaces and T, S : X → Y are jointly separating maps.

Definition 3.1. The subset ∆1(Y ) of ∆B(Y ) is defined as follows:

∆1(Y ) =
( ⋃

x∈X

{
P ∈ ∆B(Y ) : Tx /∈ P

})⋂( ⋃

x∈X

{
P ∈ ∆B(Y ) : Sx /∈ P

})
.

Definition 3.2. Let ∆1(Y ) 6= ∅. For any P ∈ ∆1(Y ) we define the jointly support
set of T, S, J{T,S}(P ), as the set of all Q ∈ ∆1

A(X) such that for each open neighborhood
U of ν̃X(Q) in σ0(A), there exists an element x ∈ X with Coz(x) ⊆ U and Tx /∈ P or
Sx /∈ P .

Lemma 3.3. For each P ∈ ∆1(Y ), the jointly support set J{T,S}(P ) 6= ∅ is nonempty.

Definition 3.4. Let A be a commutative Banach algebra and X be a left Banach
A-module. It is said that X is a PHS left Banach A- module whenever for each x ∈ X
and Q ∈ ∆1

A(X) with x ∈ Q, there is a sequence {xn} in X such that for a neighborhood
Un of ν̃X(Q) in σ0(A), Coz(xn) ⊆ σ0(A)\Un and ‖xn − x‖ → 0.

Example 3.5. i) If A is a commutative Banach algebra which satisfies Ditkin,s con-
dition, we have ∆A(A) = {kerϕ : ϕ ∈ σ(A)}, and A is a PHS left Banach A- module.
ii) Let A be a non-unital commutative Banach algebra and X be a dense ideal of A. If
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(X, ‖.‖X) is a Banach algebra satisfying Ditkin,s condition, such that ‖ax‖X ≤ ‖a‖‖x‖X ,
then X is a PHS left Banach A-module.
iii) Each Segal algebra on a locally compact abelian group G can be regarded as a PHS
left Banach L1(G)-module.
iv) For a compact metric space (X, d) and a Banach space E and α ∈ (0, 1], we denote the
space of E-valued Lipschitz functions of order α on X by Lipα(X,E). The Banach space
Lipα(X,E) with respect to the lipschitz norm ‖.‖α is a PHS left Banach Lipα(X)-module.

Lemma 3.6. Let X be a PHS left Banach A- module, then for each P ∈ ∆1(Y ) the
jointly support set J{T,S}(P ) is a singleton.

Regarding the above Lemma, in the case that X is a PHS module we can define a
map H : ∆1(Y )→ ∆1

A(X) by
{
H(P )

}
= J{T,S}(P ) for all P ∈ ∆1(Y ).

For each P ∈ ∆1(Y ) and y in Y the map χP : ∆1(Y ) −→ Y/P is defined by χP (y) =
y + P . Now, we define two subsets of ∆1(Y ),

∆CT (Y ) =
{
P ∈ ∆1(Y ) : χP ◦ T is continuous on X

}

∆CS(Y ) =
{
P ∈ ∆1(Y ) : χP ◦ S is continuous on X

}

Lemma 3.7. Let X be a hyper semisimple PHS left Banach A- module. Then P ∈
∆CT (Y ) (resp. P ∈ ∆CS(Y )) if and only if H(P ) = T−1(P ) (resp. H(P ) = S−1(P )).

Consider the following subset of
∏
P∈∆A(X)X/P ,

X =
{
x =

(
xP + P

)
P∈∆A(X)

: ‖x‖ = sup
P∈∆A(X)

‖xP + P‖ <∞
}
.

It is seen that X is a Banach space under the defined norm ‖x‖ and also, is a left Banach
A-module by the following action,

a.x = a.
(
xP + P

)
P∈∆A(X)

=
(
a.xP + P

)
P∈∆A(X)

It is important to note that for each x ∈ X and the family F ⊆ ∆A(X),
(
x+Q

)
Q∈F may

be considered as an element
(
xQ + Q

)
Q∈∆A(X)

of X, where xQ = x, for all Q ∈ F and

xQ = 0, for the other elements Q ∈ ∆A(X). Clearly, the set
{(
x + Q

)
Q∈F : x ∈ X

}
is a

submodule of X.
Now, we give a representation of jointly separating maps T, S : X → Y similar to the

composition maps.

Corollary 3.8. Let X be a PHS left Banach A-module and T, S : X → Y be
surjective jointly separating maps. Then, there exist two submodules XT and Y T (resp,
XS and Y S) of X and Y , respectively and a bijective linear map JT : XT → Y T (resp,
JS : XS → Y S) such that

(
Tx+ P

)
P∈∆CT (Y )

= JT

((
x+H(P )

)
P∈∆CT (Y )

)
,

(
Sx+ P

)
P∈∆CS(Y )

= JS

((
x+H(P )

)
P∈∆CS(Y )

)
.

Proof. Define
XT =

{(
x+H(P )

)
P∈∆CT (Y )

: x ∈ X
}
,

and
Y T =

{(
Tx+ P

)
P∈∆CT (Y )

: y ∈ Y
}
.
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As it was indicated, XT and Y T are submodules of X and Y , respectively. Now, we define

JT : XT → Y T by JT

((
x + H(P )

)
P∈∆CT (Y )

)
=
(
Tx + P

)
P∈∆CT (Y )

. By Lemma 3.7, JT

is a well defined linear bijective map. The results are similarly hold for S. �
Now we divide ∆B(Y ) into three disjoint parts as follows:

∆0(Y ) = ∆B(Y )\∆1(Y ),∆c(Y ) = ∆CT (Y ) ∩∆CS(Y ),∆d(Y ) = ∆1(Y )\∆c(Y ).

Definition 3.9. A Banach left A-module X satisfies the H condition whenever, for
each closed submodules M and N of X, (M :A X) ⊆ (N :A X) implies M ⊆ N , where
(M :A X) = {a ∈ A : aX ⊆M}

Example 3.10. Let S(G) be a Segal algebra on a locally compact abelian group G.
Consider S(G) as a left Banach L1(G)-module. Then S(G) is an essential PHS left Banach
A-module satisfying H condition.

Lemma 3.11. Let X be a PHS left Banach A-module satisfying H condition then,
ν̃X ◦H is continuous on ∆c(Y ) ∪∆d(Y ) and H is continuous on ∆c(Y ).

In the following, we suppose that A and B are commutative Banach algebras, X and
Y are essential hyper semisimple left Banach module over A and B, respectively.

Theorem 3.12. Let A be regular, and X be a PHS left Banach A-module satisfying
H condition, and for each y ∈ Y , the set

{
P ∈ ∆B(Y ) : y /∈ P

}
is an open set in Zariski

topology of ∆B(Y ). If one of jointly separating maps T, S : X → Y is bijective then,

(i) Both T and S are continuous.
(ii) If T and S are jointly biseparating maps and B, Y have the same conditions of

A,X then, H is a homeomorphism.
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Abstract. In this paper, we introduce a concept as open locating-total dominating set
(OLTD-set) in graphs. S ⊆ V (G) is an OLTD-set if and only if S is a total dominating set
of G and for any pair of distinct vertices x and y in V (G), we have N(x)∩S ̸= N(y)∩S.
So, the open locating-total domination number γOL

t (G) is the minimum cardinality of an
OLTD-set for G. In this paper, we determine the open locating-total dominating set of
some families of graphs. Also, the open locating-total domination number is calculated
for two families of trees.
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1. Introduction

Graph theory is used as a theoretical tool to consider actual networks. One of the
studies based on graphs, finding the location of monitoring devices to safeguard a system
serves. Locating sets for such studies were introduced by salter in [4] and the locating-
total dominating set in the graph was introduced by Haynes and Hening [2]. The problem
of open locating dominating sets was introduced by Honkala et al. [3] in the context of
coding theory for binary hypercubes. Some more results on the locating-total domination
number are obtained in [6].
Let G = (V,E) be a graph with vertex set V and edge set E. The open neighborhood
of vertex v ∈ V is denoted by N(u) = {u ∈ V |uv ∈ E}, while its closed neighborhood
is given by N [v] = N(u) ∪ {u}. A set S of vertices of a graph G is a dominating set
(DS) of G if every vertex in V \ S is adjacent to a vertex of S, and S is a total domi-
nating set (TDS) if every vertex in V has a neighbor in S. In [5], a subset S of V is an
open neighborhood locating dominating set (OLDS) of G if and only if for each vertex
w ∈ V (G) there is at least one vertex v in S ∩ N(w) (that is, S is an open-dominating
set) and for any pair of distinct vertices x and y in V we have N(x) ∩ S ̸= N(y) ∩ S.
The open neighborhood locating domination number γOL(G) is the minimum cardinality
of an OLD-set for G. Motivated by the definition of locating dominating set and open
dominating set, we introduce the open locating-total dominating set of a graph G. This is
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equivalent to that S ⊆ V (G) is open locating-total dominating set (OLTDS) if and only
if S is a total dominating set of G and for any pair of distinct vertices x and y in V , we
have N(x)∩S ̸= N(y)∩S. So, the open locating-total domination number γOL

t (G) is the
minimum cardinality of an OLTD-set for G. An OLTD-set for G of order γOL

t (G) will be
called an γOL

t (G)-set. It is clear that γOL
t (G)=γOL(G).

In this paper, we investigate the open locating-total dominating set for some of the families
of the graph. All graphs considered in this paper are simple without isolated vertices.

2. Main results

In the following theorem, we obtain the bounds on the open locating-total dominating
set in complementary prisms. For a graph G, its complementary prism, denoted GG,
is formed from a copy of G and a copy of G by adding a perfect matching between
corresponding vertices.

Theorem 2.1. For any graph G,

max{γOL
t (G), γOL

t (G)} ≤ γOL
t (GG) ≤ γOL

t (G) + γOL
t (G).

Proof. If G = Kn, then the result holds. Thus, we may assume G is not complete
and D is an OLTD-set in GG. Let D1 = D ∩ V (G) and D2 = D ∩ V (G). If D1 is an
open locating-total dominating in G, then we are finished. So, assume there exists a set
T ⊆ V (G) such that T is not open locating-total dominated by D1. Thus, T will get
these features by D2. Since each vertex in D2 is adjacent to at most one vertex in T , then
|T | ≤ |D2|. But, set T ∪D1 is an open locating-total dominating set in G. Assume that
without loss of generality, that γOL

t (G) ≥ γOL
t (G). Thus,

γOL
t (G) ≤ |T ∪D1| ≤ |T |+ |D1| ≤ |D2|+ |D1| = |D| = γOL

t (GG).

Therefore,

max{γOL
t (G), γOL

t (G)} ≤ γOL
t (GG).

For the upper bound, let S1 be an OLTD-set in G and S2 be an OLTD-set for G. Let
S = S1 ∪ S2. Since every vertex of G(G) is dominated by S1(S2) then, S is a total
dominating set. It is sufficient to show that S is an open locating set in GG for every
two vertices u ∈ V (G) and v ∈ V (G). Because sets S1 and S2 are open locating set in G
and G, respectively. We have, NGG(u) = NG(u)∪ {u}, and NGG(v) = NG(v)∪ {v}. Since
NGG(u) ∩ S1 ̸= NGG(v) ∩ S2 we have, NGG(u) ∩ S ̸= NGG(v) ∩ S. Thus, S is an open
locating set. Therefore,

γOL
t (GG) ≤ |S1 ∪ S2| = |S1|+ |S2| = γOL

t (G) + γOL
t (G).

□
Now, we investigate the open locating-total dominating set for the join and the corona

of graphs. Let G and H be graphs of order m and n, respectively. The corona of two
graphs G and H is the graph G ◦H obtained by taking one copy of G and m copies of H
and then joining the i’th vertex of G to every vertex of the i’th copy of H.

Theorem 2.2. Let G and H be nontrivial connected graphs and m = |V (G)| ≥ 4
and n = |V (H)| ≥ 4. Then S ⊆ V (G ◦ H) is an OLTD-set in G ◦ H if and only if
S =

∪
x∈V (G) Sx where Sx is OLTD-set in Hx and Hx is the copy of H whose vertices are

attached one by one to the vertex x.

425



Open locating-total domination number in graphs

Proof. Let S ⊆ V (G ◦ H) be an OLTD-set in G ◦ H and Sx = V (Hx) ∩ S. In the
graph G ◦H, every vertex of Hx is adjacent to x in G. Since S is an OLTD-set in G ◦H,
for every u, v ∈ Hx ⊆ V (G ◦H), we can obtain NH(u) ∩ Sx ̸= NH(v) ∩ Sx. So, Sx is an
open locating set in Hx.
If x /∈ S, then Sx is OLTD-set in Hx. Because S is an OLTD-set in G ◦H and Sx is open
locating set.
If x ∈ S, since Sx is an open locating set we get, NG(u)∩Sx ̸= ∅ for each vertex u ∈ V (Hx).
Therefore, Sx is the dominating set. If u ∈ Sx is not adjacent to any vertex in Sx then it
is contrary to Sx is an open locating set. Thus, S =

∪
x∈V (G) Sx is an OLTD-set in G ◦H.

For the converse, suppose that S =
∪

x∈V (G) Sx in which Sx is an OLTD-set in Hx. Since

Sx are the OLTD-set in Hx for every vertex x ∈ V (G), S is a total dominating set. Thus,
it is sufficient to show that S is an open locating set. For every two distinct vertices
u, v ∈ (G◦H) we have NG◦H(u)∩S ̸= NG◦H(v)∩S. Hence, S is an γOL

t (G◦H)− set. □
Theorem 2.3. Let G and H be nontrivial connected graphs. If S ⊆ V (G +H) is an

OLTD-set in G+H then S1 = S ∩ V (G) and S2 = S ∩ V (H) are open locating sets of G
and H, respectively.

Proof. Let S ⊆ V (G + H) and S1 = ∅ and S = S2 = S ∩ V (H). Since every
vertex of G is adjacent to V (H), for any distinct vertices u and v in V (G) we have
NG+H(u)∩S = NG+H(v)∩S. Thus, it is contrary to the assumption of S. Thus, S1 ̸= ∅.
Similarly, S2 ̸= ∅. Suppose that one of S1 and S2 is not an open locating set, say S1

is not an open locating set in G. Then, there exist distinct vertices u and v of G such
that NG(u) ∩ S1 = NG(v) ∩ S1. Since S2 ⊆ NG+H(u) and S2 ⊆ NG+H(v) it follows that
NG+H(u) ∩ S = NG+H(v) ∩ S. Thus, S is not a locating set in G + H, contrary to our
assumption. Therefore, S1 and S2 are locating sets in G and H, respectively. □

Theorem 2.4. For any positive integers m, n such that m = 3t or m = 3t+ 1 where
t ≥ 1 and n ≥ 2,

γOL
t (Cm□Pn) ≤

2

3
mn.

Proof. Let G be the Cartesian product Cm□Pn where m = 3t for a positive integer t.
For every 1 ≤ j ≤ n, we define Dj = Bj −∪t−1

l=0(v(3l+1)j) such that Bj = {v1j , v2j , . . . , vmj}
and 1 ≤ j ≤ n. We show that S = ∪n

j=1Dj is an open locating-total dominating set in

Cm□Pn. We complete the proof by induction on n. If n = 2, then γOL
t (Cm□P2) ⊆ D1∪D2.

Thus, we can obtain γOL
t (Cm□P2) ≤ 4t = 2

3mn. If n = 3, then S = ∪3
j=1Dj is an

OLTD-set for Cm□P3. Thus, |S| = 6t = 2
3mn = γOL

t (Cm□P3). Assume that for n − 1,

γOL
t (Cm□Pn−1) ≤ 2

3m(n− 1). We add a leaf to the last vertex from Pn−1 to obtain path
Pn. So, one cycle Cm is added to graph Cm□Pn−1 where every vertex in new cycle Cm is
adjacent to m the last vertex from Pn−1’s. So, the new graph is a Cm□Pn. Therefore, we
have

γOL
t (Cm□Pn) ≤ 2t+ γOL

t (Cm□Pn−1) ≤ 2t+
2

3
m(n− 1)

Therefore, the result holds. For m = 3t + 1, by a similar proof as above the result is
true. □

Theorem 2.5. For any positive integers m, n such that m = 3t + 2 where t ≥ 1 and
n ≥ 2,

γOL
t (Cm□Pn) ≤

2

3
(m+ 1)n.
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Proof. We proceed by induction on n. Assume that Dj = Bj − ∪t
l=1(v(3l)j) where

Bj = {v1j , v2j , . . . , vmj} and 1 ≤ j ≤ n. We show that S = ∪n
j=1Dj is an open locating-

total dominating set in Cm□Pn. If n = 2, then we have OLTD − set = S = ∪2
j=1Dj =

D1 ∪D2. Therefore, |S| = 4t+ 4 = 2
3(m+ 1)n.

Let γOL
t (Cm□Pn) ≤ 2

3(m+1)(n−1), for n−1. According to the method of proof Theorem
2.4, by adding the vertices Cm to each of the last vertices of Pn.

γOL
t (Cm□Pn) ≤ 2(t+ 1) + γOL

t (Cm□Pn−1)

≤ 2(t+ 1) +
2

3
(m+ 1)(n− 1)

=
2

3
(m+ 1)n.

□
Finally, we obtain the OLTD for a family of trees. For any tree T , let L(T ) denotes

the set of leaves of a tree. Also, let n and l denote the order of the tree and the number
of leaves, respectively. We consider the family Γ of labeled trees that is introduced in [1].

Theorem 2.6. If T ∈ Γ, then γOL
t (T ) = 3n−l

4 and S = B(T ) ∪ {L(T ) ∩ A(T )} ∪
{N(B(T )) ∩ C(T )} is an open locating-total dominating set for T where L(T ) is set of
leaves of T .

Proof. Let T = Tk for k ≥ 0. We proceed by induction on the order k. Let D be an
OLTD-set in Tk. For k = 0 that Tk = P6, it is clearly. For k = 1, T = T1 is obtained from
T0 by two operations τ1 and τ2. It is clear that S = B(T1)∪{L(T1)∩A(T1)}∪{N(B(T1))∩
C(T1)} is an OLTD-set in T1.Thus, |S| = |B(T1)|+ |C(T1)|. There is a support vertex for
each of the leaves in the tree. So, in T ∈ Γ, |B(T )| = |C(T )|. For tree T in the family of Γ,
we have |B(T )| = 2|A(T )| − l. We can obtain γOL

t (T1) = 3|A(T )| − l = 3(n+l
4 )− l = 3n−l

4 .
Assume that every tree Tk′ where 0 ≤ k′ ≤ k − 1 with l′ leaves satisfies in this Theorem.
Let Tk−1 be a tree of order n′ having l′ leaves. By doing some operations in tree Tk−1

(see [1]), we obtain tree Tk of order n = 5
2(n

′ + l′) with l − n′+l′
2 leaves. It is clear that

v ∈ D and y /∈ γOL
t (Tk−1). Since D is total dominating set, {w, v} ⊆ D. We have

N(x) ∩ D = {w} = N(v) ∩ D, which is a contradiction. So, y ∈ D. Since y is a leaf in
Tk−1, its support is in γOL

t (Tk−1). Thus, we can have

|D| = 3n′ − l′

4
+ 3l′ + 2(

n′ + l′

2
− l′) =

3n− l

4
.

□
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Abstract. Our objective in this paper is to give some properties of radical subacts
and prime subacts of any act over a semigroup S. We prove that the radical subacts of
an S−act form an S−lattice. We also determine the relationship between S−lattice of
radical subacts and the set of prime subacts of an S−act.
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1. Introduction and Preliminaries

Throughout this article, unless otherwise stated, S will denote a semigroup and an
S-act AS (or act A for short) is a right S-act which is unitary when S is a monoid. For
any subact B of an S−act A, the set {s ∈ S|As ⊆ B}, denoted by (B : A), is said the
colon of B in A. It is easy to see that (B : A) is a right ideal of S, whenever it is not
empty. Any proper subact B of A is called prime, if for any a ∈ A and s ∈ S, B contains
the translation aSs then a ∈ B or s ∈ (B : A).

The notions of prime ideals of rings and prime submodules of modules over rings are the
remarkable subjects in the study of rings and modules. Recently a great deal of work has
been done on the concept of prime subacts in the category of S−acts (Act-S) (for instance
see [1] and [2]). The notions of free acts and different kinds of flat acts are defined by
using the translations of semigroups on acts. So in some sense, the study of prime subacts
in Act-S is more important than the category of modules over rings. Also because of
the differences between structures of underlying sets of objects in these categories, there
are many differences in final results and the proving techniques about prime subacts and
submodules. For basic results and definition relating to acts over monoids in this paper,
we refer the reader to [3].

2. Main results

Definition 2.1. Let S be a semigroup, P an ideal of S and A be an S-act. P is called
a prime ideal if for a, b ∈ S, aSb ⊆ P implies a ∈ P or b ∈ P. A proper subact B of A
is called prime, if for any a ∈ A and s ∈ S, aSs ⊆ B implies a ∈ B or As ⊆ B (that is,
a ∈ B or s ∈ (B : A)). Also a centered S−act A is called a prime act if the one element
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subact {θ} is a prime subact of A. The set of all prime subacts of A with colon P is called
the P−prime spectrum of A and denoted by SpecP (A).

For an arbitrary subact B of an S−act A the intersection of all prime subacts of A
which are containing B, is called the prime radical of B (radical of B for short) and is
denoted by rad(B). Also B is called a radical subact if rad(B) = B. Clearly every prime
subact is a radical subact and rad(rad(B)) = rad(B), for any subact B of A. The set of
all radical subacts of A is denoted by Rad(A).

In the continuation of this section we assume that all semigroups are commutative.
However many of the results are true for arbitrary semigroups.

Lemma 2.2. Let S be a commutative semigroup and A be an S act. Then every non-
empty intersection of prime subacts of A is a radical subact of A.

Let P be a prime subact of an S−act A and B be any subact of A. Then P is called
a minimal prime of B if B ⊆ P and there is no prime subact strictly between B and P.
If A is a centered act, any minimal prime subact of {θ} is called minimal prime in A.

Proposition 2.3. Let A be a centered S−act. Every prime subact of A contains a
minimal prime subact of A.

Corollary 2.4. Suppose that B is a subact of a centered S−act A, for which rad(B) 6=
A. Then rad(B) is the intersection of all minimal prime subacts of B.

Lemma 2.5. Let A be an S−act and B a subact of A, F be a free S−act and P and
Q be ideals of S. The following hold.

(i) FP ⊆ FQ if and only if P ⊆ Q;
(ii) (FP : F ) = P ;
(iii) P is a prime ideal of S, if and only if, FP is a prime subact of F.
(iv) If B is a prime subact of A, then (B : A) is a prime ideal of S.

Lemma 2.6. Suppose that B is a subact and P is a prime subact of an S−act A, and
I is any ideal of S with BI 6= A. Then BI ⊆ P if and only if I ⊆ (P : A) or B ⊆ P.

Using the notation of Lemma 2.6, it is easily checked that,

rad(BI) = rad(AI) ∩ rad(B). (*)

Therefore,

rad(rad(B)I) = rad(AI) ∩ rad(rad(B)) = rad(AI) ∩ rad(B) = rad(BI). (**)

suppose that B and C are two subacts of an S−act A. Clearly rad(B∩C) ⊆ rad(B)∩
rad(C), because every prime subact containing B and C also contains B ∩ C. But the
equality is not true in general. However in the following proposition some of the particular
cases for equality are considered.

Proposition 2.7. Suppose that B and C are two subacts of an S−act A. For each of
the following cases we have rad(B ∩ C) = rad(B) ∩ rad(C).

(i) Both of subacts B and C are radical (in particular when B and C are prime);
(ii) B ⊆ A(B : A) and C ⊆ A(C : A);
(iii) (B : A) ∪ (C : A) = S.

Proposition 2.8. Suppose that B and C are radical subacts of an S−act A and I is
any ideal of S. Then rad((B ∩ C)I) = rad(BI) ∩ rad(CI).
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Proof. By Proposition 2.7 (i) we have, rad(B∩C) = rad(B)∩rad(C). Now we have,

rad((B ∩ C)I) = rad(AI) ∩ rad((B ∩ C) = rad(AI) ∩ (B ∩ C) =

(rad(AI) ∩ rad(B)) ∩ (rad(AI) ∩ rad(C)) = rad(BI) ∩ rad(CI),

using Lemma 2.6. �
Proposition 2.9. Suppose that B and C are radical subacts of an S−act A and I is

any ideal of S. Then rad(rad(B ∪ C)I) = rad(rad(BI) ∪ rad(CI)).

Proof. First it is easily seen that, rad(B∪C) = rad(rad(B)∪rad(C)). Now by using
the equations (**) and (*) in the paragraph after Lemma 2.6, we have,

rad(rad(B ∪ C)I) = rad((B ∪ C)I) = rad(BI ∪ CI) = rad(rad(BI) ∪ rad(CI)).

�
Suppose that S is a semigroup and (L,∨,∧) is a lattice of S−acts. L is called an

S−lattice if the set of ideals of S acts on L by an operation · with the following properties.
For any S−acts A and B in L and any ideals I and J of S we have,

A · I ∈ L;

A · (IJ) = (A · I) · J ;

(A ∨B) · I = (A · I) ∨ (B · I);

(A ∧B) · I = (A · I) ∧ (B · I).

Let A be an S−act. Then the set of all radical subacts of A with the inclusion is a
partially ordered set, denoted by (Rad(A),⊆) form a lattice. The following theorem gives
more details.

Theorem 2.10. Suppose that S is a semigroup and A is an S−act.Then the poset
(Rad(A),⊆), of all radical subacts of A is an S−lattice with the following operetions:

B · I = rad(BI) and B ∧ C = B ∩ C and B ∨ C = rad(B ∪ C),

for every radical subacts B,C ∈ Rad(A) and every ideal I of S.

Proof. Suppose that B and C are arbitrary radical subacts of A and I and J are
any ideals of S. First note that by definition of radical subacts and Lemma 2.7(i), B · I
and B ∨ C and B ∧ C are in Rad(A). Also it is easily checked that Rad(A),∨,∧) is a
lattice. Moreover, we have the following properties for Rad(A) to be an S−lattice by
using equation (**) and Proposition 2.8 and Proposition 2.9.

B · (IJ) = rad(B(IJ)) = rad((BI)J) = rad(rad(BI)J) = rad((B · I)J) = (B · I) · J,
and

(B ∧ C) · I = rad((B ∩ C)I) = rad(BI) ∩ rad(CI) = (B · I) ∧ (C · I),

and

(B ∨ C) · I = rad(rad(B ∪ C)I) = rad(rad(BI) ∪ rad(CI)) = rad(BI) ∨ rad(CI)

= (B · I) ∨ (C · I).

�
By an S−homomorphism between two S−lattices we mean a function which pre-

serves operations · and ∨ and ∧. Also every bijective S−homomorphism is called an
S−isomorphism. The following theorem and its converse show that relation between lat-
tices of radical subacts of two S−acts can be reduced to their prime spectrum.
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Theorem 2.11. Suppose that A and B are S−acts and f : Rad(A) −→ Rad(B) is an
isomorphism of S−lattices. Then for any arbitrary prime ideal P of S, the restriction of
f to SpecP (A), denoted by fP : SpecP (A) −→ SpecP (B) is a bijection.

The converse of the above theorem completes our expectation of relationship between
lattices of radical subacts and prime spectrum.

Theorem 2.12. Let A and B be S−acts and f : Rad(A) −→ Rad(B) be a homomor-
phism of S−lattices. If for each prime ideal P of S the restriction of f to SpecP (A), gives
a bijection fP : SpecP (A) −→ SpecP (B), then f is an S−isomorphism.

Proof. Let D ∈ Rad(B). Then D = rad(D) =
⋂
i∈I Bi, where the intersection is

taken over all prime subacts Bi ∈ SpecPi(B), such that Bi ⊇ D for each i ∈ I. Since
fPi : SpecPi(A) −→ SpecPi(B), is a bijection, so there exists Ai ∈ SpecPi(A) such that
fPi(Ai) = Bi. Now let C =

⋂
i∈I Ai. By lemma 2.2, C ∈ Rad(A). We claim that f(C) = D.

Since f is S−homomorphism, it preserves ∧. So we have,

f(C) = f(
⋂

i∈I
Ai) = f(

∧

i∈I
Ai) =

∧

i∈I
f(Ai) =

⋂

i∈I
f(Ai) =

⋂

i∈I
Bi = D.

So f is onto. Now let

C = rad(C) =
⋂

C≤Xi≤A
Xi and C ′ = rad(C ′) =

⋂

C′≤Yi≤A
Yi,

are radical subacts of A, where Xi’s and Yi’s are prime subacts of A, with (Xi : A) = Pi
and (Yi : A) = Qi. Let f(C) = f(C ′). Then f(

⋂
C≤Xi≤AXi) = f(

⋂
C′≤Yi≤A Yi). Hence

f−1(f(
⋂

C≤Xi≤A
Xi)) = f−1(f(

⋂

C′≤Yi≤A
Yi)).

Since f preserves intersections,
⋂

C≤Xi≤A
(f−1Pi (fPi(Xi))) =

⋂

C≤Xi≤A
(f−1(f(Xi)))

=
⋂

C′≤Yi≤A
(f−1(f(Yi))) =

⋂

C′≤Yi≤A
(f−1Qi (fQi(Yi))),

because for each prime ideal P of S the restriction fp of f to prime subacts of A is a
bijection. So

⋂
C≤Xi≤AXi =

⋂
C′≤Yi≤A Yi, that is, C = C ′. Thus f is one-to-one. �

3. Conclusion

By studying the relation between S−lattices of radical subacts of non-isomorphic acts
we can find many of common properties between them, as we can see an example of this
for prime subacts in Theorem 2.12.
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Abstract. In this paper, we consider the problem of two stage shrinkage pretest (TSP)
estimation for the scale parameter σ of a Rayleigh distribution under the reflected gamma
loss (RGL) function. We define a TSP estimator using a prior point information σ0 and
compare its risk with the pooled estimator of σ under the RGL function numerically and
graphically. The usefulness of this estimator with respect to the pooled estimator in the
presence of σ0 under different cases is discussed.
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1. Introduction
Let X1, · · · , Xn be a random sample of size n taken from a Rayleigh distribution with

probability density function (p.d.f)

f(x|σ) = x

σ
e−

x2

2σ , x > 0.(1)

The maximum likelihood estimator of σ is σ̂ = 1
2n

∑n
i=1X

2
i . Suppose that we have a

priori about the parameter σ in form of a point guess σ0, i.e., the sample data come
from a distribution that is close to the Rayleigh distribution with parameter σ0. This
information may be regarded as a nuisance parameter in the statistical estimation of the
model. Such information about the parameter is called nonsample information or uncertain
prior information. Following [6] we can take the estimator σ̂ and shrink it toward σ0 as
σ̂s = kσ̂ + (1 − k)σ0, 0 ≤ k ≤ 1, to construct the shrinkage estimator. The shrinkage
pretest estimator is proposed as

σ̂sp = [kσ̂ + (1− k)σ0]I(A) + σ̂I(Ac)(2)

where A is the acceptance region of a test for H0 : σ = σ0 against H1 : σ ̸= σ0, Ac is the
complement of A and I(.) is the indicator function. He show that this estimator dominates
σ̂ in a large portion of the parameter space. This strategy of estimation is widely used in
literature, see [1].
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In some situations, the researcher can employ a TSP estimator using prior information
for achieving a minimum cost of experimentation: he/she consider a small first stage
sample and an additional second stage sample for estimation. The earliest work on two
stage estimation procedure in the exponential distribution is [3] who considered estimating
the mean of an exponential distribution under the SEL. They used a shrinkage estimator
on the first sample if the null hypothesis H0 : σ = σ0 is accepted; otherwise used the
pooled mean of the two samples if H0 is rejected. [4] used the general entropy loss and
compared a TSP estimator with the conventional estimator X̄1.

In this paper, we consider the reflected gamma loss (RGL) function of the form

L(∆) = l
{
1−∆γe−γ(∆−1)

}
, ∆ =

δ

σ
,(3)

where l > 0 is the maximum loss and γ > 0 is a shape parameter. This loss is bounded
function of ∆ by 0 and l. Also, it is asymmetric function of ∆ but not convex in ∆ and has
a unique minimum 0 for ∆ = 1, is strictly decreasing on (0,1) and increasing on (1,∞).
L(0) = l and lim∆→∞ L(∆) = l. This loss is scale invariant, which is appropriate for
estimating scale parameter, and it penalizes heavily under estimation, see [2].

We compute the risk of the pooled estimator and TSP estimator under the RGL in
section 2 and compare them numerically and graphically in Section 3. An illustrative
example is provided in section 4. We end the paper with some concluding remarks in
Section 5.

2. The proposed TSP estimator
Let X11, X12, · · · , X1n1 be the first sample of size n1 taken from the Rayleigh dis-

tribution with p.d.f given in (1). The MLE of σ is then given by σ̂1 = 1
2n1

∑n1
i=1X

2
1i.

Now, suppose that it is suspected a priori that σ = σ0 may hold. This information can
be tested based on H0 : σ = σ0 against H1 : σ ̸= σ0 at the level of significance α. A
likelihood ratio test (LRT) statistic is 2n1σ̂1

σ0
∼ χ2

2n1
under H0 which has an acceptance

region A = {σ̂1 : q1σ0

2n1
≤ σ̂1 ≤ q2σ0

2n1
} where q1 and q2 are the values of the lower and

upper 100α/2% points of the chi-square distribution with 2n1 degrees of freedom, i.e.,
q1 = χ2

2n1
(α2 ), q2 = χ2

2n1
(1− α

2 ).
If H0 is accepted, we stop sampling and take the estimator kσ̂1+(1−k)σ0, 0 ≤ k ≤ 1.

If not so, we take additional observations X21, X22, · · · , X2n2 of size n2 and compute the
pooled estimator of σ as σ̂p = n1σ̂1+n2σ̂2

n1+n2
, where σ̂2 =

1
2n2

∑n2
i=1X

2
2i is the MLE of σ based

on data in stage two. Therefore, a version of TSP estimator of σ is
σ̂tsp =

[
kσ̂1 + (1− k)σ0

]
I(A) + σ̂pI(A

c).(4)
Before computing the risk of σ̂tsp, we calculate the risk function of σ̂p under the RGL

function as

R(σ, σ̂p) = 1− E
[( σ̂p

σ

)γ
e−γ(

σ̂p
σ
−1)

]

= 1− E
[
Uγe−γ(U−1)

]
= 1− eγ(n1 + n2)

n1+n2Γ(γ + n1 + n2)

(n1 + n2 + γ)n1+n2+γΓ(n1 + n2)
,(5)

where U =
σ̂p

σ ∼ Gamma(n1 + n2, n1 + n2). The risk function under the RGL for the
estimator σ̂tsp is given by

R(σ, σ̂tsp) = 1− E
[( σ̂tsp

σ

)γ
e−γ( σ̂

tsp

σ
−1)

]
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= 1− E
{(kU1

n1
+ (1− k)σ⋆

)γ
e
−γ(

kU1
n1

+(1−k)σ⋆−1)I(B)
}

+ E
{(U1 + U2

n1 + n2
)γe

−γ(
U1+U2
n1+n2

−1)
I(B)

}
− E

{
Uγe−γ(U−1)

}

= 1− eγ(1−σ⋆(1−k))

Γ(n1)

∫ w2

w1

(ku1
n1

+ (1− k)σ⋆
)γ
un1−1
1 e

−u1(1+
kγ
n1

)
du1

+
eγ

(n1 + n2)γΓ(n1)Γ(n2)

∫ w2

w1

∫ ∞

0
(u1 + u2)

γun1−1
1 un2−1

2 e
−(u1+u2)(

γ
n1+n2

+1
du2du1

− eγΓ(n1 + n2 + γ)(n1 + n2)
n1+n2

Γ(n1 + n2)(n1 + n2 + γ)n1+n2+γ
(6)

where Ui =
niσ̂i
σ ∼ Gamma(ni, 1), i = 1, 2, σ⋆ = σ0

σ , w1 = q1σ⋆

2 , w2 = q2σ⋆

2 , B = {U1 :
w1 ≤ U1 ≤ w2}.

3. Performance analysis
For comparison purposes, the relative efficiency of σ̂tsp with respect to σ̂p is calculated

as

RE(σ̂tsp, σ̂p) =
R(σ, σ̂p)

R(σ, σ̂tsp)
.(7)

The relative efficiency (7) is drown in Figure 1 for the values n1 = 25, n2 = 15, α =
0.01, 0.05, k = 0.2(0.2)0.8 and γ = 1 with respect to σ⋆ = σ0/σ (more figures are provided,
but not presented here). It is observed from Figure 1 that the estimator σ̂tsp dominates
the pooled estimator in the neighborhood of null hypothesis (σ⋆ = 1).

We held fix σ⋆ = 1 and plotted the relative efficiency with respect to k in a Figure
but it is not presented. This figure show that relative efficiency is a decreasing function of
k for fixed n1, n2, γ and α. Moreover, a TSP estimator with smaller level of significance
performs better than other estimators with fixed values of another parameters. It can be
conclude that for fixed n1, the relative efficiency increases when n2 increases.

4. A numerical example
In this section, a numerical example from [5] is provided to illustrate the proposed

estimators. Data is related to the recovery time of leukemia patients treated with med-
ication.The MLE of σ is σ̂ = 2.882. The proposed estimator σ̂tsp and RE(σ̂tsp, σ̂p) are
computed for selected values of σ0 = 2, 3, n1 = 5 and n2 = 5, 7, 10 when k = 0.4, γ = 2
and α = 0.05 and summarized in Table 1.

5. Conclusion
In the present paper, we deal with point shrinkage estimation on two stage in Rayleigh

distribution under the RGL function. A TSP estimator of σ is proposed and its risk is
computed numerically. For comparison purposes, we compute the R.E. between a TSP
and the pooled estimator and study the performance of them graphically. Our findings
show that the proposed TSP estimator outperforms the pooled estimator in neighborhood
σ0.

434



M. Naghizadeh Qomi, Z. Mahdizadeh

Figure 1. Plot of the relative efficiency for the values n1 = 25, n2 = 15,
γ = 1 and selected values of α = 0.01, 0.05 and k = 0.2, 0.4, 0.6, 0.8 with
respect to σ⋆.

Table 1. RE(σ̂tsp, σ̂p) and σ̂tsp for selected values σ0, n1 and n2, k = 0.4,
γ = 2 and α = 0.05 .

n2

n1 σ0 5 7 10

5 3 RE 2.63 2.44 2.17

σ̂tsp 3.52 3.52 3.52

2 RE 0.939 0.839 0.719

σ̂tsp 3.17 3.95 4.18
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1. Introduction and Preliminary

In 1936 G. Birkhoff suggested taking the lattice of closed subspaces of a Hilbert space
as a suitable model for the logic of quantum mechanics. This lattice equipped with the
relation of orthogonal complement can be described as an ortholattice. Since then the
theory of orthomodular lattices has been developed; the monographs Kalmbach and Beran
are highly recommended for the following and other facts about orthomodular lattices.
By an ortholattice we shall mean an algebra L = (L,∨,∧,′ , 0, 1) satisfying the following
postulates [3]:
(i) the algebra (L,∨,∧) is a lattice, (ii) the unary operation ′ : L −→ L is such that the

relations a ∨ a
′
= 1, a ∧ a

′
= 0 hold for every a ∈ L, (iii) if a ≤ b, then b

′ ≤ a
′
, and

(iv)(a′)′ = a for every a ∈ L.
A lattice L is said to be distributive if a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for every a, b, c ∈ L.
A lattice L is modular if it satisfies the implication a ≤ c =⇒ a ∨ (b ∧ c) = (a ∨ b) ∧ c.
A lattice L which is distributive end complemented is said to be a Boolean lattice. Every
element a ∈ L has in this case exactly one complement which is denoted by a′. A non-
empty subset I of the base set L of an ortholattice (L,∨,∧,′ , 0, 1) is called an ideal of L
if and only if the following conditions hold in L:
i) a ∨ b ∈ I, for any a, b ∈ I, (ii) if a ∈ I and b ∈ L is such that b ≤ a, then b ∈ I.

A p-ideal of L is an ideal such that for any i ∈ I and any a ∈ L, (i ∨ a
′
) ∧ a ∈ I.

As usual, for a, b of ortholattice L, we write aCb if and only if a = (a ∧ b) ∨ (a ∧ b
′
) and

in this case we say that a and b commute. ( For more details we refere redears to [1-4] )

∗Speaker. Email address: najafi@behiau.ac.ir
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Definition 1.1. [4] For elements a and b of the orthomodular lattice L, we define the
commutator of a and b by (a∨ b)∧ (a∨ b′)∧ (a′∨ b)∧ (a′∨ b′) denoted by com(a, b). Nemly,

com(a, b) = (a ∨ b) ∧ (a ∨ b′) ∧ (a′ ∨ b) ∧ (a′ ∨ b′).

The n-th commutator sublattice Ln of a generalized orthomodular lattice L is defined
by induction in the following way: L0 = L and for n ≥ 1, Ln is by definition the p-ideal
generated in Ln−1 by all the commutators of the generalized orthomodular lattice Ln−1.
The lattice L is said to be solvable (in the sense of Marsden) if there exists n ∈ N such
that Ln = {0}. Recall that [3] L is solvable if and only if it is distributive.

Proposition 1.2. [1] For elements a, b of an orthomodular lattice aCb holds if and
only if com(a, b) = 0.

Theorem 1.3. [4] An orthomodular lattice L is a Boolean algebra iff L is distributive
iff aCb for every a, b ∈ L.

2. Engel elements and Engel sets in orthomodular lattices

Suppose that L be any orthomodular lattice and n be a non-negative integer. For
any two elements a and b of L, we define inductively com(a, nb), the n-Engel left normed
commutator of the pair (a, b), as follows:

com(a, 0b) = a, ..., com(a, nb) = com(com(a, n−1b), b)

n-Engel right normed commutator com(na, b) of the pair (a, b) is defined by induction as

com(0a, b) = b, ..., com(na, b) = com(a, com(n−1a, b)).

Especially, com(a, 1b) = com(1a, b) = com(a, b) = (a ∨ b) ∧ (a ∨ b′) ∧ (a′ ∨ b) ∧ (a′ ∨ b′).

Definition 2.1. For a positive integer k, an element a of L is called a right k-Engel
element of L whenever com(a, kb) = 0 for all b ∈ L. An element a of L is called a right
Engel element if it is right k-Engel for some non-negative integer k. We denote by R(L)
and Rk(L) the set of right Engel elements and right k-Engel elements, respectively. So

Rk(L) = {a ∈ L : com(a, kb) = 0, ∀b ∈ L} and R(L) =
∪

k∈N
Rk(L).

Notice that the variable element b appears on the right of bracket and if n can be chosen
independently of b, then a is a right n-Engel element of L. Left Engel elements are defined
in a similar way. For a positive integer k, an element a of L is called a left k-Engel element
of L whenever com(b, ka) = 0 for all b ∈ L. Also a is said to be a left Engel element of L
if it is left k-Engel for some non-negative integer k. We denote by L(L) and Lk(L) the set
of left Engel elements and left k-Engel elements, respectively.

Lk(L) = {a ∈ L : com(b, ka) = 0, ∀y ∈ L} and L(L) =
∪

k∈N
Lk(L).

So, an element a ∈ L is a left Engel element if for all b ∈ L there exists a positive
integer n such that com(a,n b) = 0, where the variable b is on the left of bracket. Also,
since com(a, 0) = com(a, 1) = 0, for every a ∈ L, 0, 1 ∈ R(L) ∩ L(L).

Definition 2.2. An element a of L that is both the left and right Engel element is
said to be an Engel element. The set of all Engel elements of L is denoted by En(L).
Obviously, 0, 1 ∈ En(L).

Theorem 2.3. L(L) = L if and only if R(L) = L if and only if En(L) = L.
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Proof. Suppose that L = L(L). Then L = {a ∈ L : ∀b ∈ L ∃n ∈ N s.t com(b, na) =
0}. i.e., for all a ∈ L and for every b ∈ L exists n ∈ N such that com(b, na) = 0. With
substituting a to b and b instead a for any b ∈ L, there is positive integer n such that
com(a, nb) = 0 for all a ∈ L. Hence L = R(L). Now, let R(L) = L and a ∈ L = R(L).
Then, by definition of R(L), for all b ∈ L, there exists n ∈ N such that com(a, nb) = 0.
So, for each b ∈ L there exists n ∈ N such that com(b, na) = 0. Thus a ∈ R(L) ∩ L(L)
and hence L ⊆ En(L). Since En(L) ⊆ L we have L = En(L). If En(L) = L, then
R(L) ∩ L(L) = L. So R(L) = L(L) = L. □

Corollary 2.4. Ln(L) = L if and only if Rn(L) = L.

Example 2.5. We consider the orthomodular lattice L given as follows:

0

ba c d e

b′a′ c′ d′ e′

1

By routine calculations, we obtain com(a, 0d) = a, com(a, 1d) = com(a, d) = c′ and
com(a, 2d) = com(com(a, d), d) = com(c′, d) = 0. Also com(b, 0d) = a, com(b, 1d) =
com(b, d) = 0 and com(b, 2d) = com(com(b, d), d) = com(0, d) = 0. So for every posi-
tive integer n ≥ 3, we have com(a, nd) = 0 = com(b, nd) = 0. Also we obtain com(a, 2d) =
com(com(a, d), d) = com(c′, d) = e, com(a, 3d) = com(com(a, 2d), d) = com(e, d) = 0,
com(b, 2d) = com(com(b, d), d) = com(0, d) = 0. For every positive integer n ≥ 3, we have
com(a, nd) = 0, com(b, nd) = 0 and hence a, b ∈ R(L). We saw that R(L) = L(L) = L.
Thus En(L) = L.

By Theorem 2.3 and Corollary 2.4 the definition of an Engel orthomodular lattice is
rewritten as follows:

Definition 2.6. L is said to be an Engel orthomodular lattice, if for all a, b ∈ L,
there is a non-negative integer n such that com(a, nb) = 0. Also L is called n-Engel if
L = Ln(L) or equivalently L = Rn(L).

Theorem 2.7. Any solvable orthomodular lattice is an Engel orthomodular lattice.

Proof. Let L be a solvable orthomodular lattice of class n. Then Ln = {0}. Hence
com(com(a1, a2, ..., an−1), an) = 0 for all ai ∈ L. Hence com(a, nb) = 0 for all a, b ∈ L.
Therefore L is Engel. □

Remark 2.8. The converse of Theorem 2.7, is not true in general. The orthomodular
lattice in Example 2.5 is a 2-Engel orthomodular lattice which is not solvable.

Proposition 2.9. Let I be an ideal of L. Then I and L/I are Engle iff L is an Engel
orthomodular lattice.
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Proof. Let L be an Engel orthomodular lattice. Since I ⊆ L and any subset of
an Engel orthomodular lattice is an Engel by the definition, I is an Engel. Let a, b be
elements of L, then a/I, b/I ∈ L/I. Since L is Engel, then there exists n ∈ N such that
com(a, nb) = 0. We claim that com(a/I, nb/I) = com(a, nb)/I. By induction on n, if
n = 1, then

com(a, b)/I =((a ∨ b) ∧ (a ∨ b′) ∧ (a′ ∨ b) ∧ (a′ ∨ b′))/I

=(a ∨ b)/I ∧ (a ∨ b′)/I ∧ (a′ ∨ b)/I ∧ (a′ ∨ b′)/I

=(a/I ∨ b/I) ∧ (a/I ∨ b′/I) ∧ (a′/I ∨ b/I) ∧ (a′/I ∨ b′/I)

=com(a/I, b/I).

Now, let com(a/I, n−1b/I) = com(a, n−1b)/I. Therefore com(a/I, nb/I) = com(a/I, n−1b/I
), b/I) = com(com(a, n−1b)/I, b/I) = com(com(a, n−1b), b)/I = com(a, nb)/I. Hence the
above claim holds for every positive integer n. Then com(a/I, nb/I) = com(a, nb)/I = 0/I.
So L/I is Engel. Conversely, let I and L/I be Engle. If a is an arbitrary element of L,
then a/I ∈ L/I. Therefore, for every b ∈ L there exists a positive integer n such that
com(a/I, nb/I) = 0/I. But com(a/I, nb/I) = com(a, nb)/I, so com(a, nb)/I = 0/I. Hence
com(a, nb) ∈ I. Since I is Engel, then there exists m ∈ N such that com(com(a, nb),mb) =
0. Whence com(a, n+mb) = 0. Then L is Engel. □

Obvious, if L is Engel, then any subalgebra and sublattice of L is Engel, too. Also the
intersection of any two Engel subalgebras of L, is Engel.

Proposition 2.10. The product of two Engel orthomodular lattices is again an Engel
orthomodular lattice.

Proposition 2.11. L is 1-Engel iff L is distributive .

Proof. Let L be an 1-Engel orthomodular lattice and a, b ∈ L. Then com(a, b) =
com(1a, b) = com(a,1 b) = 0 for all a, b ∈ L. So aCb for all a, b ∈ L and hence L is
distributive. Conversely, if L is a distributive orthomodular lattice, then for all a, b ∈ L we
obtain aCb, which implies com(a, b) = 0. Therefore L is 1-Engel orthomodular lattice. □

Theorem 2.12. The following conditions on orthomodular lattice are equivalent:
(i) L is a Boolean algebra, (ii) L is distributive, (iii) aCb for every a, b ∈ L,
(iv) C is an equivalence relation, (vi) L is 1-Engel, (vii) L is solvable of class 1.

Proof. The proof is obvious by Propositions 1.2, 2.11 and Theorem 1.3. □

3. Conclusion

In the present paper, we have introduced the concepts of Engel elements and Engel sets
in orthomodular lattices and investigated some of their properties. To develop the theory of
orthomodular lattices, one of the most encouraging ideas could be investigating the Engel
degree and finding a relation diagram between subclasses of orthomodular lattices. For
instance, 1-Engel orthomodular lattices are strictly distributive orthomodular lattices.
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1. Introduction

Let A denote the class of functions f of the form:

f(z) = z +
∞∑

k=2

akz
k,(1)

which are analytic in the open unit disk:

U = {z ∈ C : |z|},
and normalized by f(0) = f ′(0)− 1 = 0. Also N be the main subclass of A consisting the
functions of the type:

f(z) = z −
∞∑

k=2

akz
k, (ak > 0, z ∈ U),(2)

see [?] and [?].
A variable X is said to be Poisson distribution if it takes the values 0,1,2,. . . with

probabilities e−m, me−m
1! , m2 e−m

2! , . . . respectively, where m is called the parameter. Thus

P(X = k) =
mke−m

k!
, (k = 0, 1, 2, . . .).(3)
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Recently, Porwal [?] introduced a power series whose coefficients are probabilities of the
Poisson distribution as follows:

P (m, z) = z +
∞∑

k=2

mk−1

(k − 1)!
e−mzk.(4)

For more details, see [?].
Porwal and Kumar [?], introduced the confluent hypergeometric distribution whose

probabilities mass function is:

(a)k
(c)kk!F (a; c;m)

,(5)

where a and c are complex numbers such that c 6= 0, −1,−2, . . ., (x)k is the Pochhammer
symbol defined by:

(x)k =

{
1 , k = 0

x(x+ 1) · · · (x+ k − 1) , k ∈ N = {1, 2, 3, . . .}

and F (a; c;m) =
∑∞

k=0
(a)k

(c)k(1)k
zk is the well-known confluent hypergeometric function

which is convergent for all finite values of z, see also [?].
If we put a = c, then it reduce to the Poisson distribution. Now we consider a series

CH(a; c;m; z) whose coefficients are probabilities of confluent hypergeometric distribution:

CH(a; c;m; z) = z +
∞∑

k=2

(a)k−1mk−1

(c)k−1(k − 1)!F (a; c;m)
zk,(6)

where a, c,m > 0.
The Hadamard product (Convolution) for functions

f(z) = z +
∞∑

k=2

akz
k, and g(z) = z +

∞∑

k=2

bkz
k

belongs to A denoted by f ∗ g is defined as follows:

(f ∗ g)(z) = z +

∞∑

k=2

akbkz
k = (g ∗ f)(z).(7)

Furthermore f(z) is said to be subordinate to g(z), written f ≺ g or f(z) ≺ g(z) if there
exists a function w analytic in U with w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)).
If g is univalent, then f ≺ g if and only if f(0) = 0 and f(U) ⊂ g(U), see [?] and [?].

We consider Cf (β, γ) as a subclass of N consisting of all functions for which:

Re

{
z
(
Qf (z)

)′
+ βz2

(
Qf (z)

)′′

βz
(
Qf (z)

)′
+ (1− β)Qf (z)

}
> γ,(8)

where 0 6 β 6 1, 0 6 γ < 1 and for f(z) ∈ N :

Qf (z) =

[(
2z − CH(a; c;m; z)

)
∗ f
]

(z).(9)
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2. Main results

First, we state a sharp coefficient bound on the class Cf (β, γ). Furthermore, the
convolution preserving property on β and γ is investigated.

Theorem 2.1. Let f(z) = z −∑∞k=2akz
k be analytic in U. Then f ∈ Cf (β, γ) if and

only if
∞∑

k=2

(k − γ)(1− β + βk)(a)k−1mk−1

(1− γ)(c)k−1(k − 1)!F (a; c;m)
ak 6 1.(10)

Proof. By making use of (9), we obtain:

Qf (z) = z −
∞∑

k=2

(a)k−1mk−1

(c)k−1(k − 1)!F (a; c;m)
akz

k,(11)

so if f ∈ Cf (β, γ), then

Re





z −
∞∑
k=2

(k + βk(k − 1))
(a)k−1m

k−1

(c)k−1(k−1)!F (a;c;m)akz
k

z −
∞∑
k=2

(βk + 1− β)
(a)k−1mk−1

(c)k(k−1)!F (a;c;m)akz
k




> γ.

By choosing the values of z on the real axis and then letting z → 1− through real values,
we have:

(1− γ)−
∞∑

k=2

[
k + βk(k − 1)− γ(βk + 1− β)

]
(a)k−1mk−1

(c)k(k − 1)!F (a; c;m)
ak > 0,

or
∞∑

k=2

(k − γ)(1− β + βk)(a)k−1mk−1

(1− γ)(c)k−1(k − 1)!F (a; c;m)
ak 6 1.

Conversely, we suppose that (10) holds true. We will show that (8) is satisfied. Using the
fact that ReW > γ if and only if |W − (1 + γ)| < |W + 1− γ|, it is enough to show that:

L =

∣∣∣∣∣
z
(
Qf (z)

)′
+ βz2

(
Qf (z)

)′′

βz
(
Qf (z)

)′
+ (1− β)Qf (z)

− 1− γ
∣∣∣∣∣

<

∣∣∣∣∣
z
(
Qf (z)

)′
+ βz

(
Qf (z)

)′′

βz
(
Qf (z)

)′
+ (1− β)Qf (z)

+ 1− γ
∣∣∣∣∣ = R.

But if βz
(
Qf (z)

)′
+ (1− β)Qf (z) = X, we have:

L =
1

|X|
∣∣∣z
(
Qf (z)

)′
+ βz2

(
Qf (z)

)′′ − (1 + γ)X
∣∣∣ .

Thus

L =
1

|X|

∣∣∣∣∣− γz −
∞∑

k=2

[
βk(k − 1) +

(
1− (1 + γ)β

)
k − (1 + γ)(1− β)

]
×

× mk−1(a)k−1akzk

(c)k−1(k − 1)!F (a; c;m)

∣∣∣∣∣
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<
|z|
|X|

[
γ +

∞∑

k=2

(1 + βk − β)(k − γ − 1)
(a)k−1mk−1

(c)k−1(k − 1)!F (a; c;m)
ak|z|k−1

]
,

and

R =
1

|X|

∣∣∣∣
[
z
(
Qf (z)

)′
+ βz2

(
Qf (z)

)′′
+ (1− γ)X

]∣∣∣∣

=
1

|X|

∣∣∣∣∣

[
(2− γ)z −

∞∑

k=2

[
βk(k − 1) +

(
1 + (1− γ)β

)
k(1− γ)(1− β)

]
×

× mk−1(a)k−1akzk

(c)k−1(k − 1)!F (a; c;m)

]∣∣∣∣∣

> |z||X|

[
(2− γ)−

∞∑

k=2

(1 + βk − β)(k − γ + 1)
mk−1(a)k−1ak|z|k−1

(c)k−1(k − 1)!F (a; c;m)

]
.

When z ∈ ∂U = {z ∈ C : |z| = 1}, it is easy to verify that R−L > 0 if (10) holds and so
the proof is complete. �

Remark 2.2. The result (10) is sharp for the function H(z) given by:

H(z) = z − (1− γ)(c)1F (a; c;m)

m(2− γ)(1 + β)(a)1
z2.(12)

Theorem 2.3. Let the functions f(z) = z −∑∞k=2akz
k and g(z) = z −∑∞k=2bkz

k be
in the class Cf (β, γ), then (f ∗ g)(z) belnogs to Cf (β, γ0), where:

γ0 6 1− k − 1
(k−γ
1−γ
)2 (1−β+βk)(a)k−1mk−1

(c)k−1(k−1)!F (a;c;m) − 1
.(13)

Proof. It is sufficient to prove that
∞∑

k=2

(1− β + βk)(a)k−1mk−1

(c)k−1(k − 1)!F (a; c;m)

(k − γ0
1− γ0

)
akbk 6 1.

By using the Cauchy–Schwarz inequality from (10), we obtain:

∞∑

k=2

(1− β + βk)(a)k−1mk−1

(c)k−1(k − 1)!F (a; c;m)

(k − γ
1− γ

)√
akbk 6 1.

Hence, we find the largest γ0 such that:
∞∑

k=2

(1− β + βk)(a)k−1mk−1

(c)k−1(k − 1)!F (a; c;m)

(k − γ0
1− γ0

)
akbk

6
∞∑

k=2

(1− β + βk)(a)k−1mk−1

(c)k−1(k − 1)!F (a; c;m)

(k − γ
1− γ

)√
akbk

6 1,

or equivalently

√
akbk 6

(1− γ0)(k − γ)

(k − γ0)(1− γ)
, (k > 2).
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This inequality holds if

(c)k−1(k − 1)!F (a; c;m)

(1− β + βk)(a)k−1mk−1

(1− γ
k − γ

)
6 (1− γ0)(k − γ)

(k − γ0)(1− γ)
.

After a simple calculation, we get the required result, so the proof is complete. �

Theorem 2.4. With the same conditions as in Theorem 2.3, (f ∗ g)(z) ∈ Cf (β0, γ),
where:

β0 6
(1− β + βk)2(a)k−1(k − γ)mk−1

(c)k−1(k − 1)!F (a; c;m)(1− γ)(k − 1)
− 1

k − 1
.(14)

Proof. By using the same techniques as in the Theorem 2.3, we can easily prove, so
the proof is omitted. �

3. Neighborhood and convexity

In this section, we derive some geometric properties of Cf (β, γ) such as convexity and
neighborhood structure.

Theorem 3.1. Cf (β, γ) is a convex set.

Proof. It is enough to show that if fj(z) (j = 1, 2, . . . , t) be in the class Cf (β, γ),

then F (z) =
∑t

j=1λjfj(z) is also in Cf (β, γ) where λj > 0 and
∑t

j=1λj = 1. But we have:

F (z) =
t∑

j=1

λjfj(z)

=

t∑

j=1

λj

(
z −

∞∑

k=2

ak,jz
k
)

= z −
∞∑

k=2

( t∑

j=1

λjak,j

)
zk.

Since

∞∑

k=2

(k − γ)(1− β + βk)(a)k−1mk−1

(1− γ)(c)k−1(k − 1)!F (a; c;m)F (a; c;m)

( t∑

j=1

λjak,j

)

=

t∑

j=1

λj

{ ∞∑

k=2

(k − γ)(1− β + βk)(a)k−1mk−1

(1− γ)(c)k−1(k − 1)!F (a; c;m)F (a; c;m)
ak,j

}

6
t∑

j=1

λj = 1.

So by Theorem 2.1, we conclude that F (z) ∈ Cf (β, γ). Hence the proof is complete. �

Now, we define the (k, δ)–neighborhood of a function f ∈ N by:

Nk,δ(f) =

{
g ∈ N : g(z) = z −

∞∑

k=2

bkz
k and

∞∑

k=2

k |ak − bk| 6 δ
}
.(15)
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For the identity function I(z) = z, we have:

Nk,δ(I) =

{
g ∈ N : g(z) = z −

∞∑

k=2

bkz
k and

∞∑

k=2

k |bk| 6 δ
}
.(16)

Theorem 3.2. Let δ = 2(1−γ)(c)1F (a;c;m)
(2−γ)(1+β)(a)1m , then Cf (β, γ) ⊂ Nk,δ(I).

Proof. By Theorem 2.1, we have:

∣∣g′(z)
∣∣ 6 1 +

2(1− γ)(c)1F (a; c;m)

(2− γ)(1 + β)(a)1m
|z|k−1 .

Indeed

∣∣g′(z)
∣∣ =

∣∣∣∣∣1−
∞∑

k=2

kbkz
k−1
∣∣∣∣∣ 6 1 +

∞∑

k=2

kbk |z|k−1 .

By choosing the values of z on the real axis and then letting z → 1− through real values,
we obtain:

∞∑

k=2

kbk 6
2(1− γ)(c)1F (a; c;m)

(2− γ)(1 + β)(a)1m
= δ,

so g(z) ∈ Nk,δ(I). �
The function g(z) = z −∑∞k=2bkz

k is said to be a member of Cθf (β, γ) if there exists a

function f ∈ Cf (β, γ) such that:
∣∣∣∣
g(z)

f(z)
− 1

∣∣∣∣ 6 1− θ, (z ∈ U, 0 6 θ < 1).(17)

Theorem 3.3. If f ∈ Cf (β, γ) and

θ = 1− δ(2− γ)(1 + β)(a)1m

2
[
(2− γ)(1 + β)(a)1m− (1− γ)(c)1F (a; c;m)

] ,(18)

then Nk,δ(f) ⊂ Cθf (β, γ).

Proof. Let f ∈ Nk,δ(f), then
∑∞

k=2k |ak − bk| < δ, which implies the coefficient

inequality
∑∞

k=2 |ak − bk| 6 δ
2 . Also since f ∈ Cf (β, γ) we have from (10):

∞∑

k=2

ak 6
(1− γ)(c)1F (a; c;m)

(2− γ)(1 + β)(a)1m
,

so that

∣∣∣∣
g(z)

f(z)
− 1

∣∣∣∣ <

∣∣∣∣∣∣∣∣

∞∑
k=2

(bk − ak)zk

z −
∞∑
k=2

akzk

∣∣∣∣∣∣∣∣

<

∞∑
k=2

|bk − ak|

1−
∞∑
k=2

ak

6 δ

2

(2− γ)(1 + β)(a)1m

(2− γ)(1 + β)(a)1m− (1− γ)(c)1F (a; c;m)
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= 1− θ.
Thus by definition g ∈ Cθf (β, γ) for θ given by (18). �
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Factorization Properties of Quotients of Polynomial Rings
by Monomial Ideals

Ashkan Nikseresht1,∗,
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Abstract. Suppose that K is a field, S = K[x1, . . . , xn] and I is a monomial ideal
of S. We study factorization properties of the ring R = S/I. In particular, we present
conditions equivalent to R being présimplifiable or a bounded factorization ring or a finite
factorization ring or a unique factorization ring. We also present necessary conditions
and sufficient conditions for R to be a half-factorial ring.
Keywords: Unique factorization ring, Bounded factorization ring, Finite Factorization
ring, présimplifiable ring, Monomial ideal
AMS Mathematics Subject Classification [2010]: 13F15, 13A05, 13F55

1. Introduction
Throughout this paper, all rings are commutative with identity and K is always a

field. Also U(R) denotes the set of units of the ring R.
Although factorization theory in commutative rings has a long history (see, for example

[6]), it still gets much attention. For more recent papers on this topic, we refer the reader
to [1,4,7,8] and the references therein. At first, the focus of research on this subject was
factorization properties of integral domains. In the late nineties, Anderson and Valdes-
Leon, generalized this theory to commutative rings with zero-divisors and to modules
(see [2,3]). More recently, in [8], factorization properties of an element of a module with
respect to a multiplicatively closed subset of the ring has been investigated. In [7], it is
shown that using these generalizations, one can get new results and insights on the classic
case of factorization theory in integral domains.

Assume that S = K[x1, . . . , xn] is a polynomial ring in n indeterminates, I is an ideal
of S and R = S/I. Here we are going to study factorization properties of R, when I is
generated by a set of monomials of S. Note that if we let I to be general then R can be
any finitely generated K-algebra and hence the question in this case is quite hard. Thus
we assume that I is a monomial ideal. Monomial ideals, although are much simpler than
general ideals, but they have many interesting properties and have been studied a lot (see
for example [5]).

At the end of this introduction, we recall some definitions from factorization theory in
rings with zero-divsors. Two elements r, s of R are associates, when Rr = Rs. We denote

∗Speaker. Email address: ashkan_nikseresht@yahoo.com

447



A. Nikseresht

being associates by ∼. Also a nonunit element r ∈ R is called irreducible, if for s, t ∈ R,
r = st implies r ∼ s or r ∼ t. We should mention that there are several other equivalent
conditions for being associates or irreducible when R is a domain. But these conditions
are not equivalent when we let R to have zero-divisors and hence these lead to different
types of associativity and irreducibility in rings with zero-divisors. We refer the reader
to [2], for a detailed study of these conditions. There is a condition under which all types
of associativity (and hence all types of irreducibility) coincide. This is when the ring R is
présimplifiable, that is, when from x = xy for some x, y ∈ R, we can deduce that either
x = 0 or y ∈ U(R).

By an atomic factorization of an element r ∈ R, we mean an equation r = r1r2 · · · rt
in R, such that every ri is irreducible. The length of this factorization is t. Also the ring R
is called atomic, when every nonzero nonunit of R has an atomic factorization. Moreover,
R is called a bounded factorization ring (BFR, for short) when for every nonzero nonunit
r ∈ R, there is a positive integer Nr, such that the length of any atomic factorization of r
is at most Nr. If R is atomic and for each nonzero nonunit element of r ∈ R, the length
of all atomic factorizations of r are the same, then R is called a half-factorial ring (HFR,
for short).

Two factorizations r = r1 · · · rt = s1 · · · sl of r ∈ R are called isomorphic, if l = t and
after a possible reordering of the ri’s, we have ri ∼ si for each 1 ≤ i ≤ t. If every nonzero
nonunit element of R has exactly one atomic factorization up to isomorphism, then R
is called a unique factorization ring (UFR, for short). Furthermore, we say that R is a
finite factorization ring (FFR, for short), when R is atomic and for every nonzero nonunit
r ∈ R, the number of atomic factorizations of r is finite up to isomorphism.

2. Main results
We recall that here R = K[x1, . . . , xn]/I where I is a monomial ideal. We also assume

that I ⊆ M2, where M = ⟨x1, . . . , xn⟩, since if an indeterminate, say xn, is in I, then R ∼=
K[x1, . . . , xn−1]/I

′ for a monomial ideal of K[x1, . . . , xn−1]. Note that R is a Noetherian
ring and hence it satisfies the ascending chain condition on its principal ideals. Therefore
by [2, Theorem 3.2], R is atomic. Also by [2, Theorem 3.9], for Noetherian rings being
présimplifiable is equivalent to being a BFR. Our first result states when R is a BFR or
equivalently is présimplifiable. Note that a monomial ideal has a unique minimal monomial
generating set which we denote by G(I), see [5, Proposition 1.1.6]. Here we assume that
the variables x1, . . . , xr appear in an element of G(I) and xr+1, . . . , xn do not appear in
any such element.

Theorem 2.1. The following are equivalent:
(1) R is a BFR;
(2) R is présimplifiable;
(3) xkii ∈ I for each 1 ≤ i ≤ r and for some positive integers ki.

Next we investigate when R is a UFR.

Theorem 2.2. The ring R is a UFR if and only if one of the following holds:
(1) r = n = 1;
(2) I = M2.

Recall that R is called irreducible-divisor-finite when every nonzero element of R has
at most a finite number of nonassociate irreducible divisors. Also R is called a weak FFR,
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when every nonzero nonunit of R has only a finite number of nonassociate divisors. Clearly
a FFR is a weak FFR and a weak FFR is irreducible-divisor-finite.

Theorem 2.3. The following are equivalent:
(1) R is irreducible-divisor-finite;
(2) R is a weak FFR;
(3) R is a FFR;
(4) one of the following cases hold:

(a) n = r = 1;
(b) n = r and I = M2;
(c) n = r and K is a finite field;
(d) n = r + 1 and K is a finite field and I = ⟨x1, . . . , xr⟩2;
(e) n = r + 1 = 2 and I = ⟨x21, x22⟩;
(f) n = r + 1 = 3 and I = ⟨x21, x22⟩.

Finally, we investigate when R is a HFR. Yet, we have not fully characterized when R
is a HFR, but we can state the following necessary conditions.

Theorem 2.4. If R is a HFR, then r = n and M5 ⊆ I.

In the case that I is a power of the maximal ideal M, we have the following.

Theorem 2.5. If r = n and I = Mi for some positive integer i, then R is a HFR if
and only if either i = 2 or i = 3.

At the end it should be noted that we could not find an example of I such that R is a
HFR and M3 ̸⊆ I. Therefore we guess that if R is a HFR then r = n and M3 ⊆ I ⊆ M2.
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Abstract. Let R be an integral domain and M be a faithful multiplication Dedekind
R-module. We proved that every proper submodule of M has the persistence property
and for non-zero proper ideals I1, · · · , In of R, Ass∞(Ik1

1 · · · Ikn
n M) =

∪n
i=1 Ass∞(IiM),

where k1, · · · , kn ≥ 1. We also show that every non-zero submodule of M is Ratlif-Rush
closed.
Keywords: Dedekind modules, faithful modules, multiplication modules, persistence
property, Ratlif-Rush closed
AMS Mathematics Subject Classification [2010]: 13F05, 13C13, 13C99

1. Introduction
Throughout this paper all rings are commutative with a non-zero identity and all

modules are unitary. A prime ideal P of a ring R is called an associated prime of an R-
module M if P = AnnR(m), where m is a non-zero element of M . The set of all associated
primes of an R-module M is usually denoted by Ass(M).

A proper submodule N of an R-module M is called a prime submodule of M , if for
every r ∈ R, x ∈ M ; rx ∈ N we have x ∈ N or r ∈ (N : M), where (N : M) = {r ∈
R : rM ⊆ N}. In such a case P := (N : M) is a prime ideal of R and N is said to be
P -prime. The set of all prime submodules of M is denoted by Spec(M) (see [8]). Recall
that, an integral domain R is called a Dedekind domain if every non-zero proper ideal of
R is a product of prime ideals. It is well known that Dedekind domains are Noetherian.

Let S be the set of all non-zero divisors of R and RS be the total quotient ring of R.
For any ideal I of R, let I ′ := {x ∈ RS |xI ⊆ R}. If II ′ = R, then I is said to be an
invertible ideal. Let R be an integral domain, then R is a Dedekind domain if and only
if every non-zero ideal of R is invertible, see [3, Theorem 6.10]. Let S be a multiplicative
closed subset of a ring R and M be an R-module. Now let T := {s ∈ S|sm = 0 for m ∈
M, implies that m = 0}. Then T is a multiplicative closed subset of R. Let RT be the
localization of R at T . Let N be a submodule of M . Put N ′ := {x ∈ RT |xN ⊆ M}. We
say that N is invertible in M if N ′N = M . Note that Bourbaki, in Commutative Algebra,
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II.5.6. has a different definition of invertible submodule. A non-zero module M is said to
be a Dedekind module if each non-zero submodule of M is invertible (see [4]).

Assume that R is a Noetherian ring and I is an ideal of R. It is known by Brodmann
in [1] that Ass( R

Ik
), stabilize, that is, there exists a positive integer k0 such that Ass( R

Ik
) =

Ass( R
Ik0

) for all k ≥ k0. The smallest number k0 for which this equalities hold is called
the index of stability of I and Ass( R

Ik0
) is called the stable set of associated prime ideals

of I, which is denoted by Ass∞(I). An ideal I is said to satisfy the persistence property
if Ass(RI ) ⊆ Ass( R

I2
) ⊆ · · · ⊆ Ass( R

Ik
) ⊆ · · · . See [2] for example of ideals that does

not satisfy the persistence property. An R-module M is called a multiplication module
if for every submodule N of M there exists an ideal I of R such that N = IM , it
can be shown that N = (N : M)M in this case. Let N = IM is a submodule of a
multiplication R-module M . The submodule N is said to satisfy the persistence property
if Ass( M

IM ) ⊆ Ass( M
I2M

) ⊆ · · · ⊆ Ass( M
IkM

) ⊆ · · · . The smallest number k0 for which
Ass( M

IkM
) = Ass( M

Ik0M
) (k ≥ k0) is called the index of stability of N and Ass( M

Ik0M
) is

called the stable set of associated prime ideals of N , which is denoted by Ass∞(N). Let
I be an ideal of R. The ideal I∗ :=

∪
n∈N(I

n+1 : In) is an interesting ideal first studied by
Ratlif and Rush in [7]. The ideal I∗ is called the Ratlif-Rush ideal associated with I or the
Ratlif-Rush closure of I. An ideal I for which I∗ = I is called Ratlif-Rush closed. In [6] it
is proved every non-zero ideal in a Dedekind ring is Ratlif-Rush closed. Let I be an ideal
of a ring R and M be an R-module. We set (IM)∗ :=

∪
n∈N(I

n+1M : InM). The ideal
(IM)∗ is called the Ratlif-Rush closure of IM . A submodule IM for which (IM)∗ = I is
called Ratlif-Rush closed.

2. Main results
Recall that an R-module M is called a faithful R-module if AnnR(M) = 0, where

AnnR(M) := {r ∈ R|rM = 0}.
Proposition 2.1. Let R be a ring and M be a faithful multiplication R-module. Then

M is flat.
Proof. Since AnnR(M) = 0, by [5, Theorem 4.1], M is flat. □
Proposition 2.2. Let R be an integral domain and M be a multiplication R-module.

Then M is faihtful if and only if M is flat.
Proof. ⇒) It follows from Proposition 2.1.

⇐) By [9, Proposition 2.5.4], every flat module is torsion-free. Since R is an integral
domain, it is easy to see that AnnR(M) = 0. □

Proposition 2.3. Let R be an integral domain and M be a faithful multiplication
R-module. Then M is a finitely generated projective R-module.

Proof. By [8, Corollary 2.6], M is a finitely generated R-module. So by Proposition
2.1, M is flat and hence by [9, Theorem 2.6.18], M is projective. □

Theorem 2.4. Let R be a domain and M be a faithful multiplication R-module. Then
the following conditons are equivalent.
(1) R is a Dedekind domain.
(2) M is a Dedekind R-module.
(3) M is a Noetherian R-module and every submodule of M is projective.

451
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Proof. (1) ⇔ (2) It follows from [4, Theorem 3.4] and [4, Theorem 3.5].
(2) ⇒ (3) Assume that N is a sunmodule of M and hence there exists an ideal I of
R such that N = IM . By (2), N is invertible and by [8, Corollary 2.6], M is finitely
generated. Hence by [4, Lemma 3.3], I is invertible. Thus by [9, Theorem 5.2.6], I
is finitely generated. Since M and I are finitely generated, then N = IM is finitely
generated. So M is Noetherian. Since R is Dedekind, I is projective. By Proposition 2.3,
M is projective and hence M is flat. So we have IM ∼= I ⊗M . By [9, Theorem 2.3.8], N
is projective.
(3) ⇒ (2) Let P be a prime ideal of R and N = IM be a submodule of M , where I
is an ideal of R. By Proposition 2.3, M is projective and so N = IM ∼= I ⊗ M . By
(3), N is projective. Now since every projective module over a local ring is free, we have
NP

∼=
⊕

iAi and MP
∼=

⊕
j Bj , where Ai

∼= Bj
∼= RP . Then we have

⊕
iAi

∼= NP
∼=

IP ⊗MP
∼= IP ⊗(

⊕
j Bj) ∼=

⊕
j(IP ⊗Bj) and hence

⊕
iAi

∼=
⊕

j IP . Thus IP is a flat RP -
module for every prime ideal P and so I is a flat R-module. Since N is finitely generated,
by [4, Note 3.7], I is finitely generated and by [9, Theorem 5.2.6], I is invertible. It is
clear that N = IM is invertible. Therefore M is a Dedekind module.

□
Corollary 2.5. Let R be an integral domain and M be a faithful multiplication

Dedekind R-module. Then every non-zero prime submodule of M is maximal.
Proof. Assme that N = IM is a non-zero prime submodule of M , where I is a

non-zero ideal of R and K = JM is a proper submodule of M such that N ⊆ K, where
J is a non-zero proper ideal of R. Since M is Dedekind, N , K, I and J are invertible.
By Proposition 2.1, M is flat and by [9, Proposition 2.5.4], M is torsion-free. Hence
by [4, Lemma 3.1], N ′ = I ′ and K ′ = J ′. Since N ⊆ K, we have K ′N ⊆ K ′K = M . So
K ′ ⊆ N ′ and hence IJJ ′ ⊆ IJI ′. Thus I ⊆ J . By [8, Corollary 2.3], I is prime and by
Theorem 2.4, I is maximal. So we have I = J and hence N = K. □

Theorem 2.6. Let R be an integral domain and M be a faithful multiplication Dedekind
R-module. Suppose that N = IM is a non-zero proper submodel of M , where I is a non-
zero proper ideal of R. Then N has the persistence property. Furthermore, Ass∞(N) =
Ass(MN ) = Ass∞(I) = Ass(RI )

Proof. By Theorem 2.4, R is a Dedekind domain and so I = Pα1
1 · · ·Pαn

n , where
P1, · · · , Pn are distinct non-zero prime ideals of R and α1, · · · , αn are positive integers. By
Theorem 2.4, Pi is maximal for all i = 1, · · · , n and so by [9, Theorem 1.2.11], we have R

Ik
∼=

R

P
kα1
1

⊕· · ·⊕ R

Pkαn
n

. We know thatM⊗ R
Ik

∼= M
IkM

. So M
IkM

∼= M⊗( R

P
kα1
1

⊕· · ·⊕ R

Pkαn
n

) ∼= (M⊗
R

P
kα1
1

)⊕· · ·⊕ (M ⊗ R

Pkαn
n

) ∼= M

P
kα1
1 M

⊕· · ·⊕ M

Pkαn
n M

. Hence Ass( M
IkM

) = Ass( M

P
kα1
1 M

)∪ · · · ∪
Ass( M

Pkαn
n M

). Since Pi is maximal for all i = 1 · · ·n, we have Ass( M
IkM

) = {P1, · · · , Pn}.
Thus Ass( M

IkM
) = Ass( M

IM ). Therefore Ass∞(N) = Ass( M
IM ) = Ass∞(I). □

Corollary 2.7. Let R be an integral domain, I1, · · · , In be non-zero proper ideals of
R and M be a faithful multiplication Dedekind R-module. Then Ass∞(Ik11 · · · Iknn M) =∪n

i=1Ass(
M
IiM

) for all k1, · · · , kn ∈ N.

Proof. By Theorem 2.4, R is a Dedekind domain and so by [6, Theorem 2.6], we have
Ass∞(Ik11 · · · Iknn ) =

∪n
i=1Ass(

R
Ii
). By Theorem 2.6, Ass∞(Ik11 · · · Iknn ) = Ass∞(Ik11 · · · Iknn M)

and Ass(RIi ) = Ass( M
IiM

). Thus the proof is completed. □
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Corollary 2.8. Let R be an integral domain, I1, · · · , In be non-zero proper ideals of
R and M be a faithful multiplication Dedekind R-module. Then Ass∞(Ik11 · · · Iknn M) =∪n

i=1Ass
∞(IiM) for all k1, · · · , kn ∈ N.

Proof. It follows from Theorem 2.6 and Corollary 2.7. □
Theorem 2.9. Let R be an integral domain, I be a non-zero proper ideal of R and M

be a faithful multiplication Dedekind R-module. Then (Ik+iM : IiM) = Ik for all i, k ∈ N.
Proof. It is clear that Ik ⊆ (Ik+iM : IiM). Now we show that (Ik+iM : IiM) ⊆ Ik.

Let r ∈ (Ik+iM : IiM). So we have rIiM ⊆ Ik+iM . By Theorem 2.4, IiM is inverible
and hence rM ⊆ IkM . Then r ∈ (IkM : M). Since M is faithful multiplication, by [8,
Corollary 2.7], (IkM : M) = Ik. Thus r ∈ Ik. □

Proposition 2.10. Let I be a non-zero ideal of a ring R and M be an R-module. If
(IM)∗ is Ratlif-Rush closed, then I∗ is Ratlif-Rush closed.

Proof. We know that I ⊆ I∗. Let r ∈ I∗ =
∪

n∈N(I
n+1 : In). So r ∈ (In+1 : In) for

some n ∈ N and hence rIn ⊆ In+1. We have rInM ⊆ In+1M . Thus r ∈ (IM)∗ = I and
so I∗ = I. □

Corollary 2.11. Let R be an integral domain and M be a faithful multiplication
Dedekind R-module. Then every non-zero submodule of M is Ratlif-rush closed.

Proof. Let N = IM be a non-zero submodule of M , where I is a non-zero ideal of
R. By Theorem 2.9, we have (IM)∗ =

∪
n∈N(I

n+1M : InM) = I. □

3. conclusion
Let R be an integral domain and M be a faithful multiplication Dedekind R-module.

we proved that every proper submodule of M has the persistence property and for non-
zero proper ideals I1, · · · , In of R and Ass∞(Ik11 · · · Iknn M) =

∪n
i=1Ass∞(IiM), where

k1, · · · , kn ≥ 1. We also proved that every non-zero submodule of M is Ratlif-Rush
closed.
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Numerical solutions of a mathematical model for the spread
of computer virus using an artificial neural networks
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Abstract. Computer virus is a harmful computer program that enters the victim com-
puter without authorization. In this work, we intend to consider an epidemiological
model of computer virus. The model consists of three nonlinear first order ordinary
differential equations. We solve the model with the aid of the theory of universal ap-
proximation capability of artificial neural networks. To do this, we propose a three layer
feedforward neural networks to approximate the system of nonlinear ordinary differen-
tial equations. The numerical solutions are presented in order to show the efficiency and
accuracy of the proposed method.

Keywords: Computer virus, Modified epidemiological model, System of ordinary differ-
ential equations, Numerical solutions, Artificial neural networks.

AMS Mathematics Subject Classification [2010]: 34Fxx, 68Uxx, 68Wxx

1. Introduction

Computer virus is a harmful computer program that can be written with different
aims. This program enters the victim computer without authorization. The modified
Susceptible-Infectious-Recovered (SIR) model as a classical epidemiological model were
proposed to model the spread of computer virus [1]. Some methods are presented to
solve this model such as collocation method [1], homotopy analysis method [2], adomian
decomposition method [3], and variational method [4].
In this work, we are motivated to investigate the modified SIR epidemiological model for
the spread of computer virus by using an artificial neural networks.
The rest of this work is organized as follows. In Section 2, we introduce the modified
SIR model. In Section 3, we deal with the mathematical framework of the proposed
artificial neural networks. In Section 4, we present numerical simulations to substantiate
our theoretical results with the aid of the proposed method. Finally, Section 5, outlines
the given work.

2. The modified SIR model for the spread of computer virus

The modified SIR epidemiological model for computer virusesus is defined by [1]. Let
S(t), I(t), and R(t) denote the number of suceptible, infected, and recovered computers.

∗Speaker. Email address: s.panahianfard@pnu.ac.ir
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Table 1. Parameters and functions values of the modified SIR model

Parameter and functions Values

λ 0.001
ϵ 0.1
d 0.1

f1, f2, f3 0

This model consists of three first order ordinary differential equations as:

(1)





dS
dt

= f1(t)− λS(t)I(t)− dS(t),

dI
dt

= f2(t) + λS(t)I(t)− ϵI(t)− dR(t),

dR
dt

= f3(t) + ϵI(t)− dR(t),

with initial values

S(0)=20, I(0)=15 , and R(0)=10.

We consider the values for the parameters and functions from Table 1 [1].

3. The proposed method for solving the modified SIR model

The universal approximation capability of feedforward artificial neural network is an
important fact. It states that any smooth function can be approximated by feedforward
artificial neural networks arbitrarily well. The universal approximation capability of feed-
forward neural networks in the weighted space of continuous function can be found in [5].
Elfwing et al. [6] proposed sigmoid-weighted neural networks. They showed that sigmoid-
weighted neural networks are more accurate than feedforward sigmoid neural networks.
We use these networks for solving systems of first order ordinary differential equations.
The activation function of these neural networks is introduced as follows:

(2) a(x) = σ(x)(1 + x(1− σ(x))).

Here, we decribe the formuiation of differential equations using our neural networks. We
use feedforward three layer sigmoid-weighted neural networks to approximate solutions of
systems of three first order ordinary differential equations with initial value conditions.
We have:

(3)

{
dyr
dx = fr(x, y1, ..., yn) r = 1, 2, ..., n and x ∈ [a, b],

yr(a) = Ar, r = 1, 2, ..., n.

The trial solution ytr(x, pr) satisfies the initial conditions is provied as:

(4) ytr(x, pr) = Ar + (x− a)Nr(x, pr) r = 1, 2, ..., n.

For each r,Nr(x, pr) is the output of the feedforward sigmoid-weighted neural network
with input x and the network adjustable parameters (weights) pr. The initial network
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Figure 1. The approximate solutions of the number of suceptible computers

Figure 2. The approximate solutions of the number of infected computers

parameters are taken as random. From Eq. (4), we conclude that the derivative of
ytr(x, pr) with respect to x is as follows:

(5)
dytr(x, pr)

dx
= Nr(x, pr) + (x− a)

dNr(x, pr)

dx
r = 1, 2, ..., n.

The error function is given as: [7,8]

(6) E(x, p) =

h∑

i=1

n∑

r=1

1

2

(
dytr(xi, pr)

dx
− fr

(
xi, yt1(xi, p1), ..., ytn(xi, pn)

))2

.

For minimizing the error function E(x, p) i.e. to update the feedforward sigmoid-weighted
neural network parameters (weights), we differentiate E(x, p) with respect to the param-
eters.

4. Numerical results

We use the data set tabulated in Table 1. The numerical results of the proposed
atrificial neural networks for solving the system of Eqs. (1) are presented in Figs. 1-3.
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Figure 3. The approximate solutions of the number of recoverd computers

5. Conclusions

We have investigated the modified SIR epidemiological model for the spread of com-
puter virus. The artificial neual networks are employed to solve the given model. The
obtained results has been provided a good starting step for describing the spread of com-
puter virus. We have shown several figures using these results. Thus, we have established
the approximation capability of the proposed method. For future work, we are interested
to fractional calculus incorporating into this modified epidemiological model.
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Global existence and uniform stability for a system of wave
equations of Kirchhoff type with degenerate damping effects

and nonlinear sources

Amir Peyravi1,∗,
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Abstract. In this article we are concerned with asymptotic stability and lower bounds
of blow up solutions for a class of coupled wave equations of Kirchhoff type with degen-
erate damping effects and nonlinear sources. Under appropriate assumptions on initial
datum we show existence of global solutions and obtain an energy decay estimate by
employing a lemma of Komornik [1].
Keywords: Kirchhoff equation, stability, instability
AMS Mathematics Subject Classification [2010]: 35B40, 35L20, 35B35

1. Introduction
In this work we investigate the following system of Kirchhoff wave equations

(1) ∂2
t ui−M

(
∥∇u1∥22+∥∇u2∥22

)
∆ui+θi∂tui+

(
|u1|κi+|u2|ϱi

)
|∂tui|qi−1∂tui = fi(u1, u2),

for i = 1, 2, (x, t) ∈ Ω× (0, T ) with the initial-boundary conditions

(2)
{
ui(x, 0) = ui0(x), ∂tui(x, 0) = ui1(x), x ∈ Ω, i = 1, 2,

ui(x, t) = 0, (x, t) ∈ Γ× (0, T ), i = 1, 2,

where Ω is an open bounded domain in RN (N = 1, 2, 3),M(s) = 1+sγ where γ, θi, κi, ϱi, qi
(i = 1, 2) are some positive constants and

(3)
{
f1(u1, u2) = a|u1 + u2|2(r+1)(u1 + u2) + b|u1|ru1|u2|r+2,

f2(u1, u2) = a|u1 + u2|2(r+1)(u1 + u2) + b|u2|ru2|u1|r+2.

For different kinds of the parameters γ, θi, κi, ϱi, qi (i = 1, 2), the above problem investi-
gated by many authors. To have an overview of results related to nonlinear wave equations
during the last half century we refer the interested reader to the recent review work by
Messaoudi and Talahmeh [3]. Wu in [5] considered (1)-(2) for M ≡ 1 and θi = 0, (i = 1, 2)

in presence the terms
∫ t
0 gi(t− s)∆ui(s)ds, (i = 1, 2). By employing the perturbed energy

∗Speaker. Email address: peyravi@shirazu.ac.ir.com
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technique the author proved that the decay rate of energy is similar to those of the re-
laxation functions when 0 < qi < 1, (i = 1, 2). Under suitable assumptions on the initial
data, the relaxation functions and degenerate damping terms, the author obtained global
existence and general decay of weak solutions. In this article, instead of using the Lya-
punov perturbed energy method and defining Nehari functional types, we investigate the
uniform stability of solutions by using a technical lemma (Lemma 2.4 below). First, we
define weak solutions associated to the problem (1)-(2). For simplicity we assume that
a = b = θi = 1, (i = 1, 2).

Definition 1.1. A pair (u1, u2) is said to be a weak solution of (1)-(2) on [0, T ] if
ui ∈ Cw([0, T ],H

1
0 (Ω)), ∂tui ∈ Cw([0, T ], L

2(Ω)) ∩ L2(Ω× [0, T ]), ui0(x) ∈ H1
0 (Ω), ui1(x) ∈

L2(Ω), and

⟨∂tui,ϕi⟩L2(Ω) +

∫ t

0
M

(
∥∇u1(s)∥22 + ∥∇u2(s)∥22

)
⟨∇ui(s),∇ϕi⟩L2(Ω)ds

+ ⟨ui(s), ϕi⟩L2(Ω)ds+

∫ t

0
⟨
(
|u1(s)|κi + |u2(s)|ϱi

)
|∂tui(s)|qi−1∂tui(s), ϕi⟩L2(Ω)ds

= ⟨ui1, ϕi⟩L2(Ω) + ⟨ui0, ϕi⟩L2(Ω) +

∫ t

0
⟨fi(u1(s), u2(s)), ϕi⟩L2(Ω)ds,

holds for all ϕi ∈ H1
0 (Ω), i = 1, 2.

Next, we provide the following local existence result which can be obtained by adopting
the arguments in [4]:

Theorem 1.2. Suppose that, for i = 1, 2, ui0 ∈ H1
0 (Ω), ui1 ∈ L2(Ω), γ ≥ 1 and (4)

holds. If 0 < qi < 1, (i = 1, 2) and
{
for N = 1, 2 : κi, ϱi ≥ 1, i = 1, 2,

for N = 3 : max{κi, ϱi} ≤ 3(1− qi), i = 1, 2.

Then there exists a unique local weak solution (u1, u2) defined on [0, T ] for the problem
(1)-(2) in the sense of definition 1.1.

By (3) we have
u1f1(u1, u2) + u2f2(u1, u2) = 2(r + 2)F (u1, u2), ∀(u1, u2) ∈ R2,

where
F (u1, u2) =

1

2(r + 2)

(
a|u1 + u2|2(r+2) + 2b|u1u2|r+2

)
,

where r satisfies

(4)
{
r = 0, if N = 3,

r ≥ 0, if N = 1, 2.

Associated to problem (1)-(2) we define

J(u)(t) = J(t) =
1

2

(
∥∇u1∥22+∥∇u2∥22

)
+

1

2(γ + 1)

(
∥∇u1∥22+∥∇u2∥22

)(γ+1)−
∫

Ω
F (u1, u2)dx,

on H1
0 (Ω) and the energy identity

(5) E(t) =
1

2

(
∥∂tu1∥22 + ∥∂tu2∥22

)
+ J(t).
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Multiplying the first equation in (1) by ∂tu1 and the second one by ∂tu2 and using initial
and boundary conditions, it is straightforward to see

(6) E(t)− E(0) = −
∫ t

0

∫

Ω

2∑

i=1

[(
|u1(s)|κi + |u2(s)|ϱi

)
|∂tui(s)|qi+1 + ∥∂tui(s)∥22

]
dxds,

for all t ≥ 0. By using (4) and following [2], there exists a positive constant η such that

(7) 2(r + 2)

∫

Ω
F (u1, u2)dx ≤ η

(
∥∇u1∥22 + ∥∇u2∥22

)r+2
.

2. Global existence and asymptotic stability
In this section we investigate asymptotic stability of solutions to the problem (1)-(2).

Setting ζ(t) =
(
∥∇u1(t)∥22 + ∥∇u2(t)∥22

)1/2, then by (5) and (7) we have

(8) E(t) ≥ J(t) ≥ 1

2

(
ζ(t)

)2 − η

2(r + 2)

(
ζ(t)

)2(r+2) ≜ Z(ζ(t)), ∀t ≥ 0.

It is not difficult to check that Z is increasing over (0, ζ1), decreasing over (ζ1,+∞) where

ζ1 =
(
η−1

) 1
2(r+1)

, and Z(ζ) → −∞ as ζ → +∞ and Z(ζ) → 0 as ζ → 0+. So, it is not

difficult to check that Z takes its maximum at ζ1 and this maximum is E1 :=
r+1

2(r+2)

(
1
η

) 1
r+1

.

Lemma 2.1. Let ui0 ∈ H1
0 (Ω) and ui1 ∈ L2(Ω), (i = 1, 2). If ζ(0) < ζ1 and E(0) < E1,

then ζ(t) < ζ1 for all t ≥ 0.

Proof. Using the assumptions and taking (8) into account, a contradiction argument
gives the result. □

Remark 2.2. From the Lemma 2.1 we have

(9) Z(ζ(t)) ≥ ζ2(t)

(
1

2
− η

2(r + 2)
ζ
2(r+1)
1

)
= ζ2(t)

(
r + 1

2(r + 2)

)
, ∀t ≥ 0.

Therefore, by (6) and E(0) < E1 we find

(10) ∥∇u1(t)∥22 + ∥∇u2(t)∥22 ≤
(
2(r + 2)

r + 1

)
E(t) ≤

(
2(r + 2)

r + 1

)
E(0), ∀t ≥ 0.

This shows that solutions are global and bounded in time.

Remark 2.3. By (9) it is clear that Z(ζ(t)) ≥ 0, for all t ≥ 0. Hence, by (8) we
deduce that, for any t ≥ 0, J(t) ≥ 0 and thus

∥∂tu1(t)∥22 + ∥∂tu2(t)∥22 ≤ E(t), ∀t ≥ 0.

Next, we show that the energy solution to the problem (1)-(2) uniformly goes to zero
as an exponential function. To this end we use the following lemma by Komornik [1]:

Lemma 2.4. Let E : R+ → R+ be a non-increasing function and there exists ω > 0
such that ∫ +∞

t
E(s)ds ≤ 1

ω
E(t), ∀t ≥ 0,

then E(t) ≤ E(0)e1−ωt for all t ≥ 0.

Our main result reads in the following theorem:
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Theorem 2.5. Let ui0 ∈ H1
0 (Ω) and ui1 ∈ L2(Ω), (i = 1, 2). Assume that ζ(0) < ζ1

and E(0) < E1. Then for the solution energy to the problem (1)-(2) the following decay
estimate holds, for some positive constants c0 and γ,

E(t) ≤ E1 exp

(
γ − c0t

γ

)
, ∀t ≥ 0.

Proof. Multiplying both sides of the equations in (1) by ui (i = 1, 2), integrating
over (t1, t2)×Ω, 0 < t1 < t2 < T , using Young’s and Hölder’s inequalities, by the Remarks
2.2 and 2.3 and taking the imbeddings H1

0 (Ω) ↪→ Lκi+qi+1(Ω), L2ρi(Ω), L2(qi+1)(Ω), into
account we find, for all ε, δ1, δ2 > 0,

(11)
2

∫ t2

t1

E(t)dt− 2(r + 1)

∫ t2

t1

∫

Ω
F (u1, u2)dxdt

≤ Λ1(ε, δ1, δ2)E(t1) + Λ2(ε, δ1, δ2)

∫ t2

t1

E(t)dt,

where 



Λ1(ε, δ1, δ2) = 4

(
1 + B2(r+2)

r+1

)
+ 2 + 1

ε +
2q1
q1+1δ

− q1+1
q1

1 + 2q2
q2+1δ

− q2+1
q2

2 ,

Λ2(ε, δ1, δ2) = ε

(
2(r+2)
r+1 B

)
+

δ
q1+1
1
q1+1 K1 +

δ
q2+1
2
q2+1 K2,

in which K1 and K2 are some positive constants depending on E1 and the imbedding
constants and B denotes the best constant in Poincaré inequality. On the other hand, by
(7) and (10), we have

2

∫ t2

t1

E(t)dt− 2(r + 1)

∫ t2

t1

∫

Ω
F (u1, u2)dxdt ≥ 2D0

∫ t2

t1

E(t)dt,

where
D0 = 1− η

(
2(r + 2)

r + 1
E(0)

)r+1

.

By the assumption E(0) < E1 we see that D0 > 0. Thus, we can choose ε, δ1 and δ2
sufficiently small such that c0 := 2D0 − Λ2(ε, δ1, δ2) > 0. Then, from (11), we get

∫ t2

t1

E(t)dt ≤ Λ1(ε, δ1, δ2)

c0
E(t1).

Therefore, letting t2 goes to infinity and taking Lemma 2.4 into account we obtain the
decay estimate in Theorem 2.5. □
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manifolds

Vahid Pirhadi∗

Department of Mathematics, University of Kashan, Kashan, Iran

Abstract. In this paper, we prove that every invariant submanifold of a generalized
quasi Sasakian manifold is again a generalized quasi Sasakian manifold and give some
characterization results for the second fundamental form h and the shape operator A.
Finally, we show that invariant submanifolds of a G.Q.S manifold are minimal.
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1. Introduction

The geometry of Riemannian submanifolds is an active and important area of research
in differential geometry. J. Simons studied the immersed minimal hypersurfaces in Sn or
En. He obtained a second order elliptic partial differential equation for the second fun-
damental form h and showed that all immersed minimal hypersurfaces in Sn or En must
satisfy Simons’ inequality. In [5], M. Okumura considered the invariant submanifolds of a
contact Riemannian manifold. Let M ⊆ M be a submanifold of the almost contact metric
manifold (M,φ, ξ, η, g). The submanifold M is named invariant if φ(X) ∈ Γ(TM) for any
X ∈ Γ(TM). Further, invariant submanifolds of a Sasakian manifold were studied in [3].
K. Kenmotsu [3] proved that the only η-Einstein connected complete invariant subman-
ifolds in S2n+1 are S2n−1 and (Sn, Qn−1). Also, V. Mangione [4] studied the invariant
submanifolds of a Kenmotsu manifold and proved that every invariant submanifold of a
Kenmotsu manifold is again a Kenmotsu manifold. Moreover, C. Calin [1] proved that
the second fundamental form and the shape operator of an invariant submanifold of the
Kenmotsu manifold (M,φ, ξ, η, g) satisfy the following equations:

(1) h(φX, Y ) = φh(X,Y ), Aφ(N)(X) = φAN (X),

AN (φX) = −φAN (X),

where N ∈ Γ(T⊥M) and X,Y ∈ Γ(TM). Indeed, in the case where M is tangent to ξ we
also have

(2) h(ξ,X) = AN (ξ) = 0,

∗Speaker. Email address: v.pirhadi@kashanu.ac.ir
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for any X ∈ Γ(TM) and N ∈ Γ(T⊥M). In [6], S. S. Eum defined the sense of generalized
quasi Sasakinan manifolds (in short G.Q.S) and studied the Kaehlerian hypersurfaces
which are isometrically immersed in a G.Q.S manifold. The Riemannian manifold (M, g)
with a 1-form η, a vector field ξ and a (1, 1) tensor field φ such that

(3) η(ξ) = 1, φ2 = −I + η ⊗ ξ,

g(φX, Y ) = −g(X,φY ),

is called an almost contact metric manifold. The almost contact metric manifold (M,φ, ξ, η, g)
is called a G.Q.S if it satisfies:

(4) (∇Xφ)Y = g(∇φXξ, Y )ξ − η(Y )∇φXξ,

for any X,Y ∈ Γ(TM). Thereafter, C. Calin [2] showed that G.Q.S manifolds are normal
and satisfy the following equations:

(5) F (ξ) = 0, ∇ξφ = 0, F ◦ φ = φ ◦ F, η ◦ F = 0,

in which F (X) := ∇Xξ. Motivation by these works, in this paper we prove that every
invariant submanifold of a G.Q.S manifold is again a G.Q.S manifold. Next, we show that
invariant submanifolds of a G.Q.S manifold are minimal.

2. Preliminaries

Let M be a submanifold of the Riemannian manifold (M, g). Consider TM as a vector
bundle on the base manifold M . Hence, every vector field X ∈ Γ(TM) decomposes into
two parts, the horizontal part and the normal part. Suppose T⊥M is the vector bundle of
all normal vectors on the base manifold M . Thus, the tangent bundle TM can be written
as follows:

(6) TM = TM ⊕ T⊥M.

According to the above decomposition, the Gauss and Weingarten formulas are given as
follows:

(7) ∇XY = h(X,Y ) +∇XY,

(8) ∇XN = −AN (X) +∇⊥
XY,

in which ∇ and ∇ are the Levi-Civita connections of M and M , respectively and ∇⊥ is
the induced connection on the normal bundle T⊥M . In the equations above, h and A are
named the second fundamental form and the shape operator of M , respectively and are
related by

(9) g(h(X,Y ), N) = g(AN (X), Y ),

where N ∈ Γ(T⊥M) and X,Y ∈ Γ(TM). A submanifold of the Riemannian manifold
(M, g) with h = 0 is called totally geodesic. Suppose {e1, ..., en} is an orthonormal basis
for TpM (p ∈ M). Then, the normal vector

(10) H :=
1

n

n∑

i=1

h(ei, ei),

is called the mean curvature vector. A submanifold of the Riemannian manifold (M, g)
which satisfies H = 0 for any p ∈ M is called a minimal submanifold. Henceforth, we
assume that all submanifolds are tangent to the vector field ξ (ξ ∈ Γ(TM)).
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3. Invariant submanifolds of G.Q.S manifolds

Theorem 3.1. Let (M,φ, ξ, η, g) be a G.Q.S manifold.Then, every invariant submanifold
of M is again a G.Q.S manifold.

Proof. It follows immediately from (7) that

(∇Xφ)Y = ∇XφY − φ∇XY

= ∇XφY + h(X,φY )− φ(∇XY )− φh(X,Y ).(11)

This together with (4) implies that

g(∇φXξ, Y )ξ − η(Y )∇φXξ = g(∇φXξ, Y )ξ − η(Y )∇φXξ − η(Y )h(φX, ξ)

= ∇XφY + h(X,φY )− φ(∇XY )− φh(X,Y ).(12)

Separate the horizontal and vertical parts of the above equation, we get

(13) (∇Xφ)Y = g(∇φXξ, Y )ξ − η(Y )∇φXξ,

(14) h(X,φY )− φh(X,Y ) = −η(Y )h(φX, ξ),

which complete the proof. �
Further, since h is symmetric, we have

h(X,φY ) + η(Y )h(φX, ξ) = φh(X,Y )

= h(Y, φX) + η(X)h(φY, ξ).(15)

Lemma 3.2. Let M be an invariant submanifold of the G.Q.S manifold (M,φ, ξ, η, g).
Then

(16) h(φX, ξ) = φh(X, ξ), h(ξ, ξ) = 0, η(AN (ξ)) = 0,

for any N ∈ Γ(T⊥M) and X ∈ Γ(TM).

Proof. The result follows from (14) and the Equation (9). �
Theorem 3.3. Suppose M is an invariant submanifold of the G.Q.S manifold (M,φ, ξ, η, g).
Then, the shape operator A satisfies

(17) a) AN (φY ) = −AφNY + η(Y )φ(AN (ξ)),

b) φAN (Y ) = AφNY − g(h(Y, ξ), φN)ξ,

c) AN (φY ) = −φAN (Y )− g(h(Y, ξ), φN)ξ + η(Y )φ(AN (ξ)).

Proof. To prove the first assertion, we compute

g(AN (φY ), X) = g(h(X,φY ), N) = g(φh(X,Y )− η(Y )h(φX, ξ), N)

= −g(h(X,Y ), φN)− η(Y )g(h(φX, ξ), N)

= −g(AφNY,X)− η(Y )g(AN (ξ), φX)

= −g(AφNY − η(Y )φ(AN (ξ)), X).(18)

Similarly, for the second assertion we get

−g(φ(AN (X)), Y ) = g(AN (X), φY ) = g(h(X,φY ), N)

= g(φh(X,Y )− η(Y )h(φX, ξ), N)

= −g(h(X,Y ), φN) + η(Y )g(h(X, ξ), φN)

= −g(AφNX,Y ) + g(h(X, ξ), φN)g(ξ, Y )
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= −g(AφNX − g(h(X, ξ), φN)ξ, Y ).(19)

Finally, the last assertion follows from (17.a) and (17.b). �
Theorem 3.4. Every invariant submanifold of a G.Q.S manifold is minimal.

Proof. Let M be an invariant submanifold of the G.Q.S manifold (M,φ, ξ, η, g).
Suppose {e0 := ξ, e1, ..., em, em+1 := φe1, ...., e2m := φem} is a φ-basis for TpM . Using
(15) and (16), we infer that

h(φei, φei) = φ2h(ei, ei)

= −h(ei, ei),(20)

for any i = 1, ...,m. This asserts that

H =
1

n

2m∑

i=0

h(ei, ei) =
1

n
h(ξ, ξ) +

1

n

m∑

i=1

h(ei, ei) +
1

n

m∑

i=1

h(φei, φei)

=
1

n
h(ξ, ξ) +

1

n

m∑

i=1

h(ei, ei)−
1

n

m∑

i=1

h(ei, ei) = 0,(21)

and proves the theorem. �
Theorem 3.5. Let M be an invariant submanifold of the G.Q.S manifold (M,φ, ξ, η, g)
which satisfies R(X,Y )ξ = R(X,Y )ξ. Then

(22) a) h(X, ξ) = 0, b) h(X,FY ) = h(FX, Y ).

Proof. Using the relation between R and R, we conclude that

(23) Ah(X,ξ)Y = Ah(Y,ξ)X, (∇Xh)(Y, ξ) = (∇Y h)(X, ξ).

The first equality implies

(24) g(h(Y, Z), h(X, ξ)) = g(h(X,Z), h(Y, ξ)).

Setting Y = ξ and Z = X, we find that h(X, ξ) = 0. This together with (∇Xh)(Y, ξ) =
(∇Y h)(X, ξ), results

(25) − h(Y,∇Xξ) = −h(X,∇Y ξ),

which completes the proof. �

4. Conclusion

Every invariant submanifold of a generalized quasi Sasakian manifold is minimal and
is again a generalized quasi Sasakian manifold.
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Abstract. In this paper, we consider the finitely presented groups Hm as follows;

Hm = 〈a, b|am2

= bm = 1, b−1ab = a1+m〉,m ≥ 2.

For g ∈ G, we consider ρg(G) = {(x, y)|x, y ∈ G, [x, y] = g}. Then the probability that
the commutator equation [x, y] = g has solution in a finite group G, written Pg(G), is

equal to
|ρg(G)|
|G|2 . By using the numerical solutions of the equation xy − zu ≡ t(mod n),

we derive formulas for calculating the probability of ρg(G) where G
′ ≤ Z(G).

Keywords: Finite groups, nilpotent groups, commutativity degree, GAP
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1. Introduction

In the last years there has been a growing interest in the use of probability in finite
group theory. One of the most important aspects that have been studied is the probability
that two elements of a finite group G commute. This is denoted by P (G) and is called
the commutativity degree of G. In obtaining the properties of P (G), Gustafson [3] proved
that for a non-abelian finite group G. M. Hashemi [4] gave some explicit formulas of
P (G) for some particular finite groups G. Also Hashemi and et al. [5] derived formulas
for calculating the probability of Pg(G) where G is a two generated group of nilpotency
class 2.

Definition 1.1. Let G be a finite group. The commutativity degree of G, written
P (G), is defined as the ratio

P (G) =
|{(x, y) ∈ G×G : xy = yx}|

|G|2 .

In [6], Pournaki and R. Sobhani have studied and generalized this concept for the
group G and g ∈ G as follows:

Pg(G) =
|{(x, y) ∈ G×G : [x, y] = g}|

|G|2 .

∗Speaker. Email address: m.pirzadeh.math@gmail.com
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Note that for every g ∈ G, we have 0 ≤ Pg(G) ≤ 1. In particular for g ∈ G − G′, we get
Pg(G) = 0 and Pg(G) = 1 if and only if G is abelian and g = e.

In this paper, we obtain explicit formula for the commutativity degree of generalized
relative g the element of G of the finite group Hm. In Section 2, we state some lemmas
and theorems are needed in the proofs of main results. Section 3 is devoted to compute
the formula for Pg(G), where G = Hm. These results can be checked for some small values
by GAP [2].

2. Preliminary

In this section, we state some lemmas and theorems which will be used in the next
section. First, we state lemmas that establishes some properties of groups of nilpotency
class two, where [x, y] = x−1y−1xy.

Lemma 2.1. If G is a group and G′ ⊆ Z(G), then the following hold for every integer
k and u, v, w ∈ G:

(1) [uv,w] = [u,w][v, w] and [u, vw] = [u, v][u,w].
(2) [uk, v] = [u, vk] = [u, v]k.

(3) (uv)k = ukvk[v, u]k(k−1)/2.
(4) If G = 〈a, b〉 then G′ = 〈[a, b]〉.

The following lemma can be seen in [1].

Lemma 2.2. Let G = Hm. Then

(1) Every element of Hm may be uniquely represented by bjai, where 0 ≤ i ≤ m2 − 1
and 0 ≤ j ≤ m− 1.

(2) Z(G) = G
′

= 〈am〉 and |Z(G)| = m.
(3) |Hm| = m3.
(4) xsyr = yrxs+mrs.

The following results are of interest to consider and one may see the proof in [4].

Corollary 2.3. For the integer n = p1
α1p2

α2 . . . pk
αk and variables x, y, z and u, the

number of solutions of the equation xy ≡ zu(mod n) is

k∏

i=1

p2αi−1i (pαi+1
i + pαii − 1).

Corollary 2.4. Let m,n be integers and x, y, z and u be variables where 1 ≤ x, z ≤ n
and 1 ≤ y, u ≤ m. Then the number of solutions of the equation xy ≡ zu(mod d) is

(
m

d
)2(

n

d
)2

k∏

i=1

p2αi−1i (pαi+1
i + pαii − 1).

where d = gcd(m,n) = p1
α1p2

α2 . . . pk
αk .

3. Computations on 2-generated groups of nilpotency class two

In the present part, we get explicit formulas for the commutativity degree of generalized
relative g the element of G of the finite group Hm. First, we need the following Theorem.
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The commutator equation [x, y] = g has solution in a finite group

Theorem 3.1. [5] For the integers t, n and variables x, y, u and z, the number of
solutions of the equation xy − uz ≡ t (mod n) is

∑

d|n
[
∑

d2|d1
(
n2

d
φ(
n

d
)φ(

d

d2
)× d2)].

By elementary concepts of number theory, we have the following corollary:

Corollary 3.2. Let t, n be integers and i, j, r and s be variables, when 0 ≤ i, s < n
and 0 ≤ r, j < n2. Then the number of solutions of the equation ri− sj ≡ t (mod n) is

n3
∑

d|n
[
∑

d2|d1
(
n

d
φ(
n

d
)φ(

d

d2
)× d2)].

Now, these facts leads us to prove the main results.

Theorem 3.3. For the group G = Hm and g ∈ G
′
, Pg(G) = α/m6, where α =

m3[
∑

d|m
(
∑

d2|(d,tg)

m

d
φ(
m

d
)φ(

d

d2
)× d2)].

Proof. Let x, y ∈ Hm. Then by the first part of Lemma 2.2, we have x = br1as1 , y =
br2as2 ∈ Hm, where 0 ≤ r1, r2 ≤ m− 1 and 0 ≤ s1, s2 ≤ m2 − 1. Now, using Lemma 2.1
and the relations of Hm, we get

xy =br1as1br2as2 = br1+r2as1+s2 [as1 , br2 ] = br1+r2as1+s2 [a, b]s1r2

=br1+r2as1+s2+ms1r2 ,

and

[x, y] =a−s1b−r1a−s2b−r2br1as1br2as2

=a−s1−s2b−r1−r2 [b−r1 , a−s2 ]br1+r2as1+s2 [as1 , br2 ]

=[a, b]r2s1−r1s2 .

On the other hand, for x, y, g ∈ G where g = [x, y] ∈ G′ = 〈[a, b]〉 there is 1 ≤ tg ≤ m such

that g = [x, y] = [a, b]tg . Now, for g ∈ G′ , we obtain

|ρg(G)| =|{(x, y) ∈ G×G; [x, y] = g}|
=|{(x, y) ∈ G×G; am(r2s1−r1s2) = amtg}|
=|{(r1, s1, r2, s2); r2s1 − r1s2 ≡ tg(mod m)}|.

So that, by Corollary 3.2, we have

|ρg(G)| = m3
∑

d|m
[
m

d
φ(
m

d
)(
∑

d2|d1
φ(

d

d2
)× d2)], where d|m, d1 = (d, tg) and the result fol-

lows. �
Let st be the number of solutions of the equation of r2s1 − r1s2 ≡ t(mod m); 0 ≤

s1, s2 < m2, 0 ≤ r1, r2 < m. The table 1 is a verified result of GAP [2] , where 2 ≤ m ≤ 10
and 1 ≤ t ≤ 5.
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Table 1. The number of solutions of r2s1 − r1s2 ≡ t(mod m).

m \t s1 s2 s3 s4 s5

2 24 40 24 40 24
3 216 216 297 216 216
4 768 1152 768 1408 768
5 3000 3000 3000 3000 3625
6 5184 8640 7128 8640 5184
7 16464 16464 16464 16464 16464
8 24576 36864 24576 43008 24576
9 52488 52488 69984 52488 52488
10 72000 120000 72000 12000 87000
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Abstract. The frame algorithm is one way for approximating the function f in a Hilbert
space based on the knowledge of some frame bounds. In this paper we design two
algorithms in order to improve the acceleration of the frame algorithm. These algorithms
have a faster convergence rate than the classical frame algorithm.
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1. Introduction and preliminaries
One of the attraction of frames is due to the representation of functions. In fact, the set

up of frames provides great flexibility in approximating and representing functions. These
representations convey quantitative information about the components of such functions.
This has led to important applications in signal analysis and image compression. Some
surveys of frames and their applications were provided in [1,5].

Let us first, following Cassazza [2], provide a brief overview of the basics of frame
theory.

Definition 1.1. Let H be a separable Hilbert space. A family of {fi}∞i=1 of elements
in H is a frame for H if there exist constants 0 < A ≤ B < ∞ such that for all f ∈ H,

A∥f∥2 ≤ ∑∞
i=1 |⟨f, fi⟩|2 ≤ B∥f∥2.

A and B are called the lower and respectively the upper bounds for the frame. If A = B,
it is called A-tight frame.

Given a frame {fi}∞i=1, the frame operator is defined as,
S : H −→ H, Sf =

∑∞
i=1⟨f, fi⟩fi.

It is proved that the frame operator is positive definite, self adjoint and invertible. In
fact, AI ≤ S ≤ BI, where I denotes the identity operator on H. Moreover, the family
{S−1fi}∞i=1 is also a frame for H, that is called the canonical dual frame. More precisely
every f ∈ H can be represented as

(1) f =

∞∑

i=1

⟨f, S−1fi⟩fi =
∞∑

i=1

⟨f, fi⟩S−1fi
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The formula (1) shows that we can find an element f ∈ H based on the knowledge of the
coefficients {⟨f, fi⟩}∞i=1. However, in order to this formula to be useful we need to compute
the inverse of the frame operator which can be complicated.

Another option is to approximate f . Frame algorithm [4] is one way to obtain an
approximation of f . the convergence rate of this algorithm is

(
B−A
B+A

)
. Also in [6] we can

see an algorithm, based on the conjugate gradient method , that has a faster convergence.
The convergence rate of this algorithm depends on

(√
B−

√
A√

B+
√
A

)
.

In this paper, in order to approximate every f ∈ H based on the knowledge of the
coefficients {⟨f, fi⟩}∞i=1, we design two algorithms with the better convergence rate, where
{fi}∞i=1 is a frame for H.

2. Proposed algorithm
In this section we propose a new recursive formula for approximating any element f

based on the knowledge of a frame in a Hilbert space H.
For given f ∈ H consider the following recursive formula,

(2) g0 = 0, gi = gi−1 +
4

A+B

(
I − 1

A+B
S2

)
S2 (f − gi−1) .

. In this case the following lemma holds.

Lemma 2.1. Let {fi}∞i=1 be a frame for Hilbert space H with frame bounds A and B,
respectively, and also the frame operator S. Then

∥I − 4

A+B

(
I − 1

A+B
S2

)
S2∥ ≤

(
B −A

B +A

)2

.

Now we can conclude the following theorem.

Theorem 2.2. Let {fi}∞i=1 be a frame for H with frame bounds A and B respectively.
Given f ∈ H, the sequence {gi}∞i=1 in (2) converges to f and,

∥f − gi∥ ≤
(
B−A
B+A

)2i
∥f∥.

Note that this theorem shows that the squence {gi}∞i=1 converges to f with the con-
vergence rate

(
B−A
B+A

)2
. However the convergence rate of the frame algorithm is B−A

B+A .
We summarize these results in the following algorithm which generates an approximation
for f ∈ H with an arbitrary accuracy ϵ > 0.
Algorithm 1
Let ϵ > 0 be given.

(1) Let ρ =
(
B−A
B+A

)2
.

(2) i = 0, gi = 0.
(3) a) i = i+ 1, ri−1 := f − gi−1, vi−1 := S2ri−1.

b) gi = gi−1 +
4

A+B

(
vi−1 − 1

A+BS2vi−1

)
.

(4) If ρi

A ∥f∥ < ϵ stop and set gi as an approximation for f . Else go to step 3.
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3. Acceleration by the Chebyshev polynomials
Consider the sequence {hn}∞n=1 as hn =

∑n
i=1 anigi where {gi}∞i=1 is the sequence

of approximations obtaining in (2) and {ani}ni=1 is a finite sequence of real or complex
numbers corresponding to any hn such that

∑n
i=1 ani = 1.

By using the properties of the Chebyshev polynomials, we design an algorithm with the
better convergence rate. These polynomials have the important minimization property
that makes them useful for convergence acceleration. These polynomials are defined by,

cn(x) =





cos(n arccos(x)) |x| ≤ 1

cosh(ncosh−1(x)) = 1
2

[(
x+

√
x2 − 1

)n
+

(
x+

√
x2 − 1

)−n
]

|x| > 1

which satisfy the following recurrence relations,
c0(x) = 1, c1(x) = x, cn(x) = 2xcn−1(x)− cn−2(x), ∀n ≥ 2.

For more details see [3].
If we define ρn =

2
ρ
cn−2(

1
ρ
)

cn(
1
ρ
)

, then a straightforward computing gives the following recursive

relation, ρn =

(
1− ρ2

4
ρn−1

)−1

.
Now we consider the following algorithm.

Algorithm 2

(1) Let ρ =
(
B−A
B+A

)2
, σ =

√
A2+B2−

√
2AB√

A2+B2+
√
2AB

.

(2) Set h0 = 0, h1 =
4

A+B

(
I − 1

A+B
S2

)
S2f , ρ1 = 2, n = 1.

(3) While 2σn

1 + σ2n

∥f∥
A

> ϵ Do,
i) n = n+ 1;

ii) ρn =

(
1− ρ2

4
ρn−1

)−1

;

iii) hn = ρn

[
hn−1 − hn−2 +

4

A+B

(
I − 1

A+B
S2

)
S2 (f − hn−1)

]
+ hn−2.

(4) uϵ = hn.
The following theorem investigate the convergence of the Algorithm 2.

Theorem 3.1. If {fi}∞i=1 is a frame for Hilbert space H with frame bounds A and B
respectively and also the frame operator S, then the sequence {hn}∞n=1, obtaining from the
Algorithm 2, converges to f with,

∥f − hn∥ ≤ 2σn

1 + σ2n

∥f∥
A

.
Also the output uϵ of the Algorithm 2 satisfies ∥f − uϵ∥ < ϵ.

This Algorithm guarantees a faster convergence than the Algorithm 1, when B is much
more larger than A. The following example shows a frame with frame bounds A and B,
so that under these frame conditions, Algorithm 1 can converge at least in 57 steps but
under the same conditions, Algorithm 2 can converge in 3 steps.

Example 3.2. Let H be a Hilbert space of dimension 100. Assume that {ei}100i=1 is
an orthonormal basis for H and let {fi}5050i=1 = {e1, e2, e2, e3, e3, e3, ...., e100, ..., e100}, that
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is the sequence where each vector ei is repeated i times. Thus {fi}5050i=1 is a frame for H
with frame bounds A = 1 and B = 100 respectively. Assume that f ∈ H and suppose
for the convenience of calculations, ∥f∥ = 1. Then by using Algorithm 1 with ϵ = 0.1 we
have ρ =

(
B−A
B+A

)2
≃ 0.961. By applying the stop condition of the Algorithm 1, we can

conclude n ≥ 57. It means at least 57 steps are required for the Algorithm 1 to converge.
But this time, using Algorithm 2 and applying its stop condition 2σn

1 + σ2n

∥f∥
A

≤ ϵ, with
σ ≃ 0.382 and the same ϵ, we can conclude that n ≥ 3. Therefore the approximations
obtained from the Algorithm 1 won’t converge in less than 57 steps , while the Algorithm
2 can converge in only three steps.
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Abstract. In this paper, we define the torsion graph determined by equivalence classes
of torsion elements, denoted by AE(M). We shall prove that for every torsion finitely
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1. Introduction

Throughout this paper, all rings are commutative with identity and all modules are
unitary. The notion of zero-divisor graph G(R) of a ring R, was introduced by I. Beck in
[1]. We follow the ideas from Mulay, Spiroff and Wickham in [3], who studied the graph of
equivalence classes of zero-divisors of a ring R. Let M be an R-module and T (M) be the
set of all torsion elements of M and T (M)∗ = T (M)−{0}. For every x, y ∈ M , we say that
x ∼ y if ann(x) = ann(y). The relation ” ∼ ” is an equivalence relation. The equivalence
class of x is denoted by [x]. Here we define a graph whose set of vertices is the set of
equivalence classes {[x] | x ∈ T (M)∗}, and two distinct torsion elements x, y ∈ T (M)∗ are
equivalent if ann(x) = ann(y). Also, two distinct classes [x] and [y] are adjacent provided
that ann(x)ann(y)M = 0. This graph will be denoted by AE(M). For an R−module
M(a ring R), we denote the set of all ann(x) such that 0 ̸= x ∈ M(R), by ΩR(M)(Ω(R)) .
There is a natural bijective map from ΩR(M)(or Ω(R)) to the set of vertices of AE(M)(or
AE(R)) given by I → [x], where I = ann(x). We will slightly abuse terminology and refer
to [x] as an element of Ω. A colour-partition of a graph G is a partition of V (G) into
colour-classes V1, . . . , Vl such that each Vi(1 ≤ i ≤ l), contains no pair of adjacent vertices.
The chromatic number of G, is the least natural number l for which such a partition is
possible and denoted by ν(G).

In this paper we show that a vertex of AE(M) has degree two if and only if it is an
associated prime of M . Finally, we determine ν(AE(M)), where |V (AE(M))| > 1 and
prove that the chromatic number of AE(M) equals its clique number.
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2. Main results

Definition 2.1. The graph of equivalence classes of torsion elements of an R-module
M , denoted by AE(M), is the graph whose vertices are the classes of elements in T (M)∗.
Also, each pair of distinct classes [x] and [y] are joined by an edge, if ann(x)ann(y)M = 0.

Lemma 2.2. Let M be a torsion finitely generated module over a Dedekind domain
R. Suppose that ann(M) = Pα1

1 . . . Pαk
k is the decomposition of ann(M) into the prime

ideals of R. Then V (AE(M)) = {P β1
1 . . . P βk

k ̸= R | 0 ≤ βi ≤ αi} and |Ass(M)| = k and

|V (AE(M))| = (
∏k

i=1(αi + 1))− 1 and

deg(P β1
1 . . . P βk

k ) =





(
∏k

i=1(βi + 1))− 2 ; if βi = αi ; ∀i
(
∏k

i=1(βi + 1))− 1 ; if βi ≥
αi

2
; ∀i

∏k
i=1(βi + 1) ; if ∃i ; βi <

αi

2

Proof: Since R is a Dedekind domain and M is a torsion finitely generated R-module
, by [2], there exist torsion submodules of M , < xi >, 1 ⩽ i ⩽ n, such that M ∼=⊕n

i=1 < xi >. If x = x1 + . . . + xn, then ann(x) = ann(M). For every i(1 ⩽ i ⩽ k), let
Ti = P 2

i ∪P1∪ . . .∪Pi−1∪Pi+1∪ . . .∪Pk. Then there exists ri ∈ Pi−Ti such that PiRPi =

(
ri
1
). Let r = rβ1

1 . . . rβk
k , where 0 ≤ βi ≤ αi. We have ann(rx) = P γ1

1 . . . P γk
k , where

γi = αi − βi, (1 ⩽ i ⩽ k). Hence T = {P γ1
1 . . . P γk

k ̸= R|0 ⩽ γi ⩽ αi} ⊆ ΩR(M). Clearly

ΩR(M) ⊆ T and so V (AE(M)) = T . Hence |ΩR(M)| = |V (AE(M))| = (
∏k

i=1(αi+1))− 1

and |Ass(M)| = k. Also by Definition 1.1, two distinct vertices P β1
1 . . . P βk

k and P γ1
1 . . . P γk

k

are adjacent if and only if βi+γi ≥ αi(1 ≤ i ≤ k). Then for every P β1
1 . . . P βk

k ∈ V (AE(M)),
its neighbourhood is the set A = {P γ1

1 . . . P γk
k ̸= R | αi − βi ≤ γi ≤ αi,∀i, 1 ≤ i ≤ k} and

the proof is complete.

Theorem 2.3. Let M be a torsion finitely generated module over a Dedekind domain
R. If |V (AE(M))| ⩾ 5, then a vertex of AE(M) has degree two if and only if it is an
associated prime of M .

Proof: By Lemma 2.2, we have Ass(M) = {P1, . . . , Pk} and deg(Pi) = 1 + 1 =

2(1 ≤ i ≤ k). Conversely, let deg(P β1
1 . . . P βk

k ) = 2. If (
∏k

i=1(βi + 1)) − 2 = 2 or

(
∏k

i=1(βi + 1)) − 1 = 2, we have |V (AE(M))| ≤ 4, which is a contradiction. Now let∏k
i=1(βi + 1) = 2. So there exists i(1 ≤ i ≤ k) such that βi + 1 = 2 and for every j ̸= i

(1 ≤ j ≤ k), βj + 1 = 1. Then βi = 1 and for every j ̸= i (1 ≤ j ≤ k), βj = 0. Therefore,

P β1
1 . . . P βk

k = Pi ∈ Ass(M).

Example 2.4. Let R = Z[
√
10], I =< 10, 10

√
10 > and M =

R

I
. We know that

R is a Dedekind domain, but it is not a PID. We have ann(5
√
10 + I) =< 2,

√
10 > ,

ann(2
√
10 + I) =< 5,

√
10 > , ann(5 + I) =< 2, 2

√
10 > , ann(2 + I) =< 5, 5

√
10 > ,

ann(
√
10+ I) =< 10,

√
10 > , ann(2+5

√
10+ I) =< 10, 5

√
10 > , ann(5+2

√
10+ I) =<

10, 2
√
10 > and ann(1 + I) =< 10, 10

√
10 >.

Put v1 = [5
√
10 + I], v2 = [2

√
10 + I], v3 = [5 + I], v4 = [2 + I], v5 = [

√
10 + I],

v6 = [2 + 5
√
10 + I], v7 = [5 + 2

√
10 + I] and v8 = [1 + I].
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..

v1

.

v2

.

v3

.

v4

.

v5

.

v6

.

v7

.

v8

AE(M)

Then Ass(M) = {P1 =< 2,
√
10 >,P2 =< 5,

√
10 >}.

Theorem 2.5. Let M1 and M2 be torsion finitely generated modules over a Dedekind
domain R such that AE(M1) ∼= AE(M2) and |V (AE(M1))| = |V (AE(M2))| ≥ 5. If

ann(M1) = Pα1
1 ...Pαk

k and ann(M2) = Qβ1
1 ...Qβs

s are the decompositions of ann(Mi), i =
1, 2, into prime ideals of R such that α1 ≥ ... ≥ αk and β1 ≥ ... ≥ βs, then k = s and
|Ass(M1)| = |Ass(M2)| = k. Furthermore, for every i, 1 ≤ i ≤ k , αi = βi.

Proof: By Lemma 2.2, k = |Ass(M1)| = |Ass(M2)| = s. Let α1 > 1. By Lemma

2.2, deg(Pα1−1
1 Pα2

2 ...Pαk
k ) = α1(α2 + 1)...(αk + 1) − 1 is the second maximum degree of

AE(M1). Then, α1(α2 +1)...(αk +1)− 1 = β1(β2 +1)...(βk +1)− 1 and we have α1 = β1.

Now for every 0 ≤ s ≤ α1, we have deg(Pα1−s
1 Pα2

2 ...Pαk
k ) = deg(Qα1−s

1 Qβ2
2 ...Qβk

k ) and
there exists s such that

deg(Pα1−s−1
1 Pα2

2 ...Pαk
k ) < deg(Pα1

1 Pα2−1
2 Pα3

3 ...Pαk
k ) ≤ deg(Pα1−s

1 Pα2
2 ...Pαk

k ).

Therefore, deg(Pα1
1 Pα2−1

2 Pα3
3 ...pαk

k ) = deg(Qα1
1 Qβ2−1

2 Qβ3
3 ...Qβk

k ). So α2 = β2. Let
αi = βi, for every i, 1 ≤ i ≤ t− 1. Then there exist si, 0 ≤ si ≤ αi(1 ≤ i ≤ t− 1),

such that deg(Pα1
1 ...P

αt−1

t−1 Pαt−1
t P

αt+1

t+1 ...Pαk
k ) ≤ deg(Pα1−s1

1 ...P
αt−1−st−1

t−1 Pαt
t ...Pαk

k ). Also
for every i(1 ≤ i ≤ t− 1), we have

deg(Pα1−s1
1 ...P

αi−1−si−1

i−1 Pαi−si−1
i P

αi+1−si+1

i+1 ...P
αt−1−st−1

t−1 Pαt
t ...Pαk

k ) <

deg(Pα1
1 ...P

αt−1

t−1 Pαt−1
t P

αt+1

t+1 ...Pαk
k ).

Hence deg(Pα1
1 ...P

αt−1

t−1 Pαt−1
t P

αt+1

t+1 ...Pαk
k ) = deg(Qα1

1 ...Q
αt−1

t−1 Qβt−1
t Q

βt+1

t+1 ...Qβk
k ) and it fol-

lows that αt = βt. Therefore for every i(1 ≤ i ≤ k), αi = βi.
By observations above it is easy to see that the number of graphs Γ such that there exist

a Dedekind domain R and a torsion finitely generated R−module M with AE(M) ∼= Γ
and |V (AE(M))| = n, is equal the number of ways that n+1 can be written as a product

of the form n + 1 =
∏k

i=1 ai, where k ∈ N and ai ≥ 2(1 ≤ i ≤ k). The number 3 is an
exception, because AE(Zp3) ∼= AE(Zpq) ∼= K3, where p, q are prime numbers.

Theorem 2.6. Let M be a finitely generated module over a Dedekind domain R with

ann(M) ̸∈ Spec(R). Suppose that ann(M) = Pα1
1 ...Pαk

k Qβ1
1 ...Qβt

t is the decomposition of
ann(M) into prime ideals of R such that for every i(1 ≤ i ≤ k), αi is even and for every
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j(1 ≤ j ≤ t), βj is odd. Then ν(AE(M)) = (
∏k

i=1(
αi

2
+ 1)

∏t
j=1(

βj + 1

2
)) + t. Also the

clique number and the chromatic number of AE(M) are equal.

Proof: Let ann(M) = T γ1
1 ...T γs

s , where {T1, ..., Ts} = {P1, ..., Pk, Q1, ..., Qt} and
{γ1, ..., γs} = {α1, ..., αk, β1, ..., βt}. We define the function f : N −→ N by

f(γ) =





γ

2
+ 1 ; if γ is even

γ + 1

2
; if γ is odd

Now we consider {(i1, ..., is) | 0 ≤ ij ≤ γj and 1 ≤ j ≤ s} with the following ordering
(0, ..., 0) < (1, 0, ..., 0) < ... < (γ1, 0, ..., 0) < (0, 1, 0, ..., ) < (1, 1, 0, ..., 0) < (γ1, 1, 0, ..., 0)

< (0, 2, ..., 0) < (1, 2, ..., 0) < ... < (0, γ2, 0..., 0) < (1, γ2, 0, ..., 0) < ... < (0, ..., 0, γs) <
(1, 0, ..., 0, γs) < ... < (γ1, ..., γs).

For every (i1, ..., is), we consider the subsets V(i1,...,is) of V (AE(M)) that satisfy the
following three conditions:

i) T γ1−i1
1 ...T γs−is

s ∈ V(i1,...,is);
ii) for every (l1, ..., ls) < (i1, ..., is), V(i1,...,is)

∩
V(l1,...,ls) = ∅;

iii) for every v ∈ V (AE(M)) such that v ̸∈ ∪
(l1,...,ls)<(i1,...,is)

V(l1,...,ls) and v and

T γ1−i1
1 ...T γs−is

s are not adjacent, then v ∈ V(i1,...,is).
We have V(i1,...,is) ̸= ∅, when 0 ≤ ij ≤ f(γj)− 1 and if γj is odd,
we have V

(0,...,0,
γj + 1

2
,0,...,0)

̸= ∅. Let A = {V(i1,...,is) | V(i1,...,is) ̸= ∅} and |A| = a. We

have the set A is a colour partition of AE(M), hence ν(AE(M)) ≤ a. On the other hand,

the induced subgraph generated by {T γ1−i1
1 ...T γs−is

s | T γ1−i1
1 ...T γs−is

s ∈ V(i1,...,is)} is the
complete graph Ka. So ν(AE(M)) ≥ a and hence

ν(AE(M)) = a = (
∏s

i=1 f(γi)) + t = (
∏k

i=1(
αi

2
+ 1)

∏t
j=1(

βj + 1

2
)) + t .

Also it is easy to see that the clique number and the chromatic number of AE(M) are
equal.

3. Conclusion

If the graph AE(M) of a torsion finitely generated module M over a Dedekind domain
R is known, we can find Ass(M) and the decomposition of ann(M) into prime ideals of
R.
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Abstract. An open set of skew products over the Bernoulli shift with fiber [0, 1] is
constructed such that maximal attractors of these skew products are either a continuous
invariant graph or a bony attractor. Moreover, maximal attractors carry an invariant
ergodic measure that projects to the Bernoulli measure in the base. These skew products
have negative fiber Lyapunov exponents and their fiber maps are non-uniformly contract-
ing, hence the non-uniform contraction rate are measured by Lyapnnov exponents.
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1. Introduction
In [1], Kudryashov introduced a new type of attractors which is called bony attractors,

then he presented an open set in the space of step skew products over the Bernoulli shift
such that any of them had a bony attractor. Following [1], an attractor A of a skew
product is bony if A is the union of the graph of a continuous function on some subset
of the base and an uncountable set of vertical closed intervals (bones) contained in the
closure of the graph. The objective of this article is to extend aforementioned result
from [1] to the random case, where the skew products are general ( not necessarily step).
One novelty here is that, in our context, in contrast the Kudryashov’ case, fiber maps
are non-uniformly contracting, therefore the contraction rates are non-uniform and hence
measured by Lyapunov exponents.
Dynamical systems under the external forcing are modeled, in discrete time, as skew
products,
(1) F : Ω×M → Ω×M, F (ω, x) = (θω, fω(x)),

where the dynamics of the forcing process are described by the base transformation θ which
is assumed to be a measure-preserving transformation of a probability space (Ω,F ,P)
(random forcing).
An invariant graph of F is the graph of a measurable function γ : Ω → M which satisfies
fω(γ(ω)) = γ(θ(ω)), for P-almost all ω ∈ Ω.

∗Speaker. Email address: maryam_rabieefarahani@yahoo.com
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Assume that X is a metric measure space. Denote by int(D) and Cl(D), respectively, the
interior and the closure of any set D.

Let (X;B;µ; f) be a measure preserving dynamical system. If f is invertible then,
based on [2, 3], the system is Bernoulli if it is isomorphic to a Bernoulli shift. Clearly
invertible systems cannot be isomorphic to non-invertible systems. But there is a con-
struction to make a non-invertible system invertible, namely by passing to the natural
extension. For non-invertible case, being Bernoulli means that the natural extension is
isomorphic to a Bernoulli shift.

The map f is mixing (or strong mixing) if

µ(f−n(A) ∩B) → µ(A)µ(B), as n → +∞,

for every A,B ∈ B. Every mixing system [3] is necessarily ergodic.
For a metric space X, putting

Lip1(X) = {f : X → R : |f(x)− f(y)| ≤ d(x, y) for all x, y ∈ X},
define the Hutchinson metric on the setM(X), the space of all Borel probability measures,
by

(2) dH(ν, µ) = sup{|
∫

X
fdν −

∫

X
fdµ : f ∈ Lip1(X)|}.

For every metric space X, the topology T on M(X) generated by dH(ν, µ) coincides with
the topology W of weak convergence if and only if diam(X) < ∞. Moreover, the space
M(X) is complete in the metric dH if and only if X is complete.

A random map with base (Ω,F ,P, θ), in the sense of Arnold [4], is a skew product
of the form (1) where (Ω,F ,P) is a probability space, θ : Ω → Ω is a bi-measurable and
ergodic measure-preserving bijection and M is a measurable space. If M is a smooth
manifold and all fibre maps fω are Cr, we call F a random Cr-map.

Take Σ+
k = {0, . . . , k−1}N and Σk = {0, . . . , k−1}Z endowed with the product topology

and equip them with the Bernoulli measures ν+ and ν, respectively, corresponding to some
distribution of probabilities p0, . . . , pk−1, which gives us the probability with which we
apply fi. Here, assume that the probabilities pi, i = 0, . . . , k − 1, are the same and equal
to 1/k. Let σ : Σk → Σk and σ+ : Σ+

k → Σ+
k denote the one-sided and two-sided left shift.

It is well known that σ+ and σ are ergodic transformations preserving the probabilities
ν+ and ν, respectively.

Let M be a compact smooth manifold. Here, we consider skew products of the form
(3) F : Σk ×M → Σk ×M ; (ω, x) → (σω, fw(x))

which is called a skew product over the Bernoulli shift, where ω ∈ Σk, x ∈ M and the
maps fω are Cr diffeomorphisms on M . The space Σk is called the base, the space M is
called the fiber, and the maps fω are called the fiber maps. Thus each skew product of the
form (3) is a random Cr-map.

A skew product over the Bernoulli shift is a step skew product if the fiber maps fω
depend only on the digit ω0 and not on the whole sequence ω. We emphasise, in contrast
to step skew products, the fiber maps of (general) skew products of the form (3) depend
on the whole sequence ω. When treating a step skew product for one sided time N, this
results in the skew product system F+ on Σ+

k ×M :

(4) F+ : Σ+
k ×M → Σ+

k ×M ; (ω, x) → (σ+ω, fw0(x)).
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We denote iterates of a skew product system F of the form (3) as Fn(ω, x) = (σn(ω), fn
ω (x)).

Here, for n ≥ 1

fn
ω (x) := fσn−1ω ◦ . . . ◦ fω(x).

For a step skew product system this becomes
fn
ω (x) := fωn−1 ◦ . . . ◦ fω0(x),

where ω = (. . . , ω−1, ω0, ω1, . . . , ωn, . . .) ∈ Σk.
In the rest of this article we assume that the fiber M is always the unit interval I.
Take C(I) the space of all random C2-maps (general skew products) acting on Σk × I

defined by C2 interval diffeomorphisms. We equip C(I) with the following metric:
(5) distC2(F,G) := sup

ω∈Σk

(distC2(f±1
ω , g±1

ω )), for each F,G ∈ C(I),

where fω and gω are the fiber maps of F and G, respectively.
Let F : Σk × I → Σk × I be a homeomorphism onto its image, but suppose its image

is contained strictly in Σk × I. The (global) maximal attractor of F is defined as:

(6) Amax(F ) :=

∞∩

n=0

Fn(Σk × I).

2. Main results
To state the main result precisely, the concept of a bony attractor may need to be

introduced.

Definition 2.1. Following [1], an attractor Λ of a skew product F is a bony graph
attractor if Λ is the union of the graph of a continuous function γ defined on some set of
full measure of the base and a set of vertical closed intervals (”bones”) contained in the
closure of the graph.

This feature is similar to porcupine horseshoes discovered by Diaz and Gelfert in [5].
In this article, we will show that maximal attractors of a certain class of general skew
products (random maps) are either a continuous invariant graph or a bony attractor. Our
novelty here is that the fiber maps of such systems depend on the whole sequence ω and
hence they are not necessarily step skew products. Moreover, the fiber contraction rates
are non-uniform and hence measured by Lyapunov exponents, in addition, the attractors
carry an ergodic measure. Our result thus extends work by Kudryashov in [1] who treated
step skew products over the Bernoulli shift having bony attractors.

Theorem 2.2. There exists an open nonempty set U in the space C2 random maps
C(I) given by (5) such that any system G belonging to this set has a maximal attractor
Amax(G) satisfies the following properties:

(1) the maximal attractor Amax(G) is either a continuous invariant graph or a bony
graph attractor;

(2) there exists an invariant ergodic measure µG whose support is the closure of
the graph ΓG, in particular, (G,ΓG, µG) is Bernoulli and therefore it is mixing,
additionally, the invariant measure for the perturbed system is continuous in the
Hutchinson metric;

(3) the fiber Lyapunov exponent of G is negative;
Moreover, the set of random maps of U which admit a bony graph attractor is nonempty.
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Frame-Type Expansion of Functions and Modulation Spaces
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Abstract. In this paper we introduce a great class of wavelet systems and their duals
(based on MRA) which generally are not frames in L2(Rd). Then we propose Frame-type
expansions that could happen in different senses of series convergence. As a new point
of view, these expansions are considered in modulation spaces which is our novelty
Keywords: Frames, dual wavelets, modulation spaces, Frame-type wavelets.
AMS Mathematics Subject Classification [2010]: 46C20, 42C15, 30E20

1. Introduction
During the early 1980’s Feichtinger introduced the class of modulation spaces. As an

straight definition we can say that a modulation space Mp, contains of those functions
or distributions whose windowed Fourier transform is in LP . A width rang of explanation
and application of modulation spaces could be find in [5] and several references therein
and refereed to.
Now modulation spaces are known as the exact framework of time-frequency analysis. In
this paper we consider modulation spaces Mp, as our function space and will state some
convergence results according to them. From now on S denotes the Schwartz class, S′ is
its dual, i.e., the space of tempered distributions and by H, we mean a Hilbert space with
inner product ⟨, ⟩.

On the other hand, we know that expanding and approximating the functions, are
historically and scientifically attractive subjects. Although expanding of signals is an
interesting and important subject for engineers, but also it has a grate benefit for mathe-
maticians to study and investigate this, since it helps peoples to increase the big deal with
science and technology. The most famous tools for this aim were bases and corresponding
coefficients. But scientists realized very soon that there are many more ways and tools
to do that in faster and better ways. Nowadays it is very popular and relevant way to
employing frames and wavelets in function expansion. By definition, that was first given
by Duffin and Schaefer [4], a frame is a family of vectors {fj}j∈J in a Hilbert space H
where J is a countable set in Hilbert space H, if there exist constants A,B > 0, such that
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A∥f∥2 ≤
∑

j∈J
|⟨f, fj⟩|2 ≤ B∥f∥2,

for all f ∈ H and constants 0 < A ≤ B < ∞ independent of f . A frame has an
important property: for any f ∈ H we have the decomposition f =

∑
j⟨f, f̃j⟩fj where

{f̃j} is a dual frame in H.
One desirable family of frames arises from wavelet frames. Wavelet frames are considered
actively during last twenty years in engineering and mathematics, [1], [2] . Constructing a
dual wavelet systems ψ(v), ψ̃(v) , based on an MRA, is a famous and known subject, but
it should be noticed that it generally does not lead to wavelet frames, since it is necessary
to provide vanishing moment property for a wavelet systems to be a frame in H and this
is a complicate manner. However engineers employ such frames (which are not really
frames!)for approximation goals without any care either they satisfy the frame property
or not.
Recently many researchers start to employ frame-type wavelet systems results. As a no-
table work in this area the authors in [2] have studied MRA based frame-type wavelet
systems, their corresponding expansion and convergence in different sense, such as in
Schwartz class or in L2(R).

2. Main results
At first consider unitary operators Txf(t) = f(t − x) and Mωf(t) = e2πiωtf(t), in

L2(R) and define

Vgf(x, ω) = ⟨f,MωTxg⟩,
with L2 inner product. We can state the following definition.

Definition 2.1. For a non-zero window g ∈ S(Rd), a v-moderate weight functionm on
R2d and 1 ≤ p <∞, the modulation space Mp

m(Rd) consists of all tempered distributions
f ∈ S ′(Rd) such that Vgf ∈ Lp

m(R2d) with ∥f∥Mp
m

= ∥Vgf∥Lp
m
. Mp

m(Rd) is Banach space
which its norm is independent of the function g, [5].

Remark: An important result is that modulation space M2
m is identical with L2

m,
through Wilson bases.
Now we are going to mention some notes on wavelet system construction, [5].

Definition 2.2. Let ϕ ∈ L2(R) and m0 be a 1-periodic function in L2([0, 1]). Then
ϕ is called refinement function if it satisfies in the refinement equation

ϕ̂(ξ) = ϕ̂(ξ/2)m0(ξ/2),

where the ϕ̂ is the dual function.
Theorem 2.3. Letm0 be a 1-periodic function in L2([0, 1]). Then there exist 1-periodic

functions m1,m2, ....mr such that M∗M = I2 for matrix

M =

(
m0(ξ) ... mr(ξ)

m0(ξ + 1/2) ... mr(ξ + 1/2)

)

Definition 2.4. Let ψ̂v(ξ) = mv(ξ/2)ϕ̂(ξ/2). Then functions ψ1, ψ2, ....ψr are called
the wavelet functions corresponding with ϕ.
Also we have ψv

jkx = 2j/2ψ(2jx− k) for j, k ∈ Z
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Definition 2.5. Let {ψv
jk}, {ψ̃v

jk} be dual wavelet systems and A be a class of functions
f for which ⟨f, ψ̃v

jk⟩ have meaning. We say that the family {ψv
jk}j,k∈Z, v = 1, 2, ..., r is

frame-type if:

f =
∑

j,k∈Z

r∑

v=1

⟨f, ψ̃v
jk⟩ψv

jk, ∀f ∈ A,

where the series converges in some natural sense.

Theorem 2.6. Let f ∈ S, ϕ ∈ L2(R), ϕ̃ ∈ S′, also suppose that ϕ, ϕ̃ are compactly
supported and refinable, ϕ̂(0) =

ˆ̃
ϕ(0) = 1 and ψv, ψ̃v, v = 1, ..., r be associated wavelet

functions. Then the above equation holds with the series convergence in L2-norm, [2].
Another version of this theorem can be stated in Lp(R), with just some justifications.

Now we are ready to explain our main theorems. Here we consider refinable function
in modulation spaces M2(R) and Mp(R) respectively and investigate the convergence

properties.

Theorem 2.7. Let f ∈M1, ϕ ∈ L2(R), ϕ̃ ∈M∞, also suppose that ϕ, ϕ̃ are compactly
supported and refinable, ϕ̂(0) =

ˆ̃
ϕ(0) = 1 and ψv, ψ̃v, v = 1, ..., r be associated wavelet

functions. Then

f =
∑

j,k∈Z

r∑

v=1

⟨f, ψ̃v
jk⟩ψv

jk,∀f ∈M1,

with the series convergence in M2-norm.

proof. This is an straight result from equivalence of L2 norm and M2 norm.

Theorem 2.8. Let f ∈ S, ϕ ∈ Mp
m(R), ϕ̃ ∈ S′, also suppose that ϕ, ϕ̃ are compactly

supported and refinable, ϕ̂(0) =
ˆ̃
ϕ(0) = 1 and ψv, ψ̃v, v = 1, ..., r be associated wavelet

functions. Then

f =
∑

j,k∈Z

r∑

v=1

⟨f, ψ̃v
jk⟩ψv

jk, ∀f ∈ S,

with the series convergence in Mp
m-norm.

proof: [6].
Note that there are different ways to extend MRA-based wavelet system from R to

R. For these standard ways, all results which are given here, are valid. Finally we finish
our work with mention to another problem would be considered: question about higher
dimensions! which we hope to work after [6].
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Abstract. We propose an optimization method, based on the Jacobi wavelets along
with the Gauss-Legendre quadrature and Itô approximation, for solving nonlinear sto-
chastic Itô-Volterra integral equations (SIVIEs). By applying these basis and approxi-
mations the nonlinear SIVIEs convert to a system of algebraic equations which can be
solved by an appropriate numerical method.
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1. Introduction

Nonlinear stochastic equations (NSEs) or random functional have been extensively
studied by many scholars in the last years due to the fact that these equations are success-
fully used for modeling different physical and engineering phenomena like reactor dynam-
ics, the growth of biological populations, automatic systems, HIV internal virus dynamics
and mathematical ecology science. These systems often depend on a noise source, like a
Gaussian white noise, governed by certain probability laws. Because of the difficulty and
complexity, solving such problems analytically are usually difficult, so several numerical
schemes are emerged to solve nonlinear stochastic Itô-Volterra integral equations.

2. Preliminaries and fundamentals

2.1. Stochastic calculus.

Definition 2.1. (Brownian motion process) [1]
Brownian motion (B(t)) is a stochastic process which satisfies in the following properties
(i): B(t)−B(s) for t > s is independent of the past such that B(t)−B(s) and B(v)−B(u)
for 0 < u < v < s < t are independent.
(ii) B(t) − B(s) for t > s has normal distribution with mean 0 and variance t − s. That
means

B(t)−B(s) ∼ √
t− sN(0, 1),

where N(0, 1) demonstrates normal distribution with mean 0 and variance 1.
(iii) B(t), t ≥ 0 is continuous function of t. Here we consider B(0) = 0.

∗Speaker. Email address: P.rahimkhani@alzahra.ac.ir
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2.2. Jacobi wavelets. The Jacobi wavelets Ψn,m(t) = Ψ(k, n,m, t) are defined over
[0, 1) as [2]

(1) Ψn,m(t) =

{
2

k
2

√
1

γ
(α,β)
m

P
(α,β)
m (2kt− (2n− 1)), n̂

2k−1 ≤ t < n̂+1
2k−1 ,

0, otherwise,

where n = 1, 2, . . . , 2k−1 and m = 0, 1, 2, . . . ,M − 1, m̂ = 2k−1M, n̂ = n− 1 and P
(α,β)
m (t)

are the Jacobi polynomials of order m given on the interval [0, 1] as [3]

(2) P (α,β)
m (t) =

Γ(m+ α+ 1)

m!Γ(m+ α+ β + 1)

m∑

i=0

(
m
i

)
Γ(m+ α+ β + i+ 1)

Γ(i+ α+ 1)

(
t− 1

2

)i

.

These polynomials have the following orthogonality property with respect to the wight
function ω(α,β)(t) = (1− t)α(1 + t)β as

∫ 1
−1 P

(α,β)
n (t)P

(α,β)
m (t)ω(α,β)(t)dt = γ

(α,β)
m δnm,

where

γ
(α,β)
m = 2α+β+1Γ(m+α+1)Γ(m+β+1)

m!(2m+α+β+1)Γ(m+α+β+1) .

3. Description of the proposed computational method

In this section, we obtain a new technique for solving the following nonlinear stochastic
Itô-Volterra integral equation as ( [4], [5])

(3) X(t) = f(t) +

∫ t

0
Λ(τ,X(τ))dτ +

∫ t

0
Υ(τ,X(τ))dB(τ), t, τ ∈ [0, 1),

where X(t) is an unknown stochastic process defined on the probability space (Ω,F , P ),
f(t) is a known stochastic process over (Ω,F , P ), B(t) is a Brownian motion process and
Λ and Υ are analytic functions. For solving problem (3), we approximate X(t) by the
Jacobi wavelets as

(4) X(t) ≃ X̃(t) =

2k−1∑

n=1

M−1∑

m=0

cn,mΨn,m(t),

where the coefficients cn,m are unknown. By using Eqs. (3)-(4) and zeros of the shifted
Legendre polynomials (ti) of order ι, we yield

(5) Res(ti, C) = X̃(ti)− f(ti)−
∫ ti

0
Λ(τ, X̃(τ))dτ −

∫ ti

0
Υ(τ, X̃(τ))dB(τ),

where C is a unknown vector as

C = [c1,0, c1,1, . . . , c1,M−1, c2,0, . . . , c2k−1,M−1]
T .

The first integral terms in Eq. (5) can be approximated by applying the Gauss-Legendre
quadrature formula and the second integral terms ( Itô integral) can be approximated
similar to Ref. [5] as

Res(ti, C) ≃ R̃(ti, C) = X̃(ti)− f(ti)−
ti
2

ñ∑

j=1

ωjΛ(
ti
2
ηj +

ti
2
, X̃(

ti
2
ηj +

ti
2
))

−
n∗∑

j=1

Υ(ϑj−1, X̃(ϑj−1))(B(ϑj)−B(ϑj−1)),(6)
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here, we consider ñ = 2M and n∗ = 100.
So, the following optimization should be obtained

(7) C∗ = minC
1

2

ι∑

i=1

R̃2(ti, C).

The above relation is an unconstrained parametric optimization problem which can be
stated as follows. Find vector C so that C∗ is minimized. The necessary conditions for
minimum of C∗ are obtained as

(8)
∂

∂cn,m
C∗ = 0, n = 1, 2, . . . , 2k−1;m = 0, 1, . . . ,M − 1.

We can solve the above system by any numerical method. Finally, we get numerical
solution X̃(t).

4. Illustrative test problems

Example 4.1. Consider the following nonlinear SIVIE as [4]

(9) X(t) = X0 −
ξ2

2

∫ t

0
tanh(X(τ))sech2(X(τ))dτ + ξ

∫ t

0
sech(X(τ))dB(τ),

where the exact solution is given by

X(t) = arcsinh(ξB(t) + sinh(X0)).

We report the absolute errors of Legendre wavelets method [4] with m̂ = 48, 96 and
Jacobi wavelets method with m̂ = 4 for X0 = 0, ξ = 1

30 , T = 1 in Table 1. Also, Table 2
displays the absolute errors of our method for m̂ = 4 and different values of α and β.

Table 1. The absolute errors with X0 = 0, ξ = 1
30 , k = 2,M = 4 and

T = 1 (Example 1).

t = 0.2 t = 0.4 t = 0.6 t = 0.8 CPU
Legendre wavelets
Absolute error (m̂ = 48) 6.8570E − 4 1.0130E − 3 1.3281E − 3 1.5258E − 3 −
Absolute error (m̂ = 96) 8.4116E − 7 1.7767E − 6 4.7233E − 6 6.6628E − 6 −
Jacobi wavelets
Absolute error (m̂ = 4) 1.7717E − 7 4.1526E − 7 9.5786E − 6 1.8178E − 6 0.340
Numerical solution (m̂ = 4) 0.0019 0.0039 0.0059 0.0078 −

Example 4.2. Consider the following nonlinear SIVIE as ( [4], [5])

(10) X(t) = X0 − ξ2
∫ t

0
X(τ)(1−X2(τ))dτ + ξ

∫ t

0
(1−X2(τ))dB(τ),

where the exact solution is given by

X(t) = tanh(ξB(t) + arctanh(X0)).

The comparison of the absolute error is obtained by Jacobi wavelets scheme with
Legendre wavelets [4] method and piecewise collocation method [5] for X0 = 1

100 , α = 1
30

and T = 1 are shown in Table 3. Also, Table 4 displays the absolute errors of our method
for m̂ = 8 and different values of α and β.
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Table 2. The absolute errors with X0 = 0, ξ = 1
30 , k = 2,M = 2 and

T = 1 (Example 1).

t = 0.2 t = 0.4 t = 0.6 t = 0.8 CPU
Jacobi wavelets
α = β = 0 1.7717E − 7 4.1526E − 7 9.5786E − 7 1.8178E − 6 0.340
α = β = 0.2 3.1466E − 7 7.1536E − 7 1.6408E − 6 3.1576E − 6 0.484
α = β = 0.4 1.6568E − 6 2.3207E − 6 4.7015E − 6 1.1998E − 5 0.594
α = β = 0.6 1.1249E − 6 1.9052E − 6 4.0893E − 6 9.2017E − 6 0.484
α = β = 0.8 1.3336E − 6 2.0913E − 6 4.3921E − 6 1.0373E − 5 0.641
α = β = 1 1.8165E − 6 2.4132E − 6 4.7978E − 6 1.2734E − 5 0.516

Table 3. The absolute errors with X0 = 1
100 , ξ = 1

30 , k = 2,M = 4 and
T = 1 (Example 2).

t = 0.2 t = 0.4 t = 0.6 t = 0.8 CPU
Legendre wavelets (m̂ = 96) 1.2937E − 7 1.2398E − 6 1.1533E − 6 5.6874E − 6 −
Piecewise collocation (m̂ = 13) 1.7000E − 5 2.4000E − 5 2.9000E − 5 4.5000E − 5 −
Jacobi wavelets
Absolute error (m̂ = 8) 2.2381E − 6 4.5086E − 6 6.8115E − 6 9.1466E − 6 2.718
Numerical solution (m̂ = 8) 0.0101 0.0102 0.0104 0.0105 −

Table 4. The absolute errors with X0 = 1
100 , ξ = 1

30 , k = 2,M = 4 and
T = 1 (Example 2).

t = 0.2 t = 0.4 t = 0.6 t = 0.8 CPU
Jacobi wavelets
α = β = 0 2.2381E − 6 4.5086E − 6 6.8115E − 6 9.1466E − 6 2.718
α = β = 0.2 3.3655E − 6 8.9290E − 6 1.6555E − 5 2.6107E − 5 2.234
α = β = 0.4 2.3025E − 6 4.7660E − 6 7.3903E − 6 1.0175E − 5 2.235
α = β = 0.6 2.8698E − 6 7.0198E − 6 1.2426E − 5 1.9066E − 5 2.328
α = β = 0.8 3.1504E − 6 8.1117E − 6 1.4810E − 5 2.3184E − 5 2.328
α = β = 1 3.7549E − 6 1.0343E − 5 1.9412E − 5 3.0606E − 5 2.328
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Abstract. The K-frames were introduced by L. Găvruţa for Hilbert spaces to study
atomic systems with respect to a bounded linear operator. In this article, we study the
extensions of Bessel sequences in a Hilbert space H to K-frames. Indeed, we provide
some conditions that under them, we can extend a Bessel sequence to a K-frame by
adding finitely many elements of H.
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1. Introduction

Duffin and Schaeffer in 1952 introduced the concept of frames to study some problems
in non-harmonic Fourier series. The notion of frames in a Hilbert spaces is a kind of
generalization of the bases and orthonormal bases in Hilbert spaces. The fundamental
paper written by Daubechies, Grossmann and Meyer, caused frame theory to be used more
and more, especially in the field of wavelet frames and Gabor frames, signal processing,
image and data compression and sampling theory. More details about frames are discussed
in [2].

Găvruţa introduced K-frames in Hilbert spaces while studying the atomic decomposi-
tion systems [4]. This type of frame are obtained by restricting the lower frame bound to
the range of a bounded linear operator on a Hilbert space. Building new frames from ex-
isting Bessel sequences or frames has already been reviewed in some articles such as [1], [5]
and [6].

Throughout this article, H is a separable Hilbert space, B(H) is the set of all bounded
linear operators on H and B(H,K) shows the set of all bounded linear operators from
Hilbert space H into Hilbert space K. Also, for V ∈ B(H,K), N(V ) denotes the kernel
of V and R(V ) denotes the range of V .

Definition 1.1. Let K ∈ B(H) and {fi}∞i=1 ⊆ H. Then {fi}∞n=1 is called a K-frame for
H, if there exist positive constants A,B such that

(1) A∥K∗f∥2 ≤
∞∑

i=1

|⟨f, fi⟩|2 ≤ B∥f∥2, ∀f ∈ H.

∗Speaker. Email address: morteza.rahmany@gmail.com
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A,B are called the lower and the upper frame bounds of the K-frame {fi}∞i=1, respectively.
If A = B, then {fi}∞i=1 is called a tight K-frame and if A = B = 1, then {fi}∞i=1 is called
a Parseval K-frame. In the case that only the right inequality (1) holds, {fi}∞i=1 is called
a Bessel sequence in H. If K is the identity operator on H, then {fi}∞i=1 is a frame for H.

Let {fi}∞i=1 be a Bessel sequence in H. The synthesis operator of {fi}∞i=1 is defined by

T : ℓ2 −→H

T ({ci}∞i=1) =

∞∑

i=1

cifi.

The synthesis operator is bounded and its adjoint will be expressed as bellow:

U : H −→ ℓ2

U(f) =
{
⟨f, fi⟩

}∞
i=1

.

The operator U is bounded and it is called the analysis operator of {fi}∞i=1.

Definition 1.2. If V is an operator on the Hilbert space H and M is a closed subspace
of H, then M is an invariant subspace for V if V (M) ⊆ M and a reducing subspace for
V if, in addition, V (M⊥) ⊆ M⊥.

The following result from [3], characterizes the invariant and reducing subspaces for
an operator.

Proposition 1.3. If V is an operator on H, M is a closed subspace of H and PM is
the orthogonal projection onto H, then M is an invariant subspace for V if and only if
PMV PM = V PM if and only if M⊥ is an invariant subspace for V ∗; further, M is a
reducing subspace for V if and only if PMV = V PM if and only if M is an invariant
subspace for both V and V ∗.

Definition 1.4. An operator V ∈ B(H,K) is called Fredholm if N(V ) is of finite dimen-
sion and R(V ) of finite codimension.

Theorem 1.5. (Atkinson) The operator V ∈ B(H,K) is Fredholm if and only if there
exist operators T1, T2 ∈ B(K,H) such that the operators I−T1V and I−V T2 are compact.

Now we state a generalization of the Atkinson’s Theorem.

Proposition 1.6. If the operators V, L ∈ B(H,K) and L is invertible, then V is a Fred-
holm operator if and only if there exists an operator R ∈ B(K,H) such that L−RV and
L− V R are both compact.

Theorem 1.7. ( [4]) Let H be a (separable) Hilbert space and K ∈ B(H). Then {fi}∞i=1

is a K -frame for H if and only if there exists a linear bounded operator L : ℓ2 −→ H such
that fn = Len and R(K) ⊆ R(L), where {ei}∞i=1 is an orthonormal basis for ℓ2.

2. Main Results

In this section, we state some conditions on Bessel sequences in Hilbert spaces which
lead us to construct new K-frames.

At first we show that for each bounded operator K on any finite dimensional Hilbert
space H, we can find a K-frame.
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Proposition 2.1. Let H be a finite dimensional Hilbert space and K : H −→ H be a
bounded operator. If A, B are positive real numbers so that A ≤ B∥K∥−2, then there
exist some finite number of elements in H that form a K-frame for H with bounds A,B.
Moreover, It is possible to find a finite K-Parseval frame for H.

As a result Proposition 2.1, we have the following corollary.

Corollary 2.2. If H is a infinite dimensional Hilbert space, K ∈ B(H) and M is a finite
dimensional subspace of H. Then there exist finitely many elements f1, f2, ..., fN in M
such that {fn}Nn=1 is a PKP -frame for M , where P is the orthogonal projection of H onto
M .

Suppose that H is a finite dimensional Hilbert space, K ∈ B(H) and {fi}∞i=1 is a
Bessel sequence in H. Proposition 2.1 states that we can find a finite K-frame {hi}Ni=1

for H. So the sequence {hn}Nn=1

∪{fn}∞n=1 is a K-frame for H. In other words, for each
Bessel sequence in H, we can find a finite extension to a K-frame.

Now we verify this topic for infinite dimensional Hilbert spaces. Next proposition is
one side of our goal to find finite number of elements to expand a Bessel sequence to a
K-frame.

In the following of this article, to avoid repetition, we suppose that Hilbert space H
is infinite dimensional.

Proposition 2.3. Suppose that K ∈ B(H) and {fi}∞i=1 is a Bessel sequence in H. If there
exists finite number of elements h1, h2, ...hN in H such that the sequence {hi}Ni=1

∪{fi}∞i=1
is a K-frame for H, then there exists a Bessel sequence {gn}∞n=1 in H such that the operator
K∗−U∗

2U1 is a finite-rank operator, where U1 and U2 are the analysis operators of {fi}∞i=1
and {gi}∞i=1, respectively.

Similar to Atkinson’s theorem, we have the next Lemma.

Lemma 2.4. Let U ∈ B(H,K) and there exists V ∈ B(K,H) such that the operator
I − V U is compact. Then R(U) is a closed subspace of K and dim(N(U)) < ∞.

As a corollary of above lemma, we have the next lemma.

Lemma 2.5. If L,U ∈ B(H,K), L is invertible and there exists a V ∈ B(K,H) such that
the operator L−V U is compact, then R(U) is a closed subspace of K and dim(N(U)) < ∞.

By Lemma 2.4, we have the next theorem.

Theorem 2.6. Suppose that {fn}∞n=1 and {gn}∞n=1 are Bessel sequences for H with bounds
B1 and B2 and analysis operators U1 and U2, respectively. If K ∈ B(H), I−U∗

2U1 is a com-
pact operator and P is the orthogonal projection of H onto N(U1), then there exist finite
number of elements x1, x2, ..., xr and y1, y2, ..., yt such that the sequences {xi}ri=1

∪{fi}∞i=1
and {yi}ti=1

∪{gi}∞i=1 are KP -frames for H with upper bounds B1 and B2, respectively.

From Lemma 2.5, we get the next result.

Corollary 2.7. Suppose that {fi}∞i=1 and {gi}∞i=1 are Bessel sequences for H with bounds
B1 and B2 and analysis operators U1 and U2, respectively. Let K ∈ B(H) be invert-
ible, K∗ − U∗

2U1 be a compact operator and P be the orthogonal projection of H onto
N(U1). Then there exist finite number of elements x1, x2, ..., xr and y1, y2, ..., yt such that
{xi}ri=1

∪{fi}∞i=1 and {yi}ti=1

∪{gi}∞i=1 are KP -frames for H with upper bounds B1 and
B2, respectively.
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Now, under some conditions, we extend a Bessel sequence to a K-frame by adding
finitely many elements to it.

Theorem 2.8. Let {fi}∞i=1 be a Bessel sequence for H with bound B and analysis operator
U and it is not a frame. Suppose that there exists R ∈ B(H, ℓ2) such that I − R∗U is a
compact operator. If K ∈ B(H) is such that N(U) is a reducing subspace for K and P
is the orthogonal projection of H onto N(U), then there exist finite number of elements
x1, x2, ..., xr such that the sequence {xi}ri=1

∪{fi}∞i=1 is K-frame for H with upper bound
B.

Remark 2.9. In the Theorem 2.8, if {fi}∞i=1 is a frame for H, then by method of its proof,
we can’t find such an extension. In the case that {fi}∞i=1 is a frame for H, Theorem 1.7
implies that for every K ∈ B(H), the sequence {fi}∞i=1 is also a K-frame for H.
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Abstract. One of the problems that help us understand the relation between protein
structures is the well-known protein design problem which attempts to find an amino
acid sequence that can fold into a desired tertiary structure. However, despite having
an acceptable accuracy in protein design, this accuracy is an identical percentage of
amino acid retrieving. At the same time, it is well-known that amino acids can replace
each other in evolution while the function and structure of protein stay the same. Thus
the designed sequence does not have the opportunity to be close to the target in the
evolutionary aspect. This paper presents an extension to Wang’s deep learning model
and uses evolutionary information in the Blosum62 substitution matrix to take amino
acid replacement probability into account while designing a sequence.
Keywords: Protein Design, Blosum Matrix, Deep Learning
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1. Introduction
Protein’s vast majority of functionalities, e.g., helping the olfactory system and cat-

alyzing metabolism reactions, made this macromolecule an essential topic of study in
biology. The protein’s functionality comes from its most significant structure, the tertiary
structure, which has an almost unique shape for the protein. With all this importance
in mind and PDB saturation in tertiary structures, understanding the relationship be-
tween primary and tertiary structures helps us in protein tertiary structure prediction
and genome sequence functionality prediction. One of the approaches for understanding
the relationship between primary and tertiary structures is discovering a sequence of amino
acids that can get a desired tertiary structure, referred to as the protein design problem
(PDP). Some applications of PDP are designing proteins that can interact with specific
targets and designing biosensors. Besides, this is also notable that PDP is an NP-hard
problem.

There are three broad classes of PDP algorithms, approximation algorithms, heuristic
algorithms, and machine learning. The first class contains algorithms such as dead-end
elimination with a good quality solution but no guarantee for runtime. Algorithms in the

∗Speaker. Email address: amin.rahmani@aut.ac.ir
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second class use a heuristic algorithm to optimize a designed energy function and find a
sequence that minimizes this energy function. For example, PDP tools like EvoDesign [2]
use this approach, but they have the downside of designing an energy function which is
hard to do. The third class of algorithms uses machine learning methods, especially Deep
Learning methods, and tends to find a mapping from input to the desired output.

There is no need to design an energy function in the machine learning approaches,
and the only needed material is data. In 2014 Li et al. used a simple neural network
and manually extracted structural features as input [1]. After that, in 2018, O’Connell
et al. developed a deep neural network and more manually extracted features as the
network input [3]. In the same year, Wang et al. provided a more complex deep learning
model and used feature extraction as input [4].These models, despite having acceptable
accuracies lack quality in produced sequences. This inadequateness in the quality of
generated sequences has two main reasons. The first is a supervised training method
where the targets for output are one-hot encodings of amino acid classes like in all models.
The second reason is the lack of information in the input data like first three papers.

One-hot encoded targets for training cause the network to restore the wild-type se-
quence of structure. However, some non-identical protein sequences have similar foldings
due to their mutations in evolution, and such information about sequences is available in
substitution matrices like Blosum.

In this paper, we review Wang’s model in detail and then extend this model to use
available information in Blosum matrices and obtain generated sequences with higher
quality.

2. Material and Methods
We can explain PDP as a problem with inputs, outputs, and goals. The input is a

backbone-only model of tertiary structure for a protein, and the output is a sequence of
amino acids. The aim is to design the output sequence so that the resulting structure is
similar to the input structure when it folds into a tertiary structure.

Among the provided machine learning methods for PDP so far, Wang’s model has the
highest accuracy among reviewed models, therefore we decided to extend Wang’s model
to obtain better higher accuracy which has the quality of a wild sequence.

2.1. Dataset. Data collection happens by retrieving protein structure and corre-
sponding sequences from PDB with the following criteria as Wang’s model does. (1)
The structure determination method is x-ray crystallography, (2) The resolution of the
tertiary structure is better than 2, (3) The length of the protein sequence is more than 50
amino acids, (4) The entry does not contain any DNA or RNA molecules, and (5)Amino
acid sequences of all found entries have less than 30% pairwise identity [4].

Furthermore, each entry containing D-amino acids vanishes from the dataset, and the
non-amino acid residues of each protein also exclude from the structure. In the next step,
each protein with a sequence length of Ls split into Ls clusters, where each corresponds
to one of the residues. Each cluster contains a target residue and its 15 nearest neighbors
regarding the Cα − Cα distance. For each cluster, all the neighbor and target residues
rotate and translate such that the Cα atom of the target residue locates on the (0, 0, 0)
point, the N atom of the target residue lies on the −x axis, and the C atom of the target
residue takes place in the z = 0 plane.

2.2. Wang’s model.
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Input and Output. For input, feature extraction happens on each cluster, and each
one of the clusters would have one set of features for the target residue, and another
set of features correspond to each of the neighbors in the cluster. Target residue feature
set contains sine and cosine of three backbone dihedral angles ϕ, ψ, and ω, the total
solvent accessible surface area(SASA) of backbone atoms, and the three stated secondary
structures (helix, sheet, or coil) represented with a one-hot vector. As for the neighboring
residues, the feature set for each one contains the exact features like target and other
features. Other features include Cα − Cα Euclidean distance to the target, unit Cα − Cα

vector from the target to the neighbor, unit C−N and C−C vector in the under process
neighbor residue, and the number of hydrogen bonds between the target and neighbor.
Feature extraction results in 10 features for the target residue and 24 features for each
neighboring residue in a cluster. As for outputs, we perform one-hot encoding of the amino
acid type for each cluster’s target residue as output targets. Thus, the model outputs a
vector of size 20 that we interpret as probabilities of different amino acid types for the
input cluster.

Model. The presented model by wang et al., as presented in Figure1, has two sub-
networks and three final layers before the output layer. The sub-networks are called
residue probability network and weight network. The residue probability network tends
to find primal probabilities for the class of target residue by seeing this residue and one of
its neighbor residues features, and the Weight network produces a weight by considering
the same input as the residue probability network as well. The output of two subnetworks
is multiplied by each other and kept as part of the input for later layers. This procedure
executes concurrently for 15 nearest neighbors of the target amino acid, and then the
multiplied result of all is concatenated to each other. The concatenated result feeds into
three layers of densely connected layers, and at the end, a softmax layer containing 20
nodes outputs a probability vector.

Figure 1. Wang’s model architecture

2.3. Extended Model.
Input and Architecture. The input and architecture for our extended model are the

same as Wang’s model.
output. Instead of training the network with one-hot encoded targets, it is rational to

use a vector that considers other probabilities. We use the characteristic of the Blosum
matrices and present a new target of training that contains probabilities of multiple amino
acid classes. We chose Blosum62, which contains substitution information from proteins
with less than 62% identity. To present these scores as targets of training the network,
we applied the softmax function to each row of the Blosum62 matrix. Eventually, these
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converted rows are considered as targets and replaced with one-hot encoded vectors for
loss calculation.

3. Results
To implement both networks, we used the Keras tool and all the same hyperparameters

as the Wang et al. paper suggested. Because of numerous clusters, we selected 100,000
clusters randomly and split them into three non-redundant train, test, and validation
datasets, respectively, with 0.7, 0.15, and 0.15 of selected data. The same results as the
original model were first regenerated. Then, after modifying and training the network on
the same data, we compared the results of both the original and extended models on the
test set. Comparision shows a remarkable improvement in sequence identity and accuracy
compared to Wang’s model, as shown in table1. For a better perception of quality change,
we compared 15 positions of natural sequence and the sequences generated by Wang’s and
our extended model as shown in table2.

Table 1. Accuracy of different models on test set

Model Accuracy
Wang’s Model 33.39%

Extended Wang’s Model 44.89%

Table 2. Comparison of 15 positions on a sample sequence

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Real sequence Y A V K L K T D F D N P R W I
Wang’s Model A A P A A A P A A D D P R A A

Extended Wang’s Model K A P R L K P D E D D P R Y E

4. Conclusion
Despite having acceptable identity between output sequence of machine learning meth-

ods and the natural target sequences, the generated sequences have a low quality. In this
paper, we provided an extension to Wang’s model and achieved much better results to
such a minimal extent.
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Abstract. The purpose of this paper is to construct explicit Nordsieck second deriva-
tive general linear methods with inherent Quadratic Stability property which have large
region of absolute stability. Examples of such methods of order p = q + 1 = r = s are
given and the stability regions are plotted together with those for general linear methods
of the same order.
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1. Introduction

In this paper, we focus on constructing a class of explicit second derivative general
linear methods (SGLMs) for the numerical solution of a system of ordinary differential
equations (ODEs):

(1) y′(x) = f(y(x)), y(x0) = y0,

where f : Rm → Rm. We consider the class of SGLMs in the following form [4]

(2)





Y
[n]
i = h

s∑

j=1

aijf(Y
[n]
j ) + h2

s∑

j=1

aijg(Y
[n]
j ) +

r∑

j=1

uijz
[n−1]
j ,

z
[n]
i = h

s∑

j=1

bijf(Y
[n]
j ) + h2

s∑

j=1

bijg(Y
[n]
j ) +

r∑

j=1

vijz
[n−1]
j ,

n = 1, 2, . . . , N . Here, Y [n] is an approximation of the stage order q to y(xn + cih) ,

g(.) = f
′
(.)f(.) and z

[n]
i is an approximation of order p to the element hi−1y(i−1)(tn) of

the Nordsieck vector defined by z(t, h) = [y(t) hy′(y) · · · hr−1y(r−1)(t)]T . Such schemes
are characterized by six coefficients matrices; A = [aij ] ∈ Rs×s, A = [aij ] ∈ Rs×s, U =

[uij ] ∈ Rs×r, B = [bij ] ∈ Rr×s, B = [bij ] ∈ Rr×s and V = [vij ] ∈ Rr×r, the abscissa vector
c = [c1 c2 . . . cs]

T , and the four integers: the order p, the stage order q, the number of
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internal stages s, and the number of external stages r. In what follows, we will assume
that p = q+1 = s = r, the coefficients matrices A and A are strictly lower triangular and
the matrix V is supposed to take the form

V =




1 v12 v13 · · · v1r
0 0 v23 · · · v2r
...

...
...

. . .
...

0 0 0 · · · vsr
0 0 0 · · · 0



,

which ensures that the SGLM (2) is zero-stable.
Assuming

z
[n−1]
i =

p∑

k=0

qikh
ky(k)(tn−1) +O(hp+1), i = 1, 2, . . . , r,

the SGLM (2) has order p and stage order q = p if

Y
[n]
i = y(tn−1 + cih) +O(hp+1), i = 1, 2, . . . , s,

z
[n]
i =

p∑

k=0

qikh
ky(k)(tn) +O(hp+1), i = 1, 2, . . . , r,

for some parameters qik. Introduce the matrices C ∈ Rs×(p+1), K ∈ R(p+1)×(p+1) and
E ∈ R(p+1)×(p+1) as follow

C :=

[
e

c

1!

c2

2!
· · · cp

p!

]
, K := [0 e1 e2 · · · ep],

E := exp(K) =




1 1
1!

1
2! · · · 1

p!

0 1 1
1! · · · 1

(p−1)!

0 0 1
. . .

...

...
...

...
. . . 1

1!

0 0 0 · · · 1




,

with cj as the component-wise powers of abscissa vector c, e = [1 1 · · · 1]T ∈ Rs, and ej
as the jth unit vector in Rp+1 and put W = [q0 q1 . . . qp] with qk = [q1k q2k . . . qrk]

T ,
k = 0, 1, 2, . . . , p. It was demonstrated in [2] that the SGLM (2) has order and stage order
p iff

UW = C −ACK −ACK2,

V W = WE −BCK −BCK2.

In the case of methods with r = p+ 1, if W = Ir the methods are in the Nordsieck form.
For methods with r = p, the order and stage order conditions are determined in [1] by
choosing the last column of W as zero vector of relevant dimension, W = [Ip 0].

Theorem 1.1. The SGLM (2) in Nordsieck form has order and stage order p = q+1 =
r iff

(3)
U = C̃ −AC̃K̃ −AC̃K̃,

V = Ẽ −BC̃K̃ −BC̃K̃,
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and

(4) B
cp−1

(p− 1)!
+B

cp−2

(p− 2)!
= Ê.

Here, the matrices K̃ and Ẽ stand for the pth order leading principal submatrix of K

and E, respectively, and the matrix C̃ shows the first p columns of the matrix C and the

vector Ê are defined by

Ê =

[
1

p!

1

(p− 1)!
· · · 1

1!

]T
.

Applying such methods to the test equation y′ = ξy, t ≥ 0, ξ ∈ C, leads to a recurrence
equation z[n] = M(z)z[n−1], n ≥ 1, where z = hξ and the stability matrix M(z) is given
by

M(z) = V + (zB + z2B)(I − zA− z2A)−1U.

Moreover, the stability function is defined by p(w, z) = det (wI −M(z)). The method
is said to possess Runge–Kutta stability (RKS) if the stability function has special form
p(w, z) = wr−1(w − R(z)), where R(z) has the same role as the stability function of a
Runge–Kutta (RK) method. Imposing RKS conditions directly results in complicated
equations in terms of coefficients matrices of the methods which is difficult to solve. To
overcome this drawback, Movahednejad et al. in [5] determined some interrelations be-
tween the coefficients matrices of the SGLMs to guarantee the methods have RKS property.
Considering these conditions, some A- and L-stable SGLMs with inherent RKS (SIRKS)
were constructed up to order five. The aim of this paper is to relax the concept of SIRKS
to the concept of inherent quadratic stability (IQS) and search for methods with a large
area stability. Property of IQS is a weaker property than SIRKS but compared to the
methods with SIRKS, we need to solve fewer equations which makes construction to be
easier and provides some additional free parameters. We are going to use these free pa-
rameters in order to maximize the area of absolute stability region . The concept of IQS
for SGLMs which was first introduced in [6] means that there exists a matrix X ∈ Rs×s

in such a way that

(5) BA ≡ XB, BA+B ≡ XB, BU ≡ XV − V X.

Here, the relation P ≡ Q means that the matrices P and Q are identical except possibly
in their first row, and the matrix X appearing in these conditions is given by

X =




x1,1 x1,2 x1,3 · · · x1,r−1 x1,r
x2,1 x2,2 x2,3 · · · x2,r−1 x2,r
0 1 0 · · · 0 x3,r
0 0 1 · · · 0 x4,r
...

...
...

. . .
...

...
0 0 0 · · · 1 xr,r



.

2. Example of methods with a large area stability

In this section, we search for methods of order p = q + 1 = s = r = 2 with IQS by
solving the minimization problem min -area by using the Matlab program fminsearch. It
should be noted that in this case all the methods possess the quadratic stability property.
Solving the order and stage order conditions (3) and (4) lead to an 7-parameter family of
methods. We use these free parameters to obtain methods with largest area stability. The
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Figure 1. Stability regions of SGLM with IQS (blue line) of order p =
q+1 = s = r = 2 together with that for GLM with IQS of order p = q+1 =
s = r = 2 (red line) and RK method (dashed-line) of order p = s = 2.

coefficients matrices of the constructed method with c = [12 1]T which has stability area
equal to 17.92 are given by

A =

[
0 0

416
833 0

]
, A =

[
0 0

109
10000 0

]
, U =

[
1 1

2

1 417
833

]
,

B =

[
−257

500
718
877

692
159 −533

159

]
, B =

[
− 699

1817 − 13
250

2685
1613

23
2000

]
, V =

[
1 429

617

0 0

]
.

The stability region of the derived method together with that for GLMs with IQS of the
same order, investigated in [3], and RK method of order p = s = 2 are plotted in Figure
1.
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Abstract. In this paper, approximately for controlled g-dual frames is defined and some
of their properties are investigated. Finally, we characterize the relationship between
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1. Introduction

Frames for Hilbert space were formally defined by Duffin and Schaeffer [4] in 1952 for
studying some problems in non harmonic Fourier series. Recall that for a Hilbert space
H and a countable index set J , a collection {fj}j∈J ⊂ H is called a frame for the Hilbert
space H, if there exist two positive constants c, d, such that for all f ∈ H

(1) c∥f∥2 ≤
∑

j∈J
|⟨f, fj⟩|2 ≤ d∥f∥2;

c and d are called the lower and upper frame bounds, respectively.
Dehghan and Hasankhani Fard [3] introduced and characterized g-duals of a frame in a

separable Hilbert space and Ramezani and Nazari [6] extended this concept for generalized
frame. A frame {gj}j∈J is called a g-dual frame of the frame {fj}j∈J for H if there exists
an invertible operator A ∈ B(H) such that, for all f ∈ H

f =
∑

j∈J
⟨Af, gj⟩fj ,

where B(H) denotes the set of all bounded operators on H. Let GL(H) be the set of
all bounded operators with a bounded inverse. A frame controlled by the operator C or
C-controlled frame is a family of vectors {fj}j∈J ⊆ H, such that there exist two constants
Ac > 0 and Bc < ∞ satisfying

(2) Ac∥f∥2 ≤
∑

j∈J
⟨f, fj⟩⟨Cfj , f⟩ ≤ Bc∥f∥2;

∗Speaker. Email address: m.ramezani@yu.ac.ir
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for every f ∈ H, where C ∈ GL(H). Every frame is an I-controlled frame. Hence the
controlled frames are generalizations of frames. The controlled frame operator Sc is defined
by

(3) Scf =
∑

j∈J
⟨f, fj⟩Cfj = CS, (f ∈ H),

where S is the frame operator of {fj}j∈J . The synthesis operator for a C-controlled frame
{fj}j∈J is defined as follows

Tc({αj}j∈J) =
∑

j∈J
αjCfj = CT,

where T is the synthesis operator of {fj}j∈J and Sc = TcT
∗. C-Controlled frame {fj}j∈J

and Bessel sequences{gj}j∈J are said to be C-controlled duals forH if the following equality
holds

f =
∑

j∈J
⟨f, gj⟩Cfj , for all f ∈ H.

Ramezani [5] introduced the notion of controlled g-dual frames in Hilbert spaces and
characterized all controlled g-dual frames for a given controlled frame. in this paper we
define approximate controlled g-duals for the controlled frames and using this concept, we
establish relationship between approximately controlled g-dual frames and controlled dual
frames and controlled g-dual frames.

2. Main Results

C-controlled g-dual frames are stable under some perturbations.

Definition 2.1. [1] Bessel sequences {fj}j∈J and {gj}j∈J are said to be approxi-
mately dual frames if ∥I − TU∗∥ < 1 or ∥I − UT ∗∥ < 1

Definition 2.2. [2] The Bessel sequence {gj}j∈J is called an approximate C-controlled
dual of a C-controlled frame {fj}j∈J whenever

∥f −
∑

j∈J
⟨f, gj⟩Cfj∥ < 1, (f ∈ H).

On the other hands ∥I − TcU
∗∥ < 1.

The above definitions led us to define the following definitions.

Definition 2.3. Two Bessel sequences {fj}j∈J and {gj}j∈J with synthesis operator
T and U, respectively, are approximately g-dual frames for H if there exists an invertible
operator A ∈ B(H) such that ∥I − TU∗A∥ < 1 or ∥I − UT ∗A∥ < 1.

Definition 2.4. The Bessel sequence {gj}j∈J is called an approximate C-controlled
g-dual of a C-controlled frame {fj}j∈J if there exists an invertible operator A ∈ B(H)
such that

∥f −
∑

j∈J
⟨Af, gj⟩Cfj∥ < 1, (f ∈ H).

On the other hands ∥I − TcU
∗A∥ < 1.

Theorem 2.5. If two Bessel sequences {fj}j∈J and {gj}j∈J are approximately C-
controlled dual frames for H, then {fj}j∈J and {gj}j∈J are C-controlled g-dual frames.
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Proof. Since {fj}j∈J and {gj}j∈J are approximately C-controlled dual frames, ∥I −
TcU

∗∥ < 1 , where T and U are synthesis operators of {fj}j∈J and {gj}j∈J , respectively.
Hence TcU

∗ is an invertible operator. Then for all f ∈ H we have

f = TcU
∗(TcU

∗)−1(f) = C


∑

j∈J
⟨(TcU

∗)−1f, gj⟩fj


 =

∑

j∈J
⟨Af, gj⟩Cfj ,

where A = (TcU
∗)−1 is an invertible operator. So for all f ∈ H we have

f =
∑

j∈J
⟨Af, gj⟩Cfj ,

□
as claimed.

The following example illustrates that the set of approximately C-controlled duals of
a frame is a proper subset of the set of its C-controlled g-duals.

Example 2.6. Let {ej}j∈J be an orthonormal basis for H. Set

(1) {fj}j∈J = {e1, e1, e1, e2, e3, · · · }
(2) {gj}j∈J = {1

3e1,
1
3e1,

1
3e1, e2, , e3, · · · }

and consider the operator C : H −→ H given by C(f) = 1
2f . Now we have

∑

j∈J
⟨f, fj⟩⟨Cfj , f⟩ = ⟨f, e1⟩⟨e1, f⟩+

1

2

∑

j∈J
⟨f, ej⟩⟨ej , f⟩

So
1

2
∥f∥2 ≤

∑

j∈J
⟨f, fj⟩⟨Cfj , f⟩ ≤

3

2
∥f∥2

Therefore {fj}j∈J is a C-controlled frame and {gj}j∈J is a Bessel sequence and

∥f −
∑

j∈J
⟨f, gj⟩Cfj∥ =

1

2
∥f∥, for all f ∈ H

Hence {gj}j∈J is not a approximately C-controlled dual frame of {fj}j∈J but a C-controlled
g-dual frame for {fj}j∈J with the invertible operatorA(f) = 2f ; because

∑
j∈J⟨Af, gj⟩Cfj =

f , for any f ∈ H.

The following theorem shows under what conditions the opposite of Theorem 2.5 is
established.

Theorem 2.7. If {fj}j∈J and {gj}j∈J are C-controlled g-dual frames with invertible
operator A such that ∥I − A−1∥ < 1, then {fj}j∈J and {gj}j∈J are approximately C-
controlled dual frames.

Proof. Since {fj}j∈J and {gj}j∈J are C-controlled g-dual frames, so for all f ∈ H,
f =

∑
j∈J⟨Af, gj⟩Cfj . Hence

∥f −
∑

j∈J
⟨f, gj⟩Cfj∥ = ∥f −

∑

j∈J
⟨AA−1f, gj⟩Cfj∥

= ∥f −A−1f∥ < 1.

□
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Corollary 2.8. Let H be a Hilbert space and C ∈ GL(H). Also let {fj}j∈J be a
C-controlled frame and {gj}j∈J be an approximate C-controlled g-dual of {fj}j∈J with
invertible operator A. Then

(i) {(UT ∗
c )

−1gj}j∈J is a C-controlled dual of {fj}j∈J and

(UT ∗
c )

−1gj = gj +

+∞∑

n=1

(I − UT ∗
c )

ngj .

(ii) {gj}j∈J is a C-controlled g-dual of {fj}j∈J with invertible operator (TcU
∗)−1.

(iii) {gj}j∈J is an approximately C-controlled dual of {fj}j∈J .
Proof. To prove (i), by the definition of an approximate C-controlled g-dual, we have

∥I − TcU
∗A∥ < 1,

which implies that TcU
∗A is an invertible operator. By assumption, A is an invertible

operator, so TcU
∗ is an invertible operator. Therefore similar argument in proof Theorem

3.2 from [2], {(UT ∗
c )

−1gj}j∈J is a C-controlled dual of {fj}j∈J and

(UT ∗
c )

−1gj = gj +
+∞∑

n=1

(I − UT ∗
c )

ngj .

Now we prove (ii), we have already seen in parts (i) that TcU
∗ is an invertible operator,

the remainder of proof (ii) follows immediately from proof of Theorem 2.5.
Finally, to prove (iii), by part (ii), {gj}j∈J is a C-controlled g-dual of {fj}j∈J with

invertible operator (TcU
∗)−1. Also,

∥I − (TcU
∗A)−1)−1∥ = ∥I − TcU

∗A∥ < 1.

Now directly using Theorem 2.7, {fj}j∈J and {gj}j∈J are approximately C-controlled dual
frames and this completes the proof. □

3. Conclusion

In the 51st Annual Iranian Mathematics Conference, we introduced and characterized con-
trolled g-duals of a frame in a separable Hilbert space H . This article is a continuation of our
previous work and in it approximately for controlled g-dual frames is defined and the relationship
between approximately C-controlled dual and C-controlled g-dual is characterized.
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Abstract. In this paper, we describe construction of a class of explicit second derivative
Runge–Kutta methods which have extensive region of absolute stability. Examples of
such methods with p = q = s = 1 and 2 are given in which p and q stand for order and
stage order, and s is the number of stages. These methods, because of their extensive
stability region, can compete with the traditional explicit Runge–Kutta methods of the
same order in solving initial value problems.
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1. Introduction
Two-derivative Runge–Kutta (TDRK) methods for solving initial value problems (IVPs)

of ordinary differential equations (ODEs)

(1)





y′(x) = f
(
y(x)), x ∈ [x0, X],

y(x0) = y0,

are defined by




Yi = yn + h

s∑

j=1

aijf(Yj) +

s∑

j=1

âijg(Yj), i = 1, 2, . . . , s,

yn+1 = yn + h

s∑

i=1

bif
(
Yi
)
+

s∑

i=1

b̂ig(Yi),

(2)

where y′′ = g(y) := f ′(y)f(y) with f, g : Rm → Rm and the internal stage value Yi
approximate y(xn+ cih) and yn+1 is the update value which approximates y(xn+h). The
coefficients of these methods can be represented by Butcher tableau

c A Â

bT b̂T

∗Speaker. Email address: s.rasi@tabrizu.ac.ir
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where A = (aij)s×s, Â = (âij)s×s, the vector forms b = (bi)s×1 and b̂ = (̂bi)s×1 are the
vectors of weights and c = (ci)s×1 is the abscissa vector. The internal stage vector is
Y = [Y1, . . . , Ys]

T , the vectors of the first and second derivatives evaluated at the internal
stage points are F (Y ) = [f(Y1), . . . , f(Ys)]

T and G(Y ) = [g(Y1), . . . , g(Ys)]
T respectively.

The TDRK method (2) can be written in a more compact vector form

(3)
Y = e⊗ yn + h(A⊗ Im)F (Y ) + h2(Â⊗ Im)G(Y ),

yn+1 = yn + h(bT ⊗ Im)F (Y ) + h2(̂bT ⊗ Im)G(Y ).

TDRK methods as well as second derivative multistep methods have been studied in
a unifying framework by introducing second derivative general linear methods collectively
named by SGLMs [1,3]. Some efficient methods have been constructed in large class of
SGLMs. However, modifications of second derivative methods have been directly done
on TDRK methods [6]. In this paper, we are going to construct explicit TDRK methods
with a large stability regions. To do this, we use the remaining free parameters, after
imposing the order conditions, and maximize the area of the regions. The novelty of the
constructed methods lies in this fact that they can be applied to non-stiff and mildly stiff
initial value problems with smaller stepsizes in comparison with similar methods. This
advantage allows us to solve a wider range of problems at a lower computational cost.

2. Order conditions and stability properties of TDRK methods
Chan and Tsai [4] derived the order conditions of TDRK methods based on the tree

theory, including mappings and composition of trees, developed in [2,5]. The order con-
ditions of TDRK methods up to order four are given in Figure 1.

Figure 1. The order conditions of TDRK methods up to order four.

Also, the stage order conditions are given by

Ack−1 + (k − 1)Âck−2 =
ck

k
, k = 1, . . . , q.

The stability properties of (2) are studied by applying (1) to the linear test problem

y′ = ξy,
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where ξ ∈ C. This leads to the matrix recurrence relation

yn+1 = R(z)yn,

in which

R(z) = 1 + (zbT + z2b̂T )(I − zA− z2Â)−1e,

with z = hξ ∈ C, is the stability function. In our proposed methods, this function contains
some free parameters which are used to construct methods with a large region of absolute
stability.

3. Construction of the methods
After satisfying the appropriate order and stage order conditions, we find the free

parameters such that the resulting method has a large area of absolute stability. Here,
we illustrate the construction of methods with s = p = q = 2. Such methods with the
abscissa vector c = [0 c2]

T are given by the Butcher tableau

0
c2 a21 â21

b1 b2 b̂1 b̂2

with seven parameters which must satisfy the order and stage order conditions

b1 + b2 = 1,
1

2
b2 + b̂1 + b̂2 =

1

2
,

a21 =
1

2
, â21 =

1

8
.

The explicit two-stage method of order 2 with tableau

0 0 0 0 0
1
2

1
2 0 1

8 0

2(̂b1 + b̂2) 1− 2(̂b1 + b̂2) b̂1 b̂2

is derived by the equations. The stability function of the resulting two-parameter methods
is

R(z) = 1 + z +
1

2
z2 + (

1

8
− 1

4
b̂1 +

1

4
b̂2)z

3 +
1

8
b̂2z

4.

The method with a large region of absolute stability can be found with the values b̂1 =

0.1844 and b̂2 = 0.0412. The area of the stability region of resulted method is approxi-
mately 37.8559. This region is plotted in Figure 2 and compared with that for the explicit
Runge–Kutta method with p = s = 2.
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Figure 2. Stability regions TDRK and RK methods of the order two.

By some numerical experiments, we show capability of the constructed methods and
the effect of their wider the stability region comparison with the similar methods.
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Abstract. Let G be a permutation group on a set Ω which has no fixed points in Ω
and let m be a positive integer. Suppose that G has bounded movement m and every
non-identity element of it has movement m or m − 3. In this paper, we determine the
cycle structure of elements of G.
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1. Introduction

Let G be a permutation group on a set Ω which has no fixed points in Ω and let m be
a positive integer. If for a subset Γ of Ω the size |Γg − Γ| is bounded, for g ∈ G, the
movement of Γ is defined as

move(Γ) := max
g
|Γg − Γ|.

If move(Γ) ≤ m for all Γ ⊆ Ω, then G is said to have bounded movement m and the
movement of G is defined as the

move(G) := max
Γ,g
|Γg − Γ|.

This notion was introduced in [4]. Similarly, for each g ∈ G, we define the movement of g
as the

move(g) := max
Γ
|Γg − Γ|.

If all non-identity elements of G have the same movement, then we say that G has constant
movement (see [1]). It is obvious that every permutation group with constant movement
m has bounded movement m.

The purpose of this paper is to find the cycle structure of elements of permutation
groups G with movement m or m − 3. Clearly every permutation group in which every
non-identity element has movement m or m − 3, is a permutation group with bounded
movement m. Moreover, by Theorem 1 of [4], if G has movement equal to m, then Ω

∗Speaker. Email address: mehdrezaei@gmail.com, m rezaei@bzte.ac.ir
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is finite, and its size is bounded by a function of m. We note that for x ∈ R, bxc is the
integer part of x.

2. Preliminaries

In this section, we give some preliminary results that will be used in the proof of our
main results. First, we present a technique to calculate the movement of elements of a
permutation group.
Let 1 6= g ∈ G and suppose that g in its disjoint cycle representation has s (s is a positive
integer) nontrivial cycles of lengths l1, ..., ls, say. We might represent g as

g = (a1a2...al1)(b1b2...bl2)...(z1z2...zls).

Let Γ(g) denote a subset of Ω consisting of bli/2c points from the ith cycle, for each i,
chosen in such a way that Γ(g)g ∩ Γ(g) = ∅. For example, we could choose

Γ(g) = {a2, a4, . . . , ak1 , b2, b4, . . . , bk2 , ..., z2, z4, . . . , zks},
where ki = li − 1 if li is odd and ki = li if li is even. Note that Γ(g) is not uniquely
determined as it depends on the way each cycle is written. For any set Γ(g) of this kind,
we say that Γ(g) consists of every second point of every cycle of g. From the definition of
Γ(g) we see that

|Γ(g)g − Γ(g)| = |Γ(g)| =
s∑

i=1

bli/2c.

The next lemma shows that this quantity is an upper bound for |Γg − Γ| for an arbitrary
subset Γ of Ω.

Lemma 2.1. (Lemma 2.1 of [3]) Let G be a permutation group on a set Ω and suppose

that Γ ⊆ Ω. Then for each g ∈ G, |Γg −Γ| ≤
s∑
i=1
b li2 c, where li is the length of the ith cycle

of g and s is the number of non-trivial cycles of g in its disjoint cycle representation. This
upper bound is attained for Γ = Γ(g) defined above.

Remark 2.2. ( [2]) Let g be an element of a permutation group G on a set Ω. Assume
that the set Ω is the disjoint union of G-invariant sets Ω1 and Ω2. Then every subset Γ of
Ω is a disjoint union of subsets Γi = Γ ∩ Ωi for i = 1, 2. Let gi be the permutation on Ωi

induced by g for i = 1, 2. Since |Γg − Γ| = |Γg11 − Γ1|+ |Γg22 − Γ2|, we have:

moveΩ(g) =
2∑

i=1

max{|Γgii \ Γi||Γi ⊆ Ωi} = moveΩ1(g1) + moveΩ2(g2).

Definition 2.3. A group G is called a CP-group if every non-identity element of G
has prime power order.

The classification of finite CP-groups is given in Lemma 0.4 of [5].

3. Main results

In this section we present our main results. let G be a permutation group on a set Ω with
bounded movement m, for some positive integer m. Also, suppose that every non-identity
element has movement m or m− 3. In the following theorem, we give the cycle structure
of elements of G.
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Theorem 3.1. Let m be a positive integer and G be a permutation group on a set
Ω with bounded movement m, in which every non-identity element has movement m or
m − 2. Further, suppose that 1 6= g ∈ G and g = c1...cs is the decomposition of g into its
disjoint non-trivial cycles such that |ci| = li for 1 ≤ i ≤ s. Then one of the following holds:
1) l := l1 = l2 = ... = ls, where l is an odd prime or a power of 2;
2) s = 1, such that g is a cycle of length 49;
3) s = 3, such that g has three cycles of length 9;
4) s = 3, such that g has three cycles of length 2p, for some odd prime p;
5) s = 3, such that g has two cycles of length 2 and one cycle of length 2p, for some odd
prime p;
6) s = 3, such that g has one cycle of length 2 and two cycles of length 2p, for some odd
prime p;
7) s = 3, such that g has two cycles of length 3 and one cycle of length 21;
8)s = 4, such that g has three cycles of length 2 and one cycle of length 7;
9) s = 4, such that g has three cycles of length 3 and one cycle of length 7;
10) s = 4, such that g has three cycles of length 14 and one cycle of length 7;
11)s = 6, such that g has three cycles of length 2 and three cycle of length 3;
12) s = 6, such that g has three cycles of length 3 and three cycle of length 6;
13) g has three cycles of length 2 and (s− 3)-cycles of length a power of 2 for s ≥ 4;
Moreover, the order of g is either 6, 9, 14, 21, 49, p, 2p, or a power of 2.

Now, we give an example of a transitive permutation group with movement m or m−3.

Example 3.2. The cyclic group Z49 in its transitive action on 49 points is a group
which satisfies in the above theorem. In fact, if G = Z49, then every element of G has
movement 24 or 21.

If the cases (1), (2), (3) or (13) happen, then G is a CP-group. By Lemma 0.4 of [5],
one can see that there is no transitive simple group with movement m or m−3. The other
cases are still remain to verify.
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Abstract. In this paper, we introduce and study the concept of irreducible filters of
eRM-algebras and investigate some of them properties. In particular, we show that the
set of all filters of a eRM-algebra X is a chain if and only if every proper filter of X is
prime.
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1. Introduction

Researchers proposed several kinds of algebraic structures related to some axioms in
many-valued logic for investigation in many-valued logics. Y. Imai and K. Iséki introduced
two classes of abstract algebras: BCK-algebras and BCI-algebras (see [1], [2]). All of the
algebras mentioned above are contained in the class of RM-algebras (a RM-algebra is an
algebra (X;→, 1) of type (2,0) satisfying the axioms: (R) x→ x = 1 and (M) 1→ x = x)
( [3]). A. Walendziak introduced the notion of strongly p-semisimple RM-algebras and
proved that these algebras are equivalent with involutive moons ( [6]). Recently, A. Rezaei
and A. Borumand Saeid defined a new extension of RM-algebras, wRM/eRM-algebras, by
considering the non-empty subset instead of one constant and got the algebraic structure
with a set of constants. Also, they defined the concept of a positive implicative eRM-
algebra and study its properties ( [5]). In this paper, the concept of irreducible and prime
filters are introduced and investigated some of them properties.

2. Preliminaries

We recall the basic notions and results regarding wRM/eRM-algebras used in the
paper.

Definition 2.1. ( [5]) Let X be a non-empty set. By a weak RM-algebra or wRM-
algebra, for short, we shall mean an algebra (X;→, A) such that → is a binary operation
on X and A is a non-empty subset of X satisfies the following axioms:

(wRM1) x→ x ∈ A,
∗Speaker. Email address: rezaei@pnu.ac.ir
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(wRM2) x ∈ A→ x, for all x ∈ X.

A wRM-algebra (X;→, A) is called an extended RM-algebra or eRM-algebra, for short,
if (wRM2) replaced with:

(eRM) A→ x = {x}, for all x ∈ X,

where, A→ x = {a→ x : a ∈ A}.
It is obvious that every eRM-algebra is a wRM-algebra. A wRM-algebra which is not

an eRM-algebra will be called proper.
From now on, X denotes the eRM-algebra (X;→, A), unless otherwise stated.

Definition 2.2. ( [5]) A subset F of X is called a filter of X if it satisfies:

(F1) A ⊆ F ;
(F2) x ∈ F and x→ y ∈ F imply y ∈ F .

We denote by Fil(X ) the set of all filters of X . Since X, A ∈ Fil(X ), we get Fil(X ) 6= ∅.
We say that a filter F of X is proper if F 6= X. For any x, y ∈ X and every F ∈ Fil(X ),
if x 6 y and x ∈ F , then y ∈ F .

Let X be an eRM-algebra and Y ⊆ X. The set F(Y ) :=
⋂{F ∈ Fil(X ) : Y ⊆ F} is a

filter of X , called the filter generated by Y . For x ∈ X, we write F(x) instead of F({x}).
Define ∧ and ∨ on Fil(X ) by E ∧ F = E ∩ F and E ∨ F = F(E ∪ F ). It is easy to see
that under these operations Fil(X ) is a lattice. Moreover, this lattice is complete, since it
is closed under arbitrary intersections.

Let (L;∧,∨) be a lattice. An element a ∈ L is said to be (see [4]) :

• meet irreducible if a = b ∧ c always implies a = b or a = c,
• meet prime if b ∧ c ≤ a always implies b ≤ a or c ≤ a.

If L has a greatest element 1, then the lower covers of 1 are called coatoms of L.

Lemma 2.3. ( [4], Lemma 2.54) In any distributive lattice, an element is meet irre-
ducible if and only if it is meet prime.

Denote by NF(X ) the set of all normal filters of X .

3. Some basic properties of irreducible filters of eRM-algebras

In this section, we define irreducible, prime and maximal filters of eRM-algebras.

Definition 3.1. A proper filter F of an eRM-algebra X is called:

• irreducible if E1 ∩ E2 = F implies F = E1 or F = E2 for any E1, E2 ∈ Fil(X ),
• prime if E1 ∩ E2 ⊆ F implies E1 ⊆ F or E2 ⊆ F for any E1, E2 ∈ Fil(X ),
• maximal if F ⊆ E ⊆ X implies E = F or E = X for every E ∈ Fil(X ).

Proposition 3.2. A filter F of an eRM-algebra X is irreducible (prime or maximal)
if and only if it is a meet irreducible element (meet prime element or coatom, respectively)
of the lattice Fil(X ).

Example 3.3. Let X = {a, b, c, d, e, f} and A = {a, b}. We define the binary operation
→1 on X by the following table: Then (X;→1, A) is an eRM-algebra. It is easy to check
that Fil(X ) = {A,F1, F2, F3, X}, where F1 = {a, b, d}, F2 = {a, b, e}, F3 = {a, b, d, f}.
The lattice Fil(X ) is diagramed in Figure 1. It is not modular (hence also not distributive),
since it contains the pentagon lattice.
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Table 1. eRM-algebra (X;→1, A)

→1 a b c d e f
a a b c d e f
b a b c d e f
c a b b b b b
d a b e b e f
e a b c c b f
f a b c f e b

s

A
A
A
A
A
A

s
s

@
@
@@
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��

s
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s

A

X

F1

F3

F2

Figure 1

It is easy to check that filters F1, F2 and F3 are irreducible; F2 and F3 are also maximal
and prime.

Remark 3.4. Since every meet prime element is meet irreducible, we conclude that
every prime filter is irreducible. The converse does not hold in general. In Example 3.3,
the filter F1 is irreducible but not prime.

Remark 3.5. It is known that if L is a lattice with element 1 and x is a coatom of
L, then x is a meet irreducible element. Therefore, every maximal filter is irreducible.

Proposition 3.6. Let X be an eRM-algebra such that Fil(X ) is a distributive lattice.
Then a filter of X is irreducible if and only if it is prime.

Theorem 3.7. Let X be an eRM-algebra, let F be a filter of X , and let a ∈ X − F .
Then there is an irreducible filter E such that F ⊆ E and a /∈ E.

Proof. Set G ={G ∈ Fil(X ) : F ⊆ G and a /∈ G}. Then F ∈ G, that is G 6= ∅.
Applying Kuratowski-Zorn’s Lemma, we see that there exists a maximal member of G.
Denote it by E. We shall prove that E is irreducible. On the contrary suppose that there
are two filters E1 and E2 such that E1 ∩ E2 = E and E ⊂ Ei for i = 1, 2. Since E is a
maximal member of G, we conclude that a ∈ E1 and a ∈ E2. Therefore, a ∈ E1∩E2 = E,
a contradiction. Consequently, E is irreducible. �

Corollary 3.8. Every filter of an eRM-algebra is the intersection of all irreducible
filters containing it.

Theorem 3.9. Let F be a proper filter of an eRM-algebra X . Then the following
conditions are equivalent:

(i) F is prime,
(ii) F(x) ∩ F(y) ⊆ F implies x ∈ F or y ∈ F , for any x, y ∈ X.
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Theorem 3.10. Let X be an eRM-algebra. Then Fil(X ) is a chain if and only if every
proper filter of X is prime.

Proof. Let Fil(X ) be a chain and F be a proper filter of X . Let x, y ∈ X and
suppose that F(x) ∩ F(y) ⊆ F . Since Fil(X ) is a chain, it follows that F(x) ⊆ F or
F(y) ⊆ F . Consequently, x ∈ F or y ∈ F . By Theorem 3.9, F is prime.

Conversely, let any proper filter of X be prime. Let F and G be two proper filters of
X . Then F ∩ G is proper and, by assumption, prime. Thus F ⊆ F ∩ G or G ⊆ F ∩ G.
Hence F ⊆ G or G ⊆ F . Therefore, Fil(X ) is a chain. �

Example 3.11. Let X = {a, b, c, d, e} and A = {a, b}. We define the binary operation
→2 on X by the following table: Then (X;→2, A) is an eRM-algebra. We check at once

Table 2. eRM-algebra (X;→2, A)

→2 a b c d e
a a b c d e
b a b c d e
c a b b d e
d a b b b b
e a b c e b

that Fil(X ) = {F1, F2, X}, where F1 = A, F2 = {a, b, c} and F3 = X is a chain. Hence,
every proper filter of X is prime.

Definition 3.12. A filter F of X is said to be normal if it satisfies the following
condition: for all x, y, z ∈ X,
(NF) x→ y ∈ F =⇒ [(z → x)→ (z → y) ∈ F and (y → z)→ (x→ z) ∈ F ].

Theorem 3.13. Let X be an eRM-algebra and let F,G ∈ NF(X ) such that F ⊆ G.
We have:

(i) if G is an irreducible filter of X , then G/F is an irreducible filter X/F ,
(ii) if G is a prime filter of X , then G/F is a prime filter of X/F .

4. Conclusion

In this paper, we studt the concept of irreducible filters of eRM-algebras and investigate
some of them properties. Also, we show that the set of all filters of a eRM-algebra X is a
chain if and only if every proper filter of X is prime.

References
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Abstract. In this talk, we state a characterization of p-normed spaces which is based
on the generalized triangle inequality of the second type and its reverse in quasi normed
spaces. More exactly, for a quasi normed space (X, ∥.∥) and 0 < p ≤ 1 we obtain some
regions of Rn which contain the set of all n-tuples (µ1, . . . , µn) satisfying

∑n
i=1

∥xi∥p
µi

≤
∥∑n

i=1 xi∥p, for all x1, . . . , xn ∈ X.
Keywords: p-normed space, quasi normed space, generalized triangle inequality of the
second type.
AMS Mathematics Subject Classification [2010]: 46A16, 47A30, 46B20

1. Introduction
The triangle inequality is considered to be one of the most fundamental inequalities

in mathematics. There are many interesting generalizations, refinements and reverses
of the triangle inequality in normed spaces, quasi normed spaces, inner product spaces,
pre-Hilbert C∗-modules. The generalized triangle inequality are useful for studying the
geometrical structure of normed spaces. In this direction some results have been based on
the triangle inequality of the second type

∥x+ y∥2 ≤ 2(∥x∥2 + ∥y∥2)
in normed space; see [1,2,6]. In [1,2], the authors characterized some regions of Rn for
which the generalized triangle inequality of the second type

(1) ∥x1 + · · ·+ xn∥p ≤
∥x1∥p
µ1

+ · · ·+ ∥xn∥p
µn

and its reverse holds in normed spaces. Very recently, in [5], the authors investigated
inequality (1) in the framework of quasi normed spaces.

∗Speaker. Email address: a.rezaei@student.kgut.ac.ir
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In this talk, we state a characterization of p-normed spaces which is based on the
generalized triangle inequality of the second type and its reverse in quasi normed spaces.
More exactly, for a quasi normed space (X, ∥.∥) and 0 < p ≤ 1 we obtain some regions of
Rn which contain the set of all n-tuples (µ1, . . . , µn) satisfying

∑n
i=1

∥xi∥p
µi

≤ ∥∑n
i=1 xi∥p,

for all x1, . . . , xn ∈ X.

The remainder of this section contains some theoretical basis and symbols of related
notions. The concept of quasi norm is a generalization of a norm in which the triangle
inequality is replaced by a weaker inequality under the name quasi triangle inequality.
The formal definition is as follows.
A quasi norm on a vector space X is a function ∥ · ∥ : X → [0,∞) with the following
properties:

(i) If ∥x∥ = 0, then x = 0,
(ii) ∥λx∥ = |λ|∥x∥, for all λ ∈ R and all x ∈ X,
(iii) ∥x+ y∥ ≤ C (∥x∥+ ∥y∥), for all x, y ∈ X,

where C ≥ 1 is a constant independent of x, y ∈ X.
The smallest possible C in (iii) is called the modulus of concavity of ∥ · ∥ and the pair
(X, ∥ · ∥) is called a quasi normed space.
A quasi norm ∥ · ∥ is called a p-norm (0 < p ≤ 1) if it satisfies the inequality ∥x + y∥p ≤
∥x∥p + ∥y∥p, for all x, y ∈ X. In this case, a quasi normed space is called a p-normed
space. The case where p = 1 corresponds to the well known class of normed spaces. If is
noted that every p1-norm is also a p2-norm for all p2 ≤ p1.
A quasi norm gives rise to some equivalent metric topologies on the underlying space one
of which is given by the following Aoki-Rolewicz theorem (see [3]).

Theorem 1.1. [3] Let (X, ∥ ·∥) is a quasi normed space with the modulus of concavity
C, then there is a number p ∈ (0, 1] such that the functional

|∥x∥| := inf





(
n∑

i=1

∥xi∥p
) 1

p

: n > 0, x1, . . . , xn ∈ X, x =

n∑

i=1

xi



 ,

defines a p-norm equivalent to the quasi norm ∥.∥. Moreover |∥x∥| ≤ ∥x∥ ≤ 2C|∥x∥| and
2

1
p
−1 ≤ C.

So every quasi norm is equivalent to some p-norms (0 < p ≤ 1) and d(x, y) := |∥x−y∥|p
defines a metric topology on X. A complete quasi normed space (p-normed space) is called
a quasi Banach space (p-Banach space). We refer the reader to [3,4] for more information
on quasi Banach spaces.
Suppose that (X, ∥ · ∥) be a quasi normed space with the modulus of concavity C and let
0 < p ≤ 1 be given. We put

F∥·∥(p) = {(µ1, . . . , µn) : µi > 0 and ∥
n∑

i=1

xi∥p ≤
n∑

i=1

∥xi∥p
µi

for allx1, . . . , xn ∈ X}

and
G∥·∥(p) = {(µ1, . . . , µn) : ∃j = 1, . . . , n;µj > 0, µi < 0 (i ̸= j) and

n∑

i=1

∥xi∥p
µi

≤ ∥
n∑

i=1

xi∥p for allx1, . . . , xn ∈ X}.
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2. Main results
Dealing with p-norms and related p-norm inequalities are simpler than quasi norms.

In the case where 0 < p ≤ 1, we can take advantage of this feature by Theorem 1.1. So
we regard the Aoki-Rolewicz theorem which offers a remarkable surrogate, an equivalent
quasi norm |∥ · ∥| satisfying |∥x + y∥|p ≤ |∥x∥|p + |∥y∥|p, for some 0 < p ≤ 1. By doing
this, in Theorem 2.2, we provide some sufficient conditions for n-tuples (µ1, . . . , µn) that
belong to G∥·∥(p) and some necessary conditions are also presented.
Let us first introduce the following lemma which is given in [1] and it generalizes some
results due to Takagi et al.

Lemma 2.1. [1] Let 0 < r ≤ 1, Ω ⊆ {(s1, . . . , sn) : s1, . . . , sn ≥ 0,
∑n

i=1 si ≥ 1} and
let Dr(Ω) := {(a1, . . . , an) : a1s

r
1 + · · · + ans

r
n ≥ 1 for all (s1, . . . , sn) ∈ Ω}. Then the

following hold:
(i): {(a1, . . . , an) : a1 ≥ 1, . . . , an ≥ 1} ⊆ Dr(Ω) ;
(ii): If {(e1, . . . , en)} ⊆ Ω where {e1, . . . , en} is the standard basis of Rn, then

Dr(Ω) = {(a1, . . . , an) : a1 ≥ 1, . . . , an ≥ 1}.
Theorem 2.2. Let ∥.∥ and ∥|.|∥ be a quasi norm and a p-norm (0 < p ≤ 1), respec-

tively, on a nonzero vector space X which are equivalent. Also let α̂ := inf{α > 0 : ∥x∥ ≤
α∥|x|∥ for all x ∈ X}, β̂ := inf{β > 0 : ∥|x|∥ ≤ β∥x∥ for all x ∈ X}. Then the following
assertions are valid:

(i) If an n-tuple (µ1, . . . , µn) satisfies
µj ≥ max{{α̂pβ̂p|µi| : i = 1, . . . , n, i ̸= j} ∪ {α̂pβ̂p}} for some 1 ≤ j ≤ n and
µi < 0 for all i ̸= j, then (µ1, . . . , µn) ∈ G∥.∥(p).

(ii) If (µ1, . . . , µn) ∈ G∥.∥(p), then
µj ≥ max{{ |µi|

α̂pβ̂p
: i = 1, . . . , n, i ̸= j} ∪ { 1

α̂pβ̂p
}} for some 1 ≤ j ≤ n.

In Corollary 2.3, F (p) is completely characterized in the setting of p-normed spaces.

Corollary 2.3. [5] Let (X, ∥.∥) be a p-normed space (0 < p ≤ 1). Then
F (p) = (0, 1]× · · · × (0, 1].

Now we are ready to state the following theorem as a consequence of Theorem 2.2 and
Corollary 2.3. It is a characterization of p-normed spaces which is based on the generalized
triangle inequality of the second type and its reverse in quasi Banach spaces. Our results
generalize some already known results due to [1, Theorem 2.5 and Theorem 2.7].

Theorem 2.4. Let (X, ∥.∥) be a quasi Banach space and 0 < p ≤ 1. Then the following
assertions are mutually equivalent:

(i) G(p) = {(µ1, . . . , µn) : µj ≥ max{{|µi| : i = 1, . . . , n, i ̸= j} ∪ {1}} for some 1 ≤
j ≤ n and µi < 0 for all i ̸= j};

(ii) F (p) = (0, 1]× · · · × (0, 1];
(iii) (X, ∥.∥) is a p-Banach space.

3. Conclusion
In the framework of quasi normed spaces, by using the generalized triangle inequality

of the second type and its reverse, we present a characterization of p-normed spaces. The
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results provide a better understanding of the behaviors of some inequalities with the source
of the triangle inequality in some spaces such as Rn, lp, . . . .
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Abstract. Graph burning is a deterministic discrete-time graph process that is defined
on the vertex set of a simple finite graph and can be considered as a model for the spread
of social contagion. Its corresponding graph parameter is called the burning number and
can be interpreted as a measure for the speed of contagion. In this paper, we define the
Poisson burning process on the vertex set of a finite simple graph as a random variation
of the graph burning process. We also define its corresponding graph parameter, called
burning time. We then obtain a general asymptotic upper bound on the burning time
of connected graphs, and we find the asymptotic order of the burning time for the paths.
.
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1. Introduction

In this section we define the Poisson burning process and the burning time of graphs.
We start by providing some background and terminology. Graph burning is a discrete time
graph process that is defined on the vertex set of simple finite graphs and was introduced
by Anthony Bonato et al in 2014 in [2]. By starting such a process on a graph G, we
say that we are burning G and it can be interpreted as a model for spread of influence (a
fire) in social networks. The burning number of G, denoted by b(G), is then the minimum
number of rounds that is needed for burning G over the set of all possible burning processes
(that can be seen as a measure for the speed of social contagion). Here is the definition
of this process:

We have a simple finite graph G = (V,E) and a fire that we aim to spread among the
vertices of G. We assume that throughout this process every vertex has two states: it is
either unburned or burning. Initially all the vertices of G are unburned, and once a vertex
is burned, it remains burning until the end of the process. At each time step i ≥ 1, the
process progresses as follows:

At time step i = 1, we choose a vertex x1 and we burn it. At each time step i ≥ 2,
we do two things: We choose a vertex xi that is not burned in the previous steps and we
burn it; at the same time, the fire spreads from the burning vertices of the previous stage
to their unburned neighbours. The process ends once all the vertices are burned.

∗Speaker. Email address: e.roshanbin@alzahra.ac.ir
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Each vertex xi in the above definition is called a fire source, and if the process ends in
k steps, then the sequence (x1, x2, . . . , xk) is called a burning sequence for G. Hence, the
burning number of G equals the length of the smallest burning sequence for G. For more
information on the graph burning problem see [1–4].

As an example, the following result is known on the burning number of paths.

Theorem 1.1 ( [3]). For every path Pn of order n ≥ 1, b(Pn) = d√ne.
By the results in [1–4], we have the following corollary.

Corollary 1.2. For every connected graph G of order n, b(G) = O(
√
n).

A Homogeneous Poisson process with parameter λ is a counting (or point) stochastic
process that counts the number of events that occur in the given intervals of time. We
denote a Poisson process by {N(t)}t≥0, where the parameter t represents the time, and
N(t) denotes the number of events that happen in the time interval [0, t]. The sequence
{N(t)}t≥0 satisfies the following properties:

(i) N(0) = 0.
(ii) The number of events in non-overlapping time intervals are independent.
(iii) For a positive real number h, we have that

P (N(t+ h)−N(t) = 1) = λh+ o(h),

and
P (N(t+ h)−N(t) ≥ 2) = o(h).

The properties (i), (ii), and (iii) imply that

P (N(t+ h)−N(t) = k) = P (N(t)−N(0) = k) = P (N(t) = k) .

Let T1 denote the time of the occurrence of the first event in a Poisson process with
parameter λ, and for i ≥ 2, suppose that Ti denotes the time that we wait after the
occurrence of the (i − 1)-th event until the i-th event happens. Since the occurrence of
each event happens randomly, each Ti is a random variable that is called the i-th inter-
arrival time. The time that the i-th event occurs is called the i-th waiting time and is

denoted by Si. Thus, by definition, S1 = T1, and for j ≥ 2, Sj =
∑j

i=1 Tj . Moreover, for
j ≥ 1, Tj = Sj − Sj−1.

It is known in probability theory that for every natural number n, the random variables
T1, T2, . . . , Tn are independent and identically distributed exponential random variables
with rate λ; that is, the probability density function of each Ti is defined by the function
f(x) = λ exp(−λx), where x ≥ 0. Hence, the expectation or mean of each Ti equals 1

λ ,

and its variance equals 1
λ2

. Moreover, each Sn is a gamma random variable Γ(n, λ); that

is, the probability density function of Sn is defined by f(x) = λnxn−1 exp(−λx)
Γ(λ) , for x ≥ 0.

In this formula, Γ(λ) is the well-known gamma function.
Also, N(t) is a Poisson random variable with rate λt; that is, the probability distribu-

tion function of Sn is defined by P(N(t) = i) = exp(−λt)(λt)i
i! , where i ≥ 0 is an integer.

Hence, each Poisson process is uniquely determined by one of the sequences {N(t)}t≥0,
or {Ti}i=1, or {Si}i=1. We can also see that the event N(t) < i happens if and only if the
event Si > t. Thus,

P(N(t) < i) = P(Si > t).(1)

For more details on Poisson process see [5]. The following concentration inequality is
called the Chebyshev’s inequality ; see [6].
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Theorem 1.3 ( [6]). Suppose that X is a random variable with finite mean µ, and
finite non-zero variance σ2. Then for any t > 0,

P (|X − µ| ≥ t) ≤ σ2

t2
.

Now, we are ready to define the Poisson graph burning process as follows. Suppose
that we consider the burning process for a graph G of order n, with b(G) = k. However, the
time for choosing the i-th source of fire is the waiting time for the i-th event in a Poisson
process with parameter λ, and we choose the i-th source of fire uniformly at random to be
any vertex in G. We continue this until at some time t the whole graph G is burning. We
may or may not consider to continue the Poisson process after time t as every vertex in G
will be burning after t. Such a burning process on G is called a Poisson burning process
for G. We call the time t at which the whole graph G is burning in a Poisson burning
process the burning time of G, and we denote it by bp,λ(G), or simply by bp(G) when we
know the parameter λ.

Note that in a regular random burning process for G, we choose the i-th source of
fire at time t = i. However, in a Poisson burning process the time for choosing the i-th
source of fire can be any time t either before i or after i. Moreover, here bp(G) is a random
variable as it depends on the Poisson process, and also on the way that we choose the fire
sources. Our goal is here to consider the asymptotic behavior of bp(G).

2. Main results

In this section, we consider the asymptotic behavior of the Poisson burning process
and the burning time of connected graphs in general, and for the paths in particular.

Theorem 2.1. If G is a connected graph of order n with b(G) = k, then in a Poisson
burning process with λ = 1 on G,

bp(G) = O(k
√

log n).

Proof. Assume that (x1, x2, . . . , xk) is a fixed burning sequence for G (in the regular
burning process), and t = k + k

√
log n. In a Poisson burning process for G let A be the

event that “all the vertices in G are burning at time t”. Also, let B be the event “
⋂k
i=1Ai”,

where Ai is the event that “Si ≤ t− (k − i) and the vertex xi is burned in the i-th step”
(or equivalently, t−Si ≥ (k− i) and the vertex xi is burned in the i-th step), for 1 ≤ i ≤ k.
We can see that B is a special case of the event A (or equivalently, B ⊆ A), and hence,
P(B) ≤ P(A). Namely, if B occurs, then it implies that Sk ≤ t, and for 1 ≤ i ≤ k, the
vertex xi is burning at time t− (k− i). Therefore, {Nt−Si [xi]}ki=1 forms a covering for the
vertex set of G. Hence, G must be burning at time t in such a case.

Thus, if we show that limn→∞ P(B) = 1, then it implies that limn→∞ P(A) = 1. Conse-
quently, it shows that a.a.s., bp(G) ≤ t. For this, it suffices to prove that limn→∞ P(B) = 0.
In the rest of the argument, we will try to prove this by Chebyshev’s inequality.

Assume that λ = 1. Therefore, E [Ti] = Var(Ti) = 1, for each 1 ≤ i ≤ k. Note that

Si =
∑i

j=1 Tj . Since Tj ’s are independent exponentially distributed random variables,
then for 1 ≤ i ≤ k,

Var(Si) =
i∑

j=1

Var(Tj) = i =
(√

i
)2
.
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Moreover, E [Si] =
∑i

j=1 E [Tj ] = i. Thus, by Chebyshev’s inequality, for 1 ≤ i ≤ k,

P(Ai) = P(Si > t− (k − i)) = P
(
Si − i > k

√
log n

)

≤ P
(
|Si − E [Si] | ≥ k

√
log n

)
≤ i

k2 log n
.

Since B =
⋂k
i=1Ai, then

P(B) = P(
k⋃

i=1

Ai) ≤
k∑

i=1

i

k2 log n
=
k(k + 1)

2k2 log n
.

Therefore, limn→∞ P(B) = limn
k(k+1)

2k2 logn
= 0, and consequently, P(A) = P(B) = 1,

a.a.s.; that is, a.a.s., all the vertices of G are burning at time t = k + k
√

log n. Since
k ≤ k√log n, then the proof follows. �

Note that the whole probability argument above is only dependent on the Poisson
process and a fixed optimum burning sequence for G. Since by Corollary 1.2, the burning
number of every connected graph G of order n, is of order O(

√
n), then we conclude the

following result on the Poisson burning for bp(G).

Theorem 2.2. If G is a connected graph of order n, then in a Poisson burning process
with λ = 1 on G,

bp(G) = O(
√
n log n).

We now consider the burning time of paths as the most simple-structured connected
graphs.

Theorem 2.3. In a Poisson burning process with λ = 1 on the path Pn,

bp(Pn) = Θ(
√
n log n)

Proof. By Theorem 2.2, we have the upper bound. To prove the lower bound, we
use a technical argument on the decomposing of a Poisson process on paths into smaller
processes. For the shortness of the paper we avoid bringing the complete proof here. �

3. Conclusion

We introduced a random variation of the graph burning process and its corresponding
parameter, using a stochastic Poisson process, and we obtained an upper bound on the
asymptotic value of the burning time of graphs, and also an asymptotically tight bound
on the burning time of paths. There are left tones of open problems on the burning time
of graphs such as the asymptotic bounds on the burning time of other known families of
graphs.
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Abstract. This article presents an approach to verify the effective versions of theo-
rems and concepts in metric model theory. Metric model theory (continuous logic) is a
framework to study mathematical analysis and the corresponding spaces. So, a suitable
way to study computability is Type-two-theory of effectivity(TTE). By TTE, effective
version of some theorems in metric model theory can be obtained.
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1. Introduction
2. Preliminaries
2.1. Metric model theory (Continuous logic). In the following, a logic which is

suitable to study metric structures is explained, [1].
Assume (M,d) is a complete metric space. A metric structure M based on (M,d)

denoted by
M = (M,PM

i , fMj , cMk | i ∈ I, j ∈ J, k ∈ K)

is defined as follows; PM, fM and cM are the interpretations of the predicate symbol
P , the function symbol f and the constant symbol c, respectively. PM : Mn → I and
fM :Mn →M are uniformly continuous, for some arity n and a bounded interval I in R.
Moreover, PM and fM are uniformly continuous with modulus ∆P and ∆f , respectively.
Also, L consists of a real number DL which is the diameter of (M,d). Note that the metric
d can be assumed as a binary predicate symbol and interpreted as the metric of M .

Terms are defined as in first-order logic. An atomic formula is of the form P (t1, . . . , tn),
for terms ti and a predicate symbol P . Also, d(t1, t2) is an atomic formula for every two
terms t1 and t2. Every atomic formula is a formula. Moreover, for every formula φ1, . . . , φn

and every continuous function u : [0, 1]n → [0, 1], u(φ1, . . . , φn) is a formula. And, for ev-
ery formula φ and every variable x, supx φ and infx φ are formulas. Note that continuous
functions u are connectives. The interpretation of each formula without free variables, a
sentence, is as usual and defined by induction. A structureM is a model of a sentence φ

∗Speak er. Email address: nrtavana@aut.ac.ir
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if φM = 0.

Definition 2.1. AssumeM is a metric structure and A ⊆M .
(1) A predicate P : Mn → [0, 1] is definable in M over A, if there is a sequence

(φk(x) | k ≥ 1) of L(A)-formulas such that
∀ε > 0 ∃N ∀k ≥ N ∀x ∈Mn (| φM

k (x)− P (x) |≤ ε).
(2) A function f : Mn → M is definable in M over A if and only if the function

d(f(x̄), y) on Mn+1 is a definable predicate inM over A.
(3) A set D ⊆ Mn is definable in M over A if the distance predicate d(x̄,D) is

definable inM over A.

2.2. Type-two theory of the effectivity (TTE). In this section, the approach
used to study the effectivity is introduced briefly, [6].

Definition 2.2. Let Σ be a finite alphabet. A naming system on a setM is a surjective
function ν :⊆ X → M where X ∈ {Σ∗,Σω}. If X = Σ∗, ν is called a notation and if
X = Σω, ν is called a representation.

The definitions of computable function on Σω and every other arbitrary set can be
found in [5].

2.3. Effective metric model theory. In the following, the concepts of computable
and decidable metric structures are explained. This approach to study the effectiveness
of the metric structures is firstly introduced in [4]. the definitions of en effective and
computable metric space sre in [6]. The Cauchy representation for them can be defined.
There exists a representation η for Fωω, the set of all partial continuous functions f :⊆
Σω → Σω with Gδ-domain. It means p ∈ Σω is a name for a continuous function ηp :⊆
Σω → Σω with a Gδ-domain which on input q returns the value ηp(q). For more details
of this representation, see [3] and [4]. By the above representation, a continuous function
f ∈ Fωω is computable if there is a computable p ∈ Σω such that f = ηp.

Definition 2.3. [3] Let γ1 :⊆ Σω →M1 and γ2 :⊆ Σω →M2 be two representations.
For the set C(M1,M2) of continuous total functions f :M1 →M2, define a representation
[γ1 → γ2] :⊆ Σω → C(M1,M2) as follows:

[γ1 → γ2](p) = f :⇐⇒ (f ◦ γ1)(q) = (γ2 ◦ ηp)(q),
for every q ∈ Σω such that (f ◦ γ1)(q) exists.

Definition 2.4. [4] A countable signature L is effectively presented if
(1) The sets of variable, predicate, function and constant symbols are computable.

It means if cV :⊆ Σ∗ → V ar, cP :⊆ Σ∗ → P, cF :⊆ Σ∗ → F and cC :⊆
Σ∗ → C are the naming systems for the sets of variables, predicate, function and
constant symbols, respectively, then dom(cV ), dom(cP ), dom(cF ) and dom(cC)
are computable subsets of Σ∗.

(2) Moduli of uniform continuity of predicate and function symbols are (ρC , ρC)-
computable functions.

Similar to computability theory, a notation c for Form, the set of L-formulas exists
such that dom(c) is a c.e. set. So, let {φn | n ∈ N} be an effective list of the set of all
L-formulas.
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Now, let (M,d,A, α) be an effective metric space. Put the Cauchy representations δM
on M and ρC on [0, 1]. LetM be a metric L-structure based on (M,d,A, α). Assume

Form(M, L) = {φM : Mnφ → [0, 1] | φ is an L-formula with nφ free variables}.
To define a representation on Form(M, L), take the representation βn = [[δM ]n → ρC ] :⊆
Σω → Form(M, L)n, where

Form(M, L)n = {φM :Mnφ → [0, 1] | φ is an L-formula with n free variables},
for any n ∈ N. Since Form(M, L) =

∪
n∈N Form(M, L)n it follows that the function

β :⊆ Σω → Form(M, L) defined by β(0n1p) = βn(p) for each p ∈ dom(β), is a represen-
tation for Form(M, L). A similar representation βat can be defined for the set of all in-
terpretations of atomic L-formulas inM, Format(M, L), instead of the set Form(M, L).

Therefore, a computable and a decidable metric structure can be defined.

Definition 2.5. (1) With the preceding assumption, a metric structure M is
computable iff the sequence

(φM
n :Mnφ → [0, 1] | φ is an atomic L-formula with nφ free variables)n∈N

has a computable [βat]
ω-name.

(2) Respectively, a metric structureM is decidable iff the sequence
(φM

n :Mnφ → [0, 1] | φ is an L-formula with nφ free variables)n∈N
has a computable [β]ω-name.

Actually, [β]ω is a naming system for Form(M, L)ω which is the set of all sequences
on Form(M, L). Hence, for a decidable metric structure M, there is an algorithm such
that for a given L-formula φ(x1, . . . , xn) and a1, . . . , an ∈ M , it returns a good approxi-
mation of φM(a1, . . . , an) in rational numbers. This means that, for each ε > 0, r, s ∈ Q
is computably found such that r < φM(a1, . . . , an) < s and s− r < ε.

3. Computably definable predicates
Proposition 3.1. Let (xi)i∈N be a (νN, ρ)-computable sequence of real numbers with

computable modulus of convergence e : N → N. Then, its limit x = limi→∞ xi is com-
putable.

Definition 3.2. An L-formula φ with n free variables is computable in M when
φM :Mn → [0, 1] is a (δM , ρ)-computable function.

Definition 3.3. A predicate P : Mn → [0, 1] (with n-arity) is computably definable
in M (over ∅) iff there is a sequence (φk(x) | k ≥ 1) of computable L-formulas such that
the sequence of predicates (φM

k (x) : Mn → [0, 1] | k ≥ 1) is a (νN, ρ)-computable sequence
with a computable modulus of convergence and P (a) = limk→∞ φM

k (a), for every a ∈Mn.

Obviously, if an n-arity predicate P is computably definable inM then by Proposition
3.1, P (a) is computable for every a ∈Mn.

Proposition 3.4. Every (δ, ρ)-computable function f :⊆ M → R with co-r.e domain
has a (δ, ρ)-computable total (δ, ρ)-computable extension f : M → R with the same sup
and inf.
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Assume
C = {(ak)k∈N ∈ [0, 1]N | ∀N ∈ N ∀i, j > N | ai − aj |≤ 2−N}.

Also, let ([0, 1]N, d) be a metric space such that the metric d is defined by
d((ak), (bk)) = Σ∞

k=02
−k | ak − bk |,

for every (ak), (bk) ∈ [0, 1]N. Since ([0, 1]N, d) is compact, it is separable. Therefore,
let A be a countable and dense subset of [0, 1]N and α be a notation for A. So, N =
([0, 1]N, d, A, α) is an effective metric space.

Thus, the Cauchy representation δ can be defined for [0, 1]N as follows
δ(p) = (ak)k∈N :←→ ∃p0, p1, · · · ∈ dom(α),

p := ι(p0)ι(p1) . . . ,

d(α(pi), α(pj)) ≤ 2−j(i < j),

(ak)k∈N = lim
n→∞

α(pn).

(1)

Every sequence in C is Cauchy and so its limit exists in [0, 1]. We can define a function
f : N → [0, 1] by f((ak)k∈N) = limk→∞ ak and dom(f) = C.

Lemma 3.5. The above function has a closed and co-r.e domain and is (δ, ρ)-computable.

The next theorem says that in which situation a predicate is computably definable in
metric structures.

Theorem 3.6. Let M be an effective metric space. Assume P : Mk → [0, 1] is
a predicate. Then, P is computably definable iff there are a (δ, ρ)-computable function
u : [0, 1]N → [0, 1] and computable L-formulas (ψl(x) | l ∈ N) such that for all a ∈ Mk,
P (a) = u(ψM

l (a) | l ∈ N).

Corollary 3.7. An operator T : M → M on an effective metric space M is com-
putably definable if and only if there are a (δ, ρ)-computable function u : [0, 1]N → [0, 1]
and computable L-formulas (ψk(x, y) | k ∈ N) such that for all a, b ∈ M , d(T (a), b) =
u(ψM

k (a, b) | k ∈ N).
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Abstract. This paper shall be concerned with the notion of coregular S-acts (acts which
all their cyclic subacts are injective) over a monoid S as a dual concept of regular acts.
We present various properties and some homological classifications of coregular S-acts.
Also the relations between these kinds of acts and some properties around injectivity are
investigated.
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1. Introduction

Throughout this paper S will denote a monoid and an S-act A is a right S-act. Fol-
lowing [1], an S-act A is called regular if for every element a ∈ A, there exists a homo-
morphism f : aS −→ S such that af(a) = a. Also it is known that a right S-act A is
regular if and only if for every a ∈ A, the cyclic subact aS is projective (see [1]). In this
paper we define the notion of coregular acts as the dual notion of regular acts which are
the acts all their cyclic subacts are injective. Herein we investigate the relations between
coregular acts and some properties around injectivity. So let us recall them. We refer
the reader to [1] for all concepts and basic properties of S-acts not defined here. A right
S-act A is called injective if for any S-act B, any subact C of B and any homomorphism
f : C −→ A, there exists a homomorphism f̄ : B −→ A such that f̄ |C= f (see [1]). Also a
right S-act A is called quasi-injective (cyclic quasi-injective) if it is injective relative to all
inclusions from its subacts (cyclic subacts). For the sake of simplicity, we denote ”quasi-
injective” and ”cyclic quasi-injective”, by ”Q-injective” and ”CQ-injective”, respectively.
Recall from [5], the right S-act A is called C-injective if it is injective relative to every in-
clusion from cyclic acts. Moreover for right S-acts A and B a homomorphism f : A −→ B
is called a semiretraction if for every element x ∈ f(A), there exists a homomorphism
g : B −→ A such that f(g(x)) = x. If B be a subact of an S-act A, then B is said to
be a semiretractable subact of A if the inclusion map i : B ↪→ A is a semiretraction.
Also a right S-act A is called fully semiretractable (or FSR) if every subact of A is
semiretractable(see [3]).

∗Speaker. Email address: m.rooeintan@yahoo.com
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For an S-act AS , by E(A), we mean the injective envelope of A. We provide some
useful information concerning C-injective and coregular acts. We prove that a right S-
act is coregular if and only if it is C-injective and FSR. Also it is shown that over a
commutative monoid S every torsion free S-act is coregular if and only if every cyclic
S-act is injective.

2. Main Results

This section is devoted the study of coregular acts. This leads to study the relationship
between these kinds of acts and the other classes of acts, such as FSR, C-injective and
Q-injective.

Definition 2.1. Let A be a right S-act. We say that A is coregular if every cyclic
subact of A is injective.

Recall that over a monoid S a right S-act A is cyclic if for some a ∈ A,
A = aS = {as : s ∈ S}.
Lemma 2.2. Suppose i : aS ↪→ B is a monomorphism. If aS and B contain zero

elements and aS ×B is CQ-injective, then aS is a retract of B.

Proof. Suppose i : aS ↪→ B is a monomorphism. By CQ-injectivity of aS×B, there
exists a homomorphism f : aS × B −→ aS × B such that fi2i = i1 where i1 and i2 are
the canonical injections. Take g = fi2, then gi = i1 and so p1gi = p1i1 = 1aS where
p1 : aS × B −→ aS × B is the canonical projection. Let h = p1g, we get hi = 1aS which
means that aS is a retract of B. �

Corollary 2.3. Suppose aS is a cyclic right S-act with a zero element. Then aS is
injective if and only if aS × E(aS) is CQ-injective.

From [3] recall that a homomorphism f : A −→ B is called a semiretraction if for
every element x ∈ f(A), there exists a homomorphism g : B −→ A such that f(g(x)) = x.
Also if B be a subact of an S-act A, then B is said to be a semiretractable subact of A
if the inclusion map i : B ↪→ A is a semiretraction, i.e., for every x ∈ B, there exists a
homomorphism f : A −→ B such that f(x) = x. Moreover, the right S-act A is called
fully semiretractable (or FSR) if every subact of A is semiretractable.

Theorem 2.4. For a right S-act A, the following conditions are equivalent:
(i) A is coregular.
(ii) A is C-injective and FSR.
(iii) Every subact of A is C-injective.
(iv) Every finitely generated subact of A is C-injective.
(v) Every cyclic subact of A is C-injective.
(vi) For every element a ∈ A, aS contains a zero element and aS×E(aS) is CQ-injective.

By Corollary 1 and Proposition 2 of [3] and also by the previous theorem, we have the
following corollary.

Corollary 2.5. The right S-act SS is coregular if and only if S is a regular self
injective monoid.

The following example illustrates that the implications ”C-injectivie−→ FSR” and
”FSR −→ C-injective” are not true in general.
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Example 2.6. As we know, S = (N, max) is a regular monoid which is not injective.
Then by Corollary 1 of [3], SS is FSR but it is not C-injective. Conversely, in [4] it is
shown that a finite monogenic semigroup with identity and a zero adjoined is a self-injective
monoid, but it can not be regular. Then by Corollary 1 of [3], SS is not FSR.

Proposition 2.7. The following hold over a monoid S:
(i) Every subact (retract) of any coregular act is coregular.
(ii) For any family of right S-acts {Ai}i∈I ,

∐
i∈IAi is coregular if and only if Ai is coregular

for each i ∈ I.
(iii) For any family of right S-acts {Ai}i∈I ,

∏
i∈IAi is coregular if and only if for any

ai ∈ Ai(i ∈ I),
∏
i∈IaiS is coregular.

Regarding parts (i) and (ii) of the previous proposition and Corollary 2.5, the next
result can be proved.

Proposition 2.8. The following are equivalent over a monoid S:
(i) Every (finitely generated) projective S-act is coregular.
(ii) Every (finitely generated) free S-act is coregular.
(iii) The right S-act SS is coregular .
(iv) S is a regular self injective monoid.

The next proposition is easily checked using Theorem 2.4.

Proposition 2.9. The following are equivalent over a monoid S:
(i) Every S-act is coregular.
(ii) Every cyclic S-act is injective (C-injective).
(iii) Every cyclic S-act contains a zero element and all S-acts are CQ-injective.

Note that in the above proposition (part (ii)), we can replace ”injectivity” with every
property which is weaker than injectivity.

It is well-known that over a commutative regular monoid S, every S-act is flat. Now
using Corollary 2.5 and considering the fact that SS is flat, we have the following result.

Proposition 2.10. Over a commutative monoid S, the following conditions are equiv-
alent:

(i) Every torsion free S-act is coregular.
(ii) Every principally weakly flat S-act is coregular.
(iii) Every weakly flat S-act is coregular.
(iv) Every flat S-act is coregular.
(v) Every cyclic S-act is injective.

In general ”coregularity” does not imply ”injectivity” for example if S is a monoid
which is not left reversible, then clearly Θ t Θ is coregular which is not injective. In
the next propositions, we investigate conditions under which a coregular act is injective.
Evidently if B is a subact of a cyclic S-act aS, then I = {s ∈ S : as ∈ B} ⊆ S is a
right ideal. Thus over a principal right ideal monoid S, any subact of every cyclic S-act
is cyclic. Now the next result.

Proposition 2.11. Suppose S is a principal right ideal monoid. Then every C-
injective (coregular) S-act is injective. .

Recall from [1] that a monoid S is called right hereditary, if every right ideal of S is
projective.
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Proposition 2.12. Over a hereditary monoid S, the following are equivalent.
(i) Every coregular S-act is injective.
(ii) Every coregular S-act is weakly injective.
(iii) Every coregular S-act is finitely generated weakly injective.
(iv) S is left reversible.

Proof. (i)−→(ii) and (ii)−→(iii) are clear.
(iii)−→(iv) Since Θ tΘ is coregular, Proposition 3.4.3 of [1] implies the result.
(iv)−→(i) By assumption, we conclude that every right ideal of S is indecomposable. Also
since S is hereditary, every right ideal of S is principal and by the previous proposition,
we obtain the result. �

Proposition 2.13. Suppose A is a coregular S-act which contains a nonzero cyclic
large subact. Then A is a cyclic injective S-act.

3. Conclusion

The main body of the paper is related to the study of coregular acts as the dual
notion of regular acts and a useful tool for the study of properties of injective acts and
some related notions.
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Abstract. We study oriented coloring of Theta graphs. An oriented coloring of an
oriented graph −→

G is a vertex coloring of −→G such that (i) no two adjacent vertices have
the same color and (ii) all the arcs between any two color classes have the same direction.
The oriented chromatic number of −→G is the smallest integer k such that −→

G admits an
oriented coloring with k colors. In this paper we prove that oriented chromatic number
of any oriented generalized Theta graph lies between 2 and 6 and that these bounds are
tight.
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1. Introduction
In this paper, let G = (V (G), E(G)) be a simple graph. An orientation of G is a

directed graph −→G = (V (
−→
G), A(

−→
G)) obtained from G by ordering every edge uv ∈ E(G)

either from u to v (resulting in an arc −→uv ∈ A(
−→
G)), or conversely (resulting in an arc

−→vu ∈ A(
−→
G)). An orientation of a graph is called an oriented graph.

An oriented coloring of an oriented graph −→G is a mapping c from V (
−→
G) to a set of k

colors such that:
(i) c(u) ̸= c(v) whenever −→uv ∈ A(

−→
G) and

(ii) c(v) ̸= c(x) whenever −→uv,−→xy ∈ A(
−→
G) and c(u) = c(y).

Note that these two conditions ensure that any two vertices linked by an oriented path of
length one (→) or two (→→) are assigned distinct colors in any oriented coloring. The
oriented chromatic number of −→G , denoted by χo(

−→
G), is the smallest integer k such that−→

G admits an oriented coloring with k colors. An oriented coloring of G using k colors is
denoted by k-oriented coloring. IfG is an undirected graph, the oriented chromatic number
χo(G) of G is defined as the maximum oriented chromatic number of its orientations:

χo(G) = max{χo(
−→
G)|−→G is an orientation of G}.
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Let −→G and −→H be two oriented graphs. A homomorphism from −→G to −→H is a map-
ping c from V (

−→
G) to V (

−→
H ) that preserves the arcs (that is

−−−−−→
c(u)c(v) ∈ A(

−→
H ) whenever

−→uv ∈ A(
−→
G)). A k-oriented coloring of an oriented graph −→G can thus be viewed as a ho-

momorphism from −→G to −→H , where −→H is an oriented graph of order k. The existence of
such a homomorphism from −→G to −→H is denoted by −→G → −→H . The vertices of −→H are called
colors, and we say that −→G is a −→H -colorable or has a −→H -oriented coloring.

The oriented chromatic number of −→G can then be equivalently defined as the smallest
order of an oriented graph −→H such that −→G → −→H .

The notion of oriented coloring introduced by Courcelle in [1]. Oriented coloring has
been studied by several authors. A survey on the study of oriented colorings has been
done by Sopena in 2001 and recently updated [2].

Let −→Pn be an oriented path of length n and the vertices of −→Pn be v0, v1, . . . , vn, each
vertex vi, 0 ≤ i ≤ n, is connected with the next vertex by an arc, either by −−−→vivi+1 ∈ A(

−→
Pn)

(forward arc) or by −−−→vi+1vi ∈ A(
−→
Pn) (backward arc). For each pair of consecutive vertices

vi and vi+1, we define λ(vi, vi+1) = 1 if −−−→vivi+1 ∈ A(
−→
Pn), and λ(vi, vi+1) = −1 if −−−→vi+1vi ∈

A(
−→
Pn). Now, we define λ(

−→
Pn) = Σn−1

i=0 λ(vi, vi+1). In other words λ(
−→
Pn) is the number of

forward arcs minus the number of backward arcs in −→Pn. Similarly λ(
−→
Cn) is defined.

The generalized Theta graph Θl1,...,lp consists two end-vertices joined by p ≥ 2 inter-
nally vertex-disjoint paths with respective lengths 1 ≤ l1 ≤ · · · ≤ lp. We denote by u and
v the end-vertices of the generalized Theta graph Θl1,...,lp and by P i = uxi1 . . . x

i
li−1v the

corresponding paths of length li for every i, 1 ≤ i ≤ p.
In this paper, we determine the oriented chromatic number of every generalized Theta

graph.

2. Main results
We determine the oriented chromatic number of generalized Theta graphs Θl1,...,lp , p ≥

2. In the following, let tournament T5 in Figure 1, be the oriented graph with the vertex
set V (T5) = {0, 1, . . . , 4} and the arc set A(T5) = {(x, (x + k)(mod5))|x ∈ V (T5), k =
1, 2}. Let tournament T6 in Figure 1, be the oriented graph with the vertex set V (T6) =
{0, 1, . . . , 5} and the arc set

A(T6) ={(x, (x+ 1)(mod6))|x ∈ V (T6)}
∪

{(x, (x+ k)(mod6))|x ∈ V (T6), 2|x, k = 2, 3}
∪

{(x, (x+ 4)(mod6))|x ∈ V (T6), 2 ∤ x}.

Theorem 2.1. Let −→Θ =
−−−−→
Θl1,...,lp, p ≥ 2, be a generalized Theta graph. Then χo(

−→
Θ) = 2

if and only if all P i’s, 1 ≤ i ≤ p, are oriented alternating paths (→← or ←→) from u to
v and every vertex of −→Θ is a source or sink.

Theorem 2.2. Let −→Θ =
−−−−→
Θl1,...,lp, p ≥ 2, be a generalized Theta graph and

−→
P i, 1 ≤ i ≤ p,

be the oriented paths from u to v of −→Θ . Then χo(
−→
Θ) = 3 if and only if one of the following

conditions holds:
(i) for p = 2, λ(

−→
P 1) + λ(

−→
P 2) = 0(mod3) or
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Figure 1. The tournaments T5 and T6.

(ii) for every path
−→
P i and

−→
P j, 1 ≤ i, j ≤ p, λ(

−→
P i) = λ(

−→
P j)(mod3) or

(iii) −→Θ does not contain three consecutive arcs going in the same direction (→→→ or
←←←).

Theorem 2.3. For every generalized Theta graph Θ = Θl1,...,lp , p ≥ 2 and li ≥ 3,
whenever 1 ≤ i ≤ p, we have 2 ≤ χo(Θ) ≤ 5. Moreover, this upper bound is tight.

To prove Theorem 2.3, we obtain a homomorphism from −→Θ to T5.

Theorem 2.4. For every generalized Theta graph Θ = Θl1,...,lp , p ≥ 2, we have 2 ≤
χo(Θ) ≤ 6. Moreover, this upper bound is tight.

To prove Theorem 2.4, we obtain a homomorphism from −→Θ to T6.

3. Conclusion
In this paper, we prove that oriented chromatic number of any oriented generalized

Theta graph lies between 2 and 6 and that these bounds are tight.
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Abstract. In multi-objective convex optimization, we need to compute an infinite set
of nondominated points. The proposed method for approximating an nondominated set
of multi-objective nonlinear programming problem, is the extension of Benson’s external
approximation algorithm for multi-objective linear programming problems. In the case
that the objective functions and constraints are differentiable, for implement the main
step, we describe the effective method of ”constructing a hyperplane separating an exter-
nal point from the feasible set in the target space”. In the case of non-differentiablility
of objective functions and constraints, this method is not applicable. Therefore, we will
use the generalized directinal derivative and subdifferentials, then we re-examine and
explaine the algorithm for this case.

Keywords: Multi-objective optimization, differentiability, sub-differential of convex func-
tions, ε -nondominated point

1. Introduction

In multi-objective optimization, several objective functions must be minimized simul-
taniously. Usually these goals are in conflict with each other. So in most cases, there is
no one solution that optimizes all the objectives at the same time. Therfor the purpose
of multi-objective optimization is to obtain nondominated points (instead of optimal so-
lutions).

The problem of multi-objective convex programming: Suppose y1, y2 ∈ Rp , here
we use symbol y1 ≦ y2 to show y1i ≦ y2i , for all i = 1, ..., p. In addition y1 ≤ y2 shows
that y1 ≦ y2 , y1 ̸= y2. while y1 < y2 means that y1i < y2i , for each i = 1, ..., p. Suppose
A ⊆ Rp , point of y ∈ A is called weak nondominated if ({y} − intRp

≧) ∩A = ϕ.

Consider the following multi-objective program MOP :

min f(x) = (f1(x), ..., fp(x))

x ∈ X = {x ∈ Rn : g(x) = (g1(x), ..., gm(x))T ≦ 0} (1)

∗Speaker. Email address: shahsavan.sahar1372@gmail.com
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X is feasible set in the decision space Rn ,that we assume is nonempty.
Theorem 1: The following statements are hold:
1) The set P ⊂ Rp is a nonempty polygon with dimension P and the feasible set P is Rp

≧
bounded from below
2. YN = PN

3. Every vertex of P belongs to YN .
4. PWN = bdP

Clearly P is an nonempty, convex, closed set and the point s /∈ P , so there is a unique
point y ∈ bdP such that it has the shortest distance to the point s.
To make a cut that separate s /∈ P from P , Benson proposed the following method for
two objective case: the Points s and p̂ are connected by a line segment, this line segment
intersects the boundary of P at a unique point y and this is the closest unique point.
The idea of making this hyperplane is that support( Rely) on P at the border point y and
therefore separate s from P. To find this hyperplane, initial and doul programs P (y) ,
D(y) from the linear program dependent to y ∈ Rp are required:

P (y) min{z : Ax ≧ b, Cx− ez ≦ y}

D(y) max{bTu− yTλ : Au− CTλ = 0, eTλ = 1, u, λ ≧ 0}
Note that if y /∈ P target value P (y) be strictly greater than zero and y ∈ PWN then
this target value will be equal to zero and if y ∈ P \ PWN then the value of this target is
strictly less than zero.
So Benson has shown that an optimal point of D(y) can be used to obtain a supporting
hyperplane if y be a weak nondominated point of P.
Algorithm 1: (External approximation algorithm for MOP Convex)
i1) put: S0 = yI +Rp

≧ ( yIi = {yi : y ∈ Y} ) Then the corner is S0 = {yI} .

i2) An inner point p̂ From P is finded.

i3) Put O := ∅ and I := ∅ and k = 0.

Repeat steps.
k1) If for any s ∈ V ertSk , s ∈ P ∪ O be established then go to step(k6). Otherwise

select sk ∈ V ertSk \ (P ∪ O) and continue.
k2) Calculate unique border point yk := ρks

k + (1− ρk)p̂ ∈ P where ρk ∈ (0, 1).

k3) If the distance d(sk, yk) From sk up yk be at most ε , then add sk to O and add yk

to set I and go (k1).
k4) If the distance d(sk, yk) > ε then determine the hyperplane

H := {y ∈ Rp : yTλk ≧ (g(xk)− ▽g(xk)Txk − ▽2g(xk)
(xk)2

2
)uk}

that separates sk from P , and put:

Sk+1 = Sk ∩ {y ∈ Rp : yTλk ≧ (g(xk)− ▽g(xk)Txk − ▽2g(xk)
(xk)2

2
)uk}

k5) Determine the vertex sk+1 , put k = k + 1 and come back to step( k1) .

k6) Define the set of external approximation points V0(S
k) = V ert Sk and define the set
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of internal approximation points Vi(S
k) = (V ert Sk \ O) ∪ I .

Results :

r1) Suppose P i = convVi(S
k) +Rp

≧
that P i shows the internal approximation of P, ( P i ⊆ P ).
r2) Suppose P 0 = convV0(S

k) +Rp
≧

that P0 shows external approximation of P, ( P ⊆ P0 ).
Proposition: Suppose p̂ ∈ intP and sk /∈ P , Suppose (xk, ρk) be the optimal solution
of nonlinear program (6) , then xk is weak efficient point of MOP (1) .
Quality guarantee of this approximation is possible because this algorithm making an ex-
ternal approximation P and also internal approximation P ie, P i ⊆ P ⊆ P0.

Step (k4) for the general case of differentiability and non-differentiability func-
tions:
(k4)
a) Determin the subgradients ∂f(xk) and ∂g(xk) and ∂2g(xk) .
b) Solve LD(xk, sk) and suppose (uk, λk) be the optimal solution.
c) If the target value LD(xk, sk) is less than zero then

Sk+1 = Sk ∩ {y ∈ Rp : yTλ ≧ bTuT }
d) Otherwise choose new subgradients ∂f(xk) and ∂g(xk) and go step (k4) part (b) or
choose the other corner sk and go to step (k2) .
remark 1: The gradient is always a member of the subdifferential ▽f(x) ∈ ∂f(x) .
Also when the function f is differentiable, the only member of the subdifferential is the
gradient

∂f(x) = {▽f(x)}
remark 2: Given that the functions are convex and as a result the epigraph of these
functions is a convex set, using the existence of a superplane that supports on this convex
set, is proved that the subdifferential of these functions is never empty;

∂f(x) = {ξ ∈ Rn|f0(x; d) > ξTd, for all d ∈ Rn}
When the function f be convex we have:

∂cf(x) = {ξ ∈ Rn|f ′
(x; d) > ξTd, , for all d ∈ Rn}

necessary and sufficient conditions K.K.T for nonsmooth functions:
Suppose the problem (1) satisfies in the Slater conditions and assume f : Rn → Rp and
g : Rn → Rm be convex. Then xk is the minimal solution for problem (1) if and only if
there exist coefficients λi > 0 , i = 1, ..., p and µj > 0 , j = 1, ...,m such that

µjgj(x
k) = 0

and

0 ∈
p∑

i=1

λi ∂cfi(x
k) +

m∑

j=1

µj ∂cgj(x
k)

Theorem 2: If the function f be convex in this case or adopts its global minimum in x
or there exist a decended direction such as d for f at the point x.
Theorem 3: If the function f be locally Lipschitz continuous at the point x Lipschitz
then 0 ∈ ∂f(x) or there exists a decreasing direction d ∈ Rn for f at the point x.
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Suppose f be locally lipschitz continuous.
we say d is a decreasing direction of f at the point x if and only if

ξTd < 0 , ∀ξ ∈ ∂f(x) or f0(x; d) < 0

because a derivative of direction, ie f
′
(x; d) , does not exist for all functions, so we use the

generalized derivative of f0(x; d) .

f
′
(xk; d) := lim

t↓0
f(xk + td)− f(xk)

t

f 0(xk; d) := limsup
yk→xk

t↓0

f(xk + td)− f(xk)

t

(the second one, is for the general case of derivatives or non-derivatives of functions;
the same as the supremacy of directional derivatives)
For building a hyperplane for the general case of differentiability and non-differentiability
of functions we put :

fxk := f(xk)− ∂f(xk)Txk , bxk := g(xk)− ∂g(xk)Txk

Cxk := ∂f(xk)T , Axk := −∂g(xk)T

that is, for different scenarios of each member of ∂f We will run the algorithm to obtain
the hyperplane:

H := {y ∈ Rp| (y − fxk)Tλ∗ = bTxku
∗}

2. Conclusion

In this paper, we revise the developed Benson’s external approximation method to
solve multi-objective convex nonlinear programming problems. We explained the algo-
rithm for both case of differentiablility and nondifferentiablility of objective functions and
the constraint functions and proved that this algorithm guarantees finding weak ε - non-
dominated points with an approximation error ϵ .
Our suggestion for next works is that after finding the hyperplane, approximate the ef-
ficient border of P with a quadratic surface, because approximating the efficient border
with a quadratic surface instead of a line, will increase the quality of the approximation.
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Abstract. The aim of this paper is to study the Brauer program on classifying finite
groups with isomorphic complex group algebras. More precisely, we first show that a large
family of almost simple groups of type A are uniquely determined up to isomorphism by
the structure of their complex group algebras. For this purpose, we need to understand
the action of automorphisms on irreducible characters. The second part of the paper is
devoted to study the action of automorphisms of quasi-simple groups of type A on the
set of their irreducible characters. Consequently, we give a short proof of the global side
of the inductive McKay condition for irreducible characters of groups of type A.

Keywords: Automorphisms, Irreducible characters, Finite groups of Lie type

AMS Mathematics Subject Classification [2010]: 20C15; 20C33

1. Introduction

A fundamental question in representation theory of finite groups is the extent to which
complex group algebra of a finite group determines the group or some of its properties. In
1963, R. Brauer asked “when do non-isomorphic groups have isomorphic complex group
algebras?”. Although the question seems to be too general to be solved completely, it has
initiated a program aimed at determining all finite groups (up to isomorphism) with iso-
morphic complex group algebras to that of a given group G. Note that it is fairly possible
for two non-isomorphic solvable groups to have isomorphic complex group algebras. How-
ever, it seems that non-abelian simple groups or more generally quasi-simple and almost
simple groups have a very close connection with their complex group algebras. Indeed,
Tong-Viet proved in [6] that non-abelian simple groups are uniquely determined by the
structure of their complex group algebras. He also posed the following question:

Question. Which finite groups are determined uniquely by the structure of their com-
plex group algebras?

In this paper, we propose a conjecture to extend these results to almost simple groups.
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Conjecture. [2] Every finite almost simple group is uniquely determined up to iso-
morphism by the structure of its complex group algebra.

We recall that a finite group G is said to be almost-simple if S ≤ G ≤ Aut(S) for a non-
abelian simple group S. By the classification of finite simple groups, most of the almost
simple groups are of Lie type and they can be considered as (disconnected) reductive groups
over finite fields. The current state of knowledge of the ordinary representation theory of
finite reductive groups is still incomplete, even after the ground-breaking work of Deligne
and Lusztig. Questions on the behaviour of irreducible characters under automorphisms,
and hence question of determining character degrees of almost simple groups still remain
unsolved. So, investigating the above conjecture for almost simple groups seems to be a
more difficult task.

In this paper, we will study the above conjecture for almost simple groups of type A.
The verification of the conjecture consists of two main steps: Assume H is a finite group
and G is an almost simple group of type A with CH ∼= CG. In the first step, we reduce the
question to almost simple groups by showing that H/CH(H ′) is an almost simple group
with the same socle as G. The second step is devoted to comparing the characters degrees
of all two almost simple groups of type A with those of G, for which we need to understand
the action of Aut(PSLn(q)) on Irr(PSLn(q)). As the second goal of this paper, we will
study this question in a more general form.

Question. [1, Problem 2.33] For G a quasi-simple group of Lie type, determine the action
of Aut(G) on Irr(G).

For ε ∈ {±}, we set SL−n (q) = SUn(q) and SL+
n (q) = SLn(q). In this paper, we answer

the above question for G = SLεn(q). This will be extremely useful in the so-called local
global conjecture such as the McKay conjecture. As an application, we give a short proof
of the global side of the inductive McKay condition for irreducible characters of groups of
type A.

2. Main Results

In this section we state our results concerning the above conjecture and question. In
1963, Richard Brauer posed the following fundamental question:

Question. When do two finite groups have isomorphic complex group algebras?

Although by the present knowledge of representation theory it is not possible to settle
Brauer’s question, it is possible to obtain some significant progress in this regard.

Definition 2.1. A group G is said to be uniquely determined by the structure of its
complex group algebra if for any group H, the C-algebra isomorphism CH ∼= CG yields
the group isomorphism H ∼= G.

In the sequel we will partially answer Brauer’s question in affirmative for some almost
simple groups of type A (both linear and unitary) of arbitrary large ranks.

Theorem 2.2. [3,5, Main Theorem] Let q be a prime power and n ≥ 2. Let G be
a finite group such that PSLn(q) ≤ G ≤ PGLn(q). Then for any finite group H with
CH = CG, we have H ∼= G.

We then extend this theorem to an analogous result for simple groups of type 2A.
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Theorem 2.3. [2] Let q be a prime power and n ≥ 3. Let G be a finite group such
that PSUn(q) ≤ G ≤ PGUn(q), where q + 1 divides neither of n and n− 1. Then for any
finite group H with CH = CG, we have H ∼= G.

We now focus on studying the action of automorphisms on irreducible characters. A
finite reductive group is the fixed-point subgroup G := GF of a connected reductive group
G defined over the finite field Fq of characteristic p > 0, where F : G→ G is the Frobenius
map corresponding to this Fq-structure. It has been shown by Lusztig that the irreducible
characters of GF can be partitioned into the so-called geometric Lusztig series, labelled by
the semisimple G∗-classes of G∗F

∗
, where (G∗, F ∗) denotes a pair dual to (G, F ). If such

a series is labelled by a semisimple class with representative s, then it contains |AG∗(s)F
∗ |

semisimple characters, where AG∗(s) = CG∗(s)/C◦G∗(s) is the component group of s. The

set of semisimple (and regular) characters of G = GF can be naturally parametrized by

pairs (s, ξ) where s runs over a set of representatives of the semisimple classes of G∗F
∗

and ξ ∈ Irr(AG∗(s)), where AG∗(s) := AG∗(s)F
∗
.

To state our result, we need to introduce some more notation. For any λ ∈ Irr(C◦G∗(s)),
we denote by AG∗(s)λ the stabilizer of λ under AG∗(s). Moreover, the outer automorphism
group Out(G) is well known to be generated by diagonal, field, and graph automorphisms.
In the case of diagonal automorphisms, the action on Irr(G) is well understood by work
of Lusztig. In the sequel, we write Fp for a generator of the group of field automorphisms,
and write γ for a generator of the group of graph automorphisms of G.

Theorem 2.4. [4, Main Theorem] Assume that G = SLεn(q). For any semisimple
element s ∈ G∗ and any unipotent character λ ∈ Irr(C◦G∗(s)), there exists a morphism
ω0
s,λ : H1(F,Z(G)) → Irr(AG∗(s)λ) such that for the irreducible character χs,λ,ω0

s,λ(z)
∈

Irr(G) parametrized by triple (s, λ, ω0
s,λ(z)) for some z ∈ H1(F,Z(G)), one has

σχs,λ,ω0
s,λ(z)

= χσ∗−1(s),σ∗(λ),ω0
s,λ(σ(z))

,

where σ ∈ 〈Fp, γ〉 and σ∗ ∈ Aut(G∗) is its dual automorphism.

Consequently, using the above theorem, we obtain a short and explicit proof of the
global side of the so-called inductive McKay condition for the irreducible characters of
G = SLεn(q). In what follows, let G̃ = GLεn(q) where GL−n (q) = GUn(q).

Corollary 2.5. [4, Corollary] If χ̃ = χs,λ ∈ Irr(G̃), then for the irreducible character
χ0 = χs,λ,1 ∈ Irr(G|χ) we have

(G̃× 〈Fp, γ〉)χ0 = G̃χ0 × (〈Fp, γ〉)χ0 .
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Abstract. The purpose of this paper is to locate and estimate the eigenvalues of sto-
chastic tensors. We present several estimation theorems about the eigenvalues of sto-
chastic tensors. Meanwhile, we obtain the distribution theorem for the eigenvalues of the
tensor product of two stochastic tensors. We will conclude the paper with the distribution
for the eigenvalues of generalized stochastic tensors.
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1. Introduction
Tensors have numerous applications in many branches of mathematics and physics.

In late studies of numerical multilinear algebra eigenvalue problems for tensors have been
brought to special attention. The concept of eigenvalues for tensors was first introduced
and studied by Qi [3] and Lim [2] independently in 2005 and initiated the rapid devel-
opments of the spectral theory of tensors. Eigenvalue localization has been a hot topic
in tensor theory and its applications. This article discusses location, distribution and es-
timate of the eigenvalues for stochastic tensor. In continue we introduce the concepts of
generalized stochastic tensor and discuss the eigenvalue distribution for generalized sto-
chastic tensors. A tensor can be regarded as a higher order generalization of a matrix,
which takes the form

A = (ai1,...,im) , ai1,...,im ∈ ℜ, 1 ≤ i1, . . . , im ≤ n,

where ℜ is the real field. Such a multi-array A is said to be an mth order n-dimensional
square real tensor with nm entries ai1,...,im . We denote the set of all nonnegative mth order
n-dimensional tensors by ℜ[m,n]

+ . For a vector x = (x1, . . . , xn)
T , let Axm−1 be a vector in

ℜn whose ith component is defined as the following:

(1)
(
Axm−1

)
i
=

n∑

i2,...,im=1

aii2...imxi2 . . . xim ,

and let x[m] = (xm1 , . . . , xmn )T .
∗Speaker. Email address: ashojaeifard@ihu.ac.ir
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Definition 1.1. [3] A pair (λ, x) ∈ C × (Cn\ {0}) is called an eigenvalue and an
eigenvector of A ∈ ℜ[m,n], if they satisfy

(2) Axm−1 = λx[m−1].

Definition 1.2. [4] Let A (and B) be an order m ≥ 2 (and order k ≥ 1), dimension
n tensor, respectively. The product AB is defined to be the following tensor C of order
(m− 1) (k − 1) + 1 and dimension n:

ciα1...αm−1 =
n∑

i2,...,im=1

aii2...imbi2α1 . . . bimαm−1 ,

where (i ∈ [n] , α1, . . . , αm−1 ∈ [n]k−1).

It is easy to check from the definition that InA = A = AIn, where In is the identity
matrix of order n. When k = 1 and B = x ∈ Cn is a vector of dimension n, then
(m− 1) (k − 1) + 1 = 1. Thus AB = Ax is still a vector of dimension n, and we have

(Ax)i = (AB)i = ci =

n∑

i2...im=1

aii2...imxi2 . . . xim =
(
Axm−1

)
i
,

thus we have Axm−1 = Ax. So the first application of the tensor product defined above is
that now Axm−1 can be simply written as Ax.

Definition 1.3. [2] A tensor A ∈ ℜ[m,n]� is called reducible, if there exists a nonempty
proper index subset I ⊂ {1, . . . , n} such that

ai1,...,im = 0, ∀i1 ∈ I, ∀i2, . . . , im /∈ I,

if A is not reducible, then we call A irreducible.

2. Main results
Definition 2.1. [5] A nonnegative tensor A of order m, and dimension n is called

stochastic provided that
n∑

i2,...,im=1

aii2...im = 1, i = 1, 2, . . . , n.

Obviously, when A is stochastic, 1 is the spectral radius of A and e is an eigenvector
corresponding to 1, where e is an all ones vector; if, further, A is irreducible, then e is the
unique positive eigenvector corresponding to 1.

Theorem 2.2. Suppose A ∈ ℜ[m,n]
+ is a stochastic tensor andM = min {aii...i : i = 1, 2, . . . , n},

then
σ (A) ⊂ G (A) = {z : |z −M | ≤ 1−M} ,

where σ (A) is denoted the whole eigenvalues of tensor A, G (A) is the Gerschgorin disc
of tensor A.

Definition 2.3. [4] Let A and B be two order k tensors with dimension n and m,
respectively. Define the direct product A ⊗ B to be the following tensor of order k and
dimension nm (the set of subscripts is taken as [n]× [m] in the lexicographic order):

(A⊗ B)(i1,j1),(i2,j2),...,(ik,jk) = ai1i2...ikbj1j2...jk .
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Theorem 2.4. [4] Let A and B be two order k-tensors with dimension n and m,
respectively. Suppose that, we have Auk−1 = λu[k−1], and Bvk−1 = µv[k−1], and we also
write w = u⊗ v. Then we have:

(A⊗ B)w[k−1] = (λµ)w[k−1].

Theorem 2.5. Let A,B ∈ ℜ[m,n]
+ are stochastic tensors, M1 = min {aii...i : i = 1, 2, . . . , n}

and M2 = min {bii...i : i = 1, 2, . . . , n}, then
σ (A⊗ B) ⊂ G (A⊗ B) = {z : |z −M1| ≤ 1−M1} . {z : |z −M2| ≤ 1−M2} ,

where σ (A⊗ B) is denoted the whole eigenvalues of tensor product for tensor A and tensor
B, G (A⊗ B) is the oval region of the product for elements of Gerschgorin disc whose center
is M1 and radius is 1−M1 and Gerschgorin disc whose center is M2 and radius is 1−M2.

Theorem 2.6. Suppose A ∈ ℜ[m,n]
+ is a stochastic tensor and

Mi = max {aii2...im : 1 ≤ i2, . . . , im ≤ n}, then

σ (A) ⊂ G (A) =
n∪

i=1

{
z : |z − aii...i| ≤

√
(m− 1) (n− 1)Mi (1− aii...i)

}
.

Lemma 2.7. [1] Assume that a1 ≤ a2 ≤ · · · ≤ an < k. Each of the ovals
(3) |z − ai| |z − aj | ≤ (k − ai) (k − aj) , (i, j = 1, 2, . . . , n; i < j)

is either identical with the oval
(4) |z − a1| |z − a2| ≤ (k − a1) (k − a2)

or lies in the interior of (4). The point z = k is the only common point of the boundaries
of two different ovals (3).

Theorem 2.8. Let aii...i and ajj...j be the smallest elements of the main diagonal of
a stochastic tensor A ∈ ℜ[m,n]

+ . Then all the eigenvalues lie in the interior or on the
boundary of the following oval
(5) {z : |z − aii...i| |z − ajj...j | ≤ (1− aii...i) (1− ajj...j)} .

Definition 2.9. (i) A nonnegative tensor A of order m and dimension n is called first
generalized stochastic, if

n∑

i2,...,im=1

aii2...im = k, i = 1, 2, . . . , n.

(ii) A tensor A of order m and dimension n is called second generalized stochastic if
n∑

i2,...,im=1

|aii2...im | = 1, i = 1, 2, . . . , n.

(iii) A tensor A of order m and dimension n is called third generalized stochastic if
n∑

i2,...,im=1

|aii2...im | = k, i = 1, 2, . . . , n.

Theorem 2.10. Suppose A,B ∈ ℜ[m,n]
+ are first generalized stochastic tensors, then

σ (A⊗ B) ⊂ G (A⊗ B) = {z : |z − aii...i| |z − ajj...j | ≤ (k − aii...i) (k − ajj...j)}
. {z : |z − bii...i| |z − bjj...j | ≤ (k − bii...i) (k − bjj...j)} .
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Theorem 2.11. Suppose A ∈ ℜ[m,n] is third generalized stochastic tensor, and
M = min {|aii...i| : i = 1, 2, . . . , n}, then

σ (A) ⊂ G (A) = {z : |z −M | ≤ k +M} .
Theorem 2.12. Let A,B ∈ ℜ[m,n] be third generalized stochastic tensors,

M1 = min {|aii...i| : i = 1, 2, . . . , n} and M2 = min {|bii...i| : i = 1, 2, . . . , n}, then
σ (A⊗ B) ⊂ G (A⊗ B) = {z : |z −M1| ≤ k +M1} . {z : |z −M2| ≤ k +M2} .

Theorem 2.13. Let aii...i and ajj...j be the smallest elements of the main diagonal of
a third generalized stochastic tensor A ∈ ℜ[m,n]. Then

σ (A) ⊂ G (A) = {z : |z − aii...i| |z − ajj...j | ≤ (k + |aii...i|) (k + |ajj...j |)} .

Theorem 2.14. Let A,B ∈ ℜ[m,n]
+ are first generalized stochastic tensors, then

σ (A⊗ B) ⊂ G (A⊗ B) = {z : |z − aii...i| |z − ajj...j | ≤ (k + aii...i) (k + ajj...j)}
. {z : |z − bii...i| |z − bjj...j | ≤ (k + bii...i) (k + bjj...j)} .

Example 2.15. Let A = (aijk) ∈ ℜ[3,2] for 1 ≤ i, j, k ≤ 2 such that:

aijk =

{
1 if i = j = k
0 o.w

Thus A is a first generalized stochastic tensor, and suppose B = (bijk) for 1 ≤ i, j, k ≤ 2
such that:

bijk =

{
1 if i = 1, j = k = 2
0 o.w

Then by theorem 2.14, we have
σ (A⊗ B) ⊂ {z : |z − 1|2 ≤ 4}.{z : |z|2 ≤ 1}

where (A ⊗B) ∈ℜ[3,4] has 81 entries.
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ABSTRACT. Let R be a commutative ring. The essential graph of R, denoted by EG(R) is a simple
graph associated to R with vertex set Z(R)\{0}= Z(R)∗, and a pair of distinct vertices x and y are
adjacent if and only if Ann(xy) is an essential ideal of R. In this paper, we investigate the concept
of the dominating set for the essential graph of Zn.
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1. Introduction
The study of algebraic structures by using the properties of a simple graph is a topic which

becomes more attention in last decades and leads many authors to study and explore its properties.
The zero divisor graph of R, denoted by Γ(R) is a simple graph with vertex set Z∗(R) and two
distinct vertices x and y are adjacent if and only if xy = 0, see [1, 2]. Recently, the essential graph
of a commutative ring was introduced and studied in [3]. Also, the concept of the essential graph
for modules has been defined and studied in [5]. In this paper, we study the domination number
of the essential graph of Zn.

Let G be a graph with the vertex set V (G) and the edge set E(G). A graph with no vertex
is called an empty graph. For every u,v ∈ V (G), the distance between u and v is defined as the
length of a shortest path from u to v and is denoted by d(u,v). We write u ∼ v if d(u,v) = 1. The
vertex u is said to be a universal vertex if it is adjacent to every other vertices of G. The graph
is connected if there is a path between any two distinct vertices. A complete graph is a graph in
which each pair of vertices is connected by an edge and a complete graph with n vertices, denoted
by Kn. A bipartite graph is one whose vertex set can be partitioned into two subsets so that an edge
has both ends in no subset. A complete bipartite graph is a bipartite graph in which each vertex
is adjacent to every vertex that is not in the same subset. The complete bipartite graph with part
sizes m and n is denoted by Km,n. The join G1 ∨G2 of two vertex-disjoint graphs G1 and G2 has
V (G1 ∨G2) = V (G1)∪V (G2) and E(G1 ∨G2) = E(G1)∪E(G2)∪{uv |u ∈ V (G1),v ∈ V (G2)}.
Let D is a subset of V (G). The subset D is called dominating set of G whenever every vertex of
V (G) \D is adjacent to some vertex of D. The domination number γ(G) of G is the minimum
cardinality of a dominating set.

∗Speaker. Email address: f.soheilnia@edu.ikiu.ac.ir
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Throughout this paper, all rings are assumed to be commutative with nozero identity. By Z(R)
and Ass(R) we denoted the set of zero-divisors and associated prime ideals of R, respectively.

2. Main results
In this section, we calculate the domination number of the essential graph of the ring Zn.

DEFINITION 2.1. [3] Let R be a commutative ring. The essential graph of R, denoted by
EG(R) is a simple graph with vertices set Z(R)\{0}= Z(R)∗ and two distinct vertices x,y∈ Z(R)∗

are adjacent if and only if Ann(xy) is an essential ideal of R.

Let n = p be a prime number. Then EG(Zn) is an empty graph .

LEMMA 2.2. Let n = pα , where p is a prime number and α is a positive integer. Then EG(Zn)
is a connected graph and γ(EG(Zn)) = 1 if and only if α ≥ 2.

PROOF. Suppose that n = pα , where p is a prime number and α ≥ 2 is an integer. Then
Z(Zn)

∗ = Nil(Zn)
∗ = pZn. Thus every vertex of EG(Zn) is a universal vertex, see [5, Lemma

2.2]. Hence, EG(Zn) is a complete graph so is connected and γ(EG(Zn)) = 1.
The converse is obvious since EG(Zn) is an empty graph whenever α = 1. □
Let n = pα1

1 · · · pαk
k be an integer, where p1, · · · , pk are prime numbers, α1, · · · ,αk are positive

integers and k ≥ 2. If αi ≥ 2, for some i with 1≤ i≤ k, then in view of Lemma 2.2, γ(EG(Zn))= 1.
In the following we consider the case k ≥ 2 with α1 = · · ·= αk = 1.

THEOREM 2.3. Let n= pα1
1 · · · pαk

k be an integer, where p1, · · · , pk are prime numbers, α1, · · · ,αk
are positive integers, k ≥ 2 and let EG(Zn) be a connected graph. Then α1 = · · ·= αk = 1 if and
only if γ(Zn) = k.

PROOF. Suppose that α1 = · · · = αk = 1. Then Ass(Zn) = {p1Zn = Ann(x1), · · · , pkZn =
Ann(xk)}, where xi ∈ Z(R)∗, for all 1 ≤ i ≤ k. Set D = {x1, · · · ,xk}. We show that D is a dominat-
ing set for EG(Zn). Assume that y ∈ Z(R)∗. Since EG(Zn) is a connected graph by [5, Corollary
3.4], it follows that Ann(y) ̸⊆∩k

i=1 piZn . Hence, there is i with 1 ≤ i ≤ k such that Ann(y) ̸⊆ piZn.
Therefore, yxi = 0 and so y,xi are adjacent, it follows from [4, Lemma 3.1(ii)]. Now, assume that
D′ = {x′1, · · · ,x′k−1} ⊆ Z(R)∗. To prove the assertion, it is enough to show that D′ is not a dominat-
ing set for EG(Zn). Assume in contrary that D′ is a dominating set for EG(Zn) and we achieve a
contradiction. By the hypothesis

∩k
i=1 piZn = 0 so for all 1 ≤ j ≤ k−1 there exists 1 ≤ i ≤ k such

that x′j /∈ piZn. Without loss of generality, we may assume that x′j /∈ p jZn, for every 1 ≤ j ≤ k−1.
Suppose that x ∈∩k−1

i=1 piZn \ pkZn so x ̸= x′j, for all 1 ≤ j ≤ k−1 and x is adjacent to x′t for some
1 ≤ t ≤ k − 1. Then xx′t = 0 so xx′t ∈

∩k−1
i=1 piZn. Hence, xx′t ∈ ptZn, which is a contradiction.

Therefore, D′ is not a dominating set for EG(Zn) and the proof is completed.
The converse is obvious by Lemma 2.2. □
EXAMPLE 2.4. (i) Consider the ring Z16. It is clear that Ass(Z16) = {2Z16} and Z(Z16)

∗ =
Nil(Z16)

∗ = 2Z16. Thus EG(Z16) is a complete graph with 7 vertices and D = {2} is a dominating
set for it, see Figure 1.

(ii) Consider the ring Z12. It is clear that Ass(Z12) = {2Z12,3Z12}, Nil(Z12)
∗ = 2Z12∩3Z12 =

6Z12. Then by the paragraph previous that Theorem 2.3, D= {6} is a dominating set for connected
graph EG(Z12), see Figure 2.

In the following we show that more results on complete bipartite and join graphs over the
essential graph EG(Zn).

548



Some results on the essential graph of Zn

..

2

.

4

.

6

.

8

.

10

.

12

. 14

FIGURE 1. Essential graph of EG(Z16) with domination number 1.
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FIGURE 2. Essential graph of EG(Z12) with domination number 1.

THEOREM 2.5. Let R be a semi-local ring with maximal ideals M1 and M2. Then the following
statements are true:

(i) If M1 ∩M2 = 0, then EG(R) = K|M∗
1 |,|M∗

2 | is a complete bipartite graph.
(ii) If M1 ∩M2 ̸= 0, then EG(R) = K|M1\M2|,|M2\M1|∨K|(M1∩M2)∗|.

PROOF. (i) By the assumption Z(R) = M1 ∪M2 moreover in this case EG(R) = Γ(R), see [5,
Theorem 4.6]. Let x,y ∈ Z(R)∗, then x and y are adjacent if and only if xy = 0. Thus either x ∈ M1
or x ∈ M2 and a same assertion is true for y. Hence, it follows that distinct elements of Mi are not
adjacent to each other, for i = 1,2 and any element of M1 is adjacent to each element of M2. So
EG(R) = K|M∗

1 |,|M∗
2 |.

(ii) It is an immediate consequence of (i), [5, Theorem 2.5] and [5, Lemma 2.2]. □

COROLLARY 2.6. Let p and q be distinct prime numbers. Then the following statements are
true:

(i) EG(Zpq) = K|pZ∗
pq|,|qZ∗

pq| is a complete bipartite graph.
(ii) EG(Zpα qβ ) = K|pZpq\qZpq|,|qZpq\pZpq|∨K|(pZpq∩qZpq)∗|, where either α ≥ 2 or β ≥ 2.

PROOF. It is an immediate consequence of Theorem 2.5. □

COROLLARY 2.7. Let p and q be distinct prime numbers. Then the following statements are
true:

(i) γ(EG(Zpq)) = 2.
(ii) γ(EG(Zpα qβ )) = 1, where either α ≥ 2 or β ≥ 2.

PROOF. It is an immediate consequence of Theorem 2.5. □
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FIGURE 3. Essential graph of EG(Z15) with domination number 2.

EXAMPLE 2.8. Consider the ring Z15. It is clear that Ass(Z15)= {3Z15,5Z15} and Nil(Z15)=
3Z15 ∩ 5Z15 = 0. By Corollary 2.6, EG(Z15) = K2,4 the complete bipartite graph with 6 vertices
and D = {3,5} is a dominating set for EG(Z15), see Figure 3.
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Abstract. The notion of a multi-norm space was introduced by Dales and Polyakov. It
generalizes that of a normed linear space E, which has one norm, by a taking a sequence
of norms, one on each of the n-fold product spaces of E with itself. In this paper
we investigate equivalent condition left contractibility on FC-algebras to the language of
multi-norms. We then apply this result for the group algebra L1(G) for a locally compact
group G.
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1. Introduction

Let E be a Banach space, and n ∈ N, we denote by En the vector space Cartesian
product of n copies of E , and by Gn the group of all permutations of the set {1, . . . , n}.
A multi-norm based on {En : n ∈ N} is a sequence (∥.∥n) = (∥.∥n : n ∈ N) such that ∥.∥n
is a norm on En, such that ∥x∥1 = ∥x∥ for each x ∈ E , and such that the following Axioms
(A1)− (A4) are satisfied for each n ∈ N and x1, . . . , xn ∈ E :

(A1)∥(xσ(1), . . . , xσ(n))∥n = ∥(x1, . . . , xn)∥n (σ ∈ Gn);

(A2)∥(α1x1, . . . , αnxn)∥n ≤ ( max
1≤i≤n

| αi |)∥(x1, . . . , xn)∥n (α1, . . . , αn ∈ C);

(A3)∥(x1, . . . , xn−1, 0)∥n = ∥(x1, . . . , xn−1)∥n−1;

(A4)∥(x1, . . . , xn−1, xn−1)∥n = ∥(x1, . . . , xn−1)∥n−1.
In this case, we say that ((En, ∥.∥n) : n ∈ N) is a multi-normed space.

The theory of multi-norms spaces was first introduced and studied by Dales and
Polyakov in [2].Also, Dales, Daws, Pham and Ramsden characterized amenability of a
locally compact group G by the theory of multi-norms in [1]. The theory of the equiv-
alences of multi-norms has recently been described by several authors. Pham [6] has
introduced a new combinatorial condition that characterized the amenability for locally
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compact groups. Indeed he has used a new notion of almost (p, q)-multiboundedness for
a subset of a Banach space.

A Banach algebra A is called F-algebra if the dual space A′ of A is a W ∗-algebra
and the identity element of A′ is a multiplicative linear functional on A. The wide range
of F-algebras includes the Fourier algebra A(G), the Fourier- Stieltjes algebra B(G), the
group algebra L1(G) of a locally compact group G, and the measure algebra of a locally
compact semigroup or hypergroup. In particular, it includes the semigroup algebra ℓ1(S)
of a discrete semigroup S.

Let A be a Banach algebra, ∆(A) be the set of all nonzero characters on A and
ϕ ∈ ∆(A). The Banach algebra A is called left ϕ-contractible if the first cohomology group
H1(A,X ) vanishes for any Banach A-bimodule X such that its right module product is
defined by x·a = ϕ(x) a (a ∈ A, x ∈ X ). The notion of left ϕ-contractibility was introduced
and studied in [4] as right ϕ-contractibility. We say F-algebra A is left contractible, if A
is left u-contractible for the identity element u of A′. The cocepet of left contractibilty
of certian Banach algebras characterized by Hamidi and Soltani [3] by the notions of a
(p, q)-multi-norms and a multi bounded set.

In this paper, we investigate equivalent condition left contractibility on FC-algebras
to the language of multi-norms by the notion of almost (p, q)-multi bounded sets.

2. Main Results

In this part, we recall the definition of the weak p−summing norm on a normed space;
following the notation of [1], [2] we denote the weak p−summing norm (for 1 ≤ p < ∞)
on En by

µp,n(x) = sup

{( n∑

i=1

| ⟨xi, λ⟩ |p
) 1

p

: λ ∈ E ′
[1]

}

Where x = (x1, . . . , xn) ∈ En and the closed unit ball of E is denoted by E[1] and the action
of λ ∈ E ′ on x ∈ E is written as ⟨x, λ⟩. In the sequel we state that an important class
of multi-norms. The following definition was first given in [ [2],§4.1]. Let E be a normed
space, and take p, q with 1 ≤ p, q < ∞. For each n ∈ N and each x = (x1, . . . , xn) ∈ En,
we denote by

∥x∥(p,q)n := sup

{( n∑

i=1

| ⟨xi, λi⟩ |q
) 1

q

: λ = (λ1, . . . , λn) ∈ (E ′)n, µp,n(λ) ≤ 1

}
.

Where the supremum is take over all λ1, . . . , λn ∈ (E ′)n.
It is clear that ∥.∥(p,q)n is a norm on En. As noted in [ [2], Theorem 4.1], in the case where

1 ≤ p ≤ q <∞, the sequence (∥.∥(p,q)n : n ∈ N) is a multi-norm based on E ; it is called the
(p, q)-multi-norm.

Now, we characterize left contractibility of FC-algebras in terms of multi-norms.
Let A be a F-algebra and let u be the identity element of A′. Let P (A) be the set of

all elements a in A that induce positive functionals on the W ∗-algebra A′, and let P1(A)
be the set of all elements a in P (A) such that ⟨u, a⟩ = 1; note that

P (A) = {a ∈ A : ∥a∥ = ⟨u, a⟩};
And hence span A. Note that A is called an FC-algebra if the W ∗-algebra A′ is commu-
tative. In this case, A ∼= L1(Ω, µ) (isometrically isomorphic), and A′ may be regarded as
the W ∗-algebra L∞(Ω, µ) for some measure space (Ω, µ).
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Proposition 2.1. Let A be an FC-algebra and 1 ≤ p, q < ∞. Then the following
statements are equivalent:

(a) A is left contractible;

(b) There is an element m ∈ P1(A) such that limn→∞
∥(a1m,...,anm)∥(p,q)n

n
1
q

= 0, for all

sequence (an) in P1(A).

Proof. Let A be a left contractible FC-algebra. Then by [5] there exists a topological
left invariant mean in A; that is, an element m ∈ P1(A) such that

am = m (a ∈ P1(A)).

Thus it is clear that

lim
n→∞

∥(a1m, ..., anm)∥(p,q)n

n
1
q

= lim
n→∞

||m||
n

1
q

= 0,

for all sequence (an) in P1(A).
Now, suppose that (b) hold , then by Theorem 3.10 of [6]

Am = {am : a ∈ P1(A)}
is a almost (p, q)-multi bounded set. Therefore Theorem 4.5 of [6] shows that Am is
relatively weakly compact, and also, by the Krein− Smulian Theorem, the following set
is weakly compact

K := co(Am) =

{ n∑

i=1

tiaim : 0 ≤ ti ≤ 1,
n∑

i=1

ti = 1, ai ∈ P1(A)

}
.

Now, let Σ = {Lb : b ∈ P1(A)} be a semigroup of affine maps from the weakly compact
convex set K into itself defined by

Lb(Λ) = bΛ (b ∈ P1(A),Λ ∈ K).

Lb is isometric map since, for every b ∈ P1(A)

∥Lb(Λ)∥ = ∥bΛ∥
= ∥Λ∥.

Hence, by the Ryll − Nardzewski fixed point Theorem, there exists m0 ∈ K which is
a common fixed point for the set Σ such that Lb(m0) = m0. This implies that m0 is a
topological left invariant mean in A. □

In the following, we apply the result of Proposition 2.1 for the group algebras.
Let G be a locally compact group with left Haar measure λG and let L1(G) = L1(G,λG)
be the group algebra of G endowed with the norm ∥.∥1 and the convolution product ∗
given by

(φ ∗ ψ)(s) =
∫

G
φ(t)ψ(t−1s)dλG(t) (s ∈ G),

where φ,ψ ∈ L1(G) and the integral is defined for almost all s ∈ G.
equivalent the concept of left contractible of the group algebra L1(G) with the com-

pression of G that has been shown in [ [5], Theorem 6.1].

Corollary 2.2. Let G be a locally compact group and 1 ≤ p, q < ∞. Then the
following statements are equivalent:
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(a) G is compact;

(b) There is a mean m ∈ P1(L
1(G)) such that limn→∞

∥(f1m,...,fnm)∥(p,q)n

n
1
q

= 0, for all

sequence (fn) in L
1(G).

Proof. The result follows immediately from Proposition 2.1 and the fact that L1(G)
is left contractible if and only if G is compact, see Theorem 6.1 of [5]. □
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Abstract. Let G be a locally compact group (not necessarily abelian) and B be a homo-
geneous Banach space on G, which is in a good situation with respect to a homogeneous
function algebra on G. Feichtinger showed that there exists a minimal Banach space
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B with compact support. In this paper, we study the amenability and super amenability
of Bmin.

Keywords: Amenability, Super-Amenability ,Homogenous Banach space, Homogeneous
function algebra, IN-group)

AMS Mathematics Subject Classification [2010]: [2020]Primary 47J30; Secondary
30H05, 46A18.

1. Introduction

In 1980, Feichtinger [1] introduced an especial Banach space W (B,C), for any Banach
space B on G that is in a good situation with respect to a homogeneous function algebra
A and any solid, translation invariant Banach space C on G.
Afterwards, Feichtinger [2] showed that if B is a homogeneous Banach space on G, which
is in a good situation, then there exists a minimal space Bmin in the family of all homo-
geneous Banach spaces C on G that contains all elements of B with compact support.
Moreover Bmin = W (B,L1(G)), whenever B is in a good situation with respect to a ho-
mogeneous function algebra; see [2].

We recall some known concepts and frameworks, which will be used throughout the
paper. Let G be a locally compact Hausdorff group with the fixed Haar measure λ and
L∞(G) be the Banach algebra of all essentially bounded Borel-measurable functions on
G. Moreover, for 0 < p < ∞, Lp(G) indicates the usual Lebesgue spaces, as defined in [5].
Also Lloc(G) is the space, consisting of all (equivalent classes of) measurable functions
f on G such that fχK ∈ L1(G), for any compact subset K ⊆ G. Let C0(G) (resp.
Cb(G), Cc(G)) be the space of all continuous, complex valued functions on G vanishing
at infinity (resp. bounded, with compact support). Moreover, A(G) and B(G) are the
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Fourier and Fourier-Stieltjes algebra of G, as defined in [1]. Also, Ap(G) are The Figȧ-
Talamanca-Herz algebras for 1 < p < ∞; see [1]. Let LA(G) := A(G) ∩ L1(G) be the
Lebesgue-Fourier algebra of G; see [3].

We say that a Banach space (B, ∥.∥B) is a BF-space if it is continuously embedded
into Lloc(G), that is the space consisting of all locally integrable functions on G. Indeed,
for each compact subset K of G there exists some constant CK > 0 such that

∥fχK∥1 ≤ CK∥f∥B,
for each f ∈ B with supp(f) ⊆ K. Further, let

BΩ = {f ∈ B : supp(f) is compact},
and

BK := {f ∈ B : supp(f) ⊆ K},
for any K ⊆ G. We say that f ∈ BK almost every where (for abbreviation a.e) if
supp(f) ⊆ K a.e on G. For the remainder, we emphasize that two measurable functions
are identifying if they are equal locally almost everywhere (for abbreviation l.a.e) on G,
i.e. they are equal a.e on any compact subset K ⊆ G. A BF -space on G is called left
translation invariant if Lyf ∈ B for any y ∈ G and f ∈ B, where Lyf(x) = f(y−1x)
(x ∈ G). A left invariant BF -space will be called a homogenous Banach space on G if the
following conditions are satisfied:

(i) ∥Lyf∥B = ∥f∥B for any y ∈ G;
(ii) the map y → Lyf from G into (B, ∥.∥B) is continuous for all f ∈ B.

Moreover, we say that G acts by right translation isometrically on B and right translation
is continuous in B, if Rxf ∈ B and ∥Rxf∥B = ∥f∥B for all x ∈ G and f ∈ B, and also
limy→e ∥Ryf − f∥B = 0 for all f ∈ B. A Banach algebra (A, ∥.∥A) ⊆ Cb(G) with the
pointwise multiplication is a homogenous function algebra on G, if

(i) A is a homogeneous Banach space on G;
(ii) A separates the points of G from closed sets;
(iii) A is a self-adjoint Banach algebra with respect to complex conjugate.

Let G be a locally compact group and B be a homogenous Banach space on G that is
in a good situation with respect to a homogenous function algebra A. Then, there exists a
minimal space Bmin in the family of all homogeneous Banach spaces C satisfying BΩ ⊆ C.
Also, Bmin can be characterized as follows. Let an open, relatively compact set Q ⊆ G
be given. f ∈ Bmin if and only if f =

∑
n Lynfn for some yn ∈ G and fn ∈ B such that∑

n ∥fn∥B < ∞ and supp(fn) ⊆ ynQ for each n ∈ N and

(1) ∥f∥min = inf{
∑

n

∥fn∥B : f =
∑

n

Lynfn},

where the infimum is taken over all representations of f as in (1.1). The space B ∩Cc(G)
is a dense subspace of Bmin. If B contains positive elements with arbitrary small support,
i.e. for any open subset U of G, there exists a (nonzero) positive element f ∈ A such that
supp(f) ⊆ U , then Bmin is a Segal algebra; see [2]. The space Bmin is independent of the
choice of Q; see [2, Theorem 3]).

Several authors have introduced various notions of amenability in the recent years;
see [5]. The first notion of amenability has been presented for locally compact groups.
Let G be a locally compact group, then G is called amenable if there exists a functional
m ∈ L∞(G)∗ such that

(i) ⟨1,m⟩ = ∥m∥ = 1;
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(ii) ⟨Lxφ,m⟩ = ⟨φ,m⟩, for all φ ∈ L∞(G) and x ∈ G

This definition has been generalized for the Banach algebras, as follows. Let A be a
Banach algebra and E be a Banach A-bimodule, then E∗, the dual space of E, becomes
a Banach A-bimodule via

< x,φ.a >:=< a.x, φ >, < x, a.φ >:=< x.a, φ >

for any a ∈ A and φ ∈ E∗. A derivation from A into E is a bounded linear map D : A → E
satisfying

D(a.b) = a.D(b) +D(a).b (a, b ∈ A).

The derivation D is called inner, if there is x ∈ E such that D(a) = a.x − x.a, for any
a ∈ A. We now say that A is amenable if each continuous derivation from A into E∗ is
inner for all Banach A-bimodules E. Also, A is called super-amenable if every continu-
ous derivation from A into E is inner for every Banach A-bimodule E. Note that every
amenable Banach algebra has a bounded approximate identity and every super-amenable
Banach algebra is unital. Hence, L1(G) is super-amenable if and only if G is finite; see [5].

2. Main results

In this section, we proceed to the main results of the paper. For the Lebesgue Fourier
algebras, the following results were studied by Ghahramani and Lau [5]. We now extend
those to some Feichtinger algeras.

Theorem 2.1. Let G be a locally compact group, 1 < p < ∞ and B be a homogenous
Banach space on G which is in a good situation with respect to a homogeneous function
algebra on G. Moreover, suppose that B contains positive elements with arbitrary small
support. Moreover, let BΩ ⊆ Lp(G). Then, Bmin is amenable with respect to the convolu-
tion product if and only if G is discrete and amenable.

Proof. Let Bmin be amenable, with the convolution product. Then, Bmin has a
bounded approximate identity. Also, Bmin is a Segal algebra. It follows that Bmin =
L1(G). On the other hand, there exists CQ > 0 such that

∥f∥1 ≤ CQ∥f∥B,
for any f ∈ B with suppf ⊆ Q. Thus,

∥f∥1 ≤ CQ∥f∥min,

for any f ∈ Bmin. Therefore, the inclusion map

j : Bmin → L1(G)

is a continuous homomorphism. Thus, G is amenable by [5, Theorem 2.1.8] and [5,
Proposition 2.3.1]. Also, Bmin ⊆ Lp(G). Consequently, L1(G) ⊆ Lp(G), which implies the
discreteness of G.
Conversely, let G be discrete and amenable. Hence, L1(G) with the convolution product
is amenable by [5, Theorem 2.1.8] and there exists a nonzero positive element f ∈ B such

that supp(f) ⊆ {e}. Thus, δe = f
f(e) ∈ B and consequently, L1(G)Ω ⊆ B. Thus, there

exists CQ > 0 such that
∥δe∥B ≤ CQ∥δx∥1 = CQλ({e}),

for any x ∈ G by considering Q := {e}. Take f ∈ L1(G) to be arbitrary. Then,

f =
∑

anδxn =
∑

Lxn(anδe)
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such that
∑ |an| < ∞. Thus,

∑
∥Lxn(anδe)∥B =

∑
∥anδe∥B ≤ CQλ({e})

∑
|an| < ∞.

It follows that f ∈ Bmin. Again by considering Q := {e}, we have L1(G) ⊆ Bmin. Thus,
Bmin = L1(G) and so the inclusion map j : L1(G) → Bmin is a continuous homomorphism,
by applying the open mapping theorem. Therefore, Bmin is amenable; see [5, Proposition
2.3.1]. □

Corollary 2.2. Let G be a locally compact group, 1 < p < ∞ and B be a homogenous
Banach space on G which is in a good situation with respect to a homogeneous function
algebra on G. Moreover, suppose that B contains positive elements with arbitrary small
support. Furthermore, let BΩ ⊆ Lp(G). Then, Bmin is super-amenable with respect to the
convolution product if and only if G is finite.

Corollary 2.3. Let G be a locally compact group and A is a homogeneous function
algebra on G. Then, Amin is amenable with respect to the convolution product if and only
if G is discrete and amenable.

Proof. This is due to A ⊆ L2(G) and Theorem 2.6. □
Corollary 2.4. Let G be a locally compact group and A is a homogeneous function

algebra on G. Then, Amin is super-amenable with respect to the convolution product if and
only if G is finite.

Proof. This is due to A ⊆ L2(G) and Corollary 2.7. □
By using of the above assertions, the following result is immediate.

Corollary 2.5. Let G be a locally compact group and 1 < p < ∞. Then,
(i) Lp(G)min, C0(G)min and A(G)min are amenable with the convolution product if and
only if G is discrete and amenable;
(ii) Lp(G)min, C0(G)min, and A(G)min are super-amenable with the convolution product
if and only if G is finite.
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1. Introduction
In 1992, Dhage [4] in his PhD thesis introduced a new class of generalized metric

space, which called D-metric spaces (see [5, 6] for more details). In 2003, Mustafa and
Sims [8] showed that most of the claims concerning the fundamental topology of Dhage’s
D-metric spaces are incorrect. They [9] also introduced a valid generalization of metric
space (X, d), which they called G-metric spaces.

Definition 1.1 ( [9]). Let X be a nonempty set, and G : X ×X ×X → [0,+∞) be
a function satisfying:

(G1) G(x, y, z) = 0 if x = y = z,
(G2) 0 < G(x, x, y); for any x, y ∈ X, with x ̸= y,
(G3) G(x, x, y) ≤ G(x, y, z); for any x, y, z ∈ X with z ̸= y,
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = ..., (symmetry in any three variables),
(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z), for any x, y, z, a ∈ X, (rectangle inequality),

then the function G is called a generalized metric, or, more specifically a G-metric on X,
and the pair (X,G) is a G-metric space.

Clearly these properties are satisfied when G(x, y, z) is the perimeter of the triangle
with vertices at x, y and z in R2, further taking a in the interior of the triangle shows that
(G5) is best possible.

The notion of a modular space on a linear space, as a generalization of metric space,
was introduced and studied by Nakano [10].
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In 2010, Chistyakov [2,3] introduced the notion of a modular metric space, as a general-
ization of a metric space.

Definition 1.2 ( [3]). Let X be a nonempty set, and let w : (0,∞)×X×X → [0,∞]
be a function satisfying:

(i) given x, y ∈ X,wλ(x, y) = 0 for any λ > 0 if and only if x = y,
(ii) wλ(x, y) = wλ(y, x) for any x, y ∈ X and λ > 0,

(iii) wλ+µ(x, y) ≤ wλ(x, z) + wµ(z, y) for any λ, µ > 0 and x, y, z ∈ X,

then the function wλ is called a modular metric on X.

The main idea behind this new concept is the physical interpretation of the modular.
Modular w allow different interpretations. A natural modular on a metric space (X, d) is
given by wλ(x, y) = d(x, y)/λ, which wλ(x, y) is the real average velocity between points
x and y in time λ > 0.

In 2013, Azadifar and Maramaei [1] introduced the notion of modular G-metric spaces
and proved some known fixed point theorems on the modular G-metric spaces.

Definition 1.3 ( [1]). Let X be a nonempty set, and let w : (0,∞)×X ×X ×X →
[0,∞] be a function satisfying:

(W1) wλ(x, y, z) = 0 for any λ > 0 if x = y = z,
(W2) wλ(x, x, y) > 0 for any x, y ∈ X and λ > 0 with x ̸= y,
(W3) wλ(x, x, y) ≤ wλ(x, y, z) for any x, y, z ∈ X and λ > 0 with z ̸= y,
(W4) wλ(x, y, z) = wλ(x, z, y) = wλ(y, z, x) = ..., for any λ > 0 (symmetry in any three

variables),
(W5) wλ+µ(x, y, z) ≤ wλ(x, a, a) + wµ(a, y, z) for any x, y, z, a ∈ X and

λ, µ > 0,

then the function wλ is called a modular G-metric on X.

Remark 1.4 ( [1]). Note that for x, y, z ∈ X the function 0 < λ → wλ(x, y, z) ∈ [0,∞]
is nonincreasing on (0,∞). Suppose 0 < µ < λ, then (W1) and (W5) imply

wλ(x, y, z) ≤ wλ−µ(x, x, x) + wµ(x, y, z) = wµ(x, y, z).

It follows that each point λ > 0 the right limit wλ+0(x, y, z) = limµ→λ+0wµ(x, y, z) and
left limit wλ−0(x, y, z) = limε→0wλ−ε(x, y, z) exist in [0,∞) and following two inequalities
hold:

wλ+0(x, y, z) ≤ wλ(x, y, z) ≤ wλ−0(x, y, z).

Definition 1.5 ( [1]). Let w be a modular G-metric on a set X. Then the binary
relation ∼ on X defined for x, y, z ∈ X by

x ∼ y if and only if lim
λ→∞

wλ(x, y, z) = 0 for some z ∈ X

is an equivalence relation. Denote by X
∼ the quotient-set of X with respect to ∼ and for

a fixed element x0 ∈ X set
Xw = Xw(x0) = {y ∈ X : y ∼ x0}

Definition 1.6 ( [1]). Let (X,w) be a modular G-metric space then for x0 ∈ Xw and
r > 0, the w-bany with center x0 and radius r > 0 is

Bw(x0, r) = {y ∈ Xw : wλ(x0, y, y) < r for any λ > 0}.
Definition 1.7 ( [1]). Let (X,w) be a modular G-metric space.
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(i) The sequence {xn} in Xw is said to be w-convergent if for any ε > 0, there exist
x ∈ Xw and nε ∈ N such that wλ(x, xn, xm) < ε, for any n,m ≥ nε and λ > 0.

(ii) The sequence {xn} in Xw is said to be w-Cauchy if for any ε > 0, there exist
nε ∈ N such that wλ(xn, xm, xl) < ε, for any n,m, l ≥ nε and λ > 0.

(iii) Xw is said to be w-complete if every w-Cauchy in Xw is a w-convergent sequence
in Xw.

Proposition 1.8 ( [1]). Let (X,w) be a modular G-metric space, then for any x0 ∈ Xw

and r > 0, we have:
(1) if wλ(x0, x, y) < r, for any λ > 0, then x, y ∈ Bw(x0, r),
(2) if y ∈ Bw(x0, r), then there exists a δ > 0 such that Bw(y, δ) ⊆ Bw(x0, r).

Proposition 1.9 ( [1]). Let (X,w) be a modular G-metric space and {xn}n∈N be a
sequence in Xw . Then the following are equivalent:

(1) {xn} is w-convergent to x,
(2) wλ(xn, xn, x) −→ 0 as n −→ ∞ for any λ > 0,
(3) wλ(xn, x, x) −→ 0 as n −→ ∞ for any λ > 0,
(4) wλ(xm, xn, x) −→ 0 as m,n −→ ∞ for any λ > 0.

The concept of expansive mappings in G-metric spaces is introduced by Mustafa and
Awawdeh [11]. They defined the concept of expansive mappings for single valued mappings
in G-metric spaces and proved the existence of fixed points.

Definition 1.10 ( [11]). Let (X,G) be a G-metric space and T be a self mapping on
X. Then T is called expansive mapping if there exists a constant a > 1 such that for all
x, y, z ∈ X, we have

G(Tx, Ty, Tz) ≥ aG(x, y, z).

The following example shows that expansive mapping on G-metric space need not be
G-continuous.

Example 1.11 ( [11]). Let T : (R, G) → (R, G) be defined by

(1) Tx =

{
5x ; x ≤ 3
5x+ 2; x > 3

}

where G(x, y, z) = max{|x− y|, |y− z|, |x− z|}. Then (R,G) is a complete G-metric space
and T is expansive mapping where T is not G-continuous.

Theorem 1.12 ( [11]). Let (X,G) be a complete G-metric space. If there exists a
constant a > 1 and a surjective self mapping T on X, such that for all x, y, zX

G(Tx, Ty, Tz) ≥ aG(x, y, z),

then T has a unique fixed point.

In this article, we will prove some fixed point theorems for expansive mappings in
modular G-metric spaces.

2. Main Results
Theorem 2.1. Let Xw be a complete modular G-metric space. If there exists a constant

a > 1 and a surjective self mapping T on Xw, such that
wλ(Tx, Ty, Tz) ≥ awλ(x, y, z)

for all x, y, z ∈ Xw and λ > 0, then T has a unique fixed point.
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Theorem 2.2. Let Xw be a complete modular G-metric space. If there exists a constant
c > 1 and a surjective self mapping T on Xw, such that

wλ(Tx, Ty, Ty) ≥ cwλ(x, y, y)

for all x, y ∈ Xw and λ > 0, then T has a unique fixed point.

Corollary 2.3. Let Xw be a complete modular G-metric space. If there exists a
constant k > 1 and a surjective self mapping on Xw, such that
(2) wλ(Tx, Ty, Tz) ≥ k{wλ(x, z, z) + wλ(y, z, z)}
for all x, y, z ∈ Xw and λ > 0, then T has a unique fixed point.

Proof. Follows from Theorem (2.2), by taking z = y in Condition (2).

Theorem 2.4. Let Xw be a complete modular G-metric space and let T : Xw → Xw

be an onto mapping satisfying the following condition for all x, y, z ∈ Xw and λ > 0,
(3) wλ(Tx, Ty, Tz) ≥ awλ(x, y, z) + bwλ(x, x, Tx) + cwλ(y, y, Ty) + dwλ(z, z, Tz)

where a+ b+ c+ d > 1 and b+ c < 1. Then T has a fixed point.

Corollary 2.5. Let Xw be a complete modular G-metric space and let T : Xw → Xw

be an onto mapping satisfying the following condition for all x, y, z ∈ Xw and λ > 0,
(4) wλ(Tx, Ty, Tz) ≥ αwλ(x, y, z) + β{wλ(x, x, Tx) + wλ(y, y, Ty) + wλ(z, z, Tz)}
where α+ 3β > 1 and β < 1/2. Then T has a fixed point.

Proof. In Theorem (2.4), If a = α, and b = c = d = β, then the condition (3) reduced
to Condition (4), so the proof follows from Theorem (2.4).

Theorem 2.6. Let Xw be a complete modular G-metric space and let T : Xw → Xw

be an onto mapping satisfying the following condition for all x, y, z ∈ Xw and λ > 0,
wλ(Tx, Ty, Tz) ≥ kmax{wλ(x, Tx, Tx), wλ(y, Ty, Ty), wλ(z, Tz, Tz)}

where k > 1. Then T has a fixed point.
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Abstract. Let R be a commutative ring. The essential graph of R, denoted by EG(R)
is a graph associated to R with vertex set Z(R) \ {0} and a pair of distinct vertices x
and y are adjacent if and only if Ann(xy) is an essential ideal of R. In this paper, we
calculate the domination, the clique and the chromatic numbers of the essential graph
of a finite commutative ring.
Keywords: essential graph, domination number, clique number, chromatic number.
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1. Introduction
The idea of a zero-divisor graph of a commutative ring was introduced by I. Beck

in [2], where he was mainly interested in colorings. Let R be a commutative ring and let
Z(R) denote the set of zero-divisors of R. The zero-divisor graph of R, denoted by Γ(R)
is a simple graph with vertex set Z(R)∗, the set of nonzero zero-divisors of R, and distinct
vertices x and y are adjacent if and only if xy = 0, see [1]. The main object for introducing
the zero divisor graph is to study the interplay between of ring theoretic properties of R
and graph theoretic properties of Γ(R). The essential graph of R, denoted by EG(R) is
a simple graph associated to R whit vertex set Z(R)∗ and two distinct vertices x and y
are adjacent if and only if Ann(xy) is an essential ideal of R, see [4]. In this paper, we
calculate the domination, the clique and the chromatic numbers of the essential graph of
a finite commutative ring.

Let G = (V,E) be a graph, where V = V (G) is the set of vertices and E = E(G)
is the set of edges. We write u − v, to denote an edge with ends u, v. Also G is called
an empty graph if it has no any vertices. Recall that a graph is connected if there exists
a path connecting between any two distinct vertices. The distance between two distinct
vertices x and y, denoted by d(x, y), is the length of the shortest path connecting them (if
such a path does not exist, then we set d(x, y) = ∞). The diameter of a connected graph
G, denoted by diam(G), is the maximum distance between any pair of vertices of G. A
graph in which each pair of vertices is joined by an edge is called a complete graph.

Throughout this paper, all rings are assumed to be commutative with nonzero identity.
We denote by Max(R) and Nil(R), the set of all maximal ideals of R and the set of all

∗Speaker. Email address: yasamansadatrasul@gmail.com
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nilpotent elements of R, respectively. For every ideal I of R, we denote the annihilator
of I by Ann(I) = {r ∈ R : rI = 0}. A nonzero ideal I of R is called essential, if has a
nonzero intersection with any nonzero ideal of R.

2. Domination, clique and chromatic numbers of essential graph
In this section, we will study the domination, the clique and the chromatic num-

bers of the essential graph of a finite commutative ring. Let R be a finite commuta-
tive ring. Then R is Noetherian with finite maximal ideals. Suppose that Spec(R) =
Max(R){M1, · · · ,Mk}, where k is a positive integer.

Lemma 2.1. Let (R,M1) be a finite local ring. Then EG(R) is a complete graph and
Γ(R) has a universal vertex so diam(Γ(R)) ≤ 2.

Proof. Suppose that R is a finite local ring with maximal ideal M1. If M1 = 0,
then EG(R) = Γ(R) is an empty graph. Now, suppose that M1 ̸= 0. In this case
Z(R) = Nil(R) = M1 hence EG(R) is a complete graph, by [6, Lemma 2.2]. Moreover,
M1 ∈ Ass(R) so there is a nonzero element x ∈ R such that M1 = Ann(x). Thus for each
y ∈ Z(R)∗ we have xy = 0 thus x is a universal vertex for Γ(R) and diam(Γ(R)) ≤ 2. □

Theorem 2.2. Let (R,M1) be a finite local ring. Then Γ(R) is a complete graph if
and only if M2

1 = 0. Hence, diam(Γ(R)) = 2 if and only if M2
1 ̸= 0.

Proof. ⇒) Suppose that Γ(R) is a complete graph and x, y are two distinct vertices
of Γ(R). By the hypotheses xy = 0, x− y ∈ Z(R)∗ and x ̸= x− y. Thus x(x− y) = 0 and
so x2 = 0. Hence, for each x ∈ Z(R), x2 = 0 and therefore M2

1 = 0.
⇐) It is obvious since Z(R) = M1.
The second assertion is the contrapositive of the first one. □
A dominating set of a graph G is a subset D of V (G) such that every vertex in

V (G) \ D is adjacent to some vertex in D. The domination number γ(G) of G is the
minimum cardinality of a dominating set. So by the above results for a finite local ring R
we have γ(EG(R)) = γ(Γ(R)) = 1.

Theorem 2.3. Let R be a commutative Noetherian ring such that |Ass(R)| = k ≥ 2.
Then

γ(EG(R)) =

{
1 Nil(R) ̸= 0

|Ass(R)| Nil(R) = 0.

Proof. Suppose that Nil(R) ̸= 0. Then every nonzero element of Nil(R) is a universal
vertex of EG(R), by [6, Lemma 2.2], so γ(EG(M)) = 1.

Now, suppose that Nil(R) = 0 and Ass(R) = {P1, · · · , Pk}. In this case, by [6,
Theorem 2.5] we have EG(R) = Γ(R) and every elements of Ass(R) is a minimal prime
ideal of R. Let xi ∈

∩k
j=1,j ̸=i Pj \ Pi, for all i with 1 ≤ i ≤ k and D = {x1, · · · , xk}. We

show that D is a dominating set for EG(R). Assume that x ∈ Z(R) =
∪k

i=1 Pi. Then
x ∈ Pt for some t with 1 ≤ t ≤ k. Then xxt ∈

∩k
i=1 Pi = Nil(R) = 0. So x, xt are adjacent

in Γ(R) and are adjacent in EG(R). Hence, D is a dominating set for EG(R). Now,
suppose that D′ = {x′1, · · · , x′k−1} is a dominating set for EG(R). By the assumption for
every 1 ≤ j ≤ k − 1 there is 1 ≤ i ≤ k such that x′j ̸∈ Pi otherwise x′j ∈ ∩k

i=1 Pi = 0

which is a contradiction. Without loss of generality we may assume that x′j ̸∈ Pj , for all
j with 1 ≤ j ≤ k − 1. Assume that x′ ∈ Pk \∪k−1

i=1 Pi. Thus x′ is not adjacent with x′j ,
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for all 1 ≤ j ≤ k − 1. Since x′ − x′j implies that x′x′j = 0 ∈ Pj which is a contradiction.
Therefore, a set with leas than k elements can not be a dominating set for EG(R). Hence,
γ(EG(M)) = k = |Ass(R)|. □

Corollary 2.4. Let R be a finite commutative ring such that |Max(R)| = k ≥ 2.
Then

γ(EG(R)) =

{
1 Jac(R) ̸= 0

|Max(R)| Jac(R) = 0.

Proof. It is an immediate consequence of Theorem 2.3. □

A clique of G is a complete subgraph of G and the number of vertices in a largest clique
of G, denoted by ω(G), is called the clique number of G. For a finite local ring R with
maximal ideal M1 we have ω(EG(R)) = |M∗

1 | and ω(Γ(R)) = |M∗
1 | whenever M2

1 ̸= 0.

Theorem 2.5. Let R be a finite commutative ring such that | Max(R) |= k ≥ 2 and
let EG(R) be a connected graph. Then

ω(EG(R)) =





k Jac(R) = 0

|Jac(R)| − 1 Z(R) = Jac(R) ̸= 0

|Jac(R)|+ k − 1 Z(R) ̸= Jac(R) ̸= 0.

Proof. Suppose that Max(R) = {M1 = Ann(x1), · · · ,Mk = Ann(xk)}, where xi ∈
Z(R)∗, for all 1 ≤ i ≤ k and Jac(R) = 0. Then Γ(R) = EG(R) and X = {x1, · · · , xk} is a
clique for EG(R), see [6, Theorem 2.5] and [5, Lemma 3.1 (i)]. Assume X ′ = {x′1, · · · , x′n}
(n > k) is a maximal clique. Thus there are 1 ≤ i ̸= j ≤ n such that Ann(x′i),Ann(x′j) ⊆
Ann(xt), for some 1 ≤ t ≤ k, see [3, Theorem 3.6]. Since x′i, x

′
j are adjacent so x′ix

′
j = 0.

Hence, x′iR ⊆ Ann(x′j) ⊆ Ann(xt). Therefore, xtx′i = 0 so xtR ⊆ Ann(x′i). Thus x2t = 0

which is a contradiction. Therefore, ω(EG(R)) = |Max(R)|.
Let Jac(R) ̸= 0 and Z(M) = Jac(R). Then by [6, Theorem 2.5], EG(R) is a complete

graph. Hence, Jac(R)∗ is a clique and the result follows.
Now, assume that Z(R) ̸= Jac(R) and Max(R) = {M1, · · · ,Mk}. It is easy to see

that Jac(R)∗ ∪ {x1, · · · , xk} is a clique for EG(R), where xi ∈
∩k

j=1,j ̸=iMj \ Mi, for all
i = 1, · · · , k. Moreover, if y ∈ Z(R) \ Jac(R), then the set Jac(R)∗ ∪ {x1, · · · , xk, y} is not
a clique since for y ∈ ∩t

i=1Mi \ ∪k
i=t+1Mi with 1 ≤ t < k it is clear that yxt+1 /∈ Jac(R)

so y and xt+1 are not adjacent. Suppose that X is a clique for EG(R). Thus in view
of [6, Theorem 2.5], Jac(R)∗ ⊆ X. Let X = Jac(R)∗ ∪ {y1, · · · , yk+1}. Then there are
1 ≤ i ̸= j ≤ k + 1 such that yi, yj ̸∈ Mt, for some 1 ≤ t ≤ k, but yiyj ∈ Jac(R) ⊆ Mt

which is a contradiction. Therefore, X is not a clique. □

The chromatic number of G, denoted by χ(X), is the minimal number of colours,
which can assigned to the vertices of G in such a way that two adjacent vertices have
different colours.

Theorem 2.6. Let R be a finite commutative ring such that | Max(R) |= k ≥ 2 and
let EG(R) be a connected graph. Then

χ(EG(R)) =





|Jac(R)| − 1 Z(R) = Jac(R) ̸= 0

|Jac(R)|+ k − 1 Z(R) ̸= Jac(R) ̸= 0

k Jac(R) = 0.
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Proof. (i) In this case EG(R) is a complete graph thus χ(EG(R)) = ω(EG(R) =
| Jac(R) | −1.

(ii) Suppose that X = Jac(R)∗ ∪ {x1, · · · , xk} is a maximal clique for EG(R). So
| Jac(R)∗ | +k ≤ χ(EG(M)). Assume that Y = Jac(R)∗ ∪ {y1, · · · , yn} is a clique
for EG(R). Thus n ≤ k. For all j with 1 ≤ j ≤ n there is i with 1 ≤ i ≤ k such
that yj and xi are not adjacent, otherwise X ′ = Jac(R)∗ ∪ {y1, x1, x2, · · · , xk} is a clique
which is a contradiction. Without loss of generality, we may assume y1 and x1 are not
adjacent. Hence, y1 and x1 have same colour. Now, assume that j = 2 there is i with
1 ≤ i ≤ k such that y2 and xi are not adjacent, we have i ̸= 1. If i = 1, then X ′′ =
Jac(R)∗ ∪ {y1, y2, x2, · · · , xk} is a clique which is a contradiction. Hence, we may assume
y2 and x2 are not adjacent. Therefore, y2 and x2 have same colour. If we continue
this procedure, then we obtain that the elements of {y1, · · · , yn} have same colours with
{x1, · · · , xn}. Hence, χ(EG(R)) ≤| Jac(R) | +k.

(iii) The proof is similar to that of (ii). □
The graph G is called weakly perfect whenever χ(G) = ω(G).

Corollary 2.7. Let R be a finite commutative ring and let EG(R) be a connected
graph. Then EG(R) is a weakly perfect graph.

Proof. It is an immediate consequence of Theorems 2.2, 2.5 and 2.6. □
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Abstract. In this work, we propose a numerical scheme for the solution of two dimen-
sional time fractional nonlinear Schrödinger equation. To this end, for the time stepping,
an alternating direction implicit (ADI) method based on a scheme of order O(τ) is given
and for space discretization, spectral element method is used. We present the error esti-
mate of proposed method. To demonstrate the accuracy and efficiency of method, a test
problem is presented.
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1. Introduction
In the current work, we propose an ADI spectral element method for the solution of

two dimensional time fractional nonlinear Schrödinger equation [3]

(1)





iC0 D
α
t u(x, t) + ∆u(x, t) = f(|u(x, t)|2)u(x, t), (x, t) ∈ Ω× (0, T ],

u(x, 0) = g1(x), x ∈ Ω,

u(x, t) = h(x, t), (x, t) ∈ ∂Ω× (0, T ],

where Ω ∈ R2 and C
0 D

α
t u(x, t) is the Caputo fractional derivative with 0 < α < 1. Time

fractional Schrödinger equations are important PDEs to describe many phenomena, such
as soliton propagation through optical fibers in nonlinear optics plasma physics, supercon-
ductivity and quantum mechanics [1], the fractional dynamics in quantum mechanics, the
fractional Planck quantum energy relation [3], non-Markovian evolution of a free particle
in quantum physics [4] and so on. In this paper, we use L1 scheme to approximate the
Caputo fractional derivative and obtain a scheme of order O(τ) to discretize Eq. (1) in
time component. To obtain a high order method, the spectral element is used to dis-
cretize this equation in spatial direction. Thereafter, the ADI version of the given scheme
is constructed. Combining the ADI scheme with spectral element method reduces the
complexity in high dimensions. Therefore, the proposed method is a fast and high order
scheme for the solution of Eq. (1).
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The layout of the current paper is as follows: In Section 2, time discrete scheme and
Galerkin formulation of Eq. (1) are given. ADI scheme is constructed in this section.
Fully discrete scheme is obtained using Legendre spectral element method in Section 3.
Also, we peresent an error estimate in this section. Accuracy and efficiency of the ADI-
SEM is illustrated with an example in Section 4. Finally, a breif conclusion is expressed
in Section 5.

2. Time discretization, Galerkin formulation and constructing ADI
Scheme
2.1. Preliminareis and time discrete scheme. Consider the following functioal

space with the inner product and norm

L2(Ω) =

{
u :

∫

Ω
|u|2dΩ <∞

}
, (u, v) =

∫

Ω
uvdΩ, ∥v∥ = (v, v)

1
2 .

Also, define the following Sobolev spaces

H1(Ω) = {v ∈ L2(Ω), ∇v ∈ L2(Ω)}, H1
0 (Ω) = {v ∈ H1(Ω), v|∂Ω = 0},

whith
(u, v)1 = (u, v) + (∇u,∇v), ∥v∥1 = (v, v)

1
2
1 , |v|1 = (∇v,∇v) 1

2 .

In this work, we use the following notations

tn = nτ, n = 0, 1, ..., N, T = Nτ, u(x, tn) = un, δtu
n = (un − un−1)/τ.

The L1 scheme to aproximate the Caputo derivative is given by [5]

(2) C
0 D

α
t u(x, tn) =

τ1−α

Γ(2− α)

n∑

k=1

an−kδtu
k + r,

where ak = (k + 1)1−α − k1−α and |r| ≤ Cτ2−α.
Using the L1 scheme, we can write the following sheme to discretize Eq. (1) at t = tn

(3) iun + χ∆un = iun − i

n∑

k=1

ak(u
n−k+1 − un−k) + χf(|un−1|2un−1) +R

where |R| ≤ Cτ and χ = ταΓ(2− α).

2.2. Galerkin formulation and ADI scheme. The Galerkin formulation of Eq.
(3) is given by

i(un, v)− χ(∇un,∇v) = i(un, v)− i

n∑

k=1

ak(u
n−k+1 − un−k, v) + χ(f(|un−1|2un−1), v)

+ (R, v), v ∈ H1
0 ,

(4)

Adding the small term τχ2

i

(
∂2δtu

n

∂x∂y
,
∂2v

∂x∂y

)
= O(τ1+α) on the left hand side of Eq. (4),

gives

i(un, v)− χ(∇un,∇v) + χ2

i

(
∂2un

∂x∂y
,
∂2v

∂x∂y

)
= (Fn, v) + (R, v), v ∈ H1

0 ,(5)

568



The Numerical Solution of Time-Fractional Schrödinger Equation

where
(Gn, v) = i(un, v)−i

n∑

k=1

ak(u
n−k+1−un−k, v)+χf(|un−1|2un−1, v)+

χ2

i

(
∂2un−1

∂x∂y
,
∂2v

∂x∂y

)
.

Omitting the small term R, we have

i(Un, v)− χ(∇Un,∇v) + τχ2

i

(
∂2Un

∂x∂y
,
∂2v

∂x∂y

)
= (Gn

∗ , v) v ∈ H1
0 ,(6)

in which
(Gn

∗ , v) = i(Un, v)−i
n∑

k=1

ak(U
n−k+1−Un−k, v)+χf(|Un−1|2Un−1, v)+

χ2

i

(
∂2Un−1

∂x∂y
,
∂2v

∂x∂y

)
.

Consider Lx
s and Ly

s as finite dimensional subspaces of H1
0 . Let {λi}Mx

i=0 and {ψj}My

j=0 be
the basis of these spaces, respectively. Therefore, we can consider L = Lx

s ⊗ Ly
s with the

base {λiψj}Mx,My

i,j=0 . Suppose

(7) Un(x, y) =

Mx∑

i=0

My∑

j=0

ηnijλi(x)ψj(y).

We put v = λrψk(r = 0, 1, ...,Mx, k = 0, 1, ...,My) and consider the following matrices
and vectors

Bx = ((λi, λk)x)
Mx

i,k=0 , By =
(
(ψj , ψl)y

)My

j,l=0
,

Dx =

((
∂λi
∂x

,
∂λk
∂x

)

x

)Mx

i,k=0

, Dy =

((
∂ψj

∂y
,
∂ψl

∂y

)

y

)My

j,l=0

,

g(k) =
[(
Gk

∗, λ0ψ0

)
,
(
Gk

∗, λ0ψ1

)
, . . . ,

(
Gk

∗, λMxMyψMxMy

)]T
, k = 0, ..., n,

(8)

We can write Eq. (6) as

(9)
[
i (Bx ⊗By)− χ2 (Dx ⊗By +Bx ⊗Dy) +

χ2

i
(Dx ⊗Dy)

]
η(l) = g(l), l = 0, ..., n,

or

(10)
[(√

iBx −
χ√
i
Dx

)
⊗ IMy

] [
IMx ⊗

(√
iBy −

χ√
i
Dy

)]
η(l) = g(l), l = 0, ..., n.

Now the solution can be obtained by solving two sets of independent one-dimensional
problems as

(11)
(√

iBx −
χ√
i
Dx

)
η̂(l)m = g(l)m , m = 0, ...,My,

in x direction and

(12)
(√

iBy −
χ√
i
Dy

)
η(l)s = η̂(l)s , s = 0, ...,Mx,

in y direction.
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3. Legendre spectral element method and error estimate
To implement LSEM, at first, we divide the domain into Ne non-overlapping subdo-

mains. Then, the unknown function U is approximated on each element as

(13) U e(x, tn) =
M∑

i=0

U(xi, tn)ωi(x), 1 ≤ e ≤ Ne, 1 ≤ n ≤ N,

in which ωi(x) is the ith Lagrange polynomial based on M + 1 Gauss-Lobatto-Legendre
points {κi}Mi=0, i.e. [6]

(14) ωk(λ) =
1

M(M + 1)LM (κk)

(κ2 − 1)L
′
M (κ)

κ− κk
, 0 ≤ k ≤M, −1 ≤ κ ≤ 1.

Using the map function into [−1, 1] and it’s inverse, we can get the entries mass and
stiffness matrices using the Gauss-Lobatto-Legendre quadrature as
(15)

Be
ij =

he
2

∫ 1

−1
ωi(κ)ωj(κ)dω =

he
2
δijwi, D

e
ij =

2

he

∫ 1

−1

dωi(κ)

dκ

dωj(κ)

dω
dκ =

2

he

M∑

l=0

dildjlwl,

where he is the length of eth element, {wi}Mi=0 are the Gauss-Lobatto-Legendre quadrature
weights and the matrix d is the transpose of the differentiation matrix in spectral method
[2].

3.1. Error estimate. Consider PM (Ω) as the space of polynomials defined on Ω with
the degree no greater than M ∈ N . Define

(16) O0
h = {u ∈ H1

0 : u|Ωe ∈ PM},

and the following Ritz projection

ℵh : H1
0 → O0

h

(∇u,∇v) = (∇ℵhu,∇v), u ∈ H1
0 , ∀ v ∈ O0

h.
(17)

Lemma 3.1. [2] Suppose Hϱ with the norm ||.||ϱ be the Sobolev space, then we have

(18) ||(u− ℵhu)|| ≤ C

[
Ne∑

i=1

h
2(min(Mi+1,ϱ)−1)
i M

2(1−ϱ)
i ||u||2ϱ

] 1
2

, ∀u ∈ Hϱ,

and if hi satisfies h ≤ hi ≤ c′h for all i and Mi =M , then

(19) ||(u− ℵhu)|| ≤ Ch
(min(M+1),ϱ)−1
i M1−ϱ||u||ϱ.

Theorem 3.2. Let u(x, y, tn) = un and Un are the exact solutions of Eq. (1) and the
ADI spectral element method (6), respectively. Let en = un − Un, then we have

(20) ||en|| ≤ C(τ +M1−ϱ).

where C is a positive constant, independent of n, τ, and M .
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4. Numerical results
In curent section, we report the results of proposed method. If e1 and e2 are error

corespond to steps τ1 and τ2, the computational order of given method is calculated as

C-order=
log e1

e2

log τ1
τ2

.

Example 4.1. We perform the given method for the solution of two dimensional
fractional Schrödinger equation as [3]

(21) iC0 Dα
t u(x, t) +∆u(x, t) = |u|2 u− |u|4 u+ g(x, y, t), (x, y) ∈ (0, 1)× (0, 1), t ∈ [0, 1],

with the exact solution u(x, y, t) = t2x(1 − x)y(1 − y). In Table 1, the L∞ error and
comutational order of ADI-SEM with Ne = 5 and M = 6 is presented. We depict the
graph of error as a function of M with Ne = 2, and the error as a function of Ne with
M = 3.

Table 1. Errors and computational orders for Test problem 1.
α = 0.2 α = 0.5 α = 0.8 CPU(s)

τ L∞ C-order L∞ C-order L∞ C-order
1/20 1.4617× 10−2 8.1270× 10−3 6.4442× 10−3 0.9852
1/40 7.0323× 10−3 1.0323 3.6023× 10−3 1.1738 3.1310× 10−3 1.0414 1.1270
1/80 3.1625× 10−3 1.1529 1.6773× 10−3 1.1028 1.5556× 10−3 1.0092 1.9117
1/160 1.4287× 10−3 1.1487 8.0638× 10−4 1.0566 6.9149× 10−4 1.1669 2.9814

Figure 1. Error as function of M (left panel) and Ne (right panel) with τ = 0.001.

5. Conclusion
At the present paper, we investigated a numerical method using spectral element

method in spatial direction and an ADI scheme of order O(τ) for the solution of two
dimensional time fractional time-fractional Schrödinger equation. Using an example, ac-
curacy of this method is shown.
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Abstract. In this paper, we show that the class of I × I matrices with finite `p-norm
is always pseudo-amenable, where 1 ≤ p ≤ 2. As an application, for the case p = 1, we
give some applications for semigroup algebras.

Also we study approximate homological notions for the class of upper triangular
matrix algebras with respect to the Esslamzadeh-Munn algebras.

Keywords: matrix algebras, pseudo-amenability, approximate biprojectivity

AMS Mathematics Subject Classification [2010]: 46M10, 43A20, 46H05

1. Introduction

A Banach algebra A is biflat if there exists a bounded A-bimodule morphism ρ : A→
(A ⊗p A)∗∗ such that π∗∗A ◦ ρ(a) = a, where πA : A ⊗p A → A is the product morphism
given by πA(a⊗ b) = ab for every a, b ∈ A. It is worth mentioning that the biflatness has
direct relation with the amenability of a Banach algebra. Note that a Banach algebra A
is amenable if and only if A is biflat and posses a bounded approximate identity. For the
history of amenability and biflatness, see [5]

Ghahramani and Zhang [2] introduced pseudo-amenability and pseudo-contractibility
for Banach algebras. In fact a Banach algebra A is pseudo-amenable (pseudo-contractible)
if there exists a net (mα) in A⊗p A such that a ·mα −mα · a→ 0 (a ·mα = mα · a) and
πA(mα)a→ a for all a ∈ A, respectively.

G. H. Esslamzadeh in [1] introduced and studied a class of matrix algebras, named `1-
Munn algebras. Then Esslamzadeh in [1] studied their general analytic form and applied
them to solve some harmonic analysis problems. Also, he investigated some cohomological
properties of these algebras like amenability and the existence of bounded approximate
identity. M. Lashkarizadeh Bami and S. Naseri [3] extended the notion of `1-Munn algebras
to `p-Munn algebras, see [3] and [4].

∗Speaker. Email address: a.sahami@ilam.ac.ir
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Let I be any non-empty set. Then we denote LMp
I(C) for the vector space of all

I × I matrices A = [aij ] over C such that ||A||p = (
∑

i,j∈I(|aij |p)
1
p < ∞. With the

matrix operations and || · ||p as a norm, LMp
I(C) becomes a Banach algebra, provided that

1 ≤ p ≤ 2. In the case I is a totally ordered set, we denote

UPpI(C) = {[aij ] ∈ LMp
I(C)|aij = 0 whenever i > j}.

2. Main results

Theorem 2.1. Suppose that I is a non-empty index set and 1 ≤ p ≤ 2. Then LMp
I(C)

has a central approximate identity if and only if I is finite.

Theorem 2.2. Suppose that I is a non-empty index set and 1 ≤ p ≤ 2. Then LMp
I(C)

is pseudo-contractible if and only if I is finite.

Theorem 2.3. Let I be a non-empty index set and 1 ≤ p ≤ 2. Then LMp
I(C) is biflat.

In the case p = 1 we denote LMp
I(C) by MI(C). That is the Banach algebra of I × I

with finite `1-norm.
For a locally compact group G and a non-empty set I, set

M0(G, I) = {(g)i,j : g ∈ G, i, j ∈ I} ∪ {0},
where (g)i,j denotes the I × I matrix with g in (i, j)-position and zero elsewhere. With
the following multiplication M0(G, I) becomes a semigroup

(g)i,j ∗ (h)k,l =

{
(gh)il j = k

0 j 6= k,

It is known that `1(M0(G, I)) ∼= (MI(C)⊗p `1(G))⊕1 C. So there is a direct relation be-
tween the structure of the semigroup algebra and the matrix algebra, where the semigroup
is Brandt.

Corollary 2.4. Let S = M0(G, I) be a Brandt semigroup. Then the following are
equivalent:

(i) `1(S) is pseudo-amenable;
(ii) G is amenable.

Lemma 2.5. Let I be a non-empty index set and 1 ≤ p ≤ 2. Then LMp
I(C) has an

approximate identity.

Proof. Let F (I) be the set of all finite subsets of I and λ ∈ F (I). Then put eλ := [eij ],
where eii = 1 for i ∈ λ and eij = 0 elsewhere. Also, let a = [aij ] ∈ LMp

I(C) and ε > 0.

Then there exists a finite subset λ0 ∈ F (I) such that (
∑

i,j∈I−λ0 |aij |p)
1
p < ε. It Follows

that ||eλ0a − a|| = (
∑

i,j∈I−λ0 |aij |p)
1
p < ε. So, (eλ)

λ∈F (I)
is an approximate identity for

LMp
I(C). �
Lemma 2.6. Suppose that A is a biflat Banach algebra with an approximate identity.

Then A is pseudo-amenable.

Using previous two lemmas we have the following corollary.

Corollary 2.7. Let I be a non-empty index set and 1 ≤ p ≤ 2. Then LMp
I(C) is

pseudo-amenable.
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Amenability of matrix algebras

A Banach algebra A is called approximately biprojective if there exists a net of A-
bimodule morphisms from A into A⊗p A such that πA ◦ ρα(a)→ a for all a ∈ A, see [7].

Theorem 2.8. Suppose that I is a totally ordered set with a smallest element and
1 ≤ p ≤ 2. Then UPpI(C) is approximately biprojective if and only if I is singleton.

A Banach algebra A is called approximately biflat if there exists the net (ρα) of A-

bimodule morphisms from (A ⊗p A)∗ into A∗ such that ρα ◦ π∗A
W ∗OT−−−−→ idA∗ . Here we

denote W ∗OT for the weak∗ operator topology, see [6].

Theorem 2.9. Suppose that I is a totally ordered set with a smallest element and
1 ≤ p ≤ 2. Then UPpI(C) is approximately biflat if and only if I is a singleton.

Theorem 2.10. Suppose that I is a totally ordered set and 1 ≤ p ≤ 2. Then UPpI(C)
is amenable if and only if I is a singleton.

Theorem 2.11. Let I be a totally ordered set and 1 ≤ p ≤ 2. Then UPpI(C) is not
pseudo-contractible unless it is trivial.

Proof. Suppose that UPpI(C) is pseudo-contractible. Then UPpI(C) posses a central
approximate identity. By Theorem 2.1 we have that I must be finite. Similar to the
arguments as in Theorem 2.10, deduces that I is singleton. �
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Existence and k-Mittag-Leffler-Ulam-Hyers stability results
of k-generalized ψ-Hilfer Boundary value problem
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Abstract. In this paper, we present a generalized ψ-Hilfer fractional derivative and set
some of the generalized operator’s properties. We give a generalized Gronwall inequality
and present the definitions of the k-Mittag-Leffler-Ulam-Hyers stability and some related
remarks. We prove some existence, uniqueness and k-Mittag-Leffler-Ulam-Hyers stability
results for a class of boundary value problem for implicit nonlinear fractional differential
equations and k-Generalized ψ-Hilfer fractional derivative. In addition, various examples
are given in order to justify our results.
Keywords: ψ-Hilfer fractional derivative, Generalized Gronwall Inequality, Mittag-Leffler
function, Ulam-Hyers stability.
AMS Mathematics Subject Classification [2010]: 26A33, 34A12.

1. Introduction
Fractional calculus is a classical mathematical branch that concerns the generalization

of the integer order differentiation and integration of a function to non-integer order, its
theory and application is a solid and growing work. Existence, uniqueness and stability to
fractional differential equations was investigated in a variety of papers [1,4,5]. Recently, in
[2] Diaz et al. have presented k-gamma and k-beta functions and proved a variety of their
properties. In [6], Sousa et al. introduce another so-called ψ-Hilfer fractional derivative
with respect to another function, and gave some important properties concerning this type
of fractional operator.

Motivated by the papers mentioned above and by using the functions k-Gamma, k-
Beta and k-Mittag-Leffler, we give the definition to the k-generalized ψ-Hilfer fractional
derivative and prove some of its properties. Then, we propose a generalized Gronwall in-
equality to be used in the k-Mittag-Leffler-Ulam-Hyers stability. We consider the bound-
ary valued problem with nonlinear implicit k-generalize ψ-Hilfer type fractional differential
equation :

(1)
(
H
k Dϑ,r;ψ

a+ x
)
(t) = f

(
t, x(t),

(
H
k Dϑ,r;ψ

a+ x
)
(t)

)
, t ∈ (a, b],

∗Speaker. Email address: salim.abdelkrim@yahoo.com
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(2) c1

(
J k(1−ξ),k;ψ
a+ x

)
(a+) + c2

(
J k(1−ξ),k;ψ
a+ x

)
(b) = c3,

where H
k D

ϑ,r;ψ
a+ ,J k(1−ξ),k;ψ

a+ are the k-generalize ψ-Hilfer fractional derivative of order ϑ ∈
(0, k) and type r ∈ [0, 1] defined later, and k-generalize ψ-fractional integral of order
k(1− ξ) defined in [3] respectively, where ξ = 1

k (r(k−ϑ)+ϑ), k > 0, f ∈ C([a, b]×R2,R)
and c1, c2, c3 ∈ R such that c1 + c2 ̸= 0.

1.1. Preliminaries. First, we present the weighted spaces, notations, definitions, and
preliminary facts which are used in this article. Let 0 < a < b <∞, J = [a, b], ϑ ∈ (0, k),
r ∈ [0, 1], k > 0 and ξ = 1

k (r(k − ϑ) + ϑ). By C(J,R) we denote the Banach space of all
continuous functions from J into R with the norm

∥x∥∞ = sup{|x(t)| : t ∈ J}.
Consider the weighted Banach space

Cξ,k;ψ(J) =
{
x : (a, b] → R : t→ (ψ(t)− ψ(a))1−ξ x(t) ∈ C(J,R)

}
,

with the norm
∥x∥Cξ,k;ψ = sup

t∈J

∣∣∣(ψ(t)− ψ(a))1−ξ x(t)
∣∣∣ ,

Consider the spaceXp
ψ(a, b), (c ∈ R, 1 ≤ p ≤ ∞) of those real-valued Lebesgue measurable

functions g on [a, b] for which ∥g∥Xp
ψ
<∞, where the norm is defined by

∥g∥Xp
ψ
=

(∫ b

a
ψ′(t)|g(t)|pdt

) 1
p

,

where ψ is an increasing and positive function on [a, b] such that ψ′ is continuous on [a, b]
with ψ(0) = 0. In particular, when ψ(x) = x, the spaceXp

ψ(a, b) coincides with the Lp(a, b)
space.

Definition 1.1. ( [2]) The k-gamma function is defined by

Γk(α) =

∫ ∞

0
tα−1e−

tk

k dt, α > 0.

When k → 1 then Γ(α) = Γk(α). Furthermore k-beta function is defined as follows

Bk(α, β) =
1

k

∫ 1

0
t
α
k
−1(1− t)

β
k
−1dt.

The Mittag-Leffler function can also be refined into the k-Mittag-Leffler function defined
as follows

Eα,βk (x) =
∞∑

i=0

xi

Γk(αi+ β)
, α, β > 0.

Definition 1.2. ( [3]) (k-Generalized ψ-fractional Integral) Let g ∈ Xp
ψ(a, b) and [a, b]

be a finite or infinite interval on the real axis R = (−∞,∞), ψ(t) > 0 be an increasing
function on (a, b] and ψ′(t) > 0 be continuous on (a, b), k > 0 and ϑ > 0. The generalized
k-fractional integral operator of a function f of order ϑ is defined by

J ϑ,k;ψ
a+ g(t) =

1

kΓk(ϑ)

∫ t

a

ψ′(s)g(s)ds

(ψ(t)− ψ(s))1−
ϑ
k

.
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2. Main results
2.1. Definition of the new generalized derivative. We are now able to define

the k-generalized ψ-Hilfer derivative as follows.

Definition 2.1. (k-Generalized ψ-Hilfer Derivative) Let n− 1 <
ϑ

k
≤ n with n ∈ N,

J = [a, b] an interval such that −∞ ≤ a < b ≤ ∞ and g, ψ ∈ Cn([a, b],R) two functions
such that ψ is increasing and ψ′(t) ̸= 0, for all t ∈ J . The k-generalized ψ-Hilfer fractional
derivative H

k D
ϑ,r;ψ
a+ (·) of a function g of order ϑ and type 0 ≤ r ≤ 1, with k > 0 is defined

by

H
k Dϑ,r;ψ

a+ g (t) =

(
J r(kn−ϑ),k;ψ
a+

(
1

ψ′ (t)
d

dt

)n (
knJ (1−r)(kn−ϑ),k;ψ

a+ g
))

(t)

=
(
J r(kn−ϑ),k;ψ
a+ δnψ

(
knJ (1−r)(kn−ϑ),k;ψ

a+ g
))

(t)

where δnψ =

(
1

ψ′ (t)
d

dt

)n
.

2.2. The generalized Gronwall inequality. Now, we give a generalized Gronwall
inequality. We prove this result with the properties of the functions k-gamma, k-beta and
k-Mittag-Leffler taken into account.

Theorem 2.2. Let x, y be two integrable functions and g continuous, with domain
[a, b] . Let ψ ∈ C1 [a, b] an increasing function such that ψ′ (t) ̸= 0, t ∈ [a, b] and ϑ > 0
with k > 0. Assume that

(1) x and y are nonnegative;
(2) w is nonnegative and nondecreasing.
If

x (t) ≤ y (t) +
w (t)

k

∫ t

a
ψ′ (s) [ψ(t)− ψ(s)]

ϑ
k
−1 x (s) ds,

then

(3) x (t) ≤ y (t) +

∫ t

a

∞∑

i=1

[w (t) Γk (ϑ)]
i

kΓk (ϑi)
ψ′ (s) [ψ(t)− ψ(s)]

iϑ
k
−1 y (s) ds,

for all t ∈ [a, b]. And if y is a nondecreasing function on [a, b]. Then, we have

x (t) ≤ y (t)Eϑk
(
w (t) Γk (ϑ) (ψ (t)− ψ (a))

ϑ
k

)
.

2.3. Existence of solutions. The following hypotheses will be used in the sequel :
(Ax1) The function f : J × R× R → R is continuous and

f(·, x(·), y(·)) ∈ C1
ξ,k;ψ(J), for any x, y ∈ Cξ,k;ψ(J).

(Ax2) There exist constants η1 > 0 and 0 < η2 < 1 such that
|f(t, x, y)− f(t, x̄, ȳ)| ≤ η1|x− x̄|+ η2|y − ȳ|

for any x, y, x̄, ȳ ∈ R and t ∈ J .
We are now in a position to state and prove our existence result for the problem (1)-(2)

based on based on Banach’s fixed point theorem.

578



A. Salim, M. Benchohra and J. E. Lazreg

Theorem 2.3. Assume (Ax1) and (Ax2) hold. If

(4) L =
η1 (ψ(b)− ψ(a))

ϑ
k

1− η2

[ |c2|
|c1 + c2|Γk(k + ϑ)

+
Γk(kξ)

Γk(ϑ+ kξ)

]
< 1,

then the problem (1)-(2) has a unique solution in Cξ,k;ψ(J).

2.4. k-Mittag-Leffler-Ulam-Hyers stability. Let x ∈ C1
ξ,k;ψ(J), ϵ > 0. We con-

sider the following inequality :

(5)
∣∣∣
(
H
k Dϑ,r;ψ

a+ x
)
(t)− f

(
t, x(t),

(
H
k Dϑ,r;ψ

a+ x
)
(t)

)∣∣∣ ≤ ϵEϑk
(
(ψ(t)− ψ(a))

ϑ
k

)
, t ∈ (a, b].

Definition 2.4. Problem (1)-(2) is k-Mittag-Leffler-Ulam-Hyers stable with respect
to Eϑk

(
(ψ(t)− ψ(a))

ϑ
k

)
if there exists a real number aEϑk > 0 such that for each ϵ > 0 and

for each solution x ∈ C1
ξ,k;ψ(J) of inequality (5) there exists a solution y ∈ C1

ξ,k;ψ(J) of
(1)-(2) with

|x(t)− y(t)| ≤ aEϑk
ϵEϑk

(
(ψ(t)− ψ(a))

ϑ
k

)
, t ∈ J.

3. Conclusion
The present work, we have achieved the following: We defined the k-generalize ψ-Hilfer

type fractional derivative and gave some necessary theorems and lemmta. We presented
a generalized Gronwall inequality. Then, we established an existence, uniqueness and
k-Mittag-Leffler-Ulam-Hyers stability result for the problem (1)-(2). Finally, we gave
examples to illustrate the feasibility of our results and present the different particular
cases of our problem.
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Abstract. In this paper, we characterize the algebraic structure of FqFq[u]-additive
skew cyclic codes, where u2 = 0. Also, we provide new methods to determine the structure
of skew cyclic codes of length s over Fq[u]. We classify that there are eight different types
of explicit generators of FqFq[u]-additive skew cyclic codes.
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1. Introduction
Abualrub et al. defined cyclic codes for Z2Z4-additive codes in [1]. The algebraic

structure and some properties of these codes over finite chain rings and their Euclidean
and Hermitian dual codes have been established in [3]. Skew cyclic codes of length ps over
R2 have been studied in [2].

This paper has been organized as follows. Section 2, contains some basic definitions,
some notations and previous results related to our work. In Section 3, we specify the
FqFq[u]-additive skew cyclic codes, where u2 = 0. We classify that there are eight different
types of explicit generators of FqFq[u]-additive skew cyclic codes.

2. Preliminaries
A ring R is a principal left ideal ring if it has unity and every left ideal is principally

generated. R is called a local ring if R has a unique maximal right (left) ideal. Furthermore,
a ring R is called a (left) chain ring if the set of all (left) ideals of R is linearly ordered
under set-theoretic inclusion.

A code C of length n over a commutative ring R is a non-empty subset of Rn and the
ring R is referred to as the alphabet of C. If C is also an R-submodule of Rn, then C is
called a linear code.

For a given automorphism σ of a finite commutative ring R, the set R[x, σ] = {a0 +
a1x + a2x

2 + ... + anx
n : ai ∈ R and n ∈ N0} of formal polynomials forms a ring

under the usual addition of polynomials and where the multiplication is defined using
the rule xa = σ(a)x. The multiplication is extended to all element in R[x;σ] holding
associativity and distributivity. The ring R[x;σ] is called a skew polynomial ring over R

∗Speaker. Email address: samei@ipm.ir
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and an element in R[x;σ] is called a skew polynomial. It is easily seen that the ring R[x;σ]
is non-commutative unless σ is the identity automorphism on R.

For a given automorphism σ of R a code C over R is called skew σ-cyclic, if C is closed
under σ-cyclic shift ρσ : Rn −→ Rn which is defined by

ρσ

(
(a0, a1, ..., an−1)

)
=

(
σ(an−1), σ(a0), ..., σ(an−2)

)
.

Each codeword c = (c0, c1, ..., cn−1) is customarily identified with its polynomial represen-
tation c(x) = c0 + c1x+ ...+ cn−1x

n−1.
Let Fq denote the finite field with q elements and δ is a primitive (q − 1)-th root of

unity in Fq, i.e,
Fq = {0, δ, · · · , δq−2, δq−1 = 1}.

Suppose that R2 = Fq + uFq, with u2 = 0. It is known that R2 is a chain ring with
the unique maximal ideal uFq.

Moreover, let θ be an automorphism of Fq and Θ be an automorphism of R2, such
that Θ = θk, for some 0 ≤ k ≤ o(θ)− 1.

Lemma 2.1. [4] Let f, g ∈ Fq[x; θ] with f ̸= 0. Then there exist q, r ∈ Fq[x, θ] with
g = qf + r, where r = 0 or deg(r) < deg(f). In particular, Fq[x, θ] is a principal ideal
domain.

Definition 2.2. Suppose f(x), g(x) are skew polynomials in Fq[x; θ]. The greatest
common right divisor of f(x) and g(x) is the monic polynomial dr(x) ∈ Fq[x; θ], where
dr(x) |r f(x), dr(x) |r g(x) and for any d′r(x) ∈ Fq[x; θ] such that d′r(x) |r f(x) and
d′r(x) |r g(x), hence d′r(x) |r dr(x). We denote dr(x) by gcrd(f(x), g(x)).

Throughout this paper, we use the following symbols for simplicity:

• Fq[x; Θ] = Fq[x; θ]. • R2 = Fq[u] = Fq + uFq.

• R1,k =
Fq [x;Θ]
⟨xk−1⟩ , for k = r, s. • Rs =

R2[x;Θ]
⟨xs−1⟩ .

• Rn = R2[x;Θ]
⟨xn−1⟩ . • R = R1,r ×Rs.

Let r and s be positive integers. By [3, Proposition 2.2], we assume that o(Θ) =
o(θ) = l | gcd(r, s). (since xr − 1 and xs − 1 are monic central skew polynomials, hence by
P [3, Proposition 2.3], right divisors of xr − 1 and xs − 1 are two-sided divisor).

Let µ : R2 −→ Fq, be the natural ring morphism, where µ(a0 + ua1) = a0. We
construct the set

FqR2 = {(a|b) : a ∈ Fq, b ∈ R2},
by the following scalar multiplication, FqR2 is an R2-module,

. : R2 × FqR2 −→ FqR2,

ν.(a|b) = (µ(ν)a|b).
This multiplication be generalized over the set Fr

qR
s
2 in the following way. For any ν ∈ R2

and (a0, a1, ..., ar−1|b0, ..., bs−1) ∈ Fr
qR

s
2 define

ν.(a0, a1, ..., ar−1|b0, ..., bs−1) = (µ(ν)a0, µ(ν)a1, ..., µ(ν)ar−1|νb0, ..., νbs−1).

Definition 2.3. A non-empty subset C of Fr
qR

s
2 is called a FqFq[u]-additive skew cyclic

code of length (r, s) if C is an R2-submodule of Fr
qR

s
2.
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Corollary 2.4. There is a bijective map between Fr
qR

s
2 and R given by

(a0, ..., ar−1|b0, ..., bs−1) 7−→ (a0 + · · ·+ ar−1x
r−1|b0 + · · ·+ bs−1x

s−1) = (a(x)|b(x)).

Suppose (f(x)|g(x)) ∈ R and ν(x) ∈ R2[x; Θ], we have
. : R2[x; Θ]×R −→ R,

ν(x).(f(x)|g(x)) = (µ(ν(x))f(x)|ν(x)g(x)),
where

µ(ν(x)) = µ(

r−1∑

j=0

νjx
j) =

r−1∑

j=0

µ(νj)x
j ,

and νj ∈ R2.

3. FqFq[u]-Additive skew cyclic codes
In this section we characterize the algebraic structure of FqFq[u]-additive skew cyclic

codes of length (r, s).
Note that the skew polynomial ring Fq[x; Θ] is not a unique factorization domain. In

fact, many different factorizations may be possible. For example in the ring F27[x; Θ],
x− 1, x− δ2, x− δ6 and x− δ18 are factors of x3 − 1 (for any a ∈ F27, θ(a) = a3).

Set Fk := {a(x) ∈ Fq[x; Θ] : a(x) is a monic factor of xk − 1}, for k = r, s.
It is well known that R2 is a finite chain ring of nilpotency index 2 and the unique

maximal ideal uFq. In this section we determine of FqFq[u]-additive skew cyclic codes of
length (r, s) which r and s are multiple of the order of Θ.

Remark 3.1. We extend the natural ring morphism µ : R2 −→ Fq, where
µ(a0 + ua1) = a0, as follows:

µ : R2[x; Θ] −→ Fq[x; Θ],

n−1∑

i=0

(a0i + ua1i)x
i 7−→

n−1∑

i=0

a0ix
i.

It can be even extended to µ : Rs −→ R1,k.

Proposition 3.2. A linear code C of length s is skew cyclic over R2 if and only if C
is left ideal of Rs.

As corollaries 4.3, 4.4 in [2] and 4.2 in [3], we have the following theorems.

Theorem 3.3. Every left ideal of Rs is of the form
I = Rs

(
a1(x) + ug1(x)

)
+Rs

(
ua2(x)

)
,

where ai(x) ∈ Fs, a2(x) |r a1(x) and g1(x) is a polynomial in R1,s such that deg(g1(x)) <
deg(a2(x)). Moreover, g1(x) with the above conditions is unique.

Theorem 3.4. Skew cyclic codes of lenrth s over R2, i.e., left ideals of the ring Rs

can be separated into the following types:

• Type 1 (trivial ideals): 0, Rs.
• Type 2 : Rs

(
ua(x)

)
, where a(x) ∈ Fs, 0 ⩽ deg(a(x)) ⩽ s− 1.

• Type 3 : Rs

(
a(x) + ug(x)

)
, where a(x) ∈ Fs, 1 ⩽ deg(a(x)) ⩽ s − 1 and deg(g(x)) <
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deg(a(x)). Moreover, g(x) with the above conditions is unique.
• Type 4 : Rs

(
a1(x) + ug1(x)

)
+Rs

(
ua2(x)

)
, where a1(x), a2(x) ∈ Fs, 1 ⩽ deg(a1(x)) ⩽

s− 1, a2(x) |r a1(x) and deg(g1(x)) < deg(a2(x)). Moreover a2(x) |r xs−1
a1(x)

g1(x) and g1(x)

with the above conditions is unique.

Lemma 3.5. A code C is an FqFq[u]-additive skew cyclic code of length (r, s) if and
only if C is a left R2[x; Θ]-submodule of R.

We can list all FqFq[u]-additive skew cyclic codes of length (r, s) as follows.

Theorem 3.6. FqFq[u]-Additive skew cyclic codes of length (r, s) are

• Type 1 : 0, R.
• Type 2 : Rn

(
(â(x)|0)

)
, where â(x) ∈ Fr and 0 ≤ deg(â(x)) ≤ r − 1.

• Type 3 : Rn

(
(k(x)|a(x) + ug(x))

)
, where k(x) ∈ R1,r, a(x) ∈ Fs, 0 ≤ deg(a(x)) ≤ s− 1,

g(x) ∈ R1,s and deg(g(x)) < deg(a(x)). Moreover, g(x) with the above conditions is
unique.
• Type 4 : Rn

(
(k(x)|ua(x))

)
, where k(x) ∈ R1,r, a(x) ∈ Fs and 0 ≤ deg(a(x)) ≤ s− 1.

• Type 5 : Rn

(
(â(x)|0)

)
+Rn

(
(k(x)|a(x)+ug(x))

)
, where â(x) ∈ Fr, 0 ≤ deg(â(x)) ≤ r−1,

k(x) ∈ R1,r, a(x) ∈ Fs, 0 ≤ deg(a(x)) ≤ s − 1, g(x) ∈ R1,s, deg(k(x)) < deg(â(x)) and
deg(g(x)) < deg(a(x)). Moreover, g(x) with the above conditions is unique.
• Type 6 : Rn

(
(â(x)|0)

)
+ Rn

(
(k(x)|ua(x))

)
, where â(x) ∈ Fr, 0 ≤ deg(â(x)) ≤ r − 1,

k(x) ∈ R1,r, a(x) ∈ Fs, 0 ≤ deg(a(x)) ≤ s− 1 and deg(k(x)) < deg(â(x)).
• Type 7 : Rn

(
(k1(x)|a1(x) + ug1(x))

)
+Rn

(
(k2(x)|ua2(x))

)
, where ki(x) ∈ R1,r, ai(x) ∈

Fs, a2(x) |r a1(x), 0 ≤ deg(a1(x)) ≤ s − 1, g1(x) ∈ R1,s and deg(g1(x)) < deg(a2(x)).
Moreover, g1(x) with the above conditions is unique.
• Type 8 : Rn

(
(â(x)|0)

)
+Rn

(
(k1(x)|a1(x)+ug1(x))

)
+Rn

(
(k2(x)|ua2(x))

)
, where â(x) ∈

Fr, 0 ≤ deg(â(x)) ≤ r−1, ai(x) ∈ Fs, 0 ≤ deg(ai(x)) ≤ s−1, a2(x) |r a1(x), ki(x) ∈ R1,r,
deg(ki(x)) < deg(â(x)) and deg(g1(x)) < deg(a2(x)). Moreover, g1(x) with the above
conditions is unique.

4. Conclusion
In this paper, we have determined additive skew cyclic codes over FqFq[u].
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To investigate a multi-singular pointwise defined fractional
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Abstract. In this study, by using the Caputo type q–derivative and the Riemann-
Liouville type fractional q–derivative, we investigate a multi-singular pointwise defined
fractional q–integro-differential equation under some boundary conditions on a time scale.
New existence results rely on α-admissible map and the fixed point theorem for α-ψ-
contraction map. Lastly, we present an example with application and some algorithms
illustrate the primary effects.
Keywords: Singularity, pointwise defined equations, integral boundary conditions, Ca-
puto q–derivation
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1. Introduction
The subject of fractional differential equations ranges from the theoretical views of

existence and uniqueness of solutions to the analytical and mathematical methods for
finding solutions [?,?]. The quantum calculus is an old subject that was first developed
by Jackson [?]. Recently, some researchers studied q–difference equations [?,?,?].

We investigate the existence of solutions for the following nonlinear pointwise defined
fractional q–integro-differential equation

(1) Dα
q u(t) + w

(
t, u(t),Dβ

q u(t),

∫ t

0
f(r)u(r) dr, φ(u(t))

)
= 0,

on a time scale Tt0 = {t : t = t0qn} ∪ {0} here t0 ∈ R and q ∈ J = (0, 1), under bound-
ary conditions

∫ b
0 u(r) dr = 0, u′(1) = u(a) and u(j)(0) = 0 for j ≥ 2, here α ≥ 2,

a, b, β ∈ J , φ : B → B is a map such that ∥φ(u1) − φ(u2)∥ ≤ c1∥u1 − u2∥ + c2∥u′1 − u′2∥, for
some non-negative real numbers c1 and c2 belong to [0,∞) and all u1, u2 ∈ B = C1(J),
where Dq is the Caputo fractional q–derivative and w ∈ L = L1(J) is singular at some
points t ∈ J = [0, 1]. We say that, Dα

q u(t) + g(t) = 0 is a pointwise defined equation on
J if there exists set S ⊂ J such that the measure of Sc is zero and the equation holds on S.

∗Speaker. Email address: mesamei@email.com
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2. Preliminaries
We consider the fractional q-calculus on the specific time scale T = R where Ts0 =

{0} ∪ {t : t = s0qn}, for nonnegative integer n, s0 ∈ R and q ∈ J . Let a ∈ R. Define [?] [a]q =

(1− qa)/(1− q). The power function (r− s)nq with n ∈ N0 is defined by (r− s)(n)
q =

∏n−1
k=0 (r− sqk),

for n ≥ 1 and (r − s)
(0)
q = 1, where r and s are real numbers and N0 := {0} ∪ N [?]. Also, for

σ ∈ R and a ̸= 0, we have (r − s)
(σ)
q = rσ

∏∞
k=0(r − sqk)/(r − sqσ+k). If s = 0, then it is clear

that r(σ) = rσ [?]. The q–Gamma function is given by Γq(ν) = ((1− q)(ν−1))/((1− q)ν−1), where
ν ∈ R \ {0,−1,−2, · · · } [?]. Note that, Γq(ν+1) = [ν]qΓq(ν). The q–derivative of function h, is
defined by Dqy(ν) = (y(ν)−y(qν))/((1−q)ν), and Dqy(0) = limν→0Dqy(ν) [?]. Furthermore, the
higher order q–derivative of a function y is defined by Dn

q y(ν) = Dq(D
n−1
q y)(ν), for n ≥ 1, where

D0
qy(ν) = y(ν) [?]. The q–integral of a function y is defined on [0, δ] by Iqy(ν) =

∫ ν
0 y(ξ) dqξ =

ν(1 − q)
∑∞

k=0 q
ky(νqk), for 0 ≤ ν ≤ δ, provided the series is absolutely converges [?]. If ν in

[0, τ ], then ∫ τ
ν y(ν) dqr = (1−q)∑∞

k=0 q
k[τy(τqk)−νy(νqk)], whenever the series exists. The operator

Inq is given by I0qy(ν) = y(ν) and Inq y(ν) = Iq(I
n−1
q y)(ν) for n ≥ 1 and y ∈ C([0, τ ]) [?].

It has been proved that Dq(Iqy)(ν) = y(ν) and Iq(Dqy)(ν) = y(ν) − y(0) whenever y is
continuous at ν = 0 [?]. The fractional Riemann–Liouville type q-integral of the function
y on J = (0, 1) for σ ≥ 0 is defined by I0qy(t) = y(t) and

(2) Iσq y(t) =
1

Γq(σ)

∫ t

0
(t− qξ)(σ−1)y(ξ) dqξ = tσ(1− q)σ

∞∑

k=0

qk
∏k−1

i=1

(
1− qσ+i

)
∏k−1

i=1 (1− qi+1)
y(tqk),

for t ∈ J [?]. Also, the Caputo fractional q-derivative of a function y is defined by

(3) cDσ
q y(t) = I

[σ]−σ
q (D

[σ]
q y)(t) =

1

Γq ([σ]− σ)

∫ t

0
(t− qξ)([σ]−σ−1)D

[σ]
q y(ξ) dqξ,

where t ∈ J and σ > 0 [?]. It has been proved that I
β
q

[
Iσq y

]
(ν) = I

σ+β
q y(ν) and cDσ

q

(
Iσq y

)
(ν) =

y(ν), where σ, β ≥ 0 [?]. So from (3), we can write cDσ
q y(t) = I2−σ

q y′′(t), for t ∈ I = [s1, s2] ⊂ R
and y ∈ C2(I). Now, we present some necessary notions. Throughout this article, we use
the norms ∥.∥, ∥(u, u′)∥∗ = max{∥u∥, ∥u′∥1}, and ∥.∥1 for A = C(J), B and L, respectively. Let
Ψ be the family of nondecreasing functions ψ : [0,∞) → [0,∞) such that

∑∞
n=1 ψ

n(t) <∞,
for all t > 0. One can check that ψ(t) < t for all t > 0 [?]. The map T : X → X is called an
α-admissible whenever α(x1, x2) ≥ 1 implies α(T (x1), T (x2) ≥ 1 where α maps X 2 to [0,∞).
Let (X , ρ) be a metric space, where ψ ∈ Ψ and α : X 2 → [0,∞) is a map. A self-map
T define on X is called an α-ψ-contraction whenever α(x1, x2)ρ (T (x1), T (x2)) ≤ ψ (ρ(x1, x2)), for
each x1, x2 ∈ X [?].

Lemma 2.1. [?] Let (X , ρ) be a complete metric space. If T : X → X is continuous
then T has a fixed point whenever there exists x0 ∈ X such that α(x0, T (x0)) ≥ 1, ψ ∈ Φ,
α : X 2 → [0,∞) a map and T : X → X an α-admissible α-ψ-contraction.

Lemma 2.2. [?] If x ∈ A∩L with Dα
q x ∈ A∩L, then Iαq D

α
q x(t) = x(t)+

∑n
i=1 cit

α−i, where
[α] ≤ n < [α] + 1 and ci is some real number.

3. Main results
Lemma 3.1. Let α ≥ 2, [α] = n−1, a, b, q ∈ J and g ∈ L. The solution of the problem

Dα
q u(t) + g(t) = 0 with the boundary conditions u(j)(0) = 0 for j ≥ 2, u′(1) = u(a) and∫ b
0 u(r) dr = 0 is u(t) =

∫ 1
0 Gq(t, s)g(s) dqs, on a time scale Tt0 where Gq(t, s) is given by

(4)





−A0(t− qs)(α−1) +A1(t)(1− qs)(α−2) +A2(t)(a− qs)(α−1) +A3(t)(b− qs)(α), s ≤ a, s ≤ b,

−A0(t− qs)(α−1) +A1(t)(1− qs)(α−2) +A2(t)(a− qs)(α−1), b ≤ s ≤ a,

−A0(t− qs)(α−1) +A1(t)(1− qs)(α−2) +A3(t)(b− qs)(α), a ≤ s ≤ b,

−A0(t− qs)(α−1) +A1(t)(1− qs)(α−2), a ≤ s, b ≤ s,
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whenever 0 ≤ s ≤ t ≤ 1,

(5)





A1(t)(1− qs)(α−2) +A2(t)(a− qs)(α−1) +A3(b− qs)(α), s ≤ a, s ≤ b,

A1(t)(1− qs)(α−2) +A2(t)(a− qs)(α−1), b ≤ s ≤ a,

A1(t)(1− qs)(α−2) +A3(t)(b− qs)(α), a ≤ s ≤ b,

A1(t)(1− qs)(α−2), a ≤ s, b ≤ s,

whenever 0 ≤ t ≤ s ≤ 1, here A0 = 1
Γq(α)

, A1(t) =
b(1−a+t)−µ(a,b)
µ(a,b)Γq(α−1)

, A2(t) =
µ(a,b)+b(a+t−1)

µ(a,b)Γq(α)
,

A3(t) =
µ(a,b)(1−a)+t
µ(a,b)Γq(α+1)

and µ(a, b) = b(1− a) + b2

2
.

Note that, the mappings G and ∂G
∂t are continuous respect to t. Let w be a map on

J × B2 such that w is singular at some points of J . Define the function Θ : B → B by

Θu(t) = −I
α
q w

(
t, u(t),D

β
qu(t),

∫ t

0

f(r)u(r) dr, φ(u(t))

)
+ A1(t)I

α−1
q w

(
1, u(1),D

β
qu(1),

∫ 1

0

f(r)u(r) dr, φ(u(1))

)

+ A2(t)I
α
q w

(
a, u(a),D

β
qu(a),

∫ a

0

f(r)u(r) dr, φ(u(a))

)
+ A3(t)I

α+1
q w

(
b, u(b),D

β
qu(b),

∫ b

0

f(r)u(r) dr, φ(u(b))

)

for all t ∈ J . Then, we obtain

Θ
′
u(t) =

∫ 1

0

∂G

∂t
(t, qs)w

(
s, u(s),D

β
qu(s),

∫ s

0

f(r)u(r) dr, φ(u(s))

)
dqs

= −I
α−1
q w

(
t, u(t),D

β
qu(t),

∫ t

0

f(r)u(r) dr, φ(u(t))

)
+

b

µ(a, b)
I
α−1
q w

(
1, u(1),D

β
qu(1),

∫ 1

0

f(r)u(r) dr, φ(u(1))

)

+
b

µ(a, b)
I
α
q w

(
a, u(a),D

β
qu(a),

∫ a

0

f(r)u(r) dr, φ(u(a))

)

+
1

µ(a, b)
I
α+1
q w

(
b, u(b),D

β
qu(b),

∫ b

0

f(r)u(r) dr, φ(u(b))

)
.

Our key note is that the singular pointwise defined equation (1) has a solution if and only
if the map Θ has a fixed point. Now, we give our main result.

Theorem 3.2. Let α ≥ 2, [α] = n − 1, a, b, q ∈ J , f ∈ L with ∥f∥1 = m, φ : B → R
be such that |φ(u(t)) − φ(v(t))| ≤ c1|u(t) − v(t)| + c2|u′(t) − v′(t)|, for some c1, c2 ∈ [0,∞). Let Ω :

J×B5 → R is a mapping which is singular on some points J and |w(t, u1, . . . , u5)−w(t, v1, . . . , v5)| ≤∑k0
i=1 µi(t)Ωi(u1 − v1, . . . , u5 − v5), for all u1, u2, v1, v2 ∈ B and each t ∈ J , where k0 is a natural

number, µi : J → R+, µ̂i ∈ L, µ̂i(s) = (1 − qs)α−2µi(s), Ωi : B5 → R+ is a nondecreasing
mapping respect to all components with Ωi(ν,ν,ν,ν,ν)

νγi → pi, as ν → 0+ for some γi > 0,
pi ∈ R+ with 1 ≤ i ≤ k0. Suppose that |w(t, u1, . . . , u5)| ≤ h(t)T (u1, . . . , u5), for all (u1, . . . , u5) ∈ B5

and almost all t ∈ J , where h : J → R+, ĥ ∈ L, T : B5 → R+ is a nondecreasing mapping
respect all their components such that limν→0+

T (ν,ν,ν,ν,ν)
ν

∈ [0, τ), where τ = (ℓ∥ĥ∥1Mα,a,b)
−1,

ℓ = max{1, 1
Γq(2−β)

,m, c1 + c2}, µ(a, b) is defined in Lemma 3.1 and

Mα,a,b = max

{
1

Γq(α)
+
b(2− a)− µ(a, b)

µ(a, , b)Γq(α− 1)
+

µ(a, b) + ab

µ(a, b)Γq(α)
+
µ(a, b)(1− a) + 1

µ(a, b)Γq(α+ 1)
,

1

Γq(α− 1)
+

b

µ(a, b)Γq(α− 1)
+

b

µ(a, b)Γq(α)
+

1

µ(a, b)Γq(α+ 1)

}
.

If Mα,a,b
∑k0

i=1 piℓ
γi∥µ̂i∥J < 1, then the pointwise defined equation (1) under boundary condi-

tions u(j)(0) = 0 for j ≥ 2,
∫ b
0 u(r) dr = 0 and u′(1) = u(a) has a solution.

4. An illustrative example with application
We consider a constrained motion of a particle along a straight line restrained by two

linear springs with equal spring constant (stiffness coefficient) under external force and
fractional damping along the t-axis (Fig. 1).
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L

F

Figure 1. A particle along a straight line restrained by two linear springs with equal
spring constant.

The vibration of the system is represented by a system of equations with the first equa-
tion having similar form of simple harmonic oscillator which cannot produce instability.
Hence, we consider the pointwise defined equation

100θ(t)cD2.5
q u(t) + p(t)u(t) = −p(t)

(
+ |u′(t)|+

∣∣∣∣D
1
2
q u(t)

∣∣∣∣+
∣∣∣∣
∫ t

0

u(r)√
r

dr

∣∣∣∣+ | sin(u(t))|
)
,(6)

here p(t) = 1
8
[2− 2L− η2L− η2L cos t], and η is constant and L is the unstretched length of the

spring. We change Eq. (6) into form of the problem (1) as follow;

D
5
2
q u(t) =

1

100 θ(t)

(
|u(t)|+ |u′(t)|+

∣∣∣∣D
1
2
q u(t)

∣∣∣∣+
∣∣∣∣
∫ t

0

u(r)√
r

dr

∣∣∣∣+ | sin(u(t))|
)

(7)

with boundary conditions
∫ 1

3
0 u(r) dr = 0, u′(1) = u(14) and u′′(0) = 0, where θ(t) = 0

whenever t ∈ J ∩ Q and θ(t) = 1 − t whenever t ∈ J ∩ Qc. Take f(ξ) =
u(ξ)√

ξ
and φ(x) =

sin(x). Then, we get p1 = 0.01, µ1, h ∈ L1, m = ∥h∥1 = 2, ∥ĥ∥J = ∥µ̂1∥J = 2, T,Ω1

are nonnegative and nondecreasing respect to u1, . . . , u5, µ(a, b) = 11
36 , ℓ = 2, Mα,a,b =

max{ 25
11Γq(

5
2
)
+ 10

11Γq(
3
2
)
+ 177

44Γq(
7
2
)
, 23
11Γq(

3
2
)
+ 12

11Γq(
5
2
)
+ 36

11Γq(
7
2
)
}. We put Λ1 = 25

11Γq(
5
2
)
+ 10

11Γq(
3
2
)
+ 177

44Γq(
7
2
)
,

Λ2 = 23
11Γq(

3
2
)
+ 12

11Γq(
5
2
)
+ 36

11Γq(
7
2
)
. We can see that Mα,a,b = 33.170478, 21.551855, 16.363257, 15.234356,

for q = 1
8 ,

1
2 ,

4
5 and 8

9 , respectively. One can check that limν→0+
T (ν,ν,ν,ν,ν)

ν
= 0.01 ∈ [0, τ), and

Mα,a,b
∑k0

i=1 ∥µ̂i∥Jpiℓγi < 1, for all q ∈ J . Now, with the results obtained, Theorem 3.2
implies that problem (7) has a solution.

5. Conclusion
One of such equations are pointwise defined multi-singular fractional q–differential

equations.In this work, we study the existence of solutions for a pointwise defined multi-
singular fractional q–integro-differential equations pointwise defined equations (1) on a
time scale under some boundary conditions. The paper is appended with an application
that describe the motion of a particle in the plane.
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Abstract. In this paper, we investigate the Bochner-Schoenberg-Eberlein or briefly
BSE properties of the little Bloch type spaces. We also give the corresponding results
for the little Zygmund type spaces. In order to get our results, we use the relations
between these spaces, the analytic Lipschitz algebras and the differentiable Lipschitz
algebras on the closed unit ball of the complex plane.
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1. Introduction

Let D denote the open unit ball of the complex plane C and H(D) denote the space
of all complex-valued analytic functions on D. For each 0 < α < ∞, the Bloch type space
Bα consists of all functions f ∈ H(D) for which

sup
z∈D

(1− |z|2)α|f ′(z)| < ∞.

The Bloch type space Bα is a complex Banach space equipped with the norm

(1) ∥f∥Bα = |f(0)|+ sup
z∈D

(1− |z|2)α|f ′(z)|,

for each f ∈ Bα. In the special case of α = 1, we get the classic Bloch space B1 which is
simply denoted by B.

For each 0 < α < ∞, the little Bloch type space Bα
0 is the closed subspace of Bα

consisting of those functions f ∈ Bα satisfying

lim
|z|→1

(1− |z|2)α|f ′(z)| = 0.

For general background on the classic Bloch space, Bloch type spaces and little Bloch type
spaces, see [2,5] and references therein.

∗Speaker. Email address: a sanatpour@khu.ac.ir; a.sanatpour@gmail.com
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The classic Zygmund space Z consists of all functions f ∈ H(D) which are continuous
on the closed unit ball D and

sup
|f(ei(θ+h)) + f(ei(θ−h))− 2f(eiθ)|

h
< ∞,

where the supremum is taken over all θ ∈ R and h > 0. By [2, Theorem 5.3], an analytic
function f belongs to Z if and only if

sup
z∈D

(1− |z|2)|f ′′(z)| < ∞.

Motivated by this, for each 0 < α < ∞, the Zygmund type space Zα is defined to be the
space of all functions f ∈ H(D) for which

sup
z∈D

(1− |z|2)α|f ′′(z)| < ∞.

The Zygmund type space Zα is a Banach space equipped with the norm

(2) ∥f∥Zα = |f(0)|+ |f ′(0)|+ sup
z∈D

(1− |z|2)α|f ′′(z)|,

for each f ∈ Zα. The little Zygmund type space Zα
0 is the closed subspace of Zα consisting

of those functions f ∈ Zα satisfying

lim
|z|→1

(1− |z|2)α|f ′′(z)| = 0.

More generally, for each n ∈ N and 0 < α < ∞, the space Zα
n consists of all functions

f ∈ H(D) satisfying
sup
z∈D

(1− |z|2)α|f (n+1)(z)| < ∞.

The space Zα
n is a Banach space equipped with the norm

(3) ∥f∥Zα
n
= |f(0)|+ |f ′(0)|+ · · ·+ |f (n)(0)|+ sup

z∈D
(1− |z|2)α|f (n+1)(z)|,

for each f ∈ Zα
n . The little version of Zα

n , denoted by Zα
n,0, is the closed subspace of Zα

n

consisting of those functions f ∈ Zα
n for which

lim
|z|→1

(1− |z|2)α|f (n+1)(z)| = 0.

For more information about classic Zygmund space, Zygmund type spaces and little Zyg-
mund type spaces, see [2,5] and references therein.

For the spaces Bα and Zα, Hosseini, Feizi and Sanatpour [3] investigated the BSE
property, defined in the next chapter. In this paper we investigate BSE properties of the
corresponding little cases Bα

0 and Zα
0 .

2. Main results

Let A be a commutative Banach algebra with maximal ideal space ΦA and C0(ΦA)
denote the space of all continuous functions on ΦA vanishing at infinity. The algebra A
is embedded in C0(ΦA) by considering the Gelfand transform a 7→ â, where â(φ) = φ(a)
for each φ ∈ ΦA. A commutative Banach algebra A is called without order if a ∈ A and
aA = {0} implies that a = 0. Given a without order commutative Banach algebra A, a
bounded linear operator T : A → A is called a multiplier if a(Tb) = T (ab) for all a, b ∈ A.
The set of all multipliers on A is denoted by M(A) which is a commutative unital Banach
subalgebra of B(A), the space of all bounded linear operators on A. Larsen in 1971 proved

that for every T ∈ M(A) there exists a unique bounded continuous function T̂ on ΦA such
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that (̂Tx) = T̂ x̂ for all x ∈ A. As an another definition of the multiplier algebra of A, a

complex-valued continuous function T : ΦA → C is a multiplier if T · Â ⊆ Â, that is

M(A) = {T : ΦA → C | T is continuous and T · Â ⊆ Â}.
A bounded continuous function σ on ΦA is called a BSE-function if there exists a

positive constant β > 0 such that for any finite numbers of φ1, φ2, . . . , φn in ΦA and any
complex numbers c1, c2, . . . , cn, the following inequality holds:

|
n∑

i=1

ciσ(φi)| ≤ β∥
n∑

i=1

ciφi∥A∗ .

The BSE-norm of σ is defined to be the infimum of all such β in the above inequality and
CBSE(ΦA) denotes the set of all BSE-functions. Takahasi and Hatori [6, Lemma 1] proved
that CBSE(ΦA) with the BSE-norm is a commutative semisimple Banach subalgebra of
Cb(ΦA), the space of all bounded continuous functions on ΦA. The next definition is given
by Takahasi and Hatori in [6].

Definition 2.1. A without order commutative Banach algebra A is called a BSE-

algebra if M̂(A) = CBSE(ΦA), where M̂(A) = {T̂ : T ∈ M(A)}.
Bochner and Schoenberg in 1934 studied these algebras on the real line and then Eber-

lein in 1955 gave the extension for locally compact abelian groups G. Takahasi, Hatori,
Kaniuth, Ülger and some other mathematicians studied this topic for the commutative
Banach algebras, Banach function algebras and some other well-known algebras [1,4,6].
Hosseini, Feizi and Sanatpour in [3] investigated BSE properties of Bloch type spaces Bα

and Zygmund type spaces Zα. We next focus on the little cases Bα
0 and Zα

0 .
Our first result is the next lemma which plays an important roll in the rest of this

paper.

Lemma 2.2. Let 0 < α < ∞. Then, the closed unit ball of Bα
0 is closed with the

pointwise convergence topology τpw.

Using Lemma 2.2, we next prove that Bα
0 is a BSE-algebra if equipped with a suitable

algebra norm. It is worth mentioning that in order to prove the next theorem, we use the
relation between the little Bloch type space Bα

0 and the analytic little Lipschitz algebra
ℓipA(D, 1−α) (see, for example, [5]). Recall that for each 0 < α ≤ 1 the Lipschitz algebra
of order α on D, denoted by Lip(D, α), is the algebra of all complex-valued functions f on
D for which

pα(f) = sup

{ |f(z)− f(w)|
|z − w|α : z, w ∈ D and z ̸= w

}
< ∞.

For each 0 < α < 1, the subalgebra of those functions f ∈ Lip(D, α) for which

lim
|z−w|→0

|f(z)− f(w)|
|z − w|α = 0,

is called the little Lipschitz algebra of order α, denoted by ℓip(D, α). The algebras Lip(D, α)
for 0 < α ≤ 1 and ℓip(D, α) for 0 < α < 1 are Banach function algebras if equipped with
the norm

∥f∥α = ∥f∥∞ + pα(f),

where
∥f∥∞ = sup

z∈D
|f(z)|.
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Let A(D) denote the disk algebra. Then, for each 0 < α < 1, the analytic Lipschitz algebra
of order α is defined by

LipA(D, α) = A(D) ∩ Lip(D, α),
and similarly, for each 0 < α < 1, the little analytic Lipschitz algebra of order α is defined
by

ℓipA(D, α) = A(D) ∩ ℓip(D, α).

Theorem 2.3. Let 0 < α < 1. Then, there exists an algebra norm on the little Bloch
type space Bα

0 which is equivalent to the norm (1) and makes Bα
0 a BSE-algebra.

In order to get the result of Theorem 2.3 for the little Zygmund type spaces Zα
n,0 and

Zα
0 , we use the desired relations between these spaces and differentiable Lipschitz algebras

ℓipn(D, 1 − α) (see, for example, [5]). Recall that for each n ∈ N and 0 < α ≤ 1, the
algebra of all complex-valued functions f on D whose derivatives up to order n exist and
f (k) ∈ Lip(D, α) for each k (0 ≤ k ≤ n), is denoted by Lipn(D, α). Also, for each 0 < α < 1,
the algebra ℓipn(D, α) is defined. These differentiable Lipschitz algebras equipped with the
norm

∥f∥n,α =

n∑

k=0

∥f (k)∥α
k!

=

n∑

k=0

∥f (k)∥∞ + pα(f
(k))

k!
,

are Banach function algebras.
Corresponding to Lemma 2.2, we next give the desired result for the little Zygmund

type spaces Zα
n,0.

Lemma 2.4. Let n ∈ N and 0 < α < ∞. Then, the closed unit ball of Zα
n,0 is closed

with the pointwise convergence topology τpw.

By applying Lemma 2.4, we get the following result for the general little Zygmund
type spaces Zα

n,0.

Theorem 2.5. Let n ∈ N and 0 < α < 1. Then, there exists an algebra norm on
the little Zygmund type space Zα

n,0 which is equivalent to the norm (3) and makes Zα
n,0 a

BSE-algebra.

Finally, as a consequence of Theorem 2.5 in the special case of n = 1, we get the
following result for the little Zygmund type space Zα

0 .

Theorem 2.6. Let n ∈ N and 0 < α < 1. Then, there exists an algebra norm on
the little Zygmund type space Zα

0 which is equivalent to the norm (2) and makes Zα
0 a

BSE-algebra.
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Abstract. Let I be a square-free monomial ideal in a polynomial ringR = K[x1, . . . , xn]
over a fieldK, m = (x1, . . . , xn) be the graded maximal ideal of R, and {u1, . . . , uβ1(I)} be

a maximal independent set of minimal generators of I such that m\xi /∈ Ass(R/(I \xi)
t)

for all xi |
∏β1(I)

i=1 ui and some positive integer t, where I \xi denotes the deletion of I at
xi and β1(I) denotes the maximum cardinality of an independent set in I. In this paper,
we prove that if m ∈ Ass(R/It), then t ≥ β1(I) + 1. As an application, we verify that
under certain conditions, every unmixed König ideal is normally torsion-free, and so has
the strong persistence property.

Keywords: Associated primes, Normally torsion-free ideals, Strong persistence prop-
erty, König ideals, Corner-elements

AMS Mathematics Subject Classification [2010]: 13B25, 13F20, 05E40

1. Introduction

Suppose that R is a commutative Noetherian ring, I is an ideal of R, and AssR(R/I)
denotes the set of all prime ideals associated to I. Brodmann [1] proved that the sequence
{AssR(R/Ik)}k≥1 of associated prime ideals is stationary for large k, i.e., there exists a
positive integer k0 such that AssR(R/Ik) = AssR(R/Ik0) for all k ≥ k0. The minimum
such k0 is called the index of stability of I and AssR(R/Ik0) is called the stable set of
associated prime ideals of I, which is denoted by Ass∞(I).

Many questions arise in the context of Brodmann’s result. Recall that if I is an ideal
in a commutative Noetherian ring R, then I is said to have the persistence property if
Ass(R/Ik) ⊆ Ass(R/Ik+1) for all positive integers k. Moreover, an ideal I satisfies the
strong persistence property if (Ik+1 : I) = Ik for all positive integers k. Furthermore,

we say that I has the symbolic strong persistence property if (I(k+1) : I(1)) = I(k) for

all k, where I(k) denotes the k-th symbolic power of I. An ideal I is called normally
torsion-free if Ass(R/Ik) ⊆ Ass(R/I) for all k, see [3, Definition 1.4.5]. In particular,

Kaiser, Stehĺik, and Škrekovski have shown that not all square-free monomial ideals have
the persistence property. However, by applying combinatorial methods, it has been shown
that many large families of square-free monomial ideals satisfy the persistence property
and the strong persistence property. It has been shown that the persistence property and

∗Speaker. Email address: msayedsadeghi@gmail.com
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also the strong persistence property holds for edge ideals of finite simple graphs, edge ideals
of finite graphs with loops, and polymatroidal ideals. Furthermore, cover ideals of perfect
graphs have the persistence property. In addition, a few examples of normally torsion-free
monomial ideals appear from graph theory. It has been already proved that a finite simple
graph G is bipartite if and only if its edge ideal is normally torsion-free. Moreover, it is
well-known that the cover ideals of bipartite graphs are normally torsion-free. In addition,
it has been verified that every transversal polymatroidal ideal is normally torsion-free.
One of our motivations in this paper is to give a large class of square-free monomial ideals
which satisfy normality, normally torsion-freeness, and the (symbolic) (strong) persistence
property.

Now, let I be a monomial ideal in a polynomial ring R = K[x1, . . . , xn], and m =
(x1, . . . , xn) be the graded maximal ideal of R. One motivating question in this field is the
existence of the graded maximal ideal in the set of associated primes. It should be noted
that little is known on this subject in literature. As another motivation of this paper, we
give some results in this theme.

In what follows, we introduce notation and definitions which will be used in the rest
of this paper.

Let I be a square-free monomial ideal and Γ ⊆ G(I), where G(I) denotes the unique
minimal set of monomial generators of the monomial ideal I. We say that Γ is an inde-
pendent set in I if gcd(f, g) = 1 for each f, g ∈ Γ with f ̸= g. We denote the maximum
cardinality of an independent set in I by β1(I). Furthermore, if I is a monomial ideal,
then the deletion of I at xi with 1 ≤ i ≤ n, denoted by I \ xi, is obtained by setting
xi = 0 in every minimal generator of I, that is, we delete every minimal generator such as
u ∈ G(I) with xi | u, see [2, page 303] for definitions of deletion and independent set.

Recall from [5, Definition 6.1.5] that if u = xa11 · · ·xann is a monomial in a polynomial
ring R = K[x1, . . . , xn] over a field K, then the support of u is given by supp(u) :=
{xi| ai > 0}.

Notice that a König ideal is a square-free monomial ideal I with G(I) = {u1, . . . , ur}
such that the maximum number of pairwise disjoint monomials u1, . . . , ur is equal to the
height of I. Note that edge ideals of bipartite graphs form a large class of König ideals.

Let R be a unitary commutative ring and I an ideal in R. An element f ∈ R is integral
over I, if there exists an equation

fk + c1f
k−1 + · · ·+ ck−1f + ck = 0 with ci ∈ Ii.

The set of elements I in R which are integral over I is the integral closure of I. The ideal
I is integrally closed, if I = I, and I is normal if all powers of I are integrally closed.

2. Main results

Theorem 2.1. [4, Theorem 3.3] Let I1 ⊂ R1 = K[x1, . . . , xn] and I2 ⊂ R2 =
K[y1, . . . , ym] be two monomial ideals in disjoint sets of variables. Let

I = I1R+ I2R ⊂ R = K[x1, . . . , xn, y1, . . . , ym].

Then p ∈ Ass(R/I) if and only if p = p1R + p2R, where p1 ∈ Ass(R1/I1) and p2 ∈
Ass(R2/I2).

Theorem 2.2. [4, Theorem 3.4] Let I ⊂ R = K[x1, . . . , xn] be a monomial ideal,
m = (x1, . . . , xn), t a positive integer, and y1, . . . , ys be distinct variables in R such that,
for each i = 1, . . . , s, m \ yi /∈ Ass(R/(I \ yi)t), where I \ yi denotes the deletion of I at yi.
Then m ∈ Ass(R/It) if and only if m ∈ Ass(R/(It :

∏s
i=1 yi)).
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Corollary 2.3. [4, Corollary 3.5] Let I ⊂ R = K[x1, . . . , xn] be a square-free
monomial ideal, m = (x1, . . . , xn), and {u1, . . . , uβ1(I)} be a maximal independent set of

minimal generators of I such that m \xi /∈ Ass(R/(I \xi)t) for all xi |
∏β1(I)

i=1 ui and some
positive integer t, where I \ xi denotes the deletion of I at xi. If m ∈ Ass(R/It), then
t ≥ β1(I) + 1.

Theorem 2.4. [4, Theorem 3.6] Let I be an unmixed König ideal in the polynomial
ring R = K[x1, . . . , xn] over a field K, m = (x1, . . . , xn), and {u1, . . . , uβ1(I)} be a maximal

independent set of minimal generators of I such that m \ xi /∈ Ass(R/(I \ xi)
t) for all t

and xi |
∏β1(I)

i=1 ui. Then the following statements hold:

(i) I is normally torsion-free.
(ii) I is normal.
(iii) I has the strong persistence proeprty.
(iv) I has the persistence property.
(v) I has the symbolic strong persistence property.

Theorem 2.5. [4, Theorem 3.7] Let I be a square-free monomial ideal in a polynomial
ring R = K[x1, . . . , xn] over a field K and m = (x1, . . . , xn). If there exists a square-free
monomial v ∈ I such that v ∈ p \ p2 for any p ∈ Min(I), and m \ xi /∈ Ass(R/(I \ xi)s) for
all s and xi ∈ supp(v), then the following statements hold:

(i) I is normally torsion-free.
(ii) I is normal.
(iii) I has the strong persistence proeprty.
(iv) I has the persistence property.
(v) I has the symbolic strong persistence property.

Definition 2.6. [4, Definition 3.10] Let F be a non-empty subset of [n] = {1, . . . , n}.
We denote by pF the monomial prime ideal (xj : j ∈ F ). A transversal polymatroidal ideal
is an ideal I of the form I = pF1 · · · pFr , where F1, . . . , Fr is a collection of non-empty
subsets of [n] with r ≥ 1.

Theorem 2.7. [4, Theorem 3.11] Every square-free transversal polymatroidal ideal is
normally torsion-free.

Lemma 2.8. [4, Lemma 4.4] Let I be a monomial ideal in a polynomial ring R =
K[x1, . . . , xn] over a field K. Let p = (It : h) for some positive integer t and some
monomial h in R such that xi ∤ h for some 1 ≤ i ≤ n. Then p \ xi = ((I \ xi)t : h), and
so p \ xi ∈ Ass(I \ xi)t.

Corollary 2.9. [4, Corollary 4.5] Let I be a monomial ideal in a polynomial ring
R = K[x1, . . . , xn] over a field K. If p = (It : h) for some positive integer t and some
monomial h in R such that p \ xi /∈ Ass(I \ xi)t for some 1 ≤ i ≤ n, then xi | h.

Proposition 2.10. [4, Proposition 4.8] Let I be a square-free monomial ideal in a
polynomial ring R = K[x1, . . . , xn] over a field K. Let p = (Is : h) ∈ Ass(R/Is) for some
positive integer s and some monomial h in R. Then degxi

h ≤ s− 1 for each i = 1, . . . , n.
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Abstract. Entropy of a dynamical system is a scientific concept, as well as a measurable
physical property that is most commonly associated with a state of disorder. Estimation
of topological entropies from naive numerical simulation of dynamical systems is difficult.
In this paper we give upper and lower bounds for Shannon’s entropy of a probability
distribution (with the use of uniformly convex functions).
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1. Introduction and Basic notions
The concept of entropy is an active research area in thermodynamics, dynamical sys-

tems, statistics, code theory, physics, and also in some other fields of mathematics [1,3,13].
Numerical calculations of entropy are still difficult. In [11,12], the authors presented a
strong upper bound for the classical Shannon entropy. In [7], the author obtain upper
bound and lower bound for Shannon’s entropy of information sources. In [11], the author
obtained new and more precise bounds for Shannon’s entropy. An upper global bound
for a differentiable convex function was given by Dragomir in [4]. In this paper, we es-
tablish some new and strong bounds for Shannon’s entropy. Extensions of this result are
discussed in [4,8,11,12].

Definition 1.1. Let {xi}ni=1 ⊆ I := [a, b], and let {pi} ⊆ [0, 1] be coefficients such
that

∑n
i=1 pi = 1. The sum

∑n
i=1 pixi is called the convex combination of points xi.

Definition 1.2. [2] Let f : [a, b] −→ R be a function. Then f is uniformly convex
with modulus ψ : R≥0 −→ [0,+∞) if is increasing, vanishes only at 0, and

f(λx+ (1− λ)y) + λ(1− λ)ψ(|x− y|) ≤ λf(x) + (1− λ)f(y)

for every λ ∈ [0, 1] and x, y ∈ [a, b].

∗Speaker. Email address: ysayyari@gmail.com

596



y. Sayyari and M. Dehghanin

2. Main Results
We start this section with an extension of Jensen’s inequality to a more general class

of uniformly convex functions
Lemma 2.1. If a > 0 and f : [a, b] −→ R defined by f(x) = − log x, then f is uniformly

convex with modulus ψ(r) := r2

2b2
.

Lemma 2.2. If a > 0 and f : [a, b] −→ R defined by x log(x), then f is uniformly
convex with modulus ψ(r) := r2

2b .
Theorem 2.3. Let f : I −→ R be an uniformly convex function with modulus ψ :

R+ −→ [0,+∞] on I, {xk}nk=1 ⊆ [a, b] be a non-decreasing sequence. Then the inequality

f(
n∑

k=1

pkxk) +
n−1∑

k=1

pkpk+1ψ(xk+1 − xk) ≤
n∑

k=1

pkf(xk)(1)

holds for every convex combination
∑n

k=0 pkxk of points xk ∈ I.
Theorem 2.4. If f is uniformly convex with modulus ψ : R+ −→ [0,+∞] on I and

x1 ≤ x2 ≤ ... ≤ xn. Then the inequality
n∑

i=1

pif(xi)− f(
n∑

i=1

pixi) ≥ max
1≤µ<ν≤n

{pµf(xµ) + pνf(xν)

− (pµ + pν)f(
pµxµ + pνxν
pµ + pν

) + Jψ,x1 (xµ, xν)} ≥ 0

holds for every convex combination
∑n

i=1 pixi of points xi ∈ I, where

Jψ,x1 (xµ, xν) :=
1∑

i̸=µ,ν pi

∑

i/∈Aµ,ν

pipi+1ψ(xi+1 − xi) +
pµ−1pµ+1ψ(xµ+1 − xµ−1)∑

i̸=µ,ν pi

+
pν−1pν+1ψ(xν+1 − xν−1)∑

i̸=µ,ν pi
+ (pµ + pν)(

∑

i̸=µ,ν
pi)ψ(|

∑
i̸=µ,ν pixi∑
i̸=µ,ν pi

− pµxµ + pνxν
pµ + pν

|),

Aµ,ν := {µ.ν, µ − 1, ν − 1, n} for every µ, ν ∈ {1, ..., n}, p0p2ψ(|x0 − x2|) := 0 and
pn−1pn+1ψ(|xn−1 − xn+1|) := 0.

Lemma 2.5. If f is uniformly convex with modulus ψ on [a, b] and 0 ≤ p, q ≤ 1;
p+ q = 1, then

(1) f(pa+ qb) + f(qa+ pb) ≥ 2f(a+b2 ) + 1
2ψ(|(b− a)(p− q)|).

(2) pf(a)+qf(b)−f(qa+pb) ≤ f(a)+f(b)−2f(a+b2 )−pqψ(b−a)− 1
2ψ(|(b−a)(p−q)|).

Theorem 2.6. If f is uniformly convex with modulus ψ on I and a ≤ x1 ≤ x2 ≤ ... ≤
xn ≤ b, then

n∑

i=1

pif(xi)− f(
n∑

i=1

pixi) ≤ f(a) + f(b)− 2f(
a+ b

2
)− Jψ,x2 (a, b),

where

Jψ,x2 (a, b) : =
(b− xn)(x1 − a)

(b− a)2
ψ(b− a) +

1

2
ψ(|a+ b− 2

n∑

i=1

pixi|)

+
(b−∑n

i=1 pixi)(
∑n

i=1 pixi − a)

(b− a)2
ψ(b− a).
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Theorem 2.7. If f is uniformly convex with modulus ψ on I and a ≤ x1 ≤ x2 ≤ ... ≤
xn ≤ b, then

1

n
(f(x1) + f(xn)− 2f(

x1 + xn
2

)) +
1

n(n− 2)

n−2∑

i=2

ψ(xi+1 − xi)

+
2(n− 2)

n2
ψ(|

∑n−1
i=2 xi
n− 2

− x1 + xn
2

|)

≤ 1

n

n∑

i=1

f(xi)− f(

∑n
i=1 xi
n

)

≤ f(x1) + f(xn)− 2f(
x1 + xn

2
)− 1

2
ψ(2|

∑n
i=1 xi
n

− x1 + xn
2

|)

− (xn − 1
n

∑n
i=1 xi)(

1
n

∑n
i=1 xi − x1)

(xn − x1)2
ψ(xn − x1),(2)

Definition 2.8. The Shannon’s entropy of a positive probability distribution X =
(p1, ..., pn) is defined by H(X) := −∑n

i=1 pi log pi.

Proposition 2.9. [11] If µ := min1≤i≤n{pi} and ν := max1≤i≤n{pi}, then

m(µ, ν) := µ log(
2µ

µ+ ν
) + ν log(

2ν

µ+ ν
) ≤ log n−H(X)(3)

≤ log(
(µ+ ν)2

4µν
) :=M(µ, ν).

Proposition 2.10. Define µ := min1≤i≤n{pi} and ν := max1≤i≤n{pi}. Then

log n− M̃(µ, ν) ≤ H(X) ≤ log n− m̃(µ, ν),(4)
where

m̃(µ, ν) : µ log(
2µ

µ+ ν
) + ν log(

2ν

µ+ ν
) +

µ2(2− nµ− nν)2

2(µ+ ν)(1− µ− ν)
,

and

M̃(µ, ν) := log(
(µ+ ν)2

4µν
)− (µ+ ν − 2nµν)2 + 2µν(1− µn)(νn− 1)

4ν2
.

Example 2.11. Let n = 10k, µ = 10−k−1 and ν = 10−k+1(k > 2). Then M(µ, ν) ≃
1.406, but M̃(µ, ν) ≃ 1.202.

Example 2.12. Let n = mk, µ = m−k−1 and ν = m−k+1. Then for every k ∈ N(k > 2).

M(µ, ν)− M̃(µ, ν) =
(m2 + 1)(m− 1)2

4m4
−→ 0.25,

as m −→ +∞
Proposition 2.13. Define µ := min1≤i≤n{pi} and ν := max1≤i≤n{pi}. Then

log n−M(µ, ν) ≤ H(X) ≤ log n−m(µ, ν),(5)
where

m(µ, ν) := µ log(
2µ

µ+ ν
) + ν log(

2ν

µ+ ν
) +

(2− nµ− nν)2

4νn(n− 2)
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and

M(µ, ν) : = nµ log(
2µ

µ+ ν
) + nν log(

2ν

µ+ ν
)

− (2− nµ− nν)2 + 2(nν − 1)(1− nµ)

4νn
.

Corollary 2.14. If µ := min1≤i≤n{pi} and ν := max1≤i≤n{pi}, then
max{m̃(µ, ν),m(µ, ν)} ≤ log n−H(X) ≤ min{M̃(µ, ν),M(µ, ν)}.

Example 2.15. Let n = 10k, µ = 10−k−1 and ν = 10−k+1(k > 2). Then
nm(µ, ν)−M(µ, ν) > 2.

Example 2.16. Let n = 100k, µ = 100−k−1 and ν = 100−k+1(k > 2). Then
nm(µ, ν)−M(µ, ν) > 24.
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Abstract. This work is devoted to introducing a new numerical method based on hybrid
functions approximation for solving the neutral delay differential equations. First, we
present the main properties of hybrid functions consisting of the block–pulse functions
and Bernoulli polynomials. Then we utilize these properties to reduce the solution of
neutral delay differential equations to a set of algebraic equations by first expanding the
candidate function as hybrid functions with unknown coefficients. We use the collocation
method to obtain the coefficients of the hybrid functions and discuss the error analysis.
Finally, we solve some examples to demonstrate the high precision of the new technique.

Keywords: Neutral delay differential equation, Bernoulli polynomials, Error analysis

AMS Mathematics Subject Classification [2010]: 41A10, 65G99, 34K28

1. Introduction

It is well known that it is difficult to analytically solve a delay system. Many researchers
have devoted considerable effort to find numerical methods for solving neutral delay dif-
ferential equations. These methods have included discontinuous Galerkin method [1],
multistep methods [3], homotopy perturbation method [5], one-leg θ-method [6], Runge-
Kutta method [7], etc. In this investigation, a numerical method is proposed to obtain an
approximate solution of the state-dependent delay differential equations (DDEs).

2. Hybrid of block-pulse functions and Bernoulli polynomials

Hybrid functions bnm(t), n = 1, 2, . . . , N, m = 0, 1, . . . ,M are defined on the interval
[0, tf ) as

(1) bnm(t) =

{
βm(Ntf t− n+ 1), t ∈ [n−1

N tf ,
n
N tf ),

0, otherwise,

where n and m are the order of block-pulse functions and Bernoulli polynomials. In Eq.
(1), βm(t), m = 0, 1, 2, ... are the Bernoulli polynomials of order m, which can be defined

by βm(t) =
m∑
k=0

(
m
k

)
℘m−ktk, where ℘k, k = 0, 1, ...,m, are Bernoulli numbers.

∗Speaker. Email address: salameh.sedaghat@gmail.com, s.sedaghat@bzte.ac.ir
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Suppose that H = L2[0, 1] and {b10(t), b11(t), ..., bNM (t)} ⊂ H be the set of hybrid of
block-pulse functions and Bernoulli polynomials then for f ∈ H the best approximation of
f using the set of hybrid of block-pulse functions and Bernoulli polynomials has the form

(2) f ' PNMf =
M∑

m=0

N∑

n=1

cnmbnm(t) = CTB(t).

3. Problem statement

Consider the neutral delay differential equation with state dependent delays

(3)





ẋ(t) = f(t, x(t), x(t− α1(t, x(t))), x(t− α2(t, x(t))), . . . , x(t− αj(t, x(t))),
ẋ(t− θ1(t, x(t))), . . . , ẋ(t− θj(t, x(t)))), 0 ≤ t ≤ tf ,

x(0) = x0,

where x ∈ Rl is a real valued l-vector function, f is assumed to be a sufficiently smooth real
valued l-vector function, ακ, θκ, κ = 1, 2, ..., j, τν are assumed to be continuous functions.

4. Numerical method

In this section, we develop a numerical method for solving the problems given in Eqs.
(3). For these problems we expand each of ẋi(t), i = 1, 2, · · · , l by the hybrid of block-pulse
functions and Bernoulli polynomials. Let

(4) x(t) = [x1(t), x2(t), · · · , xl(t)]T , f(t) = [f1(t), f2(t), · · · , fl(t)]T .
Using Eqs. (2) and (4) we obtain

(5) ẋ(t) = B̂(t)X,

where X is a l(M+1)N×1 vector given by X = [X1, X2, · · · , Xl]
T , and B̂(t) = Il⊗BT (t),

in which Il is the l dimensional identity matrix, B̂(t) is l× l(M + 1)N matrix as well, and

⊗ denotes Kronecker product. Using Eq (5), we get x(t) = B̂(t, 1)X + x(0).

4.1. Solution of state dependent DDEs. Consider the state-dependent delay dif-
ferential Eq. (3). By replacing Eqs. (5) in (3), we have
(6)

B̂(t)X = f(t, B̂(t, 1)X + x0, B̂(t− α1(t, B̂(t, 1)X + x0), 1)X + x0, B̂(t− α2(t, B̂(t, 1)X

+x0), 1)X + x0, . . . , B̂(t− αj(t, B̂(t, 1)X + x0), 1)X + x0, B̂(t− θ1(t, B̂(t, 1)X + x0))X,

. . . , B̂(t− θj(t, B̂(t, 1)X + x0))X).

For suitable collocation points, we choose N(M + 1) points as

(7) tnm = (
tf
2N

)(tm + 2n− 1), n = 1, ..., N, m = 0, 1, 2, ...,M,

where tm are the M + 1 Legendre nodes for [−1, 1] and the collocation points tnm are the
shifted of tm into In = [n−1

N tf ,
n
N tf ), n = 1, ..., N . We now collocate Eq. (6) at (M + 1)N

points tnm as

B̂(tnm)X − f(tnm, B̂(tnm, 1)X + x0, B̂(tnm − α1(tnm, B̂(tnm, 1)X + x0), 1)X + x0,

B̂(tnm − α2(tnm, B̂(tnm, 1)X + x0), 1)X + x0, . . . , B̂(tnm − αj(tnm, B̂(tnm, 1)X + x0), 1)X

+x0, B̂(tnm − θ1(tnm, B̂(tnm, 1)X + x0))X, . . . , B̂(tnm − θj(t, B̂(tnm, 1)X + x0))X) = 0,

which corresponds to a system of l(M + 1)N nonlinear equations which can be solved for
the elements of X using the well Newton’s iterative method. Finally, we calculate x(t).
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5. Error bounds

In this section, we give the convergence results for NFDEs with state-dependent delays.
For the sake of simplicity, we describe convergence analysis for l = 1, x1 = x and f1 = f .
At first, we provide the following notations and theorem which we use in this section.
We also assume that the problem is sufficiently smooth and there are Lipschitz constants,
λ, λκ, λ̃κ, λwk , λẇk , λακ and λθκ , κ = 1, 2, ..., j for which the following inequalities hold.

(8)

‖f(t, w,w1, w2, ..., wj , ẇ1, ẇ2, ..., ẇj)− f(t, u, u1, u2, ..., uj , u̇1, u̇2, ..., u̇j)‖L2(0,tf ) ≤
+λ‖w − u‖L2(0,tf ) + λ1‖w1 − u1‖L2(0,tf ) + ...+ λj‖wj − uj‖L2(0,tf )

+λ̃1‖ẇ1 − u̇1‖L2(0,tf ) + ...+ λ̃j‖ẇj − u̇j‖L2(0,tf )

(9) ‖wκ(t2)− wκ(t1)‖L2(0,tf ) ≤ λwk ‖t2 − t1‖L2(0,tf ) ,

(10) ‖ẇκ(t2)− ẇκ(t1)‖L2(0,tf ) ≤ λẇk ‖t2 − t1‖L2(0,tf ) ,

(11) ‖ακ(t, w)− ακ(t, u)‖L2(0,tf ) ≤ λακ ‖w − u‖L2(0,tf ) ,

(12) ‖θκ(t, w)− θκ(t, u)‖L2(0,tf ) ≤ λθκ ‖w − u‖L2(0,tf ) .

Theorem 1 Suppose x ∈ Hµ(0, tf ) with µ ≥ 0, then [4]

(13)
∥∥x− PNMx

∥∥
L2(0,tf )

≤ cM−µN−µ
∥∥∥x(µ)

∥∥∥
L2(0,tf )

,

and for 1 ≤ r ≤ µ,

(14)
∥∥x− PNMx

∥∥
Hr(0,tf )

≤ cM2r− 1
2
−µN r−µ

∥∥∥x(µ)
∥∥∥
L2(0,tf )

.

Now, we establish sufficient conditions for convergence of the proposed methods.

5.1. Convergence results for NFDEs with state-dependent delays. Through-
out this section, we shall use these inequalities

(15)
‖y(t− ακ(t, y(t)))− x(t− ακ(t, x(t)))‖L2(0,tf ) ≤
‖y(t− ακ(t, y(t)))− x(t− ακ(t, y(t)))‖L2(0,tf ) + λxλακ ‖y(t)− x(t)‖L2(0,tf ) ,

for the delay term associated with state-dependent delay problems where the functions x
and ακ, κ = 1, 2, ..., j are assumed to satisfy the Lipschitz conditions (9) and (11). These
inequalities follow by applying the triangle inequality and the Lipschitz conditions, and

(16)
‖ẏ(t− θκ(t, y(t)))− ẋ(t− θκ(t, x(t)))‖L2(0,tf ) ≤
‖ẏ(t− θκ(t, y(t)))− ẋ(t− θκ(t, y(t)))‖L2(0,tf ) + λẋλθκ ‖y(t)− x(t)‖L2(0,tf ) ,

for the derivative delay term associated with state-dependent delay problems where the
functions ẋ and θκ are assumed to satisfy the Lipschitz conditions (10) and (12).

Theorem 2: Let x(t) be the exact solution of the state-dependent NFDE (3) and
u(t) be the approximate solution obtained by the proposed method in section 4. If
x ∈ Hµ(I), I = (0, tf ) then for µ ≥ 0, we have

(17)
‖x(t)− u(t)‖L2(I) ≤ ε Υ

1−
j∑

κ=1
λ̃κ

M−µN−µ
∥∥x(µ)

∥∥
L2(I)

,
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for M ≥ µ− 1 and for r ≥ 1 we have,

(18) ‖x(t)− u(t)‖L2(I) ≤ ε
Υ

1−
j∑

κ=1
λ̃κ

M2r− 1
2
−µN r−µ

∥∥∥x(µ)
∥∥∥
L2(I)

,

provided that N is sufficiently large, where λ, λκ, λ̃κ, λx, λẋ, λακ and λθκ , are Lipschitz

constants, Υ = λ+
j∑

κ=1
(λκ(1 + λxλακ) + λ̃κ(1 + λẋλθκ)).

5.2. Example 1. Consider the following artificial problem with vanishing Delay

ẋ(t) = cos(t)(1 + x(tx2(t))) + λx(t)ẋ(tx2(t))

+(1− λ)sin(t)cos(tsin2(t))− sin(t+ sin2t), x(0) = 0.

The exact solution is x(t) = sin(t). In Tables 1 we compare the errors of the the present
method with the Radau IIA method [2], by code Radar 5 for λ = 0.3.

Table 1. Error analysis of Example 1 for λ = 0.3 at the point t = π.

Methods Errors
The Radau IIA method with (Tol 10−8)
Number of steps = 120 0.10× 10−8

Present method
N = 1,M = 11 4.6× 10−13

N = 2,M = 11 1.5× 10−15

6. Conclusion

We have introduced a numerical algorithm for solving a large class of delay problems
that includes neutral delay differential equations and differential equations with state
delays. The error analysis carried out in this paper indicates the validity and applicability
of the proposed method for smooth functions.
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Abstract. In this paper, we first study monomorphisms and regular monomorphisms
and show that monomorphisms in PosAct-S are exactly one-one morphisms and regular
monomorphisms in PosAct-S are exactly order embeddings. Then recalling the fact
that the category Pos does not have any non-trivial (non-singleton) injective object
with respect to monomorphisms, we see that PosAct-S has no non-trivial injective
object, too. Then we study regular injectivity, that is, injectivity with respect to regular
monomorphisms.
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1. Introduction

The action of a monoid S on a set, namely S-act, is an important algebraic structure in
mathematics and other mathematical areas such as graph theory and algebraic automata
theory as well as in computer science. For example, computer scientists use the notion of a
projection algebra (sets with an action of the monoid (N∞,min)) as a convenient means of
algebraic specification of process algebras (see [2,3]). Combining the notions of a poset and
an act, many algebraic and categorical properties of the category of actions of a pomonoid
on a poset, namely S-poset, have been studied. In fact, S-posets appear naturally in
the study of mappings between posets (see [1]). More precisely, as S-acts correspond
to representations of monoids by transformations of sets, S-posets correspond to order
preserving representations of pomonoids by order preserving transformations of posets.
Preliminary work on properties of S-posets was done by Fakhruddin in the 1980s and was
continued in recent years. In the present paper, actions of a pomonoid S on a set, S-acts
as unary algebraic structures, are investigated as algebras in the category Pos. Even when
S is a pogroup the notions of S-poset and poset act are not the same and this motivates
the author to study poset acts as a generalization of S-posets. The category of poset
acts with action preserving monotone maps between them, first has been introduced and
studied by Skornyakov in [4] where it is shown that the category of posets is fundamental
and fundumentality is defined via the category PosAct-S. In [5], it is shown that the
category of poset acts has enough regular injectives. Probably this is the first paper where
regular injectivity of poset acts has been considered. Finally in [6], it is proved that every
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regular injective poset act is complete as a poset. Also, it is proved that all complete
poset acts over a monoid S are injective if and only if S is a group. In this paper, we
first study monomorphisms and regular monomorphisms and show that monomorphisms
in PosAct-S are exactly one-one morphisms and regular monomorphisms in PosAct-S
are exactly order embeddings. Then recalling the fact that the category Pos does not have
any non-trivial (non-singleton) injective object with respect to monomorphisms, we see
that PosAct-S has no non-trivial injective object, too. Then we study regular injectivity,
that is, injectivity with respect to regular monomorphisms.

In this section, we briefly recall the preliminary notions about the actions of a monoid
on a set and a pomonoid on a poset.

The category of all partially ordered sets (posets) with order preserving (monotone)
maps between them is denoted by Pos. A poset is said to be complete if each of its subsets
has an infimum and a supremum.

Let S be a monoid with 1 as its identity. A right S-act is a set A equipped with an
action λ : A × S → A, (λ(a, s) is denoted by as) such that a1 = a and a(st) = (as)t, for
all a ∈ A and s, t ∈ S. An S-map f : A → B between S-acts is an action preserving
map, that is f(as) = f(a)s for each a ∈ A, s ∈ S. The category of all S-acts and S-maps
between them is denoted by Act-S.

Recall that a monoid (semigroup) S is said to be a pomonoid (posemigroup) if it is
also a poset whose partial order ≤ is compatible with its binary operation (that is, s ≤ t,
s′ ≤ t′ imply ss′ ≤ tt′).

A right S-poset over a pomonoid S is a poset A which is also an S-act whose action
λ : A×S → A is order-preserving, where A×S is considered as a poset with componentwise
order. An S-poset map (or morphism) is an action preserving monotone map between S -
posets. Moreover, regular monomorphisms (equalizers) are exactly order-embeddings; that
is, morphisms f : A → B for which f(a) ≤ f(a′) if and only if a ≤ a′, for all a, a′ ∈ A.
The category of all S-posets and S-poset maps between them is denoted by Pos-S.

2. The category PosAct-S

In the following, we introduce the category of acts in Pos and then the congruences
in this category are introduced.

Definition 2.1. A poset act over a pomonoid S is a poset A together with a mapping
A× S → A, (a, s) 7→ as such that
1. a(st) = (as)t,
2. a1 = a,
3. a ≤ a′ implies as ≤ a′s for every a, a′ ∈ A and s, t ∈ S.
This makes a poset act an ordered algebra, where all operations Rs are unary.

By a poset act map between poset acts, we mean an order preserving map which is
also an S-map.

In Skornyakov’s definition of poset acts in [4], S is a monoid, but since if S is a monoid,
then the notions of S-poset and poset act coincide, we suppose that S to be a pomonoid
and we study and compare the categories Pos-S of S-posets and PosAct-S of poset acts.

The category of all poset acts with action-preserving monotone maps between them is
denoted by PosAct-S. It is easily seen that the category Pos-S is a full subcategory of
PosAct-S.
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As we mentioned above, each S-poset is a poset act but the converse is not true
generally. For example, let G = {0, 1}, 00 = 11 = 1, 01 = 10 = 0, 0 < 1 be the two
element pogroup and A = {a, b, c} with the order b < c be a poset. Then with the action
0a = a, 0b = b, 0c = c, 1a = 1b = 1c = b, A becomes a poset act which is not an S-poset.
This example shows that even when S is a pogroup the notions of S-poset and poset act
are not the same.

Definition 2.2. If A is a poset act, a congruence θ on A is an equivalence relation on
A that is compatible with the S-action, and has the further property that A/θ can be
equipped with a partial order so that A/θ is a poset act and the natural map A→ A/θ is
a poset act morphism.

Recall that if θ is any binary relation on A, we write a ≤θ a′ if a so-called θ-chain

a ≤ a1θa′1 ≤ a2θa′2 ≤ · · · θa′m ≤ a′

from a to a′ exists in A.

3. Monomorphisms and regular monomorphisms

First, we show that the monomorphisms in PosAct-S are just the injective poset act
maps. Note that a monomorphism in PosAct-S is a morphism that is left cancellable
under composition.

Theorem 3.1. Monomorphisms in PosAct-S are exactly one-one monotone S-maps.

Notice that poset act order embeddings are injective, but the converse is not true. For
example, the identity map from the discrete two element set 1 t 1 = {0, 1} onto the two
element chain 2 = {0, 1} with 0 < 1, both considered as poset acts over a one-element
pomonoid, is a monomorphism but it is not an order embedding.

Recall that a monomorphism f is called regular if it is the equalizer of a pair of
morphisms, and f is extremal if, whenever f = h ◦ g and g is an epimorphism, then g
is an isomorphism. Also, a poset act map f : A → B is called an order embedding if
f(a) ≤ f(a′) implies a ≤ a′, for all a, a′ ∈ A.

Similar to the case for S-posets, one can show that the classes of regular and ex-
tremal monomorphisms coincide with each other, and in fact are exactly poset act order
embeddings.

Theorem 3.2. For a monomorphism f : A→ B in PosAct-S, the following are equiva-
lent:
(i) f is regular,
(ii) f is extremal,
(iii) f is an order embedding.

Definition 3.3. A poset act monomorphism is called subregular if it is the subequalizer
of a pair of poset act maps.

As in the case of equalizers, one can prove that a subequalizer is always a monomor-
phism. Also, it is shown that in PosAct-S, not all monomorphisms are subregular. In fact,
by showing that subregular monomorphisms are exactly order embedding morphisms and
then applying Theorem 3.2, it is shown that, in PosAct-S, the regular monomorphisms
coincide with the subregular monomorphisms.

Theorem 3.4. A poset act monomorphism f : A→ B is subregular if and only if it is an
order embedding.
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4. Injective and regular injective poset acts

Theorem 4.1. PosAct-S has no non-trivial injective object.

We now study regular injectivity of poset acts. Recall that a regular injective object
in Pos-S has zero bottom and top elements. As for poset acts, we have

Proposition 4.2. Every non-trivial (non-singleton) regular injective poset act A is bounded
by two zero elements.

Theorem 4.3. If AS is a regular injective poset act then the S-poset A(S) is regular
injective .

In the following we give answer to the question that does PosAct-S have enough
regular injectives? That is for any A ∈ PosAct − S, does there exist a regular injective
E ∈ PosAct− S with a regular monomorphisms A→ E? First recall the following:

Proposition 4.4. Regular injective posets are exactly complete posets.

Theorem 4.5. Each poset act can be regularly embedded into a regular injective poset act.

Theorem 4.6. A poset act is regular injective if and only if every regular embedding
A→ B has a left inverse.

Acknowledgement

Special thanks goes to Professor Mojgan Mahmoudi which the author is indebted to
her for useful conversations during the preparation of this paper.

References

1. Blyth, T. S. and Janowitz, M. F., Residuation Theory, Pergamon Press, Oxford, 1972.
2. H. Ehrig, F. Parisi-Presicce, P. Boehm, C. Rieckhoff, C. Dimitrovici and M. Grobe-Rhode, Algebraic

data type and process specifications based on projection spaces, Lecture Notes in Computer Science,
332, Springer, Berlin-Heidelberg, 1988.

3. Kilp, M., U. Knauer, A. Mikhalev, Monoids, Acts and Categories, Walter de Gruyter, Berlin, New York,
2000.

4. Skornyakov, L.A., A general view of representations of monoids, (Russian) Algebra i Logika 20 (1981),
571-574, 600.

5. Skornyakov, L.A., Injective objects of categories of representations of monoids, (Russian) Mat. Zametki
36 (1984), 159-170.

6. Skornjakov, L.A., On the injectivity of ordered left acts over monoids, Vestnik Moskov. univ. Ser. I
Math. Mekh. (1986) 17-19 (in Russian).

607



On the some properties of generalized groups

N. Shajareh Poursalavati∗

Department of Pure Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract. In this article we introduce generalized groups as an extension of the struc-
tures of groups. It is an algebraic structure which has a background in the unified gauge
theory and it has been studied first in 1999 by M.R. Molaei. We will review their struc-
tures and properties and we will give some examples and obtain some results in this
subject.
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1. Introduction
Generalized groups was introduced by Molaei in [3]. It is as an extension of groups.

A generalized group is a non-empty set G admitting an operation called multiplication
subject to the set of rules given below:
i) x(yz) = (xy)z; for all x, y ∈ G;
ii) For each x ∈ G, there exists a unique e(x) ∈ G such that xe(x) = e(x)x = x;
iii) For each x ∈ G, there exists x−1 ∈ G such that xx−1 = x−1x = e(x).

According to Araujo and Konieczny [2], generalized groups are equivalent to the notion
of completely simple semigroups. In fact a semigroup G is called a completely simple
semigroup if for all g ∈ G, GgG = G, and if a and b are idempotents in G such that
ab = ba then a = b. Here we call them as generalized groups. Some of the structures
and properties of generalized groups have been studied by Vagner [6], Molaei [4], and
Agboola [1]. Also, various applications of these algebraic structures are studied in the
some recent papers.

In [5], Shajareh Poursalavati, introduced the concept of Molaei’s generalized hyper-
groups by using construction of the Rees matrix semigroup over a polygroup P and a
matrix with entries in P .

2. Properties of generalized groups
Definition 2.1. Let G be a non-empty set and ”·”be a binary operation on G. (G, ·)

is called a groupoid. If the equations g · x = h and y · g = h have unique solutions relative
to x and y respectively and for all g, h ∈ G, then (G, ·) is called a quasigroup. If (G, ·)
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be a groupoid, and for all g, h and k ∈ G, (g · h) · k = g · (h · k), then (G, ·) is called a
semigroup.

Definition 2.2. A generalized group (G, ·) is a semigroup, which is satisfy the follow-
ing conditions:
(i) For each g ∈ G there exists a unique e(g) ∈ G such that g · e(g) = e(g) · g = g;
(iii) For each g ∈ G, there exists g−1 ∈ G such that g · g−1 = g−1 · g = e(g).

Example 2.3. Assume that G be a group and e be the identity element of G, and
Γ, I be nonempty sets. Let P = (gγi) be a Γ × I matrix with entries in G. Define a
binary operation “” · ”” on the set I × G × Γ by (i, k, γ) · (j, h, µ) = (i, kgγjh, µ), for all
i, j ∈ I, and γ, µ ∈ Γ, and k, h ∈ G. It is easy to see that: e((i, k, γ)) = (i, g−1

γi , γ)

and (i, k, γ)−1 = (i, g−1
γi k

−1g−1
γi , γ), so (I × G × Γ, ·) is a generalized group. More ever,

I ×G× Γ =
∪

i∈I, γ∈Γ
{i} ×G× {γ}, which {i} ×G× {γ} isomorphic to G.

Definition 2.4. Let (G, ·) be a generalized group. If e(g · h) = e(g) · e(h),∀g, h ∈ G,
then (G, ·) is called normal generalized group.

Example 2.5. In general, by the notion of Example 2.3, (I × G × Γ, ·) is not nor-
mal generalized group. In fact e((i, k, γ) · (j, h, µ)) = e((i, kgγjh, µ)) = (i, g−1

µi , µ) and
e((i, k, γ)) · e((j, h, µ)) = (i, g−1

γi , γ) · (j, g−1
µj , µ) = (i, g−1

γi gγjg
−1
µj , µ).

Example 2.6. Let F be a field and assume that H =

{ (
0 0
x y

)
| 0 ̸= y, x ∈ F

}
,

then H is a normal generalized group with ordinary matrices product. It is easy to see

that: e(
(

0 0
x y

)
) =

(
0 0

xy−1 1

)
and

(
0 0
x y

)−1

=

(
0 0

x2y−1 y−1

)
, we have:

e(

(
0 0
x y

)(
0 0
z t

)
) = e(

(
0 0
yz yt

)
) =

(
0 0

zt−1 1

)
=

(
0 0

xy−1 1

)(
0 0

zt−1 1

)

= e(

(
0 0
x y

)
)e(

(
0 0
z t

)
).

Definition 2.7. Let (G, ·) be a generalized group. If g · h = g · h,∀g, h ∈ G, then
(G, ·) is called Abelian generalized group. If G be an Abelian generalized group, then the
cardinal of set {e(g) | g ∈ G} is one, so G is an Abelian group.

In the next Theorem, we reviewed some properties of generalized group.
Theorem 2.8. Let (G, ·) be a generalized group and g, h ∈ G. Then, we have:
(1) e(e(g)) = e(g), i.e., e(g) is unique;
(2) e(g) · e(g) = e(g)
(3) g−1 is unique and (g−1)−1 = g;
(4) If (G, ·) be a normal generalized group in which e(g) · h−1 = h−1 · e(g). Then,

(g · h)−1 = h−1 · g−1;
(5) For all integer number n, e(gn) = e(g).
(6) Gg := { x ∈ G : e(x) = e(g) } is a group; and, G =

∪

g∈G
Gg, therefore G is the

union of disjoint some groups;
(7) If G be a finite generalized group, then, there is a positive integer number n, such

that, gn = e(g).
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Theorem 2.9. Let (G, ·) be a finite generalized group and g ∈ G. Then, the cardinal
of Gg divided cardinal of G.

Theorem 2.10. Let (G, ·) be a finite generalized group and G =
∪

g∈A
Gg, where A ⊂ G

such that for all a, b ∈ A and a ̸= b implies Ga ̸= Gb. Then, the cardinal of A divided
cardinal of G.

Definition 2.11. Let (G, ·) be a generalized group and S be a non-empty subset of
G such that (S, ·) is a generalized group. We recalled that S is a generalized subgroup of
G and denoted by S ≤ G.

Theorem 2.12. Let (G, ·) be a generalized group and S be a non-empty subset of G.
Then S ≤ G if and only if for all x, y ∈ S, x · y−1 ∈ S.

Theorem 2.13. Let G be a generalized group and S ≤ G. Assume that x ∈ S, then
Sx is a subgroup of Gx. In special case, if G be finite, then card(Sx) divided card(Gx),
therefore card(Sx) divided card(G).

Theorem 2.14. Let G be a generalized group and S ≤ G. Then there are B ⊆ A ⊆ G
such that

G =
∪

y∈A
Gy and S =

∪

x∈B
Sx

such that for all y, z ∈ A; y ̸= z implies Gy ∩Gz = ∅. In special case, if G be finite, then
card(S) divided card(G) if and only if card(B) divided card(A).

Theorem 2.15. Let G be a generalized group and g ∈ G. Then the sets Lg = { x ∈
G | xg = g } and Rg = { x ∈ G | gx = g } are generalized subgroups of G. More over,
{e(g)} = Gg ∩ Lg = Gg ∩Rg = Lg ∩Rg.

Theorem 2.16. Let G be a generalized group. Then H is a generalized subgroup of
G, if and only if H =

∪

x∈G
Hx, where that Hx is a subgroup of Gx, for all x ∈ G.

Corollary 2.17. Let G be a finite generalized group and H be a generalized subgroup
of G. Then the generalized Lagrang Theorem may be not true for H and G, i.e., it may
be card(H) not divided card(G).
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Abstract. In this note, at first, by using the notion of zero-forcing set, we present the
notion of graph automata, which is called GA. We show that for a given graph and for
some zero forcing sets, various GA will be obtained. Also, we show that there exists
a functor from the category of graphs to the category of nondeterministic automata.
Thereafter, we prove that there is a functor from the category of graphs to the category
of general fuzzy automata.
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1. Introduction

An important branch of automata theory, itself one of the classical subdisciplines of
computer science, concerns the study of finite automata as devices for classifying infinite,
or possibly infinite, objects. Finite automata have many applications in plenty of areas
of computer science such as databases, functional languages, bisimulation, and biology,
for more information, see [5]. This current study aims to establish a connection between
graphs and automata theory, which apparently show different mathematical structures.

2. Preliminaries

Definition 2.1. [1] Recall that a system (Q, δ) is called a non-deterministic au-
tomaton (NDA) over a monoid (X, ∗), if Q is a set of states and δ : Q × X → 2Q is a
non-deterministic transition, where 2Q is the power set of Q, such that:

(1) for every q ∈ Q, δ(q, 1X) = {q},
(2) for every x, y ∈ X, q ∈ Q, δ(q, x ∗ y) =

⋃
p∈δ(q,x) δ(p, y).

An NDA over a monoid (X, ∗) with initial and terminal states is a system (Q, δ, I, T ) such
that (Q, δ) is an NDA over X and I, T ⊆ Q. By NAm, we denote the category of NDAs.
A morphism in NAm is defined as α : (Q1, δ1)→ (Q2, δ2), i.e., α : Q1 → Q2 is a map such
that:

α(∪q′∈Q1,α(q′)=α(q)δ1(q
′, x)) = δ2(α(q), x) ∩ α(Q1), for every q ∈ Q1, x ∈ X.

∗Speaker. Email address: shamsizadeh.m@email.com
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By NAm, we denote the category of NDAs with initial and terminal states.
A morphism α : (Q1, δ1, I1, T1)→ (Q2, δ2, I2, T2) is defined by: (i) α ∈Mor((Q1, δ1), (Q2,

δ2)), (ii) α(I1) = I2 ∩ α(Q1), (iii) α(T1) = T2 ∩ α(Q1).

Theorem 2.2. [1] There exists a functor F : NAm → KG, where KG is the category
of general fuzzy automata.

Definition 2.3. [3] A general fuzzy automaton (GFA) F̃ is an eight-tuple machine

denoted by F̃ = (Q,X, R̃, Z, δ̃, ω, F1, F2), where (i) Q is a finite set of states, (ii) X

is a finite set of input symbols, (iii) R̃ is a set of fuzzy start states, R̃ ⊆ P̃ (Q), where

P̃ (Q) is the fuzzy power set of Q, (iv) Z is a finite set of output symbols, (v) δ̃ : (Q ×
[0, 1])×X ×Q→ [0, 1] is the augmented transition function, (vi) ω : Q→ Z is the output
function, (vii) F1 : [0, 1] × [0, 1] → [0, 1] is called the membership assignment function.
(viii) F2 : [0, 1]∗ → [0, 1] is called the multi-membership resolution function.

Let the set of all transitions of F̃ be denoted by ∆. Now, suppose that Qact(ti) is

the set of every active states at time ti, for every i ≥ 0. We have Qact(t0) = R̃ and
Qact(ti) = {(q, µti(q))

∣∣∃q′ ∈ Qact(ti−1),∃a ∈ X, δ(q′, a, q) ∈ ∆}, for every i ≥ 1, where

µti(q) is the membership value of state q at time ti.

Definition 2.4. [2]

• Color-change rule: If G is a graph with each vertex colored either white or black,
u is a black vertex of G, and exactly one neighbor v of u is white, then change
the color of v to black.
• Given a coloring of G, the derived coloring is resulted by the color-change rule

until no more changes are possible.
• A zero forcing set for a graph G is a subset of vertices Z such that if initially the

vertices in Z are colored black and the remaining vertices are colored white, the
derived coloring of G is all black.
• Z(G) refers to the minimum of |Z| over all zero forcing sets Z ⊆ V (G).

We say that vertex u forces vertex v if v got black with u. If black vertex u of G
changes the color of vertex v to black, then we say that vertex u forces vertex v.

3. Graph automata

Definition 3.1. Let G = (V,E) be a graph. A graph automaton (GA) is a five-tuple
machine denoted by A = (Q,A,ϕ, I, T ), where (i) Q = V is the finite set of states, (ii)
A = {f, n} is the set of alphabet, (iii) ϕ : Q×A→ P (Q) is the transition function, where
if vertex u forces vertex v in G, then define ϕ(u, f) = v in A and if uv ∈ E and u and
v do not force each other, then ϕ(u, n) = v and ϕ(v, n) = u, (iv) I = Z(G) is the set of
initial states, (v) T is the set of final states, which u ∈ T if and only if u does not force
any vertex. Naturally, ϕ can be extended to ϕ∗ : Q×A∗ → P (Q).

Note that ifA(Z(G)) is a GA, thenA(Z(G)) recognizes a word w in A∗ if ϕ∗(i, w)∩T 6=
∅, for some i ∈ I.

Example 3.2. Consider graph G as Figure 1, where V (G) = {p1, p2, p3, p4, p5, p6}. If
Z(G) = {p1, p6}, then we have the GA A(Z(G)) as in Figure 2, where Q = {p1, p2, p3,
p4, p5, p6}, I = {p1, p6}, X = {n, f}, T = {p4} and

ϕ(p1, n) = p6 ϕ(p6, n) = p1 ϕ(p1, f) = p2 ϕ(p6, f) = p5

ϕ(p1, n) = p5 ϕ(p5, n) = p1 ϕ(p2, n) = p5 ϕ(p5, n) = p2
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Figure 1. The graph G of Example ??

ϕ(p2, f) = p3 ϕ(p5, f) = p4 ϕ(p3, n) = p5 ϕ(p5, n) = p3

ϕ(p3, f) = p4.

Figure 2. The GA A(Z(G)) of Example 3.2

Example 3.3. Let graph G be as Figure 3 and choosing Z1(G) = {p2, p3, p4, p5} and
Z2(G) = {p2, p3, p5, p6}. Then the GA of them have the same language.

Figure 3. The graph G of Example 3.3

As we see in Example 3.2, it is clear that in a given symmetric graph, for some different
symmetric zero forcing sets like Z1(G) and Z3(G), the Z-F-finite automata of them are
equivalent. The graph of Example 3.3 is a nonsymmetric graph. In this example, we
show that for some nonsymmetric graphs we also can find zero forcing sets in which the
Z-F-finite automata of them have the same language.

Lemma 3.4. Let G be a symmetric graph. For every symmetric zero forcing sets Z1(G)
and Z2(G), A(Z1(G)) and A(Z2(G)) are isomorphic. Also, L(A(Z1(G))) = L(A(Z2(G))).
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4. Category of Graph Automata

Definition 4.1. Let G = (VG, EG, Z(G)) and H = (VH , EH , Z(H)). An isomorphism
between G and H is a surjective and one-one function α : VG → VH such that α(x)α(y)
belongs EH if and only if xy belongs EH , and α(Z(G)) = Z(H) ∩ α(G).

By ξG, we denote the category of graphs.

Example 4.2. Let G = (VG, EG, Z(G)) and H = (VH , EH , Z(H)) such that V (G) =
(p1, p2, p3, p4), EG = (p1p2, p2p3, p3p4, p4p1) and Z(G) = {p1, p2} and V (H) = (q1, q2, q3, q4),
EH = (q1q2, q2q3, q3q4, q4q1) and Z(H) = {q3, q4}. Consider α : VG → VH by α(p1) =
q3, α(p2) = q4, α(p3) = q1, α(p4) = q2. Clearly, α is a surjective and one-one function.
Also, α is an isomorphism between G and H.

Theorem 4.3. There exists a functor F : ξG → NAM .

Corollary 4.4. There exists a functor F : ξG → KG.

5. Conclusion

In this note, by considering the notion of zero-forcing set, we give the notion of G-
Automata. We show that there exists a functor from the category of graphs to the category
of nondeterministic automata.
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Construction of Implicit-Explicit multivalue methods of
high order and stage order for ODEs

Mohammad Sharifi1,∗, Ali Abdi1
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Abstract. In this paper, we construct a class of numerical methods for solving initial
value problems of differential equations which have both non-stiff and stiff parts. Such
systems can be solved by a class of implicit-explicit (IMEX) diagonally implicit multistage
integration methods (DIMSIMs), where the non-stiff part and stiff part are treated by
explicit and implicit formulas, respectively. Assuming that the implicit part of methods
is L−stable, we construct methods of order p = 5 and p = 6 and stage order q = p, with
large absolute stability regions and show their efficiency by applying to some well-known
problems.
Keywords: IMEX methods, General linear methods, Order conditions, Stability analy-
sis
AMS Mathematics Subject Classification [2010]: 65L05

1. Introduction
For many systems of ordinary differential equations (ODEs) there are natural splitting

of the right-hand side of differential systems into two parts. Such systems can be written
in the form

(1)
{
y′(x) = f1

(
y(x)

)
+ f2

(
y(x)

)
, x ∈ [x0, x̄],

y(x0) = y0,

where f1(y) represents the non-stiff part and f2(y) represents the stiff part of (1). The
non-stiff part is solved by the explicit GLMs introduced by Butcher [3] which takes the
form

Y
[n]
i = h

s∑

j=1

aijF
(
Y

[n]
j

)
+

r∑

j=1

uijy
[n−1]
j , i = 1, 2, . . . , s,

y
[n]
i = h

s∑

j=1

bijF
(
Y

[n]
j

)
+

r∑

j=1

vijy
[n−1]
j , i = 1, 2, . . . , r,

(2)
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for n = 1, 2, . . . , N and aii = 0 for j ≥ i. Here
[
Y

[n]
i

]s
i=1

are approximations of stage order
q to y(xn−1 + cih), i.e., Y [n]

i = y(xn−1 + cih) +O(hq+1), and
[
y
[n]
i

]r
i=1

are approximations
of order p to the linear combinations of the derivative of the solution y at the point xn,

y
[n]
i =

p∑

k=0

qikh
ky(k)(xn),

for some real vectors qk = [qik]
r
i=1, k = 0, 1, . . . , p. The stiff part is solved by the implicit

GLMs which takes the form

Y
[n]
i = h

s∑

j=1

âijF
(
Y

[n]
j

)
+

r∑

j=1

uijy
[n−1]
j , i = 1, 2, . . . , s,

y
[n]
i = h

s∑

j=1

b̂ijF
(
Y

[n]
j

)
+

r∑

j=1

vijy
[n−1]
j , i = 1, 2, . . . , r,

(3)

where âii = λ > 0 and also where both methods have the same abscissa vector c and the
coefficient matrices U and V .

2. A class of IMEX-DIMSIMs
First, we consider the transformation y = x+ z, where

x′ = f1(x+ z), z′ = f2(x+ z).(4)

For the system (4), the non-stiff and stiff parts will be solved by the explicit DIMSIMs
and implicit DIMSIMs respectively, i.e.,

X [n] = h(A⊗ Im)f1
(
X [n] + Z [n]

)
+ (U ⊗ Im)x[n−1],

x[n] = h(B ⊗ Im)f1
(
X [n] + Z [n]

)
+ (V ⊗ Im)x[n−1],

(5)

and
Z [n] = h(Â⊗ Im)f2

(
X [n] + Z [n]

)
+ (U ⊗ Im)z[n−1],

z[n] = h(B̂ ⊗ Im)f2
(
X [n] + Z [n]

)
+ (V ⊗ Im)z[n−1].

(6)

Combining (5) and (6) leads to the class of so-called IMEX-DIMSIMs defined by

Y [n] = h(A⊗ Im)f1
(
Y [n]

)
+ h(Â⊗ Im)f2

(
Y [n]

)
+ (U ⊗ Im)y[n−1],

y[n] = h(B ⊗ Im)f1
(
Y [n]

)
+ h(B̂ ⊗ Im)f2

(
Y [n]

)
+ (V ⊗ Im)y[n−1],

(7)

for n = 1, 2, . . . , N , where

Y [n] =
(
X [n] + Z [n]

)
, y[n] =

(
x[n] + z[n]

)
.

It was proved in [2] that if explicit and implicit method has order p and stage order
q = p, then the overall method (7) has also order p and stage order q = p. See also [1].

3. Stability analysis of IMEX-DIMSIMs
To analyze the stability properties of IMEX-DIMSIMs, we will imply (7) to the test

equation
y′(x) = λ0y(x) + λ1y(x), x ≥ 0,
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where λ0 and λ1 are complex parameters corresponding to the non-stiff and stiff parts
of (1), we obtain y[n] = M(z0, z1)y

[n], n = 0, 1, . . . , where z0 = λ0h, z1 = λ1h. Here
M(z0, z1) is the stability matrix defined by

(8) M(z0, z1) = V + (z0B + z1B̂)(I − z0A− z1Â)
−1U,

and also we define the stability function as the stability polynomial of M(z0, z1), by

p(w, z0, z1) = det
(
wI −M(z0, z1)

)
,

where w ∈ C. We say that the IMEX-DIMSIMs (7) is stable for given z0, z1 ∈ C if all
roots wi(z0, z1) of stability polynomial p(w, z0, z1) are inside of the unit circle. We will be
mainly interested in IMEX-DIMSIMs which are A−, A(α)−, or L−stable with respect to
the implicit part z1 ∈ C.

4. Numerical experiment
Our test problem is the famous van der Pol system

y′1 = y2,

y′2 =
(
(1− y21)y2 − y1)

) /
ϵ,

(9)

x ∈ [0, 055139], where the first component is non-stiff and the second component is stiff
for small values of the parameter ϵ. The initial values are

y1(0) = 2, y2 = −2

3
+

10

81
ϵ− 292

2187
ϵ2 − 1814

19683
ϵ3 +O(ϵ4).

Table 1. Numerical results of the IMEX-DIMSIMs of orders p = 5, 6 with
α = π

2 , for the problem (9) with ϵ = 10−6.

h IMEX-DIMSIM5(Sπ
2
) IMEX-DIMSIM6(Sπ

2
)

∥ error ∥1 p ∥ error ∥1 p
1.72e-3 4.75e-7 1.39e-2
8.62e-4 1.48e-8 5.00 2.11e-4 6.04
4.31e-4 4.26e-10 5.12 3.27e-6 6.01
2.15e-4 2.21e-11 4.27 5.04e-8 6.02
1.08e-4 7.36e-10 6.10
5.38e-5 8.38e-12 6.46

In Table 1 we have presented the results of numerical experiments for ϵ = 10−6 with
the methods IMEX-DIMSIMs of orders p = 5, 6 with α = π

2 .

5. Conclusion
In this paper we constructed IMEX DIMSIMs of order p = 5 and p = 6 and satge

order q = p. It was demonstrated by some numerical experiments that these methods do
not suffer from order reduction which is the case for some IMEX RK (Runge-Kutta) [4]
methods.
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On modules with only finitely many small submodules
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Abstract. In this article we introduce and study concept of modules with only finitely
many small submodules (briefly, fs-module). Using this concept, we show that M is a
fs-module if and only if J(M) has only finitely submodules. Also, we show that if M is a
fs-module, with non-zero small submodule, then Soc(M) ̸= 0 and M is not semisimple.
In particular, we prove that M is a fs-module if and only if M = M1 ⊕M2, where M1 is
semisimple and M2 is a fs-module that soc(M2) ≪ M . Further, we prove if R is a right
us-ring, then the Jacobson radical J = J(R) is a minimal right ideal of R and J2 = 0
and each right ideal A of R is either simple or non-small. Also, we show that if R is a
commutative ring, then R has finite hollow dimension if and only if R

J(R)
∼= ⊕n

1Fi, where

Fi is a field and conclude that if R be a semiprime local right fs-ring with finite hollow
dimension, then R is a division ring.

Keywords: us-modules, fs-modules

AMS Mathematics Subject Classification [2010]: 16P60, 16P20, 16P40

1. Introduction

It is known that Jacobson radical of R is a small ideal of R but in general, it is not
true for an R-module. Motivated by this, one is led to consider one of the modules whose
Jacobson radicas are small. In this way, an R-module M is defined a finite small module
(briefly, fs-module) if it has only finitely many non-zero small submodules and one small
(briefly, us-module) if it has only a non-zero small submodule. A ring R is called a fs-
ring (us-ring), if as an R-module is a fs-ring (us-ring). In this article, we study some
properties of fs-modules. For instance, we prove that An R-module M is a fs-module
if and only if J(M) has only finitely many submodules. Also, we show that if M is a
fs-module with finite hollow dimension, then M is Noetherian and Artinian but with an
example, we will see that there exist an R-module with finite hollow dimension such that
it is not fs-module. We show that R is an us-ring if and only if the Jacobson radical of
R is a minimal right ideal of R and J2 = 0 (J = J(R)) if and only if each right ideal of R
is either minimal or non-small. We also prove that every commutative ring R has finite
hollow dimension if and only if R

J(R)
∼= ⊕n

1Fi, where Fi is a field. We prove that if R is

a commutative ring with finite hollow dimension, then R has only finitely many maximal
ideals.

∗Speaker. Email address: shirali n@scu.ac.ir
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Throughout this paper rings are associative with identity and all modules are unital
right R-modules. As usual, J(M) , Soc(M) denote the Jacobson radical, the socle, of a
module M .

2. fs-modules and their properties

We begin with the following definition.

Definition 2.1. Let M be an R-module. A proper submodule S of M is small in M
if S + N ̸= M for every proper submodule N of M . We will indicate that S is a small
submodule of M by notation S ≪ M . Also, M is called hollow if M ̸= 0 and every proper
submodule S of M is small in M .

In the following, we recall some basic properties of small submodules, see [1].

Lemma 2.2. Let M be a module and suppose K ⊆ N ⊆ M and P ⊆ M . Then

(1) N ≪ M if and only if K ≪ M and N
K ≪ M

K .
(2) P +K ≪ M if and only if P ≪ M and K ≪ M .
(3) If K ≪ N , then K ≪ M .
(4) J(M) is the sum of all the small submodules of M .
(5) If S ≪ M , then M is finitely generated if and only if M

S is finitely generated.
(6) Soc(J(M)) is small submodule of M . More generally, if N is small in M and

Soc(J(M)
N ) = L

N , then L is small in M .

(7) We have always hdim(MN ) ≤ hdim(M).

(8) If N ≪ M , then hdim(M) = hdim(MN ).

(9) If M has finite hollow dimension and hdim(M) = hdim(MN ), then N ≪ M .
(10) If M = M1 ⊕ ...⊕Mk, then hdim(M) =

∑n
i=1 hdim(Mi).

(11) If M = M1 ⊕M2 and S1 ⊆ M1, S2 ⊆ M2, then S1 ⊕ S2 ≪ M1 ⊕M2 if and only
if S1 ≪ M1 and S2 ≪ M2.

We give our definition of fs-modules and prove that interest results.

Definition 2.3. A right R-module M with only finitely many non-zero small sub-
modules is said to be a fs-module. In particular, M is an us-module, if it has an unique
non-zero small submodule. A ring R is called an fs-ring (us-ring), if as an R-module, it
is an fs-module (us-module).

We note that every module which has not non-zero small submodule, is fs-module.

Definition 2.4. Let M be an R-module and S ≪ M , then M
S is called small quotient

module of M .

The following result shows that the class of all fs-modules are closed under sumodules
and small quotient modules.

Proposition 2.5. The following are equivalent for any R-module M .

(1) M is a fs-module.
(2) Every submodule of M is a fs-module.
(3) Every small quotient module of M is a fs-modules.

We note that if M is a fs-module, then S ≪ M if and only if S ⊆ J(M).

Proposition 2.6. Let R be a ring and M be an R-module. Then M is a fs-module
if and only if J(M) has only finitely submodules.
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Proof. Since J(M) is the sum of all small submodules of M , it follows that J(M)
contains all small submodules of M . Thus, if J(M) has only finitely many submodules,
then M is a fs-module. Now assume that M is a fs-module. Then J(M) ≪ M , so every
submodue S of M contained in J(M) is a small submodule of M . This shows that J(M)
has only finitely many small submodules. □

The following result is now immediate.

Corollary 2.7. If M is a fs-module, then:

(1) J(M) has finite length, so it is both Artinian and Noetherian.
(2) M is Noetherian (Artinian) if and only if M

J(M) is Noetherian (Artinian).

Definition 2.8. A fs-module M , is said to be a homogeneuse fs-module if every
submodule of M has non-zero small submodule.

Proposition 2.9. Let M be a fs-module, with non-zero small submodule. We have
the following.

(1) Soc(M) ̸= 0.
(2) Soc(M) ̸= M , i.e., M is not semisimple.
(3) Soc(M) ∩ J(M) ̸= 0.

Proof. Since set of all small submodules of M has minimal elements which are min-
imal submodules of M and so Soc(M) ̸= 0 and Soc(M) ∩ J(M) ̸= 0. Suppose, by way of
contradiction, that Soc(M) = M . According to what was said, there exists minimal and
small submodule S of M such that S ⊆ Soc(M), thus S ⊕K = Soc(M) = M , for some
submodule K of M , the contradiction required. □

The following result is now immediate.

Corollary 2.10. Let M is an Artinian fs-module. Then J(M) ̸= 0, that is M has
non-zero small submodules.

The previous proposition, immediately yield the next result.

Corollary 2.11. Let M is a homogeneous fs-module. Then Soc(M) ⊆e M .

Proof. By above proposition, for every submodule N of M , 0 ̸= Soc(N) ⊆ N ∩
Soc(M), and hence we are done. □

Theorem 2.12. ( [5, 7.14], [6, 1.11]) If M has finite hollow dimension, then M
J(M) is

finitely generated semisimple.

If M is a fs-module with finite hollow dimension then M
J(M) is is both Noetherian

and Artinian, by previous theorem. We may invoke the part (2) of Corollary 2.7 to infer
that any fs-module M with finite hollow dimension is both Noetherian and Artinian.
This implies that J(M) is finitely generated. Moreover, such a module M , has a finite
composition series. Therefore it has finite length and finite uniform dimension, too. The
next theorem is devoted to these facts.

Theorem 2.13. Let M be a fs-module with finite hollow dimension over a ring R.
The following holds.

(1) M is an Artinian module.
(2) M is a Noetherian module.
(3) J(M) is finitely generated.
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(4) M has a finite composition series.
(5) M has finite length.
(6) M has finite uniform dimension.

Lemma 2.14. [3, Lemma 6] or [2] Let M be AB5∗ . Then M is a qfd-module if and
only if every submodule of M has finite hollow dimension.

The following result is now immediate.

Corollary 2.15. Let M be an AB5∗, qfd and fs-module. Then M is Artinian and
Noetherian.

Remark 2.16. In general, every module with finite hollow dimension is not fs-module.
For example, let R = F [x1, x2, ..., xn], where F is a field. So R is a commutative Noetherian
ring and every maximal ideal M of R, has rank exactly n (i.e., there exists a chain of
prime ideals of length n descending from M , but no longer chain). Let A = E(S) be
the injective envelope of a simple R-module S. By [7, Theorem 2], A is an Artinian
module and by [4, Poroposion 5], n − dimA = Rank(M), where M is a maximal ideal
of R such that S ∼= R

M . Thus there exists Artinian modules with Noetherian dimension
of any natural number. Therefore, by taking A to be an Artinian module over R with
n− dimA > 1. We infer that A is not fs-module. By Theorem 2.13, we know that every
fs-module with finite hollow dimension is Noetherian. Thus Artinian modules that is not
fs-module always exist.

Definition 2.17. A rightR-module with only finitely many minimal and small (unique
minimal and small) submodules is called a fsm-module (usm-module). A ring with only
finitely many small and minimal right ideals is called an fsm-ring (usm-ring).

Clearly every fs-module is fsm-module.

Proposition 2.18. Let M be a non-simple R-module. Then M is fsm if and only if
J(M) has only finitely many minimal submodules.

Proof. At first, we show that a minimal submodule N of M is small if and only if
it contained in J(M). For this, let N be a minimal submodule of M . If N is small, it
is clear that N ⊆ J(M). Conversely, let N ⊆ J(M) and suppose that N + K = M for
submodule K of M . Since N is a minimal submodule and N ∩K ⊆ N , either N ∩K = 0
or N ∩ K = N . If N ∩ K = 0, then N ⊕ K = M , i.e., K is a maximal submodule
of M , so N ⊆ J(M) ⊆ K. This gives K = M . In case, N ∩ K = N , it follows that
K = N + K = M . Thus N is small in M , as we claimed. In particular, M has only
finitely many small and minimal submodules if and only if J(M) has only finitely many
minimal submodules. □

Remark 2.19. We note that for any semisimple submodule N of M that is contained
in J(M), we have N = Soc(N) ⊆ Soc(J(M)), so N is small, by part (6) of Lemma 2.2.
This show that not only every minimal submodule of M contained in J(M) is small, but
also every semisimple submodule of M contained in J(M) is small.

Next we give a structure theorem for fs-modules.

Theorem 2.20. Let M be an R-module . Then M is a fs-module if and only if
M = M1 ⊕M2, where M1 is semisimple and M2 is a fs-module that soc(M2) ≪ M .
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Proof. We suppose that M is a fs-module and T = {S1, S2, · · · , Sn} is the set
of all its non-zero small submodules. Let T ′ = {S1, S2, · · · , Sm},m ≤ n be set of all
minimal elements of T and so T ′ ⊆ Soc(M), by Proposition 2.9. If T ′ = Soc(M), then
Soc(M) ≪ M , then M = 0⊕M and we are done. But if T ′ ̸= Soc(M), then there exists
a minimal submodule N1 of M which is non-small. So there exist a proper submodule K1

of M such that N1 +K1 = M . Since N1 ∩K1 ⊆ N1 and N1 is a minimal submodule of
M . Thus either N1 ∩K1 ̸= 0 or N1 ∩K1 = N1. If N1 ∩K1 = N1, then N1 ⊆ K1 and so
K1 = N1 +K1 = M , this is a contradiction. Thus M = N1 ⊕K1, where N1 is a minimal
and non-small submodule of M and K1 is a maximal submodule of M . Similarly, if K1

has a minimal submodule, N2 say, which is non-small in K1, there exist a submodule K2

of K1 such that K1 = K2 ⊕N2. This implies that M = N1 ⊕N2 ⊕K2. In the same way
M = M1 ⊕M2, where M1 =

∑⊕Ni is semisimple and M2 is a fs-module which every its
minimal submodules is small and so soc(M2) ≪ M . Conversely, since M1 is semisimple,
by Lemma 2.2(11) every small submodule of M is to form 0⊕ S2 such that S2 ≪ M2 and
so M is a fs-module. □

the following result is now immediate.

Corollary 2.21. Let M be an R-module with finite Goldie dimension. Then M is
a fs-module if and only if M = M1 ⊕ M2, where M1 is a finitely generated semisimple
module and M2 is a fs-module that soc(M2) ≪ M .

Theorem 2.22. Let M be a fs-module. Then M is either Soc(M) ≪ M or there

exists N ⊆ Soc(M) such that Soc(M)
N ≪ M

N .

3. Some properties of fs-rings

We recall that R is an us-ring, if it has an unique non-zero small submodule.

Theorem 3.1. Let R be a ring. Then the following statements are equivalent:

(1) R is a right us-ring.
(2) The Jacobson radical J = J(R) is a minimal right ideal of R and J2 = 0.
(3) Each right ideal A of R is either simple or non-small.

Proof. (1) ⇒ (2). It is easy to see that J , the right Jacobson of R is the unique
small right ideal which is minimal. So J ⊆ Soc(R) and Soc(R).J = 0 implies that
J2 ⊆ Soc(R).J = 0. Therefore J2 = 0.
(2) ⇒ (3). Let A be a right ideal of R. If A is a right small ideal of R, then A ⊆ J(R)
and by(2), A = J(R) is small. Otherwise, A non-small.
(3) ⇒ (1). We infer that always J(R) is a small ideal of R and by (3), J(R) is simple
right ideal of R. Therefore R is an us-ring. □

Corollary 3.2. If R is local and right us-ring, then J(R) is minimal and maximal
right ideal, so it is the unique non-trivial ideal of R.

Corollary 3.3. For a ring R the following statements are equivalent:

(1) R is a right fs-ring.
(2) Each right ideal A of R is either uniserial of finite length or it is non-small.

The previous theorem is also true for us-modules.

Theorem 3.4. Let R be a commutative ring. Then R has finite hollow dimension iff
R

J(R)
∼= ⊕n

1Fi where Fi is a field.
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Proof. By [8, Theorem 17.2.8], if R is a commutative ring, R
J(R)

∼= ⊕i∈IFi, where Fi

is a field and since R has finite hollow dimension, R
J(R) is a finitely generated semisimple

R-module, by Theorem 2.12. and we are done. Conversely, we suppose that R
J(R)

∼= ⊕n
1Fi,

where Fi is a field. For Fi is Artinian hence hdim(Fi) < ∞ for any i, 1 ≤ i ≤ n. By
Theorem 2.2(10), hdim(R) = hdim( R

J(R)) =
∑n

i=1 hdim(Fi) and so R has finite hollow

dimension. □
Corollary 3.5. Let R be a commutative ring with finite hollow dimension. Then R

is zero-dimensional.

Corollary 3.6. Let R be a semiprime local right fs-ring with finite hollow dimension.
Then R is a division ring.

Proof. By Theorem 2.13, R is an Artinian ring. Therefore J(R) = M is nilpotent
such that M is a maximal ideal. But R be a semiprime and so M = 0. □

Corollary 3.7. Let R be a reduced right fs-ring with finite hollow dimension. Then
only small ideal of R is zero, i.e., J(R) = 0.

Proposition 3.8. Let R be a ring. Then R is a right us-ring if R is either a local
ring with unique maximal right ideal M such that M2 = (0), or R is a right usm-ring
(i.e., J(R) is only minimal small right ideal of R) and if R is a right usm-ring, then R is
a right us-ring.

Proposition 3.9. Let R be a domain with finite hollow dimension. Then R is a right
fs-ring if and only if R is a division ring. In particular a domain R with finite hollow
dimension is a right fs-ring if and only if it is a left fs-ring.
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Dominating sets in the perpendicular graphs of modules
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Abstract. Let R be a ring with identity and M be an R-module. Two modules A
and B are called orthogonal, written A ⊥ B, if they do not have non-zero isomorphic
submodules. Perpendicular graph of M defined as the graph Γ⊥(M), with the vertex
set M⊥ = {(0) ̸= A ⪇ M | ∃(0) ̸= B ⪇ M such that A ⊥ B} and two distinct vertices
A and B are adjacent if and only if A ⊥ B. In this paper we study dominating set of
Γ⊥(M).

Keywords: Dominating set, Orthogonal Submodules, Perpendicular Graph
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1. Introduction

The investigation of graphs associated to algebraic structures is very important. Bosak
[3] in 1964 defined the graph of semigroups. Inspired by his work, Csakany and Pollak [4]
in 1969, studied the graph of subgroups of a finite group. Fundamental papers devoted
to graphs assigned to a ring have appeared, see for example [1,2]. In this paper, R be
a ring with identity and M be an R-module, M⊥ = {(0) ̸= A ⪇ M | ∃(0) ̸= B ⪇
M such that A ⊥ B} is the set of all vertices of perpendicular graph. As [5], we say
that two modules A and B are orthogonal, written A ⊥ B, if they do not have non-
zero isomorphic submodules. The perpendicular graph of M , denoted by Γ⊥(M), is an
undirected simple graph with the vertex set M⊥ in which every two distinct vertices A and
B are adjacent if and only if A ⊥ B (see [5] for more details). If M is a simple R-module,
then Γ⊥(M) has no vertices so that Γ⊥(M) = ∅. We can see that every two non-isomorphic
simple submodules of M are mutually orthogonal. A module M is called atomic if M ̸= 0
and for any x, y ∈ M \ {0}, xR and yR have non-zero isomorphic submodules. A module
M is semi-artinian if for every submodule N ̸= M , we have Soc(MN ) ̸= 0. A ring R is left
semi-artinian , if R is a semi-artinian left R-module. A module M is semi-artinian if and
only if M is a loewy module. We say an R-module N is subisomorphic submodule of an
R-module M , and denoted by N ≲ M , when N is isomorphic to a submodule of M .

Inasmuch as Abelian groups are precisely Z-modules, it is natural to try to relate per-
pendicular graph to an Abelian group M . Let M be a finitely generated Abelian group,
so there exist prime number’s p1, p2, ..., pm and positive integer’s α1, α2, ..., αm such that

∗Speaker. Email address: maryam.shirali98@yahoo.com
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M ∼= Zp1α1 ⊕ Zp2α2 ⊕ ...⊕ Zpmαm︸ ︷︷ ︸
tr(M)

⊕Z⊕ ...⊕ Z︸ ︷︷ ︸
β(M)

beti number of M denoted by β(M), which the number of Z’s and torsion part of M
denoted by tr(M).

For every graph G, we say that G is connected if there is a path between any two
distinct vertices. In [5], we have shown that Γ⊥(M) is connected graph and also, we
showed that graph Γ⊥(M) is empty if and only if M is atomic module. A complete graph
is a graph in which every pair of distinct vertices are adjacent. A complete graph with n
vertices is denoted by Kn . By a complete subgraph we mean a subgraph which is complete
as a graph. A bipartite graph (or bigraph) is a graph whose vertices can be divided into
two disjoint sets V1 and V2 (that is, V1 and V2 are each independent sets) such that every
edge connects a vertex in V1 to one in V2. Assume that Km,n denoted the complete
bipartite graph on two non-empty disjoint sets V1 and V2 with |V1| = m and |V2| = n
(here m and n may be infinite cardinal number). A K1,n graph is often called a star
graph. A clique of a graph is a maximal complete subgraph and the number of vertices in
the largest clique of graph G, denoted by ω(G), is called the clique number of G. Let χ(G)
denote the chromatic number of the graph G, that is, the minimal number of colors need
to color the vertices of G so that no two adjacent vertices have the same color. Obviously
ω(G) ≤ χ(G).

Let G be a graph with the vertex set V(G). A subset D of V (G) is called a dominating
set if every vertex of G is either in D or adjacent to at least a vertex in D, denoted by
γ − set. The domination number of G, denoted by γ(G), is the number of vertices in a
smallest dominating set of G. A total dominating set of a graph G is a set S of vertices
of G such that every vertex is adjacent to a vertex in S, denoted by γt − set. The
total domination number of G, denoted by γt(G), is the minimum cardinality of a total
dominating set. If G has no isolated vertices, then γ(G) ≤ γt(G) ≤ 2γ(G). A dominating
set C is said to be a clique dominating set, if the induced subgraph < C > is a clique.
The clique domination number γcl(G) is the minimum cardinality of a clique dominating
set of G. Clearly, if γ(G) = 1, then γcl(G) = 1. The porpose of this article is to study
some properties of dominating sets of the perpendicular graphs of modules.

2. Main results

We investigate the dominating sets of perpendicular graph of R-module M . Before we
state and prove our first main result, we express an auxiliary lemma.

Lemma 2.1. Let A, B and C are submodules of M as R-module. Then the following
facts hold.

(1) If A ⊥ B, then A ∩B = 0.
(2) If B ∼= C and A ⊥ B, then A ⊥ C.

Let M be semi-artinian R-module such that Γ⊥(M) ̸= ∅ and D be a dominating set
in Γ⊥(M). Now, assume that A ∈ D, since M is semi-artinian so there exists simple
submodule SA such that SA ⊂ A also it is clear that there exists simple submodule LA

such that LA ̸⊂ A (because, if A contains every simple submodule, then A is not adjacent
to any non-trivial submodule of M and so Γ⊥(M) = ∅ which is a contradiction). Let

D′ = {SA|A ∈ D} ∪ {LA|A ∈ D}
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then D′ is also a dominating set, because for every vertex B of Γ⊥(M), with B ̸∈ D′,
we have two cases:
(Case 1) If B ̸∈ D, then there exists B′ ∈ D such that B′ ⊥ B. But M is semi-artinian so
there exists simple submodule SB′ such that SB′ ⊂ B′. Thus B ⊥ SB′ and since SB′ ∈ D′,
i.e., B is adjacent to a vertex of D′.
(Case 2) If B ∈ D, so there exist simple submodules SB and LB such that SB ⊂ B and
LB ̸⊂ B. Thus B ⊥ LB and since LB ∈ D′, i.e., B is adjacent to a vertex of D′.

Now we state the main result of this section, which is the dominating set of Γ⊥(M) of
semi-artinian modules.

Theorem 2.2. If M is semi-artinian R-module and S be a collection of non-isomorphic
simple submodules of M such that |S| > 2. Then the following hold.

(1) S is dominating set of Γ⊥(M).
(2) S \ {T} is not dominating set of Γ⊥(M).

Proof. (1) Let A ∈ M⊥\{S} then for any S ∈ S, A ̸= S and since M is semi-artinian
module so A contains a simple submodule. That is either S ⊂ A or S ∼= T ⊂ A. But there
exists simple submodule S′ of M such that S′ ∈ S and S′ ̸⊂ A. Hence S′ ⊥ A, i.e., A is
adjacent to a vertex of S.
(2) On the contrary, assume that B = S \ {T} is γ-set in Γ⊥(M). It is clear that T ⊥
ΣS∈BS, i.e., ΣS∈BS is a vertex in Γ⊥(M) such that for any S ∈ B, S ̸⊥ ΣS∈BS. That
is ΣS∈BS is not adjacent to any vertex in B, i.e., B is not γ-set in Γ⊥(M), which is a
contradiction. □

Remark 2.3. Let M be a semi-artinian R-module and S be a collection of non-
isomorphic simple submodules of M such that |S| > 2. Since all of elements of S are
mutually adjacent, then subgraph < S > is a clique in Γ⊥(M). Thus S is γcl-set in
Γ⊥(M) and we give γcl = |S|.

The next results are immediate by previous fact.

Corollary 2.4. If M is semi-artinian R-module and S be a collection of non-isomorphic
simple submodules of M such that |S| > 2. Then S is γ-set ( γt-set and γcl-set ) in Γ⊥(M).

Corollary 2.5. If M is semi-artinian R-module and S be a collection of non-isomorphic
simple submodules of M such that |S| > 2. Then γ(Γ⊥(M)) = γt(Γ⊥(M)) = γcl(Γ⊥(M)) =
|S|.

The condition of M to be a semi-artinian module in Theorem 2.2 is necessary: see the
next example.

Example 2.6. Let R = Z and consider the R-module M = Z⊕Zp ⊕Zq such that p, q
are distinct prime numbers. Note, abelian group M is not semi-artinian and has two non-
isomorphic simple submodules. We show that D = {Zp,Zq,Zpq} is minimal dominating
set in Γ⊥(M). To see this, for any X ∈ M⊥\{D}, there exists Y ∈ M⊥ such that X ⊥ Y .
Two cases may happen:
(Case 1) If β(X) ̸= 0, then Z ≲ X and we give β(Y ) = 0. In this case, tr(Y ) ̸= 0 and so
tr(Y ) is Zp or Zq or Zpq. That is three cases may happen:
(1) If Y ∼= Zp, then X ⊥ Zp such that Zp ∈ D.
(2) If Y ∼= Z, then X ⊥ Zq such that Zq ∈ D.
(3) If Y ∼= Zpq, then X ⊥ Zpq such that Zpq ∈ D.
(Case 2) If β(X) = 0, then tr(X) ̸= 0 and so X ∼= Zp or X ∼= Zq or X ∼= Zpq. Since X ⊥ Y
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by Lemma 2.1, Zp ⊥ Y or Zq ⊥ Y or Zpq ⊥ Y . Hence D is minimal dominating set in
Γ⊥(M) and so we give γ(Γ⊥(M)) = 3. But subgraph < D > is not clique in Γ⊥(M). We
can see that C = {Zp,Zq} is γcl-set in Γ⊥(M) and we give γcl(Γ⊥(M)) = 2.

Also the condition |S| > 2, where S be a collection of non-isomorphic simple submod-
ules of M in Theorem 2.2 is necessary: see the next example.

Example 2.7. Let R = Z and consider the R-module M = Z6. We can see that M is
semi-artinian R-module and γ(Γ⊥(M)) = 1 such that |S| = 2.

Theorem 2.8. Let M be an R-module. If γ(Γ⊥(M)) = 1 then γt(Γ⊥(M)) = 2.

Proof. Suppose that γ(Γ⊥(M)) = 1, hence D = {A} is a minimum dominating set
of Γ⊥(M). That is for any K ∈ M⊥ \ {D}, K ⊥ A. On the other hand, by γ(Γ⊥(M)) ≤
γt(Γ⊥(M)) ≤ 2γ(Γ⊥(M)) we give 1 ≤ γt(Γ⊥(M)) ≤ 2. Now we show that γt(Γ⊥(M)) ̸=
γ(Γ⊥(M)). On the contrary, γt(Γ⊥(M)) = γ(Γ⊥(M)) then D′ = {A′} is a minimum total
dominating set of Γ⊥(M). That is for any K ∈ M⊥, A′ ⊥ K. But A′ ∈ M⊥, and so
A′ ⊥ A′ which is a contradiction. Thus γt(Γ⊥(M)) = 2. □
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Abstract. Let G be a group and Lc(G) be the central kernel of G, that is the set of
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finite p-group.
AMS Mathematics Subject Classification [2010]: 20D45, 20D25, 20D15

1. Introduction
Throughout the paper all groups are assumed to be finite and p denotes a prime

number. By G′, Z(G), Φ(G), Inn(G) and Aut(G), respectively we denote the commutator
subgroup, the center, the Frattini subgroup, the group of all inner automorphisms and
the group of all automorphisms of G. For each x ∈ G and α ∈ Aut(G), the element
[x, α] = x−1xα is called the autocommutator of x and α. An automorphism α of G is
called a central automorphism if [x, α] ∈ Z(G) for each x ∈ G. An automorphism α of
G is called an IA-automorphism if [x, α] ∈ G′ for all x ∈ G. An automorphism α of G is
called a class preserving automorphism if xα ∈ xG for all x ∈ G, where xG is the conjugacy
class of x in G. Let AutZ(G), AutG′

(G) and Autc(G) respectively, denote the group of
all central automorphisms, IA-automorphisms and class preserving automorphisms of G.
In 1994, Hegarty [4] introduced the concept of absolute center subgroup of a group G, as
follows:

L(G) = {x ∈ G | [x, α] = 1, ∀α ∈ Aut(G)}.
It is easy to check that the absolute center of G is a characteristic subgroup contained in
the center of G.

Haimo in [3] introduced the following subgroup of a given group G, which is similarly
[1], denoted by Lc(G) as follows:

Lc(G) = {x ∈ G | [x, α] = 1, ∀α ∈ AutZ(G)},
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and it is called the central kernel of G. Also
Kc(G) = ⟨[x, α] : x ∈ G,α ∈ AutZ(G)⟩,

is said the central autocommutator subgroup of G ( [1]). One can easily check that Lc(G)
is a characteristic subgroup of G contains L(G) and Kc(G) is a central characteristic
subgroup of G. According [1] let

AutLc(G) = {α ∈ AutZ(G) | [x, α] ∈ Lc(G), ∀x ∈ G},
which is a normal subgroup of AutZ(G). Clearly, by the definition of Lc(G), AutLc(G)
acts trivially on the central kernel of G. Since the central automorphisms of G fix G′

elementwise, it follows that G′ ≤ Lc(G) and G/Lc(G) is abelian. There are some results
on the central kernel subgroup of a finite group G, see for example [1], [2].

Recall an abelian finite p-group A has invariants or is of type (n1, n2, ..., nk) if it is the
direct product of cyclic subgroups of orders pn1 , pn2 , ..., pnk , where n1 ≥ n2 ≥ ... ≥ nk > 0.

In this paper, first we give a necessary and sufficient condition on a finite non-abelian
p-group G for the groups AutLc(G) and Inn(G) coincide. Also we characterize finite non-
abelian p-group G such that AutLc(G) = AutG

′
(G). Finally, we give a necessary and

sufficient condition for a finite p-group G such that AutLc(G) = Autc(G).

2. Main results
In this section, we provide some results concerning the group AutLc(G), where G is a

finite p-group.
First, we define two subgroups of AutZ(G) and G as follows:

CLc(G) = CAutZ(G)(AutLc(G)) = {α ∈ AutZ(G) : αβ = βα, ∀β ∈ AutLc(G)},
and

ELc(G) = [G,CLc(G)].

Obviously, ELc(G) is characteristic in G, which is contained in Kc(G). Also, if G/Z(G) is
abelian, then G′ = [G, Inn(G)] ≤ [G,CLc(G)] ≤ ELc(G).

The following lemma gives the important property of ELc(G) which will be needed in
our investigation.

Lemma 2.1. If G be an arbitrary group, then AutLc(G) acts trivially on the subgroup
ELc(G) of G.

Proof. Let α ∈ AutLc(G), then g−1gα ∈ Lc(G), for all g ∈ G and so gα = gtg, for
some tg ∈ Lc(G). Next, by take an automorphism β ∈ CLc(G), we have

[g, β]α = (g−1gβ)α = (g−1)α(gβ)α = (g−1)α(gα)β

= t−1
g g−1gβtβg = g−1gβt−1

g tg = [g, β],

which completes the proof. □
Lemma 2.2. Let G be a finite p-group. Then

AutLc(G) ∼= Hom(G/ELc(G)Lc(G), Lc(G) ∩ Z(G)).

In the following result we characterize finite non-abelian p-groups G of arbitrary class
such that AutLc(G) = Inn(G).
Let G be a finite non-abelian p-group and G/ELc(G)Lc(G) is of type (a1, a2, ..., ak). Also
if G/Z(G) is abelian, then it has invariants (b1, b2, ..., bn).
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By fixed the above notation, we have the following result:

Theorem 2.3. Let G be a finite non-abelian p-group. Then AutLc(G) = Inn(G) if and
only if Lc(G) is cyclic, k = n and one of the following conditions holds:

(1) ELc(G)Lc(G) = Z(G)
(2) bt = f and as = bs for s = t+1, ..., k where, exp(Lc(G)) = pf and t is the largest

integer between 1 and k such that at > f .

Let G be a finite non-abelian p-group and G/G′ is of type (a1, a2, ..., ak). Also if
G/Z(G) is abelian, then G′ has invariants (e1, e2, ..., en).
Keeping fixed the above notation, we prove the following theorem:

Theorem 2.4. Let G be a finite non-abelian p-group. Then the following two conditions
holds: Then

(i) AutLc(G) = AutG
′
(G);

(ii) AutLc(G) ∼= Hom(G,Lc(G)), Lc(G) ≤ Z(G) and one of the following conditions
holds:
(1) G′ = Lc(G) or
(2) G′ < Lc(G), n = m, where (b1, b2, ..., bm) be invariants of Lc(G) and a1 = et,

where t is the largest integer between 1 and n such that bt > et.

Lemma 2.5. Let G be a finite non-abelian p-group such that AutLc(G) = Autc(G).
Then

(i) Lc(G) ≤ Z(G) ∩ Φ(G);
(ii) AutLc(G) ∼= Hom(G/Lc(G), G′).

Let G be a finite non-abelian p-group such that G/Lc(G) is of type (b1, b2, ..., bm). By
fixed this notation, we have the following theorem:

Theorem 2.6. Let G be a finite non-abelian p-group. Then the following statements
are equivalent:

(i) AutLc(G) = Autc(G);
(ii) G′ = Lc(G) ≤ Z(G), Autc(G) ∼= Hom(G/Lc(G), G′) and one of the following

conditions holds:
(1) Lc(G) = ELc(G) or
(2) Lc(G) < ELc(G), m = k and e1 ≤ ct, where G/ELc(G) and G′ are of types

(c1, c2, ..., ck) and (e1, e2, ..., en) and t is the largest integer between 1 and m
such that bt > ct.

Let G be a finite group and N be non-trivial proper normal subgroup of G. Then
(G,N) is called a Camina pair if xN ⊆ xG for all x ∈ G\N . It follows that (G,N) is a
Camina pair if and only if N ⊆ [x,G] for all x ∈ G\N . A group G is called a Camina
group if (G,G′) is a Camina pair.

Corollary 2.7. Let G be a finite non-abelian p-group such that Lc(G) is elementary
abelian. Then AutLc(G) = Autc(G) if and only if G′ = Lc(G) and G is a Camina p-group.

Corollary 2.8. Let G be a finite p-group such that Lc(G) is cyclic. Then AutLc(G) =
Autc(G) if and only if G′ = Lc(G) and Z(G) = ELc(G)Gpn where exp(Lc(G)) = pn.

In the following result we give a sufficient condition such that the group AutLc(G) acts
trivially on Kc(G).
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Theorem 2.9. Let G be a group such that Kc(G) is a torsion-free subgroup of G and
Kc(G)/ELc(G) is a torsion group. Then AutLc(G) acts trivially on Kc(G) and moreover
is a torsion-free abelian group.

3. Conclusion
In this paper we study closely the group AutLc(G) for a finite non-abelian p-group G.
We give a necessary and sufficient condition on G for the groups AutLc(G) and Inn(G)

coincide. Also we characterize all groups G such that AutLc(G) = AutG
′
(G). Finally, we

give a necessary and sufficient condition on G such that AutLc(G) = Autc(G).
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Abstract. Let G be a locally compact group. The convolution algebra of trace class
operators (T (Lp(G)), ∗) with p ∈ (1,∞), is a new Banach algebra, that was introduced
by M. Neufang [5]. In this paper, we study (T (Lp(G)), ∗) in the view of one of the
important properties of Banach algebras, that is a notion of contractibility.
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1. Introduction
Let G be a locally compact group with the left Haar measure λ. A classical Banach

space is the Banach space of all trace class or nuclear operators. We denote T (Lp(G)) for
the Banach space of all trace class operators on Lp(G); the space of all functions on G
whose p-th powers are integrable, where p ∈ (1,∞). An operator ξ is called a trace class
operator on Lp(G) if it belongs to the image of the map J as follows




J : Lq(G)⊗̂Lp(G) −→ T (Lp(G))

∞∑

n=1

fn ⊗ gn 7→





J

( ∞∑

n=1

fn ⊗ gn

)
: Lp(G) −→ Lp(G)

J

( ∞∑

n=1

fn ⊗ gn

)
(h) =

∞∑

n=1

〈fn, h〉 gn =
∞∑

n=1

(∫
fnh dλ

)
gn,

where n ∈ N, fn ∈ Lq(G), gn, h ∈ Lp(G) and q is the convex conjugate of p and ⊗̂ is the
Banach space projective tensor product. The map J is an isometric isomorphism between
T (Lp(G)) and Lq(G)⊗̂Lp(G). In other words,

T (Lp(G)) ∼= Lq(G)⊗̂Lp(G) =

{ ∞∑

n=1

fn ⊗ gn ∈ B(Lp(G)) ;
∞∑

n=1

‖fn‖q‖gn‖p <∞
}
.
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For detailed information see also [6, §2.6].

The Banach space of trace class operators was introduced for the first time by A.
Grothendieck [2]. Indeed, Grothendieck had worked on tensor products of locally convex
linear spaces and had proved a version of «Schwartz’s Kernel Theorem». The terminol-
ogy «kernel» conduced the concept «nuclear». On the other hand, A. F. Ruston and
Grothendieck had extended the «Fredholms Determinant Theory» to operators in Banach
Spaces. Here, the word «Determinant» conduced the concept «trace».

This Banach space was paid attention by M. Neufang, who introduced a new convolu-
tion product on the Banach space T (Lp(G)) that is different from the usual composition of
operators [5]. This convolution is denoted by ∗ and makes T (Lp(G)) to a Banach algebra.
Its formula is as follows

(1) ξ ∗ η =

∫ w

G
Lt−1 ξ Lt σ(η)(t) dλ(t) ( ξ, η ∈ T (Lp(G)) ) ,

such that for every t ∈ G, Lt : L
p(G) −→ Lp(G) is the left translation operator on Lp(G)

and has the formula Lt(h)(x) = h(t−1x) (t, x ∈ G,h ∈ Lp(G)) and
σ : Lq(G)⊗̂Lp(G) ∼= T (Lp(G)) ↠ L1(G)

is a Banach algebra epimorphism which is a connection between the Banach algebra
T (Lp(G)) and the group algebra L1(G) with the formula

σ(f ⊗ g) = f̃g ( f ∈ Lq(G) , g ∈ Lp(G) ),

such that for every t ∈ G, f ∈ Lq(G) and g ∈ Lp(G), f̃g(t) = ∆(t−1) f(t−1) g(t−1) and ∆
is the modular function on G. The integral in (1) is the weak integral with respect to λ.
(T (Lp(G)), ∗) is an associative Banach algebra and it is considered as a non-commutative
version of the group algebra (L1(G), ∗). The reader can refer to [5] for more information
and more details about (T (Lp(G)), ∗).

Let A be a Banach algebra, ∆(A) be the set of all characters on A and ϕ ∈ ∆(A). The
Banach algebra A is called right ϕ-contractible if the first cohomology group H1(A,X )
vanishes for any Banach A-bimodule X such that its left module product is defined by
a · x = aϕ(x) (a ∈ A, x ∈ X ). Left ϕ-contractibility of A is defined analogously. The
notion of ϕ-contractibility of a Banach algebra was defined and studied in [3] and [7]. This
concept was introduced with a new approach by the first author and Nasr-Isfahani in [4].
Indeed, by this new approach, the Banach algebra A is called right ϕ-contractible (resp.
left ϕ-contractible), if there exists an element a0 ∈ A with ϕ(a0) = 1, such that for every
a ∈ A

a0 a = a0 ϕ(a) ( resp. a a0 = ϕ(a) a0 ).

In this paper, we study the convolution algebra of trace class operators (T (Lp(G)), ∗)
in the view of right ϕ-contractibility, where ϕ ∈ ∆(T (Lp(G))).

2. Main Results
Let G be a locally compact group. In this section, we investigate right ϕ-contractibility

of (T (Lp(G)), ∗), where ϕ ∈ ∆(T (Lp(G))) and equal it to a property of the group G. At
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first, we use [4, Lemma 3.11]. This important result relates contractibility of two Banach
algebras as follows.

Proposition 2.1. Let A and B be two Banach algebras, ϕ ∈ ∆(A) and ψ ∈ ∆(B).
Suppose that there exists a continuous epimorphism κ : A ↠ B such that ϕ = ψ ◦ κ. If A
is ϕ-contractible, then B is ψ-contractible.

It is appropriate to identify a certain character for the convolution algebra of trace
class operators (T (Lp(G)), ∗). Indeed, we can deduce that there always exists a nonzero
character on (T (Lp(G)), ∗), that is denoted by Tr : T (Lp(G)) −→ C. Further, there is an
important relation between Tr and the augmentation character





ε : L1(G) −→ C

f 7→ ε(f) =

∫

G
f dλ

mentioned in [1], as follows
{
Tr : T (Lp(G)) ↠ L1(G) −→ C
Tr = ε ◦ σ.

In other words, for every ξ ∈ T (Lp(G))

Tr(ξ) = ε(σ(ξ)) =

∫

G
σ(ξ)(t) dλ(t).

By setting the Banach algebras A = T (Lp(G)), B = L1(G) and the epimorphism σ :
T (Lp(G)) ↠ L1(G) instead of κ : A ↠ B in Proposition 2.1, we can relate contractibility
of two Banach algebras T (Lp(G)) and L1(G). So we have the following theorem.

Theorem 2.2. Let G be a locally compact group. If the Banach algebra (T (Lp(G)), ∗)
is right Tr-contractible, then G is compact.

Proof. Suppose that (T (Lp(G)), ∗) is a right Tr-contractible Banach algebra. By
setting the epimorphism σ : T (Lp(G)) ↠ L1(G) in Proposition 2.1, we deduce that the
group algebra (L1(G), ∗) is right ε-contractible. Finally, by applying [4, Theorem 6.1], we
get compactness of G. □

It is natural to ask weather the converse of Theorem 2.2 holds. In the following
theorem, we shall prove the converse of previous theorem is also true.

Theorem 2.3. Let G be a compact group with a normalized Haar measure λ. Then
the algebra of trace class operators (T (Lp(G)), ∗) is right Tr-contractible.

Proof. Suppose that G is a compact group. So 1 ∈ Lq(G) and 1 ∈ Lp(G). Therefore
1⊗ 1 ∈ Lq(G)⊗̂Lp(G) ∼= T (Lp(G)).

We show that ξ0 := 1 ⊗ 1 is the desired right Tr-mean for (T (Lp(G)), ∗). First, we
calculate Tr(ξ0) as follows

Tr(ξ0) = Tr(1⊗ 1) = ε(σ(1⊗ 1)) =

∫

G
σ(1⊗ 1)(t) dλ(t)

=

∫

G
1̃(t) dλ(t) =

∫

G

1

∆(t)
1(t−1) dλ(t) = λ(G) = 1.(2)
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Further, for every ξ ∈ T (Lp(G)),

ξ0 ∗ ξ = (1⊗ 1) ∗ ξ =
∫ w

G
Lt−1 (1⊗ 1)Lt σ(ξ)(t) dλ(t) =

∫ w

G
(1⊗ 1) σ(ξ)(t) dλ(t)

= (1⊗ 1)

∫

G
σ(ξ)(t) dλ(t) = (1⊗ 1) ε(σ(ξ)) = (1⊗ 1) Tr(ξ) = ξ0 Tr(ξ).(3)

Finally, the equations (2) and (3) show that (T (Lp(G)), ∗) is right Tr-contractible. □
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Abstract. In this talk at first we recall the class of intuitionistic fuzzy modules and
then present some properties of them. Also we introduce a special class of intuitionistic
fuzzy modules and study on them. Exact sequences in category of intuitionistic fuzzy
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1. Introduction
The concept of fuzzy intuitionistic sets was introduced by K. T. Atanassov in [1]. By

a fuzzy set (or fuzzy subset) of a module M , we mean the µ from M to [0, 1]. By [0, 1]M

we will denote the set of all fuzzy subsets of M .
An intuitionistic fuzzy set (briefly an IFS) A of a non-void set X is an object having
the form A = {(x, µA(x), νA(x));x ∈ X}, where the maps µA : X −→ [0, 1] and νA :
X −→ [0, 1], are fuzzy subsets of X, denote respectively the degree of membership (namely
µA(x)) and the degree of non-membership (namely νA(x)) of each element x ∈ X, and
0 ≤ µA(x) + νA(x) ≤ 1 for every x ∈ X.
For the sake of simplicity, we denote an IFS, A = {(x, µA(x), νA(x));x ∈ X} of the set X
by A = (µA , νA) or briefly A, and the set of all IFS of X by IFS(X).

Definition 1.1. Let M be an R−module and A = (µA , νA) an IFS of M . Then A is
called an intuitionistic fuzzy submodule of M if A satisfies the
following conditions:

(1) µA(0) = 1, νA(0) = 0
(2) µA(x+ y) ≥ µA(x) ∧ µA(y), for every x, y ∈ M

νA(x+ y) ≤ νA(x) ∨ νA(y), for every x, y ∈ M
(3) µA(rx) ≥ µA(x), for every x ∈ M and r ∈ R

νA(rx) ≤ νA(x), for every x ∈ M and r ∈ R

If A = (µA, νA) is an intuitionistic fuzzy submodule of an R-module M , we write A is
an IFM of M and denote by A ≤IF M . In this case we say A is an intuitionistic fuzzy

∗Speaker. Email address: behnamtalaee@nit.ac.ir
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module too.
We use by IFS(M), the set of all IFM of M and IFR − Mod, the category of all IF
R-modules.

Definition 1.2. Let A = (µA , νA) and B = (µB , νB ) be two IFM ’s of M . Then the
IFM , A+B of M is A+B = {(x, µA+B (x), νA+B (x);x ∈ M} defined as

µA+B (x) =
∨

{µA(y) ∧ µB (z) | x = y + z; y, z ∈ M}

νA+B (x) =
∧

{νA(y) ∨ νB (z) | x = y + z; y, z ∈ M}

Proposition 1.3. Let M be an R-module and N ⊆ M . Then N ≤ M if and only if
χIF

N
≤IF M .

Example 1.4.
(1) Since nZ ≤ Z so χIF

nZ = (χ
nZ , χc

nZ) is IFM of Z for every n ∈ Z.
(2) Z ≤ Q and hence χIF

Z is an IF submodule of Q.
(3) Z∞

p ≤ Q
Z and hence χIF

Z∝
P
is an IF submodule of Q

Z .

2. Main Results
Definition 2.1. Let R be a ring and M, N be R-modules such that A = (µA, νA) ≤IF

M and B = (µB, νB) ≤IF N . The function f̃ : A → B is called an intuitionistic fuzzy
R-homomorphism, if f : M −→ N is an R-homomorphism and µB(f(x)) ≥ µA(x) and
νB(f(x)) ≤ νA(x) for every x ∈ M .

Definition 2.2. An intuitionistic fuzzy R-homomorphism f̃ ∈ HomIF−R(A,B) is
called fuzzy split, if there is an intuitionistic fuzzy R-homomorphism t̄ ∈ HomIF−R(B,A)

such that the composition t̃f̃ = id .

Definition 2.3. An intuitionistic fuzzy R-homomorphism f̃ ∈ HomIF−R(A,B) is
called intuitionistic fuzzy quasi-isomorphism if f is an isomorphism.

If f̃ : A → B is an IF R-homomorphism, define Kerf̃ =

{
a ∈ A | µB(f̃(a)) = 1;

νB(f̃(a)) = 0

}

and Imf̃ = {f̃(a)|a ∈ A}.

Definition 2.4. An intuitionistic fuzzy R-homomorphism f̃ ∈ HomIF−R(A,B) is
called intuitionistic fuzzy isomorphism, if f is an isomorphism and µB (f̄(a)) = µA(a) ,
νB (f̄(a)) = νA(a) for every a ∈ M .

Note that kerf̃ = kerf is not true in general, but kerf ⊆ kerf̃ .
If kerf̃ = {0} then f̃ is monomorphism because if

f(x) = f(y) ⇒ f(x−y) = 0 ⇒
{

µ
N
(f̃(x− y)) = 1;

ν
N
(f̃(x− y)) = 0.

⇒ x−y ∈ kerf̃ = {0} ⇒ x = y.

But the reverse is not true, it means if f̃ is a monomorphism then it need not that
kerf̃ = {0}.
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Example 2.5. If B = 1IF
M

, then Kerf̃ = M , for every A ∈ IFR − Mod and f̃ ∈
HomIF−R(A,B). Especially let M = N = Z, A = B = 1IF

M
and f̃ : A → B be the identity

map. Then kerf = {0} but kerf̃ = Z.

Proposition 2.6. Let R be a ring. If f̃ ∈ HomIF−R(A,B), where A and B are two
IF R-modules, such that A = (µA , νA) ≤IF M and B = (µB , νB ) ≤IF N , then
(1) Kerf̃ is a submodule of M,

(2) Define µ′ |kerf̃ : Kerf̃ → [0, 1] , ν ′ |kerf̃ : Kerf̃ → [0, 1] by
{

µ′(k) = µ(k);
ν ′(k) = ν(k).

for every

k ∈ kerf̃ .
Then A′ = (µ′|kerf̃ , ν ′|kerf̃ ) is an IF submodule of A.

Definition 2.7. Let A, B and C be IF R-modules of M, N and K respectively. A
short exact sequence is a sequence of the form

0̄−→A
f̃−→ B

g̃−→ C −→ 0̄

where f̃ is a monomorphism, g̃ is an epimorphism and Imf̃ = kerg̃.
Note that Kerf̃ is usually larger than {0} by Definition 2.4. Hence, the crisp case of the
definition is different from the well-known notion of short exact sequence in the category
IFR-mod.

If C = 1K , we get that Imf̃ = Kerg̃ = N . As f̃ is monic, we can get that f̃ is
quasi-isomorphism.

Theorem 2.8. Let R be a commutative ring and A = (µA, νA) ≤IF M ,
B = (µB, νB) ≤IF N be two intuitionistic fuzzy R- modules. Then
HomIF−R(A,B) = (α, β) is an IF R-module with membership function
α : HomIF−R(A,B) −→ [0, 1] and non-membership function
β : HomIF−R(A,B) −→ [0, 1] defined by

α(f̃) =
∧

{µB(f̃(x)) | x ∈ M} and β(f̃) =
∨

{νB(f̃(x)) | x ∈ M}

Theorem 2.9. Let R be a commutative ring and let

0̄ −→ A
f̃−→ B

g̃−→ C

be an exact sequence in IFR-Mod, where f̃ is IF split homomorphism. ThenHomIF−R(D,-
) preserves the sequence, for every D ∈ IFR−Mod.

Lemma 2.10. Let R be a commutative ring and A ∈ IFR−Mod. Then
ΓA : Hom(0IFRe , A) −→ eA defined by f̃ 7−→ f̃(e), is an IF R-module
isomorphism.

Proposition 2.11. Let R be a ring and the following diagram of IF R-modules is
commutative:

0̄ −→ A
f̃−→ B

g̃−→ C −→ 0̄

↓α̃
yβ̃ ↓γ̃

0̄ −→ D
h̃−→ E

p̃−→ F −→ 0̄

where α̃, γ̃ are IF isomorphisms and β̃ is an IF quasi-isomorphism. Then the bottom row
is a short exact sequence if and only if so is the top row.
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Definition 2.12. Let M,N be two R−modules and A ≤IF M , B ≤IF N . If f̃ :
A −→ B is an IF homomorphism and e ∈ E(R), we define ẽf : eA −→ eB by ẽf(em) =

f̃(em) = ef̃(m), for every m ∈ M .

Proposition 2.13. Let R be a commutative ring and 0̄ −→ A
f̃−→ B

g̃−→ C −→ 0̄ be
a short exact sequence of IF R-module. Let e ∈ E(R), ẽf = f̃ |eA and ẽg = g̃|eB . Then the
sequence 0̄ −→ eA

ẽf−→ eB
ẽg−→ eC −→ 0̄ is exact.
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Abstract. In this paper, symmetric methods by composition technique are constructed
which are applicable to general time-reversible ordinary differential equations (ODEs).
Here, the aim is to increase the order while preserving some desirable properties of the
basic method. To show the advantages of the proposed methods, some periodic problems
are tested.
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1. Introduction

This paper, is concerned with symmetric methods for solving first order autonomous
initial value problem (IVP) of the form

y′(t) = f(y(t)), t ∈ [t0, T ],
y(t0) = y0,

(1)

where f : Rm → Rm and T > 0. The solution y(t) of (1) is the flow map φ : Rm → Rm

such that y(t) = φt(y0).
Symmetric methods play an essential role in the geometric solution of differential equa-
tions. The construction of symmetric methods goes back to many years. When Lam-
bert [2], for the first time introduced symmetric linear multistep methods. Later, sym-
metric Runge–Kutta methods were investigated [1].
The main aim of this paper is to construct and test higher-order symmetric Runge–Kutta
methods by triple-jump composition. Here, we consider Hamiltonian systems as our IVPs.
The equation of motion are called Hamiltonian systems with Hamiltonian H which is a
function of p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn) and defines the differential system

(2) ṗ = −Hq(p, q), q̇ = Hp(p, q), p, q ∈ X,

having n degrees of freedom.
For autonomous Hamiltonian systems, the total energy remains conserved. This means
that the value of Hamiltonian H remains constant along the solution of the system.
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1.1. Runge–Kutta methods. Runge–Kutta methods are one-step methods for the
numerical solutions of IVPs (1). The general form of a Runge–Kutta method is in the
form

Yi = yn−1 + h

s∑

j=1

aijf(Yj),

yn = yn−1 + h

s∑

i=1

bif(Yi),

where Yi, i = 1, 2, . . . , s, are stages calculated during the integration.

2. Symmetric Runge–Kutta methods

Definition 2.1. The adjoint method Φ∗
h is the inverse of Φh with reversed step size −h.

A numerical one-step method Φh is said to be symmetric, if it is equal to its adjoint
method. In the other words, the method is symmetric if it satisfies Φh = Φ∗

h.
A one-step method Φh is said to be of order p if

Φh(y) = φh(y) +C(y)hp+1 +O(hp+2),

and also, the adjoint method Φ∗
h is of order p if

Φ∗
h(y) = φh(y)−C(y)(−h)p+1 +O(hp+2),

Thus the symmetry condition for one-step method implies that a symmetric method is of
even order.

Theorem 2.2. A Runge–Kutta method is symmetric if there exists a permutation matrix
P such that

bT = bTP,

A+ PAP = ebT ,

where e = [1, 1, . . . , 1]T ∈ Rs.

2.1. Symmetric methods achieved by composition. An important class of sym-
metric methods is included of symmetric compositions of low-order methods.
Let Φh : X → X denote a Runge–Kutta method. Then, a composition method with step
sizes α1h , α2h,...,αkh is given by

(3) Ψh(y0) = Φαkh ◦ ... ◦ Φα1h,

where it is assumed that α1 + α2 + · · ·+ αk = 1.
If Φh is of even order p, then the composed method is at least of order p+ 1 if

α1 + α2 + · · ·+ αk =1,

αp+1
1 + αp+1

2 + · · ·+ αp+1
k =0.

This observation is the key to triple-jump composition. The most important issue in the
composition theory is that for certain choices of αi, for i = 1, . . . , k, the composed method
is of higher order than the base method.
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Notation 2.3. (Triple-jump [1]): For a symmetric Runge–Kutta method of even order p,
the triple-jump method is in the form

Ψh(y0) = Φα1h ◦ Φα2h ◦ Φα1h(y0).

where α1 and α2 can be calculated as

α1 =
1

2− 21/(p+1)
, α2 =

−21/(p+1)

2− 21/(p+1)
.(4)

Here, we have considered the Trapezoidal method as the base method, which is sym-
metric Runge–Kutta method of order 2.
We start with a symmetric Runge–Kutta method (Trapezoidal) of order 2 and then apply
equations (4) with p = 2 to obtain order 3; but due to the symmetry of α’s this new
method is of order 4. This procedure can be repeated. In the second iteration, we use the
new method of order 4 and apply (4) with p = 4 and obtain a symmetric method of order
6.

3. Numerical results

We restrict our numerical experiments to the composition methods of order 4 and
6 based on the Trapezoidal method, to demonstrate the effectiveness of the proposed
methods and confirm the theoretical order by applying methods on the following problems.

P1. The first problem is the Kepler’s problem also known as the one-body problem
which describes the motion of a single planet moving around a heavy sun. The equations
of motion define a separable Hamiltonian system

H(p1, p2, q1, q2) =
1

2
(p21 + p22)−

1√
q21 + q22

,

and the initial values are prescribed to be

p1(0) = 0, p2(0) =

√
1 + e

1− e
, q1(0) = 1− e, q2(0) = 0,

where e is the eccentricity of an ellipse on which the orbit lies and is fixed to be 0.3. With
these initial values, all points in the orbit lie on the ellipse

(p1 + e)2 +
p22

1− e2
= 1.

P2. This problem describes the motion of a simple pendulum with unit mass and
length. The corresponding Hamiltonian is written as

H(p, q) =
1

2
p2 − cos(q),

and the initial values are prescribed to be

p(0) = 0, q(0) = 2.3.

The results of numerical experiments for the kepler problem is presented in Table 1.
The convergence rates of the methods are obtained by

P = log2
∥Eh∥
∥Eh

2
∥ ,

where Eh is the global error of the methods with step size h. Also the results of numerical
experiments for the problem P2 are presented in Figures 1 and 2. It is known that simple
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Table 1. Numerical results for problem P1 on the interval [0, 10π]

h ∥Eh∥ for method of order 4 P ∥Eh∥ for method of order 6 P
1
10 4.05× 10−5 6.64× 10−7

1
20 2.57× 10−6 3.9751 1.06× 10−8 5.9601

1
40 1.62× 10−7 3.9912 1.68× 10−10 5.9873

1
80 1.01× 10−8 3.9994 2.63× 10−12 5.9968

pendulum is a Hamiltonian problem and by Figures 1 and 2 we can see that the proposed
methods approximately preserve the structure of the Hamiltonian problem P2.

Figure 1. Hamiltonian preservation for the method of order 4 for simple
pendulum with h = 0.05.

Figure 2. Hamiltonian preservation for the method of order 6 for simple
pendulum with h = 0.05.

References

1. E. Hairer, C. Lubich and G. Wanner, Geometric numerical integration. Structure-preserving algorithms
for ordinary differential equations, Springer, first edition, 2003.

2. J. D. Lambert and I. A. Watson, Symmetric multistep methods for periodic initial value problems, IMA
J. Appl. Math., 18 (1976), no. 2, 189–202.

644



Analytic Torsion on manifolds with fibred boundary metrics

Mohammad Talebi1,∗
1Universität Oldenburg, Germany

Abstract. In this paper, we construct the renormalized analytic torsion in the setup
of manifold endowed with fibred boundary metrics. The method of construction is to
determine the asymptotic of heat kernel, both in short time regime and long time regime
and apply these asymptotics together with renormalization to determine the renormalized
zeta function and the determinant of Hodge Laplacian.
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1. Introduction
Analytic torsion was introduced by Ray and Singer [4] as analytic counterpart of Rei-

demeister torsion in topology. Ray and Singer conjectured that these two torsions are
equivalent on closed manifolds. Cheeger and Müller, later Bismut and Zhang, proved
this conjecture independently. Assume that (M, g) is a closed Riemannian manifold
and e−t∆g(x, y) := H(t, x, y) is the heat kernel with respect to Hodge Laplacian ∆q

g :
Ωq(M) −→ Ωq(M), acting on the space of q forms,

∂tH(t, x, y) + ∆q
g,xH(t, x, y) = 0,(1)

H(t = 0, x, y) = δ(x− y).

One define the heat trace to be, Tr(e−t∆q
g) =

∫
M e−t∆g(x, x)dvolg. Assume∆q

g is Hodge
Laplacian acting on the space of q-forms. The corresponding zeta function is defined as,

(2) ζMq (s) :=
1

Γ(s)

∫

M
Tr(e−t∆q

g − dimker(∆))ts−1dt.

So defined (2) is defined on Re(s) > n
2 where n = dim(M) but can be extended holomor-

phically to complex plane C with regular point at s = 0. The determinant of Laplacian is
defined to be,

det(∆q
g) := e−ζ′q(0),

∗Speaker. Email address: m0hammadtalebi@aol.com

645



M. Talebi

One defines the analytic torsion as,

log T (M) :=
1

2

n∑

q=0

(−1)qqζ ′q(0),

In this work we consider manifolds with fibred boundary metrics 2.1. In this set up,
we are going to define the analytic torsion. The main difficulty arises when we consider
the heat trace,

Tr(e
−t∆q

gϕ ) =

∫

R+

e−t∆gϕ (x, x)dvolϕ,

i.e in ϕ set up, the boundary is located at infinity and therefore the integration over di-
agonal diverges. To address this problem, the renormalized heat trace is applied in the
Hadamard manner [6], which essentially takes into account the integration of the heat
kernel along the diagonal on the finite component. The heat kernel structure theorem
may be employed to take the finite part of this integral at zero to be heat trace renormal-
ized . In order to describe analytic torsion in the set up of ϕ manifolds, we can explicitly
describe renormalized zeta function and Laplacian determinant by means of renormalized
heat trace.

The paper is organized as follows. In section 2, we provide our main result. We
introduce the set up manifolds with fibred boundary metrics in 2.1. In section 3, we give
main results which we need for the definition of Analytic Torsions from [5], [1] and [6]
and define renormalized Zeta function.

2. Main results
Theorem 2.1. For (M, gϕ) fibred boundary manifold, denote ∆k

ϕ to be Hodge Laplacian
acting on the space of k forms. One may define the renormalized analytic torsion by,

(3) LogRTM,gϕ :=
1

2

n∑

q=0

(−1)qq
d

ds
RζqM,ϕ(s)|s=0.

2.1. Manifolds with fibred boundary metrics.

Definition 2.2. Assume M is a compact manifold with boundary ∂M and ∂M has
fibration structure i.e, ∂M

ϕ
− B − F, where ϕ is trivialization of fibration. B is base

manifold and F is closed manifold as fibre. Near the boundary one may take the product
[0, ϵ)× ∂M by collar neighborhood theorem, and fix local coordinates on M to be, (x, y =
(y1 · · · yb), z = (z1, · · · zf )). Here x = ρ∂M is the boundary defining function of ∂M , i.e,
∂M = {x = 0}, dx ̸= 0, x ≥ 0. Consider the metric,

gϕ =
dx2

x4
+

ϕ∗gB
dx2

+ gF ,

on M where gB is Riemannian metric on base B and gF is symmetric bilinear form which
restricts to Riemannian metric on fibre F . We assume further that φ : (∂M, gF+φ∗gB) −→
(B, gB) is Riemannian submersion. Such a geometric set up is called fibred boundary ϕ
metric manifolds. Intuitively the boundary is fibre bundle with base B and fibre F where
the boundary is viewed to be located at infinity.
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Example 2.3. Examples of these manifolds include, scattering manifolds where fibre
F is trivial. Gravitational instantons as hyperkähler 4 manifolds [2]. Locally symmetric
spaces of rank 1 and in other cases, finite processing of fibre bundles over cones.

3. Heat kernel for manifolds with fibred boundary metrics
In this section, we states two main Theorems for Asymptotics of Heat kernel in finite

and long time regimes on manifolds with fibred boundary metrics. We apply the methods
of Geometric microlocal analysis [1] (Section 2).

Theorem 3.1 (Heat kernel for finite time). [5](Theorem 1.1) With the same assump-
tions as in [5], the fundamental solution of the heat equation, for finite time t < ∞,

∂tH(t, x, x′) + ∆q
gϕ,x

H(t, x, x′) = 0,

H(t = 0, x, x′) = δ(x− x′),

lifts to polyhomogeneous conormal distribution on HMϕ with leading asymptotics 0 at
fd and −n at td and vanishing to infinite order on other hypersurfaces of HMϕ. Here
n = dimM .

Theorem 3.2 (Resolvent at low energy for phi Manifolds). [1](Theorem 1.6) Under
the same assumptions as in [1], The resolvent (∆ϕ + k2)−1 as k −→ 0+ is an element of
the split calculus (defined as in [1]) where,

Esc ≥ 0, Eϕf0 ≥ 0, Ebf0 ≥ −2, Elb0 , Erb0 > 0, Ezf ≥ −2.

The leading terms at sc, ϕf0, bf0 and zf are of order 0, 0,−2,−2.
Theorem 3.3 (Heat kernel for infinite time). [6](Theorem 3.7) The heat kernel which

is given by
HM (t, x, x′) =

1

2πi

∫

Γ
etλ(∆ϕ + λ)−1dλ,

is polyhomogeneous conormal at t = ω− 1
2 at ω −→ 0 on M2

ω,ϕ with index sets given in terms
of index sets of resolvent (∆ϕ + λ)−1 at low energy level. More explicitly the asymptotics
of heat kernel in long time regime are of leading order 0 at sc face and of order 0 at zf
and bf0 faces. More over the leading order at the face ϕf0 is 2. In long time regime the
heat kernel vanishes to infinite order at lb, rb, and bf faces of M2

ω,ϕ. The explicit index
sets are as follows,

Esc ≥ 0, Eϕf0 ≥ 2, Ebf0 ≥ 0, Elb0 , Erb0 > 0, Ezf ≥ 0.

Consider formally,

(4) 1

Γ(s)

∫ ∞

0

RTr(Hk
M,ϕ)(t)t

s−1dt.

Apriori (4) is not defined for any s ∈ C. By breaking (4) at some constant c we may
express (4) as sum of two integrals. The integral,

(5) R
0 ζ

k
M,ϕ(s) :=

1

Γ(s)

∫ c

0

RTr(Hk
M,ϕ)(t)t

s−1dt,

is defined for Re(s) > n
2 . Each summand can directly be evaluated to show that (5) admits

meromorphic extension to complex plane C. The second integral is denoted as R
∞ζkM,ϕ(s),

(6) R
∞ζkM,ϕ(s) :=

1

Γ(s)

∫ ∞

c

RTr(Hk
M,ϕ)(t)t

s−1dt.
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One can show that the integral converges for Re(s) < 0 and by evaluating directly (6) the
meromorphic extension to complex plane C follows.

One may now define the renormalized Zeta function and determinant of Laplacian in
order to obtain the main result. For more detail on the proofs we refer to [6].

4. Conclusion
On manifolds with fibred boundary metrics, using the methods of geometric micro-

local analysis and functional calculation together with resolvent kernel we determined the
asymptotics of the Heat kernel in finite time and long-term regimes on suitable spaces of
manifolds with corners. Using these asymptotics, we determined the heat trace asymp-
totics and applied renormalization to define the renormalized zeta function and the deter-
minant of Laplace. The definition of analytic torsion is then straightforward.

Remark 4.1. One still has to show that this definition is canonical and then the open
question will be the Cheeger-Müller-Type statement for manifolds with fibred boundary
metrics.
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Abstract. In this paper, we define χ-Connes module amenability of a semigroup algebra
l1(S), where χ is a bounded module homomorphism from l1(S) to itself and S is an inverse
weakly cancellative semigroup with subsemigroup ES of idempotents. We investigate and
study of χ-module normal, virtual diagonals. Realy, we obtain some inherited properties
for semigroup algebra l1(S) over l1(ES) via mentioned diagonals.
Keywords: χ-Connes module amenable, χ-module normal virtual diagonal, inverse
semigroup algebra, module ψ-derivation, weakly cancellative semigroup
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1. Introduction
The concept of module amenability for a Banach algebra is introduced by Amini [1].

Amini show that if S is an inverse semigroup with subsemigroup ES of idempotents, then
semigroup S is amenable if and only if semigroup algebra l1(S) over l1(ES) is module
amenable. In [4], Johnson has previously explored these concepts. In this paper, we
introduce the concept of χ-Connes module amenability for semigroup algebra l1(S) and
give a characterization of χ-Connes module amenability in terms of χ-modul normal virtual
diagonals.

2. Main results
Let S be a semigroup. We say that S is cancellative semigroup, if for every r, p ̸= q ∈ S

we have rs ̸= rq and pr ̸= qr.
Let S be a semigroup. We say that S is an inverse semigroup if for each x ∈ S there

exists a unique element x∗ ∈ S such that xx∗x = x and x∗xx∗ = x∗. An element e ∈ S is
called an idempotent if e = e∗ = e2. The set of idempotent elements of S is denoted by
E. For p ∈ S, we define Lp, Rp : S → S by Ls(q) = pq,Rp(q) = qp; (q ∈ S). If for each
p ∈ S, Lp and Rp are finite-to-one maps, in this case S is named weakly cancellative.

Remark 2.1. Let S be a weakly cancellative semigroup, then l1(S) is a dual Banach
algebra with predual c0(S) [3]. In other word l1(S) = c0(S)

∗.
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Let A be a dual Banach algebra and A∗ be predual of A, namely A = (A∗)∗. Let U
be a Banach algebra such that A is a Banach U-bimodule via,

α.(ab) = (α.a).b, (αβ).a = α.(β.a) (a, b ∈ A, α, β ∈ U).
Let I be the closed ideal of A⊗̂A that I =< α.(a⊗b)−(a⊗b).α >, for a, b ∈ A and α ∈ U .
Suppose that A⊗̂UA ≡ A⊗̂A

I . Let J be the closed ideal of A that J =< (α.a).b−a.(b.α) >.
Since J is ω∗-closed, then the quotient algebra A

J is again dual with predual ⊥J = {ϕ ∈
A∗ : ⟨ϕ, a⟩ = 0 for all a ∈ J}. Also we have J⊥ = {ϕ∗ ∈ A∗ : ⟨ϕ, a⟩ = 0 for all ϕ ∈ J}.

In this paper we let that L2
ω∗(AJ ,C) denote the separately ω∗-continuous two-linear

maps from A
J × A

J to C, ω̃∗ : A⊗̂UA → A
J be the multiplication operator with ω̃(a⊗b+I) =

ab+ J and ψ̃ : A
J → A

J be the map that is defined by ψ̃(a+ J) = ψ(a) + J, a ∈ A.

Definition 2.2. Let A be a dual Banach algebra. A module homomorphism from A
to A is a map ψ : A → A with

ψ(α.a+ b.β) = α.ψ(a) + ψ(b).β, ψ(ab) = ψ(a)ψ(b) (a, b ∈ A, α, β ∈ U).
Definition 2.3. Let A be a dual Banach algebra and ψ : A → A be a bounded

module homomorphism. An element M ∈ L2
ω∗(AJ ,C)

∗ is called a ψ-module normal virtual
diagonal for A if ω̃∗∗(M).(ψ(a)+ J) = ψ(a)+ J and M.ψ̃(a+ J) = ψ̃(a+ J).M (a ∈ A).

Let X be a dual Banach A-bimodule. we say that X is normal if for every x ∈ X , the
maps

A → X ; a→ a.x, a→ x.a

are ω∗-continuous. If moreover X is a U-bimodule such that for a ∈ A, α ∈ U and x ∈ X
α.(a.x) = (α.a).x, (a.α).x = a.(α.x), (α.x).a = α.(x.a),

then X is called a normal Banach left A-U-module. Similarly for the right and two sided
actions. Also, we say that X is symmetric, if α.x = x.α (α ∈ U , x ∈ X ).

Throughout this paper Hω∗(A) will denotes the space of all ω∗-continuous bounded
module homomorphisms from A to itself.

Definition 2.4. Let A = (A∗)∗ be a dual Banach algebra, ψ ∈ Hω∗(A) and let that
X be a dual Banach A-bimodule. A bounded map DU : A → X is called a module
ψ-derivation if for every a, b ∈ A and α, β ∈ U , we have

DU (α.a± b.β) = α.DU (a)±DU (b).β, DU (ab) = DU (a).ψ(b) + ψ(a).DU (b).

When X is symmetric, each x ∈ X defines a module ψ-derivation

(DU )x(a) = ψ(a).x− x.ψ(a) (a ∈ A).

In this case we say DU is an inner module ψ-derivation.

Definition 2.5. Let A be a dual Banach algebra, ψ ∈ Hω∗(A) and U be a Banach
algebra such that A is a Banach U-module. we say that A is ψ-Connes module amenable if
for any symmetric normal BanachA-U-module X , each ω∗-continuous module ψ-derivation
DU : A → X is inner.

Theorem 2.6. Let A and U be dual Banach algebras, let A be an unital dual Banach
U-module and let A has an id-module normal virtual diagonal. Then A is id-Connes
module amenable.
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Proof. Let X be a symmetric normal Banach A-U-module. By assumption we know
that A has an identity. It is therefore sufficient for A to be id-Connes module amenable
that we suppose that X is unital. Let DU : A → X be a module derivation that is ω∗-
continuous. It is routine to see that E is a normal Banach A

J -U-module. Let X = (X∗)∗.
Since X is symmetric, then DU |J = 0. We define D̃U : A

J → X ; D̃U (a+ J) := DU (a) (a ∈
A). To each x ∈ X∗, there corresponds Vx : A

J × A
J → C via Vx(a + J, b + J) = ⟨x, (a +

J)D̃U (b+ J)⟩(a, b ∈ A). It is clearly that Vx ∈ L2
ω∗(AJ ,C). For each a, b ∈ A and a∗ ∈ A∗

we have

⟨
∫
ab+ JdM, a∗ + J⊥⟩ = ⟨M, ω̃∗(a∗ + J⊥)⟩ = ⟨ω̃∗∗(M), a∗ + J⊥⟩.

Now, put f(x) = ⟨M, νx⟩(x ∈ X∗). Let c ∈ A. After a little calculation, we obtain

⟨(c+ J).f − f.(c+ J)⟩ =
∫
⟨(ab+ J)D̃U (c+ J), x⟩dM = ⟨ω̃∗∗(M).D̃U (c+ J), x⟩.

All in all, DU (c) = c.f − f.c holds. □
In Theorem 2.6 it is shown that if an unital Banach algebra A has an id-module normal

virtual diagonal, then A is id-Connes module amenable. Let S be a semigroup, it would
be interesting to know that the converse holds for inverse semigroup algebra l1(S). Thus
for an inverse semigroup S, we define an equivalence relation on S where p ≈ q if and only
if there is e ∈ ES with pe = qe. The quotient semigroup SG = S

≈ is a group [5]. Also, ES

is a symmetric subsemigroup of S. Thus, l1(S) is a Banach l1(ES)-module. Let l1(ES)
acts on l1(S) via

δe.δp = δp, δp.δe = δpe = δp ∗ δe (p ∈ S, e ∈ ES).

With recent notation, l1(SG) is a quotient of l1(S) and so the above action of l1(ES) on
l1(S) lifts to an action of l1(ES) on l1(SG), making it a Banach l1(ES)-module [1].

The following theorem is the main result of the present paper.

Theorem 2.7. Let S be an inverse weakly cancellative semigroup with idempotents
ES, let l1(S) be a Banach l1(ES)- module and let χ ∈ Hω∗(l1(S)). If l1(S) is χ-Connes
module amenable, then l1(S) has a χ-module normal virtual diagonal.

Proof. Let π : S → SG be the quotient map. By [1, Lemma 3.2], we define a
bimodule action of l1(S) on l∞(SG) by

δp.x = δπ(p) ∗ x, x.δp = x ∗ δπ(p) (p ∈ S, x ∈ l∞(SG)).

It is clearly that l1(SG)∗ is a normal Banach l1(S)-l1(E)-module. Choose η ∈ l1(SG)
∗ such

that ⟨η, 1⟩ = 1, and we consideringD : l1(S) → l1(SG)
∗ byD(δp) = χ(δp).η−η.χ(δp). Since

l1(S) is χ-Connes module amenable, then D is inner. Therefore, there exists η̃ ∈ ( l
∞(SG)

C )∗

with D(δs) = adη̃, so
χ̃(δπ(p)).η − η.χ̃(δπ(p)) = χ̃(δπ(p)).η̃ − η̃.χ̃(δπ(p))

Then we may define

⟨M, f⟩ = lim
α

∫
f
(
χ̃(δπ(x∗)), χ̃(δπ(x))

)
fα(x)dx.

Also for each p we obtain

ω̃∗∗(M).χ̃(δπ(p)) = ⟨M, ω̃∗(χ̃(δπ(p)))⟩ = lim
α

∫
(ω∗(χ̃(δπ(p))))(χ̃(δπ(x∗))), χ̃(δπ(x)))fα(x)dx
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= lim
α
χ̃(δπ(p))

∫
fα(x)dx = χ̃(δπ(x)).

Consequently, M is a χ-normal module virtual diagonal for l1(S). □
Theorem 2.8. Let S be a weakly cancellative semigroup with idempotents ES, let l1(S)

be an unital dual Banach l1(ES)-module and let l1(S)⊗̂l1(ES)l
1(S) be a dual Banach l1(ES)-

module and χ ∈ Hω∗(l1(S)). If l1(S) is χ-Connes module amenable, then l1(S)⊗̂l1(ES)l
1(S)

is χ⊗l1(ES)χ-Connes module amenable.

Corollary 2.9. Let S be an inverse weakly cancellative semigroup, with idempotents
ES and let l1(S) be a Banach l1(ES)-module. Then l1(S) is Connes module amenable if
and only if l1(S) has a module normal virtual diagonal.

Proof. This follows immediately from Theorem 2.6 and Theorem 2.7. □
Example 2.10. Let (N,∨) be a semigroup with maximum operation. It is clearly

that N is weakly cancellative, thus l1(N) is a dual Banach algebra that l1(N) = c0(N)∗.
By [3, Theorem 5.13], l1(N) is not Connes amenable. Moreover l1(N) is module amenable
on l1(EN), therefore l1(N) is Connes module amenable.

3. Conclusion
In this paper we show that if S is an inverse weakly cancellative semigroup with

idempotents E, χ is a bounded module homomorphism from semigroup algebra l1(S) to
itself that is ω∗-continuous and l1(S) as a Banach module over l1(E) is χ-Connes module
amenable, then it has χ-module normal virtual diagonal.
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Abstract. A min-max spanning tree problem is to find a spanning tree in a weighted
graph so that the maximum amount of its weights is minimized. This paper considers
the problem in the presence of a proactive adversary. His goal is to remove some edges
of the graph under a budget constraint so that the optimal value of the problem is
increased as much as possible. Such the edges is called most vital edges. In this paper,
a polynomial-time algorithm is proposed to find most vital edges in min-max spanning
tree problems.
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1. Introduction

Two main classes of optimization problems are defined on spanning tree structures:

• minimum spanning tree (MST) problems,
• min-max spanning tree (MMST) problems.

The first is to find a spanning tree in a given weighted network G(V,E,w) so that the
summation of its weights is minimized. The second is to look for a spanning tree so as
to minimize the maximum value of its weights. It is well known that MST problems can
be solved in O(|E|+ |V | log |V |) time by Kruskal’s algorithm and Prime’s algorithm, and
min-max spanning tree problems can be solved in O(|E|) time by a recursive algorithm [2].

A natural extension of the MST problem is to find k edges whose removal increases the
optimal value of the problem as much as possible. This situation occurs whenever there is
an adversary which would like to prevent us for optimizing our objective function. Such
the edges are referred to as k most vital edges. It is proved that the problem can be solved
in polynomial time for k = 1 [4], whereas it is strongly NP-hard for k > 1 [5]. In spite of
the fact that there are several papers for finding most vital edges in MST problems [1],
to the best our knowledge, there is not any work to consider the problem of finding most
vital edges in MMST problems. This paper focuses on this issue in the case that there is a
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fixed cost for removing any edge, and the adversary has to satisfy a budget constraint with
respect to these costs. A polynomial-time algorithm is developed to solve the problem.

2. Preliminaries and problem statement

Suppose that a network G(V,E) is given, where V = {1, 2, . . . , n} is the node set and
E = {e1, e2, . . . , em} is the edge set. We say that an edge ek is incident to a node i if one
of its endpoints is i. We use the notation (i, j) to denote edge ek whose two endpoints
are i and j. A path from i to j is a sequence of edges ek1 − ek2 − · · · − ekl so that any
two consecutive edges intersect in one of their endpoints and additionally, ek1 and ekl are
incident to i and j, respectively. We admit the convention that any path contains no two
repetitive nodes.

A graph G′(V ′, E′) is said to be a subgraph of G if V ′ ⊆ V and E′ ⊆ E. A subgraph
is called spanning if it contains all the nodes of G, i.e., V ′ = V . A (sub)graph is said to
be connected if there is at least a path between any two nodes. Any maximal connected
subgraph of G is referred to its connected component. So, G contains only one connected
component if it is connected. Throughout this paper, we assume that G is connected.
A cut is a set of edges whose removal exactly converts the graph into two connected
components. A path from a node to itself is called a cycle. A set of edges which does
not contain any cycle is referred to as a forest. A forest of G with n nodes and n − 1
edges is called a spanning tree. On the other word, a spanning tree of G is a spanning
and connected subgraph which does not include any cycle.

Suppose that any edge (i, j) is associated with a nonnegative weight wij . The min-
max spanning tree problem is to find a spanning tree in a way that the maximum value of
its weights is minimized. The following lemma states an optimality condition for MMST
problems.

Lemma 2.1. A spanning tree T is a min-max spanning tree with optimal value p if and
only if there is a cut C so that

(1)

{
wij ≤ p (i, j) ∈ T,
wij ≥ p (i, j) ∈ C, ∀(i, j) ∈ E.

Proof. For a proof, see [6]. �
Now let us introduce the main problem. Consider the situation in which an adversary

wants to remove some edges to increases the objective function of a given MMST problem
as much as possible. Any edge is associated with a removal cost cij , and the adversary
has to remove edges such that their total cost does not exceed a given budget B. So, the
problem is as follows:

(2) max
E′∈X

min
T∈T(E′)

max
(i,j)∈T

{wij},

in which X = {E′ ⊆ E :
∑

(i,j)∈E\E′ cij ≤ B} and T(E′) is the set of all spanning trees in

G(V,E′). In the case that T(E′) does not contain any spanning tree, then it is assumed
that the optimal value of problem (2) is +∞.

3. Algorithm

To develop an efficient algorithm, we introduce a new edge set corresponding to a cut
C and a value p. This is denoted by E(C,p) and is defined as

(3) E(C,p) = {(i, j) ∈ C : wij ≤ p}.
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It is easy to see that the objective value of the MMST problem is at least equal to p in
G(V,E\E(C,p)). The following lemma clarifies the reason of defining E(C,p).

Lemma 3.1. If there is a most-vital edge set S which decreases the optimal value of
the MMST problem to p, then there is a cut C so that E(C,p) also decreases the optimal
value to p

Proof. The proof follows from the cut notion. �

Based on Lemma 3.1, we can restrict ourselves to the sets defined in (3) to find an

optimal set. The proposed approach is to find the greatest value of p so that E(C,p) satisfies
the budget constraints. For this purpose, we introduce a new cost vector c̄p as follows:

(4) c̄pij =

{
0 p ≥ wij ,
cij p < wij ,

(i, i) ∈ E.

The following lemma states the relationship between c̄p and E(C,p).

Lemma 3.2. For a given cut C, the capacity of C with respect to c̄p, that is
∑

(i,j)∈C c̄
p
ij,

is less than or equal to B if and only if E(C,p) satisfies the budget constraint.

Proof. The proof is straightforward. �

We are now ready to state our proposed algorithm in complete details. This algorithm
uses the divide-and-conquer technique on a set of possible objective values to look for the
greatest value p so that E(C,p) satisfies the budget constraint for some cut C. From Lemma
3.2, it can finds a minimum cut with respect to c̄p. If the capacity of the minimum cut is
less than or equal to B, then E(C,p) is feasible and otherwise, there is no feasible solution
with the objective value greater than or equal to p. The following lemma determines the
search space for finding the optimal value.

Lemma 3.3. The optimal value of problem (2) belongs to {+∞} ∪⋃(i,j)∈E{wij}.
Proof. By definition, the proof is immediate. �

Our proposed algorithm is stated formally in Algorithm 1. The correctness of Al-
gorithm 1 follows from the above argument. Let us discuss about its complexity. The
number of iterations is O(log(k)) = O(log(|V |)) in while-loop. Moreover, it is obvious
that the bottleneck operation is finding a minimum cut in while-loop. Since a min-
imum cut can be iteratively constructed by |V | − 1 maximum flow computations in
(|V | − 1)O(|V ||E| log(|V |)) = O(|E||V |2 log(|V |)) time, the following result is immediate.

Theorem 3.4. Algorithm 1 solves problem (2) in O(|E||V |2 log2(|V |)) time.

4. Conclusion

This paper considered the problem of finding most vital edges in min-max spanning
tree problems. An algorithm is presented to solve the problem in polynomial time. This
result is a significant observation since finding most vital edges in minimum spanning tree
problems is NP-hard in general [5].

As a future work, it will be meaningful to investigate finding most vital edges and
most vital nodes in other bottleneck optimization problems, such as the min-max shortest
path problem, the min-max matching problem.
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Algorithm 1

Input: An instance of problem (2).
Output: A set E∗ of most vital edges.
Set S = {+∞} ∪⋃(i,j)∈E{wij}.
Sort elements of S in an increasing order. Let w1 < w2 < . . . < wk be the sorted list.
Set l = 1 and u = k.
while u 6= l do

Set mid = [ l+u2 ]
Set p = wmid and obtain c̄p.
Find a minimum cut C in G(V,E) with respect to c̄p.
if the capacity of C is less than or equal to B then

Set u = mid.
Obtain E∗ = {(i, j) ∈ C : wij ≤ p}.

else
Set l = mid

end if
end while
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Abstract. In this work, we have proposed a family of with-memory Kung-Traub-like
three-step methods.Also, by using an accelerator parameter, we have increased the con-
vergence order of the with-memory methods to twelve.We have increased the degree of
convergence from 8 to 12,which shows a 50% improvement. Several examples are consid-
ered to illustrate the proposed method is accurate and efficient.
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1. Introduction

One of the most studied problems in Numerical Analysis is the conjecture of nonlinear
equations.A robust tool is the use of iterative methods. It is famous that Newton’s method,
is one of the most used iterative methods to approximate the solution x∗ of f(x) = 0.
Because this method has no memory and has a lower efficiency index, the researchers
used with-memory methods to solve nonlinear equations. In this work,we will convert
the following three-step without memory method, into a single-parameter with memory
method. Soleymani and Shateyi in [3] proposed the following one-parameter three-point
methods for solving nonlinear equations:
(1)



wk = xk + βf(xk), yk = xk − f(xk)
f [xk,wk]

, zk = yk − f(yk)f(wk)
f [xk,yk](f(wk)−f(yk))

,

ϕk = f(zk)
f(yk)

, τk = f(zk)
f(wk)

, σk = f(zk)
f(xk)

, pk = f(yk)
f(wk)

k = 0, 1, 2, · · · ,
G(ϕk) = 1 + ϕk, H(τk) = 1 + τk, Q(σk) = 1 + σk, L(pk) = 1 + (1 + βf [xk, wk])p

2
k,

xk+1 = zk − f(zk)f(wk)
f [xk,yk](f(wk)−f(yk))

(G(ϕk)H(τk)Q(σk)L(pk)).

Theorem 1.1. Assume that f is a sufficiently differentiable real function. Let one
suppose that ξ ∈ D is a simple zero of f . If the initial estimation x0 is close enough to
ξ, then the sequence xn generated by any method of the family (1) converges to x∗ with
eighth-order of convergence if G,H,Q, and L are real sufficiently differentiable functions
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satisfying G(0) = G′(0) = 1,H(0) = H ′(0) = 1, Q(0) = Q′(0) = 1, L(0) = 1, L′(0) = 0,
and L′′(0) = 2 + 2βf [xk, wk] .

(2) en+1 = (1 + βf ′(ξ))4c2(2c22 − c3)(7c
4
2 − 8c22c3 + c23 + c2c4)e

8
n +O(e9n).

This work is organized as follows. In Section 2,we are going to construct new iterative
methods with memory. Section 3 recounts the numerical results for solving some test
systems of nonlinear equations, including matching with other existing iterative meth-
ods. Finally, Section 4 gets the main conclusions of this paper.

2. Main results

The authors(Soleymani,Shateyi) showed that the convergence order of the without
methods (1) is 8. This paper aims to find more efficient methods using the same number
of evaluations. For this goal, we have approximated the self-accelerating parameter in the
above methods.We observe from (2) that the order of convergence of the family (1) is eight
when β ̸= −1

f ′(α) .With the choice β = −1
f ′(α) , it can be proved that the order of the family

(1) would be 12.However, the exact value of f ′(α) is not available in practice and such
acceleration of convergence can not be realized.We have approximated the parameter β
by βk and βk = −1

N ′
4(xk)

≈ −1
f ′(α) , where N4(t) = N4(t;xk, xk−1, wk−1, yk−1, zk−1). Finally, we

propose one-parameter family with memory method:
(3)



βk = − 1
N ′

4(xk)
, k = 1, 2, 3, . . . ,

wk = xk + βkf(xk), yk = xk − f(xk)
f [xk,wk]

, zk = yk − f(yk)f(wk)
f [xk,yk](f(wk)−f(yk))

,

ϕk = f(zk)
f(yk)

, τk = f(zk)
f(wk)

, σk = f(zk)
f(xk)

, pk = f(yk)
f(wk)

k = 0, 1, 2, · · · ,
G(ϕk) = 1 + ϕk, H(τk) = 1 + τk, Q(σk) = 1 + σk, L(pk) = 1 + (1 + βkf [xk, wk])p

2
k,

xk+1 = zk − f(zk)f(wk)
f [xk,yk](f(wk)−f(yk))

(G(ϕk)H(τk)Q(σk)L(pk)).

Lemma 2.1. If γk = −1
N ′

4(xk)
, then:

(1 + γkf
′(α)) ∼ c5ek−1ek−1,wek−1,yek−1,z.(4)

Theorem 2.2. If a primary approximation x0 is sufficiently close to the zero α of
f(x) = 0 and the parameter γk in the iterative scheme (3) is recursively calculated by
lemma in (2.1), then the R-order of convergence is at least 12.

Proof. Suppose the sequence xk is a sequence of approximations created by an itera-
tive (IM) method. If this sequence converges to the root α, we have the equation f(x) = 0
with R-order,Or((IM), α) ≥ r:

(5) ek+1 ∼ Dk,re
r
k, ek = xk − α.

Where Dk,r tends to the constant asymptotic error Dk of the iterative method (IM) when
k → ∞. Therefore

(6) ek+1 ∼ Dk,re
r
k = Dk,r(Dk−1,re

r
k−1)

r = Dk,rDk−1,re
r2

k−1.

If we assume that the minimum R-order duplicate sequences wk and yk are equal to p, and
q, respectively, then we have:

(7) ek,w ∼ Dk,re
p
k = Dk,r(Dk−1,re

r
k−1)

p = Dk,rDk−1,re
rp
k−1.
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And

(8) ek,y ∼ Dk,re
q
k = Dk,r(Dk−1,re

r
k−1)

q = Dk,rDk−1,re
rq
k−1.

(9) ek,z ∼ Dk,re
s
k = Dk,r(Dk−1,re

r
k−1)

s = Dk,rDk−1,re
rs
k−1.

Now, using Lemma (2.1) and R-orders we will have:

(1 + βkf
′(α)) ∼ ek−1ek−1,wek−1,yek−1,z

∼ Dk−1,pe
p
k−1Dk−1,qe

q
k−1Dk−1,se

s
k−1ek−1

= Dk−1,pDk−1,qDk−1,se
1+p+q+s
k−1 .(10)

Now, we have :

(11)





ek,w ∼ (1 + βkf
′(α))ek,

ek,y ∼ (1 + βkf
′(α))e2k,

ek,z ∼ (1 + βkf
′(α))2e4k,

ek+1 ∼ (1 + βkf
′(α))4e8k.

Therefore, considering the relations (10), and (11) we obtain:

(12)





ek,w ∼ (1 + βkf
′(α))ek ∼ Dk−1,pDk−1,qDk−1,sDk−1,re

(1+p+q+s)+r
k−1 ,

ek,y ∼ (1 + βkf
′(α))e2k ∼ Dk−1,pDk−1,qDk−1,sDk−1,re

(1+p+q+s)+2r
k−1 ,

ek,z ∼ (1 + βkf
′(α))2e4k ∼ Dk−1,pDk−1,qDk−1,sDk−1,re

2(1+p+q+s)+4r
k−1 ,

ek+1 ∼ (1 + βkf
′(α))4e8kDk−1,pDk−1,qDk−1,rDk−1,se

4(1+p+q+s)+8r
k−1 .

Combining (6)-(12), (7)-(12), (8)-(12), and (9)-(12), we conclude

(13)





ek,w ∼ e
(1+p+q+s)+r
k−1 ,

ek,y ∼ e
(1+p+q+s)+2r
k−1 ,

ek,z ∼ e
2(1+p+q+s)+4r
k−1 ,

ek+1 ∼ e
4(1+p+q+s)+8r
k−1 .

Therefore, by comparing exponents of ek−1 appearing in three pairs of relations ((6),(13)),
((7),(13)), ((8),(13)) and ((9),(13)), considering the power equations, we will finally reach
the system of the following three unknown equations:

(14)





rp− r − (p+ q + s+ 1) = 0,

rq − 2r − (p+ q + s+ 1) = 0,

rs− 4r − 2(p+ q + s+ 1) = 0,

r2 − 8r − 4(p+ q + s+ 1) = 0.

The only positive answer of this system equations nonlinear is: r = 12, s = 6, q = 3, p =
2. So, the proof of Theorem 2.2 finish.We show this method with TM12. □

659



V. Torkashvand

3. Numerical results

This section demonstrates the convergence behavior of the with-memory methods
(3). All computations are performed using the programming package Mathematica with
multiple-precision arithmetic. Table 1 also include, for each test function, the initial estima-
tion values and the last value of the computational order of convergence rc [4] computed
by the expression

(15) rc ≈
log |f(xn)/f(xn−1)|
log |f(xn−1)/f(xn−2)|

.

3.1. Table. We use the following functions,most of which are the same as in [5]

(16)




f1(x) = x log(1 + x sin(x)) + e−1+x2+x cos(x) sin(πx), α = 0, x0 = 0.6,

f2(x) =
1

x4
− x2 − 1

x
+ 1, α = 1, x0 = 1.4

Table 1. Comparison of the absolute error of the proposed method with
other methods

f1(x) = x log(1 + x sin(x)) + e−1+x2+x cos(x) sin(πx), α = 0, x0 = 0.6

Methods |x1 − α| |x2 − α| |x3 − α| rc EI
KTM [2] 0.23230(−1) 0.33703(−13) 0.13863(−107) 8.00000 1.68179
CLMTM [1] 0.74137(−18) 0.43686(−144) 0.63508(−1154) 8.00000 1.68179
SSM [3] 0.19880(−3) 0.14391(−32) 0.10773(−265) 8.00000 1.68179
TM12,β0 = 0.1 0.10773(0) 0.69686(−14) 0.49537(−163) 12.00000 1.86121

f2(x) =
1

x4
− x2 − 1

x
+ 1, α = 1, x0 = 1.4

Methods |x1 − α| |x2 − α| |x3 − α| rc EI
KTM [2] 0.10721(−1) 0.45584(−12) 0.50318(−95) 8.00000 1.68179
SSM [3] 0.59024(−2) 0.29737(−13) 0.11094(−103) 8.00000 1.68179
CLMTM [1]h1, g1 0.37731(−21) 0.41016(−169) 0.79993(−1353) 8.00000 1.68179
TM12,β0 = 0.1 0.63131(−4) 0.22066(−46) 0.61197(−556) 12.00000 1.86121

4. Conclusion

In this paper, we have obtained a new class of with memory methods. The order
of convergence of the new methods with memory is 12.Also, the Newtons interpolatory
polynomials of 4 degree is applied for constructing considerably faster methods employing
information from the current and previous iteration without any additional evaluations
of the function. The results show that this new methods is useful to nd an acceptable ap-
proximation of the exact solution. The efciency index of the proposed family with memory

is 12
1
4 = 1.86121.
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Abstract. We derive a lower bound for potential function of extended gradient Einstein-
type metrics on a complete non-compact Riemannian manifold. Moreover, it’s proved
that any gradient Einstein-type manifold is homeomorphic to interior of a compact mani-
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1. Introduction
Riemannian manifolds endowed with metrics satisfying some structural equations, pos-

sibly involving curvature and some globally defined vector fields are subject of great in-
terest in geometry and physics. Recently, Einstein-type manifolds were introduced by G.
Catino et al. that generalized Einstein manifolds, quasi-Einstein metrics, Ricci solitons,
Ricci almost soliton, m-quasi Einstein metric, Yamabe solitons, Yamabe quasi-solitons
and conformal gradient solitons, see [2]. Take (M, g) as a Riemannian manifold; then
(M, g) is an Einstein-type manifold if there is a vector field V and smooth real function λ
on M such that g satisfies the equation

αRic+ βLV g − γV ♭ ⊗ V ♭ = λ(x)g,(1)
where α, β, γ ∈ R. If the vector field V is the gradient of a potential function f , then
(M, g) is said to be gradient Einstein-type manifold and (1) takes the familiar form

αRic+ β∇∇f − γdf ⊗ df = λ(x)g.

It is conjectured, by J. Milnor, that the fundamental group of a complete Riemannian
manifold with positive mean curvature Ricci tensor must be finitely generated, see [5].
Such a manifold may not be homeomorphic to interior of a compact manifold with bound-
ary, that is, may not have finite topological type, see [4]. F. Fang, J. Man, and Z. Zhang
show that a complete shrinking gradient Ricci soliton with suitable assumptions on the
Ricci tensor is of finite topological type, see [3]. Moreover J.Y. Wu has studied extended
Yamabe solitons for inequalities and elaborated that a complete extended gradient Yam-
abe soliton, that is a complete Riemannian manifold satisfying Hess(f) ⩾ (λ − R)g, in
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certain cases has finite topological type, see [6]. Next, the present author inspiring the
Bonnet-Myers Theorem has extended the equation Yamabe soliton for inequalities and
among the others they have shown that a Riemannian complete non-compact shrinking
Yamabe soliton (M, g, V, λ) has finite fundamental group and its first cohomology group
vanishes, provided that the scalar curvature is strictly bounded above by λ, see [1].
In the peresent paper, we have showed that a complete extended gradient Einstein-type
manifold with suitable assumptions on the Ricci tensor has finite topological type.

2. Finiteness of topological type
Here, we consider extended gradient Einstein-type manifolds as follows:

(2) αRic+ βHess(f)− γdf ⊗ df ⩾ λ(x)g,

and considering some conditions on this we prove it has finite topological type. That is,
M is homeomorphic to interior of a compact manifold with boundary.

Theorem 2.1. Let (M, g) be a complete Riemannian manifold satistfying (2), where
α, γ ⩾ 0 and λ(x) ⩾ Λ > 0 for some constant Λ > 0. Then for any p, q ∈ M ,

∥∇f∥q ⩾
Λ

2|β|T − ∥∇f∥p − C,

provided that either Ric ⩾ δ−1g and inj(M, g) ⩾ δ > 0 for some δ > 0 or the Ricci tensor
Ric is bounded above.

Proof. Consider any geodesic θ : [0,+∞) −→ M parametrized by arc length s ema-
nating from a point p in M . Then along θ we have

αRic(θ′, θ′) ≥ λ(x)− βHess(f)(θ′, θ′) + γg(θ′,∇f)2.

On the other side

Hess(f)(θ′, θ′) = L∇fg(θ
′, θ′) = 2g(∇θ′∇f, θ′) = 2

d

ds
g(∇f, θ′).

Therefore

α

∫ T

0
Ric(θ′, θ′)ds ≥

∫ T

0
λ(x)ds− 2βg(∇f, θ′(s))

∣∣∣
T

0
+ γ

∫ T

0
g(θ′(s),∇f)2ds.

Since γ ⩾ 0, we have γ
∫ T
0 g(θ′(s),∇f)2ds ⩾ 0 and by assumption λ(x) ⩾ Λ > 0, we

conclude that

α

∫ T

0
Ric(θ′, θ′)ds ≥ ΛT − 2β

(
g(∇f, θ′(T ))− g(∇f, θ′(0))

)
(3)

By using the Cauchy-Schwarz inequality |g(θ′(s),∇f)| ≤ ∥∇f∥θ(s), we have −∥∇f∥p ⩽
g(θ′(0),∇f) ⩽ ∥∇f∥p and −∥∇f∥q ⩽ g(θ′(T ),∇f) ⩽ ∥∇f∥q. Hence, we get

−(∥∇f∥q + ∥∇f∥p) ⩽ g(θ′(T ),∇f)− g(θ′(0),∇f) ⩽ ∥∇f∥q + ∥∇f∥p.
If β ⩾ 0, we have −2β(g(θ′(T ),∇f) − g(θ′(0),∇f)) ⩾ −2β(∥∇f∥q + ∥∇f∥p) and conse-
quently (3) reduces to

α

∫ T

0
Ric(θ′, θ′)ds ⩾ ΛT − 2β

(
g(∇f, θ′(T ))− g(∇f, θ′(0))

)
⩾ ΛT − 2β(∥∇f∥q + ∥∇f∥p).
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If β ⩽ 0, we have−2β(g(θ′(T ),∇f)−g(θ′(0),∇f)) ⩾ 2β(∥∇f∥q+∥∇f∥p) and consequently
(3) reduces to

α

∫ T

0
Ric(θ′, θ′)ds ⩾ ΛT − 2β

(
g(∇f, θ′(T ))− g(∇f, θ′(0))

)
⩾ ΛT + 2β(∥∇f∥q + ∥∇f∥p).

Therefore for all β ∈ R we have

α

∫ T

0
Ric(θ′, θ′)ds ⩾ ΛT − 2|β|(∥∇f∥q + ∥∇f∥p).

Hence

2|β|∥∇f∥q ⩾ ΛT − 2|β|∥∇f∥p − α

∫ T

0
Ric(θ′, θ′)ds.

If the integral α
∫ T
0 Ric(θ′, θ′)ds < C for some real positive constant C, then

2|β|∥∇f∥q ⩾ ΛT − 2|β|∥∇f∥p − C,

as we have claimed. □
Theorem 2.2. Under the assumptions of Theorem (2.1), M is of finite topological

type.

Proof. By using Theorem (2.1), ∥∇f∥q has a linear growth in T = d(p, q). Since f
is a smooth function so it is continuous and consequently f−1

(
(−∞, a]

)
is closed. On the

other hand, for any p, q ∈ f−1
(
(−∞, a]

)
we have

Obviously, f−1
(
(−∞, a]

)
is compact for any a < ∞ and so f is a proper function.

Also, one can easily check that f has no critical points outside of a compact set. In fact,
it’s enough to consider a compact set B̄(p,

2|β|∥∇f∥p+C
Λ ). The deformation lemma(Isotopy

Lemma) of Morse theory leads to M has finite topological type. □
Corollary 2.3. [3] If Ric ⩾ δ−1g and inj(M, g) ⩾ δ > 0 for some δ > 0, then the

integral
∫ T
0 Ric(θ′, θ′)ds is bounded above.
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Abstract. In this paper, we introduce and consider a new type of monadic filters in
monadic BL-algebras, Gödel monadic filters. We define the notion of Gödel monadic fil-
ters on monadic BL-algebras and some basic properties of them are determined. There-
fore, using this concept and their vital properties, representable monadic BL-algebras
are characterized.
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1. Introduction

Certain information processing approaches, especially inferences based on certain in-
formation, is based on the classical logic. Fuzzy logics are generalizations of classical logic
that allow us to sake inchmeal.Several new algebras playing the role of the structures of
truth values have been introduced and axiomatize. BL-algebras were introduced in the
1990s by Hájek as the equivalent algebraic semantics for his basic fuzzy logic.

Monadic algebras have been investigated since Halmos introduced monadic Boolean
algebras [4]. Monadic MV-algebras were introduced by Rutledge and studied by Di Nola,
Grigolia, Cimadamore, and Dı́az Varela [2,3]. D. Castaño et al. introduced the variety
of monadic BL-algebras avowed with monadic operators ∀ and ∃, providing the complete
characterization of the range of the monadic operators [1].

In the present paper, we define and study Gödel monadic filters in monadic BL-
algebras. Definition of Gödel monadic filters in monadic BL-algebras is distinct from that
of filter in another algebraic structures such as BL-algebras. In Section 3, we determine
the concept of Gödel monadic filters and give their basic properties that will be used in
the extant of the article.

2. Preliminaries

Definition 2.1. [1] A residuated lattice is an algebra L = (L,∨,∧, ∗,→, 0, 1) with
four binary operations and two constants 0,1 such that:

• (L,∨,∧, 0, 1) is a bounded lattice,
• operation ∗ is commutative and associative, with 1 as neutral element, and

∗Speaker. Email address: saeede.zahiri@yahoo.com, s.zahiri@eghlid.ac.ir
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• x ∗ y ≤ z iff x ≤ y → z, for all x, y and z in L.
A residuated lattice L = (L,∨,∧, ∗,→, 0, 1) is called a BL-algebra if it satisfies the

following identities, for all x, y ∈ L :
(x → y) ∨ (y → x) = 1 (prelinearity),
x ∧ y = x ∗ (x → y)(divisibility).

Definition 2.2. [1] A monadic BL-algebra is a structure A = (A,∨,∧, ∗,→, ∀, ∃, 0, 1)
such that (A,∨,∧, ∗,→, 0, 1) is a BL-algebra, and ∀, ∃ are unary operations on A satisfying
the following conditions, for all x, y ∈ A :

(M1) ∀x → x = 1.
(M2) ∀(x → ∀y) = ∃x → ∀y.
(M3) ∀(∀x → y) = ∀x → ∀y.
(M4) ∀(∃x ∨ y) = ∃x ∨ ∀y.
(M5) ∃(x ∗ x) = ∃x ∗ ∃x.
From now on A = (A,∨,∧,→, ∗, ∀, ∃, 0, 1) or simply A is a monadic BL-algebra unless

otherwise specified.

Definition 2.3. [1] A monadic filter of a monadic BL-algebra A is a non-empty
subset F of A satisfying the following conditions, for all x, y ∈ A :

(F1) if x ∈ F, y ∈ A and x ≤ y, then y ∈ F ,
(F2) if x, y ∈ F , then x ∗ y ∈ F ,
(F3) if x ∈ F , then ∀x ∈ F .

A monadic filter F of A is called proper if F ̸= A. If F satisfies conditions (F1), (F2),
then F is a filter of A. For all x, y ∈ A, we write x ∼F y iff x → y and y → x are both in
F. ∼F is always a congruence relation. Note that (F.3) is a necessary condition for this
statement. Indeed, if ∼F is a congruence relation on a monadic BL-algebra A and x ∈ F ,
than x ∼F 1 and therefor ∀x ∼F ∀1 = 1, which is equivalent with ∀x ∈ F .

3. Gödel filters on monadic BL-algebras

Definition 3.1. A monadic BL-algebra A in which x2 = x, for every x ∈ A is called
a monadic Gödel algebra.

Example 3.2. Let A = {0, a, b, c, 1} and the operations ∗, → defined as follows:

∗ 0 c a b 1
0 0 0 0 0 0
c 0 c c c c
a 0 c a c a
b 0 c c b b
1 0 c a b 1

→ 0 c a b 1
0 1 1 1 1 1
c 0 1 1 1 1
a 0 b 1 b 1
b 0 a a 1 1
1 0 c a b 1

r c��
�
rb

S
S
S
ra �
�
�
r1
S
S
S

r
0

.

Then (A,∧,∨, ∗,→, 0, 1) is a BL-algebra.
Consider the maps ∀j , ∃k : A −→ A, j = 1, 2, 3, k = 1, 2, 3, given in the tables below:

x 0 c a b 1
∀1x 0 0 0 0 1
∀2x 0 c c c 1
∀3x 0 c a b 1

x 0 c a b 1
∃1x 0 1 1 1 1
∃2x 0 c 1 1 1
∃3x 0 c a b 1

.
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Clearly, (A,∧,∨, ∗,→, ∀j , ∃k, 0, 1) are monadic BL-algebras. Since x2 = x, for every
x ∈ A, (A,∧,∨, ∗,→, ∀j , ∃k, 0, 1) are monadic Gödel algebras.

Definition 3.3. A filter F of a monadic BL-algebra A is called Gödel monadic filter
if A/F is a monadic Gödel algebras.

In the following, we give an example of Gödel monadic filter in monadic BL-algebras.

Example 3.4. Let A = {0, a, 1}. We define operators ∀,∃, ∗,→ as follow:

x ∀x x ∃x ∗ 0 a 1 → 0 a 1
0 0 0 0 0 0 0 0 0 1 1 1
a 0 a 1 a 0 0 a a a 1 1
1 1 1 1 1 0 a 1 1 0 a 1

A = (A,∨,∧, ∗,→, ∀, ∃, 0, 1) is a monadic BL-algebra. It is clear that, F = {1} is a
Gödel monadic filter of A.

Definition 3.5. A monadic filter F of monadic BL-algebra A is called an implicative
monadic filter if ∀x → (∀y → ∀z) ∈ F and ∀x → ∀y ∈ F imply ∀x → ∀z ∈ F , for all
x, y, z,∈ A.

Proposition 3.6. F is an implicative monadic filter of monadic BL-algebra A if and
only if ∀x → (∀x)2 ∈ F for every x ∈ A.

Proposition 3.7. For a monadic filter F of a monadic BL-algebra A the following
conditions are equivalent:

(i) F is a Gödel monadic filter of A,
(ii) ∀x → (∀x)2 ∈ F for every x ∈ A,
(iii) If ∀y → (∀y → ∀x) ∈ F , then ∀y → ∀x ∈ F ,
(iv) If ∀x → (∀y → ∀z) ∈ F , then (∀x → ∀y) → (∀x → ∀z) ∈ F , for every x, y, z ∈ A.

By Proposition 3.6 and Proposition 3.7, we have:

Theorem 3.8. For any monadic filter F , F is an implicative monadic filter if and
only if F is Gödel monadic filter.

Using Theorem 3.8, we have:

Example 3.9. In Example 3, F = {1} is an implicative monadic filter of A.

Theorem 3.10. For a monadic filter F of a monadic BL-algebra A the following
statements are equivalent:

(i) F is a Gödel monadic filter of A,
(ii) (∀x ∧ ∀y) → (∀x ∗ ∀y) ∈ F , for every x, y ∈ A,
(iii) if ∀x → (∀y → ∀z) ∈ F , then (∀x → ∀z) ∨ (∀y → ∀z) ∈ F .

Theorem 3.11. For a monadic filter F of a monadic BL-algebra A the following
conditions are equivalent:

(i) If (∀x → ∀y) → (∀x → ∀z) ∈ F , then (∀x → ∀z) ∨ (∀y → ∀z) ∈ F ,
(ii) ((∀x → ∀y) → (∀x → ∀z)) → ((∀x → ∀z) ∨ (∀y → ∀z)) ∈ F , for every x, y, z ∈ A.

Proposition 3.12. Let F be a monadic filter of a monadic BL-algebra A. If F is a
Gödel monadic filter of A, then [∀x → (∀x∗∀y)]∨ [∀y → (∀x∗∀y)] ∈ F , for every x, y ∈ A.
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Proof. Let F be a monadic filter of a monadic BL-algebra A. Using following Theo-
rem 3.10, (ii), (∀x∧∀y) → (∀x∗∀y) ∈ F , for every x, y ∈ A, Since ∀x∗(∀x → ∀y) ≤ ∀x∧∀y,
then

(∀x ∧ ∀y) → (∀x ∗ ∀y) ≤ [∀x ∗ (∀x → ∀y)] → (∀x ∗ ∀y)
= (∀x → ∀y) → [∀x → (∀x ∗ ∀y)]

By hypothesis, F is a monadic filter, so (∀x → ∀y) → [∀x → (∀x ∗ ∀y)] ∈ F . Using
Theorem 3.11 (i), we get [∀x → (∀x ∗ ∀y)] ∨ [∀y → (∀x ∗ ∀y)] ∈ F , for every x, y ∈ A. �

Corollary 3.13. F be a monadic filter of a monadic BL-algebra A if and only if
[∀x → (∀x ∗ ∀y)] ∨ [∀y → (∀x ∗ ∀y)] ∈ F , for every x, y ∈ A.

4. Conclusion

In this paper, motivated by the previous research of monadic BL-algebras, we extended
the concept of Gödel monadic filters in monadic BL-algebras. We introduce and study
these types of monadic filters and given some characterizations and several examples of
them. Therefore, we used to these results to find some classification for monadic BL-
algebras.

In our future work, we will continue our study of algebraic structures, especially
monadic BL-algebras, with the view to identify a classification for these structures.

Acknowledgements. The authors are very grateful to the referees for the valuable
suggestions in obtaining the final form of this paper.
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Abstract. Let R be a ring with an endomorphism α. A ring R is a skew power series
McCoy ring if whenever any non-zero power series f(x) =

∑∞
i=0 aix

i, g(x) =
∑∞

j=0 bjx
j ∈

R[[x;α]] satisfy f(x)g(x) = 0, then there exists a non-zero element c ∈ R such that
aic = 0, for all i = 0, 1, . . .. We investigate relations between the skew power series ring
and the standard ring-theoretic properties. Moreover, we obtain some characterizations
for skew power series ring R[[x;α]], to be McCoy, zip, strongly AB and has Property
(A).

Keywords: Noetherian ring, α-compatible ring, Skew Power series McCoy ring, Zip
ring, Reversible ring.
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1. Introduction and preliminaries

Throughout the paper, all rings are associative with identity. Let α be a ring endo-
morphism of R. We denote R[[x;α]] the skew power series rings whose elements are the
power series over R, the addition is defned as usual and the multiplication satisfies in the
relation xa = α(a)x, for any a ∈ R.
For notations we use Niℓ(R) and Cf(x) for the set of all nilpotent elements of a ring
R, the set in R consisting of all the “coefficients” of f(x) where f(x) is a power series,
respectively. By Zℓ(R), Zr(R) and Z(R), we mean respectively the set of all left zero-
divisors of R, the set of all right zero-divisors of R and the set of all zero-divisors of R
(i.e., Z(R) = Zℓ(R) ∪ Zr(R)).

A ring R is called reversible if ab = 0 implies ba = 0, for a, b ∈ R. Note that for
the class of reversible rings the set of all left annihilators of any element a ∈ R coincide
with set of its all right annihilators and we denote it by annR(a). A ring R is called
semicommutative if ab = 0 implies aRb = 0 for a, b ∈ R. Moreover, a ring is right (resp.,
left) duo if every right (resp., left) ideal is an ideal. Simple computations show that
reversible as well (one-sided) duo rings are semicommutative.

Following [2], a ring R is right McCoy if f(x)g(x) = 0, then f(x)c = 0 for some
non-zero c ∈ R, where f(x), g(x) are non-zero polynomials in R[x]. Left McCoy rings are
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defined similary and they satisfy similar properties. A ring R is called McCoy if it is both
left and right McCoy.

The case for formal power series in one variable is much more difficult and by [3],
McCoy’s theorem fails in general for the case of formal power series ring R[[x]] over a
commutative ring R. In fact, as a continuation of works by Gilmer et al. in [4], Fields [3,
Theorem 5], proved that if R is a commutative Noetherian ring with identity in which
(0) = Q1 ∩Q2 ∩ · · · ∩Qn is a shortest primary representation of (0) with

√
Qi = Pi, then

f(x) =
∑∞

i=0 aix
i ∈ R[[x]] is a zero-divisor in R[[x]] if and only if there is a non-zero

element r ∈ R which satisfies rf(x) = 0. He also provided an example showing that
the condition “R is Noetherian” is not redundant [3, Example 3]. On the other hand,
Camillo and Nielsen, constructed an example showing that formal power series rings over
an associative noncommutative McCoy ring R, need not be McCoy in general.

Our first main aim in this paper is to provide some rich classes of skew power series
McCoy rings. A detailed analysis of our main results is rewarded with the generalization
of the main result of [3]. Moreover, we investigate relations between skew power series
McCoy property and other standard important ring-theoretic properties such as zip rings,
strongly AB rings and rings with Property (A).

2. Annihilators in Noetherian power series rings

Definition 2.1. A ring R is skew power series-wise McCoy if whenever any non-zero
power series f(x), g(x) ∈ R[[x;α]] satisfy f(x)g(x) = 0, then f(x)c = 0 for some non-zero
c ∈ R.

As mentioned, McCoy’s theorem fails in the skew power series ring R[[x;α]] over either
commutative or noncommutative ring R. However, if we assume a “Noetherian” hypothe-
sis on a coefficient ring R, we obtain stronger conditions on the coefficients of power series
f(x) ∈ R[[x;α]]. The crucial for some of our results is the following lemma, which might
be useful in some other studies.

.

Theorem 2.2. Let R be a reversible right Noetherian ring. If R is an α-compatible
ring, then R is a skew right power series-wise McCoy ring.

Corollary 2.3. [1, Theorem 2.2] Let R be a reversible right Noetherian ring. Then
R is a right power series-wise McCoy ring.

Theorem 2.4. Let R be a Noetherian reversible ring. If R is an α-compatible ring,

then for each f(x) =
∞∑
i=1

aix
i ∈ R[[x;α]], these conditions are equivalent:

(1) f(x) is a zero-divisor in R[[x;α]];
(2) f(x) ∈ Pk[[x;α]] for some 1 ≤ k ≤ n, with Pk prime;
(3) There is a non-zero element c ∈ R such that f(x)c = 0.

Corollary 2.5. [1, Theorem 2.3] Let R be a Noetherian reversible ring. Then for

each f(x) =
∞∑
i=1

aix
i ∈ R[[x]], these conditions are equivalent:

(1) f(x) is a zero-divisor in R[[x]];
(2) f(x) ∈ Pk[[x]] for some 1 ≤ k ≤ n, with Pk prime;
(3) There is a non-zero element c ∈ R such that f(x)c = 0.
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Theorem 2.6. Let R be a right duo right Noetherian ring. If R is an α-compatible
ring, then R is a skew right power series-wise McCoy ring.

Corollary 2.7. [1, Theorem 2.4] Let R be a right duo right Noetherian ring. Then
R is a right power series-wise McCoy ring.

Theorem 2.8. Let R be a Noetherian duo ring. If R is an α-compatible ring, then for

each f(x) =
∞∑
i=1

aix
i ∈ R[[x;α]], these conditions are equivalent:

(1) f(x) is a zero-divisor in R[[x;α]];
(2) f(x) ∈ Pk[[x;α]] for some 1 ≤ k ≤ n, with Pk prime;
(3) There is a non-zero element c ∈ R such that f(x)c = 0.

Corollary 2.9. [1, Theorem 2.5] Let R be a Noetherian duo ring. Then for each

f(x) =
∞∑
i=1

aix
i ∈ R[[x]], these conditions are equivalent:

(1) f(x) is a zero-divisor in R[[x]];
(2) f(x) ∈ Pk[[x]] for some 1 ≤ k ≤ n, with Pk prime;
(3) There is a non-zero element c ∈ R such that f(x)c = 0.

Proposition 2.10. Let R be a semicommutative right (left) Noetherian ring. If R is
an α-compatible ring, then the ring R is right zip if and only if R[[x;α]] is a zip ring.

Corollary 2.11. [1, Proposition 3.1] Let R be a semicommutative right (left) Noe-
therian ring. Then the ring R is right zip if and only if R[[x]] is a zip ring.

Corollary 2.12. (a) Let R be a reversible one-sided Noetherian ring. If R is an
α-compatible ring, then the ring R is right zip if and only if R[[x;α]] is a right zip.

(b) Let R be a one-sided duo one-sided Noetherian ring. If R is an α-compatible ring,
then the ring R is right zip if and only if R[[x;α]] is right zip.

Theorem 2.13. Let R be a Noetherian skew power series-wise McCoy ring. Then R
is strongly AB if and only if R[[x;α]] is strongly AB.

Corollary 2.14. [1, Lemma 3.5] Let R be a Noetherian power series-wise McCoy
ring. Then R is strongly AB if and only if R[[x]] is strongly AB.

Corollary 2.15. (a) Let R be a reversible Noetherian ring. If R is an α-compatible
ring, then R is strongly AB if and only if R[[x;α]] is strongly AB.

(b) Let R be a duo Noetherian ring. If R is an α-compatible ring, then R is strongly
AB if and only if R[[x;α]] is strongly AB.

Proposition 2.16. Let R be a right Noetherian ring such that R[[x;α]] is strongly
right AB. If R is an α-compatible ring, then the ring R is right skew power series-wise
McCoy.

Corollary 2.17. [1, Proposition 3.8] Let R be a right Noetherian ring such that
R[[x]] is strongly right AB. Then the ring R is right power series-wise McCoy.

Corollary 2.18. Let R be a right Noetherian, α-compatible ring. Then the power
series ring R[[x, α]] is strongly right AB if and only if the ring R is skew right power
series-wise McCoy and strongly right AB.

Theorem 2.19. Let R be a reversible right Noetherian ring and I a right ideal of
R[[x;α]]. If R is an α-compatible ring and rR[[x;α]](I) ̸= 0, then rR(I) ̸= 0.
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Corollary 2.20. Let R be a right Noetherian ring such that the skew power series
ring R[[x;α]] is strongly right AB. Then for each subset S of R[[x;α]], if rR[[x;α]](S) ̸= 0
then rR(S) ̸= 0.

Definition 2.21. A ring R has right (resp., left) Property (A), if for every finitely
generated two-sided ideal I ⊆ Zl(R) (resp., I ⊆ Zr(R)), there exists non-zero a ∈ R (resp.,
b ∈ R) such that Ia = 0 (resp., bI = 0). So, a ring R has right Property (A) if every
finitely generated two-sided ideal consisting entirely of left zero-divisors has a non-zero
right annihilator.

Theorem 2.22. Let R be a right Noetherian right skew power series-wise McCoy ring.
If R is an α-compatible ring and R has right Property (A) then so is skew the formal power
series ring R[[x;α]].

Corollary 2.23. [1, Theorem 3.12] Let R be a right Noetherian right power series-
wise McCoy ring. If R has right Property (A) then so is the formal power series ring
R[[x]].

Corollary 2.24. Let R be a right Noetherian and reversible ring. If R is an α-
compatible ring and R has right Property (A) then so is the formal power series ring
R[[x;α]].

Corollary 2.25. Let R be a right Noetherian and right duo ring. If R is an α-
compatible ring and R has right Property (A) then so is the formal power series ring
R[[x;α]].
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Abstract. In this paper, we associate some weak commutative hypergroupoids with a
given metric space and obtain some results in this respect. We show that these hyper-
groupoids are weak commutative Hv-groups. Also, we determine some conditions for
these hypergroupoids to be hypergroups. Finally, we obtain Γ-Hv-groups by a metric
space.
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1. Introduction
The hyperstructure theory was born in 1934, when Marty introduced the notion of

a hypergroup. Since then, many books have been written on this topic (see for instance
[1,3,8]). Recently, a book on weak hyperstructure was written by Davvaz and Vougiouklis
[4]. Algebraic hyperstructures are a suitable generalization of classical algebraic structures.
In a classical algebraic structure, the composition of two elements is an element, while in
an algebraic hyperstructure, the composition of two elements is a set. More exactly, let
P ∗(X) be the set of all non-empty subsets of a given set X. A hypergroupoid is a pair
(X, ◦), where X is a non-empty set and ◦ is a hyperoperation, i.e.,

◦ : X ×X −→ P ∗(X), (x, y) 7→ x ◦ y.

If A,B ∈ P ∗(X), then we define A ◦ B =
∪{

a ◦ b | a ∈ A, b ∈ B
}
, x ◦ B = {x} ◦ B

and A ◦ y = A ◦ {y}. If A = ∅ or B = ∅ we define A ◦B = ∅.
A hypergroupoid (X, ◦) is called semihypergroup if the associative axiom is valid, i.e.,

x◦ (y ◦ z) = (x◦y)◦ z, for all x, y, z ∈ X and it is called reproductive if x◦X = X ◦x = X,
for all x ∈ X. A hypergroup is a reproductive semihypergroup. A hypergroupoid (X, ◦) is
called Hv-semigroup if the weak associative axiom is valid, i.e., x ◦ (y ◦ z)∩ (x ◦ y) ◦ z ̸= ∅,
for all x, y, z ∈ X. An Hv-group is a reproductive Hv-semigroup. A hypergroupoid (X, ◦)
is called (weak) commutative if for all x, y ∈ X we have

(x ◦ y ∩ y ◦ x ̸= ∅) x ◦ y = y ◦ x.
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A commutative hypergroup is called a join space if the following implication holds for all
elements a, b, c, d of X:

a/b
∩
c/d ̸= ∅ =⇒ a ◦ d∩ b ◦ c ̸= ∅,

where a/b = {x | a ∈ x ◦ b}.
Connections between hypergraphs and hyperstructures were studied by many authors,

for example, see [2, 6]. Mirvakili and Manaviyat in [5] obtained commutative quasihy-
pegroups associated with a metric space. In this paper we obtain some other classes of
Hv-groups associated with a metric space. These Hv-groups can be non-commutative.

Let X be a non-empty set. Then a function d : X ×X → R is said to be a metric on
X if it has the following properties for all x, y, z ∈ X:

(M1) d(x, y) ≥ 0;
(M2) d(x, y) = 0 if and only if x = y;
(M3) d(x, y) = d(y, x);
(M4) d(x, y) + d(y, z) ≥ d(x, z).

The real number d(x, y) is called the distance between x and y, and the set X together
with a metric d is called a metric space (X, d) [7].

Given a metric space (X, d) and any real number r > 0, the open ball of radius r and
center a is the set Br(a) ⊆ X defined by

Br(a) = {x ∈ X|d(x, a) < r}.

2. Main results
Let X = (X, d) be a metric space and for all x ∈ X and r ∈ R+, Br(x) be the open

ball of radius r and center x.
For every x, y ∈ X and r, s ∈ R+, we define a hyperoperation r◦s as follows:

x r◦s y = Br(x) ∪Bs(y), ∀(x, y) ∈ X2, .

If r = s then we show that the hyperoperation r◦s by ◦r.
We set rXs = (X, r◦s) and Xr = (X, ◦r).
By the above notations we have for every (x, y) ∈ X2:
(1) x r◦s y ⊆ x r◦s x ∪ y r◦s y;
(2) {x, y} ⊆ x r◦s y; and
(3) y ∈ x ◦r x ⇔ x ∈ y ◦r y.
(4) x r◦s y ∩ y r◦s x ̸= ∅,

Therefore, we have

Corollary 2.1. The hypergroupoid rXs = (X, r◦s) is a weak commutative Hv-group.

Set ∆ = sup{d(x, y)|x, y ∈ X}.
Lemma 2.2. Let X = (X, d) be a metric space and r, s ∈ R+.
(1) If r ≥ ∆ or s ≥ ∆ then for every x, y ∈ X, x r◦s y = X and this means

rXs = (X, r◦s) is a total hypergroup.
(2) If r = s or r ≥ ∆ or s ≥ ∆ then the hypergroupoid rXs = (X, r◦s) is commutative.

Theorem 2.3. [5] For every x, y ∈ X, the following statements are satisfied:
(1) x ◦r y = x ◦r x ∪ y ◦r y;
(2) x ∈ x ◦r x; and
(3) y ∈ x ◦r x ⇔ x ∈ y ◦r y.
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Theorem 2.3
Theorem 2.4. [1] The hypergroupoid X satisfying (1), (2), (3) of the Theorem 2.3

also satisfies
(4) x ◦r y ⊇ {x, y},
(5) x ◦r y = y ◦r x,
(6) x ◦r X = X,
(7) (x ◦r x) ◦r x = ∪z∈x◦rxz ◦r z,
(8) (x ◦r x) ◦r (x ◦r x) = x ◦r x ◦r x.

By (5) and (6) of Theorem 2.4 we obtain:
Corollary 2.5. The hypergroupoid Xr = (X, ◦r) is a commutative Hv-group.
The next Theorem shows that necessary an sufficient conditions for associativity of

the hyperoperation ◦r.
Theorem 2.6. [1] A hypergroupoid (X, ◦r) satisfying (1), (2), (3) of the Theorem 2.3

is a hypergroup if and only if
∀(a, c) ∈ X2, c ◦r c ◦r c− c ◦r c ⊆ a ◦r a ◦r a.

Corollary 2.7. A hypergroupoid Xr = (X, ◦r) is a hypergroup if and only if for every
x, y ∈ X we have

B2
r (x)−Br(x) ⊆ B2

r (y),

where B2
r (x) =

∪

z∈Br(x)

Br(z).

Corollary 2.8. If for every x ∈ X, B2
r (x) = Br(x) then the hypergroupoid Xr =

(X, ◦r) is a hypergroup.
Example 2.9. Let (X, d) be the metric space where d is discrete metric, that is

d(x, y) = 0 if x = y and d(x, y) = 1 otherwise. Then for every r ∈ R and for every
x ∈ X, we have B2

r (x) = Br(x). So, by corollary 2.8, the hypergroupoid Xr = (X, ◦r) is a
hypergroup.

Example 2.10. If G is an undirected connected graph, then the set V of vertices of
G can be turned into a metric space by defining d(x, y) to be the length of the shortest
path connecting the vertices x and y.

The r-ball B(x, r) of center x and radius r ≥ 0 consists of all vertices of G at distance
at most r− from x: In particular, if 0 ≤ r ≤ 1, the ball Br(x) = {x} and if 1 < r ≤ 2, the
ball Br(x) comprises x and N(x), where N(x) is the neighborhood of vertex x in graph
G.

Therefore, the hyperoperations ◦r and r◦s coincide with the hyperoperation ◦ in [2,6].
Theorem 2.11. If the hypergroupoid (X, r◦s) is a hypergroup then it is a join space.
Definition 2.12. Let Γ be a non-empty set of some hyperoperations on X. (X,Γ) is

called Γ−Hv-semigroup, if for all x, y, z ∈ X and α, β ∈ Γ, we have
xα(yβz) ∩ (xαy)βz ̸= ∅.

Moreover, if for every α ∈ Γ, (X,α) is a quasihypergroup, then (X,Γ) is called Γ − Hv-
group,

Theorem 2.13. Let Γ ⊆ {r◦s|r, s ∈ R+}. Then (X,Γ) is a Γ−Hv-group.
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Abstract. Let R be a finite commutative ring and I be a non-zero ideal of R. The
ideal-based zero-divisor graph of R with respect to the ideal I, denoted by ΓI(R), is the
graph on vertices {x ∈ R \ I| xy ∈ I for some y ∈ R \ I} where distinct vertices x and
y are adjacent if and only if xy ∈ I. In this talk, we study planarity of the iterated line
graphs of the ideal-based zero divisor graphs. We give a complete characterization of all
these graphs with respect to their planar index.
Keywords: Ideal-based zero divisor graph, Planar index, Iterated line graph.
AMS Mathematics Subject Classification [2010]: 05C10, 13A70

1. Introduction
Finding the relationship between the algebraic structure, using properties of graphs

associated to them, has become an interesting topic in the last years. Indeed, it is worth-
while to relate algebraic properties of the rings to the combinatorical properties of the
assigned graphs. One of these associated graphs to a commutative ring R is the zero-
divisor graph. There are two variations of the zero-divisor graph. This graph was first
introduced by Beck, in [3], where all the elements of R are considered as the vertices and
two vertices x and y are adjacent if and only if xy = 0. In a later variant, studied by
Anderson and Livingston [1] and denoted by Γ(R), the vertex set of graph was restricted
to Z(R) \ {0}.

The focus of this paper is on a generalization of the zero-divisor graph called the ideal-
based zero-divisor graph. Let I be an ideal of R. The ideal-based zero-divisor graph of R
with respect to the ideal I, denoted by ΓI(R), is the graph on vertices

{x ∈ R \ I| xy ∈ I for some y ∈ R \ I}
where distinct vertices x and y are adjacent if and only if xy ∈ I. It is easy to see that
if I = 0, then ΓI(R) = Γ(R). So, this graph, which was defined and studied in [5, 6],
is a natural generalization of the zero-divisor graph for commutative rings with nonzero
identity.

Let G be a simple graph. The line graph L(G) is a graph such that each vertex of
L(G) represents an edge of G, and two vertices of L(G) are adjacent if and only if their
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correspoding edges are incident in G. We denote the kth iterated line graph of G by Lk(G).
It is defined recursively via Lk(G) = L(Lk−1(G)) where L0(G) = G and L1(G) = L(G).

In this talk, we study the planarity of the iterated line graphs of the ideal-based zero
divisor graphs. We give a complete characterization of ideal-based zero divisor graphs
with respect to their planar index.

2. Planar index of the graph ΓI(R)

Let G be a graph. Recall that G is planar if it can be drawn in the plane without any
edge crossings. Kuratowski’s theorem states that a graph is planar if and only if it does
not contain a subdivision of K5 or K3,3.

The planar index of G was introduced and studied in [4]. The planar index of G is
the smallest k such that Lk(G) is non-planar. We denote the planar index of G by γ(G).
If for all k ⩾ 0, Lk(G) is planar, then we define γ(G) = ∞.

The planar index of the graph Γ(R) was studied in [2]. In the following theorem, we
give a characterization of the ideal-based zero divisor graphs with their planar index. To
do this, we use the characterization of connected graphs with respect to their planar index
which was proved in [4].

Theorem 2.1. Let R be a finite commutative ring and I be a non-zero ideal of R.
Then

(a) γ(ΓI(R)) = ∞ if and only if one of the following holds
(a1) I is a prime ideal of R.
(a2) R is isomorphic to a ring with corresponding ideal from Table 1 where K ∼=

Z2, Table 2 or Table 3.
(b) γ(ΓI(R)) = 1 if and only if R is isomorphic to a ring with corresponding ideal

from Table 1 where K is a field with at least 3 elements or Tables 5 and 6.
(c) γ(ΓI(R)) = 2 if and only if R is isomorphic to a ring with corresponding ideal

from Table 4.
(d) γ(ΓI(R)) = 0 otherwise.

Ring Ideal
Z4 × K (2) × 0

Z2[X]/(X2) × K (x) × 0

Z2 × Z2 × K Z2 × 0 × 0,

0 × Z2 × 0

0 × 0 × K when K = Z2

Table 1

Ring Ideal
Z3 × Z4 Z3 × 0

Z3 × Z2[X]/(X2) Z3 × 0

Table 2

Ring Ideal
Z2 × Z4 Z2 × 0

Z2 × Z2[X]/(X2) Z2 × 0

Z8 (4)

Z4[X]/(X2, 2X) (x)

(2)

(x + 2)

Z4[X]/(2X,X2 − 2) (2)

Z2[X]/(X3) (x2)

Z2[X,Y ]/(X2, XY, Y 2) (x)

(y)

(x + y)

Table 3
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Ring Ideal
Z2 × Z9 Z2 × 0

Z2 × Z3[X]/(X2) Z2 × 0

Z2 × Z2 × Z4 Z2 × Z2 × 0

Z2 × Z2 × Z2[X]/(X2) Z2 × Z2 × 0

Z2 × Z8 Z2 × (4)

Z2 × Z4[X]/(X2, 2X) Z2 × I1 s.t. I1 = (x), (2), (x + 2)

Z2 × Z4[X]/(2X,X2 − 2) Z2 × (2)

Z2 × Z2[X]/(X3) Z2 × (x2)

Z2 × Z2[X,Y ]/(X2, XY, Y 2) Z2 × I1 s.t. I1 = (x), (y)

Z4 × Z4 Z4 × 0, 0 × Z4

Z4 × Z2[X]/(X2) Z4 × 0, 0 × Z2[X]/(X2)

Z2[X]/(X2) × Z2[X]/(X2) Z2[X]/(X2) × 0, 0 × Z2[X]/(X2)

Z4 × F4 0 × F4

Z2[X]/(X2) × F4 0 × F4

Z2[X]/(X4) {0, x2, x3, x2 + x3}
Z2[X,Y ]/(X3, XY, Y 2) {0, x, x2, x + x2}, {0, y, x2, y + x2}, {0, x2, x + y, x + y + x2}

Z2[X,Y ]/(X2 − Y 2, XY ) {0, x, x2, x + x2}, {0, y, x2, y + x2}, {0, x2, x + y, x + y + x2}
Z4[X]/(X2 − 2) {0, 2, 2x, 2 + 2x}

Z4[X]/(X2 − 2X − 2) {0, 2, 2x, 2 + 2x}
Z2[X,Y, Z]/(X,Y, Z)2 {0, z, x + y, x + y + z}, {0, x, y + z, x + y + z} {0, x, z, x + z},

{0, y, z, y + z}, {0, x, y, x + y}, {0, x + y, y + z, x + z}
{0, y, x + z, x + y + z}

Z4[X,Y ]/(X2 − 2, XY, Y 2, 2X) {0, 2, x, 2 + x}, {0, y, 2, y + 2}, {0, 2, x + y, x + y + 2}
Z4[X,Y ]/(X2 − 2, XY, Y 2 − 2, 2X) {0, 2, x, 2 + x}, {0, y, 2, y + 2}, {0, 2, x + y, x + y + 2}

Z4[X,Y ]/(X2, XY − 2, Y 2) {0, 2, x, 2 + x}, {0, y, 2, y + 2}, {0, 2, x + y, x + y + 2}
Z4[X]/(X3, 2X) {0, 2, x2, 2 + x2}, {0, x, x2, x + x2}, {0, x + 2, x2, 2 + x + x2}

Z4[X]/(X2) {0, 2, 2x, 2 + 2x}, {0, 2x, x + 2, 3x + 2}
Z4[X]/(X2 − 2X) {0, x, 2x, 3x}, {0, 2, 2x, 2x + 2}, {0, 2x, x + 2, 3x + 2}
Z8[X]/(X2, 2X) {0, 2, 4, 6}, {0, 4, x, x + 4}, {0, 4, x + 2, x + 6}
Z8[X]/(X2, 2X) {0, 2, 4, 6}, {0, 4, x, x + 4}, {0, 4, x + 2, x + 6}

Z4[X,Y ]/(2, X, Y )2 {0, 2, x, x + 2}, {0, 2, y, y + 2}, {0, 2, x + y, x + y + 2},

{0, x, y, x + y}, {0, x, y + 2, x + y + 2}, {0, y, x + 2, x + y + 2}
{0, x + y, x + 2, y + 2}

Z16 {0, 4, 8, 12}
Z2[X,Y ]/(X2, Y 2) {0, x, xy, x + xy}, {0, y, xy, y + xy}, {0, xy, x + y, x + y + xy}

Table 4

3. Conclusion
Let R be a finite commutative ring and I be a non-zero ideal of R. In this pa-

per, we studied the planar index of the graph ΓI(R). We showed that γ(ΓI(R)) ⩽ 2 or
γ(ΓI(R)) = ∞. Also, we provied the list of all finite commutative rings and their ideals
which γ(ΓI(R)) ⩽ 2.
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Ring Ideal
Z2 × Z8 Z2 × 0

Z2 × Z4[X]/(2X,X2 − 2) Z2 × 0

Z2 × Z2[X]/(X3) Z2 × 0

Z2 × Z2[X,Y ]/(X2, XY, Y 2) Z2 × 0

Z2[X,Y ]/(X3, XY, Y 2) (y), (y + x2),

Z4[X]/(X3 − 2, 2X) (2)

Z4[X]/(X2 − 2) (2x)

Z4[X]/(X2 − 2X − 2) (2x)

Z4[X,Y ]/(X2 − 2, XY, Y 2, 2X) (y), (y + 2)

Z4[X]/(X3, 2X) (2), (x2 + 2)

Z8[X]/(X2, 2X) (x), (x + 4)

Z16 (8)

Table 5

Ring Ideal
Z2 × Z8 0 × (4)

Z2 × Z4[X]/(2X,X2) 0 × (x)

0 × (x),

0 × (x + 2)

Z2 × Z4[X]/(2X,X2 − 2) 0 × (2)

Z2 × Z2[X]/(X3) 0 × (x2)

Z2 × Z2[X,Y ]/(X2, XY, Y 2) 0 × (x)

0 × (y),

0 × (x + y)

Z4 × Z4 (2) × 0, 0 × (2)

Z2[X]/(X2) × Z2[X]/(X2) (x) × 0, 0 × (x)

Z4 × Z2[X]/(X2) (2) × 0, 0 × (x)

Table 6
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Abstract. A sum-network is an instance of a function computation problem over a
finite field of information observed at all the sources nodes. In this paper, we consider a
family of sum-networks whose network coding capacity is dependent on message alphabet
(specifically the characteristic of the finite field) chosen for communication. Our work
described construction that improved previous results in this line by demonstrating sum-
networks with significantly fewer number of sources and terminals.

Keywords: Network coding, Sum-Network, Coding Capacity, Function Computation.
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1. Introduction

Characterizing the capacity of communication networks has been the most important
and challenging problem in network information theory. All reported sum-networks are
shown to have only certain rational valued coding capacities. For example, it has been
shown that for a sum-network having 3 sources and 3 terminals, the coding capacity is
either 0, 2/3 or ≥ 1 [?]. The example sum-networks with 3 sources, n terminals (n > 3) and
m sources, 3 terminals (m > 3) have been shown where coding capacity of those networks
is of the form k

k+1 for k ≥ 3 [?]. The paper [?] has also considered general case in which for

every positive rational number k
n , exists a sum-network which has coding capacity equal to

k
n . The number of sources and terminals of this network is (2n−1)+

(
2n−1

2

)
. The capacity

of these sum-networks however was independent of the message alphabet. Recently, the
authors have introduced a family of sum-networks based on a structure called BIBD, where
have significantly fewer number of sources and terminals and the coding capacity of them
is dependent on the message alphabet chosen for communication [?]. The present work is
closely related to the last reference. In this paper, we show for any r ≥ 1, k ≥ 2, there
exists a divisible BIBD structure, and achieve a general coding capacity for general ms/nt
sum-networks.
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2. PRELIMINARY

We consider communication over a directed acyclic graph G = (V,E) where, V is the
set of nodes and E ∈ V × V are the edges denoting the delay-free communication links
between them. Subset S ⊂ V denotes the source and T ⊂ V denotes the terminal nodes.
Each source node si ∈ S generates an independent random process Xi1, Xi2, ... indexed
by time are i.i.d. and each Xij takes values that are uniformly distributed over a finite
alphabet F that is assumed to be a finite field such that |F| = q. The characteristic of
F will be denoted by ch(F). For an edge e = (i , j ) ∈ E, we call the node j as the head
of the edge and the node i as the tail of edge; and denote them as head(e) and tail(e)
respectively. For each node v , the set of incoming edges at the node v is denoted by
In(v) = {e ∈ E : head(e) = v} and the set of outgoing edges from the node v is denoted
by Out(v) = {e ∈ E : tail(e) = v}. A network code is an assignment of encoding functions
to each edge in E and a decoding function to each terminal in T . Define a global encoding
function that expresses the value transmitted on an edge in terms of the source values:
Local encoding function for edge e. ϕe : Fm → Fn, if tail(e) ∈ S, ϕe : Fn|In(tail(e))| →
Fn, if tail(e) /∈ S. Decoding function for the terminal ti ∈ T . ψti : Fn|In(ti)| → Fm.
A network code is linear if all the edge and decoding functions are F-linear. A (m,n)
fractional network code solution over F is the sum of m source symbols are communicated
to all the terminals in n units of time. The rate of this network code is defined to be m/n.
The supremum of all achievable rates is called the capacity of the network.

3. CONSTRUCTION USING BIBDs

Definition 3.1. A 2− (υ, k, λ) balanced incomplete block design (BIBD) is a system
D = (P,B) which has the following components: Points: A set P of υ elements indexed
in arbitrary order as P = {p1, p2, ..., pυ}. A set B of size b whose elements are k-subsets
of B such that B = {B1, B2, ..., Bb}. B satisfies the following regularity property. For
pi, pj ∈ P, i ̸= j,

(1) |{B ∈ B : pi ∈ B, pj ∈ B}| = λ.

For such design, we have an incidence matrix A which is a υ × b (0,1)-matrix that
records the incidence between points and blocks, i.e.,

(2) A(i, j) =

{
1 if pi ∈ Bj ,

0 otherwise.

It can be shown that each point is present in a fixed number of blocks (denoted by r).

Let r = λ(υ−1)
k−1 , bk = υ.r. For any p ∈ P and B ∈ B, let

< p >= {B ∈ B : p ∈ B}, and
< B >= ∪p∈B < p >= ∪p∈B{B′ ∈ B : p ∈ B′}.
Thus we have | < p > | = r, for all p ∈ P.

Example 3.2. Consider the components of a 2 − (9, 3, 1) design as below: P =
{1, 2, 3, 4, 5, 6, 7, 8, 9}, B = {B1, B2, ..., B6}, B1 = {1, 2, 3},

B2 = {4, 5, 6}, B3 = {7, 8, 9}, B4 = {1, 4, 7}, B5 = {2, 5, 8}, B6 = {3, 6, 9}.
3.1. Sum-network Construction. Consider a indirected simple connected graph

G = (V,E), for any BIBD D, where:

(1) Source node set S contains υ + b elements corresponding to points and blocks in
D. Let S = {sp : p ∈ P} ∪ {sB : B ∈ B}.
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(2) Terminal node set T contains υ + b elements, in the same manner as S. Let
T = {tp : p ∈ P} ∪ {tB : B ∈ B}.

(3) Intermediate nodes are 2υ vertices which are elements ofMH∪MT , whereMH =
{mh

1 ,m
h
2 , ...,m

h
υ} and MT = {mt

1,m
t
2, ...,m

t
υ}.

(4) Bottleneck edges are υ unit-capacity edges ei = (mt
i,m

h
i ), i = 1, 2, ..., υ. We also

make the following connections all ei: (spi ,m
t
i) and (sBj ,m

t
i) for all Bj ∈< pi >,

(mh
i , tpi) and (mh

i , tBj ) for all Bj ∈< pi >.
(5) Direct edges. for every pi ∈ P and Bj ∈ B, we have: (spl , tpi), for all pl /∈ pi,

(sbl , tpi), for all Bl /∈< pi >, (spl , tBj ), for all pl /∈ Bj , and (sBl
, tBj ), for all

Bl /∈< Bj >.
Now, we can express below theorem without proving [?].

Theorem 3.3. For a 2 − (υ, k, 1) design D, the coding capacity of the sum-

network obtained using the above construction is at most k(k−1)
k(k−1)+υ−1 if ch(F) ∤

(k − 1).

4. UPER BOUND ON THE CAPACITY OF SUM-NETWORK

Definition 4.1. Let P be a set of υ elements, called points, and B be a cpllection of
subsets of P, called blocks. The pair of (P,B) is called a (υr, bk)-divisible structure if the
following conditions hold.

(1) Each block contains k points.
(2) Each points belongs to r blocks.
(3) Every pair of distinct points of P belong to at most one block.
(4) All blocks in B can be partitioned into r parallel classes.

Lemma 4.2. For any r ≥ 1, k ≥ 2, (that is not nessecary k be a prime power) there
exists a (υr, bk)-divisible structure with υ = km and m is an arbitrary integer such that
m ≥ log2(r + 1).

Proof. Cosider the Zk-module, P = Zk, where Zk is the ring of integers module k. For
any α ∈ Zk, we use α(j) to denote the jth coordinate of α. For each nonempty s ⊆ [m], let

αs ∈ Zm
k be such that: αs(j) = 1 if j ∈ S and zero otherwise. Let Bs,0 ≜ {i.αs, i ∈ Zk}.

Clearly, Bs,0 is a subset of Zm
k with r elements and Bs,0 ∩ Bs′,0 = (0, 0, ..., 0) for any

two distinct nonempty subsets s and s′ of [m], s ̸= s′, s, s′ ̸= ∅. Let Bs = {Bs,l, l =
0, 1, 2, ..., km−1 − 1} be the collection of all cosets of Bs,0. Then α1 − α2 ∈ Bs,0 for any
l ∈ {0, 1, 2, ..., km−1 − 1} and any α1, α2 ∈ Bs,l. Note that m ≥ log2(r + 1) and [m] has
2m−1 nonempty subsets. We can always pick r nonempty subsets of [m], say s1, s2, ..., sr.
Let B =

∪r
i=1 Bsi . We claim that (P = Zm

k ,B) is a divisible structure, which can be seen
as follows:
Firstly, for each nonempty s ⊆ [m], Bs is a partition of P, also conditions (1), (2) and
(4) of Definition 1 holds. Secondly, if s, s′ are two distinct nonempty subsets of [m] and
l, l′ ∈ {0, 1, 2, ..., 2m − 1}, then we have |Bs,l ∩ Bs′,l′ | ≤ 1. If α1, α2 ∈ Bs,l ∩ Bs′,l, then
α1−α2 ∈ Bs,0∩Bs′,0 = (0, 0, ..., 0). Hence, we have α1 = α2, as |Bs,l∩Bs,l′ | ≤ 1. Moreover,
since for each nonempty s ⊆ Bs is a partition of P, so condition (3) of Definition 1 holds.

□
Lemma 4.3. For any k ≥ 2, let D = (P,B) be a divisible structure defined in 4.1.

Then D clearly is a BIBD.

Proof. Straight forward. □
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Theorem 4.4. For a 2 − (υ, k, 1) design D, the coding capacity of the sum-network
obtained using the above construction is at most k

k+r .

Proof. We have ch(F) ∤ (k − 1), so m
n ≤ k(k−1)

k(k−1)+υ−1 = υ
υ+b = km

km+km−1r
= k

k+r .

□
Thus exists a (m,n) fractional network code whose coding capacity just depends on

the characteristic of finite field F and parameter r of BIBD.

Example 4.5. Let k = 3 and r = 2. Consider the BIBD in 3.2. then we can construct a
sum-network with the coding capacity equal to 3/5. By considering structure in subsection
3.1, the number of sources and terminals of sum-network will be υ+b = 15, while we could
construct the other network corresponding to divisible structure with fewer sources and
terminals, υ + b = k + r = 5 [?].

5. CONCLUSION AND FURTHER RESEARCH

In this paper, for any k ≥ 2 (that is not nessecary k be a prime power), we define a
BIBD on a special finite field and constructe a family of sum-networks whose coding capac-
ity depends on the characteristic of field. These sum-networks are in general, smaller (with
fewer sources and terminals) than sum-networks known to achieve the coding capacity in
order to previous works. The further research is going to describe general an undirected
sum-network on the basic of elements of divisible structure allows us that analyze these
(m,n) fractional network code.
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Abstract. Mathematical modeling has become an important and useful tool in studying
the spread and control of infection disease. The basic reproduction number,is one of the
most useful threshold parameters which characterize mathematical problem concerning
infections diseases. In this paper,we using Lyapunov techniques for study the stability
and asymptotic stability of dynamical systems. and revisit a classical result.
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1. Introduction

Mathematical modeling has become an important and useful tool in studying the
spread and control of infection disease. A major project in deterministic epidemiological
modeling of heterogeneous populations is to find conditions for local and global stability of
the equilibria and to work out the relations among these stability conditions, the threshold
of epidemic take-off, and endemicity, and the basic reproduction.
The basic reproduction number,is one of the most useful threshold parameters which
characterize mathematical problem concerning infections diseases.

2. Model formulation

In this section we formulate a epidemic model by the following system of ordinary
differential equations. The model is formulated with the state variables, S,E,I,R, that
represent respectively, the number of susceptible (S), exposed (E), infected(I), recovered
(R) individuals. The model is described by following system of differential equations:

Ṡ(t) = µω(1− νI)− βIS − µS
Ė(t) = βIS − δE − µE(1)

İ(t) = qδE + µωνI − (γ + µ)I

Ṙ(t) = (1− q)δE + γI + µ(1− ω)− µR

∗Speaker. Email address: r9reza@yahoo.com
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In these equations, all the parameters are nonnegative. µ is the birth and death rate,
ω is the birth that is unsuccessfully immunized. ν is the proportion of children devel-
oping infection born to unimmunized mothers. δ is the rate of transfer from exposed to
infections.β is the transmission coefficient.γ is the recovery rate of infected. A proportion
q of latent individuals become infected.For simplicity, we normalize the population size to
1.

S(t) + E(t) + I(t) +R(t) = 1(2)

Hence, the system (1) becomes

Ṡ(t) = µω(1− νI)− βIS − µS
Ė(t) = βIS − (δ − µ)E(3)

İ(t) = qδE + µωνI − (γ + µ)I

Let

Ω = {(S,E, I) ∈ R3
+|0 ≤ S + E + I ≤ ω}

Then it is clear that Ω is a positive invariant subset of R3
+.The system (3) has a disease-

free equilibrium (DFE), P0 = (S0, E0, I0) = (ω, 0, 0) ∈ Ω and has a endemic equilibrium

(EE) in Ω, P ∗ = (S∗, E∗, I∗) = ( ω
R0
, βωI∗
(δ+µ)R0

, (1− 1
R0

) µqδω
µqδνω−(δ+µ)(µ−µων ). The positive EE

existes for all R0 > 1. Where the parameter

R0 =
βqδω

(δ + µ)(γ + µ− µων)
(4)

is basic reproduction number got by next generation matrix [5].

3. Stability of equilibria

Theorem 3.1. For system (3)

i. The DEF P0 of the system (3) always exists, and if R0 < 1, and is globally
asymptotically stable and unstable if R0 > 1.

ii. If R0 > 1 then the positive EE P ∗ of the system (3) exists and its locally stable.

.

Proof. see [5] �

Let

X = {(S,E, I) | S ≥ 0, E ≥ 0, I ≥ 0}

X0 = {(S,E, I) ∈ X | S ≥ 0, E > 0, I > 0}

∂X0 = X \X0

M∂ = {(S(0), E(0), I(0)) ∈ ∂X0 | Γt(S(0), E(0), I(0)) ∈ ∂X0, t ≥ 0}
Where Γt : X → X is the semiflow defined by (3).
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3.1. Global stability of endemic equilibrium. In this section, we prove the global
stability of the EE, P ∗. Consider the following Lyapunov function:

V (t) = S − S∗ − S∗ln(
S

S∗
) + E − E∗ − E∗ln(

E

E∗
) +

ω

δ + ω
(I − I∗ − I∗ln(

I

I∗
))

Differentiating V (t) along the trajectories of model (3) gives

V̇ = (1− S∗

S
)Ṡ + (1− E∗

E
)Ė +

ω

δ + ω
(1− I∗

I
)İ

Substituting the expressions for the derivatives in V , it follows from (3) and using the
relation at the steady state EE,P ∗ = (S∗, E∗, I∗),then

V̇ =(1− S∗

S
)[µω(1− νI)− βIS − µS] + (1− E∗

E
)[βIS − (δ − µ)E]

+
ω

δ + ω
(1− I∗

I
)[qδE + µωνI − (γ + µ)I] = (1− S∗

S
)[
βI∗S∗ − µS∗

ωνI∗
(1− νI)− βIS − µS]

+ (1− E∗

E
)[βIS − (δ − µ)E] +

ω

δ + ω
(1− I∗

I
)[qδE +

βI∗S∗ − µS∗
ωνI∗

νI − (γ + µ)I]

=− µ(S∗ − S)2

S
+ 3βS∗I∗ − βS∗I∗( 1

x
+
xz

y
+
y

z
) ≤ 0

Where S
S∗ = x, E

E∗ = y, II∗ = z. There, an application of LaSalle’s invariance principle
yields that the endemic equilibrium P ∗ is globally asymptotically stable if R0 > 1. This
result is summarized in the following theorem.

Theorem 3.2. The unique endemic equilibrium P ∗ of model (3) is globally asymptotically
stable in ∂X0 = X \X0 whenever R0 > 1.

5
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Abstract. Let x be a vector in Banach space X over the field C and T stands for a
bounded linear operator acting on X, then the operator T is called hypercyclic, if the
orbit of the vector x under operator T is dense in X. The notion of hypercyclicity was
localized by J-sets. We will introduce an equivalent definition of the J-set.
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1. Introduction

Assume that X is a Banach space and T : X −→ X is a continuous linear map. If for
every pair of nonempty open subset (U, V ) of X, there is n ∈ N, so that subset Tn(U)∩V
is nonempty, then the operator T is transitive. If the underlying space is considered as
a separable Banach space, then transitivity is equivalent to hypercyclicity. To clarify the
notion of hypercyclicity, note that if B is a subset of X, then the orbit of the set B under
operator T is the set orb(T,B) = {Tnx; x ∈ B,n = 0, 1, 2, · · · }. Density of the recent set,
given the norm of space X under certain conditions, can lead to exciting results. One of
these special conditions is that B = {λx; λ ∈ C} for a vector x ∈ X. With these assump-
tions, if subset orb(T,B) is a dense subset of X, then this operatpr is called a supercyclic
operator and vector x is a supercyclic vector for operator T ; if B is considered as a single
point set B = {x} and the subset orb(T,B) is a dense subset of X, then x is called a
hypercyclic vector for the hypercyclic operator T . In this case the underlying Banach
space X should be separable. Therefore every non-separable Banach space is deleted in
hypercyclicity. Two good books for the study on transitivity and hypercyclicity are [2]
and [4].

Authors in [3] proposed J(x) for a vector x in Banach space X and T ∈ B(X) as
following:

J(x) = {z ∈ X; there exist a sequence {zn} ⊂ X and a strictly increasing

sequence of positive integers {mn}, such that zn −→ x and Tmnzn −→ z}.
And

∗Speaker. Email address: Asadipour@yu.ac.ir
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Definition 1.1. An operator T ∈ B(X) is called a J-class operator if there exists a
non-zero x ∈ X such that J(x) = X. In this case, the vector x is called a J-class vector
for T .

they have proved that on a separable Banach space X, an operator T is hypercyclic
if and only if, the underlying Banach space X has a dense subset of the J-class vectors
for the operator T , and furthermore they showed that there exists a J-class operator on
`∞(N) which is not hypercyclic because `∞(N) is not separable. In fact, they have tried to
introduce the localized hypercyclicity by the notion of J-class, and for a better explanation
of this goal, they provided an equivalent definition for the J(x) through the use of open
sets. To clarify more, they claimed that;

J(x) = {z ∈ X; for every pair of neighborhoods U, V of x, z respectively,

there exists a positive integer n such that Tn(U) ∩ V 6= φ}.
But unfortunately, the above equivalent is wrong because in the next section, with an
example we will show that the above two sets are not equivalent. Then, we will provide
an equivalent definition for the set J(x) through the use of open sets, and an application
of the equivalent definition of the J-set can be observed in the next section.
More information on the J-class operators can seen in [1], [5] and [6].

2. Main results

Before we state the example, recall that for the bounded sequence w = {wn > 0}n∈N
and the canonical basis {en}n∈N of `p(N) the operator Bw on `p(N) for 1 ≤ p <∞, which
is defined by Bw(ej) = wjej−1 for j ≥ 2 and Bw(e1) = 0 is called a unilateral weighted
backward shift. It is well known that an equivalent condition for Bw to be hypercyclic
on `p(N). In fact, the unilateral weighted shift Bw with the weight sequence {wn}n∈N is

hypercyclic if and only if lim sup
n

(
n∏
i=1

wi) = +∞, [4].

In the next example, we show that the claim which was proposed in [3, Remark 2.3] is
wrong.

Example 2.1. If T = 1
2B where B is the backward shift operator on `2(N), the space

of square summable sequences, and consider vector z ∈ `2(N) such that Tz 6= 0. Obviously,

Tz ∈ {y ∈ X; for every pair of neighborhoods U, V of z, y respectively,

there exists a positive integer n such that Tn(U) ∩ V 6= φ}.
but for every strictly increasing sequence of positive integers {kn} and every sequence
{zn} ⊂ X, if zn −→ z then T knzn −→ 0 and we get J(z) = {0}.
Therefore

J(z) 6= {y ∈ X; for every pair of neighborhoods U, V of z, y respectively,

there exists a positive integer n such that Tn(U) ∩ V 6= φ}.
Now we are ready to state an equivalent set of the J(x).

Theorem 2.2. Let T ∈ B(X) and x be an arbitrary vector in X. Then

J(x) = {z ∈ X : for every pair of neighborhoods U, V of x, z respectively,

and every N ∈ N there exists an integer n > N such that TnU ∩ V 6= φ}.
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Proof. If y ∈ J(x), then it is obvious that the vector y belongs in the above right
side set. So let y be in the above right side set and consider Ux, Uy as two neighborhoods
of x and y, respectively. Choose ε > 0 such that B(x, ε) ⊂ Ux and B(y, ε) ⊂ Uy.

Assume that for n = 1, 2, ..., j, there exist vectors xn ∈ B(x, εn) and also there exist

integers kn such that kn−1 < kn and T knxn ∈ B(y, εn). Now consider the open balls
B(x, ε

j+1) and B(y, ε
j+1), thus there exists kj+1 ≥ kj + 1 such that

T kj+1B(x,
ε

j + 1
) ∩B(y,

ε

j + 1
) 6= ∅.

Now if we choose xj+1 ∈ B(x, ε
j+1) and rename T kj+1xj+1 ∈ B(y, ε

j+1) by yj+1, then

by the induction we can construct the sequences {xn} and {kn} with desired properties
or y ∈ J(x) and the proof is completed. �

As we mentioned in the previous section, the underlying Banach space in hypercyclicity
should be separable, however, this restriction is not in the J-class. In other words, in
addition to the separable Banach spaces, which are considered in the hypercyclicity, some
non-separable Banach spaces such as `∞(N) support J-class operators, [3, Proposition
5.2]. So we stress that in the following, X denotes only a Banach space, unless emphasis
on its separability or non-separability.

Theorem 2.3. Let J ∈ L(X) be a J-class operator. Then for every invertible operator,
T ∈ L(X), the operator T−1JT is a J-class operator.

Proof. To avoid ambiguity, when we use of JS(z), we mean the J(z) under an op-
erator S. Consider x ∈ X as a J-class vector for the operator J and fix an N ∈ N. If
y ∈ X is an arbitrary vector and UT−1x, Vy are two open neighborhoods of T−1x and y,
respectively, then by invertibility of T , there exists an integer n > N such that;

JnT (UT−1x) ∩ T (Vy) 6= φ.

Therefore T−1JnT (UT−1x) ∩ Vy 6= φ or equivalently y ∈ JT−1JT (T−1x). Hence the vector
T−1x is a J-class vector for the operator T−1JT . �

So the set of all J-class operators on a Banach space X is either empty, or contains
many operators of L(X). As you see, the proof was very easily expressed with the help
of the equivalent definition for J(x) through the open sets. Now we want to answer the
following question;

Why should the J-class vector be non-zero in the definition of J-class operator?
To answer this question, consider the following example in the first step.

Example 2.4. Consider weighted backward shift operator T on `2(N) given by:

T (x1, x2, · · · ) = (2x2,
3

2
x3,

4

3
x4, · · · ).

Also let Y be the set of finite sequences with entries z ∈ C that Re(z) ∈ Q, Im(z) ∈ Q.
Since Y is dense in `2(N), so there are strictly increasing sequence {2k}k, sequence {xk} ⊂
Y that

xk = (x1, 0, x3, 0, · · · , x2k−1, 0, 0, · · · ),
xk −→ 0 as k −→∞ and T 2kxk = 0. Now, for the random member

y = (y1, 0, y3, 0, · · · , y2m+1, 0, 0, · · · ) ∈ Y
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and k ≥ 1, we set;

w2k(y) = (0, · · · , 0︸ ︷︷ ︸
2k−times

,
y1

2k + 1
, 0 ,

3y3

2k + 3
, 0, · · · , (2m+ 1)y2m+1

2(k +m) + 1
, 0, 0, · · · ).

Clearly, for every k ∈ N∪{0}, w2k(y) belongs to Y and the sequence {w2k(y)} is a sequence
in `2(N). Since

||w2k(y)||2 =

2m∑

j=1

| j

2k + j
yj |2 ≤ 4m2

(2k + 1)2
||y||2,

so w2k(y) −→ 0, as k −→∞. Note that for n ≥ 1:

Tn(x1, x2, x3, · · · ) =

(
(n+ 1)xn+1,

1

2
(n+ 2)xn+2,

1

3
(n+ 3)xn+3, · · ·

)
,

thus

T 2kw2k(y) =

(
(2k + 1)

1

2k + 1
y1, 0, (

2k + 3

3
)(

3

2k + 3
)y3, 0, · · · ,

(
2(k +m) + 1

(2m+ 1)
)(

2m+ 1

2(k +m) + 1
)y2m+1, 0, 0, · · ·

)
= y.

Hence all conditions of the J-class Criterion in [1] holds and JT (0) = `2(N).

Contrary to the obvious example provided in [3], in the above example, we gave a
nontrivial operator T such that JT (0) = X. However, it is not a J-class operator. In
fact, the unilateral weighted backward shift T on `2(N) with the bounded weight sequence

{wn > 0}n∈N is topological transitive, if, and only if lim sup
n

(
n∏
i=1

wi) = +∞, therefore the

obvious operator T is not local topological transitive anywhere except at zero.

Now the paper is ended with an question on the J-class operators.
It is well known that if an operator T is hypercyclic, then any powers of T is a hypercyclic
operator, [4]. We give a similar question as follows;

Question. If T ∈ B(X) is a J-class operator, is Tn also a J-class operator operator
for every n > 1? If so, what is the relation between their J-class vectors?
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Abstract. In this paper we present an exploratory study on the drug delivery to the
anterior segment of the eye through the cornea enhanced by ultrasound. To increase
corneal permeability and, consequently, to increase the drug transport, ultrasound is
used. The drug delivery is then described by a set of partial differential equation for
the propagation of the acoustic pressure waves generated by ultrasound and for the
drug concentration in the different corneal layers. Preliminary numerical experiments
illustrating the stimulus effects are included.
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1. Introduction

Drug delivery to the eye is a very difficult task due to the eye defenses that protect it
from the exterior environment. Traditionally, topical instillation of eye drops is the most
used procedure to delivery drugs to treat diseases of the anterior segment of the eye. Due
to the eye protection systems that include the reflex blinking, tear film (thin transparent
fluid layer), the tear fluid turnover that are responsible for the elimination of 60% of
the applied active agent, eye drops are an inefficient drug delivery system ( [3]). Even
with success, to reach the aqueous chamber, the drug is transported through the cornea
that presents lower permeability. To increase corneal permeability and, consequently, to
enhance drug transport, ultrasound has been used ( [2]).

This paper aims to present an in silico experiment to simulate the drug transport
through the cornea when an ultrasound is used to enhance the drug transport through
this tissue. A schematic representation of the cornea is presented in Figure 1 that includes
three layers: epithelium (Ωp), stroma (Ωs) and endothelium (Ωe). The boundaries and
the interface between the corneal layers are also included in this figure. We assume that
the drug is in contact with the cornea on the boundary Γp and acoustic pressure waves
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Figure 1. A schematic representation of the cornea.

are generated by the transducer placed outside of the cornea and they propagate though
the three corneal layers Ωp,Ωs and Ωe. By Ω we represent the cornea region.

In what follows we assume that the propagation of the pressure waves is described by
the following wave equation

∂2pi
∂t2

= c∗∇2pi in Ωi × (0, T ],(1)

for i = p, s. In (1), c∗ denotes the material sound speed. The pressure waves do not
change in the endothelium Ωe. Equation (1) is completed with the initial conditions:
∂pi
∂t

(0) = pi00 , pi(0) = pi0 , for i = p, s; the boundary conditions: the acoustic pressure

is assumed to be known on the boundary Γp; the other boundaries do not interfere with

the acoustic waves propagation, that is, ∇p.η = 0 on
( ⋃

j=p,s,q=`,r

Γj,q ∪ Γs,e
)
× (0, T ]; and

the interface condition: continuity of p and ∇pp.η = ∇ps.ν on Γp,s × (0, T ]. In this last
relation, η and ν are the unitary normals on Γp,s exterior to Ωp and to Ωs, respectively.

The cornea layers (epithelium and stroma) are composed by intracellular compart-
ments and extracellular micro-domains being the first one composed by cells and the
second one by extracellular matrix (ECM) that is mainly composed by collagen homoge-
neously distributed that is responsible by the transparency and by the organized structure
( [1]). The intracellular and extracellular spaces are separated by cell membranes. When
the acoustic waves propagate through the cornea, the cells permeability increases and the
drug transport between the two media also increases ( [2]) according to Fick’s law. Let
ce,j and ci,j be the ECM and the intracellular drug concentrations in the Ωj layer. The
dynamics of the drug molecules are described by the following equations:

∂ce,j
∂t

= −∇.Jce,j + kj(ci,j − ce,j) in Ωj × (0, T ],(2)

∂ci,j
∂t

+ kj(ci,j − ce,j) = 0 in Ωj × (0, T ],(3)

for j = p, s, Jce,j = −Dj∇ce,j is the flux of the extracellular concentration in the epithe-
lium and stroma, respectively, Dj is the effective drug diffusion coefficient in the epithelium
and stroma, respectively, given by

Dj = Dj0φj ,(4)
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where Dj0 , j = p, s, represent the molecular diffusion coefficients in the epithelium and
stroma layers, respectively (see ( [2,5])). In (4), φj , j = p, s, denote the porosity of the
epithelium and stroma, respectively, which depends on the acoustic pressure by

φj = φj0e
βjm (pj−p0),(5)

where pj , j = p, s, are defined by (1), φj0 represents the porosity at a reference pressure p0
and βjm is constant. In (2 and 3), kj , j = p, s, are the epithelium and stroma permeability
coefficient that, according [4], are given by

kj =
φ3j

c∗∗τ2j A
2
j

(6)

where τj is the tortuosity of the medium, Aj is the specific surface area and c∗∗ is the
Kozeny coefficient.

As mentioned in [6], the endothelium layer does not change when exposed to ultra-
sound. Consequently, the drug distribution in this corneal layer is defined by

∂ce
∂t

= −∇.Jce in Ωe × (0, T ],(7)

where ce and Jce = −De∇ce denote the drug concentration and the drug flux in the
endothelium layer, respectively. In (7), De is the drug diffusion coefficient.

The system of partial differential equations (2)-(7) is complemented with initial con-
dition

ci,p(0) = 0, ce,p(0) = 0, ci,s(0) = 0, ce,s(0) = 0, ce(0) = 0,(8)

and boundary conditions

(9)





ce,p = cR, ci,p = 0 on Γp × (0, T ],
Jcj,p.η = 0 on (∪q=`,rΓp,q)× (0, T ], j = e, i,
Jcj,s.η = 0 on (∪q=`,rΓs,q)× (0, T ], j = e, i,
Jce.η = 0 on (∪q=`,rΓe,q)× (0, T ],
Jce.η = kece on Γe × (0, T ],
∇ci,s.η = 0 on Γs,e × (0, T ].

The last condition means that intracellular drug in Ωs does not passes through Γs,e because
the endothelium layer is in contact with the stroma through a thick ECM membrane
known as Descemets membrane. In (9), cR is the drug concentration on Γp that can be
defined by a reservoir in contact with the cornea. In what concerns the intracellular drug
concentration, we assume that on this boundary we do not have any intracellular drug.
Finally, to complete our mathematical model we need to impose interface conditions

(10)





Jcj,p.η = kp,s(cj,p − cj,s) on Γp,s × (0, T ], j = e, i,
Jcj,p.η = −Jcj,s.ν on Γp,s × (0, T ], j = e, i,
Jce,s.η = ks,e(ce,s − ce) on Γs,e × (0, T ],
Jce,s.η = −Jce.ν on Γs,e × (0, T ].

In (10), ki,j represents the mass transfer coefficient between the tissues Ωi and Ωj .

2. Numerical Simulations

The numerical results presented in what follows were obtained using the commercial
tool COMSOL 5.3 Multiphysics. They intend to illustrate qualitatively the effect of the
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Figure 2. The surface average concentration of drug in stroma (left) and
anterior champer (right) by comparing with and without ultrasound effect.

ultrasound on the drug transport. The results were obtained fixing the parameters of the
model and considering the different values for the acoustic pressure on the boundary Γp.

Figure 2 shows the effect of ultrasound in the drug transport in the cornea. In the left
figure we present the mean drug concentration in the stroma with and without the presence
of ultrasound. In the right figure we present the corresponding drug mass that enters in
the anterior chamber. We observe that the pressure waves generated by the ultrasound
increase the drug concentration in the cornea and consequently the drug mass that will
be available in the anterior chamber. This figure clearly shows the effect of ultrasound on
drug transport through the cornea.

3. Conclusions

In this paper a system of partial differential equations is proposed to describe the drug
transport trough the cornea enhanced by ultrasound. The ultrasound induces acoustic
pressure waves that increase the corneal porosity ( [2]) and then the permeability of
corneal tissues ( [4]). The in silico experiment confirm that the described scenario leads
to an increasing of the drug transport through the corneal tissues leading to an increasing
of the drug delivery in the anterior chamber.
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Abstract. In this work, I study a robust version of the local linear regression of the
censored scalar response random variable, from a functional random variable X. I con-
struct an estimator by combining both local linear ideas and M-estimation techniques.
The main results of this work are the establishment of the almost complete convergence
as well as the asymptotic normality for the constructed estimator. These asymptotic
results are stated with rate and are proved under a general condition.
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1. Introduction

The functional statistic is an important field in statistics, it concerns the mod-
ilisation of random variables takes values in infinite-dimensional space. In practice, there
is an increasing number of situations coming from different fields of applied sciences in
which the data are of functional nature (such as soil science, oceanography, geology, epi-
demiology, econometrics, forestry, environmental science...). In this work, I’m interested
to the nonparametric estimation of the robust regression between a functional variable X
and a scalar response variable Y which is not completely observed by using the local linear
method.

In robust statistics, robust regression is a form of regression analysis designed
to overcome some limitations of traditional parametric and non-parametric methods. Re-
gression analysis seeks to find the relationship between one or more independent variables
and a dependent variable. Robust regression methods are designed to be not overly af-
fected by violations of assumptions by the underlying data generating process.
In the literature, several articles devoted to the study of this method. We can refer, among
others, to Huber (1964), Härdle (1984), Collomb & Härdle (1986), Boente & Fraiman
(1989), Läıb & Ould Säıd (2000), Azzedine & al. (2008) and Cai & Roussas (1992). Re-
cently, Belarbi et al. (2018), Zou et al. (2018), and Abbas et al. (2020).
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In the regression estimation, the local linear adjustment is considered to be
greater than the constant local fit. The first results of the local linear method for functional
data were obtained by Baillo & Grané (2009), Barrientos-Marin & al. (2010), Berlinet &
al (2010) and Zhou & Lin (2016).

For censored variables and in the case of a linear model, Basak (1992), Li and
Zheng (2009), Bednarsky (2014); Beran (1981).

Finally, when these two types of incomplete data occur simultaneously in a
study, then the model is known as the Left Truncated and Right Censored data point.
Under this model, for the linear regression with i.i.d data, see Lai and Ying (1994), Kim
and Lai (2000).

2. The model and the estimation

Consider n independent pairs of random variables (Xi, Yi) for i = 1, ..., n coming
from the pair (X,Y ). The latter is valued in F × R, where F is a semi-metric space and
d denotes a semi-metric. For x ∈ F the nonparametric robust regression, denoted by θx,
is defined as the unique minimizer of

θx = arg min
t∈R

E
[
δρ(Y − t)
G(t)

|X = x

]

where ρ(.) is a real-valued Borel function satisfying some regularity conditions to be stated
below; and

Gn(t) = 1−Gn(t)

=

{
Πn
i=1

(
1− 1−δi

n−i+1

)
1{Yi≤t}

if t ≤ Yn
0 otherwise

The function θx is approximated by:

∀ X in neighborhood of x θX = a+ bβ(X , x)

where a and b are estimated by â and b̂ are solution of

min
(a,b)∈R2

n∑

i=1

δi

G(t)
ρ (Yi − a− bβ(Xi, x))K

(
h−1∆(x,Xi)

)

Here
- β(., .) is a known function from F × F into R such that, ∀ξ ∈ F , β(ξ, ξ) = 0,
- K is a kernel function and h = hn (to simplify the notations) is a sequence of positive
real numbers which goes to zero as n goes to infinity, and d(., .) = |∆(., .)| is a function of

F × F . A natural estimator of θx denoted by θ̂x.

3. Assumptions

In what follows, when no confusion is possible, we will denote by C and C ′ some
strictly positive generic constants. Moreover, x denotes a fixed point in F , Nx denotes
a fixed neighborhood of x. For i = 1, .., n, we denote by Ki = K(h−1∆(x,Xi)), and
βi = β(Xi, x). Furthermore, we put φx(r1, r2) = P(r2 ≤ |∆(x,X)| ≤ r1) and we assume
the following hypotheses :
3 (H1) ∀r > 0 φx(r) = φx(−r, r) > 0 and there exists a function χx(.) such that:
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∀t ∈ (−1, 1), lim
h−→0

φx(th, h)

φx(h)
= χx(t)

.

3 (H2) The function ρ(.) is a strictly convex function, continuously differentiable and has
a Lipschitzian derivative ψ(.) such that

E
[∣∣∣∣
δψ(Y − t)
G(t)

∣∣∣∣
p

|X = x

]
< C <∞ almost surely , p > 2

.

3 (H3) The function Γλ(x, .) := E
[∣∣∣∣
δψλ(Y−.)
G
λ

(t)

∣∣∣∣ |X = x

]
is of class C1 on [θx − ∆, θx +

∆],∆ > 0 and λ ∈ {1, 2}, we put γ(x, .) = d
dtΓ1(x, .), such that:

(i) ∀(t1, t2) ∈ [θx−∆, θx + ∆]× [θx−∆, θx + ∆],∀(x1, x2) ∈ Nx×Nx, and for (b1, b2) > 0

|Γ(x1, t1)− Γ(x2, t2)| ≤ Cdb1(x1, x2) + |t1 − t2|b2 .

|γ(x1, t1)− γ(x2, t2)| ≤ C ′db1(x1, x2) + |t1 − t2|b2

(ii)The variable δ(x;X) is σ(X;x)-measurable and the two partial derivatives of the
function,

Υx(s, t) = E[Γ(X, t)|β(X,x) = s], at (0; θx) exist.

3 (H4) The function β(., .) is such that

∀z ∈ F , C|∆(x, y)| ≤ |β(y, x)| ≤ C ′|∆(x, y)|
and

sup
u∈B(x,r)

|β(u, x)| − |∆(x, u)| = o(r);

where u ∈ B(x, r) = {x′ ∈ F/d(x, x′) ≤ r}
3 (H5) The kernel K is a positive, differentiable function which is supported with in
(−1, 1) such that

D =

(
K(1)−

∫ 1
−1 tK

′(t)Φx(t)dt K(1)−
∫ 1
−1(tK(t))′Φx(t)dt

K(1)−
∫ 1
−1(tK(t))′Φx(t)dt K(1)−

∫ 1
−1(t2K(t))′Φx(t)dt

)

is a positive definite matrix.
3 (H6) h is a positive sequel such as

lim
n−→∞

h = 0 and lim
n−→∞

log n

nφX(x)
= 0

.
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4. Result

Theorem 1. Under assumptions (H1)-(H6) and if ∂Γ
∂t (x, θx) > 0, we have

|θ̂x − θx| = O(hmin(b1,b2)) +O

(√
log n

nφx(h)

)
a.co

Theorem 2. Under assumptions (H1)-(H6) and if ∂Γ
∂t (x, θx) > 0 for any x ∈ A, we get

(√
nφx(h)

σ2(x)

)(
θ̂x − θx − o(h)

) D−→ N (0, 1) as n −→∞

where
D−→ denotes the convergence in distribution,

σ2(x) = Γ2(x,θx)
(γ(x,θx))2

a23D1−2a2a3D2+a22D3

(a1a3−a22)2
and {A = x ∈ F , σ2(x) 6= 0}

and

aj = K(1)−
∫ 1
−1(sj−1K(s))′Φxds and Dj = K(1)−

∫ 1
−1(sj−1K(s)2)′Φxds for j = 1, 2, 3
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12. W. Härdle (1984), Robust regression function estimation, J. Multivariate Anal., 14, 169-180.
13. R.J. Huber (1964), Robust estimation of a location parameter, Ann. Math. Statist., 35, 73-101.
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Abstract. In this paper, we introduce the concept of amenability for a pair of Banach
algebras and we investigate the relation between the existence of derivations on two
Banach algebras A and B and the existence of a biderivation on the pair (A,B). Then
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1. Introduction

A derivation from a Banach algebra A to a Banach A-bimodule X is a bounded linear
mapping d : A → X such that

d(ab) = d(a)b+ ad(b) (a, b ∈ A).

For each x ∈ X the mapping δx : a → ax− xa, (a ∈ A) is a bounded derivation, called an
inner derivation.
Let X be a Banach A-bimodule. Then X∗ is a dual Banach A-bimodule, by defining a.f
and f.a, for each a ∈ A and f ∈ X∗ by

a.f(x) = f(xa) , f.a(x) = f(ax) (x ∈ X).

Similarly, the higher dualsX(n) can be made into Banach A-bimodules in a natural fashion.
A Banach algebra A is called amenable if for each Banach A-bimodule X, the only

derivations from A to X∗ are inner derivations. For more details about this notion see [5].
Let A and B be Banach algebras and X be an A-B-bimodule that is X is an A-

bimodule and B-bimodule and we have

a(xb) = (ax)b , b(xa) = (bx)a (a ∈ A, b ∈ B, x ∈ X).

A bounded bilinear mapping D : A× B → X is called a biderivation if D is a derivation
with respect to both arguments. That is the mappings aD : B → X and Db : A → X
where

aD(b) = D(a, b) = Db(a) (a ∈ A, b ∈ B)

are derivations. We denote the space of such biderivations by BZ1(A×B,X).

∗Speaker. Email address: s.barutkub@ub.ac.ir
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Let x ∈ Z(A,X) ∩ Z(B,X), where

Z(A,X) = {x ∈ X; ax = xa ∀a ∈ A}.
The map Dx : A×B → X that

Dx(a, b) = x[a, b] = (xa)b− (xb)a (a ∈ A, b ∈ B)

is a basic example of biderivations and is called an inner biderivation. We denote the
space of such inner biderivations by BN1(A×B,X).

For more applications of biderivations, see the survey article [3, Section 3]. Some alge-
braic aspects of biderivations on certain algebras were investigated by many authors; see
for example [2,4], where the structures of biderivations on triangular algebras and general-
ized matrix algebras are discussed, and particularly the question of whether biderivations
on these algebras are inner was considered.

Also we define the first bicohomology group BH1(A×B,X) as follows,

BH1(A×B,X) =
BZ1(A×B,X)

BN1(A×B,X)
.

Obviously BH1(A × B,X) = 0 if and only if every biderivation from A × B to X is an
inner biderivation. Now we are motivated to define the concept of amenability for a pair
of Banach algebras as follows.
We say that the pair (A,B) is amenable if for each A-B-bimodule X, BH1(A×B,X∗) =
{0}.

Despite the apparent similarities between (inner) derivations (resp. amenability of
Banach algebras) and (inner) biderivations (resp. amenability of a pair of Banach algebras)
these concepts also have differences [1]. In this paper, we will examine the similarities of
these concepts under certain conditions.

2. Main results

Let A and B be Banach algebras. We say that A and B commute with respect to
an A-B-bimodule X if for each a ∈ A, b ∈ B and x ∈ X we have a(bx) = b(ax) and
(xb)a = (xa)b. Note that if A and B commute with respect to X then they commute with
respect to A-B-bimodule X∗.

For example, if we consider X as an A-B-bimodule with module actions zero on A,
then A and B commute with respect to this A-B-bimodule. Also if A is commutative then
A commutes with itself with respect to A.

Theorem 2.1. If A and B commute with respect to an A-B-bimodule X and there are
nonzero derivations d : A → X and d′ : B → X, then there is a nonzero biderivation from
A×B into X.

Proposition 2.2. For each biderivation D : A×B → X,

D(a, b)[c, d] = [a, b]D(c, d) (a, c ∈ A, b, d ∈ B).

Remark 2.3. If Z(A,X) = {0} or Z(B,X) = {0} then the only inner biderivation
D : A×B → X is zero. Therefore if X is an A-B-bimodule such that there is a non zero
biderivation from A×B into X∗ and Z(A,X) = {0}, then (A,B) is not amenable.

The following theorem says that amenability of Banach algebras A and B are necessary
conditions for amenability of the pair (A,B).

Theorem 2.4. (i) If σ(B) ̸= ∅ and (A,B) is amenable then A is amenable.
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(ii) If σ(A) ̸= ∅ and (A,B) is amenable then B is amenable.

Remark 2.5. The converse of this theorem is not true, in general. For example we
can show that (C,C) is not amenable and σ(C) ̸= ∅, but it is amenable.

3. Conclusion

Although the concept of amenability of Banach algebras and amenability of a pair of
Banach algebras are almost different. In this paper, it was observed that they are related
to each other under certain conditions.
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Abstract. In this paper, we study a stochastic maximum principle of Markov regime
switching forward stochastic differential equations with jumps-diffusion in infinit horizon.
Sufficient and necessary maximum principles for optimal control under partial informa-
tion are deriven. We illustrate our results by a problem of optimal consumption problem
from a cash flow with regime.
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1. Introduction

The maximum principle is one of the most important methods used to solve optimal
control problem, and due to its applications in several fields such as economics, biology
and finance, it attracted a large number of researchers. Bismut [2] was the first who
studied the stochastic case. Bensoussan [1] used the convexe perturbation method to
derive the stochastic maximum principle in local form. In the continuous case, Peng [8]
proved the general maximum principle for the stochastic control system by using a second
order variational equation and second order adjoint equation to overcome the difficulty
appearing along with the nonconvex control domain and control entering the diffusion
term, this works was extended in the jumps case by Tang [13].There are many results
for other stochastic control systems; we refer the reader to Young and Zhou [14], Wu
[16], Peng [10] , Shi and Wu [4], Tao and Wu [12], Hafayed et al The optimal control
problem for a Markov regime-switching model has recently received much attention, e.g.,
see Donnelly [3], Menoukeu [5], Sun et al [11], Zhang et al [15]. In infinite horizon the
stochastic maximum principle has been studied by many authors . For example Hadam
et al [9], Agram et al [6,7]. In this work we establish a necessary and sufficient stochastic
maximum principle for optimal control within a regime-switching diffusion-jumps model
on infinite horizon.

*Speaker. Email address: hanibenabdalah@gmail.com
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2. Préliminaries

Let B(t) = B(t, w), t ≥ 0, w ∈ Ω and Ñ (dζ, dt) = N (dζ, dt) − v(dζ)dt be one-
dimensional Brownian motion and an independent compensated poisson random measure,
respectively, on a filtered probability space (Ω,F , {F}t≥0 , P ) satisfying the usual condi-

tions we consider a continuous-time, finie-state, observable Markov chain {α (t) /t ≥ 0}.
{F}t≥0 is a right-continuous, P -completed filtration to wich all of the processes defined be-
low, including the Markov chain the Brownian motions, and the poisson random measures,
are adapted. Following the convention of Elliott, Aggoun, and Moore, we identify the state
space of the chain with a finite state space S = {e1, ..., eD} ,where D ∈ N, ei ∈ RD, and
jthe component of ei is the Kronecker delta δij for each i, j = 1, 2, ..., D. the state space S
is called a canonical state space and its use faciliates the mathematics.

We suppose that the chain is homogeneous and irreducible. To specify statistical or
probabilistic properties of the chain α. we define the generator Λ = {λij 1 ≤ i ≤ j ≤ D}
of the chain under P . this is also called the rate matrix, or the Q-matrix. Here, for each
i, j = 1, 2, .., D, λij is the constant transition intensity of the chain from state ei to state
ej at time t. Note that λij ≥ 0 for i ̸= j and 0. In what follows for each i, j = 1, 2, .., D
which i ̸= j, we suppose that λij > 0, so λii < 0. Elliott, Aggoun, and Moore obtained the
following semimartingale dynamics for the chain α :

α (t) = α (0) + ΛTα (u) du+M (t)

where {M (t) \ t ≥ 0} is an RD-valued,
(
{F}t≥0 , P

)
-martingale and yT denotes the trans-

pose of a matrixe (or, in particular, a victor) .
and

J ij (t) =
∑

0≤s≤t
⟨α (s−) , ei⟩⟨α (s) , ej⟩

=

∫ t

0
⟨α (s−) , ei⟩⟨ΛTα (s) , ej⟩ds+

∫ t

0
⟨α (s−) , ei⟩⟨dM (s) , ej⟩ds

= λij

∫ t

0
⟨α (s−) , ei⟩ds+mij (t) ,

where mij = {mij (t) \t ∈ τ} with mij (t) = ⟨α (s−) , ei⟩⟨dM (s) , ej⟩ is an
(
{F}t≥0 , P

)
-

martingale, suppose Ni (dz, dt) , i = 0, 2, .....D , are independent Poisson random measures
on (R+×R0, B (R+)×B0) under P. Assume that the Poisson random measures Ni (dz, dt)
has the following compensator :

(1) ηiα (dz, dt) = νiα(t−) (dz\t) η (dt) = ⟨α (t−) , νi (dz\t)⟩η (dt) ,

and

ν (dz\t) = ν (dz) = (νe1 (dz) , νe2 (dz) , .., νeD (dz))T

Furthermore we assume that η (dt) = dt and write

Ñα (dz, dt) =
(
Ñ 1
α (dz, dt) , ..., ÑD

α (dz, dt)
)T

(2)

=
(
N1 (dz, dt)− v1α (dz) , ...,ND (dz, dt)− vDα (dz)

)T
.

706



Short Title

Let X (t) = X(u) (t) be a controlled Markov regime-switching jumps-diffusion in R de-
scribed by the stochastic differential equation

(3)





dX (t) = b (t,X (t) , u (t) , α (t)) dt+ σ (t,X (t) , u (t) , α (t)) dB (t)

+

∫

R0

η (t,X (t) , u (t) , α (t) , z) Ñα (dz, dt)

+γ (t,X (t) , u (t) , α (t)) dΦ̃ (t) 0 ≤ t ≤ ∞,
X (0) = x0.

X (0) = x ∈ R.
Here b : [0,∞[ × R × U × S×Ω→ R, σ : [0,∞[ × R × U × S×Ω→ R, η : [0,∞[ × R ×

U × S × R0×Ω→ R and γ : [0,∞[× R× U × S×Ω→ R,
Ñα (dz, dt) is N -dimentional Markov regime-switching random measures definied by

(2) Φ̃ (t) =
(

Φ̃1, .., Φ̃D

)
whith Φ̃j (t) , j = 1, 2, .., D, . In what follows, we consider the pro-

cess {X (t) \t ∈ [0,∞[} as the solution of (3) associated with the control process {u (t\t ∈ [0,∞[)} .
Let εt ⊂ Ft be a given subfiltration, representing the information avialable to the

controller at time t, t ≥ 0.
The control process u (t) assumed to be {εt}t≥0 predictable and with value in a convexe

set U ⊂ R. Let Aε be our family of εt-predictable controls. Let R denote the set of
functions r : [0,∞[× R0 → R such that

(4) J
(∗
x, ei, u

∗
)

= Sup
u∈Aε

J (x, ei, u) .

Let us define the Hamiltonian H : [0,∞[× R× U × S × R× R×R×R→ R by

H (t, x, u, ei, p, q, r, s) = f (t, x, u, ei, w) + pb (t, x, u, ei, w) + qσ (t, x, u, ei, w)

+

∫

R0

η (t, x, u, ei, z, w) r (t, z) νi (dz)(5)

+
D∑

j=1

γj (t, x, u, ei, w) sj (t)λij .

The adjoint equation in the unknown Ft-predictable processes (p (t) , q (t) , r (t, z) , s (t)) is

dp (t) = − ∂

∂x
H (t,X (t) , u (t) , α (t) , p (t) , q (t) , r (t, .) , s (t)) dt

+q (t) dB (t) +

∫

R0

r (t, z) Ñα (dz, dt) + s (t) dΦ̃ (t)(6)

LATEX

3. Optimal control with partial information and infinite horizon

Theorem 3.1 (Sufficient Infinite Horizon Maximum Principle). Let
∗
u ∈ Aε and let(∗

p (t) ,
∗
q (t) ,

∗
r (t, z) ,

∗
s (t)

)
be an associated solution to Eq (6). Assume that for all u ∈ Aε

the following terminal condition holds :

(7) 0 ≤ E
[

lim
t→∞

[
∗
p (t)

(
X (t)−

∗
X (t)

)]]
<∞
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Hoveover, assume that H
(
t, x, u, ei,

∗
p (t) ,

∗
q (t) ,

∗
r (t, .) ,

∗
s (t)

)
is concave in x and u and

E

[
H

(
t,
∗
X (t) ,

∗
u (t) ,

∗
ei,
∗
p (t) ,

∗
q (t) ,

∗
r (t, .) ,

∗
s (t)

)
\εt
]

(8)

= max
u∈U

E

[
H

(
t,
∗
X (t) , u,

∗
ei,
∗
p (t) ,

∗
q (t) ,

∗
r (t, .) ,

∗
s (t)

)
\εt
]

In addition we assume that for all T =∞
(9)

E



∞∫

0





( ∗
X (t)−Xu (t)

)2

∗q (t)2 +

∫

R0

∗
r (t, z) να (dz) +

D∑

j=1

((∗
s
)j)2

(t)λj (t)





 dt


 <∞

and

E



∞∫

0

∗
p (t)2




(
σ (t)− ∗σ (t)

)2
+

∫

R0

(
η (t, z)− ∗η (t, z)

)2
να (dz) +

D∑

j=1

(
γj − ∗γ

j
)2

λj (t)



 dt


 <∞

(10) E

[∣∣∣∣
∂

∂u
H

(
t,
∗
X (t−) ,

∗
u (t) , α (t−) ,

∗
p (t−) ,

∗
q (t) ,

∗
r (t, .) ,

∗
s (t)

)∣∣∣∣
2
]
<∞,

and that

(11) E



∞∫

0

∣∣∣H
(
t,X (t−) , u (t) , α (t−) ,

∗
p (t−) ,

∗
q (t) ,

∗
r (t, .) ,

∗
s (t)

)∣∣∣


 <∞

for all u.
Then we have that

∗
u (t) is optimal.

4. Optimal control with partial information and infinite horizon

Theorem 4.1 (necessary maximum principle). Let
∗
u ∈ Aε be an optimal control of

problem (6) subject to the controlled system (3) and let
(∗
p (t) ,

∗
q (t) ,

∗
r (t) ,

∗
s (t)

)
be the

unique solution of (3.2) . Moreover, let us assume that, and

(25) lim
T→∞

E
[∗
p (T )

∗
ε (T )

]
= 0.

Then the following assertions are equivalent:

(i): For all bounded β ∈ Aε, ∗
d

ds
J
(∗
u+ sβ

)∣∣∣
s=0

= 0.

(ii): For all t ∈ [0,∞[ ,

E

[
∂H

∂u

(
t,
∗
X (t) , u,

∗
p (t) ,

∗
q (t) ,

∗
r (t, .) ,

∗
s (t)

)
\εt
]

u=
∗
u(t)

= 0 a.s.
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Abstract. Pseudo MTL-algebras or weak pseudo BL-algebras are noncommutative
structures arise from pseudo t-norm, namely, pseudo BL-algebras without the pseudo-
divisibility condition. In this paper, we introduce the special classes of pseudo MTL-
algebras and we call it integral pseudo MTL-algebras. Also, integral filters of pseudo
MTL-algebras are defined and studied.
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1. Introduction

Basic fuzzy logic (BL from now on) is the many-valued residutated logic introduced
by Hajek in [5] to cope with the logic of continues t-norms and their residua. Pseudo
MTL-algebras were define in [4] under the name weak BL-algebras in order to obtain
a structurer on [0, 1], since there is not pseudo BL-algebra on [0, 1]. So, pseudo MTL-
algebras are non commutative fuzzy structure which arise from pseudo t-norm, namely,
pseudo BL-algebras without the pseudo divisibility condition. In 2013, R.A. Borzooei et al.
in [1] introduced the concepts of integral filters and integral BL-algebras and extracted
important information and results about the relationship between these concepts with
local and perfect BL-algebras. In this paper, we introduce the notion of special classes of
pseudo MTL-algebras and we call it integral pseudo MTL-algebra and provide properties
and examples of it. Moreover, we define integral filters and we prove that apseudo MTL-
algebras are integral if and only if {1} is integral filter. Also, we show that in finite pseudo
MTL-algebras, integral filters coincide with perfect filters.

2. Preliminaries

Definition 2.1. ( [2]) A pseudo MTL-algebra is an algebra (A,∧,∨,�,→, , 0, 1) of
the type (2, 2, 2, 2, 2, 0, 0) satisfying the following conditions:

(M1) (A,∧,∨, 0, 1) is a bounded lattice;
(M2) (A,�, 1) is a monoid;
(M3) x� y ≤ z iff x ≤ y → z; iff y ≤ x z for any x, y, z ∈ A;

∗Speaker. Email address: rdaneshpayeh@yahoo.com
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(M4) (x→ y) ∨ (y → x) = (x y) ∨ (y  x) = 1 (pseudo-prelinearity).

We will refer to (A,∧,∨,�,→, , 0, 1) by its universe A.

Remark 2.2. (1) If additionally for x, y ∈ A, satisfies the axiom:
(M5) (x→ y)� x = x� (x y) = x ∧ y (pseudo-divisibility)

then A is a pseudo BL-algebra.
(2) If A satisfies the conditions (M1), ( M2), (M3) and ( M5), then it is a bounded divisible
residuated lattice.
A is called commutative if the operation � is commutative. In this case →= and thus,
a commutative pseudo MTL-algebra is a MTL-algebra. A totally ordered (linear ordered)
pseudo MTL-algebra is called chain. In this study, we will agree that the operations ∧,∨,�
have higher priority than the operations →, .

Proposition 2.3. ( [2–4]) In any pseudo MTL-algebra A the following hold:

(c1) x→ (y → z) = (x� y)→ z and x (y  z) = (y � x) z;
(c2) x ≤ y iff x→ y iff x y = 1;
(c3) x→ x = x x = 1 and x→ 1 = x 1 = 1;
(c4) 0→ x = 0 x = 1;
(c5) x� 0 = 0� x = 0;
(c6) 1− = 1∼ = 0 and 0− = 0∼ = 1;
(c7) x− � x = 0 and x� x∼ = 0;
(c8) x ≤ y− iff x� y = 0 and x ≤ y∼ iff y � x = 0;
(c9) x→ y− = (x� y)− and x y∼ = (y � x)∼;

(c10) x ≤ y− iff y ≤ x∼.
Definition 2.4. ( [2]) (a) A nonempty subset F ⊆ A is called filter of A if satisfies

the following axioms:

(F1) if x, y ∈ F , then x� y ∈ F ;
(F2) if x ∈ F , y ∈ A, x ≤ y, then y ∈ F.

(b) A proper normal filter P of a A is called primary if for all x, y ∈ A, ((x � y)n)∼ ∈ P
for some n ∈ N ∪ {0} implies (xm)∼ ∈ P or (ym)∼ ∈ P for some m ∈ N ∪ {0}.
(c) A filter of A is maximal (ultra filter) if it is proper and it is not contained in any other
proper filter;
(d) A proper filter P on A is called perfect filter if for allx ∈ A, (xn)− ∈ P and (xn)∼ ∈ P
for some n ∈ N ∪ {0} iff ((x−)m)− 6∈ P or ((x∼)m)∼ 6∈ P for all m ∈ N ∪ {0}.

Proposition 2.5. ( [2]) Let A be a pseudo MTL-algebra, and let P be a proper normal
filter of A. Then the following are equivalent:

(i) P is perfect filter of A;
(ii) A/P is a perfect pseudo MTL-algebra.

Definition 2.6. ( [2]) A pseudo MTL-algebra is called local if it has a unique ultera
filter.

Definition 2.7. ( [2]) A pseudo MTL-algebra A is called perfect perfect if it satifies
the following conditions:

(i) A is local good pseudo MTL-algebra;
(ii) for any x ∈ A, ord(x) <∞ iff ord(x−) =∞ iff ord(x∼) =∞.
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3. Integral pseudo MTL-algebras

In this section we study a class of pseudo MTL-algebras that called integral pseudo
MTL-algebras and we give some of properties.

Definition 3.1. A is called an integral pseudo MTL-algebra, if x� y = 0, then x = 0
or y = 0 for all x, y ∈ A.

Example 3.2. ( [2]) (a) Let’s consider A = {0, a, b, c, 1} with 0 < a < b < c < 1 and
the operations �, →,  given by the following tables:

� 0 a b c 1
0 0 0 0 0 0
a 0 a a a a
b 0 a a b b
c 0 a a c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 c 1 1 1
c 0 a b 1 1
1 0 a b c 1

 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 b 1 1 1
c 0 b b 1 1
1 0 a b c 1

Then (A,∨,∧,�,→, , 0, 1) is an integral pseudo MTL-algebra.

(b) Let’s consider A = {0, a, b, c, 1} with 0 < a < b, c < 1, but b, c are incomparable,
and the operations �, →,  given by the following tables:

� 0 a b c 1
0 0 0 0 0 0
a 0 0 a 0 a
b 0 0 b 0 b
c 0 a b c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a b 1 1 1 1
b 0 c 1 c 1
c b b b 1 1
1 0 a b c 1

 0 a b c 1
0 1 1 1 1 1
a c 1 1 1 1
b c c 1 c 1
c 0 b b c 1
1 0 a b c 1

Then (A,∨,∧,�,→, , 0, 1) is a pseudo MTL-algebra, but not an integral pseudo
MTL-algebra, since b� a = 0, for a, b 6= 0 and b� c = 0, for b, c 6= 0.

Theorem 3.3. Let P be a filter of A and A/P be an integral pseudo MTL-algebra.
Then P is a primary filter of A.

Proof. Assume that (x�y)− ∈ P and (x�y)∼ ∈ P , for x, y ∈ A. Then (x�y)→ 0 ∈
P and (x�y) 0 ∈ P . Using (c4), we get 0→ (x�y) = 1 ∈ P and 0 (x�y) = 1 ∈ P .
Hence [x � y] = [0], and so [x] · [y] = [x � y] = [0]. Since A/P is an integral pseudo
MTL-algebra, we have [x] = [0] or [y] = [0]. Hence x− = x→ 0 ∈ P , x∼ = x 0 ∈ P or
y− = y → 0 ∈ P , y∼ = y  0 ∈ P. Thus, P is a primary filter of A. �

Theorem 3.4. Let A be an integral pseudo MTL-algebra. Then

(i) A is local pseudo MTL-algebra and B(A) = {0, 1};
(ii) M(A) = A \ {0};

(iii) A is perfect pseudo MTL-algebra and ord(x) =∞, where 0 6= x ∈ A;
(iv) if A is an Boolean algebra, then A = {0, 1}.

Corollary 3.5. Let P be a primary filter of A and [x] · [y] = [0], for some [x], [y] ∈
A/P. Then [x] or [y] is nilpotent.
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4. Integral filters of pseudo MTL-algebras

Definition 4.1. A proper filter P of A is called integral filter, if for all x, y ∈ A,
(x� y)− ∈ P implies x− ∈ P or y− ∈ P and (x� y)∼ ∈ P implies x∼ ∈ P or y∼ ∈ P.

Example 4.2. Consider the pseudo MTL-algerba in Example 3.2, the set of integral
filters of A is F (A) = {{1}, {c, 1}, {a, b, c, 1}, A}.

Proposition 4.3. Every integral filter is a primary filter.

Theorem 4.4. Let F ⊆ G, where F,G be filters of A and F be an integral filters of
A. Then G is an integral filter, too.

Theorem 4.5. Let P be a proper filter of A. Then P is an integral filter if and only
if A/P is an integral pseudo MTL-algebra.

Theorem 4.6. The following statements are equivalent:

(i) {1} is an integral filter of A;
(ii) any filter of A is an integral filter;
(iii) A is an integral pseudo MTL-algebra.

Theorem 4.7. Let P be an integral filter of A. Then P is a perfect filter of A.

Corollary 4.8. Let A be finite. Then A is an integral pseudo MTL-algebra if and
only if MV (A) is an integral pseudo MTL-algebra, where

MV (A) = {x ∈ A : x∼∼ = x−− = x}.
Proof. Assume A be an integral pseudo MTL-algebra and X � y = 0, for some

x, y ∈ MV (A). Since MV (A) ⊆ A, then x = 0 or y = 0, and so MV (A) is an integral
pseudo MTL-algebra. Conversely, let MV (A) is an integral pseudo MTL-algebra. Since
A is finite pseudo MTL-algebra, using Theorem 3.4(iii), MV (A) is a finite prefect MTL-
algebra. Therefore, by Theorem 3.4 (i), MV (A) = {0, 1}. Now, let x � y = 0 for some
x, y ∈ A. Then by (c8), x ≤ y−, and so y− ∈MV (A). Hence y− = 0 or Y − = 1 and y = 1
oy y = 0. If y = 1, since x� y = 0, then x = 0 and otherwise y = 0. Thus, A is a pseudo
MTL-algebra. �

5. Conclusion

The results of this paper will be devoted to study the local and perfect pseudo MTL-
algebras. Also, we introduced the notions of integral pseudo MTL-algebras and integral
filters, and proved that these filters are perfect and primary, but there is still an open
problem: under what suitable conditions the convers of Proposition 4.3 holds. This issue
is an our agenda in future research.
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Abstract. Very recently, many authors extended orthogonal metric spaces and dis-
cussed on fixed points for several various contractive mappings in spaces. In this article
we extend the notion of orthogonal metric space to orthogonal b-metric space. We ob-
tain several fixed point results concerning this mapping in the framework of new spaces,
which is called orthogonal b-metric spaces. Also, all main results, new definitions and
theorems are supported by some interesting example.
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1. Introduction
After the first results of Banach in 1922, many authors studied on this theory in various

spaces. One of these spaces is a b-metric space defined by Bakhtin [1] .

Definition 1.1. [1] Let X ̸= ∅ and s ≥ 1 be a real number. Assume that a mapping
d : X ×X → [0,∞) for every x, y, z ∈ X satisfies in the following relations:

(d1) d(x, y) = 0 iff x = y;
(d2) d(x, y) = d(y, x);
(d3) d(x, z) ≤ s[d(x, y) + d(y, z)] .

Then d is named a b-metric on X and (X, d) is named a b-metric space.

In 2008, Eshaghi et al. [2] defined the idea of orthogonal sets and orthogonal metric
spaces. In the sequel, we consider some definitions and notations about these concepts.

Definition 1.2. [2] Assume X ̸= ∅ and consider a binary relation ⊥ on X ×X by
∃a0; ((∀b, b⊥a0) or (∀b, a0⊥b)).

Then X is named an orthogonal set. Also, a0 is named an orthogonal element.

Example 1.3. [3] Let X = [2,∞) and consider e⊥f if e ≤ f for every e, f ∈ X.
Then, by considering a0 = 2, (X,⊥) is an O-set.

∗Speaker. Email address: shirin.eivani@gmail.com
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Definition 1.4. [2] Consider an O-set (X,⊥) with a sequence {an} therein. Then
{an} is named orthogonal sequence (or same O-sequence) whenever

((∀n ∈ N; an⊥an+1) or (∀n ∈ N; an+1⊥an)).

Analogously, a Cauchy sequence {an} is named a Cauchy O-sequence whenever
((∀n ∈ N; an⊥an+1) or (∀n ∈ N; an+1⊥an)).

Now, if we consider a b-metric instead a metric, then we can rewrite the following
definitions that were previously introduced by other researchers. Consider the (X,⊥) and
a b-metric d on X with a real number s ≥ 1. The triple (X,⊥, d) is named an orthogonal
b-metric space.

Definition 1.5. [2] The triple (X,⊥, d) is named a complete O-b-metric space (O-
complete) whenever each Cauchy O-sequence converges in X.

Definition 1.6. [2] Assume that (X,⊥, d) is an orthogonal b-metric space and T is
a self-mapping on X. T is named an orthogonal preserving (⊥-preserving) whenever g⊥l
implies T (g)⊥T (l) for all g, l ∈ X.

Definition 1.7. [4] Assume that (X,⊥, d) is an orthogonal b-metric space and T is a
self-mapping on X. Then T is named orthogonal continuous (⊥-continuous) in a ∈ X if for
all O-sequences {an} in X so that an −→ a then T (an) −→ T (a). Also, T is ⊥-continuous
on X if T is ⊥-continuous for all a ∈ X.

2. Main results
Here, we express several fixed point results in an orthogonal complete b-metric space.

Theorem 2.1. Assume that (X,⊥, d) is an orthogonal complete b-metric space. Also,
suppose that T : X −→ X is a ⊥-preserving and O-continuous mapping. Moreover, assume
that there exist α, β, γ ≥ 0 with αs+ β(1 + s) + γ(s2 + s) < 1 provided that

d(Ta, Tb) ≤ αd(a, b) + β[d(a, Ta) + d(b, T b)] + γ[d(a, T b) + d(b, Ta)](1)
for every a, b ∈ X, where a⊥b. Then T has a unique fixed point a′ ∈ X and Tna −→ a′

for each a ∈ X.

Proof. Suppose a0 is an orthogonal element in X so that
((∀b ∈ X; a0⊥b) or (∀b ∈ X; b⊥a0)).

Consider a sequence {an} by an = T (an−1) = Tna0. By using the property ⊥-preserving
of T , {an} is an O-sequence, i.e.,

((∀n ∈ N; an⊥an+1) or (∀n ∈ N; an+1⊥an)).

Now, set a = an−1 and b = an in (1). Then, for any n ∈ N, we get
d(an, an+1) = d(Tan−1, Tan) ≤ αd(an−1, an) + β[d(an−1, Tan−1) + d(an, Tan)]

+ γ[d(an−1, Tan) + d(an, Tan−1)]

= αd(an−1, an) + β[d(an−1, an) + d(an, an+1)]

+ γ[d(an−1, an+1) + d(an, an)]

≤ αd(an−1, an) + β[d(an−1, an) + d(an, an+1)]

+ γs[d(an−1, an) + d(an, an+1)]
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≤ (α+ β + γs)d(an−1, an) + (β + γs)d(an, an+1)].(2)

Now, (2) implies that d(an, an+1) ≤ λd(an−1, an) for each n ∈ N, where λ = α+β+γs
1−β−γs <

1

s
.

By continuing this process, we get d(an, an+1) ≤ λnd(a0, a1) for all n ∈ N. Now, let
m,n ∈ N with m > n. Then, we get

d(an, am) ≤ (
sλn

1− λs
)d(a0, a1) −→ 0 as n −→ ∞,

which implies that {an} is a Cauchy O-sequence in orthogonal O-complete b-metric space
X. Thus, {an} converges to element a′ ∈ X. Now, since T is O-continuous and Tan −→
Ta′, we have

d(a′, Ta′) = lim
n−→∞

d(an+1, Ta
′) = lim

n−→∞
d(Tan, Ta

′) = d(Ta′, Ta′) = 0.

Thus, a′ is a fixed point for T . Now, we demonstrate a′ is unique. Assume b′ is another
fixed point of T . Then, we get

(a0⊥a′ and a0⊥b′) or (a′⊥a0 and b′⊥a0).

Since T is a ⊥-preserving mapping, we obtain
(Tna0⊥a′ and Tna0⊥b′) or (a′⊥Tna0 and b′⊥Tna0)

for any n ∈ N. Using (1), we obtain
d(an, a

′) = d(Tna0, T
na′) ≤ λnd(a0, a

′),

d(an, b
′) = d(Tna0, T

nb′) ≤ λnd(a0, b
′).

Now, d(a′, b′) ≤ sd(a′, an) + sd(an, b
′) implies that a′ = b′; i.e., T has a unique fixed

point. □
Corollary 2.2. Assume that (X,⊥, d) is an orthogonal complete b-metric space.

Also, suppose that T : X −→ X is a ⊥-preserving and O-continuous mapping. Moreover,
assume that there exists γ ≥ 0 with γ ∈ [0, 1

s2+s
) so that

d(Ta, Tb) ≤ γ[d(a, T b) + d(b, Ta)]

for every a, b ∈ X, where a⊥b. Then T has a unique fixed point a′ ∈ X and Tna −→ a′

for any point a ∈ X.

Proof. Set α = β = 0 in (1) and apply Theorem 2.1. □
Corollary 2.3. Assume that (X,⊥, d) is an orthogonal complete b-metric space.

Also, suppose that T : X −→ X is a ⊥-preserving and O-continuous mapping. Moreover,
assume that there exists β ≥ 0 with β ∈ [0, 1

1+s) so that
d(Ta, Tb) ≤ β[d(a, Ta) + d(b, T b)]

for each a, b ∈ X, where a⊥b. Then T has a unique fixed point a′ ∈ X and Tna −→ a′ for
each a ∈ X.

Proof. Set α = γ = 0 in (1) and consider Theorem 2.1. □
Corollary 2.4. Let (X,⊥, d) be an orthogonal complete b-metric space. Also, suppose

that T : X −→ X be a ⊥-preserving and O-continuous mapping. Moreover, assume that
there exist α, β, γ ≥ 0 so that

d(Ta, Tb) ≤ αd(a, b) + βd(a, Ta) + γd(b, T b)
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for every a, b ∈ X with a⊥b, where αs + βs + γ < 1. Then T has a unique fixed point
a′ ∈ X and Tna −→ a′ for every x ∈ X.

Example 2.5. Set X = [0, 12] and define d : X × X → [0,∞) by d(a, b) = |a − b|2
for each a, b ∈ X. Consider the binary relation ⊥ on X by a⊥b if ab ≤ (a ∨ b), where
a ∨ b = a or b. Then (X, d,⊥) is an O-complete b-metric space with s = 2. Consider the
mapping T : X → X by

Ta =

{ a
3 0 ≤ a ≤ 3,

0 3 < a ≤ 12

(
a ∈ [0, 12]

)
.

Let a⊥b and α = 1
16 , β = 1

4 and γ = 1
24 in (1). Without loss of generality, we may consider

ab ≤ b. Now, we have
• if a = 0 and 0 ≤ b ≤ 3, then Ta = 0 and Tb = b

3 , and

d(Ta, Tb) =
b2

9
≤ 1

16
b2 +

1

4
· 4b

2

9
+

1

24
· 10b

2

9
= αd(a, b) + β

(
d(a, Ta) + d(b, T b)

)
+ γ

(
d(a, T b) + d(b, Ta)

)
,

• if a = 0 and 3 ≤ b ≤ 12, then Ta = Tb = 0, and

d(Ta, Tb) = 0 ≤ 1

16
b2 +

1

4
b2 +

1

24
b2

= αd(a, b) + β
(
d(a, Ta) + d(b, T b)

)
+ γ

(
d(a, T b) + d(b, Ta)

)
,

• if 0 ≤ b ≤ 1 and 0 ≤ a ≤ 3, then Ta = a
3 and Tb = b

3 , and

d(Ta, Tb) =
1

9
|a− b|2 ≤ 1

9
(a2 + b2) =

1

4
· (4a

2

9
+

4b2

9
)

≤ 1

16
|a− b|2 + 1

4
· (4a

2

9
+

4b2

9
) +

1

24
· (|a− b

3
|2 + |y − a

3
|2)

= αd(a, b) + β
(
d(a, Ta) + d(b, T b)

)
+ γ

(
d(a, T b) + d(b, Ta)

)
,

• if 0 ≤ b ≤ 1 and 3 < a ≤ 12, then Ta = 0 and Tb = b
3 , and so

d(Ta, Tb) =
b2

9
≤ 1

16
|a− b|2 + 1

4
· (a2 + 4b2

9
) +

1

24
· (|a− b

3
|2 + b2)

= αd(a, b) + β
(
d(a, Ta) + d(b, T b)

)
+ γ

(
d(a, T b) + d(b, Ta)

)
.

Thus, the relation (1) is valid. So, all hypotheses of Theorem 2.1 are held. Consequently,
T has a unique fixed point a = 0 in X.
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Abstract. In this paper we develop and analyze a mathematical model for the trans-
mission of Zika virus. Firstly we construct stochastic environment because of parameters
random essence, and introduce Zika epidemic model in stochastic form. Moreover, the
equilibria of the system is considered. Finally, disease-free equilibrium point of the model
and biologically feasible region for this dynamical system are presented.
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1. Introduction

The mathematical modeling has been used in various sciences, including engineer-
ing, chemistry, biology, mathematical finance and physics [1–4]. In particular, stochastic
systems are very useful tools for modeling in various fields such as physics, chemistry, bi-
ology, mathematical finance and other sciences [1,3]. Application of mathematical models
to study mosquito related diseases have been studied by several researchers [4–6]. Zika is
a flavivirus transmitted to humans through either the bite of infected Aedes mosquitoes
or sexual intercourse with infected individuals. In this paper, we present a mathemat-
ical model based on two modes of transmission. In mathematical models of Zika virus
transmission it is assumed that the virus is usually transmitted from mosquitoes to hu-
mans, while according to WHO, in addition to the transmission through mosquitoes, Zika
virus is transmitted through infected blood as well as through sexual contact with an
infected person. Mathematical models for transmission dynamics of mosquito-borne dis-
eases can be useful in providing better insights into the behaviour of this disease. The
models have played great roles in influencing the decision making processes regarding
intervention strategies for preventing and controlling the insurgence of mosquito-borne
diseases [4–6]. In this work, we establish a model for investigation of the Zika transmis-
sion based on stochastic version of the SIR model with additional degree of realism. This
paper is organized as follows. In Section 2, preliminaries and notations are presented. In
Section 3, the model of transmission of Zika virus and the process of the implementation
stochastic form are presented.
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2. Preliminaries

Let (Ω, {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0 satisfying
the usual conditions. We also let Rd

+ = {x ∈ Rd : xi > 0, 1 ≤ i ≤ d}, d−dimensional
stochastic differential equation can be expressed as follows:

(1) dX(t) = f(t,X(t))dt+ g(t,X(t))dB(t), t ≥ t0,

with initial value X(t0) = X0, where f(t, x) is a function in Rd defined on [t0,+∞) ×
Rd, g(t, x) is a d × m matrix and B(t) is an m−dimensional standard Brownian motion
defined on the probability space (Ω,Ft,P). We define the differential operator L associated
with Equation (1) by,

L =
∂

∂t
+

d∑

i=1

fi(t, x)
∂

∂xi
+

1

2

d∑

i,j=1

[gT (t, x)g(t, x)]ij
∂2

∂xi∂xj
.

If L acts on function V in C2×1(Rd × [t0,∞)), The generalized Itô formula implies that

dV (t, x) = LV (t, x)dt+ Vx(t, x)g(t, x)dB(t).

3. Stochastic Zika Virus Model

In this work, we consider a mathematical model for Zika virus transmission dynam-
ics. This model consists of nine differential equations. In this section, we formulate a
stochastic mathematical model for Zika virus transmission based on three populations. In
human population, we use a sex-structured mathematical model. Based on their disease
status, sexually active male (NM ) and female (NF ) individuals are grouped into different
disjoint classes. Classes of susceptible male and female individuals are denoted by SM and
SF , respectively. The classes IM and IF stand for infectious male and female individuals,
respectively. We grouped recovered male and female individuals from Zika virus in RM

and RF classes,respectively. Thus,

NH = NM +NF , NM = SM + IM +RM , NF = SF + IF +RF .

In the mosquito population (NV ), the susceptible, latent and infected classes of Zika virus
are denoted by SV , EV and IV ,respectively. Hence, we have

NV = SV + EV + IV .

Also, the model parameters and their definitions are given in Tab. 1.

Table 1. Description of parameters

β1 Sexual transmission rate from infectious males to susceptible female individuals
β2 Mosquito-to-human transmission rate
β3 Human-to-mosquito transmission rate
β4 Sexual transmission rate from infectious females to susceptible male individuals
γ Human recovery rate
µ Mosquito death rate
Λ Mosquito recruitment rate
α Mosquito transition rate from latent to infectious class
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A stochastic model for Zika virus transmission

To describe the mechanism of the spread of Zika virus, we consider the deterministic
mathematical model as follows [5]:

dSM = −(β2Iv + β4IF )SMdt

dIM = ((β2Iv + β4IF )SM − γIM )dt

dRM = γIMdt

dSF = −(β1IM + β2Iv)SFdt

dIF = ((β1IM + β2Iv)SF − γIF )dt

dRF = γIFdt

dSv = (Λ− β3(IM + IF )Sv −MSv)dt

dEv = (β3(IM + IF )Sv − (α+M))dt

dIv = (αEv −MIv)dt

We can provide an additional degree of realism by defining the white noise and Brownian
motion and introduce a stochastic model. Therefore, we implement this idea by replacing
random parameters





β1 → β1 + σ1Ḃ1(t)

β2 → β2 + σ2Ḃ2(t)

β3 → β3 + σ3Ḃ3(t)

β4 → β4 + σ4Ḃ4(t)





γ → γ + σ5Ḃ5(t)

M → M + σ6Ḃ6(t)

Λ → Λ + σ7Ḃ7(t)

α → α+ σ8Ḃ8(t)

where Bi(t) and σi, i = 1, 2, . . . , 6 are the Brownian motions and the intensities of the
white noises, respectively. These parameters are selected for implementation of stochastic
environment because of their random essence. So, we present the following modified model
with stochastic approach for Zika virus:
(2)
dsM = −(β2Iv + β4IF )SMdt− σ2IvSMdB2(t)− σ4IFSMdB4(t),
dIM = ((β2Iv + β4IF )SM − γIM )dt+ σ2IvSMdB2(t) + σ4IFSMdB4(t)− σ5IMdB5(t),
dRM = γIMdt+ σ5IMdB5(t),
dSF = −(β1IM + β2Iv)SFdt− σ1IMSFdB1(t)− σ2IvSFdB2(t),
dIF = ((β1IM + β2Iv)SF − γIF )dt+ σ1IMSFdB1(t) + σ2IvSFdB2(t)− σ5IFdB5(t),
dRF = γIFdt+ σ5IFdB5(t),
dSv = (Λ− β3(IM + IF )Sv −MSv)dt+ σ7dB7(t)− σ3(IM + IF )SvdB3(t),

−σ6SvdB6(t),
dEv = (β3(IM + IF )Sv − (α+M)dt+ σ3(IM + IF )SvdB3(t)− σ8EvdB8(t),

−σ6EvdB6(t),
dIv = (αEv −MIv)dt+ σ8EvdB8(t)− σ6IvdB6(t).

Theorem 3.1. Zika virus model (2) is a dynamical system on the biologically feasible
region

Ω = {(SM , IM , RM , SF , IF , RF , Sv, Ev, Iv) ∈ R9
+ : 0 ≤ SM + IM +RM + SF + IF +RF

= NH = const

and

0 ≤ Sv + Ev + Iv = Nv ≤ Λ/µ.}
Proof. The proof is presented in [5]. □
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Theorem 3.2. The disease-free equilibrium point of the model is obtained from the
system

SM

1 + (β2Iv + β4IF )ϕ
= SM

(β2Iv + β4IF )ϕSM + IM
1 + γϕ

= IM

γϕIM +RMRM

SF

1 + (β1IM + β2Iv)ϕ
= SF

(β1IM + β2Iv)ϕSF + IF
1 + γϕ

= IF

γϕIF +RF = RF

Λϕ+ Sv

1 + (β3(IM + IF ) + µ)ϕ
= Sv

β3(IM + IF )ϕSv + Ev

1 + (α+ µ)ϕ
= Ev

αϕEv + Iv
1 + µϕ

= Iv

and gives

(Sk
M , IkM , Rk

M , Sk
F , I

k
F , R

k
F , S

k
v , E

k
v , I

k
v ) = (SM0 , 0, 0, SF0 , 0, 0,

Λ

µ
, 0, 0).

4. Conclusion

In this paper, we have analyzed a model for simulating transmissibility of the Zika
virus. We use the white noise and Brownian motion to construct the corresponding sto-
chastic model for the transmission of the Zika virus. We established a stochastic model for
Zika virus with additional degree of realism. Finally, disease-free equilibrium point of the
model and biologically feasible region for this dynamical system is presented.
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Abstract. In this paper we introduce notions of hom-Lie color algebra and investigate
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1. Introduction
The notion of Lie algebra is one of the important concepts of modern mathematics and

mathematical physics. The general theory of Lie algebras leads to a rich assortment of im-
portant explicit examples of geometric objects. There are different kinds of generalizations
of Lie algebras, such as hom-Lie algebras, hom-Lie superalgebras, color hom-Lie algebras,
etc. [1–3,5] The notion of hom-Lie algebra was introduced by Hartwig et al. [6] as part of
study of deformations of the Witt and the Virasoro algebras. In a hom-Lie algebra, the
jacobi identity is twisted by a linear map, called the hom-Jacobi identity. Recently, many
results of hom-Lie algebras were generalized to hom-Lie color algebras which are the natu-
ral generalizations of Lie algebras and Lie superalgebras, by Larsson and Silvestrov [6,7].
The main objects that this paper deals with are hom-Lie color algebras. Therefore at the
first, hom-Lie algebras, hom-Lie color algebras and some of their useful related definitions
are presented. At first let us to recall some basic concepts from [2,4,8].

Definition 1.1. [6,7] A hom-Lie algebra is a triple (L, [., .], α), where L is a linear
space equipped with a skew-symmetric bilinear map [., .] : L × L → L and a linear map
α : L → L such that

[α(x), [y, z]] + [α(y), [z, x]] + [α(z), [x, y]] = 0,

for all x, y, z in L, that is called hom-Jacobi identity.

∗Speaker. Email address: farhang@shirazu.ac.ir
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• A hom-Lie algebra is called a multiplicative hom-Lie algebra, if α is an algebraic
morphism, i.e. for any x, y ∈ L,

α([x, y]) = [α(x), α(y)].

• We call a hom-Lie algebra regular, if α is an automorphism.

Let (L, [., .], α) be multiplicative hom-Lie algebra. Denote by αs the s-times composi-
tion of α by itself, for any nonnegative integer s, i.e.

αs = α ◦ ... ◦ α (s− times),

where we denote α0 = Id and α1 = α. For a regular hom-Lie algebra L, let
α−s = α−1 ◦ ... ◦ α−1 (s− times).

A linear sub-vector space I ⊆ L is a hom-Lie subalgebra of (L, [., .], α), if α(I) ⊆ I and
I is closed under the bracket operation, i.e., [I, I] ⊆ I.

Definition 1.2. [1,4] Let Γ is a commutative group which in what follows will be
referred to as thr grading group, a commutation factor on Γ with values in the multiplica-
tive group K \ {0} of a field K of characteristic 0 is a map ϵ : Γ× Γ → K \ {0} satisfying
three properties:

1. ϵ(α+ β, γ) = ϵ(α, γ)ϵ(β, γ),
2. ϵ(α, γ + β) = ϵ(α, γ)ϵ(α, β),
3. ϵ(α, β)ϵ(β, α) = 1.

A Γ-graded ϵ-Lie algebra (or a color Lie algebra) is a Γ-graded linear space X =
⊕

γ∈ΓXγ ,
with a bilinear multiplication (bracket) [., .] : X ×X → X satisfying the following proper-
ties:

1. Grading axiom: [Xα, Xβ] ⊆ Xα+β,
2. Graded skew-symmetry: [a, b] = −ϵ(α, β)[b, a],
3. Generalized Jacobi identity:

ϵ(γ, α)[a, [b, c]] + ϵ(α, β)[b, [c, a]] + ϵ(β, γ)[c, [a, b]] = 0,

for all a ∈ Xα, b ∈ Xβ, c ∈ Xγ and α, β, γ ∈ Γ.

The elements of Xγ are called homogeneous of degree γ, for all γ ∈ Γ. Suppose
L =

⊕
γ∈Γ Lγ and h =

⊕
γ∈Γ hγ be Γ-graded linear spaces. A linear mapping f : L → h

is said to be graded of degree µ ∈ Γ if f(Lγ) = hγ+µ, for all γ ∈ Γ. A linear mapping
f : L → h is said to be graded of degree zero if f(Lγ) = hγ , holds for all γ ∈ Γ. Sometimes
such f is said to be even.

Now, we introduce the notions of hom-Lie color algebras as a special class of color
quasi-Lie algebras.

Definition 1.3. A hom-Lie color algebra is a quadruple (L, [., .], ϵ, α) consisting of a
Γ-graded linear space L =

⊕
γ∈Γ Lγ , a bi-character ϵ, a graded bilinear mapping [., .] :

L× L → L (i.e., [La,Lb] ⊆ La+b, for all a, b ∈ Γ) and a graded homomorphism α : L → L
of grading degree zero (α(Lγ) ⊆ Lγ , for all γ ∈ Γ) such that for homogeneous elements
x, y, z ∈ L we have

1. -ϵ-skew symmetry: [x, y] = −ϵ(x, y)[y, x],
2. ϵ-hom-Jacobi identity:

ϵ(z, x)[α(x), [y, z]] + ϵ(x, y)[α(y), [z, x]] + ϵ(y, z)[α(z), [x, y]] = 0.
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We call (L, [., .], ϵ, α) a multiplicative hom-Lie color algebra, if α is a morphism of color
Lie algebras, i.e., α ◦ [., .] = [., .] ◦ α⊗2.

Definition 1.4. Let (L, [., .], ϵ, α) be a hom-Lie color algebra. For any nonnegetive
integer s, a linera map D : L → L of degree d is called a homogeneous αs-derivations of
the multiplicative hom-Lie color algebra (L, [., .], ϵ, α) if

(1) D(Lγ) ⊆ Lγ+d,
(2) [D,α] = 0, i.e., D ◦ α = α ◦D,
(3) D([x, y]) = [D(x), αs(y)] + ϵ(d, x)[αs(x), D(y)] for all x, y ∈ L.

Denoted by Derγαs(L) the set of all homogeneous αs-derivation of the multiplicative
hom-Lie color algebra (L, [., .], ϵ, α). The space Der(L) =

⊕
s≥0Derαs(L), provided with

the color-commutator and the following linear map
α̂ : Der(L) → Der(L), α̂(D) = D ◦ α,

is color hom-Lie algebra. For any x ∈ L satisfying α(x) = x, define ads(x) : L → L by
ads(x)(y) = [αs(y), x] for all y ∈ L.

Definition 1.5. Let L, h be two hom-Lie color algebras, e is called an extension of
the hom-Lie color algebra L by h if there exists a short exact sequence

0 → h → e → L → 0

of hom-Lie color algebras and their morphisms.

Tow extensions
0 −→ h

it−→ et
pt−→ L −→ 0 (t = 1, 2)

are equivalent if there is an isomorphism f : e1 → e2 such that f ◦ i1 = i2 and p2 ◦ f = p1.
Let there exists an extension

0 −→ h
i−→ e

p−→ L −→ 0

and q : L → e be a even degree graded linear map such that p ◦ q = IdL. We define
ψ : L → Derαs(h), such that

(1) ψx(y) = [αs−1(s(x)), y],

and ρ :
∧2

Γ−graded L → h, such that

(2) ρ(x, y) = [q(x), q(y)]− q([x, y]).

Lemma 1.6. Tha maps ψ and ρ defined in (1) and (2) satisfy
[ψx, ψy]− ψ[x,y] = ads−1(ρ(x, y)),

∑

cyclic{x,y,z}
ϵ(x, z)(ψx(ρ(y, z))− ρ([x, y], z)) = 0.

Now, by using the above lemma, the following main theorem is obtained.

Theorem 1.7. Suppose L, h be tow hom-Lie color algebras. The short exact sequences
of the form

0 → h → e → L → 0
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are in the one-to-one correspondence with the data of the following form. An even linear
map ψ : L → Derαs(h) and a graded even skew symmetric bilinear map ρ :

∧2
Γ−graded L → h

such that
[ψx, ψy]− ψ[x,y] = ads−1(ρ(x, y)),∑

cyclic{x,y,z}
ϵ(x, z)(ψx(ρ(y, z))− ρ([x, y], z)) = 0.

The extension that corresponds to ψ and ρ is the vector space e = h ⊕ L which hom-Lie
color algebra structure is given by

[y1 + q(x1), y2 + q(x2)]e = ([y1, y2]h + ψx1y2 − ϵ(x2, y1)ψx2y1 + ρ(x1, x2)) + [x1, x2]L

and its short exact sequence is

0 −→ h
i−→ h⊕ L = e

p−→ L −→ 0.

Two data (ψ, ρ) and (ψ
′
, ρ

′
) are equivalent if there exists a even linear map f : L → h

such that ψ′
x = ψx + adhs−1(f(x)) and

ρ
′
(x, y) = ρ(x, y) + ψx(f(y))− ϵ(x, y)ψy(f(x))− f([x, y]) + [f(x), f(y)].

Thus the corresponding equivalence will be
e = h⊕ L → e

′
= h⊕ L

y + x 7→ y − f(x) + x.

In the special case of above theorem, we have the following corollary.
Corollary 1.8. Suppose L, h be two hom-Lie color algebras and Z(h) = 0. Then the

extensions of L by h is in one-to-one correspondence with isomorphisms of the form

ψ̂ : L → out(h) =
Derαs(h)

Innαs(h)
.
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Abstract. In this paper we introduce modular frame, woven modular frame in Hilbert
C∗-modules. And we study some definitions and basic properties of Hilbert C∗-modules
and woven frames , Riesz basis in Hilbert C∗-modules.Under what conditions can a
sequence be turned into a modular frame in Hilbert C∗-modules? Also we show that
every woven modular Riesz basis is a module frame.
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1. Introduction

Hilbert space frames were originally introduced by Duffin and Schaeffer to deal with
some problems in non-harmonic Fourier analysis [5]. Frames can be viewed as redun-
dant bases which are generalizations of Riesz bases [1–4]. This redundancy property
sometimes is extremely important in applications such as signal and image processing,
data compression and sampling theory. Hilbert C∗-modules are generalizations of Hilbert
spaces by allowing the inner product to take values in a C∗-algebra rather than in the
field of complex numbers. Frames for Hilbert spaces have natural analogues for Hilbert
C∗-modules. These frames are called Hilbert C∗-modular frames or just simply modular
frames. Modular frames are not trivial generalizations of Hilbert space frames due to the
complex structure of C∗-algebras. It is well known that the theory of Hilbert C∗-modules
is quite different from that of Hilbert spaces. For example, we know that, any closed linear
subspace in a Hilbert space has an orthogonal complement. But this is no longer true in
Hilbert C∗-module setting since not every closed submodule of a Hilbert C∗-module is
complemented. Moreover, the Riesz representation theorem for continuous functionals on
Hilbert spaces does not hold in Hilbert C∗-modules, and so there exist nonadjointable
bounded linear operators on Hilbert C∗-modules [1, 2]. Therefore it is expected that
problems about frames in HilbertC∗-modules are more complicated than those in Hilbert
spaces. While some of the results about frames in Hilbert spaces can be easily extended

*Speaker. mr.farmanis@gmail.com
�khosravi amir@yahoo.com, khosravi@khu.ac.ir
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to Hilbert C∗-modular frames, many others cannot be obtained by simply modifying the
approaches used in Hilbert spaces case.

2. Woven Modular Riesz Basis

In this section, first we recall some definitions and basic properties of Hilbert C∗-
Modules and p-woven frame and g-frame in Hilbert C∗- Modules. Throughout this note
A is a unital C∗-algebra and H,Ki are finitely or countably generated Hilbert A-modules.
For each i ∈ I, L(H,Ki) will denote the set of all adjointable A-linear maps from H to
Ki. We also define

`2(A) := {a = (ai) ∈ A :
∑

i∈I a
∗
i ai is norm convergent in A}

Definition 2.1. A pre-Hilbert A-module is a left A-module H equipped with an A-
valued inner product 〈., .〉 : H ×H −→ A, such that
(i) 〈x, x〉 ≥ 0 for all x ∈ H and 〈x, x〉 = 0 if and only if x = 0,
(ii)〈x, y〉 = 〈y, x〉∗ for all x, y ∈ H,
(iii) 〈ax+ y, z〉 = a〈x, z〉+ 〈y, z〉 for all a ∈ A and x, y, z ∈ H.

We assume that the linear operations of A and H are compatible.i.e. λ(ax) = (λa)x for
every λ ∈ C, a ∈ A and x ∈ H. For every x ∈ H, we define

‖ x ‖=‖ 〈x, x〉 ‖ 1
2 and |x| = 〈x, x〉 12 .

If the pre-Hilbert A-module (H, 〈., .〉) is complete with respect to ‖ . ‖, it is called a Hilbert
A-module or a Hilbert C∗-modules over A. In this paper we focus on finitely and countably
generated Hilbert C∗-modules over unital C∗-algebra A. A Hilbert A-module H is (alge-
braically) finitely generated if there exists a finite subset {x1, x2, ..., xm} of H such that
every element x ∈ H can be expressed as an A-linear combination x =

∑m
i=1 aixi, ai ∈ A.

A Hilbert A-module H is countably generated if there exists a countable set of generators.
We now recall the definitions of frames and Riesz bases in Hilbert C∗-modules as follows.

Definition 2.2. Let H be a Hilbert A-module. A family {xi : i ∈ I} of elements of
H is a (standard) frame for H, if there exits constants 0 < C ≤ D <∞, such that for all
x ∈ H, C〈x, x〉 ≤∑i∈I〈x, xi〉〈xi, x〉 ≤ D〈x, x〉. (1)
Where the sum in the middle of the inequality convergent in norm for x ∈ H.
The numbers C and D are called frame bounds, If C = D = λ, it is called a λ-tight frame
and when C = D = 1, it is called a Parseval frame. {xi : i ∈ I} is said to be a Bessel
sequence if only the right-hand side inequality is required.If the sum of (1) is convergent
in norm, the frame is called standard.

According to what Arambasic and Khosravi proved, the above definition is equivalent
to, C ‖ x ‖2≤‖ ∑i∈I〈x, xi〉〈xi, x〉 ‖≤ D ‖ x ‖2, A sequence {xi : i ∈ I} is said to be a
Riesz basis of H if it is a frame and a generating set with the additional property that
A-linear combinations

∑
i∈S aixi with coefficients {ai : i ∈ S} ⊆ A and S ⊆ I are equal to

zero if and only if in particular every summand aixi equal zero for i ∈ S. Note that we
can also define the analysis operator, synthesis operator and frame operator for modular
frame as follows. Suppose that {xi : i ∈ I} is a frame of a finitely or countably generated
Hilbert A-module H over a unital C∗-algebra A. The operator T : H → `2(A) defined by
Tx = {〈x, xi〉}i∈I , is called the analysis operator. The adjoint operator T ∗ : `2(A)→ H is
given by T ∗{ai}i∈I =

∑
i∈I aixi. T

∗ is called pre-frame operator or the synthesis operator.
By composing T and T ∗, we obtain the frame operator S : H → H,

Sx = T ∗Tx =
∑

i∈I〈x, xi〉xi, (1)
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is a frame operator for H. That is S ∈ End∗A(H), positive and invertible. Where End∗A(H)
is the set of adjointable A-linear maps on H.
The frame {S−1xi : i ∈ I} is said to be the canonical dual frame of {xi : i ∈ I}.

Remark 2.3. If A be a unital C∗-algebra, H be a finitely or countably generated
Hilbert A-module and {xi : i ∈ I} be Parseval frame(not necessarily standard) of H,
then the reconstruction formula x =

∑
i∈I〈x, xi〉xi, holds for every x ∈ H. Also from

equation (1) we see that x =
∑

i∈I〈x, S−1xi〉xi, is vailid for every x ∈ H. Moreover, if
{xi : i ∈ I} be standard frame, then there exists a unique operator S ∈ End∗A(H) such
that x =

∑
i∈I〈x, Sxi〉xi.

Theorem 2.4. Let {xi : i ∈ I} be a modular frame with frame bounds C,D. Let
{yi : i ∈ I} ⊆ H and assume that there exist constants λ1, λ2, µ ≥ 0 such that max{λ1 +
µ√
C
, λ2} < 1 and

‖
∑

i∈I
ai(xi − yi) ‖≤ λ1 ‖

∑

i∈I
aixi ‖ +λ2 ‖

∑

i∈I
aiyi ‖ +µ(

∑

i∈I
‖ ai ‖2)

1
2 ,

for all ai ∈ `2(A). Then {yi : i ∈ I} is a modular frame with bounds

A(1− λ1+λ2+
µ√
C

1+λ2
)2 , D(1 +

λ1+λ2+
µ√
D

1−λ2 )2

Proof. Since {xi : i ∈ I} is a frame, we can define a bounded A−linear operator

T ∗ : `2(A)→ H,T ∗{ai}i∈I =
∑

i∈I aixi.

‖ T ∗{ai}i∈I ‖2=‖ 〈T ∗{ai}i∈I , T ∗{ai}i∈I〉 ‖=‖ 〈
∑

i∈I aixi,
∑

i∈I aixi〉 ‖

=‖∑i∈I ai〈xi, xi〉a∗i ‖≤ (
∑

i∈I ‖ aia∗i ‖2)
1
2 (
∑

i∈I ‖ 〈xi, xi〉 ‖2)
1
2 ≤
√
D ‖ {ai}i∈I ‖ .

�

Definition 2.5. Two frames {xi : i ∈ I} and {yi : i ∈ I} for a Hilbert C∗-module H
are woven modular frame for H. If for each σ ⊆ I, the {xi : i ∈ σ} ∪ {yi : i ∈ σc} is a
modular frame for H.

Corollary 2.6. Let {xi : i ∈ I} be a modular frame and Q ∈ L(H) be bounded below.
Then {Qxi : i ∈ I} is a modular frames.

Theorem 2.7. Let {xi : i ∈ I}, {yi : i ∈ I} be woven modular frame with frame bounds
C,D and Q ∈ L(H), be bounded below by m > 0 i.e. m ‖ x ‖≤‖ Qx ‖ for every x ∈ H.
Then {Qxi : i ∈ I}, {Qyi : i ∈ I} are woven modular frame with bounds Cm2, D ‖ Q ‖2 .

Proof. Let S, S
′

be frame operator {xi : i ∈ I}, {yi : i ∈ I}, respectively. For each
σ ⊆ I, x ∈ H we have

SQσ x+ S
′Q
σcx =

∑
i∈σ〈x,Qxi〉Qxi +

∑
i∈σc〈x,Qyi〉Qyi

by A−linear

Q(
∑

i∈σ〈x,Qxi〉xi +
∑

i∈σc〈x,Qyi〉yi) = Q(SσQ
∗x+ S

′
σcQ

∗x) =

Q(Sσ + S
′
σc)Q

∗x,
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therefore SQσ + S
′Q
σc = Q(Sσ + S

′
σc)Q

∗. Since m2.I ≤ Q∗Q,C.I ≤ Sσ + S
′
σc ≤ D.I,

then
Cm2.I ≤ CQ∗Q ≤ Sσ + S

′
σc ≤ DQ∗Q ≤ D ‖ Qx ‖2 .I,

and we have the result. �
Definition 2.8. Let H be a Hilbert A-module. We say that {xji : i ∈ I} for j =

1, 2, ...,m is a woven frame, if sequence {xji : i ∈ I} for j = 1, 2, ...,m be Bessel and there

exists a partition p = {σ1, σ2, ..., σm} of I such that
⋃m
j=1{x

j
i : i ∈ σj} is a frame.

Theorem 2.9. Let A be a unital C∗-algebra with identity 1A, and H be a finitely
or countably generated Hilbert A-module. Every woven modular Riesz basis is a module
frame.

Proof. Let {xji : i ∈ I} for j = 1, 2, ...,m be a woven modular Riesz basis for

H corresponding to p = {σ1, σ2, ..., σm}. Hence {xji : i ∈ I} is a Bessel sequence and

{xji : i ∈ σj , j = 1, 2, ...,m} is an A-modular Riesz basis. Hence there exist an othonormal

basis {eji : j = 1, 2, ...,m, i ∈ σj} and an invertible operator U j ∈ L(`2(A), H) such that

xji = U(eji ) (i ∈ σj , j = 1, 2, ...,m).
We also know that (U−1)∗ : `2(A)→ H is adjointable and invertable with (U∗)−1 = (U−1)∗

and {(U∗)−1(eji ) : j = 1, 2, ...,m, i ∈ σj} is the unique dual of {xji : i ∈ σj , j = 1, 2, ...,m}
See[], and {(U∗)−1(eji ) : j = 1, 2, ...,m, i ∈ σj} = {(U∗)−1U−1(xji ) : j = 1, 2, ...,m, i ∈ σj}.
A Riesz basis. Now we define yji = (U∗)−1(eji ) for each i ∈ I and j = 1, 2, ...,m we show

that every {yji : i ∈ I} is a Bessel modular sequence. For every x ∈ H
∑

i∈I
|〈x, yji 〉|2 =

∑

i∈I
|〈x, (U∗)−1U−1(xji )〉|2 =

∑

i∈I
|〈(U−1)∗U−1x, xji 〉|2 ≤

Bj〈(U−1)∗U−1x, (U−1)∗U−1x〉 ≤ Bj ‖ (U−1)∗ ‖2‖ U−1 ‖4 〈x, x〉.
Where Bj is a Bessel modular bound of {xji : i ∈ I} and {yji : i ∈ I} is a Bessel modular
sequence. �

Corollary 2.10. Let {xji : i ∈ I} and {yji : i ∈ I} for j = 1, 2, ...,m be a pair of
p-woven modular dual Riesz beses, corresponding to partition p = {σ1, σ2, ..., σm}. Then

x =
∑m

j=1

∑
i∈σj 〈x, x

j
i 〉y

j
i =

∑m
j=1

∑
i∈σj 〈x, y

j
i 〉x

j
i (x ∈ H)
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Abstract. The following important inequality for the relative operator inequality have
been proven by Raissoli et al.

R(S(A|B)) ≥ S(RA|RB).

We give a reverse inequality to above mentioned inequality under some conditions. we
also present some new inequality for sector matrices involving the relative operator en-
tropy.
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AMS Mathematics Subject Classification [2010]: 15A45, 15A60, 47A63

1. Introduction
If A, B are two strictly positive operators in B(H), and 0 ≤ λ ≤ 1 is a real number,

then the relative operator entropy S(A|B) is defined by

S(A|B) = A
1
2 log(A− 1

2BA− 1
2 )A

1
2

Moreover, the Tsallis relative operator entropy is defined by

Tλ(A|B) :=
A♯λB −A

λ
.

It is known that [3, Theorem 5.18]
lim
λ→0

Tλ(A|B) = S(A|B).

For more details, we refer the reader to [5].
In what follows, let Mn(C) be the space of all n × n complex matrices. An operator
A ∈ B(H) is called accretive if in its Cartesian (or Toeplitz) decomposition, A = Rz+iIz,
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Rz is positive, where Rz = A+A∗
2 , Iz = A−A∗

2 . We refer the reader to [1,2] as a sample
of articles treating this topic. The numerical rang of A ∈ Mn(C) is defined by

W (A) = {x∗Ax : x ∈ Cn, x∗x = 1}.
When talking about accretive matrices, we need to introduce sectorial matrices. A

matrix A ∈ Mn(C) is said to be sectorial if W (A) ⊂ Sα for some 0 ≤ α < π
2 , where Sα

denote the sector regions in the complex plane as follows:
Sα = {z ∈ C : Rz ≥ 0, |Iz| ≤ (Rz) tanα}.

Raissouli et al. [4] defined the weighted geometric mean for two accretive operator
A,B ∈ B(H) by

A♯λB : =
sinλπ

π

∫ ∞

0
tλ−1

(
A+ tB−1

)−1
dt

=
sinλπ

π

∫ ∞

0
tλ−1A(B + tA)−1Bdt.

where λ ∈ (0, 1). Furthermore, the Tsallis relative operator entropy of A and B is defined
by

Tλ(A|B) =
sinλπ

λπ

∫ 1

0

(
t

1− t

)λ(A!tB −A

t

)
dt,

and

S(A|B) =

∫ 1

0

A!tB −A

t
dt.

2. Main results
Raïssouli et al. [4] proved that if A,B ∈ B(H) are accretive, then

(1) R (Tλ(A|B)) ≥ Tλ(RA | RB)

and
(2) R (S(A|B)) ≥ S(RA|RB).

where λ ∈ (0, 1). In this paper, we obtain a reverse of (2) and some other inequalities.

Theorem 2.1. Let A,B ∈ Mn(C) be such that W (A),W (B) ⊂ Sα and 0 < λ ≤ 1. If
there exists a m > 1 such that mRA ≤ RB, then there is a β > 1 + tan2 α

λ such that
(β − 1)λ

(β − 1)λ− tan2 α
≤ m,

and
R(S(A | B)) ≤ βS(RA | RB).

Proof. for < t ≤ 1 we have
(β − 1)λ

(β − 1)λ− tan2 α
→ 1 as β → ∞

therefore
(β − 1)λ

(β − 1)λ− tan2 α
RA ≤ mRA ≤ RB
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This implies that

RA!λ

(
(β − 1)t

(β − 1)t− tan2 α

)
RA ≤ RA!λRB

⇒ (β − 1)

β − sec2 α
RA ≤ RA!λRB

⇒ β − sec2 α(RA!λRB) ≥ (β − 1)RA

⇒ sec2 α(RA!λRB)−RA ≤ β(RA!λRB)− βRA

therefore

RS(A | B) =

∫ 1

0

R(A!λB)−RA

t
dt

≤
∫ 1

0

sec2 α(RA!λRB)−RA

t
dt

≤
∫ 1

0

sec2 α(RA!λRB)−RA

t
dt

= β

∫ 1

0

RA!λRB)−RA

t
dt

= βS(RA | RB).

□
Theorem 2.2. Let A,B ∈ Mn(C) be such that W (A),W (B) ⊂ Sα, if there exists a

m > 1 such that mRA ≤ RB. Then, for every positive unital linear map ϕ,
Rϕ(S(A | B)) ≤ βRS(ϕ(A) | ϕ(B)).

Proof. by Theorem 2.1 we have
Rϕ(S(A | B)) = ϕ(RS(A | B))

≤ βRS(ϕ(A) | ϕ(B))

≤ βS(ϕ(RA) | ϕ(RB))

= βS(Rϕ(A) | Rϕ(B))

≤ βRS(ϕ(A) | ϕ(B)).

□
Theorem 2.3. Let A,B ∈ Mn(C) be such that W (A),W (B) ⊂ Sα and 0 < λ ≤ 1, if

there exists a m > 1 such that mRA ≤ RB, then
R(Tλ(A1 | B1) + Tλ(A2 | B2)) ≤ βRTλ(A1 +A2 | B1 +B2).

so
βRS(A1 +A2 | B1 +B2) ≥ R(S(A1 | B1) + S(A2 | B2))

Proof. by Theorem 2.1 we have
RTλ(A1 +A2 | B1 +B2) ≥ Tλ(R(A1 +A2) | R(B1 +B2))

= Tλ(RA1 +RA2 | RB1 +RB2)

=
1

λ
((RA1 +RA2)♯λ(RB1 +RB2)− (RA1 +RA2))
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≥ 1

λ
(RA1♯λRB1 −RA1 +RA2♯λRB2 −RA2)

= Tλ(RA1RB1) + Tλ(RA2RB2)

≥ β−1RTλ(A1 | B1) + β−1RTλ(A2 | B2)

= β−1R(Tλ(A1 | B1) + Tλ(A2 | B2))

□
Theorem 2.4. Let A,B ∈ Mn(C) be such that W (A),W (B) ⊂ Sα and 0 < λ ≤ 1. If

there exists a m > 1 such that mRA ≤ RB, then
βλRTλ(A | B) ≤ R(A♯λB).

Proof. By Theorem 2.1 we have
RTλ(A | B) ≤ β−1Tλ(RA | RB)

≤ 1

βλ
(RA♯λRB)

≤ 1

βλ
R(A♯λB).

□
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Abstract. This paper presents a property to diagnose the solvability of a class of three-
pair networks using region decomposition method. The proposed property considers
basic region graph which the topological structure of it is more simple than the original
network.
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1. Introduction
A three-pair network is considered as a directed, acyclic, finite graph G = (V,E, S, T ),

where V is the vertex set, E is the edge set, S = {s1, s2, s3} is source set and T = {t1, t2, t3}
is sink set. Each source si generates a message Xi ∈ F and each sink ti wants to obtain
the message Xi, where F is a finite field. We assume that each link has the unit capacity
and can carry one symbol in each use. If each source si can send a unit rate of information
flow to ti, for each i ∈ {1, 2, 3}, then, the three-pair network is solvable. It is assumed that
each link e ∈ E has the unit capacity which means C(e) = 1, where C(e) is the capacity of
edge e. We assume that each source si has an imaginary incoming link, called Xi source
link.

By [1], Cai and Han presented a sufficient and necessary condition to diagnose the
solvability of three-pair networks with common bottleneck links. Fragouli and Soljanin
proposed a method called information flow decomposition which reduces the complexity of
network code design for single session multicast networks [3]. For non-multicast networks,
namely three-pair networks, there exists a few results. In [4–6], the region decomposition
method is presented to diagnose the solvability of non-multicast networks.

In this paper, we consider a class of three-pair networks and present a property to
characterize the solvability of them using region decomposition method. Our approach
concentrates on a network with a topological structure more simple than the original
network.

∗Speaker. Email address: Sepideh.Ghazvine84@yahoo.com

734



S. Ghazvineh, M. Ghiyasvand

1.1. Three-pair networks. In this part, we present some properties of three-pair
networks. First, we state the following definition:

Definition 1.1. [1].
1. A communication network with S = {si} and T = {tj} is called a point to point

network and is denoted by Gi,j = (V,E, si, tj).
2. Consider the point to point network Gi,j . If V = A∪(V \A) be a vertex partition

such that si ∈ A and tj ∈ V \A, then the si−tj cut C is the collection of all edges
from A to V \A. The capacity of C is defined as

∑
e∈C C(e). The minimum cut

of Gi,j is a cut with minimum capacity.
3. For the point to point network Gi,j , the Ai,j-set is defined as the union of all

minimum cuts of Gi,j .

In this paper, we consider a class of the three-pair networks with
A(1, 2, 3) = A1,1 ∩A2,2 ∩A3,3 ̸= ∅,

and, for each distinct i, j ∈ {1, 2, 3}, we have
Ai,j ∩A(1, 2, 3) = ∅.

The network G′ shown in Fig. 1(a) is an example of such networks that first presented
by Dougherty et al. [2]. The following definition presents a property to characterize the
solvability of G′.

Definition 1.2. [2]. For a network containing messages a, b, c and labeled edges w,
x, y, z, we say that a code over an alphabet A has property P if there exist permutations
π1, . . . , π6 of A and a mapping ⊕ : A×A → A such that (A,⊕) is an Abelian group and

w = π4(π1(a)⊕ π2(b)),

x = π5(π1(a)⊕ π3(c)),

y = π6(π2(b)⊕ π3(c)),

z = π1(a)⊕ π2(b)⊕ π3(c).

Proposition 1.3. [2]. A code over an alphabet A is a solution for network G′ if and
only if it satisfies Property P.

By Proposition 1.3, network G′ shown in Fig. 1(a) is solvable.

1.2. Region decomposition method. In this section, we briefly introduce some
definitions and notations about the region decomposition of a given graph.

Definition 1.4. [4]. Let R be a non-empty subset of E. It is called a region of
G if there is an el ∈ R such that for any e ∈ R \ {el}, R contains an incoming link
of e. If E is partitioned into mutually disjoint regions, say R1, R2, · · · , RN , then, set
D = {R1, R2, · · · , RN} ia a region decomposition of G.

The edge el in Definition 1.4 is called the leader of R and is denoted as el = lead(R).
A region R is called the Xi source region (or a source region for short) if lead(R) is the
Xi source link.

Definition 1.5. [4]. Let D be a region decomposition of G. The region graph of D
is a directed, simple graph with vertex set D and edge set εD, where εD is the set of all
ordered pairs (R′, R) such that R′ contains an incoming link of lead(R).
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We use RG(D) to denote the region graph of D. Let D∗∗ be a region decomposition
of G. D∗∗ is called a basic region decomposition of G if
(1) For any R ∈ D∗∗ and any e ∈ R \ {lead(R)}, In(e) ⊆ R.
(2) Each non-source region R in D∗∗ has at least two parents in RG(D∗∗).
Notations D∗∗ and RG(D∗∗) are used to denote the basic region decomposition and basic
region graph of G, respectively. Fig. 1(b) shows the basic region graph of network G′

depicted in Fig. 1(a). The following theorem plays an important role in this paper.
Theorem 1.6. [4]. Let D∗∗ be the basic region decomposition of G. Then G is

solvable if and only if RG(D∗∗) is feasible.
Definition 1.7. [6]. Let θ be a subset of D∗∗. The super region reg(θ) is a subset

of D∗∗ which is defined recursively as follows:
(1) θ ⊆ reg(θ).
(2) For all R ∈ D∗∗, if In(R) ⊆ reg(θ), then R ∈ reg(θ).

Define reg◦(θ) = reg(θ) \ θ. Moreover, if θ = {R1, · · · , Rk}, then denote reg(θ) =
reg(R1, · · · , Rk) and reg◦(θ) = reg◦(R1, · · · , Rk).

Remark 1.8. [4]. Let G be a three-pair network and RG(D∗∗) be the region graph
of it. If C̃ = {dR ∈ F 3;R ∈ D∗∗} be a linear code of RG(D∗∗) and ∅ ̸= θ ⊆ D∗∗, then
dR ∈< dR′ ;R′ ∈ θ >, for all R ∈ reg(θ).

2. Main results
The following theorem plays an important role in the obtained result.
Theorem 2.1. Let C̃ be a linear code on RG(D∗∗), then C̃ is a solution for RG(D∗∗)

if RG(D∗∗) has property I ′, where is denoted as follows:
(I ′): Network RG(D∗∗) contains regions R∗, R1, R2 and R3 such that R∗ ∈ reg◦(S1, S2, S3),
R1 ∈ reg◦(S2, S3), R2 ∈ reg◦(S1, S3) and R3 ∈ reg◦(S1, S2), where Si is a source region,
for i ∈ {1, 2, 3}.

Proof. Supposing that C̃ is a linear code on RG(D∗∗) and RG(D∗∗) has property
I ′. Then, by Remark 1.8, we conclude that

lead(R∗) ∈< a, b, c >, lead(R1) ∈< b, c >, lead(R2) ∈< a, c >,

and lead(R3) ∈< a, b >, where a, b and c are generated at source regions S1, S2 and S3,
respectively. So, by letting z = lead(R∗), w = lead(R3), x = lead(R2) and y = lead(R1)
and by Definition 1.2, we conclude that RG(D∗∗) has Property P. Thus, by Proposition
1.3, RG(D∗∗) is solvable. □

Corollary 2.2. Consider three-pair network G′. If the basic region graph of G′

satisfies Property I ′, then G′ is solvable.
Proof. The basic region graph of G′ satisfies Property I ′, by Theorem 2.1, RG(D∗∗)

is solvable. Then, by Theorem 1.6, the network G′ is solvable. □

3. Figures
4. Conclusion
This paper presents a property to diagnose the solvability of a class of three-pair

networks using region decomposition method. This property concentrates on a network
with a topological structure more simple than original network.
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Figure 1. (a) The network G′ with Property P. (b) The basic region graph
of G′ with Property I ′.
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1. Introduction
Let (X, d) be a metric space and (A,B) be a pair of nonempty subsets of X. Consider

a non-self-mapping T : A → B. An element x⋆ ∈ A is said to be a best proximity point
for the mapping T if d(x⋆, Tx⋆) = d(A,B), where d(A,B) := inf{d(x, y) : x ∈ A, y ∈ B}.
If the mapping under consideration is a self-mapping, we note that this best proximity
point reduces to a fixed point.

In 2013, M.Jleli, B.Samet [2] introduced a new concept of α−ψ-contractive type map-
ping. recently, M.Gabeleh, J.Markin [4] introduced the notion of p-proximal contraction
and surveyed best proximity point theorems for such class of non self mappings in metric
spaces. Existence, uniqueness and convergence of best proximity points for various classes
of non-self mappings can be considered as generalizations of fixed point theorems which
has recently attracted the attention of many authors. Clearly, the interest for best prox-
imity points is real when the mapping under investigation has no fixed-point. Fixed point
theory is one of the most powerful tools in nonlinear analysis, there are a lot of results on
this topic.

In this paper we show that the main conclusion of [2] is a straightforward consequence
of the same fixed point result. To this end, we need the following notions and notations,
which will be used in the sequel.

Definition 1.1 ( [2]). Let A and B be two nonempty subsets of a metric space (X, d).
We denote by A0 and B0 the following sets:
A0 = {x ∈ A : d(x, y) = d(A,B), for some y ∈ B},
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B0 = {y ∈ B : d(x, y) = d(A,B), for some x ∈ A},
where d(A,B) := inf{d(x, y) : x ∈ A, y ∈ B}.

Definition 1.2 ( [3]). Let (A,B) be a pair of nonempty subset of a metric space (X, d)
with A0 ̸= ∅. Then the pair (A,B) is said to have the P - property if and only if

(1)
d(x1, y1) = d(A,B)

d(x2, y2) = d(A,B)

}
⇒ d(x1, x2) = d(y1, y2)

where x1, x2 ∈ A0 and y1, y2 ∈ B0.
Definition 1.3 ( [2]). Let T : A→ B and α : A×A→ [0,+∞). We say that T is α-

proxsimal admissible if

(2)
α(x1, x2) ≥ 1

d(u1, Tx1) = d(A,B)

d(u2, Tx2) = d(A,B)





⇒ α(u1, u2) ≥ 1

for all x1, x2, u1, u2 ∈ A.
Lemma 1.4. For every function ψ : [0,+∞) → [0,+∞) the following hold: if ψ is

nondecreasing, then for each t > 0, lim
n→+∞

ψn(t) = 0 implies ψ(t) < t.

Definition 1.5 ( [1]). Let (X, d) be a metric space. A self mapping T : X → X is
said to be an α−ψ contractive mapping, if there exist two function α : X ×X → [0,+∞)
and ψ ∈ Ψ such that α(x, y)d(Tx, Ty) ≤ ψd(x, y), ∀x, y ∈ X.

Definition 1.6 ( [1]). Let T : X → X and α : X ×X → [0,+∞) be two functions.
The map T is an α-admissible mapping if, for all x, y ∈ X, α(x, y) ≥ 1 ⇒ α(Tx, Ty) ≥ 1.

Theorem 1.7 ( [1]). Let (X, d) be a complete metric space and T : X → X be an
α− ψ-contractive mapping satisfying the following conditions:
(i) T is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iii) T is continuous.
Then T has a fixed point, that is, there exists x⋆ ∈ X such that Tx⋆ = x⋆.

Theorem 1.8 ( [2]). Let (A,B) be nonempty closed subsets of a complete metric space
(X, d) such that A0 is nonempty. Let α : A × A → [0,+∞) and ψ ∈ Ψ. Suppose that
T : A→ B is a non-self-mapping satisfying the following condition:
(i) T (A0) ⊂ B0 and (A,B) satisfies the P- property;
(ii) T is α- proximal admissible;
(iii) there exists an element x0 and x1 in A0 such that d(x1, Tx1) = d(A,B) and α(x0, x1) ≥
1
(iv) T is a continuous (α− ψ)- proximal contraction.
Then, there exists an alement x⋆ ∈ A0, such that d(x⋆, Tx⋆) = d(A,B).

Theorem 1.9. Theorem 1.8 is a straightforward consequence of Theorem 1.7
Proof. From condition (iii) there exist elements x0, x1 ∈ A0 such that d(x1, Tx0) =

d(A,B) and α(x0, x1) ≥ 1. since T satisfies the P - property, x1 ∈ A is unique. To see that
x1 is unique assume there is a point x2 ∈ A0, such that d(x2, Tx0) = d(A,B)
then d(x1, x2) = d(Tx0, Tx0).
This implies that x1 = x2.

739



Put x1 = S(x0). Hence S : A0 → A0 is a mapping satisfies d(Sx0, Tx0) = d(A,B). for
all x ∈ A0. We now claim that the S : A0 → A0 is α − ψ contractive mapping. Indeed,
for any x, y ∈ A0, we have

(3)
d(Sx, Tx) = d(A,B)

d(Sy, Ty) = d(A,B)

}
⇒ αd(Sx, Sy) = d(Tx, Ty),

and again by using the fact that T is α− ψ- proximal contraction we conclud that
α(x, y)d(Sx, Sy) = α(x, y)d(Tx, Ty) ≤ ψd(x, y). This yields S is α−ψ- proximal contrac-
tion.
Since T is α- proximal admissible, we have

(4)
α(x, y) ≥ 1

d(Sx, Tx) = dist(A,B)

d(Sy, Sy) = d(A,B)





⇒ α(Sx, Sy) ≥ 1,

for all x, y ∈ A. This yields S is α-admissible. By (iii) there exists an element x0 and
x1 in A0 such that d(x1, Tx1) = d(A,B) and α(x0, x1) ≥ 1. S : A0 → A0 is a mapping
and since T is a continuous and according P- property, we have d(Sx0, Tx0) = dist(A,B),
α(x0, sx) ≥ 1. It now follows from Theorem 1.7 that the mapping S has a unique fixed
point z in the complete metric space A0. Put z = S(z) and therefore,

d(z, Tz) = d(Sz, Tz) = d(A,B),

which ensures that T has a unique best proximity point. □
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1. Introduction
During the last four decades, several papers have been prepared regarding upper

bounds for functions of the random variables, based on the Chernoff type inequality.
Let Z be a standard normal random variable and g : R → R any absolutely continu-
ous function with derivative g′, such that E[g′(Z)] < ∞. [1], using Hermite polynomials,
proved that,

(1) Var[g(Z)] ≤ E[g′(Z)]2.

The equality in (1) holds if and only if g is a linear function. [2] and [3] obtained upper and
lower bounds for the variance of functions of arbitrary random variables. [4] established,
if there are functions h(x) and z(x) such that

(2) Cov(h(X), g(X)) = E(z(X)g′(X)),

holds for every differentiable g, then h(x), z(x) and the density f are related through

(3) z(x) =
1

f(x)

∫ x

a
(E[h(X)]− h(t))f(t)dt.

[5] showed that, under the conditions of identity (2), for every absolutely continuous
function h(x) with h′(x) > 0,

(4) Var[g(X)] ≥ E2[z(X)g′(X)]

E[z(X)h′(X)]
,
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with equality if and only if g(x) = c1h(x) + c2, where

z(x)f(x) =

∫ x

a
(E[h(X)]− h(t))f(t)dt.

They, also established under the preceding conditions, for every absolutely continuous
function h(x) with h′(x) > 0 the following inequality:

(5) Var[g(X)] ≤ E

[
z(X)

h′(X)
(g′(X))2

]
,

holds with equality if and only if g(x) = c1h(x) + c2.
Let X be a continuous random variable with density function f , shannon entropy of

X is defined by

H(X) = −
∫ ∞

−∞
f(x) ln f(x)dx.(6)

In continuous case, H(X) is also referred to as the differential entropy.
It should be noted that according to, the variance entropy (varentropy) of a random

variable X is defined as

Var(− ln f(X)) =

∫ ∞

−∞
f(x)[ln f(x)]2dx−

[∫ ∞

−∞
f(x) ln f(x)dx

]2
.(7)

A uncertainty measure, the cumulative residual entropy (CRE), is defined through

E (X) = −
∫ ∞

0
F (x) lnF (x)dx.(8)

The notion of entropy is recently entwined with a complementary dual measure, des-
ignated as extropy, by [6]. The extropy of the random variable X is defined as:

J(X) = −1

2

∫ ∞

−∞
f2(x)dx.(9)

In some situations, one may have two random variables with the same extropy; then, this
problem leads to the well-known question “Which of the extropies is the most appropriate
criterion for measuring the uncertainty?”. For example, the extropy values of standard
uniform and an exponential distribution with the parameter 2 are both equal to −1

2 . This
question motivates one to investigate the variance of −1

2f(X), which is called varextropy.
Varextropy measure indicates how the information content is scattered around the extropy.

The varextropy can be defined as

V J(X) := V ar[−1

2
f(X)] =

1

4
E[f2(X)]− J2(X).(10)

2. Main results
In this section, we give bounds for the variance of the function of given random vari-

ables in text in terms of measurses of reliability and information theory.
In the following, we first give a few examples to illustrate the varextropy for random

variables from some distributions.

Example 2.1. i) If X follows the Gamma distribution with probability density
function

f(x) =
βα

Γ(α)
xα−1e−βx, x > 0,
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then, a direct computation yields

V J(X) =
β2

4[Γ(α)]3

{
Γ(3α− 2)

33α−2
− [Γ(2α− 1)]2

Γ(α)24α−2

}
.

ii) If X follows Cramer distribution with density function

f(x) =
θ

2(1 + θ|x|)2 , −∞ < x < ∞, θ > 0,

then we have
V J(X) =

θ2

180
,

and
Var[− ln f(X)] = 4.

In this case, Var[− ln f(X)] does not depend on the parameter and V J(X) <
Var[− ln f(X)] for θ < 12

√
5.

In the following, a lower bound for V J(X) based on Chernoff’s inequality is given.

Proposition 2.2. Let X be an absolutely continuous non-negative random variable.
If g is an absolutely continuous function with derivative g′ then

Var[g(X)] ≥ 12E2[z(X)g′(X)].(11)
The equality holds if and only if g(x) is a linear function of F (x).

Proof. By using inequality (4), let h(x) = F (x), then h′(x) = f(x) and

z(x)f(x) =

∫ x

0
(E[F (X)]− F (t))f(t)dt =

∫ x

0
(
1

2
− F (t))f(t)dt =

1

2
F (x)(1− F (x)).(12)

Now since

E[z(X)h′(X)] =
1

2

∫ ∞

0
f(x)F (x)(1− F (x))dx =

1

12
,

thus
Var[g(X)] ≥ 12E2(z(X)g′(X)).(13)

□
Remark 2.3. In the Proposition 2.2, if g(x) = −1

2f(x) then, we obtain a lower bound
for varextropy as follows:

V J(X) ≥ 3

4

(∫ ∞

0
F (x)(1− F (x))f ′(x)dx

)2

.(14)

The equality holds if and only if F has two-parameter exponential distribution.

In inequality (14), if f ′(x) = c = constant, then

V J(X) ≥ 3c2

4
(ξ2(X))2,

where ξ2(X) =
∫∞
0 (F (x)− F

2
(x))dx.

Lemma 2.4. If Y = ϕ(X) is an increasing differentiable function, then

ξα(Y ) =
1

α− 1

∫ ∞

ϕ(0)
(F (x)− (F (x))α)ϕ′(x)dx.
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Now, in inequality (14), by using Lemma (2.4) we can conclude that if f is an increasing
function and f(0) = 0 then V J(X) ≥ 3

4(ξ2(Y ))2 where Y = f(X).

Example 2.5. If X follows a power distribution with parameter α > 1, i.e., f(x) =
αxα−1, x ∈ (0, 1), then, we have

∫ 1

0
(xα − x2α)α(α− 1)xα−2dx =

α2(α− 1)

(2α− 1)(3α− 1)
,

hence V J(X) ≥ 3
4

α4(α−1)2

(2α−1)2(3α−1)2
.

Now, in equality (2), for a non-negative random variable X, if we take h(x) = Λ(x) =
− lnF (x) and g(x) = x, then

Cov(X,Λ(X)) = E[z(X)].(15)
On the other hand, since

z(x)f(x) =

∫ x

0
(E[Λ(X)]− Λ(t))dt = −F (x) lnF (x),

hence
Cov(X,Λ(X)) = −

∫ ∞

0
F (x) lnF (x)dx = E (X).

Moreover, it can be shown that E (X) = E[m(X)], therefore Cov(X,Λ(X)) = E[m(X)].

Proposition 2.6. Let X be an absolutely continuous non-negative random variable.
Then

V J(X) = Var

[
−1

2
f(X)

]
≤ 1

8
E
[
F (X)(1− F (X))η2(X)

]
,(16)

where η(x) = −f ′(x)
f(x) is eta function.

The equality holds if and only if F has two-parameter exponential distribution.

Proof. The proof similar to that of Proposition 2.2. □
Example 2.7. Let X have a Rayleigh distribution with the probability density func-

tion fX(x) = 2xe−x2
, x > 0. Then by using inequality (16), we obtain

V J(X) ≤
∫ ∞

0
2xe−2x2

(1− e−x2
)(1/x− 2x)2dx = ln(

3

2
)− 1

9
.

Proposition 2.8. Let X be an absolutely continuous non-negative random variable.
Then

V ar[− ln f(X)] ≤ 1

2
E

[
(η(X))2

r(X)r̃(X)

]
.(17)
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Abstract. By using variational methods (a critical point result for differentiable func-
tionals), we establish the existence of infinitely many weak solutions for some singular
elliptic problems involving a p-Laplace operator, subject to Dirichlet boundary condi-
tions in a smooth bounded domain in RN . A concrete example is presented to illustrate
the main result.

Keywords: singular problem, p-Laplace operator, variational methods, critical point

AMS Mathematics Subject Classification [2010]: 35J35, 35J60

1. Introduction

We present some recent results on some variational problems. More precisely, we deal
with the following nonlinear Dirichlet boundary-value problem

(1)




−∆pu+

|u|q−2u

|x|q = λf(x, u), in Ω,

u = 0, on ∂Ω,

where ∆pu := div(|∇u|p−2∇u) denotes the p-Laplace operator, Ω is a bounded domain in
RN (N ≥ 2) containing the origin and with smooth boundary ∂Ω, 1 < q < N < p, and
f : Ω× R→ R is an L1-Carathéodory function.

Denote by X the space W 1,p
0 (Ω) endowed with the norm

‖u‖ :=

(∫

Ω
|∇u(x)|p dx

)1/p

.

Also, let ‖ · ‖1 denotes the usual norm of L1(Ω); i.e.,

‖u‖1 :=

∫

Ω
|u(x)|dx.

We recall classical Hardy’s inequality, which says that

(2)

∫

Ω

|u(x)|q
|x|q dx ≤ 1

H

∫

Ω
|∇u(x)|qdx, (∀u ∈ X),

∗Speaker. Email address: hadjian83@gmail.com, a.hadjian@ub.ac.ir
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where H := (N−qq )q; see, for instance, the paper [2].

Let us define F (x, ξ) :=
∫ ξ

0 f(x, t)dt, for every (x, ξ) in Ω× R. Moreover we introduce
the functional Iλ : X → R associated with (1),

Iλ(u) := Φ(u)− λΨ(u),

for every u ∈ X, where

Φ(u) :=
1

p

∫

Ω
|∇u(x)|pdx+

1

q

∫

Ω

|u(x)|q
|x|q dx, Ψ(u) :=

∫

Ω
F (x, u(x))dx,

for every u ∈ X. By standard arguments, one has that Φ is well defined (by Hardy’s
inequality), Gâteaux differentiable and sequentially weakly lower semicontinuous, and its
Gâteaux derivative is the functional Φ′(u) ∈ X∗ given by

Φ′(u)(v) =

∫

Ω
|∇u(x)|p−2∇u(x)∇v(x)dx+

∫

Ω

|u(x)|q−2

|x|q u(x)v(x)dx,

for every v ∈ X and clearly Φ is coercive. It is easy to prove that Φ is strongly continuous.
On the other hand, standard arguments show that Ψ is well defined and continuously
Gâteaux differentiable functional whose Gâteaux derivative

Ψ′(u)(v) =

∫

Ω
f(x, u(x))dx,

for every v ∈ X, is a compact operator from X to the dual X∗.
Fixing the real parameter λ, a function u : Ω→ R is said to be a weak solution of (1)

if u ∈ X and
∫

Ω
|∇u(x)|p−2∇u(x)∇v(x)dx+

∫

Ω

|u(x)|q−2

|x|q u(x)v(x)dx− λ
∫

Ω
f(x, u(x))v(x)dx = 0,

for every v ∈ X. Hence, the critical points of Iλ are exactly the weak solutions of (1).
Our main tool to investigate the existence of infinitely many solutions for the problem

(1) is the classical Ricceri’s variational principle [3, Theorem 2.5], which we now recall.

Theorem 1.1. Let X be a reflexive real Banach space, let Φ,Ψ : X → R be two Gâteaux
differentiable functionals such that Φ is sequentially weakly lower semicontinuous, strongly
continuous and coercive, and Ψ is sequentially weakly continuous. For every r > infX Φ,
put

ϕ(r) := inf
Φ(u)<r

(
supΦ(v)<r Ψ(v)

)
−Ψ(u)

r − Φ(u)
,

γ := lim inf
r→+∞

ϕ(r), and δ := lim inf
r→(infX Φ)+

ϕ(r).

Then, if γ < +∞, then for each λ ∈]0, 1/γ[, the following alternative holds: either

(b1) Iλ possesses a global minimum, or
(b2) there is a sequence {un} of critical points (local minima) of Iλ such that

lim
n→+∞

Φ(un) = +∞.
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Put

(3) k := sup
u∈X,u6=0

(
maxx∈Ω̄ |u(x)|

‖u‖

)
.

Since the embedding X ↪→ C(Ω̄) is compact, one has k < +∞. Fix x0 ∈ Ω and D > 0

such that B(x0, D) ⊂ Ω and B(x0, D) not containing the origin, where B(x0, D) denotes
the ball with center at x0 and radius D.

Put

(4) ω :=
1

p

[( 2

D

)p
m

(
DN −

(D
2

)N)]
,

(5) θ :=
1

q

[( 2

D

)q
m

(
DN −

(D
2

)N)]
,

and

α :=

∫

B(x0,
D
2

)

1

|x|q dx, β :=
( 2

D

)q ∫

B(x0,D)\B(x0,
D
2

)

(D − |x− x0|)q
|x|q dx,

where m := πN/2

Γ(1+N
2

)
. Here Γ is the Gamma function defined by

Γ(t) :=

∫ +∞

0
zt−1e−zdz (∀t > 0) .

Put

A := lim inf
ξ→+∞

‖lξ‖1
ξp−1

,

and

B := lim sup
ξ→+∞

∫
B(x0,

D
2

) F (x, ξ)dx

ξp
,

where lξ ∈ L1(Ω) satisfies condition (C3) on f(x, t) for every ξ > 0.
Our main result is the following.

Theorem 2.1. Assume that f : Ω×R→ R is an L1-Carathéodory function such that

(i) F (x, t) ≥ 0 for every (x, t) ∈ Ω× R+;
(ii) A < 1

pωkpB, where k and ω are given by (3) and (4), respectively.

Then, for every λ ∈ Λ :=
]
ω
B ,

1
pkpA

[
, the problem (1) admits a sequence of weak solutions

which is unbounded in X.

Sketch of Proof. Fix λ ∈
]
ω
B ,

1
pkpA

[
. Our aim is to apply Theorem 1.1 with

X := W 1,p
0 (Ω) and where Φ and Ψ are the functionals introduced in Section 1. As seen

before, the functionals Φ and Ψ satisfy the regularity assumptions requested in Theorem
1.1. Now, we look on the existence of critical points of the functional Iλ := Φ− λΨ in X.
To this end, we first prove that γ < +∞. Further, we can establish that the functional Iλ
is unbounded from below.

Therefore, owing to Theorem 1.1, the functional Iλ admits an unbounded sequence
{un} ⊂ X of critical points. Then, the problem (1) admits a sequence of weak solutions
which is unbounded inX. �
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Corollary 2.2. Let f : Ω × R → R be an L1-Carathéodory function. Assume that
condition (i) of Theorem 2.1 holds. Further, require that

(iii) A < 1
pkp and B > ω, where k and ω are given by (3) and (4), respectively.

Then the following problem


−∆pu+

|u|q−2u

|x|q = f(x, u), in Ω,

u = 0, on ∂Ω,

admits a sequences of weak solutions which is unbounded in X.

Example 2.3. Let r > 0 be a real number and {tn}, {sn} be two strictly increasing
sequences of real numbers that defined by induction t1 = r, s1 = 2r and for n ≥ 1,

t2n =
(
22n+1 − 1

)
t2n−1, t2n+1 =

(
2− 1

22n+1

)
t2n,

s2n =
t2n
2n

=

(
2− 1

22n

)
s2n−1, s2n+1 = 2n+1t2n+1 =

(
22n+2 − 1

)
s2n.

Let f : Ω× R→ R be the function defined by

f(x, t) :=

{
2ϕ(x)t, (x, t) ∈ Ω× [0, t1],

ϕ(x)
(
sn−1 + sn−sn−1

tn−tn−1
(t− tn−1)

)
, (x, t) ∈ Ω× [tn−1, tn] for some n > 1,

where ϕ : Ω → R is a positive continuous function with 0 < m ≤ ϕ(x) ≤ M . Then f
is an L1-Carathéodory function and since f(x, t) is strictly increasing with respect to t
argument at every x ∈ Ω, the function lξ(x) := f(x, ξ) satisfies in condition (C3) on f ;
i.e.,

sup
|t|≤ξ
|f(x, t)| ≤ lξ(x), for a.e. x ∈ Ω.

We have

lim sup
ξ→+∞

∫
B(x0,

D
2

) F (x, ξ)dx

ξ
7
3

= +∞, lim inf
ξ→+∞

‖lξ‖1
ξ

4
3

= 0,

for every x0 ∈ Ω and D > 0 such that B(x0, D) ⊂ Ω and B(x0, D) not containing the
origin, where Ω is a bounded domain in R2 containing the origin and with smooth boundary
∂Ω. Hence, by Theorem 2.1, for every λ ∈]0,+∞[, the following problem



−∆ 7

3
u+
|u|− 1

2u

|x| 32
= λf(x, u), in Ω,

u = 0, on ∂Ω,

possesses an unbounded sequence of weak solutions in W
1, 7

3
0 (Ω).
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Abstract. Let Mn,m be the set of all n-by-m real matrices. A matrix R is called
generalized row stochastic (g-row stochastic) if the sum of entries on every row of R is
one. For A, B ∈ Mn,m, it is said that A is rglt-majorized by B, and we write A ≺rglt B,
if there exists an m-by-m lower triangular g-row stochastic matrix R so that A = BR.
In this paper, the concept right lower triangular generalized row stochastic majorization,
or rglt- majorization, is investigated and then the linear preservers and strong linear
preservers of this concept are characterized on Rn and Mn,m.

1. Introduction
Majorization is one of the vital topics in mathematics and statistics. It plays a basic

role in matrix theory. For instance, majorization relation among eigenvalues and singular
values of matrices produce a lot of norm inequalities. It was intensively studied in various
directions; see, e.g., [1]- [7]. One of the directions is the study of linear functions that
preserve or strongly preserve right matrix majorization ; see, e.g., [3] and [5].

Some of our notations and symbols are explained as the following: Rgut
m (Rglt

m ) for
the collection of all m-by-m upper (lower) triangular g-row stochastic matrices; e for the
column vector with all entries equal to one;E for the m-by-m matrix with all of the entries
of the last column equal to one and the other entries equal to zero; E∗ for the m-by-m
matrix with all of the entries of the first column equal to one and the other entries equal
to zero;Nk for the set {1, . . . , k} ⊂ N; Pn for the set of all n-by-n permutation matrices;
tr(x) for the summation of all components of a vector x in Rn; Pn for the n-by-n backward
identity matrix; [T ] for the matrix representation of a linear function T : Mn,m → Mn,m

with respect to the standard basis; [T ]i for the ith column of the matrix representation of
a linear function T ; ri for the summation of all entries of ith row of [T ]; span(S) for the
set of all linear combinations of the elements of S.

Let ∼ be a relation on Mn,m. A linear function T : Mn,m → Mn,m is said to be a linear
preserver (or strong linear preserver) of ∼, if TX ∼ TY whenever X ∼ Y (or TX ∼ TY

∗Speaker. Email address: a.ilkhani@vru.ac.ir
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if and only if X ∼ Y ). Let X,Y ∈ Mn,m. The matrix X is said to be rgut-majorized by
Y (in symbol X ≺rgut Y ) if X = Y R, for some R ∈ Rgut

m .

2. Main results
We intend to find all (strong) linear preservers of rglt-majorization on Rn and Mn,m,

too.

Definition 2.1. Let x, y ∈ Rn. We say that x rglt-majorized by y (in symbol x ≺rglt y)
if x = yR, for some R ∈ Rglt

n .

We bring the following propositions without proof.

Proposition 2.2. Let A, B ∈ Rglt
n . Then

(a) AB ∈ Rglt
n .

(b) If A is invertible, then A−1 ∈ Rglt
n .

Assume that T : Rn → Rm be a linear function. Define τ : Rn → Rm by τ(x) =
T (xPn)Pm.

Proposition 2.3. Let x, y ∈ Rn. Then x ≺rgut y if and only if xPn ≺rglt yPn.
Also, xPn ≺rgut yPn if and only if x ≺rglt y.

Proposition 2.4. Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn. Then x ≺rglt y if and
only if tr(x) = tr(y) and xi ∈ span{0, yi, . . . , yn}, for all 2 ≤ i ≤ n.

Now, we assert some prerequisites for introducing the main results of this section.

Proposition 2.5. Let T : Rn → Rm be a linear function. Then T preserves ≺rgut if
and only if τ preserves ≺rglt.
Also, T preserves ≺rglt if and only if τ preserves ≺rgut.

Define

(1) Aj(tj) :=




0 0 . . . 0
...

...
...

...
0 0 . . . 0

αj
1 αj

2 . . . αj
tj

∗ ∗ . . . ∗
...

...
...

...
∗ ∗ . . . ∗




∈ Mn,tj ,

where j ≥ 1, αj
tj
̸= 0,

(
αj
1 αj

2 . . . αj
tj

)
is the n− j + 1th row of Aj(tj), and ∗ is a real

number.

Also, define

(2) B1(k1) :=



α1 α2 . . . αk1
...

...
...

...
α1 α2 . . . αk1


 ∈ Mn,k1 ,

where αk1 ̸= 0, and
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(3) Bj(kj) :=




αj
1 αj

2 . . . αj
kj

...
...

...
...

αj
1 αj

2 . . . αj
kj

βj
1 βj

2 . . . βj
kj

∗ ∗ . . . ∗
...

...
...

...
∗ ∗ . . . ∗




∈ Mn,kj ,

where j ≥ 2,
(
βj
1 βj

2 . . . βj
kj

)
is the n − j + 2th row of Bj(kj), and αj

i ̸= βj
i , for each

i ∈ Nkj .
The following theorem characterizes structure of the linear functions T : Rn → Rm

preserving rglt-majorization. The proofs are long. We have to give it up.

Theorem 2.6. Let T : Rn → Rm be a linear function. Then T preserves ≺rglt if and
only if r1 = · · · = rn and there exists a permutation matrix P ∈ Pm so that one of the
following conditions occurs.
a) [T ] = 0,
b) [T ] =

(
[T ]1 ∗ Bn−1(kn−1) . . . B1(k1)

)
P,

c) [T ] =
(
[T ]1 Bl(k1) . . . B1(k1)

)
P,

d) [T ] =
(
[T ]1 ∗ An(tn) . . . A1(t1)

)
P,

where B1(k1), Bj(kj) (j ≥ 2), and Aj(tj) (j ∈ Nn) are the same as in (2), (3), (1),
respectively, in (b)

∑n−1
j=1 kj ≤ m− 1 and in (c)

∑l
j=1 kj = m− 1.

e) [T ] =

(
B 0 . . . 0
∗ Ak(kk)

′ . . . A1(t1)
′

)
P, where Aj(tj)

′ ∈ Mk,tj (j ∈ Nk) is the same as in

(1), and B ∈ Mn−k,m−∑k
j=1 tj

can be the zero matrix, or one of the forms (b) or (c).

Theorem 2.7. Let T : Rn → Rn be a linear function. Then T strongly preserves ≺rglt

if and only if [T ] = αA, for some α ∈ R \ {0} and an invertible matrix A ∈ Rglt
n .

The following theorem characterizes the strong linear preservers of ≺rglt on Mn,m. We
come to this without proof.

Theorem 2.8. Let T : Mn,m → Mn,m be a linear function. Then T strongly preserves
≺rglt if and only if TX = RXA + SXE∗, for some R,S ∈ Mn and an invertible matrix
A ∈ Rglt

m so that R(R+ S) is invertible.
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Abstract. Let M be a Hilbert C∗−module on a commutative C∗−algebra with unit
element e. In this paper we are going to characterize the linear maps δ, τ from EndA(M)
into itself, satisfying Sτ(T )+ δ(S)T = 0 whenever S, T ∈ EndA(M) and ST = 0 and we
try to express some results.
Keywords: Hilbert C∗−modules, generalized derivations
AMS Mathematics Subject Classification [2010]: 46L08, 47B47

1. Introduction
One of the lines of study in recent years is to investigate the behavior of linear map-

ping such as derivatives and generalized derivation and the like, under certain conditions
such as zero-product elements. One of the research in this field was conducted by Jing et
al. Chebotar et al. continued studying in this context in 2004 and they considered prime
rings with special conditions and were examined derivations at the zero-product elements.
Then, in 2007, Brešar investigated the behavior of derivations, homomorphisms, and mul-
tipliers at zero-product elements. In 2009, Jing spoke with different conceptions about
derivation at the zero-product elements in the algebra of all bounded linear operators on
Hilbert space. Motivated from these researches, Benkovič, Dominik, and Mateja Grašič
worked on generalized derivations on a unital algebra having nontrivial idempotent in their
essay, [2]. After that, in 2019, Ghahramani et al. [1], described the linear mappings in
standard operator algebras of Banach space that satisfying generalized derivation equation
in zero-product elements. Our goal in this article is to have a brief investigation of gener-
alized derivations at zero-product elements on algebra of operators in Hilbert C∗−Modules.

Let A be an algebra and M be an A−bimodule. Generalized derivation is defined as
a linear map δ : A → M along with corresponding linear mapping κ : A → M that for all
x, y ∈ A applies to

δ(xy) = δ(x)y + xκ(y).(1)

1Speaker. Email address: zakiyekhalili@birjand.ac.ir
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Derivation that is defined as a linear mapping δ satisfying
δ(xy) = δ(x)y + xδ(y),(2)

for all x, y ∈ A, is an example of generalized derivation. Also left multipliers and right
multipliers that is defined as a linear mapping ρ in unital algebra A, satisfying

ρ(xy) = ρ(x)y,(3)
and

ρ(xy) = xρ(y),(4)
respectively, for all x, y ∈ A, are examples of generalized derivations. When we look at
the behavior of these mappings at zero-product elements, it means that the equations (1),
(2), (3), and (4) applies whenever xy = 0.

Hilbert C∗−modules are Banach spaces that generalizes Hilbert spaces by replacing
the complex number field with an arbitrary C∗−algebra. The important role of Hilbert
C∗−modules is in the theory of operator algebras. In this paper, we are going to character-
ize the linear maps that satisfying (1) at zero product elements on algebra of operators in
Hilbert C∗−modules. The second section is devoted to our main results which are proved
by several lemmas. In the following, at first, we would review some properties of Hilbert
C∗− modules that we need in the next section.

Let A be a C∗−algebra. A pre-Hilbert A−module is a left A−module M equipped
with a mapping ⟨., .⟩ : M ×M → A with the following properties:

(1) ⟨x, x⟩ ≥ 0, and ⟨x, x⟩ = 0 if and only if x = 0, for x ∈ M ;
(2) ⟨λx+ y, z⟩ = λ⟨x, z⟩+ ⟨y, z⟩, for x, y, , z ∈ M and λ ∈ C;
(3) ⟨ax, y⟩ = a⟨x, y⟩, for x, y ∈ M and a ∈ A;
(4) ⟨x, y⟩ = ⟨y, x⟩∗, for x, y ∈ M .

The mapping ∥x∥ = ∥⟨x, x⟩∥ 1
2 defines a norm on M . A pre-Hilbert A−module is called

Hilbert C∗−module over A or in short Hilbert A−module, if it is complete with respect
to this norm.

An A−linear mapping is a linear mapping that satisfied to T (ax) = aT (x), for any
a ∈ A and x ∈ M . An operator on a Hilbert A−module M is defined as a bounded
A−linear mapping from M into itself. Let us following [5], use EndA(M) to denote
the set of all operators on Hilbert C∗−module M . It is well known that EndA(M) is a
Banach algebra. Let T ∈ EndA(M). Then T is said adjointable, if there exists an operator
S ∈ EndA(M) such that ⟨Tx, y⟩=⟨x, Sy⟩ for all x, y ∈ M . Denote S by T ∗. We denote
by End∗A(M) the set of all adjointable operator in EndA(M).

By [5], M ′ indicate the set of all A−linear mappings from M to A and we know that by
(f.a)(x) := a∗f(x) and (λ.f) := λf(x), where λ ∈ C and a ∈ A, M ′ is a right A−module.

The operator θx,f is defined by θx,f (y) = f(y)x, where x ∈ M and f ∈ M
′ . The

closed linear span of these operators denoted by K(M) and called the space of compact
operators. Let us define a mapping x̂ as follow: x̂(y) = ⟨y, x⟩, for x, y ∈ M . Clearly,
x̂ ∈ M

′ , for all x ∈ M . We have
θx,ŷz = ŷ(z)x = ⟨z, y⟩x, x, y, z ∈ M.

For convenience, throughout this article, we use θx,y rather than θx,ŷ.

By the above definitions, we remind the following lemma from [5].
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Lemma 1.1. [5] Let A be a C∗−algebra and M be a Hilbert C∗−module over A.
Suppose T ∈ EndA(M). Then for any x, y, z, w ∈ M , the following statements satisfy:

(1) θx,ŷT = θx,ŷoT ;
(2) Tθx,ŷ = θTx,ŷ;
(3) If in addition A be a commutative C∗−algebra, we have θx,ŷθz,ŵ = ⟨z, y⟩θx,ŵ and

for any a ∈ A, θax,ŷ = aθx,ŷ.

Let M be an A−bimodule over algebra A. Recall that inner derivation for some fixed
m ∈ M , is defined as a linear mapping dm(a) = ma− am, for all a ∈ A. Clearly, dm is a
derivation.

Theorem 1.2. [4] Let M be a Hilbert A−module over a unital C∗−algebra A with
the property that there exists x0 in M and f0 in M

′ such that f0(x0) = eA. Then every
derivation on EndA(M) is an inner derivation.

Now we are going to review the following lemma from [3] that we need in the next
section.

Lemma 1.3. [3] Suppose A be a commutative C∗−algebra with unit eA, and M be a
Hilbert A−module over A such that f0(x0) = eA, for some x0 ∈ M and f0 ∈ M

′. Let we
denote the linear span of the set of {θx,f0 : x ∈ M} by L, and the linear span of the set of
{θx0,f : f ∈ M

′} by R. Then the following statements hold:
(1) θx0,f0 is an idempotent;
(2) L is a left ideal of EndA(M), and R is a right ideal of EndA(M);
(3) L is a left separating set of EndA(M) andR is a right separating set of EndA(M).(We

recall that the left separating set of EndA(M) namely, for any T ∈ EndA(M),
TL = 0 implies that T = 0, and the right separating set of EndA(M) means that
for any T ∈ EndA(M), RT = 0 implies that T = 0).

2. main results
In this section, the main results of this research are expressed.

Theorem 2.1. Let M be a Hilbert C∗−module on a unital commutative C∗−algebra
A and there exists x0, y0 in M such that ⟨x0, y0⟩ = eA, the unit element of A. Let δ and
τ are A−linear maps from EndA(M) to itself satisfying

ST = 0 =⇒ Sτ(T ) + δ(S)T = 0, S, T ∈ EndA(M).

Then, there exists R,G,K ∈ EndA(M) such that

δ(S) = SK −RS, τ(S) = SG−KS, ∀S ∈ EndA(M).

The following lemmas will help us to make the proof of theorem 2.1

Lemma 2.2. Suppose the assumptions of theorem 2.1 are valid. For all S, T ∈
EndA(M), we have

δ(ST ) = Sδ(T ) + δ(S)T − Sδ(I)T

Lemma 2.3. Suppose the assumptions of theorem 2.1 are valid. For all S, T ∈
EndA(M), we have

τ(ST ) = Sτ(T ) + τ(S)T − Sτ(I)T.
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Lemma 2.4. Suppose the assumptions of theorem 2.1 are valid. For all S ∈ EndA(M),
we have

τ(S)− Sτ(I) = δ(S)− δ(I)S

Corollary 2.5. Let M be a Hilbert C∗−module on commutative C∗−algebra A with
unit element eA, and there exists x0, y0 in M such that ⟨x0, y0⟩ = eA. Let ρ be an A−linear
map from EndA(M) to itself.

(1) ρ satisfies
ST = 0 =⇒ Sρ(T ) = 0, (S, T ∈ EndA(M)),

if and only if for some D ∈ EndA(M), ρ(S) = SD, (S ∈ EndA(M)).
(2) ρ satisfies

ST = 0 =⇒ ρ(S)T = 0, (S, T ∈ EndA(M)),

if and only if for some D ∈ EndA(M), ρ(S) = DS, (S ∈ EndA(M)).
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Abstract. This paper deals with the spectral boundary value problems for the Sturm-
Liouville operator having an impulse. We prove the uniqueness of the potential and the
coefficients of the boundary conditions by the interior point method.
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1. Introduction

An inverse spectral problem is a determination of the operator from information
about the spectrum. These kinds of problems arise in various problems of geophysics,
optics, etc. [1]. Inverse problems for the Sturm-Liouville operator with an impulse have
been investigated in many works and have been studied by various methods [5]. In this
work, we would like to study the interior inverse problem for this operator with the spectral
boundary condition. The interior inverse problem can be seen in the works [3,4].

Consider the boundary valve problem L = L(q, r, h0, h1) of the form

(1) − y′′ + q(x)y = λr(x)y, x ∈ (0, π),

(2) U(y) := y′(0)− (h1ρ+ h0)y(0) = 0, V (y) := y′(π) = 0.

Here the weight function r(x) = 1, x < π
2 and r(x) = α2, x > π

2 for α > 1. The function

q(x) is real-valued in L2(0, π). The parameters h0, h1 are real and λ = ρ2 is a spectral
parameter.

In this paper, it is shown that the potential function and the coefficients of the boundary
conditions can be uniquely determined by one spectrum and a set of values of eigenfunc-
tions at the point x = π

2 .

∗Speaker. Email address: y.khalili@sanru.ac.ir
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2. Results

Suppose that y(x, ρ) be the solution of the equation (1) satisfying the initial condi-
tions y(0, ρ) = 1 and y′(0, ρ) = h1ρ + h0. For sufficiently large ρ and uniformly in x, one
has (see [5,6])

y(x, ρ) = cos ρx+ h1 sin ρx+O

(
1

ρ
exp(τx)

)
, x <

π

2
,(3)

y(x, ρ) =
α+ 1

2α
(cos ρα(x) + h1 sin ρα(x))

+
α− 1

2α

(
cos ρ

(
2α

(π
2

)
− α(x)

)
+ h1 sin ρ

(
2α

(π
2

)
− α(x)

))

+O

(
1

ρ
exp(τα(x))

)
, x >

π

2
,(4)

where α(x) =
∫ x
0

√
r(t)dt and τ = |ℑρ|.

Define ∆(ρ) := V (y(x, ρ)). The functions y(x, ρ) and ∆(ρ) are entire in ρ, and the
zeros λn of the characteristic function ∆(ρ) coincide with the eigenvalues of L [2]. Using
(4), we have for |ρ| → ∞,

∆(ρ) =
ρ
√

1 + h21
2

(
(α− 1) sin

(
ρ(1− α)

π

2
− ε

)
− (α+ 1) sin

(
ρ(1 + α)

π

2
− ε

))

+O
(
exp

(
τ(α+ 1)

π

2

))
,(5)

where ε = 1
2i ln

i−h1
i+h1

.
The eigenvalues ρn satisfy the following asymptotic form for sufficiently large n,

ρn =
2

α+ 1

(
n+

ε

π

)
+O(n−1).(6)

Now we can present the main result of this paper. Together with L = L(q, r, h0, h1),

we consider a boundary value problem L̃ = L(q̃, r, h̃0, h̃1) of the same form L but with
different coefficients. We agree that if a certain symbol δ denotes an object related to L,

then δ̃ will denote an analogous object related to δ̃.

Theorem 2.1. If for any n ∈ N,

λn = λ̃n,
yn(

π
2 , ρ)

y′n(
π
2 , ρ)

=
ỹn(

π
2 , ρ)

ỹ′n(
π
2 , ρ)

,

then q(x) = q̃(x) a.e. on (0, π) and h0 = h̃0, h1 = h̃1.

Proof. Let y(x, ρ) be the solution of the equation (1) and ỹ(x, ρ) be the solution of
the equation (1) with tilde. If we multiply (1) by ỹ(x, ρ) and the corresponding equation
with tilde by y(x, ρ), and subtract, and then integrate on

(
0, π2

)
, we will have

H(ρ) :=

∫ π
2

0

(
q(x)− q̃(x)

)
y(x)ỹ(x)dx+ (h̃1 − h1)ρ+ (h̃0 − h0)

= y′
(π
2

)
ỹ
(π
2

)
− y

(π
2

)
ỹ′
(π
2

)
.(7)

Taking the assumption of the theorem, it follows that H(ρn) = 0. Now we have to prove
that H(ρ) = 0 for ρ ̸= ρn.
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Define the entire function

ϕ(ρ) =
H(ρ)

∆(ρ)
.(8)

From the integral form of the solution

y(x, ρ) = cos ρx+ h1 sin ρx+

∫ x

0
A(x, t) cos ρtdt+

∫ x

0
B(x, t) sin ρtdt, x <

π

2
,(9)

for bounded functions A(x, t) and B(x, t) [2], (5), (7) and (8), we can give that ϕ(ρ) = 0
for large enough ρ. So, we can infer that H(ρ) = 0 for all ρ and then

∫ π
2

0

(
q(x)− q̃(x)

)
y(x)ỹ(x)dx+ (h̃1 − h1)ρ+ (h̃0 − h0) = 0.(10)

By taking the relations (9) and (10), the Riemann-Lebesgue lemma and the completeness

of the functions ” cos ” and ” sin ” [2], we result that q(x) = q̃(x) a.e on (0, π2 ) and h0 = h̃0,

h1 = h̃1.
We can prove the problem on (π2 , π), by repeating the proof for the supplementary problem

L̂,
−y′′ + q1(x)y = λr1(x)y, x ∈ (0, π),

U(y) := y′(0) = 0, V (y) := y′(π) + (h1ρ+ h0)y(π) = 0,

where q1(x) = q(π − x) and r1(x) = r(π − x). The proof is completed. □
Example 2.2. Define r(x) = 1 for x < π

2 and r(x) = α2 for x > π
2 , and then

consider the boundary value problem L,

−y′′ + q(x)y = λr(x)y, x ∈ (0, π),

U(y) := y′(0)− (h1ρ+ h0)y(0) = 0,

V (y) := y′(π) = 0.

The eigenvalues λn for the boundary value problem L have the form

λn =
4

(α+ 1)2

(
n2 +

2εn

π
+

ε2

π2

)
+O(n−1),

for sufficiently large n. Also consider the boundary value problem L̃,

−y′′ = λr(x)y, x ∈ (0, π),

U(y) := y′(0) = 0,

V (y) := y′(π) = 0.

A direct computation yields that the eigenvalues λ̃n for the boundary value problem L̃
satisfy

λ̃n =
4n2

(α+ 1)2
,

for sufficiently large n. Let λn = λ̃n and the Wronskian of the functions yn(x, ρ) and
ỹn(x, ρ) at the point x = π

2 be equal to zero, i.e.,

yn(
π
2 , ρ)

y′n(
π
2 , ρ)

=
ỹn(

π
2 , ρ)

ỹ′n(
π
2 , ρ)

,

then on the base of Theorem 2.1, we will have q(x) = 0 and h0 = h1 = 0.
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1. Introduction
Several different criteria have been introduced for measuring the uncertainty of a

probabilistic model. Shannon entropy and Fisher information are the most important
information measures that have been used rather extensively in this regard. The starting
point of information theory is the Shannon entropy, introduced in the pioneering work of
Shannon [7], based on a study of systems described by probability density (or mass) func-
tions. Nearly two decades earlier, Fisher [1] had proposed another information, describing
the interior properties of a probabilistic model, that has become vital to likelihood-based
inferential methods. Fisher information as well as Shannon entropy are very important
and fundamental criteria in statistical inference, physics, thermodynamics, information
theory and some other disciplines. Complex systems can be described by means of their
behavior (Shannon) and their architecture (Fisher) information. For more details, see
Kharazmi and Balakrishnan ( [4], [5]) and Zegers [8]. We now briefly introduce some
informational measures that will be used in the sequel.

The Fisher information of a random variable X, or its PDF f(x; θ), about the param-
eter θ is defined as

I(θ) = I(fθ) =

∫ [
∂ log f(x; θ)

∂θ

]2
f(x; θ)dx.(1)

∗Speaker. Email address: omid.kharazmi@vru.ac.ir
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It is assumed that θ lies in an open interval in the real line and that f(x; θ) > 0 for
all values of θ in the parameter space and is differentiable with respect to θ.

Let X and Y be two continuous random variables with absolutely continuous density
functions f and g, respectively. Then, the Jensen-Fisher divergence between f and g, for
0 ≤ α ≤ 1, is defined as

JF (f, g;α) = αI(f) + (1− α)I(g)− I(αf + (1− α)g),

where I(f) is Fisher information for the own density function f . Fore more details, see
Sánchez-Moreno et al. [6].

Let X be an absolutely continuous random variable with PDF f . Then, the Shannon
entropy of X (or density f) is defined as

H(X) = H(f) = −
∫

X
f(x) log f(x)dx,

where log denotes the natural logarithm; see Shannon [7]. As mentioned earlier, we
suppress X for integration with respect to dx throughout the paper, unless a distinction
needs to be made.

Next, let X and Y be two continuous random variables with absolutely continuous
density functions f and g, respectively. Then, the Kullback-Leibler distance between X
and Y (or f and g) is defined as

KL(f, g) =

∫
f(x) log

f(x)

g(x)
dx.

The Kullback-Leibler (KL) discrimination between Y and X is defined analogously. For
more details, see Kullback and Leibler (1951).

Lin [3] introduced Jensen-Shannon (JS) entropy divergence for probability vectors
based on Jensen inequality and concavity of Shannon entropy. Let X and Y be two
continuous random variables with absolutely continuous density functions f and g, re-
spectively. Then, the JS divergence between f and g, for 0 ≤ α ≤ 1, is defined as

JS(f, g;α) = H(αf + (1− α)g)−
{
αH(f) + (1− α)H(g)

}
.(2)

This measure is a symmetric version of KL divergence and possesses the property that

JS(f, g;α) = αKL
(
f, αf + (1− α)g

)
+ (1− α)KL

(
g, αf + (1− α)g

)
.

Another important diversity measure between two density functions f and g is the
well-known chi-square divergence, defined as

χ2(f, g) =

∫
(f(x)− g(x))2

g(x)
dx.

In the same way, we can define χ2(g, f).
The purpose of this work is two-fold. The first part is to define two Jensen type

information measures based on Fisher information type of parameter) and chi-square di-
vergence measures. In the second part, we establish the connections between these new
divergence measures and the well-known Jensen-Shannon divergence.
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2. Jensen-Fisher information type of parameter and Jensen-χ2 diver-
gence measures
����� 2.1. Let X and Y be two continuous random variables with absolutely continuous

density functions f(x; θ) and g(x; θ), respectively. Then, the Jensen-Fisher information
about the parameter θ, for any 0 < α < 1, is defined as

JF (fθ, gθ;α) = αI(fθ) + (1− α)I(gθ)− I
(
αfθ + (1− α)gθ

)
,(3)

where

I(fθ) =

∫ [
∂ log f(x; θ)

∂θ

]2
f(x; θ)dx.(4)

Consider three arithmetic mixture distributions with density functions as

fΛ(x) = Λf0(x) + (1− Λ)f1(x),(5)

gΛ(x) = Λg0(x) + (1− Λ)g1(x)(6)

and

hα,Λ(x) = αfΛ(x) + (1− α)gΛ(x).(7)

Now, the Jensen-Fisher information about mixing parameter Λ for 0 ≤ α ≤ 1, is given by

JF (fΛ, gΛ;α) = αI(fΛ) + (1− α)I(gΛ)− I(hα,Λ),(8)

where

I(fΛ) =

∫ (
∂

∂Λ
log fΛ(x)

)2

fΛ(x)dx, I(gΛ) =

∫ (
∂

∂Λ
log gΛ(x)

)2

gΛ(x)dx

and

I(hα,Λ) =

∫ (
∂

∂Λ
log hα,Λ(x)

)2

hα,Λ(x)dx.

����� 2.2. Consider the density functions f0, f1, g0 and g1, and for Λ ∈ (0, 1), let fΛ and
gΛ be as in (5) and (6), respectively. Then, the Jensen-χ2 divergence (JCD) measure for
α ∈ (0, 1) is defined by

JC(fΛ, gΛ;α) = αχ2(fΛ, f1) + (1− α)χ2(gΛ, g1)− χ2(hα,Λ, αf1 + (1− α)g1).(9)

3. Connections between JF and JCD information divergences
The following theorem investigates the connection between Jensen-Fisher information

in (8) Jensen-χ2 divergence in (9).

���� 3.1. The Jensen-Fisher information in (8) can be given based on Jensen-χ2 diver-
gence as

JF (fΛ, gΛ;α) =
1

Λ2
JC(fΛ, gΛ;α).

�� 3.2. The Jensen-χ2 divergence in (9) is non-negative.
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���� 3.3. For any s > r, we have

(s− r)

∫ s

r
JF (fΛ, gΛ, α)dΛ = αJ(fs, fr) + (1− α)J(gs, gr)− J(hα,s, hα,r)(10)

where
hα,s(x) = αfs(x) + (1− α)gs(x), hα,r(x) = αfr(x) + (1− α)gr(x)

and J(., .) is Jeffrey’s divergence between two densities.

������ 3.4. From Theorem 3.3, it is easy to see that the Jeffrey’s divergence is jointly
convex.

The following lemma shows the connection between Jensen-Fisher in (8) and Jensen-
Shannon information measure in (2).

�� 3.5. The connection between JF and JS information divergences is given by
∫ 1

0
JF (fΛ, gΛ, α)dΛ = JS(f0, g0;α) + JS(f1, g1;α)

+ α(K(f0, f1) +K(f1, f0)) + (1− α)(K(g0, g1) +K(g1, g0))

− [K(mα, nα) +K(nα,mα)],

where K(f, g) is Kerridge’s inaccuracy measure K(f, g) = H(f) +KL(f, g) and
mα(x) = αf0(x) + (1− α)g0(x),

nα(x) = αf1(x) + (1− α)g1(x).

4. Conclusion
In this paper, we have introduced two Jensen type information measures in terms of

Fisher information, chi-square divergence and Kullback-Leibler divergence measures. Fur-
ther, we have considered three arithmetic mixture density function and then derived the
connections between these new information measures with some well-known divergence
measures such as Jensen-Shannon entropy, Kerridge’s inaccuracy and Jensen-Jeffrey’s di-
vergence measures.
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Abstract. In this work, we prove the existence and uniqueness of positive solutions for
a boundary value problem of nonlinear fractional integro-differential equations involving
Caputo-Hadamard fractional derivative with integral boundary conditions. The tech-
nique used to prove our results depends on the upper and lower solution, the Schauder
fixed point theorem and the Banach contraction principle. An example is given which
illustrate the effectiveness of the theoretical results.

Keywords: Fractional integro-differential equations, positive solutions, upper and lower
solutions, fixed point theorem.
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1. Introduction

Fractional differential equations with and without delay arise from a variety of applica-
tions including in various fields of science and engineering such as applied sciences,practical
problems concerning mechanics, the engineering technique fields, economy, control sys-
tems, physics, chemistry, biology, medicine, atomic energy, information theory, harmonic
oscillator, nonlinear oscillations, conservative systems, stability and instability of geodesic
on Riemannian manifolds, dynamics in Hamiltonian systems, etc. In particular, problems
concerning qualitative analysis of linear and nonlinear fractional differential equations with
and without delay have received the attention of many authors, see [1,2] and the references
therein.
Inspired and motivated by the works mentioned in [1,2]. In this work, we used the upper
and lower solution method, Schauder fixed point theorem and Banach contraction princi-
ple to obtain the existence and uniqueness of a positive solution for the following fractional
differential equation with integral boundary conditions

(1)

{
C
HD

αu(t) = f (t, u (t)) +H Iβg(t, u(t)), t ∈ (1, T ] ,

u(1) = λ
∫ T
1 k(s)u (s) ds+ d, λ ≥ 0, d > 0

∗Speaker. Email address: lachouri.adel@yahoo.fr, abd ardjouni@yahoo.fr
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where C
HD

α is the Caputo-Hadamard fractional derivative of order 0 < α ≤ 1, and HIβ

is the Hadamard fractional integral of order β ∈ (0, 1), f : [1, T ] × [0,∞) → [0,∞),
g : [1, T ] × [0,∞) → [0,∞) and k : [1, T ] → [0,∞) are given continuous functions. g is
non-decreasing on u.
In what follows, we present some essential ideas of fractional calculus and fixed point
theorems that prerequisite in our analysis.

Let J = [1, T ]. Denote by C (J) the Banach space of all continuous functions defined
on J endowed with the norm ‖u‖ = sup {|u (t)| : t ∈ J}, and A a nonempty closed subset
of C (J) defined as

A = {u(t) ∈ C (J) : u(t) ≥ 0, t ∈ J} .
Definition 1.1. [3] The Hadamard fractional integral of order α > 0 for a continuous

function u : [1,∞)→ R is defined as

HIαu (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1
u (s)

ds

s
, α > 0.

where Γ denotes the Gamma function.

Definition 1.2. [2] The Caputo-Hadamard fractional derivative of order α > 0 for
a function u ∈ Cn ([1,∞),R) is defined as

C
HD

αu (t) =
1

Γ (n− α)

∫ t

1

(
log

t

s

)n−a−1
δnu (s)

ds

s
, n− 1 < α < n,

where δn =
(
t ddt
)(n)

, n ∈ N.

Lemma 1.3. [2] Let n − 1 < α ≤ n, n ∈ N and u ∈ Cn (J). Then the Caputo-
Hadamard fractional differential equation C

HD
αu (t) = 0, has a solution

u (t) =
n−1∑

k=0

ck (log t)k ,

and the following formula holds:

HIα
(
C
HD

αx (t)
)

= u (t)−
n−1∑

k=0

ck (log t)k ,

where ck ∈ R, k = 0, 1, ..., n− 1.

Theorem 1.4. (Schauder’s fixed point theorem [4]) Let Ω be a nonempty closed convex
subset of a Banach space S and Φ : Ω → Ω be a continuous compact operator. Then has
a fixed point in Ω.

Theorem 1.5. (Banach contraction principle [4]) Let Ω be a non-empty closed subset
of a Banach space (S, ‖.‖), then any contraction mapping Φ of Ω into itself has a unique
fixed point.

Definition 1.6. A function u ∈ C1 (J) is said to be a solution of problem (1) if u
satisfies the equation C

HD
αu(t) = f (t, u (t)) +H Iβg(t, u(t)) for all t ∈ J with integral

boundary conditions u(1) = λ
∫ T
1 k (s)u (s) ds+ d.

Definition 1.7. A function u ∈ C1 (J) is called a positive solution of problem (1) if
u(t) ≥ 0 for all t ∈ J and u satisfies the problem (1).
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Definition 1.8. Let a, b ∈ R+, and b > a: For any u ∈ [a, b], we define the
upper-control function U(t, u) = supa≤ρ≤u f(t, ρ), and lower-control function L(t, u)
=infu≤ρ≤b f(t, ρ). Obviously, U(t, u) and L(t, u) are monotonous non-decreasing on [a, b]
and L(t, u) ≤ f(t, u) ≤ U(t, u).

2. Main results

In this section, we shall give existence and uniqueness results of problem (1) and prove
it. Before starting and proving the main result, we introduce the following lemma:

Lemma 2.1. Let u ∈ C (J), u′ exists, then u is a solution of problem (1) if and only
if u is a solution of the integral equation

u(t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1
f(s, x(s))

ds

s
+

1

Γ (α+ β)

∫ t

1

(
log

t

s

)α+β−1
g(s, u(s))

ds

s

+λ

∫ T

1
k (s)u (s) ds+ d, t ∈ J.(2)

Proof. Following the same steps in [1, Lemma 3], we obtain the integral equation
defined in (2). �

To transform the problem (1) into a fixed point problem, we define the operator
Φ : A→ A by

(Φu) (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1
f(s, x(s))

ds

s
+

1

Γ (α+ β)

∫ t

1

(
log

t

s

)α+β−1
g(s, u(s))

ds

s

+λ

∫ T

1
k (s)u (s) ds+ d, t ∈ J.(3)

Clearly, the solution of (1) is as a fixed point of the operator Φ.
To obtain our findings, we need the following assumptions
(H1) Let u∗, u∗ ∈ A such that a ≤ u∗ (t) ≤ u∗ (t) ≤ b and

{
C
HD

αu∗(t)−H Iβg(t, u∗(t)) ≥ U (t, u∗ (t)) , ∀t ∈ J,
C
HD

αu∗(t)−H Iβg(t, u∗(t)) ≤ L (t, u∗ (t)) , ∀t ∈ J,
(H2) For t ∈ J, and u, v ∈ [0,∞), there exist two positives number lf and lk such that

|f(t, u)− f(t, v)| ≤ lf |u− v| ,
|g(s, u)− g(s, v)| ≤ lg |u− v| .

The function u∗and u∗ are respectively called the pair of upper and lower solution for
problem (1).

The first result is based on the Schauder fixed point theorem.

Theorem 2.2. Assume that (H1) is satisfied, then problem(1) has at least one positive
solution.

Proof. Let Ω = {u ∈ A : u∗(t) ≤ u(t) ≤ u∗(t), t ∈ J} endowed with the norm ‖u‖ =
maxt∈J |u(t)| , then we have ‖u‖ ≤ b. Hence, Ω is convex bounded and closed subset of the
Banach space C (J) . The proof will be given in the following steps.

Step 1. The continuity of f ,g implies the continuity of the operator Φ defined by (3).
Step 2. We prove that the operator Φ is compact.
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Step 3. We show that Φ (Ω) ⊂ Ω. for any u ∈ Ω.
Clearly, all the hypotheses of the Schauder fixed point theorem are satisfied. Thus the
operator Φ has at least one fixed point u ∈ Ω, which is a positive solution of (1). �

The second result is based on the Banach contraction principle.

Theorem 2.3. Assume that (H2) is satisfied and

(4)

(
lf (log T )α

Γ(α+ 1)
+
lg (log T )α+β

Γ(α+ β + 1)
+ λk∗ (T − 1)

)
< 1.

Then problem (1) has a unique positive solution.

Proof. From Theorem (2.2), it follows that problem (1) has at least one positive
solution. Hence, we need only to prove that the operator defined in (3) is a contraction in
Ω. In fact, for each u, v ∈ Ω, we have

|(Φu) (t)− (Φv) (t)| ≤
(
lf (log T )α

Γ(α+ 1)
+
lg (log T )α+β

Γ(α+ β + 1)
+ λk∗ (T − 1)

)
‖u− v‖ .

From (4), Φ is a contraction. As a result of Banach’s fixed point theorem, Φ has a unique
fixed point that is the corresponding unique positive solution of the problem (1). �

3. Example

As an application of our result, we consider the following fractional integro-differential
equation with integral boundary condition

(5)

{
C
HD

1
2u (t) = sin(t)

exp(t2−1)+7

(
|u|
|u|+1

)
+ 1

4I
1
4

u(t)
exp(t−1) , t ∈ (1, e] ,

u (1) = 1
6

∫ e
1

1
tu (s) ds+ 1

10 .

Here, α = 1
2 , β = 1

4 , λ = 1
6 , d = 1

10 , f(t, u(t)) = sin(t)
exp(t2−1)+7

(
|u|
|u|+1

)
, g(t, u) = u

4 exp(t−1)
and k (t) = 1

t .
Since f , g and k are continuous positive functions, g is non-decreasing on u and

lf (log T )α

Γ(α+ 1)
+
lg (log T )α+β

Γ(α+ β + 1)
+ λk∗ (T − 1) ' 0.7 < 1.

Then, by Theorem (2.3), the problem (5) has a unique positive solution.
4. Conclusion
We can conclude that the main results of this work have been successfully achieved,

that is, through the Banach fixed point theorem and the Schauder fixed point theorem
combined with the method of upper and lower solution, we scrutinized the existence and
uniqueness of positive solutions for a fractional integro-differential equation with integral
boundary conditions involving Caputo-Hadamard fractional derivative.
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Abstract. We show that if I is a non-central Lie ideal of a ring R with Char(R) ̸= 2,
such that all of its non-zero elements are invertible, then R is a division ring. We prove
that if R is an F -central algebra and I is a Lie ideal without zero divisor such that
the set of multiplicative cosets {aF | a ∈ I} is of finite cardinality, then either R is a
field or I is central. We show the only non-central Lie ideal without zero divisor of a
non-commutative central F -algebra R with Char(R) ̸= 2 and radical over the center is
[R,R], the additive commutator subgroup of R.
Keywords: Division ring, Lie ideal, Quaternion algebra.
AMS Mathematics Subject Classification [2010]: 16K40, 17A35

1. Introduction
Throughout this paper R is a unitary ring with center Z(R) and F is a field. For

a pair of elements a, b of R we denote by [a, b] = ab − ba the Lie product of a and b.
Also elements of R with such a representation as ab − ba for two elements a, b in R are
called additive commutators. For two subsets A and B let A \ B = {a ∈ A | a ̸∈ B}.
An additive subgroup I of R is said to be a Lie ideal of R if [r, a] ∈ I for every r ∈ R
and a ∈ I. Also, for subsets A,B of R we denote by [A,B] the additive subgroup of R
generated by all [a, b] with a ∈ A and b ∈ B. By this notation [R,R] is called the additive
commutator subgroup of R. An element a ∈ R is said to be radical over the center or
Z(R) if there exists a positive integer n = n(a) such that an ∈ Z(R). A subset S ⊆ R
is said to be radical over Z(R), if each element of S is radical over Z(R). We denote the
characteristic of R by Char(R). For a subset S ⊆ R, the centralizer of S in R is defined
by CR(S) = {r ∈ R | rs = sr for all s ∈ S}. An element a of R is called a zero divisor
if there exists a non-zero b ∈ R such that either ab = 0 or ba = 0. We say the ring R is
an F -central algebra if R is an algebra over F and Z(R) = F . A derivation on R is an
additive group homomorphism d : R −→ R satisfying d(r1r2) = (d(r1))r2 + r1(d(r2)).

In Theorem 1.1, stated below, Bergen et al. [3] proved that a unitary ring R with a
derivation such that all of its non-zero images are invertible, except for a special case,
either is a division ring D or M2(D), the ring of 2 × 2 matrices over a division ring D.
Bergen and Carini gave a generalization of this result to the case of a Lie ideal. More
precisely, a semiprime unitary ring R with a derivation such that all of its non-zero images

∗Speaker. Email address: amadadi2009@gmail.com & asghar.madadi@iauz.ac.ir
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over a non-central Lie ideal are invertible, either is a division ring D or M2(D) for a
division ring D.

In this paper, we study the rings with specific Lie ideals. Our study begins with
two theorems having a similar idea as above. We prove that when the non-zero additive
commutators or the non-zero elements of a Lie ideal I of a ring R are invertible then R
is a division ring. As a consequence we present a commutativity condition over a ring.
We show that if I is a Lie ideal of an F -central algebra R without zero divisor such that
the set of multiplicative cosets {aF | a ∈ I} is of finite cardinality, then either R is a
field or I is central. We prove that any division ring D with Char(D) ̸= 2 which contains
a non-central Lie ideal I without zero divisor and radical over the center is isomorphic
to a generalized quaternion algebra and I = [D,D]. At last we prove that when R is
an F -central algebra and Char(R) ̸= 2 and I is a Lie ideal without zero divisor, if the
residual additive group ( I+F

F ,+) is of finite cardinality, then I is central. First, we recall
the following theorems.

Theorem 1.1. [3] Let R be a ring with 1 and d ̸= 0 a derivation of R such that, for
each x ∈ R, d(x) = 0 or d(x) is invertible in R. Then R is either

(i) a division ring D, or
(ii) M2(D) for some division ring D or
(iii) D[x]/(x2), for some division ring D, where charD = 2, d(D) = 0 and d(x) =

1 + ax for some a in the center Z(D) of D.
Furthermore, if 2R ̸= 0 then R = M2(D) is possible if and only if D does not contain all
quadratic extensions of Z(D), the center of D; equivalently if and only if some element in
Z(D) is not a square in D.

Theorem 1.2. [6] Let D be a division ring with center F , such that (xy− yx)n(x,y) ∈
F, n(x, y) ≥ 1 for all x, y ∈ D, then dimF (D) ≤ 4.

Theorem 1.3. [5, p. 5] Let D be a division algebra with center F and Char(D) ̸= 2
and let I be a Lie ideal of D. Then either I ⊆ F or [D,D] ⊆ I.

2. Main results
We show that the invertibility condition on some special subsets or substructures of

a ring may imply the invertibility of all none-zero elements of the ring. In particular,
we show that a ring with all its non-zero additive commutators invertible is a division
ring. This is the content of the following theorem, which is really an easy consequence of
Theorem 1.1 above.

Theorem 2.1. [1] Let R be a non-commutative ring with center Z(R), and with all
its non-zero additive commutators invertible. Then R is a division ring.

Clearly [R,R] is a Lie ideal in any ring R, containing all additive commutators. When
R is a division ring with Char(R) ̸= 2, then by Theorem 1.3 all non-central Lie ideals
contain [R,R], but in general there is not a clear relation between a Lie ideal and [R,R].
So one may ask what would be the case when the same condition, as above theorem, is
valid on a Lie ideal of a ring. In the following theorem we show that only a division ring
may contains a Lie ideal such that all of its non-zero elements are invertible.

Theorem 2.2. [1] Let R be a ring and Char(R) ̸= 2. If I is a non-central Lie ideal
of R, all of whose non-zero elements are invertible, then R is a division ring.
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We use the previous theorem to present a commutativity condition in terms of Lie
ideals without zero divisor.

Theorem 2.3. [1] Let F be a field and R be an F -central algebra with a Lie ideal I
without zero divisor. If the set of multiplicative cosets {aF | a ∈ I} is of finite cardinality,
then either R is a field or I is central.

To present our next result, we need to recall the following:
Let F be a field with Char(F ) ̸= 2. By [2] when R is a finite dimensional F -algebra, then
[R,R] is a hyperplane in R. Consider the generalized quaternion algebra

D =

(
a, b

F

)
= {α0 + α1i+ α2j + α3k | α0, α1, α2, α3 ∈ F},

where i2 = a, j2 = b, ij = k and a, b ∈ F [4, p. 136]. Then one can easily show that
[D,D] = span({i, j, k}) = {α1i + α2j + α3k | α1, α2, α3 ∈ F}. In what follows we show
that only generalized quaternion algebras D may contain non-central radical Lie ideal I
without zero divisor and in this case I = [D,D].

Theorem 2.4. [1] Let R be a non-commutative central F -algebra and Char(R) ̸= 2.
If I is a non-central Lie ideal of R without zero divisor and radical over F , then I = [R,R]
and R is a generalized quaternion algebra.

We need the following technical Lemma to give our next result.

Lemma 2.5. [1] Let R be a ring and a, y ∈ R, such that a is not zero divisor. If
ay ∈ Z(R), then ay = ya.

Theorem 2.6. [1] Let R be a central F -algebra with Char(R) ̸= 2 and let I be a
Lie ideal of R without zero divisor. If the residual additive group ( I+F

F ,+) is of finite
cardinality, then I is central.

3. Conclusion
In this paper, we study the rings with specific Lie ideals. We prove that when the

non-zero additive commutators or the non-zero elements of a Lie ideal I of a ring R are
invertible then R is a division ring. As a consequence we present a commutativity condition
over a ring.

References
1. M. Aaghabali, M. Amiri, M. Ariannejad and A. Madadi, Conditions on Lie ideals in rings, J. Algebra

Appl. 15(5) (2016) 1650094 (6 pages).
2. S. Akbari, M. Ariannejad and M. L. Mehrabadi, On additive commutator groups in division rings,

Results Math. 33 (1998) 9-21.
3. J. Bergen, I. N. Herstein and C. Lanski, Derivations with invertible values, Canad. J. Math. 35(2)

(1983) 300-310.
4. B. Farb and R. K. Dennis, Non-Commutative Algebra, GTM, No. 144 (Springer-Verlag, New York,

1993).
5. I. N. Herstein, Topics in Ring Theory, Chicago Lectures in Mathematics (The university of Chicago

Press, London, 1969).
6. I. N. Herstein, C. Procesi and M. Schacher, Algebraic valued functions on non-commutative rings, J.

Algebra 36 (1975) 128-150.

772



A CIP method for solving PDEs problem on an unbounded
domain by using artificial boundary conditions

Mitra Moeini∗

Department of Mathematics, Roudehen Branch, Islamic Azad University, Roudehen, Iran

Abstract. In this paper, we propose a basis set approach by the Constrained Inter-
polation Profile (CIP) method for the solution of partial differential equations on an
unbounded domain.Two exact artificial boundary conditions are introduced to reduce
the original problem into an initial boundary value problem with a finite computational
domain. We present a three stage numerical scheme Laplace transform in time variable,
the CIP method and Talbot’s method for numerical inversion of the Laplace transforma-
tion. Efficiency of the scheme is demonstrated by numerical results of sample problem.
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1. Introduction

In this paper, we consider the numerical solution of partial differential equations(
PDEs) problem on an unbounded domain. When numerically solving a differential equa-
tion defined on an unbounded domain, it is necessary to consider a finite sub-domain and
to use artificial boundary conditions in such a way that the solutions in the finite sub-
domain approximate the original solution [2]. If the approximation is exact, the transfer
is called exact and the corresponding artificial boundary condition is called exact or trans-
parent. The purpose of this paper is to establish a systematic and simple method to find
the solution of the PDEs with any desired accuracy by generalizing the concept of the
CIP method [5]. This method has been successfully applied to various complex fluid flow
problems, covering both compressible and incompressible flow, such as shock wave gener-
ation, laser-induced evaporation, and elastic-plastic flows [5]. In comparison with finite
element and finite difference methods, our method is at least simple for programming and
transforms the differential integral equation to an algebraical equation.

Here, we consider an algorithm consist of three parts. The first part consists of Laplace
transform method in time variable, converting the problem to a one parametric Sturm-
Liouville equation with Robin’s boundary conditions. The CIP method is used in the
second part. The basis function has compact support, and is composed of simple polyno-
mials that are easily extendable to any desired higher-order accuracy. The last part utilizes
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Talbot’s method [4] for numerical inversion of the Laplace transformation and generates
solution for the transformed problem. The difficulties associated with this inverse problem
are due to its intrinsic ill-posedness, and the derivation of error estimates is the first step
towards the development of a reliable inversion algorithm.

The organization of this paper is as follows. In section 2, we introduce and study one
dimensional time dependent PDEs problem with transparent boundary conditions and
it’s corresponding transformed equations. Section 3, briefly describes the CIP method
for approximating numerical solution of PDEs . Section 4 is devoted to presentation of
numerical example to show the effectiveness of our approach.

2. Construction and study of the model

In this paper, we extended the mathematical model of [3], where the governing equa-
tion is nonhomogenous and this is the major part of our work. Here, we study the problem
of the numerical approximation of a dispersive wave u(x, t), the solution of the PDEs in
an unbounded domain. More concretely, we consider the following linear equation:

(1) α
∂u

∂t
(x, t) = β

∂2u

∂x2
(x, t) + γu(x, t) + f(x, t), ∀(x, t) ∈ Ω,

u(x, 0) = u0(x) = g(x), ∀x ∈ R,
where Ω = {(x, t)| − ∞ < x < +∞, 0 < t 6 T}, u0(x) is the initial data given on R, the
unknown function u(x, t) is a function on Ω , f(x, t) is known and α, β, γ are constants .

For computing the numerical solutions of such a whole space problem, we consider a
finite subdomain and impose an artificial condition. Let us split the initial domain Ω into
three regions. First introduce two artificial boundaries:

Γ0 = {(x, t)| x = 0, 0 < t 6 T}, Γ1 = {(x, t)| x = 1, 0 < t 6 T}.
Then the domain Ω is divided into two unbounded parts:

Ω0 = {(x, t)| −∞ < x 6 0, 0 < t 6 T}, Ω1 = {(x, t)| 1 6 x < +∞, 0 < t 6 T},
and one bounded part: Ωc = {(x, t)| 0 < x < 1, 0 < t 6 T .

Suppose that u0 is compact support with: supp{u0} ⊂ [0, 1]. We consider the restric-
tion of the solution of problem (1) on the domain Ωc. Transparent boundary conditions
for this problem are non-local in t and read:
(2)
∂u

∂x
(0, t) = k0

d

dt

∫ t

0

u(0, λ)√
t− λ

dλ+f0(t), on Γ0,
∂u

∂x
(1, t) = k1

d

dt

∫ t

0

u(1, λ)√
t− λ

dλ+f1(t), on Γ1,

where f0(t), f1(t) are known and k0, k1 are constants. This initial boundary value problem
is well-posed and its solution coincides with the solution of the original problem (1) re-

stricted to Ω
c

[1]. Here, we focus on model for boundaries. We consider u(0, 0) = u(1, 0) =
0 and using Leibniz differentiation formula, we can rewrite Eqs (2) as follows:
(3)
∂u

∂x
(0, t) = k0

∫ t

0

d

dλ
{u(0, λ)} dλ√

t− λ
+f0(t),

∂u

∂x
(1, t) = k1

∫ t

0

d

dλ
{u(1, λ)} dλ√

t− λ
+f1(t).

We apply the Laplace transform to Eqs. (1), (3), we have:

(4) αsU(x, s)− αg(x) = β
∂2U

∂x2
(x, s) + γU(x, s) + F (x, s), ∀(x, s) ∈ Ωe,
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(5)
∂U

∂x
(0, s) = k0s

√
π

s
.U(0, s) + F0(s), δ0 < s <∞,

(6)
∂U

∂x
(1, s) = k1s

√
π

s
.U(1, s) + F1(s), δ0 < s <∞.

where U,F, F0, F1 are Laplace transform of u, f, f0, f1 respectively and

Ωe = {(x, s)| 0 < x < 1, δ0 < s <∞}.

3. Interpolation in the CIP method

For discrete, we consider 4x = 1
N , where N is a positive integer and 4x is spatial

size [5]. The one dimensional nodal points are defined as xi = i4x, i = 0, 1, 2, . . . , N.

We consider the basis set as u(x, t) =
∑N

i=0 ri(t)φi(x). Laplace transform of u(x, t) is

U(x, s) =
∑N

i=0Ri(s)φi(x), where R is Laplace transform of r. Substituting U(x, s) into
Eq.(4), and multiplying < φi| from the left, we obtain the following simultaneous ordinary
differential equation:

αs(Ri−1(s) + 4Ri(s) +Ri+1(s))
4x
6
− α < φi, g(x) >=

β

4x(Ri−1(s)− 2Ri(s) +

Ri+1(s)) + γ
4x
6

(Ri−1(s) + 4Ri(s) +Ri+1(s))+ < φi, F (x, s) > .

After simplifying, we have:

(7) ξ(s)Ri−1(s) + δ(s)Ri(s) + ξ(s)Ri+1(s) = α < φi, g(x) > + < φi, F (x, s) >,

where: ξ(s) = αs4(x)
6 − β

4(x) − γ
4(x)
6 , δ(s) = 4αs4(x)

6 + 2 β
4(x) − 4γ4(x)

6 .

Substituting U(x, s) into Eq.(5), then by multiplying < φ0| from the left , we have:

(8) 4µ(s)R0(s) + (1 + µ(s))R1(s) = 2 < φ0, F0(s) >, µ(s) = −k0s4(x)

3

√
π

s
.

Similarly, substituting U(x, s) into Eq.(6), then by multiplying < φN | from the left , we
have:

(9) (1 + ϑ(s))RN−1(s) + 4ϑ(s)RN (s) = −2 < φN , F1(s) >, ϑ(s) =
k1s4(x)

3

√
π

s
.

If we introduce the state vector R(s) = (R0(s), R1(s), ........., RN (s))T , and matrices:

W =




4µ(s) (1 + µ(s)) 0 . . . 0 0 0
ξ(s) δ(s) ξ(s) 0 . . . . .

0 ξ(s) δ(s) ξ(s) 0 . . . .
. . . . . . . . .
. . . . 0 ξ(s) δ(s) ξ(s) 0
. . . . . 0 ξ(s) δ(s) ξ(s)
0 0 0 . . . 0 (1 + ϑ(s)) 4ϑ(s)




B = (2 < φ0, F0(s) >,α < φ1, g(x) > + < φ1, F (x, s) >, ..., α < φN−1, g(x) > +
< φN−1, F (x, s) >,−2 < φN , F1(s) >)T

then, we obtain the corresponding system of (7), (8) and (9) which involves (N + 1)
equations and (N + 1) unknowns WR(s) = B. This system can be solved by using LU
decomposition methods. The next step of our numerical scheme consists of approximation
inversion of Laplace transform with Talbot’s method [4].
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4. Numerical results

Example 4.1. Consider the following problem:

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t) + u(x, t) + x8[t

5
2x3 + t2(x2 − x) +

√
t(x3 − x2)], 0 < x < 1 , 0 < t < 1,

∂u

∂x
(0, t) =

∫ t

0

du(0, λ)

dλ
.

1√
t− λ

dλ+tsint,
∂u

∂x
(1, t) = 2

∫ t

0

du(1, λ)

dλ
.

1√
t− λ

dλ+cost, 0 < t < 1,

u(x, 0) = 0, 0 6 x 6 1.

The set of nodal points are RM = {(xi, tj)|0 ≤ i, j ≤ M}, where (xi, tj) ∈ (0, 1) × (0, 1)
are two dimensional random nodes. We take number of nodes N . In Talbot’s method,
there are some geometrical parameters υ, λ, δ and accuracy parameter n, that are differ-
ent values. Numerical results of example 4.1 are given in Table 1 and Figure 1 , where
(x, t) ∈ [0.01, 0.8]× [0.01, 0.8]:

Table 1. Numerical results of example

No. N n υ λ δ Max.Res
1 4 4 10−1 10−1 0.99 4.3494× 10−2

2 4 4 10−1 10−2 0.99 5.9076× 10−3

3 8 4 10−1 10−1 0.99 7.5615× 10−3

4 8 4 10−1 10−2 0.99 5.9071× 10−3

5 14 4 10−1 10−1 0.99 6.4413× 10−3

Figure 1. In this figure N = 8 , n = 4, υ = 10−1, λ = 10−2, δ = 0.99.
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Abstract. In this paper, a new method is proposed for generating families of contin-
uous distributions. It is used for the classic Laplace distribution and a new class of
asymmetric continuous distributions is introduced. Some mathematical properties of the
new distribution are provided. In particular, rth moment, variance, skewness, kurtosis
are derived. Also, the asymptotic distribution of the extreme order statistics are inves-
tigated. Using the maximum likelihood estimation method the proposed distribution is
fitted to the set of real data and by AIC and BIC criteria the goodness of fitting the
proposed distribution is demonstrated.
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1. Introduction

Statistical distributions are commonly applied to describe real world phenomena. The
usefulness of statistical distributions has motivated researchers seeking and developing
new and more flexible distributions. Many generalized classes of distributions have been
developed and applied to describe various phenomena.

One of the earliest distributions in probability theory is the Laplace distribution that
its probability density function (pdf) and cumulative distribution function (cdf) are given
by

(1) f(x) =
1

2σ
exp(−|x− θ|

σ
), F (x) =





1
2 exp(x−θσ ) if x ≤ θ

1− 1
2 exp( θ−xσ ) if x > θ

where θ ∈ R and σ > 0. This distribution is very popular in many areas of science and
engineering and often used for modeling phenomena with heavier than normal tails. See [3]
for an overview.

In the last several decades, many studies have been published with extensions and
applications of the Laplace distribution and various form of skewed Laplace distributions
have appeared in the literature. Yu and Zhang [5] have proposed a three parameter
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asymmetric Laplace distribution. Corderio and Lemonte [1] have proposed the so called
beta Laplace distribution as an extension of the Laplace distribution. Kozubowski and
Nadarajah [2] provided a comprehensive review of the known Laplace distributions along
with their properties and applications.

In this article, we first present a new technique to generate families of continuous
probability distributions. This is used for the classic Laplace distribution and the new
skew family is proposed, called the new skew Laplace (NSL) distribution. This distribution
is convenient for modeling asymmetric data. The article is outlined as follows. In section
2, we introduce the NSL distribution and obtain some statistical properties. In section 3,
we investigate the asymptotic distribution of the extreme order statistics. In section 4, we
test the validity of the proposed distribution by considering a real data set and compare
the values of Akaike information criterion (AIC) and Bayesian information criterion (BIC)
with the values of some other distributions. The article ends with some conclusions.

2. Definition and basic properties

In this section, we first describe the methodology for generating new distributions.
Then, we present the new skew Laplace distribution and some of its more important
properties.

Theorem 2.1. Let X be a continuous random variable with pdf g, cdf G and support
R, if we have

(2) lim
x→−∞

exp(−λx)G(x) = 0

for each λ ∈ D ⊆ R+, then the following function

(3) f(x) =
λ exp(−λx)G(x)

L(λ)

is a density function, where L(λ) is the two-sided Laplace of g(x) defined as

(4) L(λ) =

∫ ∞

−∞
exp(−λx)g(x)dx.

Now, we introduce a new class of skew Laplace distribution by taking g and G in
Theorem 2.1 to be the pdf and cdf of the classic Laplace distribution given by (1) with
σ = 1. The corresponding pdf is

(5) f(x) =





λ(1−λ2)
2 exp(−λ(x− θ)) exp(x− θ) if x ≤ θ

λ(1− λ2) exp(−λ(x− θ)){1− 1
2 exp(θ − x)} if x > θ

where θ ∈ R and 0 < λ < 1. If the pdf of a random variable is given by (5), it is denoted
by X ∼ NSL(θ, λ) and it has the following cdf

(6) F (x) =





λ(1+λ)
2 exp(−λ(x− θ)) exp(x− θ) if x ≤ θ

1− (1− λ2) exp(−λ(x− θ)){1− λ
2(1+λ) exp(θ − x)} if x > θ

Figure 1 shows shape of the pdf (5) for λ = 0.1, 0.3, 0.5, 0.7, 0.9 and θ = 0. The main
feature of the new skew Laplace distribution in (5) is that the parameter λ control skewness
and kurtosis.
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Figure 1. Density function of the new skew Laplace distribution with
θ = 0 and various values of λ.

Proposition 2.2. Let X ∼ NSL(θ, λ), then the rth moment of X is

E(Xr) =





λ(1− λ2)
2(1− λ)r+1

r∑

i=0

r!

i!
(−1)i(θ(1− λ))i +

(1− λ2)
λr

r∑

i=0

r!

i!
(λθ)i

− λ(1− λ2)
2(1 + λ)r+1

r∑

i=0

r!

i!
(θ(1 + λ))i for r even,

λ(1− λ2)
2(1− λ)r+1

r∑

i=0

r!

i!
(−1)i−1(θ(1− λ))i +

(1− λ2)
λr

r∑

i=0

r!

i!
(λθ)i

− λ(1− λ2)
2(1 + λ)r+1

r∑

i=0

r!

i!
(θ(1 + λ))i for r odd.

Using the above proposition, the expectation, variance, skewness and the kurtosis of
X are

E(X) = θ +
1− 3λ2

λ(1− λ2) , Skewness(X) =
2 (1− 3λ2 − 3λ4 − 3λ6)

(3λ4 + 1)
3
2

V ar(X) =
3λ4 + 1

λ2(1− λ2)2 , Kurtosis(X) =
3 (3− 8λ2 + 22λ4 + 16λ6 + 15λ8)

(3λ4 + 1)2

3. Asymptotic Distribution of Extremes

In this section, the asymptotic distribution of extreme values Mn = max(X1, . . . , Xn)
and mn = min(X1, . . . , Xn) are investigated. Let X1, X2, . . . be independent random
variables with probability density and cumulative distribution function (5) and (6), re-
spectively. It can be easily shown that

(7) lim
t→∞

1− F (t+ x
λ)

1− F (t)
= exp(−x)

then by Theorem 1.6.2 in [4] , the asymptotic distribution of Mn normalized belong to
Type I Extreme Value distribution, i.e. for suitable normalizing constant an > 0 and bn,
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we have
P (an(Mn − bn) ≤ x)→ exp(− exp(−x)) as n→∞

Using Corollary 1.6.3 in [4], the form of the normalizing constants can be determined,

for instance an = λ and bn = µ+ lnn(1−λ2)
λ . As a similar method, since

(8) lim
t→∞

F (−t− x
1−λ)

F (−t) = exp(−x)

then, for suitable constants cn > 0 and dn, we have

P (cn(mn − dn) ≤ x)→ 1− exp(− exp(x)) as n→∞.

4. Application

As an application, a real data set was considered, which consisted of physical and
blood measurements of 202 athletes at the Australian Institute of Sport. (This data set
is available in the DAAG package in R software, where it is named ais). We considered
the body mass index (BMI) of athletes. Using maximum likelihood estimation method
(MLE), we fitted three distributions, classic Laplace (CL), new skew Laplace (NSL) and
skewed Laplace distribution introduced by Aryal and Nadarajah (ANSL), [2], to the data
and as can be seen in the below tabel, the NSL distribution has the best fitness.

Table 1. Comparison of fit of the three distributions for BMI data.

Distribution Estimated values (MLE) AIC BIC

CL θ̂ = 22.702, σ̂ = 2.122 992.158 998.776

NSL θ̂ = 21.436, λ̂ = 0.403 986.113 992.7302

ANSL φ̂ = 22.951, λ̂ = 47.021 1673.964 1680.581

5. Conclusion

In this study, a new method for generating families of continuous distributions is
proposed. Based on the proposed method a new skew Laplace distribution is introduced.
Some of its basic properties are investigated. From the computation, it is examined that
the proposed distribution provides best fitting to the data set under consideration in terms
of the criteria, AIC and BIC. This study focuse on the case that the basic distribution
in Theorem 2.1 is the classic Laplace distribution. Different basic distributions may be
suggested.
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1. Introduction
Investigation of the existence and uniqueness of fixed points of certain mappings in the

framework of metric spaces is one of the centers of interests in nonlinear functional analysis
[1]. Fixed point theory has a wide application in almost all fields of quantitative sciences
such as economics, biology, physics, chemistry, computer science and many branches of
engineering. In 1965, Zadeh [12] introduced the concept of fuzzy sets. In 1975, Kramosil
and Michalek [8] put forward a new concept of fuzzy metric space. Then, in 1994, George
and Veeramani [6] revised the notion of fuzzy metric space with the help of continuous
t- norm. Grabiec [5] initiated the study of fixed point theory in fuzzy metric space. In
2000, Gregori and Sapena [7] introduced new kind of contractive mappings in modified
fuzzy metric spaces and proved a fuzzy version of Banach contraction principle. In 1992,
Dhage ( [2], [3], [4]) in his Ph. D. thesis introduced a new class of generalized metric space
called D-metric spaces. In 2003, Mustafa and Sims [9] showed that most of the results
claimed concerning of such spaces are invalid. Then they introduced a generalization of
metric spaces (X, d), which are called G-metric spaces [10]. In 2010, Sun and Yang [11]
introduced the concept of Q-fuzzy metric space, as a generalization of fuzzy metric space,
and proved two common fixed point theorems for four mappings. In this paper, we define
ψ-weak contraction mappings in generalized fuzzy metric space. We also prove several
common fixed point theorems for mappings in generalized fuzzy metric space. Our results
in this paper improve and generalize know results due to Gregori and Sapena [7]. We
recall some definitions and propositionositionerties for G-metric spaces given by Mustafa
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and Sims. Fuzzification of generalized metric space was studied by Sun and Yang [11].
They defined the Q-fuzzy metric space as follows:

Definition 1.1 ( [11]). A 3-tuple (X,Q, ∗) is called a Q-fuzzy metric space if X is
an arbitrary set, ∗ is a continuous t-norm and Q is a fuzzy set on X3 × (0,∞) satisfying
the following conditions, for each x, y, z, a ∈ X and t, s > 0 :

(1) Q(x, x, y, t) > 0 and Q(x, x, y, t) ≥ Q(x, y, z, t) for all x, y, z ∈ X with z ̸= y,
(2) Q(x, y, z, t) = 1 if and only if x = y = z,
(3) Q(x, y, z, t) = Q(P (x, y, z), t), (symmetry) where P is a permutation function,
(4) Q(x, y, z, t+ s) ≥ Q(x, a, a, t) ∗Q(a, y, z, s),
(5) Q(x, y, z, .) : (0,∞) → [0, 1] is continuous.

Example 1.2 ( [11]). Let X is a nonempty set and G is the G-metric on X. Denote
a ∗ b = a.b for all a, b ∈ [0, 1]. For each t > 0 :

Q(x, y, z, t) =
t

t+G(x, y, z)

Then (X,Q, ∗) is a Q-fuzzy metric.

Let (X,Q, ∗) be a Q-fuzzy metric space. For t > 0, the open ball BQ(x, r, t) with
center x ∈ X and radius 0 < r < 1 is defined by:

BQ(x, r, t) = {y ∈ X : Q(x, y, y, t) > 1− r}.
Definition 1.3 ( [11]). A sequence {xn} inX converges to x if and only ifQ(xn, xn, x, t) →

1 as n→ ∞, for each t > 0.

Definition 1.4 ( [11]). A sequence {xn} in X is called a Cauchy sequence if for each
0 < ϵ < 1 and t > 0, there exists an n0 ∈ N such that Q(xm, xn, xn, t) > 1 − ϵ for each
n,m ≥ n0.

Remark 1.5 ( [11]). Let (X,Q, ∗) be a Q-fuzzy metric space. Then if
a) there exists a k ∈ (0, 1) such that:

Q(yn+2, yn+1, yn+1, kt) ≥ Q(yn+1, yn, yn, t)

for each t > 0 and n ∈ N. Then {yn} is a Cauchy sequence in X.

b) there exists a k ∈ (0, 1) such that:
Q(x, y, z, kt) ≥ Q(x, y, z, t)

for each t > 0 and n ∈ N. Then x = y = z.

Definition 1.6 ( [11]). Let (X,Q, ∗) be a Q-fuzzy metric space. Then Q is a contin-
uous function on X3 × (0,∞).

Definition 1.7 ( [11]). Let f and g be self mappings on a Q- fuzzy metric space
(X,Q, ∗). Then the mappings are said to be weakly compatible if they commute at their
coincidence point, that is, fx = gx implies that fgx = gfx.

Definition 1.8 ( [11]). Let f and g be self mappings on a Q-fuzzy metric space
(X,Q, ∗). The pair (f, g) is said to be compatible if

limn→∞Q
(
fgxn, gfxn, gfxn, t

)
= 1

whenever {xn} is a sequence in X suth that:
limn→∞ fxn = limn→∞ gxn = z
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for some z ∈ X.

The fuzzy Banach contraction theorem was studied by Grabiec in 1988. The fuzzy
contractive was introduced by Gregori and Sapena [7] in 2000.

Definition 1.9 ( [7]). Let (X,M, ∗) be a fuzzy metric space. The mapping f : X → X
is said a fuzzy contractive if there exists 0 < k < 1 such that

1

M(fx, fy, t)
− 1 ≤ k

( 1

M(x, y, t)
− 1

)

for each x, y ∈ X and t > 0. (k is called the contractive constant of f).

2. Main Results
We introduce fuzzy contractive mapping in generalized fuzzy metric space (Q-fuzzy

metric space). We also prove several common fixed point theorems for mappings in gen-
eralized fuzzy metric space.

Definition 2.1. Let (X,Q, ∗) be a Q-fuzzy metric space. We will say the mapping
f : X → X is Q-fuzzy contractive if there exists 0 < k < 1 such that

1

Q(fx, fy, fy, t)
− 1 ≤ k

( 1

Q(x, y, y, t)
− 1

)

for each x, y ∈ X and t > 0. (k is called the contractive constant of f).

Definition 2.2. Let (X,Q, ∗) be aQ-fuzzy metric space. We will say that the sequence
{xn} in X is Q-fuzzy contractive if there exists 0 < k < 1 such that

1

Q(xn+1, xn+2, xn+2, t)
− 1 ≤ k

( 1

Q(xn, xn+1, xn+1, t)
− 1

)

for all t > 0, n ∈ N.

Now we introduce the notion of ψ-weak contractivity of a mapping T with respect to
a self mapping f on a Q-fuzzy metric space X as follows:

Definition 2.3. Let (X,Q, ∗) be aQ-fuzzy metric space and f : X → X be a mapping.
The mapping T : X → X is called a ψ-weak contraction with respect to f if there exists
a function ψ : [0,∞) → [0,∞) with ψ(r) > 0 for r > 0 and ψ(0) = 0 such that

1

Q(Tx, Ty, Ty, t)
− 1 ≤

( 1

Q(fx, fy, fy, t)
− 1

)
− ψ

( 1

Q(fx, fy, fy, t)
− 1

)

for every x, y ∈ X and each t > 0. If f is an identity mapping on X, then T is called a
ψ-weak contraction.

Theorem 2.4. Let (X,Q, ∗) be a Q-fuzzy metric space and T : X → X be a ψ-weak
contraction with respect to self mapping f on X. If the range of f contains the range of T
and f(X) is a complete subspace of X, then f and T have coincidence point in X provided
that ψ is a continuous mapping.

Example 2.5. Let X = [0, 1] with the usual G-metric defined by
G(x, y, z) = max{d(x, y), d(y, z), d(x, z)}.

Let ∗ be the continuous t-norm defined by a ∗ b = min{a, b} for all a, b ∈ [0, 1]. For all
x, y, z ∈ X and t ∈ (0,∞) define Q-fuzzy metric by

Q(x, y, z, t) =
t

t+G(x, y, z)
.
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Define ψ : [0,∞) → [0,∞) as ψ(t) = 1

c
t, Tx = ax, a ̸= 0 and fx = cx + b, c > 0, a ̸= b,

b ̸= 0, 1 and c− 1 ≥ a. Now, we have

(
1

Q(fx, fy, fy, t)
− 1)− ψ(

1

Q(fx, fy, fy, t)
− 1) = (c− 1)

|x− y|
t

≥ a(
|x− y|
t

)

=
1

Q(Tx, Ty, Ty, t)
− 1.

Therefore T satisfies all the conditions of Theorem 2.4. Moreover f and T have a coinci-
dence point.

Corollary 2.6. Let (X,Q, ∗) be a complete Q-fuzzy metric space. f : X → X be a
ψ-weak contraction. If ψ is continuous then f has a unique fixed point.

Corollary 2.7. Let (X,Q, ∗) be a Q-fuzzy metric space. f : X → X be a mapping
satisfying

1

Q(fx, fy, fy, t)
− 1 ≤ k

( 1

Q(x, y, y, t)
− 1

)

for each x, y ∈ X, t > 0 and k ∈ (0, 1). Then f has a unique fixed point.
Proof. We get ψ(r) = (1− k)r for all r > 0 in corollary 2.6. □
Theorem 2.8. Let (X,Q, ∗) be a Q-fuzzy metric space and T : X → X be a ψ-weak

contraction with respect to self mapping f on X. If the range of f contains the range of
T and f(X) is a complete subspace of X, then f and T have a common fixed point in X
provided that ψ is a continuous and the pair of mappings (T, f) is weakly compatible.
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RD-injectivity from a different perspective
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Abstract. We study the notion of RD-injectivity from a different perspective. A mod-
ule M is said to be A-RD-subinjective if for every RD-extension B of A, every ho-
momorphism from A to M can be extended to a homomorphism from B to M . The
RD-subinjectivity domain of a module M , RDI −1(M), is defined to be the collection of
all modules A such that M is A-RD-subinjective.

Keywords: RD-injective module; RD-projective module; A-RD-subinjective module.

AMS Mathematics Subject Classification [2010]: 16D80; 16D10; 16D50

1. Introduction

In [1], Aydoğdu and López-Permouth studied the notion of subinjectivity. Namely,
a module M is called A-subinjective if for every extension B of A, every homomorphism
from A to M can be extended to a homomorphism from B to M . For a module M , the
subinjectivity domain of M , I−1(M), is defined to be the collection of all modules A such
that M is A-subinjective. In contrast to the notion of pure-injectivity, López-Permouth et
al. studied in [5] the notion of pure-subinjectivity. Namely, a module M is called A-pure-
subinjective if for every pure extension B of A, every homomorphism from A to M can
be extended to a homomorphism from B to M . For a module M , the pure-subinjectivity
domain of M , PI−1(M), is defined to be the collection of all modules A such that M is A-
pure-subinjective. Clearly, the subinjectivity domain I−1(M) of a module M is contained
in PI−1(M).

The concept of relatively divisible (RD) submodule, with the related notions of RD-
projective and RD-injective module, was introduced by Warfield [6] in 1969. The goal
of this paper is to initiate the study of an alternative perspective on the analysis of the
RD-injectivity of a module. In contrast to the well-known notion of RD-injectivity, we
introduce the notion of RD-subinjectivity. Namely, a module M is said to be A-RD-
subinjective if for every RD-extension B of A, every homomorphism from A to M can be
extended to a homomorphism from B to M . For every module M , the RD-subinjectivity
domain of M consists those modules A such that M is A-RD-subinjective.

Throughout this paper, R denotes an associative ring with identity and all modules
will be assumed to be unitary. In what follows E(M) and RDE(M) denote the injective

∗Speaker. Email address: a.moradzadeh@shr.ui.ac.ir
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hull and the RD-injective hull of a module M , respectively. A cyclic right R-module CR
is called cyclically presented if MR

∼= R/aR for some a ∈ R.

2. Main Results

Recall that an exact sequence 0 −→ A −→ B −→ C −→ 0 of right R-modules is said
to be pure exact (resp., RD-exact) if the induced homomorphism

HomR(M,B) −→ HomR(M,C)

is surjective for any finitely presented (resp., cyclically presented) right R-module M . A
submodule A of a right R-module B is called a pure submodule (resp., RD-submodule) if
the exact sequence

0 −→ A ↪→ B −→ B/A −→ 0

is pure (resp., RD-exact). An R-module M is said to be pure-injective (resp., RD-injective)
if it is injective with respect to pure exact (resp., RD-exact) sequences. Also, an R-module
M is said to be pure-projective (resp., RD-projective) if it is projective with respect to pure
exact (resp., RD-exact) sequences (see [2], [3] and [6]).

Definition 2.1. Given modules M and A, we say that M is A-RD-subinjective if
for every RD-extension B of A and every homomorphism ϕ : A → M , there exists a
homomorphism φ : B → M such that φ|A = ϕ. The RD-subinjectivity domain of a
module M , RDI−1(M), is defined to be the collection of all modules A such that M is
A-RD-subinjective.

Lemma 2.2. An RD-monomorphism f : A→ B extends to a splitting monomorphism
g : RDE(A)→ RDE(B).

Proof. See [4, Theorem 1.8]. �
Proposition 2.3. Let A1, A2 and M be right R-module. Then A1⊕A2 ∈ RDI−1(M)

if and only if Ai ∈ RDI−1(M) for i = 1, 2.

Proof. Assume that A1 ⊕ A2 ∈ RDI−1(M) and f : A1 → M a homomorphism.
Since A1 is an RD-submodule of A1⊕A2, by Lemma 2.2, RDE(A1) is a direct summand of
RDE(A1⊕A2). Suppose that πA1 : A1⊕A2 → A1 and ιA1⊕A2 : A1⊕A2 → RDE(A1⊕A2)
are the natural projection and inclusion, respectively. Then there exists a homomorphism
g : RDE(A1⊕A2)→M such that gιA1⊕A2 = fπA1 . It is easy to check that gιRDE(A1)ι

′
A1

=

f , where ιRDE(A1) : RDE(A1) → RDE(A1 ⊕ A2) and ι′A1
: A1 → RDE(A1) are the

inclusions. Thus, A1 ∈ RDI−1(M). Similarly, A2 ∈ RDI−1(M), as required. Now,
suppose that f : A1 ⊕A2 →M is a homomorphism, ιA1⊕A2 and ιAj denote the inclusions
A1 ⊕ A2 ↪→ RDE(A1 ⊕ A2) and Aj ↪→ A1 ⊕ A2, respectively, for each j = 1, 2. Since
Aj ∈ RDI−1(M), there exist gj : RED(Aj) → M with gjι

′
Aj

= fιNj for j = 1, 2.

Since RDE(A1) and RDE(A2) are direct summands of RDE(A1 ⊕ A2), consider the
homomorphism g1πRDE(A1) + g2πRDE(A2) : RDE(A1 ⊕ A2) → M where πRDE(A1) and
πRDE(A2) are natural projections. Therefore,

(g1πRDE(A1) + g2πRDE(A2))ιA1⊕A2 = f

and so M is (A1 ⊕A2)-RD-subinjective. �
Lemma 2.4. A module P is RD-projective if and only if it has the projective property

relative to every RD-exact sequence 0 → K → M → L → 0 of modules with M RD-
injective.
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Proposition 2.5. For a right R-module A, consider the following conditions:

(1) A is RD-projective.
(2) Every RD-quotient of an A-RD-subinjective module is A-RD-subinjective.
(3) Every RD-quotient of an RD-injective module is A-RD-subinjective.

Then (1)⇒(2)⇒(3). If RDE(A) is RD-projective, then (3)⇒(1).

Proof. (1)⇒(2) Assume thatM be anA-RD-subinjective module, K anRD-submodule
of M and f : A → M/K a homomorphism. Suppose π : M → M/K denote the natu-
ral projection. By the RD-projectivity of A, there exists a homomorphism g : A → M
such that f = πg. Since M is A-RD-subinjective, g = hιA for some homomorphism
h : RDE(A)→M where ιA : A→ RDE(A) is the inclusion. Therefore, πhιA = f and so
M/K is A-RD-subinjective.

(2)⇒(3) is clear.
(3)⇒(1) Assume that M be an RD-injective module and consider an RD-exact se-

quence 0→ K ↪→M →M/K → 0 where K is an RD-submodule of M and π : M →M/K
is projection. Let f : A→M/K be a homomorphism. By hypothesis, A ∈ RDI−1(M/K).
Then gι = f for some g : RDE(A) → M/K where ι : A → RDE(A) is the inclusion. By
the RD-projectivity of RDE(A), there exists h : RDE(A)→M such that πh = g. Hence,
we have πhι = f . Therefore, by Lemma 2.4, A is RD-projective. �

Proposition 2.6. For a right R-module A, consider the following conditions:

(1) A is projective.
(2) Every quotient of an A-RD-subinjective module is A-RD-subinjective.
(3) Every quotient of an injective module is A-RD-subinjective.

Then (1)⇒(2)⇒(3). If RDE(A) is projective, then (3)⇒(1).

Proof. The proof similar to the proof of Proposition 2.5. �

Corollary 2.7. For a right R-module M , the following statements are equivalent:

(1) M is C-RD-subinjective, for each cyclically presented right R-module C.
(2) Every finitely generated RD-projective right R-module belongs to RDI−1(M/K)

for each RD-submodule K of M .

Proof. (1) ⇒ (2) Assume that C ∈ RDI−1(M), for each cyclically presented right
R-module C and P is finitely generated RD-projective right R-module. Thus, by [6,
Corollary 1], P is isomorphic to a direct summand of NR := ⊕ni=1R/riR where ri ∈ R
(1 ≤ i ≤ n). So, by Proposition 2.3, N ∈ RDI−1(M) and so P ∈ RDI−1(M). Therefore,
Proposition 2.5 allows us to conclude.

(2) ⇒ (1) is clear, since 0 is an RD-submodule of M and every cyclically presented
module is RD-projective. �

Similar to the proof of Corollary 2.7, we have:

Corollary 2.8. For a right R-module M , the following statements are equivalent:

(1) M is R-RD-subinjective.
(2) Every finitely generated projective right R-module belongs to RDI−1(M/K) for

each submodule K of M .
(3) Every finitely generated projective right R-module belongs to RDI−1(M/K) for

each RD-submodule K of M .

787



Ali Moradzadeh-Dehkordi

References
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5. S. R. López-Permouth, J. Mastromatteo, Y. Tolooei, and B. Ungor, Pure-injectivity from a different

perspective, Glasg. Math. J. 60 (2018) 135–151.
6. R. B. Warfield Jr., Purity and algebraic compactness for modules, Pacific J. Math. 28 (1969) 699–719.

788



Some results on Generalized module maps and ideal
submodules of Finsler modules
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Abstract. Let E and F be Finsler modules over C∗-algebras A and B, respectively.
In this talk, we state the notion of ideal submodules and unitary operators on Finsler
modules and investigate some features of them. In particular, we show that for a ∗-
homomorphism φ : A → B, a surjective φ-module map T : E → F is a unitary operator
if and only if φ is a bijection and T is an isometry. Finally, introducing the concepts of
bi-generalized unitary equivalence and the induced Finsler modules, we show that the
Finsler B-module F and the induced Finsler A-module E are unitary equivalent.

Keywords: (Full) Finsler modules; Hilbert C∗-module; unitary operator.
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1. Introduction

A (left) Hilbert C∗-module over a C∗-algebra A is an algebraic left A-module E
equipped with an A-valued inner product < ., . > which is A-linear in the first and conju-
gate linear in the second variable such that E is Banach space with respect to the norm

∥x∥ = ∥ < x, x > ∥ 1
2 . The Hilbert A-module E is called full if AE := span{< x, y >:

x, y ∈ E} is dense in A. Note that AE is an ideal in E, called the range ideal of E. We
denote by < E,E > the closure of AE and call it the support of E. Therefore, E is a full
Hilbert A-module if < E,E > is equal to A (see [3]).

Let E and F be Hilbert modules over C∗-algebra B, φ : A → B a linear isomor-
phism and T : E → F a bijective linear operator. Consider the module action a.x :=
T−1(φ(a).T (x)) on E. Then, E via the inner product << x, z >>:= φ−1(< T (x), T (z) >)
is a Hilbert A-module called, the Hilbert A-module induced by (φ, T ) or briefly the induced

Hilbert A-module. We denote the so-called induced Hilbert A-module by E(φ,T ).
The induced Hilbert C∗-modules was introduced in [4].
Finsler modules over C∗-algebras are generalization of Hilbert C∗-modules. This con-

cept is introduced by N.C.Phillips and N.Weaver, [6]. Let A be a C∗-algebra and A+ be
the set of all positive elements of A. Suppose that E is complex linear space which is a
left A-module (and λ(ax) = (λa)x = a(λx) where λ ∈ C, a ∈ A and x ∈ E) and the a map
ρA : E → A+ satisfies the following conditions.

(i) The map ∥.∥E : x → ∥ρA(x)∥ is a norm on E and

∗Speaker. Email address: mosadeq@mshdiau.ac.ir
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(ii) ρA(ax)
2 = aρA(x)

2a∗ for all a ∈ A and x ∈ E.
Then, E is called a Finsler module over C∗-algebra A or pre-Finsler A-module. If (E,

∥.∥E) is complete, then it is called a Finsler A-module. A Finsler A-module is said to be
full if the linear span {ρA(x)2 : x ∈ E} denoted by < ρA(E) > is dense in A.

As an example, suppose A is a C∗-algebra and take E := A. Then, A with respect
to its product as the usual action, is a left A-module. Additionally, A equipped with the

map ρA : A → A+ defined by ρA(a) := (a.a∗)
1
2 is a Finsler A-module. Now, for every

a ∈ A+, there exists a unique element b ∈ A (in fact, b ∈ A+) such that a2 = b.b∗ and

hence, a = (b.b∗)
1
2 = ρA(b). Consequently, E is a full Finsler module.

Let E be a Finsler A-module and I be an ideal in A (throughout this paper by an ideal
we always mean a closed two-sided ideal). The associated ideal submodule EI is defined
by the closed linear span of the action of I on E. That is

EI := span {ax : a ∈ I, x ∈ E}.

Clearly, EI is a closed submodule of E and by the Hewitt-Cohen factorization theorem,
it is easy to show that EI = {ax : a ∈ I, x ∈ E}. Also, it is known [1] that EI =
{x ∈ E : ρA(x) ∈ I}. It is notable that EI can be regarded as a Finsler module over
I via ρI(ax) := ρA(ax) since ρA(ax)

2 = aρA(x)
2a∗ ∈ I whenever a ∈ I and x ∈ E.

Denote by π : A → A
I and q : E → E

EI
the quotient maps. Then, E

EI
is an A

I -module

equipped with π(a)q(x) := q(ax). Moreover, it is a Finsler module over A
I with the via

ρA
I
(q(x)) := π(ρA(x)). So, we obtain a natural Finsler module structure on the quotient

of the Finsler module E over the ideal submodule EI (see [6, Lemma 12]).
From now to the end of this section, E,F and G are assumed to be Finsler modules

over C∗-algebras A,B and C, respectively.

Definition 1.1. Let φ : A → B be a linear ∗-homomorphism. A linear map T : E →
F is called a φ-module map if T (ax) = φ(a)T (x) for all a ∈ A, x ∈ E. More generally, a
linear map T : E → F is a generalized module map if there exists a linear homomorphism
φ : A → B such that T is a φ-module map.

A φ-module map T : E → F is called a φ-homomorphism if ρB(T (x)) = φ(ρA(x))
for all a ∈ A, x ∈ E. More generally, a linear map T : E → F is said to be a generalized
homomorphism if there exists a linear homomorphism φ : A → B such that T is a
φ-homomorphism.

The concept of φ-morphism was first introduced by Bakic and Guljas in 2002. Amyari
and Niknam generalized this notion over Finsler module and called it φ-homomorphism.
Recently, the author studied bimorphisms as a class of bi-generalized module maps on
Hilbert bimodules and investigated their basic properties. We refer the reader to [1,2,5]
for more details.

Following [1], we call a linear map T : E → F a unitary operator if there exists an
injective homomorphism φ : A → B of C∗-algebras such that T is a surjective φ-morphism.

Let T : E → F be a φ-morphism. It is known from [1] that, if φ is an injection,
then T is an isometry. Thus, each unitary operator of Finsler modules is an isometry. In
particular, if F is a full Finsler B-module, then φ is surjective and so it is an isomorphism
of C∗-algebras.
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2. Main results

Theorem 2.1. Let I be an ideal in A and J be an ideal in B. Suppose that φ : A → B
is a linear ∗-homomorphism and T : E → F is a φ-morphism. Then, Mkerφ = kerT,
T (EI) = ImTφ(I) and T−1(FJ) = Eφ−1(J).

Lemma 2.2. Let E be a full Finsler A-module and Let I be an ideal in A. Then, E
EI

is

a full Finsler A
I -module.

Theorem 2.3. Suppose that E and F are Finsler B-module, φ : A → B is a linear
isomorphism of C∗-algebras and T : E → F be a bijective linear operator. Define the
module action a.x := T−1(φ(a).T (x)) on E. Then, E equipped with ρA : E → A+ defined
by ρA(x) := φ−1(ρB(T (x)) (x ∈ E) can also be regarded as a Finsler A-module. Moreover,
if J is an ideal in B, then E

Eφ−1(J)
is a Finsler A

φ−1(J)
-module.

We call the above alternative Finsler A-module E the Finsler A-module induced by
(φ, T ) or briefly the induced Finsler A-module and denote it by E(φ,T ).

The three next results present some algebraic properties of the induced Finsler mod-
ules.

Lemma 2.4. Let E(φ,T ) be the induced Finsler A-module. Then, T is a φ-morphism.
More precisely, T is a unitary operator.

Theorem 2.5. F is a full Finsler B-module if and only if the induced Finsler A-module
E(φ,T ) is full. In particular, if J is an ideal in B and F is a full Finsler B-module, then
E(φ,T )

E
(φ,T )

φ−1(J)

is a full Finsler A
φ−1(J)

-module, where φ is the ∗-isomorphism in Theorem 2.2.

Lemma 2.6. Let F be a full Finsler B-module and a ∈ A. If ax = 0 for every
x ∈ E(φ,T ), then a = 0.

Now, we are ready to present the following main result which establishes a converse
of Theorem 2.3.

Theorem 2.7. Let E be a full Finsler A-module, F be a Finsler B-module and T :
E → F be a bijective linear operator. If there exists a map φ : A → B such that a.x =
T−1(φ(a).T (x)) and φ(ρA(x)) = ρB(T (x)) (a ∈ A, x ∈ E), then φ is a ∗-isomorphism of
C∗-algebras if and only if F is full.

Applying the previous theorem together with Lemma 2.2, we have the following result.

Corollary 2.8. Let E be a full Finsler A-module and F be a full Finsler B-module
and T : E → F be a bijective linear operator. If there exists a map φ : A → B such that
T (a.x) = φ(a).T (x) and φ(ρA(x)) = ρB(T (x)) (a ∈ A, x ∈ E), then F

Fφ(I)
is a full Finsler

B
φ(I) -module.

Applying the Theorem 2.7, we now present a necessary and sufficient condition for a
linear map between two full Finsler modules to be a unitary operator.

Theorem 2.9. Let E be a full Finsler A-module and F be a full Finsler B-module and
T : E → F be a linear operator. Then, T is a unitary operator if and only if T is bijective
and there exists a map φ : A → B such that T (a.x) = φ(a).T (x) and φ(ρA(x)) = ρB(T (x))
for all a ∈ A and x ∈ E.

In Theorem 2.7, if F = E and T := IE , then we obtain the next corollary.

791



M. Mosadeq

Corollary 2.10. Let E be a full Finsler A-module and a Finsler B-module and there
exists a map φ : A → B such that a.x = φ(a).x and φ(ρA(x)) = ρB(x) (a ∈ A, x ∈ E).
Then, φ is a ∗-isomorphism of C∗-algebras if and only if the Finsler B-module E is full.

The following is an immediate consequence of Corollary 2.10.

Corollary 2.11. Let E be both a full Finsler A-module and a full Finsler B-module
and there exists a map φ : A → B such that a.x = φ(a).x and φ(ρA(x)) = ρB(x) (a ∈ A,
x ∈ E). Then, the topology on E induced by ρA and ρB are equivalent.

Before we state the second characterization theorem, we need the following useful
lemma which can be found in [3].

Lemma 2.12. Suppose that b and c are positive elements of C∗-algebra A such that
∥ac∥ = ∥ab∥ for all a ∈ A. Then c = b.

Theorem 2.13. Let E be a full Finsler A-module and F be a full Finsler B-module
and φ : A → B is a linear ∗-homomorphism of C∗-algebras and T : M → N be a surjective
φ-module map. Then, T is a unitary operator if and only if φ is a bijection and T is a
bi-isometry.

Definition 2.14. Two Finsler modules E and F are said to be unitary equivalent if
there is a unitary operator from E to F

Proposition 2.15. Unitary equivalence in the set of full Finsler modules is an equiv-
alence relation.

Before we state the next theorem, we need the following useful lemma which can be
found in [1].

Lemma 2.16. Let E and F be Finsler modules over C∗-algebras A and B, respec-
tively. Let φ : A → B be a ∗-homomorphism of C∗-algebras and let T : E → F be a
φ-homomorphism of Finsler modules. If F is a full Finsler B-module and T is surjective,
then φ is a surjection.

Applying Theorem 2.3 together with the previous lemma we have the last result.

Theorem 2.17. The Finsler B-module F and the induced Finsler A-module E(φ,T )

are unitary equivalent. Conversely, if E and F are full unitary equivalent Finsler modules
over C∗-algebras A and B, respectively, then A and B are isomorphic C∗-algebras.
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Abstract. In this paper, the notions of (para) uniform MV-algebras are defined and
continuity of the operations of the uniform MV-algebras are studied. Also, some uniform
topologies are obtained by ideals. Then, it is proved that an MV-algebra with induced
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1. Introduction
Topology and algebra, play complementary roles. In recent decades, many mathemati-

cians have investigated some topological properties of some classes of algebraic structures
which are endowed whith topology. Undoubtedly, MV-algebras are one of the most impor-
tant structures of logical systems. The concept of MV-algebra was introduced by chang [1].
The study of MV-algebras endowed with a topology has exprienced a tremendous growth
over the recent years. For example, Najafi et al. [4] introduced (semi, quasi)topological
MV-algebras and investigated some of their properties. In recent years, the structures of
Logic systems which are equipped with uniformity and uniform topology have also been
discussed. See [3].
This article is organized as follows: In Section 2, we define the notions of (para)uniform
MV-algebras and study uniform continuity of their operations. In Section 3, we obtain
some uniform topologies on MV-algebras by ideals. Also, we use the congruence relations
on ideals to construct topological MV-algebras.

2. (Para)Uniform MV-algebras
In this section, we first collect the relevant definitions from MV-algebra and uniform

space theories to make this paper easy to read. Then we define the notions of (para)uniform
MV-algebras and study the uniform continuity of the operations of uniform MV-algebras.

Definition 2.1. [1] An MV-algebra is an algebra (A,⊕, ∗, 0) of type (2,1,0) such that
for any x, y ∈ A :
(MV1) (A,⊕, 0) is an abelian monoid, (MV2) x⊕ 0∗ = 0∗,
(MV3) (x

∗)∗ = x, (MV4) (x
∗ ⊕ y)∗ ⊕ y = (x⊕ y∗)∗ ⊕ x.

∗Speaker. M.Najafi@velayat.ac.ir
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Definition 2.2. [1] In MV-algebra A for any x, y ∈ A, we define:
(MV5) 1 := 0∗, (MV6) x⊙ y := (x∗ ⊕ y∗)∗, (MV7) x⊖ y := x⊙ y∗,
(MV8) x → y := (x⊙ y∗)∗, (MV9) x⇝ y := (x⊕ y∗)∗, (MV10) x ∨ y = y ⊕ (x⊖ y)

Definition 2.3. [1] Let A be an MV-algebra. A none-empty subset I of A is called
an ideal if it satisfies the following conditions:
(i) for any x, y ∈ I, x⊕ y ∈ I, (ii) if x ∈ I and y ≤ x, then y ∈ I.

Definition 2.4. [2] Let X be a non-empty set. A uniformity on X is a non-empty
family U of subsets of X ×X with the following properties:
(U1) If U ∈ U , then △ = {(x, x) : x ∈ X} ⊆ U ,
(U2) If U ∈ U , then U−1 = {(x, y) ∈ X ×X : (y, x) ∈ U} ∈ U ,
(U3) If U ∈ U , then V ◦ V ⊆ U for some V ∈ U , where
V ◦ V = {(x, y) ∈ X ×X : ∃z ∈ X s.t (x, z), (z, y) ∈ V },
(U4) If U, V ∈ U , then U ∩ V ∈ U ,
(U5) If U ∈ U and U ⊆ V, then V ∈ U .

Let (X,U) be a uniform space. TU = {G ⊆ X : ∀x ∈ G ∃U ∈ U s.t U [x] ⊆ G}, where
U [x] = {y ∈ X : (x, y) ∈ U}, is a topology on X which called uniform topology.

Definition 2.5. Let A be an MV-algebra and U ,V,W be uniformities on A. (A,U ×
V,W) is called:
(i) topological MV-algebra, if the operations ⊕ and ∗ are continuous.
(ii) parauniform MV-algebra, if the map ⊕ : (A × A,U × V) −→ (A,W) is uniformly
continuous.
(iii) uniform MV-algebra, if it is a parauniform MV-algebra and the maps (A, ∗,U),
(A, ∗,V) and (A, ∗,W) are uniformly continuous.

Example 2.6. Let A = [0, 1] be the standard MV-algebra, where x⊕ y = (x+ y) ∧ 1
and x∗ = 1−x (i) The family {Va}0<a<1, where Va = △∪{(x, y) : x < a, y < a}, is a base
for a uniformity V on A. (ii) The family {Uε}ε>0, where Uε = {(x, y) :| x − y |< ε}, is a
base for a uniformity U on A. (iii) D = {D : △ ∈ D ⊆ A×A} is a uniformity on A which
is called discrete uniformity. (iv) C = {A × A} is the indiscrete uniformity on A. (v)
W = {W : △∪▽ ∈ W ⊆ A×A}, where ▽ = {(x, x∗) : x ∈ A}, is a uniformity on A.
Obviously, (A, ∗,U(C,D,W)) are uniformly continuous, but ∗ : (A,V) −→ (A,V) isn’t
uniformly continuous. To show this, let Va ∈ V and there exists Vb ∈ V such that Vb

∗ ⊆ Va.
For any (x, y) ∈ Vb, 1− b ≤ x∗, y∗ < a. Therefore, Vb = {(x, y) : 1 − a ≤ x, y < b}, which
is a contradiction.
Now let ⊕ : (A×A,D×W) −→ (A,U). We show that (A,D×W ,U) isn’t a parauniform
MV-algebra. To do this, let Uε = U1/8 ∈ U and (x, y) ∈ U1/8. Suppose that there exist
D ∈ D and W ∈ W such that D ⊕W ⊆ U1/8. Since (0, 0) ∈ △ ⊆ D and (1/3, 2/3) ∈ ▽ ⊆
W, we conclude that (1/3, 2/3) ∈ D ⊕W. On the other hand, | 2/3 − 1/3 |= 1/3 > 1/8,
which is a contradiction.
Let ⊕ : (A × A,D × V) −→ (A,U). We prove that (A,D × V ,U) is a parauniform MV-
algebra. Let Uε ∈ U . We find D ∈ D and V ∈ V such that D⊕V ⊆ Uε. We put D = △ and
V = Vε/2. Let (x, x) ∈ △ and (y, z) ∈ Vε/2. Thus, (x, x)⊕ (y, z) = (x⊕y, x⊕z) ∈ △⊕Vε/2.
We need to calculate | (x ⊕ y) − (x ⊕ z) |. There exist three states: (1) x + y < 1 and
x+ z < 1. (2) x+ y > 1 and x+ z > 1. Clearly, in these cases | (x⊕ y)− (x⊕ z) |< ε/2.
(3) x+y > 1 and x+ z < 1 or x+y < 1 and x+ z > 1. Let x+y > 1 and x+ z < 1. Then,
y > z. Suppose that y−z = α, where α < ε/2. | (x⊕y)−(x⊕z) |=| 1−(x+z) |=| α |< ε/2.
Therefore, (x, x)⊕ (y, z) ∈ Uε.
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Theorem 2.7. Let (A,U × V ,W) be a uniform MV-algebra. Then the operations
⊙,⊖,→,⇝ are uniformly continuous.

Proof. We prove one case. The others can be proved similarly. Let (A,U ×V ,W) be
a uniform MV-algebra and W ∈ W . Since (A, ∗,W) is uniformly continuous, there exists
f ∈ W such that f∗ ⊆ W. Hence, f = (f∗)∗ ⊆ W ∗. Therefore, by (U5), W

∗ ∈ W . Also,
there exist U ∈ U and V ∈ V such that U ⊕ V ⊆ W ∗. Because the maps (A, ∗,U) and
(A, ∗,V) are uniformly continuous, there exist R ∈ U and K ∈ V such that R∗ ⊆ U and
K∗ ⊆ V. Thus, R⊙K = (R∗ ⊕K∗)∗ ⊆ (U ⊕ V )∗ ⊆ (W ∗)∗ = W. □

Proposition 2.8. Let A be an MV-algebra and U ,V,W be uniformities on A such
that U ⊆ W . If (A,U × V ,W) is a uniform MV-algebra, then the operations ∨ and ∧ are
uniformly continuous.

Proof. Let A be an MV-algebra and U ,V,W be uniformities on A and W ∈ W . Since
(A,U×V ,W) is a uniform MV-algebra, there exist U ∈ U and V ∈ V such that U⊕V ⊆ W.
By Theorem 2.7, there exist F ∈ U and R ∈ V such that F ⊖R ⊆ U. Hence, (F ⊖R)⊕V ⊆
W. By (U4), there exist K ∈ V such that K ⊆ R∩V. Therefore, F ∨K = (F⊖K)⊕K ⊆ W.
Since x ∧ y = (x∗ ∨ y∗)∗, we can conclude that ∧ is also uniformly continuous. □

Theorem 2.9. Let U be a uniformity on MV-algebra A and x, y ∈ A. Then
(i) (A,U ×U ,U) is a uniform MV-algebra if and only if the map F : A×A −→ A defined
by F (x, y) = x⊕ y∗ is uniformly continuous.
(ii) There exists a uniformly continuous map f : A −→ A such that f(x) = y.

Proof. The necessity is obvious, we prove the sufficiency. Let the function F be
uniformly continuous and W ∈ U . Thus, the map K = F |{0}×U is uniformly continuous.
Hence, there exists V ∈ U such that {0} ⊕ V ∗ = V ∗ ⊆ W which implies that the map
(A, ∗,U) is uniformly continuous. Since the map F is uniformly continuous there exist
U, V ∈ U such that U ⊕ V ∗ ⊆ W. Because (A, ∗,U) is uniformly continuous, there exists
R ∈ U such that R∗ ⊆ V. Then, R = (R∗)∗ ⊆ V ∗ and so U ⊕R ⊆ W.
(ii) Let x, y ∈ A. Since (A,U×U ,U) is a uniform MV-algebra, Ty : A −→ A and Rx : A −→
A defined by Ty(a) = a⊕y and Rx(a) = a⊖x are uniformly continuous. Hence, f = Ty◦Rx

is uniformly continuous and f(x) = Ty ◦Rx(x) = Ty(x⊖ x) = Ty(0) = 0⊕ y = y. □

3. Uniform topology on MV-algebras
In this section, we construct some uniform topologies on MV-algebras by ideals.
Proposition 3.1. Let A be an MV-algebra and I be a family of ideals of A which

is closed under intersection. Also, let I[x] = {y ∈ A : y ̸= 1, x ⊖ y ∈ I}. If there exist
I, J ∈ I such that I[x] ∩ J [y] = ∅, for x ̸= y, then B = {I[x] : I ∈ T , x ∈ A} ∪ {1} is a
base for a uniform topology T on A.

Proof. Let B = {I[x] : I ∈ T , x ∈ A} ∪ {1}. Clearly, A ⊆ ∪B. Let I1[x1], I2[x2] ∈ B
and a ∈ I1[x1]∩ I2[x2]. We put I = I1 ∩ I2 ∈ I and claim I[a] ⊆ I1[x1]∩ I2[x2]. If z ∈ I[a],
then xi⊖ z ∈ Ii[xi], for i = 1, 2, because (xi⊖ z) ≤ (xi⊖a)⊕ (a⊖ z). Thus, B is a base for
a topology T on A. We show that (A, T ) is a compact space. Let {Ui : i ∈ I} be an open
covering of A. Since 0 ∈ A, for some i ∈ I, 0 ∈ Ui. As B is a base for T there exists I ∈ I
and x ∈ A such that 0 ∈ I[x]. Consequently, x ∈ I. Let y ̸= 1 is an arbitrary element of
A. Since x ⊖ y ≤ x and I is an ideal, we conclude that x ⊖ y ∈ I and so y ∈ I[x]. On
the other hand, 1 ∈ Uj , for some j ∈ I. Therefore, A ⊆ Ui ∪ Uj which implies that A is
compact. Since (A, T ) is a compact Hausdorff space, T is a uniform topology [2]. □
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Theorem 3.2. Let (A, T ) be a topological MV-algebra. If
(i) there exists a family I of open ideals which is closed under intersection and contains a
nontrivial J,
(ii) for any x ̸= y there exists I ∈ I such that x ̸∈ I or y ̸∈ I,
then B = {x

I : I ∈ I, x ∈ A} is a base for a nontrivial uniform topology V on A which is
coarser than T and (A,V) is a topological MV-algebra.

Proof. It is easy to prove that the set B is a base for the topology V = {V ⊆ A :
∀x ∈ V ∃I ∈ I s.t x

I ⊆ V } and V is a nontrivial topology on A. We prove that V is coarser
than T . Let x ∈ V ∈ V . Then for some I ∈ I, x ∈ x

I ⊆ V. Since (A, T ) is a topological
MV-algebra, there exists U ∈ T such that x ∈ U, x ⊖ U ⊆ I and U ⊖ x ⊆ I. We claim
that U ⊆ V. Let z ∈ U. Since x⊖ z ∈ I and z ⊖ x ∈ I, then z ∈ x

I ⊆ V. It is obvious that
(A,V) is a normal and T1 space and so it is a uniform topology. Since x

I ⊕ y
I = x⊕y

I and
x∗
I = x

I , (A,V) is a topological MV-algebra. □
Theorem 3.3. Let A be an MV-algebra and I be a family of ideals which is closed

under intersection. (i) There exist a uniformity UI on A such that (A,UI × UI ,UI) is a
uniform MV-algebra. (ii) If {0} ∈ I, then UI is a discrete uniformity.

Proof. One can show that the relation x
I≡ y ⇐⇒ x⊖y ∈ I, y⊖x ∈ I is a congruence

relation on A, for any ideal I ∈ A. We put UI = {(x, y) : x
I≡ y}. It is easy to prove

that B is a base for a uniformiy UI and (A,UI × UI ,UI) is a uniform MV-algebra. Also,
B = {UI [x] : UI ∈ B, x ∈ A} is a base for the uniform topology TI = {G ⊆ X : ∀x ∈ G
∃UI ∈ B s.t UI [x] ⊆ G} on A and (A, TI) is a topological MV-algebra. (ii) If I = {0} ∈ T ,

then UI = {(x, y) : x I≡ y} = {(x, y) ∈ A × A : x ⊖ y = y ⊖ x = 0} = {(x, x) : x ∈ A}.
Therefore, UI is a discrete uniformity and TI is a discrete topology. □

Example 3.4. Let A = {0, a, b, 1}, where 0 < a, b < 1. consider the following tables:
⊕ 0 a b 1
0 0 a b 1
a a a 1 1
b b 1 b 1
1 1 1 1 1

∗ 0 a b 1
1 b a 0

(A,⊕, ∗, 0) is an MV-algebra. {0}, {0, a}, {0, b} and A are the ideals of A. Also, U{0} = △,
U{0,a} = △ ∪ {(1, b), (b, 1)}, U{0,b} = △ ∪ {(1, a), (a, 1)}, UA = A × A. If I = {0, a}, then
UI [0] = UI [a] = {0, a}, UI [b] = UI [1] = {1, b} and TI = {∅, A, {0, a}, {b, 1}}. By Theorem
3.3, (A, TI) is a topological MV-algebra.

4. Conclusion
This paper shows that uniform MV-algebras can be constructed by various uniformi-

ties. Also, there exists uniformities on MV-algebras which turn them into a topological
MV-algebras. Properties of these uniformities can be considered for feature research.
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Abstract. This talk is about some basic facts and new results on Γ-rings, as a gen-
eralized notion of the classical ring, which have been obtained over the past years. In
particular, under the condition that the given Γ-ring is semi-prime some properties as-
sociated to Γ-rings imply each other. Moreover, some outlines about new researches of
the subject under discussion are given.
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1. Introduction

The notion of a Γ-ring was first introduced by Nobuo Nobusawa [6] which generalized
extensively the classical concept of the ring. The extensions and generalizations of vari-
ous important results in the theory of classical rings to the theory of Γ-rings have been
attracted a wider attentions as an emerging area of research to the modern algebraists
to enrich the world of algebra. All over the world, many prominent mathematicians have
worked out on this interesting area of research to determine many basic properties of Γ-
rings and have executed more productive and creative results of Γ-rings in the last few
decades. In this talk some progresses which have been achieved over the past years for Γ-
rings are reviewed. In particular, we recall some results from [1–5]. Finally, some outlines
concerning to the sequel of this subject are given.

2. Main results

Definition 2.1. Let M and Γ be additive abelian groups. Then, M is called a Γ-ring
if there exists a function M × Γ ×M → M (with (m, γ, n) → mγn ∈ M) which satisfies
mγ(n + p) = mγn + mγp, (m + n)γp = mγp + nγp, m(γ + ν)n = mγn + mνn and
mγ(nµp) = (mγn)µp for all m,n, p ∈ M and all γ, µ ∈ Γ.

Example 2.2. Every ring can be considered as a Γ-ring. Indeed, If S is a ring and R is a
two-sided ideal of S, take Γ = S and let (r1, s, r2) = r1sr2 where the latter is the product
in S.

∗Speaker. Email address: najafizadeh@pnu.ac.ir
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Definition 2.3. Let M be a Γ-ring. Then an additive subgroup U of M is called a left
(right) ideal of M if MΓU ⊂ U(UΓM ⊂ U). If U is both a left and a right ideal, then we
say U is an ideal of M.

Definition 2.4. Let M be a Γ-ring. Then, M is said to be prime if aΓMΓb = 0 with
a, b ∈ M implies that a = 0 or b = 0. Moreover, M is called semi-prime if aΓMΓa = 0
with a ∈M implies that a = 0.

Definition 2.5. Let M be a Γ-ring. Then M is said to be commutative if xαy = yαx
for all x, y ∈ M and α ∈ Γ. The set Z(M) consists of all x ∈ M such that xαy = yαx
for all y ∈ M and α ∈ Γ is called the center of the Γ-ring M. If M is a Γ-ring, then
[x, y]α = xαy − yαx is known as the commutator of x and y with respect to α, where
x, y ∈ M and α ∈ Γ. A map f : M → M is said to be commuting on a left ideal J of
M if [f(x), x]α = 0 for all x ∈ J and α ∈ Γ. Moreover, f is said to be centralizing on
J if [f(x), x]α ∈ Z(M) for all x ∈ J and α ∈ Γ. An additive map T : M → M is a left
centralizer if T (xαy) = T (x)αy for all x, y ∈ M and α ∈ Γ. Moreover, T is called a right
centralizer if T (xαy) = xαT (y) holds for all x, y ∈ M and α ∈ Γ. A centralizer is an
additive map which is both a left and a right centralizer. On the other hand, T is called
Jordan left centralizer if T (αx) = T (x)αx for all x ∈ M and α ∈ Γ. Furthermore, T is
called Jordan right centralizer if T (αx) = xαT (x) for all x ∈ M and α ∈ Γ. An additive
map T : M → M is called a Jordan centralizer if T (xαx) = T (x)αx + xαT (x) holds for
all x, y ∈M and α ∈ Γ.

Clearly, every (left) centralizer is a Jordan (left) centralizer but the converse is not
true in general.

Example 2.6. Let M be a Γ-ring. Define M1 = {(x, x) : x ∈M} and Γ1 = {(α, α) : α ∈
Γ}. We define addition and multiplication on M1 as:

(x1, x1) + (x2, x2) = (x1 + x2, x1 + x2), (x1, x1)(α, α)(x2, x2) = (x1αx2, x1αx2)

for every x1, x2 ∈ M and α ∈ Γ. Then, M1 is a Γ-ring. Let d1 : M → M be a left
centralizing map and d2 : M → M be a right centralizing and commutating map. Let
T : M1 →M1 be the additive map defined by T (x, x) = (d1(x), d2(x)). Let (x, x) = a ∈M1

and (α, α) = γ ∈ Γ1. We have T (aγa) = T (a)γa. Hence T is a Jordan left centralizer, which
is not a left centralizer. Moreover, we put (x, x) = a, (y, y) = b ∈M and (α, α) = γ ∈ Γ1.
We have T (aγb+ bγa) = T (a)γb+ T (b)γa. Hence T is a Jordan centralizer which is not a
centralizer.

Definition 2.7. Let M be a Γ-ring. Then M is said to be a 2-torsion free if 2x = 0
implies x = 0 for all x ∈M.

Now, in view of Theorem 3.1 in [1], we have:

Theorem 2.8. Every Jordan centralizer of a 2-torsion free semi-prime Γ-ring M satisfy-
ing xαyβz = xβyαz for all x, y, z ∈M and α, β ∈ Γ is a centralizer.

Definition 2.9. LetM be a 2-torsion free semi-prime Γ-ring and let θ be an endomorphism
of M. An additive map T : M → M is a left θ-centralizer if T (xαy) = T (x)αθ(y) for all
x, y ∈M and α ∈ Γ. Moreover, T is called a right centralizer if T (xαy) = θ(x)αT (y) for all
x, y ∈M and α ∈ Γ. If T is a left and a right θ-centralizer, then it is called a θ-centralizer.

Moreover, we get the following results in view of Theorem 2.1 and Theorem 2.2 in [2]
and [3], respectively:
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Theorem 2.10. Let M be a 2-torsion free semi-prime Γ-ring satisfying xαyβz = xβyαz
for all x, y, z ∈M and α, β ∈ Γ. Moreover, let θ be an endomorphism of M. If T : M →M
is an additive map such that 2T (xαyβx) = T (x)αθ(y)βθ(x)+θ(x)αθ(y)βT (x) for all pairs
x, y ∈M and α, β ∈ Γ, then T is a θ-centralizer.

Theorem 2.11. Let M be a 2-torsion free semi-prime Γ-ring with identity element 1
satisfying xαyβz = xβyαz for all x, y, z ∈ M and α, β ∈ Γ. Let T : M → M be an
additive map such that T (xαxβx) = xαT (x)βx for all x ∈ M and α, β ∈ Γ. Then T is a
centralizer.

Definition 2.12. Let D : M → M be an additive map. Then D is called a derivation if
D(xαy) = D(x)αy + xαD(y) for all x, y ∈ M and α ∈ Γ. Moreover, D is called a Jordan
derivation if D(xαx) = D(x)αx+xαD(x) for all x ∈M and α ∈ Γ. Moreover, an additive
map f : M →M is said to be a generalized derivation on M if f(xαy) = f(x)αy+xαD(y)
for all x, y ∈M and α ∈ Γ, D a derivation on M.

Now we have the following results as Theorem 3.1 and Theorem 3.2 in [4]:

Theorem 2.13. Let M be a prime Γ-ring satisfying xαyβz = xβyαz for all x, y, z ∈ M
and α, β ∈ Γ and D a nonzero derivation on M. If f is a generalized derivation on a left
ideal J of M such that f is commuting on J, then M is commutative.

Theorem 2.14. Let M be a prime Γ-ring satisfying xαyβz = xβyαz for all x, y, z ∈ M
and α, β ∈ Γ and J a left ideal of M with J ∩ Z(M) = 0. If f is a generalized derivation
on M with associated non-zero derivation D such that f is commuting on J, then M is
commutative.

Definition 2.15. Let D be a derivation on M. Then the additive map F : M → M is
called a generalized derivation if F (xαy) = F (x)αy + xαD(y) for all x, y ∈M and α ∈ Γ.
Moreover, an additive map I is called an involution if II(x) = x, I(x + y) = I(x) + I(y)
and I(xαy) = I(y)αI(y) for all x, y ∈M and α ∈ Γ.

Definition 2.16. Let M be a Γ-ring with involution I. An additive map D : M → M
is called an I-derivation if D(xαy) = D(x)αI(y) + xαD(y) for all x, y ∈ M and α ∈ Γ.
Moreover, D is called a reverse I-derivation if D(xαy) = D(y)αI(x) + yαD(x) for all
x, y ∈ M and α ∈ Γ. An additive map T : M → M is called a left (right) I-centralizer if
T (xαy) = T (x)αI(y) (resp. T (xαy) = I(x)αT (y) for all x, y ∈M and α ∈ Γ. An additive
map F : M →M is called a generalized I-derivation if F (xαy) = F (x)αI(y)+xαD(y) for
all x, y ∈ M and α ∈ Γ, D an I-derivation on M. An additive map F : M → M is called
a generalized reverse I-derivation if F (xαy) = F (y)αI(x) + yαD(x) for all x, y ∈ M and
α ∈ Γ, D a reverse I-derivation on M.

Now, Theorem 2.6 in [5] imply that :

Theorem 2.17. Let M be a semi-prime Γ-ring with involution I and D a reverse I-
derivation on M. If F is a generalized reverse I-derivation on M, then [D(x), y]α = 0 for
all x, y ∈M and α ∈ Γ.

As corollaries to this result we get corollaries 2.7 and 2.8 in [5], respectively:

Corollary 2.18. Let M be a non-commutative prime Γ-ring with involution I and D a
reverse I-derivation on M. If F is a generalized reverse I-derivation on M, then F is a
reverse left I-centralizer on M.

Corollary 2.19. Suppose that M is a semi-prime Γ-ring with involution I. If D is a
reverse I-derivation on M, then D maps M into Z(M).
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3. Conclusion

Some results related to notions such as (left) centralizer, Jordan (left) centralizer, θ-
centralizer, derivation, generalized derivation, generalized I-derivation and I-centralizer
for an involution I are deduced for Γ-rings under the hypotheses that the given Γ-ring is
a prime or semi-prime ring. In particular, it is studied that under what conditions the
above-mentioned notions imply each other. It is natural to investigate about such results
under weaker hypotheses like completely prime, weakly prime, weakly completely prime
Γ-rings. It should be pointed out that the research for such problems is under investigation
by the author and not published yet.
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1. Introduction

The concepts of absolute central subgroup, n-th absolute central subgroup, absolute
central automorphism and autonilpotent groups have been the idea of many researchers
articles and they are very important in the discussion of the automorphisms. In this
paper p denotes a prime number. Let G be a group. Let us denote by G′, Z(G), ϕ(G),
exp(G), Hom(G, H), Aut(G) and Inn(G), respectively the commutator subgroup, the
centre, Frattini subgroup, the exponent, the group of homomorphisms of G into an abelian
group H, the full automorphism group and the inner automorphisms. The absolute centre
of a group G, denoted by L(G), is defined as

L(G) = {g ∈ G | g−1α(g) = [g, α] = 1, ∀α ∈ Aut(G)}.
An automorphism α of G is called an absolute central automorphism if x−1α(x) ∈ L(G)
for each x ∈ G. The set of all absolute central automorphisms of G is denoted by Autl(G).
The nth-absolute centre is defined as

Ln(G) = {g ∈ G | [g, α1, α2, . . . , αn] = 1, ∀α1, α2, . . . , αn ∈ Aut(G)}.
A group G is called autonilpotent of class at most n if Ln(G) = G, for some natural
number n. Also, for each natural number m and n, we have

Lm
n (G) = {g ∈ G | [g, αm

1 , αm
2 , . . . , αm

n ] = 1, ∀α1, α2, . . . , αn ∈ Aut(G)}.
We call a group G m-autonilpotent group of class at most c if there exists some integer
c such that Lm

c (G) = G. For each natural number m, every autonilpotent group is a
m-autonilpotent group, but reverse is not necessary true in general. For more information
on these definitions and their properties, we refer the reader to [1] and [4]- [7].

∗Speaker. Email address: s.barin@birjand.ac.ir
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2. Main results

In this section, after a new definition, we give our main results about the generalize of
the absolute central automorphisms group.

Definition 2.1. An automorphisms α = αm
1 . . . αm

n ∈ Aut(G) is called n-absolute
central automorphism if

∀m ∈ N, ∀g ∈ G : [g, αm
1 , . . . , αm

n ] = g−1αm
1 . . . αm

n (g) ∈ Lm
n (G).

The set of all n-absolute central automorphisms of G is denoted by Autnl(G).

Theorem 2.2. Autnl(G) is a non-trivial and normal subgroup of Aut(G).

Proof. For every arbitrary group G, the identity automorphism is a n-absolute central
automorphism of G, therefore ∅ ̸= Autnl(G). The continue is done by a similar way of
Autl(G)⊴Aut(G) proof. □

Example 2.3. Let G be a group.

a) If Lm
n (G) = ⟨1⟩, then Autnl(G) = ⟨1⟩.

b) If G be an autonilpotent or m-autonilpotent group of class c, then Lm
c (G) = G,

hence every arbitrary automorphism of this group is a c-absolute central auto-
morphism of G, i.e. Autcl(G) = Aut(G).

Theorem 2.4. Let G be a group. Then Autnl(G) ∼= Hom
(
G/Lm

n (G), Lm
n (G)

)
.

Proof. The proof is similar to the proof of [6, Lemma 2.6], except that wherever
L(G) ⩽ Z(G) is used, we use the fact that every automorphism of G acts trivially on
Lm
n (G). □
According to the above theorem, it follow that Autnl(G) is abelian.

Lemma 2.5. Let G be a non-abelian nilpotent p-group of class 2 for which G/Lm
n (G)

is abelian. Then
|Hom

(
G/Z(G), Lm

n (G)
)
| ≥ |G/Z(G)|pr(s−1)

where r = rank
(
G/Z(G)

)
and s = rank

(
Lm
n (G)

)
.

Proof. The proof is similar to the proof of [6, Lemma 2.8]. □
Lemma 2.6. Let G be a finite group, then G/Lm

n (G) is abelian if and only if Inn(G) ⩽
Autnl(G).

Proof. The proof is similar to the proof of [6, Lemma 2.7]. □
Corollary 2.7. Let G be a finite p-group. If Lm

n (G) = ϕ(G), then Inn(G) ⩽
Autnl(G).

Proof. Because G is a p-group, Lm
n (G) = ϕ(G) = G′Gp, therefore G′ ⩽ Lm

n (G). thus
G/Lm

n (G) is abelian, so the previous lemma gives the result. □
Lemma 2.8. Let G be an arbitrary group, then CAutnl(G)

(
Z(G)

) ∼= Hom
(
G/Z(G), Lm

n (G)
)
.

Proof. The proof is similar to the proof of theorem 2.4. □
Corollary 2.9. Suppose G is a non-abelian p-group for which G/Lm

n (G) is abelian.
Then

|CAutnl(G)

(
Z(G)

)
| ≥ |G/Z(G)|pr(s−1)

where r = rank
(
G/Z(G)

)
and s = rank

(
Lm
n (G)

)
.
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Proof. Easily, it follows from lemmas 2.5 and 2.8. □
Corollary 2.10. Let G be a p-group such that G/Lm

n (G) is abelian. If Lm
n (G) is

elementary abelian and s = rank
(
Lm
n (G)

)
, then

a) Autnl(G) is elementary abelian of order pks that k = rank
(
G/Lm

n (G)
)
.

b) CAutnl(G)

(
Z(G)

)
is elementary abelian of order prs that r = rank

(
G/Lm

n (G)
)
.

Proof. It follows from basis theorem for finite abelian groups, theorem 2.2 and lemma
2.8. □

Corollary 2.11. Let G be a non-abelian p-group such that G/Lm
n (G) is abelian. If

Autnl(G) is elementary abelian, then exp(G′) = p.

Proof. The proof is similar to the proof of [2, Lemma 6]. □
Theorem 2.12. Suppose G is a non-abelian finite p-group for which G/Lm

n (G) is
abelian. Then

|Autnl(G) : Inn(G)| ≥ pr(s−1)

where r = rank
(
G/Z(G)

)
and s = rank

(
Lm
n (G)

)
.

Proof. The proof is similar to the proof of [6, Theorem 3.1]. □
Proposition 2.13. For every finite group G, if Autnl(G) = Inn(G), then exp

(
G/Z(G)

)
≤

exp
(
Lm
n (G)

)
.

Proof. Since Autnl(G) = Inn(G), so

Hom
(
G/Lm

n (G), Lm
n (G)

) ∼= G/Z(G).

Therefore exp
(
G/Z(G)

)
≤ exp

(
Lm
n (G)

)
, because otherwise

|Autnl(G)| > |G/Z(G)| = |Inn(G)|
which is a contradiction. □

Proposition 2.14. Let G be a non-abelian p-group(p odd) such that Autnl(G) =
Inn(G), then exp

(
G/Z(G)

)
≤ exp

(
Lm
n (G)

)
.

Proof. The proof is similar to the proof of [3, Theorem 3.2]. □
Lemma 2.15. Let G be a nilpotent p-group of class 2 such that exp

(
G/Z(G)

)
≤

exp
(
Lm
n (G)

)
, then

|Hom
(
G/Z(G), Lm

n (G)
)
| ≥ |G/Z(G)|pr(s−1)

where r = rank
(
G/Z(G)

)
and s = rank

(
Lm
n (G)

)
.

Proof. The proof is similar to the proof of [3, Lemma 2.6]. □
Corollary 2.16. Let G be a nilpotent p-group of class 2 such that exp

(
G/Z(G)

)
≤

exp
(
Lm
n (G)

)
, then

|Autnl(G)| ≥ |G/Z(G)|pr(s−1)

where r = rank
(
G/Z(G)

)
and s = rank

(
Lm
n (G)

)
.

Proof. The proof is similar to the proof of [3, Lemma 2.7]. □
Lemma 2.17. Let G be a non-abelian p-group. If Autnl(G) = Inn(G), then G/Lm

n (G)
is cyclic.
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Proof. The proof is similar to the proof of [3, Lemma 3.1]. □
Theorem 2.18. Let G be a non-abelian p-group, then

a) If CAutnl(G)

(
Z(G)

)
= Inn(G), then G′ ⩽ Lm

n (G) and Lm
n (G) is cyclic.

b) If G be a nilpotent group of class 2, G′ ⩽ Lm
n (G) and Lm

n (G) is cyclic, then
CAutnl(G)

(
Z(G)

)
= Inn(G).

Proof. The proof is similar to the proof of [3, Theorem 3.3]. □
Theorem 2.19. Let G be a non-abelian p-group. If G′ ⩽ Lm

n (G), Lm
n (G) is cyclic and

Z(G) = Lm
n (G)Gpk where pk = exp

(
Lm
n (G)

)
, then Autnl(G) = Inn(G).

Proof. The proof is similar to the proof of [3, Theorem 3.4]. □
The reverse of above theorem is hold if G be a nilpotent group of class 2 and Lm

n (G) ⩽
Z(G).
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Abstract. In this paper, we study the kth stability of spacelike hypersurfaces in the
Lorentz space Ln+1. The stability of order k (briefly, k-stability) is a natural extension
of the ordinary stability. The k-stability is defined based on the linearized operator Lk
as an extension of the Laplace operator (i.e. L0 = ∆). We give sufficient conditions
for a bounded domain in a k-maximal hypersurface of the Lorentz-Minkowski space to
be k-stable. Especially, in the case k = 1, the Gauss- Kronecker curvature of 1-stable
hypersurfaces has to be null on a special submanifold.

Keywords: k-maximal hypersurface, k-Stability, Minkowski space.
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1. Introduction

The stability of hypersurfaces of Riemannian space forms as a well-known topic in
differential geometry has been started by Simons in [7] and followed by others. In this
paper, we study the spacelike hypersurfaces of Lorentzian space, which have important
role in relativity ( [3]). It is well-known that a maximal spacelike entire graph in the
Minkowski space Ln+1 is a linear hyperplane. We extend the notion of stability and the
results to k-maximal spacelike hypersurfaces of Ln+1.

1.1. Preliminaries. Now, we recall some basic preliminaries from [5]. By Rmp , we

mean the vector space Rm with metric < x, y >:= −Σp
i=1xiyi + Σj>pxjyj . Especially,

Rm0 = Rm, and Rm1 is the Lorentz-Minkowski space. For r > 0 and q = 0, 1, Sn+1
q (r) =

{y ∈ Rn+2
q | < y, y >= r2} denotes the sphere (for q = 0) and de Sitter space (for q = 1)

of radius r and curvature 1/r2, and Hn+1
q (−r) = {y ∈ Rn+2

q+1 | < y, y >= −r2} denotes the

hyperbolic space (for q = 0) and anti-de Sitter space (for q = 1) of radius r and curvature

−1/r2. The simply connected space form M̃n+1
q (c) of curvature c and index q is Rn+1

q

for c = 0, Sn+1
q = Sn+1

q (1) for c = 1 and Hn+1
q = Hn+1

q (−1) for c = −1. When q = 0,

we take a component of Hn+1
0 . The Weingarten formula for a spacelike hypersurface

x : Mn → M̃n+1
q (c) is ∇̄VW = ∇VW − ε < SV,W > N, for V,W ∈ χ(M) where,

∗Speaker. Email address: f−pashaie@yahoo.com

805



F. Pashaie

ε = 2q− 1, q ∈ {0, 1} and S is the shape operator of M associated to a unit normal vector
field N on M with < N,N >= −ε. Since M is spacelike, S can be diagonalized. Denote
its eigenvalues ( the principal curvatures of M ) by the functions κ1, ..., κn on M , define
the elementary symmetric function as sj :=

∑
1≤i1<...<ij≤n κi1 ...κij and the j-th mean

curvature of M by (nj )Hj = (−ε)jsj . The hypersurface Mn in Rn+1
p is called j-minimal if

its (j + 1)th mean curvature Hj+1 is identically zero.
In particular, H1 = −ε(1/n)tr(S) and H = H1N are respectively the mean curvature

and the mean curvature vector of M . The relation between the scalar curvature of M and
H2 as tr(Ric) = n(n− 1)(−εH2). In general, Hj is extrinsic (respectively, intrinsic) when
j is an odd (respectively, an even) number, since the sign of Hj depends on the chosen
orientation only in the odd case.

For an spacelike hypersurface x : Mn
p → Rn+1

1 we introduce, as (4) in [5], the Newton
transformations Pj : χ(M)→ χ(M), associated with the shape operator S, inductively by

P0 = I, Pj = (−1)jsjI + S ◦ Pj−1(j = 1, ..., n),

where I is the identity on χ(M). It can be seen that Pj has an explicit formula,

Pj = (−1)jΣj
l=0(−1)lsj−lS

l =

j∑

l=0

(nj−l)Hj−lS
l

, where, H0 = 1 and S0 = I. According to the characteristic polynomial of S, QS(t) =
det(tI − S) =

∑n
l=0(−1)n−lsn−ltl, the Cayley-Hamilton theorem gives Pn = 0.

Now, we define the notion of variation, the linearized operator Lk and the concept of
k-stability.

Definition 1.1. Let x : Mn
p → Rn+1

1 (c) be a compact connected orientable hyper-
surface isometrically immersed into an standard Riemannian or Lorentzian space form,
c ∈ {−1, 0, 1} and q ∈ {0, 1}. A map X : (−ε, ε)×Mn → Rn+1

1 (c) is called a variation of
Mn if it satisfies the following properties:

(1) For each t ∈ (−ε, ε) the map Xt : Mn → M̃n+1
q (c) by rule Xt(p) := X(t, p), is an

immersion.
(2) X0 = x and for every t ∈ (−ε, ε), Xt|bd(M) = x|bd(M).

Definition 1.2. The linearized operator of the (k + 1)-th mean curvature of M , Lk :
C∞(M) → C∞(M) is defined by the formula Lk(f) := tr(Pk ◦ ∇2f), where ∇2f is given
by < ∇2f(X), Y >= Hess(f)(X,Y ).

Among many interesting properties of Lk, we point that for a normal variation of M
with variational field dXt

dt (t)|t=1 = fN, we have the equality
d
dtsk+1|t=1 = Lkf + (s1sk+1 − (k + 2)sk+2)f,

where Lk is the principal part of the linearized operator associated to sk+1. For
convenience, we define the operator Jk as:

Jk := Lk + (s1sk+1 − (k + 2)sk+2)I,

as well as a bilinear symmetric form Bk can be defined by Bk(f, g) := −
∫
M gJkfdM.

Definition 1.3. Let x : Mn → Ln+1 be as in Definition 1.1 with condition that Hk+1 is
constant. Mn is called k-stable if Bk(f, f) ≥ 0 for all f ∈ C∞c (M).

The kth area functional Ak : (−ε, ε) → R associated to a variation X is given by
Ak(t) :=

∫
M Fk(t)dMt, where Fk(t) is recursively defined by F0(t) ≡ 1, F1(t) := −s1(t)

806



Stability of hypersurfaces

and for 2 ≤ k ≤ n − 1, Fk(t) := (−1)rsk(t) − n−k+1
k−1 Fk−2(t). In the case k = 0, the

functional A0 is the classical area functional. If sk+1 = 0, there is a function f : M → R
supported in a compact domain K ⊂M , such that the second variation of Ak(t) is as:

A′′k(t) = (k + 1)

∫

M
[Lkf + tr(Pk)f − tr(S2 ◦ Pk)f ]fdMt.

Remark 1.4. We want to point out that the first variation formula (Proposition 1.6) were
first proved by R. Reilly. We wish to study spacelike immersions x : Mn → Ln+1 that
maximize Ak for all volume-preserving variations X of x. The above discussion shows
that Mn must have constant (k + 1)th mean curvature and, for such an Mn, it leads
us naturally to compute the second variation of Ak. So, if x : Mn → Ln+1 be a closed
hypersurface having constant (k + 1)th mean curvature, one can see that, x is k-stable if
A′′k(0)≥ 0 for all volume-preserving variation of x.

1.2. Auxiliary lemmas.

Proposition 1.5. ( [2]) Let x : Mn → Ln+1 ( where n ≥ 2) be a connected spacelike
hypersurface of the Minkowski space Ln+1, κ1, ..., κn be the principal curvatures of Mn

p

and Hk be the kth mean curvature of M . Then we have:
(i) For 0 < k < n, H2

k ≥ Hk−1Hk+1. If k = 1 or if k > 1 and Hk+1 6= 0, then the
equality happens if and only if κ1 = ... = κn;

(ii) H1 ≥ (H2)
1/2 ≥ ... ≥ (Hk)

1/k if Hi > 0 for i = 1, ..., k;

Let e1, ..., en be a local orthonormal tangent frame on M that diagonalizes S and Pjs
as Sei = κiei and Pjei = µi,jei, for i = 1, 2, ..., n, where µi,j = (−1)jΣi1<...<ij ,il 6=iκi1 ...κij ,
(for j = 0, 1, ..., n− 1). Using this and the useful identity

(1) κiµi,j = µi,j+1 − (−1)j+1sj+1 = µi,j+1 − (nj+1)Hj+1,

and the notation cj = (n − j)(nj ) = (j + 1)(nj+1), the following properties of Pk may be
obtained easily:

(2) tr(Pj) = (−1)j(n− j)sj = cjHj ,

(3) tr(S ◦ Pj) = (−1)j(j + 1)sj+1 = −cjHj+1,

(4) tr(S2 ◦ Pj) = (nj+1)[nH1Hj+1 − (n− j − 1)Hj+2],

(5) tr(Pj ◦ ∇XS) = −(nj+1) < grad(Hj+1), X > . (X ∈ χ(M))

Proposition 1.6. Let x : Mn → Ln+1 ( where n ≥ 2) be a connected spacelike hyper-
surface isometrically immersed into the Minkowski space and {e1, ..., en} and κ1, ..., κn be
as in Proposition 1.5 and Pk be the kth Newton transformation. If at a point p ∈ M ,
Hk(p) = 0 and Hk+1(p) 6= 0, then Pk−1 is definite at p.

2. Main results

In [1], the sufficient conditions for a regular domain on a k-minimal hypersurface of the

Euclidean space are given to be k-stable. Their result assumes that the quotient |Hn|
||√PkS||2

is constant. In this case the hypersurface is said to be k-special.

Theorem 2.1. Let x : Mn → Ln+1 be an oriented k-special hypersurface with Hk+1 = 0
and Hn 6= 0. Then there exist some open submanifolds of Mn which are k-stable.
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Theorem 2.2. Let x : Mn → Ln+1 be a complete non-compact oriented k-stable k-
maximal hypersurface in Ln+1, then Mn has only one end.

Remark 2.3. In the Riemannian case, the proof of last theorem relies on the Sobolev
ineqality for minimal submanifolds due to Michael and Simon [4] and the Liouville theorem
for harmonic maps due to Schoen and Yau [6]. One crucial step in the proof is to show
the existence of a non-trivial bounded harmonic function with finite Dirichlet energy in
case the minimal hypersurface has more than one end. This is done by using the Sobolev
inequality together with a choice of cut-off functions based on the fact that the minimal
submanifold has more than one end. We remark that our cut-off function actually has
noncompact support.

Theorem 2.4. Let x : Mn → Ln+1 be a complete noncompact spacelike hypersurface
which has at least two ends of infinite volume. In each one of two following cases there
exists a non-constant bounded harmonic function with finite Dirichlet energy:

(a) the Sobolev inequality holds on M;
(b) the first eigenvalue of M is positive.
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Existence of weak solutions for a dispersive wave equation
with strong damping, nonlinear boundary source term and

interior logarithmic nonlinearity
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Abstract. In this talk, we are dealing with an initial - boundary value problem for a
class of dispersive wave equations with strong damping, nonlinear boundary source term
and interior logarithmic nonlinearity. We prove the existence of local weak solutions by
using the Galerkin approximation method and the Banach fixed point theorem.
Keywords: wave equation, logarithmic nonlinearity, existence
AMS Mathematics Subject Classification [2010]: 35A01, 35B45, 35D30

1. Introduction
In this paper we consider the following initial-boundary value problem

(1)





utt −∆u−∆utt −∆ut = u ln |u|k, x ∈ Ω, t ∈ (0, T ),

u = 0, x ∈ Γ0, t ∈ (0, T ),

∂νutt + ∂νu+ ∂νut = u|u|p−2, x ∈ Γ1, t ∈ (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

where Ω is an open bounded domain in RN (N ≥ 1) with smooth boundary ∂Ω = Γ0∪Γ1,
Γ0 ∩ Γ1 = ∅, Γ0 and Γ1 are closed with positive measures, ν denotes the outward normal
derivative to the boundary, k, T > 0 and p satisfies some assumptions to be specified later.

Logarithmic nonlinearity is of much interest in many areas of physics such as cosmol-
ogy, optics and etc (for example see [1] and the references therein). There are numer-
ous results about the existence, asymptotic stability and instability of solutions for wave
equations with logarithmic nonlinearities. In this connection and to have an overview of
previous studies we refer to the recent work by Liu [3].

Di and Shang in [2] investigated the following fourth order wave equation
(2) utt −∆u+∆2u− ω(∆utt +∆ut) + |ut|r−1ut = f(u), x ∈ Ω, t > 0,

with initial and boundary conditions. Under the presence of dispersion-dissipation effect
(ω > 0), the authors obtained existence of global solutions for f(u) = u|u|p−2 by combi-
nation of the Galerkin approximation method and monotonicity-compactness arguments.

∗Speaker. Email address: peyravi@shirazu.ac.ir
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Later, Chen and Xu in [4] considered (2) with f(u) = u ln |u|. They established global
existence by applying the potential well method under subcritical initial energy and when
the initial energy is equal to critical initial energy level. Motivated with these studies, in
this article we consider a dispersive-dissipative wave equation in (1) with a logarithmic
nonlinearity in the domain and a polynomial source on the boundary. To the best of our
knowledge, there is no study in the literature in which both types of logarithmic and poly-
nomial nonlinearities act in a wave equation with dispersive-dissipative structure. In what
follows in this article we will investigate existence of local weak solutions by employing
the Galerkin approximation method and the Banach fixed point theorem.

To this end , first we introduce the space

V = {w ∈ H1(Ω); w = 0 on Γ0},
with the norm ∥.∥V = ∥∇.∥2. In the sequel we use the Sobolev imbedding V ↪→ Ls(Ω)
(with the best constant BΩ for 2 ≤ s ≤ 2N

N−2 if N ≥ 3, and s = +∞ if N = 1, 2) and the
Sobolev imbedding trace V ↪→ Ls(Γ1) (with the best constant BΓ1 for 2 ≤ s ≤ 2(N−1)

N−2 if
N ≥ 3, and s = +∞ if N = 1, 2).
For the exponent p we assume

(3) 2 < p ≤ p̄, where p̄ =

{
2 + 1

N−2 if N > 2,

+∞ if N = 1, 2.

Next, in the following definition, we introduce the weak solutions associated to the initial-
boundary value problem (1).

Definition 1.1. Let {u0, u1} ⊂ V . By a weak solution of problem (1) we mean a
function u such that

u ∈ L∞(0, T ;V ), ut ∈ L∞(0, T ;V ) ∩ L∞(0, T ;L2(Ω)), utt ∈ L2(0, T ;V ),

which satisfies

(ut − u1, ϕ)+(∇ut −∇u1,∇ϕ) + (∇u−∇u0,∇ϕ) +

∫ t

0
(∇u(s),∇ϕ)ds

=

∫ t

0

∫

Ω
u(s) ln |u(s)|kϕdxds+

∫ t

0

∫

Γ1

u(s)|u(s)|p−2ϕdxds,

for any ϕ ∈ V .

2. Local Weak Solutions
In this section we will discuss on existence of local weak solutions of the problem (1).

Let us to define the following initial-boundary value problem:

(4)





ztt −∆z −∆ztt −∆zt = u ln |u|k, x ∈ Ω, t ∈ (0, T ),

z(x, t) = 0, x ∈ Γ0, t ∈ (0, T ),

∂ν(ztt) + ∂ν(z) + ∂ν(zt) = u|u|p−2, x ∈ Γ1, t ∈ (0, T ),

z(x, 0) = u0(x), zt(x, 0) = u1(x), x ∈ Ω.

Let us to introduce the space

V =
{
u | u ∈ L∞(0, T ;V ), ut ∈ L∞(0, T ;V ) ∩ L∞(0, T ;L2(Ω))

}
.
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Lemma 2.1. Suppose that {u0, u1} ⊂ V , (3) holds and u ∈ V. Then the problem (4),
for any T > 0, has a unique solution z in the class

z ∈ L∞(0, T ;V ), zt ∈ L∞(0, T ;L2(Ω)) ∩ L∞(0, T ;V ),

ztt ∈ L2(0, T ;L2(Ω)) ∩ L2(0, T ;V ).

Proof. Suppose that
{
ϕh(x)

}
, (h = 1, 2, ...), is a basis for V and

zn(t) =
n∑

h=1

βh
n(t)ϕh, n = 1, 2, 3, ...

where {zn} satisfies

(5)

(
(zn)tt, ϕh

)
+
(
∇zn,∇ϕh

)
+
(
∇(zn)tt,∇ϕh

)

+
(
∇(zn)t,∇ϕh

)
=

∫

Γ1

|u|p−2uϕhdΓ +

∫

Ω
u ln |u|kϕhdx,

with initial conditions

(6)
zn(0) = u0n(x, 0) → u0(x) in V,

(zn)t(0) = u1n(x, 0) → u1(x) in V.

By theory of ordinary differential equations, the problem (5)-(6) has a unique solution on
some interval [0, Tn) (0 < Tn < T ). To find a priori estimates we multiply (5) by (βh

n)
′(t)

and (βh
n)

′′(t) separately and summing the results from h = 1 to h = n, integrating over
(0, t) and using Sobolev imbedding and trace Sobolev imbedding we get





{
zn
}
is uniformly bounded in L∞(0, T ;V ),{

(zn)t
}
is uniformly bounded in L∞(0, T ;L2(Ω)) ∩ L∞(0, T ;V ),{

(zn)tt
}
is uniformly bounded in L2(0, T ;L2(Ω)) ∩ L2(0, T ;V ).

On the other hand, by integrating (5) over (0, t), we have

(7)

((zn)t, ϕh) + (∇(zn)t,∇ϕh) + (∇zn,∇ϕh) +

∫ t

0
(∇zn(s),∇ϕh)ds

= ((zn)t(0), ϕh) + (∇(zn)t(0),∇ϕh) + (∇zn(0),∇ϕh)

+

∫ t

0

∫

Γ1

|u(s)|p−2u(s)ϕhdΓds+

∫ t

0

∫

Ω
u(s) ln |u(s)|kϕhdxds.

Thus, by extracting appropriate subsequences and then letting n → +∞ in (7) we can
see that z satisfies the equation with the asserted regularities. It is easy to check that the
solution of (4) is unique and so we omit the proof of uniqueness. □

Theorem 2.2. Suppose that {u0, u1} ⊂ V and (3) holds. Then, there exists a unique
local solution u ∈ VT of (1) for some T > 0.

Proof. We consider the space V equipped with the following norm

∥v∥V =

(
max
0≤t≤T

{
∥∇v(t)∥22 + ∥∇vt(t)∥22 : v ∈ V

}) 1
2

.

We define

BR =
{
v ∈ V | v(x, 0) = u0(x), vt(x, 0) = u1(x), ∥v∥V ≤ R

}
, T > 0, R > 0.
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For any u ∈ BR, by Lemma 2.1, we set the mapping Ψ(u) = z where z is a solution of
problem (4). Then, we show that there exist positive constants T and R such that Ψ is a
contraction mapping from BR into itself. Multiplying the equation in (4) by zt, integrating
over Ω× (0, t), and using again the Sobolev imbeddings for nonlinearities, we obtain

(8) ∥∇z(t)∥22 + ∥∇zt(t)∥22 ≤
(
L+ C2(R)

T

2

)
+

1

2

∫ t

0

(
∥∇z(s)∥22 + ∥∇zt(s)∥22

)
ds,

where L = ∥u0(x)∥22 + ∥∇u0(x)∥22 + ∥∇u1(x)∥22 and

C(R) = 2k

(
B2e−2|Ω|+

(n− 2

2

)2
B

4(n−1)
n−2 R

2n
n−2

) 1
2

+ 2BΩB
p−1
Γ1

Rp−1.

Therefore, applying Gronwall’s inequality on (8), we arrive at

∥∇z(t)∥22 + ∥∇zt(t)∥22 ≤
(
L+ C2(R)

T

2

)
e

T
2 .

Now, we let R := 2L. Then, we can choose T sufficiently small such that(
R

2
+ C2(R)

T

2

)
e

T
2 < R,

which immediately results ∥Ψ(u)∥V < R and so Ψ(u) ∈ BR. To show that Ψ is a contrac-
tion mapping suppose that

{
u1, u2

}
⊂ BR and

{
z1, z2

}
denotes corresponding solutions

that is z1 = Ψ(u1) and z2 = Ψ(u2). Define ω := z1 − z2. Then we can show that
∥∇ω(t)∥22 + ∥∇ωt(t)∥22 ≤ K2T 2∥u1 − u2∥2V ,

for some positive constant K. By choosing T < K−1, the above inequality leads us to
∥Ψ(u1)−Ψ(u2)∥V ≤ α∥u1 − u2∥V , with 0 < α < 1.

□

3. Conclusion
In this work we proved the existence of weak solutions for the problem (1) with the

regularities in Definition 1.1. Our future focus on the problem (1) is to study long time
behavior and blow up properties of solutions. It is well known that the logarithmic non-
linearity alone is not strong enough to cause the solutions blow up in finite time. But,
because of the polynomial source it seems that solutions can blow up in finite time. How-
ever, presence of logarithmic term brings some kind of new challenges.
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Two major concepts in fractal calculus:
Staircase function Sα

C(x) and Characteristic function χC(x)
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Abstract. In this article, we study the Cantor set, the integral staircase function, and
the characteristic function. These concepts are required to define smooth and differen-
tiable structures on fractals. First, the unique properties of the Cantor set are presented.
Then, we show how to draw the Cantor function interactively in the Jupyter notebook
environment.
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1. Introduction
In ordinary calculus, we deal with discontinuity, lack of continuity in some points or

intervals. There are also some situations where a derivative of a function fails to exist.
Thus, discontinuity and non-differentiability are two common problems in ordinary calcu-
lus. On the other hand, we observe fractals [1,2], which are continuous or discontinuous
and usually nowhere differentiable. Moreover, fractals are often so irregular that defining
smooth, differentiable structures on them seems very difficult. To study fractals some re-
markable approaches have been used. They include fractal geometry, analysis on fractals,
Harmonic analysis on fractals and in the past few years fractal calculus [3,4]. In [3,4]
a new calculus based on fractal subsets of the real line is formulated which involves an
integral of order α, 0 < α < 1, called Fα-integral and a derivative of order α, 0 < α < 1,
called Fα-derivative. This enables us to differentiate functions, like the Cantor staircase,
“changing” only on a fractal set. The Fα-derivative is local, unlike the classical fractional
derivative. The main concepts in fractal calculus are flag function, mass function, in-
tegral staircase function Sα

C(x), set of change of a staircase function, compact set,
α-perfect set, and characteristic function χC(x) [5, 6]. Cantor or staircase function
is the strange continuous function on the unit interval, whose derivative is “zero” almost
everywhere, but it somehow magically rises from 0 to 1.
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If you plot this function, you get something called the “Devil’s Staircase”. It is related
to the standard Cantor set in the following way. This function is constant at all the
removed intervals from the standard Cantor set. For instance if x is in [1/3, 2/3], then
f(x) = 1/2. If x is in [1/9, 2/9], then f(x) = 1/4; if x is in [7/9, 8/9], then f(x) = 3/4.

If one plots this function, then he will see that it is not differentiable at the Cantor
set points but has zero derivatives everywhere else. However, since a Cantor set has a
measure zero, this function has zero derivatives practically everywhere and only “rises” on
Cantor set points!.

1.1. Properties of Cantor set. If we look at the construction of the Cantor set
with a new perspective, by viewing the numbers in base 3, we will be able to see exactly
which points remain (see Fig.1). Cantor set is defined as

Figure 1. Cantor set in base 3.

(1) The Cantor set is uncountable.

C0 = [0, 1],

C1 = [0, 1/3] ∪ [2/3, 1],

C2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1],

... =
...

C =

∞∩

n=0

Cn.

(2) Length of the Cantor set is zero.
lim
n→∞

(2/3)n = 0.

The fractal dimension for the Cantor set is α = ln 2/ ln 3 = 0.63.

2. Main results
Plotting Cantor function requires introducing the following functions (Fig.2) and com-

bining them. Although the floor function ⌊x⌋ is discontinuous, combining them can lead
to a continuous function.

(1) g (x) =
⌊3x⌋
2

− 4⌊x⌋
2

+
3⌊x3 ⌋
2

).

(2) f (x) = cos (3x arccos (−0.5)) + 0.5
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(3) k (x) =
⌊3x⌋
2

− ⌊x⌋
2

+

(
3

2
x− 3⌊3x⌋

4
+

3

4
⌊x⌋
)(

f (x)

2 |f (x)| + 0.5

)

Figure 2. The three basic functions to make Cantor function.

(4) z (x) = k (x)− 3

2
⌊x⌋+ 3⌊x3 ⌋

2

The convenient function, not defined by multiple sub-functions, that we use to draw the
characteristic function (Fig.3) is :

(5) h (l, x) =
l∏

j=1

(
sin
(
3jπx

)

2 |sin (3jπx)| +
1

2

)

Finally, by combining the above four functions, the following staircase function is created
(Fig.4):

(6) Cantorfunction =

((
n∑

i=0

g
(
3ix
)
h (i, x)

2i

)
+

z
(
3(n+1)x

)
h (n+ 1, x)

2(n+1)

)
{0 < x < 1}

3. Conclusion
Defining, analytically, staircase and characteristic function in python (jupyter note-

book) can help us to plot them interactively. This tool enables us to calculate fractal
differentiation and fractal integration of a function in the interval [0,1].
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Figure 3. Characteristic function.

Figure 4. Cantor or Staircase function.
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A Characterization of Values (l,m) Such That (l,m) ∈ ∑
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Abstract. A length ml, index l quasi-cyclic code can be viewed as a cyclic code of
length m over the field Fql via a basis of the extension Fql/Fq. Let

∑
(q) be the set of

all (l,m) values for one-generator length ml, index l quasi-cyclic codes C for which it is
impossible to have an Fql -linear image ϕβ(C), for any choice of the polynomial basis β.
In this paper we characterize values (l,m) such that (l,m) ∈ ∑

(q).
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1. Introduction

Throughout this paper, q is a prime power, Fq denotes the finite field with q elements,
m and l are positive integers such that l > 1 and gcd(q,m) = 1. A length ml, index l
quasi-cyclic code is defined to be an Fq-linear code in Fml

q which is closed under T l, where
T is the shift operator defined by T (c0, c1, . . . , cml−1) = (cml−1, c0, . . . , cml−2).

A length ml, index l quasi-cyclic code C over Fq can be viewed as an R(m, q)-

submodule of R(m, q)l, where R(m, q) = Fq[x]/⟨xm − 1⟩. Using a polynomial basis β

of Fql/Fq and the map ϕβ defined in [2], we map the quasi-cyclic code C to R(m, ql) =
Fql [x]/⟨xm− 1⟩. We denote this image by ϕβ(C) and it becomes an R(m, q)-submodule of

R(m, ql). Equivalently, ϕβ(C) is an Fq-linear cyclic code of length m over Fql . Such codes
are called additive cyclic codes [1].

In [4,5], the following question was posed: when is the image under a basis extension of
a quasi-cyclic code Fql-linear, hence a classical cyclic code? In [2], the authors answer this

question and characterize quasi-cyclic codes with an Fql-linear image in R(m, ql). This
characterization is particularly simple in the case of a one-generator quasi-cyclic code.
They also characterize the (l,m) values for one-generator quasi-cyclic codes for which it
is impossible to have an Fq-linear image for any choice of the polynomial basis of Fql/Fq.
But these conclusions should be checked for each case as in multiple steps and for some
(l,m) values, these conclusions and characterizations is very intricate

In this paper, asing the characterization in [2], we give a more simple characterization
to list the (l,m) values for one-generator quasi-cyclic codes for which it is impossible to
have an Fql-linear image for any choice of the polynomial basis of Fql/Fq.
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2. Main results

Throughout this section, l,m are positive integers such that l > 1 and gcd(q,m) = 1.

Let
∑

(q) be the set of all (l,m) values for one-generator length ml, index l quasi-cyclic
codes C for which it is impossible to have an Fql-linear image ϕβ(C), for any choice of the
polynomial basis β.

Let xm−1 = f1(x) . . . fs(x) be the decomposition of xm−1 into irreducible polynomials
of Fq[x]. Suppose that degfi(x) = ti (1 ≤ i ≤ s). Put Tq(m) = {t1, . . . , ts}. Hence
R(m, q) ∼= Fqt1 ⊕ · · · ⊕ Fqts .

Theorem 2.1. Let l,m be positive integers such that l > 1, gcd(q,m) = 1 and Tq(m) =
{t1, . . . , ts}. Then (l,m) ∈ ∑

(q) if and only if for every i (1 ≤ i ≤ s), l ̸ |ti.

Proof: At first we assume that for every i (1 ≤ i ≤ s), l ̸ |ti. Suppose that there
exist a length ml, index l one-generator quasi-cyclic code C and a polynomial basis β
of Fql/Fq such that ϕβ(C) is Fql-linear. Since C is a one-generator quasi-cyclic code by
[2, Theorem 4.1(ii)], C = 0 and hence (l,m) ∈ ∑

(q). Conversely we assume that there
exists i (1 ≤ i ≤ s) such that l|ti, Let β = {1, α, . . . , αl−1} be a basis of Fql/Fq and
Fql = Fq[x]/⟨fα(x)⟩ such that fα(x) ∈ Fq[x] is irreducible, degfα(x) = l and fα(α) = 0.
Asing [2, section 2], we have Ei = Fq[ξi], where ξi = ξui and ξm = 1. Since [Ei : Fq] = ti
and l|ti, there exists d ∈ N such that ti = ld. Hence there exists an irreducible polyno-
mial λ(x) ∈ Fql [x] of degree d such that Ei

∼= Fql [x]/⟨λ(x)⟩. So there exists a root δ of
λ(x) such that Ei

∼= Fql [δ] and hence Fql is embedded in Ei. Now since α ∈ Fql , there
exists ω ∈ Ei such that fα(ω) = 0 and hence x − ω|fα(x) in Ei[x]. In this case, by the
observations in [2, section 4], we have bi = l and di = 1. Now we constitute Ei-subspace
W 1

i for fα,1(x) = x − ω. Hence we have W 1
i = {u ∈ El

i | (Mα − ωI)u = 0}. By the
observations above [2, Theorem 4.1], dimEiW

1
i = degfα,1(x) = deg(x − ω) = 1 and so

there exist gk(x) ∈ Fq[x] (0 ≤ k ≤ l − 1) such that W 1
i = ⟨g0(ω), . . . , gl−1(ω)⟩. Since

ω ∈ Ei, gk(ω) ∈ Ei = Fq[ξi] (0 ≤ k ≤ l − 1) and hence for every k (0 ≤ k ≤ l − 1), there
exist hk(x) ∈ Fq[x] such that gk(ω) = hk(ξi) (0 ≤ k ≤ l−1). Now let θ(x) =

∏s
i ̸=j=1 fj(x).

We have gcd(fi(x), θ(x)) = 1. Since Fq[x] is a PID, there exist ψ(x), ψ′(x) ∈ Fq[x]
such that ψ(x)fi(x) + ψ′(x)θ(x) = 1. Set ck(x) = θ(x)ψ′(x)hk(x). Now we have Cj =
⟨c0(ξj), . . . , ci(ξj), . . . , cl−1(ξj)⟩ (1 ≤ j ≤ s). Let j ̸= i and 1 ≤ j ≤ s. Since fj(ξj) = 0,
θ(ξj) = 0 and hence ck(ξj) = θ(ξj)ψ

′(ξj)hk(ξj) = 0 (0 ≤ k ≤ l − 1). Therefore for every
j ̸= i and 1 ≤ j ≤ s, Cj = 0. Let j = i. Since fi(ξi) = 0, ck(ξi) = θ(ξi)ψ

′(ξi)hk(ξi) =
(1 − fi(ξi)ψ(ξi))hk(ξi) = hk(ξi) = gk(ω) (0 ≤ k ≤ l − 1). Therefore Ci = W 1

i and so
C = C1⊕ · · ·⊕Ci−1⊕Ci⊕Ci+1⊕ · · ·⊕Cl−1 = 0⊕ · · ·⊕ 0⊕W 1

i ⊕ 0⊕ · · ·⊕ 0 =W 1
i . Then

by the observation above [2, Theorem 4.1], C is Fql-linear and so (l,m) /∈ ∑
(q).

Set Dq(m) = {1 ̸= l ∈ N | l|ti, for some i (1 ≤ i ≤ s)}.

In the following tables, for the convenience of the reader, we list the set T3(m) for 43
values of m with gcd(m, 3) = 1.
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A Characterization of Values (l,m) Such That (l,m) ∈ ∑
(q)

m T3(m) m T3(m) m T3(m) m T3(m)
2 {1} 13 {1, 3} 23 {1, 11} 34 {1, 16}
4 {1, 2} 14 {1, 6} 25 {1, 4, 20} 35 {1, 4, 6, 12}
5 {1, 4} 16 {1, 2, 4} 26 {1, 3} 37 {1, 18}
7 {1, 6} 17 {1, 16} 28 {1, 2, 6} 38 {1, 18}
8 {1, 2} 19 {1, 18} 29 {1, 28} 40 {1, 2, 4}
10 {1, 4} 20 {1, 2, 4} 31 {1, 30} 41 {1, 8}
11 {1, 5} 22 {1, 5} 32 {1, 2, 4, 8} 43 {1, 42}

.

Example 2.2. Let Ω =
∪{D3(m)|m ⩽ 43, gcd(m, 3) = 1} = {2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 14, 15, 16, 18, 20, 21, 28, 30, 42}. By Theorem 2.1, for every number 1 ̸= l /∈ Ω and
every m ⩽ 43 with gcd(m, 3) = 1, we have (l,m) ∈ ∑

(3). In the following table, for every
l ∈ Ω, we list m values up to 43 with gcd(m, 3) = 1 such that (l,m) ∈ ∑

(3).

l m
2 2,11,13,22,23,26
3 2,4,5,8,10,11,16,17,20,22,23,25,29,32,34,40,41
4 2,4,7,8,11,13,14,19,22,23,26,28,31,37,38,42
5 2,4,5,7,8,10,13,14,16,17,19,20,23,26,28,29,32,34,35,37,38,40,41,43
6 2,4,5,8,10,11,13,16,17,20,22,23,25,26,29,32,34,40,41
7 2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,25,26,28,31,32,34,35,37,38,40,41
8 2,4,5,7,8,10,11,13,14,16,19,20,22,23,25,26,28,29,31,35,37,38,40,43
9 2,4,5,7,8,10,11,13,14,16,17,20,22,23,25,26,28,29,31,32,34,35,40,41,43
10 2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,26,28,29,32,34,35,37,38,40,41,43
11 2,4,5,7,8,10,11,13,14,16,17,19,20,22,25,26,28,29,31,32,34,35,37,38,40,41,43
12 2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,25,26,28,29,31,32,34,37,38,40,41,43
14 2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,25,26,28,31,32,34,35,37,38,40,41
15 2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,25,26,28,29,32,34,35,37,38,40,41,43
16 2,4,5,7,8,10,11,13,14,16,19,20,22,23,25,26,28,29,31,32,35,37,38,40,41,43
18 2,4,5,7,8,10,11,13,14,16,17,20,22,23,25,26,28,29,31,32,34,35,40,41,43
20 2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,26,28,29,31,32,34,35,37,38,40,41,43
21 2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,25,26,28,29,31,32,34,35,37,38,40,41
28 2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,25,26,28,31,32,34,35,37,38,40,41,43
30 2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,25,26,28,29,32,34,35,37,38,40,41,43
42 2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,25,26,28,29,31,32,34,35,37,38,40,41

.

Now we give a list of some (l,m) values such that without the decomposition of R(m, q)
to field extensions of Fq, we can realize if (l,m) ∈ ∑

(q) or not.

Proposition 2.3. Let m|qn − 1, for some n ≥ 1 and n be minimal. Then Dq(m) =
{1 ̸= l ∈ N | l | n}.

Proof: Let {s1, . . . , sk} be a complete set of representatives of cyclotomic cosets of q

modulo m [3, Definition 3.4.5], and d =
qn − 1

m
. Suppose that Ddsi(1 ≤ i ≤ k) is the dsi-th

cyclotomic cosets of q modulo qn − 1. Put |Ddsi | = ti (1 ≤ i ≤ k). By [3, Theorem 3.4.11
and Remark 3.4.9(i)], we have Tq(m) = {t1, . . . , tk}. It is easy to see that ti|n (1 ≤ i ≤ k)

3
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and so Dq(m) ⊆ {1 ̸= l ∈ N | l|n}. Conversely, let 1 ̸= l|n. We will prove that l ∈ Dq(m).
Without loss of generality, assume that s1 = 0 and s2 = 1. Then |Dds2 | = |Dd| = t2. Since
t2|n, t2 ≤ n. We will prove t2 = n. By [3, Definition 3.4.5], t2 is the minimal number such
that dqt2 ≡ d(mod qn − 1). Since qn − 1 = md, m|qt2 − 1 and since n is minimal, t2 = n.
Then n ∈ Tq(m). Now by the definition of Dq(m), l ∈ Dq(m) and the proof is complete.

Corollary 2.4. Let l,m be positive integers such that l > 1, m|qn−1, for some n ≥ 1
and n be minimal. Then (l,m) ∈ ∑

(q) if and only if l ̸ |n.
Proof: It follows by Theorem 2.1 and Proposition 2.3.

Example 2.5. i) Let m = 1023. Since 1023 = 210 − 1, by Corollary 2.4, (l, 1023) ∈∑
(2) if and only if l /∈ {2, 5, 10}.
Let m = 51. We have 51|28 − 1 and 8 is minimal. By Corollary 2.4, (l, 51) ∈ ∑

(2) if
and only if l /∈ {2, 4, 8}.

Let A(q) = {m ∈ N | m | qm−1 − 1 and m ∤ qn − 1, for all n < m− 1}.
Corollary 2.6. Let k ∈ A(q) and m ≡ k(mod qk). Then for every l, such that l|k−1,

(l,m) /∈ ∑
(q).

Proof: Let k ∈ A(q) andm ≡ k(mod qk). So there exists t ∈ N such thatm = qtk+k.
Hence xm − 1 = (x− 1)(xqtk+k−1 + xqtk+k−2 + · · ·+ x2 + x+ 1). Let f(x) = xk−1 + · · ·+
x2 + x + 1. Since k ∈ A(q), the cyclotomic cosets of q modulo k are C0 = {0} and
C1 = {1, q, . . . , qk−2}. So {0, 1} is a complete set of representatives of cyclotomic cosets of
q modulo k. Therefore by [3, Corollary 3.4.12], the number of monic irreducible factors of
xk − 1 over Fq is equal to 2. Then xk − 1 = (x− 1)f(x) and so f(x) ∈ Fq[x] is irreducible.

Let g(x) = xqtk+k−1+xqtk+k−2+· · ·+x2+x+1 and h(x) = xqtk+x(qt−1)k+· · ·+x2k+xk+1.
We have g(x) = f(x)h(x) and so f(x)|g(x). Hence f(x)|xm−1. Now since degf(x) = k−1,
k − 1 ∈ Tq(m) and the proof follows by Theorem 2.1.

3. Conclusion

In this paper for every length ml, index l quasi-cyclic code C, only by knowing the
set Tq(m), we can realize if that (l,m) ∈ ∑

(q) or not. Also we give a list of some (l,m)
values such that without knowing the set Tq(m), we can realize if (l,m) ∈ ∑

(q) or not.
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Abstract. In this paper we develop a theory based on g-fusion frames on Hilbert spaces,
which provides exactly the frameworks not only to model new frames on Hilbert spaces
but also for deriving robust operators. In particular, we can define analysis, synthesis
and frame operators with representation space compatible for (C,C′)-Controlled g-fusion
frames, which even yield a reconstruction formula.
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1. Introduction

Frames, as a generalization of the bases in Hilbert spaces, were first introduced by
Duffin and Schaeffer [2] during their study of nonharmonic Fourier series in 1952.

Throughout this paper H and K are separable Hilbert spaces, {Hj}j∈I is a sequence
of Hilbert spaces and I ⊆ Z. We denote by B(H,K) the set of all the bounded and linear
operators from H to K. If H = K, then B(H,H) will be denoted as B(H). Also, GL(H)
is called the set of all bounded linear operators which have bounded inverses on H. It is
easy to check that if C,C ′ ∈ GL(H), then C∗, C−1 and CC ′ are in GL(H). Assume that
IdH is the identity operator on H and πW is the orthogonal projection from H onto a
closed subspace V ⊆ H.

Definition 1.1. [3] Let W := {Wi}i∈I be a family of closed subspaces of H, {vi}i∈I
be a family of weights i.e. vi > 0 for all i ∈ I and Λi ∈ B(H,Hi). We say Λ := (Wi,Λi, vi)
is a g-fusion frame for H if there exist constants 0 < A ≤ B < ∞ such that for all f ∈ H

A ∥f∥2 ≤
∑

i∈I
v2i ∥ΛiπWif∥2 ≤ B∥f∥2.

We call Λ a Parseval g-fusion frame if A = B = 1. When the right hand of above
inequality holds, Λ is called a g-fusion Bessel sequence for H with bound B. We define
the space

H2 := (
∑

j∈J

⊕
Hj)l2

∗Speaker. Email address:ghrahimlo@tvu.ac.ir
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by:

H2 =
{
{fj}j∈J : fj ∈ Hj ,

∑

j∈J
∥fj∥2 < ∞

}
.

with the inner product defined by

⟨{fj}, {gj}⟩ =
∑

j∈J
⟨fj , gj⟩.

2. Main results

Definition 2.1. Let W := {Wi}i∈I be a family of closed subspaces of H and {vi}i∈I
be a family of weights i.e. vi > 0 for all i ∈ I. Let {Hi}i∈I be a sequence of Hilbert spaces,
C,C ′ ∈ GL(H) and Λi ∈ B(H,Hi). ΛCC′ := (Wi,Λi, vi) is a (C,C ′)-controlled g-fusion
frame (briefly CC ′-GF) for H if there exist constants 0 < A ≤ B < ∞ such that for all
f ∈ H

A ∥f∥2 ≤
∑

i∈I
v2i ⟨ΛiπWiC

′f,ΛiπWiCf⟩ ≤ B ∥f∥2 .

We call ΛCC′ is a Parseval CC ′-GF if A = B = 1. If only the second Inequality is
required, We call ΛCC′ is a (C,C ′)-Controlled Bessel g-fusion sequence (briefly CC ′-GBS)
with bound B If we assume ΛCC′ is a CC ′-GF for H and C∗πWiΛ

∗
iΛiπWiC

′ is a positive
operator for each i ∈ I, then C∗πWiΛ

∗
iΛiπWiC

′ = C ′∗πWiΛ
∗
iΛiπWiC and therefore

A ∥f∥2 ≤
∑

i∈I
v2i

∥∥∥(C∗πWiΛ
∗
iΛiπWiC

′)1/2f
∥∥∥
2
≤ B ∥f∥2 .

Let

K2
Λj

:= {vi(C∗πWiΛ
∗
iΛiπWiC

′)
1
2 f : f ∈ H} ⊂ (

⊕

i∈I
H)l2 .

It is easy to check that K2
Λj

is a closed subspace. We can define the controlled analysis

operator T ∗
Λ by

T ∗
Λ : H → K2

Λj
,

T ∗
Λf = {vi(C∗πWiΛ

∗
iΛiπWiC

′)
1
2 f}i∈I.

It is easy to check that the controlled analysis operator is bounded linear operator. Thus,
TΛ := (T ∗

Λ)
∗ is well-defined and bounded and the controlled synthesis operator TΛ can be

defined by

TΛ :K2
Λj

→ H,

TΛ

(
vi(C

∗πWiΛ
∗
iΛiπWiC

′)
1
2 f

)
=

∑

i∈I
v2iC

∗πWiΛ
∗
iΛiπWiC

′f.

Now, we can define the CC ′-GF operator SCC′ on H by

SCC′f := TΛT
∗
Λf =

∑

i∈I
v2iC

∗πWiΛ
∗
iΛiπWiC

′f.

We can write for each f ∈ H

⟨SCC′f, f⟩ =
∑

i∈I
v2i ⟨C∗πWiΛ

∗
iΛiπWiC

′f, f⟩
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=
∑

i∈I
v2i ⟨ΛiπWiC

′f,ΛiπWiCf⟩,

therefore, we get

AIdH ≤ SCC′ ≤ BIdH .

Theorem 2.2. [4] ΛCC′ be a CC ′-GBS for H with bound B if and only if the operator

TΛ :K2
Λj

→ H,

TΛ(vi(C
∗πWiΛ

∗
iΛiπWiC

′)
1
2 f) =

∑

i∈I
v2iC

∗πWiΛ
∗
iΛiπWiC

′f.

is well -defined and bounded operator with ∥TΛ∥ ≤
√
B.

Proof. The necessary condition follows from the definition of CC ′-GBS. We only
need to prove that the sufficient condition holds. Let TΛ be well-defined and bounded
operator with ∥TΛ∥ ≤

√
B. For any f ∈ H , we have

∑

i∈I
v2i ⟨ΛiπWiC

′f,ΛiπWiCf⟩ =
∑

i∈I
v2i ⟨C∗πWiΛ

∗
iΛiπWiC

′f, f⟩

= ⟨TΛ

(
vi(C

∗πWiΛ
∗
iΛiπWiC

′)
1
2 f

)
, f⟩

≤ ∥TΛ∥
∥∥∥(vi(C∗πWiΛ

∗
iΛiπWiC

′)
1
2 f

∥∥∥ ∥f∥ .

But
∥∥∥(vi(C∗πWiΛ

∗
iΛiπWiC

′)
1
2 f

∥∥∥
2
=

∑

i∈I
v2i ⟨ΛiπWiC

′f,ΛiπWiCf⟩.

It follows that ∑

i∈I
v2i ⟨ΛiπWiC

′f,ΛiπWiCf⟩ ≤ B ∥f∥2

and this means that ΛCC′ is a CC ′-GBS for H. �

Theorem 2.3. [4] Let C ∈ GL+(H). Λ := (Wi,Λi, vi) is a g-fusion frame for H if
and only if Λ is a CC-GF.

Proof. Suppose that Λ is a CC-GF with Bounds A and B for H. for each f ∈ H,
we obtain

A ∥f∥2 = A
∥∥CC−1f

∥∥2

≤ A ∥C∥2 .
∥∥C−1f

∥∥2

≤ ∥C∥2
∑

i∈I
v2i

∥∥ΛiπWiCC−1f
∥∥2

= ∥C∥2
∑

i∈I
v2i ∥ΛiπWif∥2

Hence

A ∥C∥−2 ∥f∥2 ≤
∑

i∈I
v2i ∥ΛiπWif∥2 .
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On the other hand, for any f ∈ H, we have
∑

i∈I
v2i ∥ΛiπWif∥2 =

∑

i∈I
v2i

∥∥ΛiπWiCC−1f
∥∥2

≤ B
∥∥C−1f

∥∥2

≤ B
∥∥C−1

∥∥2 . ∥f∥2

Thus, Λ is a g-fusion frame for H with bounds A ∥C∥−2,B
∥∥C−1

∥∥2.
Conversely, assume that Λ is a g-fusion frame for H with bounds A,B. Then, for each

f ∈ H we get
∑

i∈I
v2i ⟨ΛiπWiCf,ΛiπWiCf⟩ =

∑

i∈I
v2i ∥ΛiπWiCf∥2 ≤ B ∥C∥2 ∥f∥2 .

For the lower bound, we can write for any f ∈ H,

A ∥f∥2 = A
∥∥C−1Cf

∥∥2

≤ A
∥∥C−1

∥∥2 ∥Cf∥2

≤
∥∥C−1

∥∥2∑

i∈I
v2i ∥ΛiπWiCf∥2 .

Therefore, Λ is a CC-GF for H with bounds A
∥∥C−1

∥∥−2
, B

∥∥C−1
∥∥−2

. �
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Abstract. Let S be a monoid. A right S−act A is said to be C-epiretractable if every
cyclic subact B of A, is a homomorphic image of A. Our objective is to give some
examples and characterizations of C-epiretractable acts by properties of underlying sets
and investigate the relation between these properties with some other properties such as
injectivity, projectivity and flatness.
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1. Introduction and Preliminaries

Throughout this article, unless otherwise stated, S will denote a monoid and a right
S-act AS (or act A for short) is a unitary S-act. Retractablity of modules over rings was
introduced in [2] and many papers on this notion have been published since then. In
the category of S−acts (Act-S) the concept of retractablity was introduced by Khosravi
in [1]. As in [1], an S-act A is called retractable if for any subcat B of A, Hom(A,B) 6= φ.
Here we introduce a generalization of retractable acts. The right S-act A is said to be
C-epireractable if any cyclic subact of A is a homomorphic image of A, i.e., for any a ∈ A,
there exists an epimorphism f : A −→ aS. In this paper the notion of C-epiretractable
acts is investigated and some classifications of monoids are given when C-epiretractablity
of acts implies some other properties. Another related generalization of this notion in
Act-S, is defined in [4] as follows. A right S-act is called fully idempotent if for any
subact B of A, B =

⋃
α∈Hom(A,B)

α(B). It is easy to see the following strict implications.

being a fully idempotent act ⇒ C-epiretractablity ⇒ retractablity
Recall from [3, Page 146] that the trace of an S-act B in an S-act A is defined by

Tr(B,A) :=
⋃

ϕ∈Hom(B,A)

ϕ(B).

Also by [3, Theorem 2.3.16] an S-act G is a generator if and only if Tr(G,S) = SS . An
S-act A is called injective if for any S-act B, any subact C of B and any homomorphism
f : C −→ A, there exists a homomorphism f̄ : B −→ A such that f̄ |C= f . Some

∗Speaker. Email address: m.rooeintan@yahoo.com
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weak forms of injectivity are studied in [3]. We denote in short ”weake injectivity”,
”finitely generated weak injectivity” and ”principal weak injectivity” by w-injectivity, fg-
w injectivity and pw-injectivity respectively. Moreover the one element act is denoted by
Θ = {θ}. For an S-act A, by E(A), we mean the injective envelop of A. we refer the
reader to [3] for a thorough account on the preliminaries.

2. Main results

Definition 2.1. Over a semigroup S, an S-act A is said to be C-epireractable, if for
any cyclic subact C of A, there exists an epimorphism f : A −→ C.

Clearly every monoid S is C-epiretractable and by a routine argument we can see that
over a commutative monoid S any cyclic S-act is C-epiretractable. Also every generator
in the category of right S−acts is C-epiretractable. In particular, A×S is C-epiretractable
for any S-act A. The following proposition contains some properties of C-epiretractable
acts which are needed in the sequel. Recall that a subcat B of an S-act A is called fully
invariant if f(B) ⊆ B for any homomorphism f : A −→ A (for more details see [5]). Also
by A/B we mean the Rees factor act A/ρB of A by a subact B.

Proposition 2.2. The following statements hold over a monoid S:
(i) A right S-act A is C-epiretractable if and only if Tr(A,B)=B for any subact B of A.
(ii) For a C-epiretractable act A, if B is a fully invariant subact, A/B is C-epiretractable.
In particular A/AI is C-epiretractable for every right ideal I of S.

(iii) If {Ai}i∈I is a family of C-epiretractable acts which Hom(Ai, Aj) 6= ∅ for any i, j ∈ I,
then

∐
i∈I
Ai is C-epiretractable. In particular every free S-act is C-epiretractable.

Note that in general C-epiretractable acts are not preseved under product and coprod-
uct. For instance, see [4, Example 2.4].

Proposition 2.3. Let S be a left reversible monoid. If every injective act is C-
epiretractable, then every projective act is injective.

Now we give some classifications of monoids when C-epiretractable acts imply other
properties of S−acts.

Suppose (P) is a property on S−acts which is transferable from products to their
components. Regarding the fact that A × S is C-epiretractable for any S-act A, we
conclude that all acts have property (P) if and only if all C-epiretractable acts have (P).
Consequently the next corollary is clear.

Proposition 2.4. Over a monoid S all acts are injective (resp. w-injective, fg-w
injective, pw-injective, divisible) if and only if all C-epiretractable acts are injective (resp.
w-injective, fg-w injective, pw-injective, divisible).

Proposition 2.5. The following conditions are equivalent over a monoid S.
(i) All acts are projective.
(ii) All C-epiretractable acts are projective.
(iii) S = {1}.

Proof. (ii)⇒ (i) Since the right S-act Θ is projective, S contains a left zero. Thus for
every S-act A, the projectivity of A×S implies projectivity of A. (i)⇔ (iii) See [3, section
4.11]. �

Proposition 2.6. Suppose S is a monoid. All acts are weakly flat(falt) if and only if
all C-epiretractable acts are weakly flat(falt).
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Proof. Note that the right S-act Θ is weakly flat if and only if S is right reversible
(see [3, 3.11.2]). Now since by assumption A × S is weakly flat for any right S-act A,
by [6, Theorem 3.3] the result follows. The proof for flat acts is similar. �

Proposition 2.7. The following conditions are equivalent over a monoid S:
(i) All acts are principally weakly flat.
(ii) All C-epiretractable acts are principally weakly flat.
(iii) S is a regular monoid.

A right S-act A satisfies Condition (P) if as = a′s′ for a, a′ ∈ A, s, s′ ∈ S, implies the
existence of a′′ ∈ A, u, v ∈ S such that a = a′′u, a′ = a′′v, us = vs′. If I is a proper right
ideal of S and i ∈ I, then considering the structure of S tI S, (1, x)i = (1, y)i = i. But
there is no element a′′ ∈ S tI S such that (1, x) = a′′u and (1, y) = a′′v for any u, v ∈ S.
Thus S tI S does not satisfy condition (P). Accordingly the following proposition can be
proved using [3, Theorem 4.9.10].

Theorem 2.8. The following conditions are equivalent over a monoid S:
(i) All acts satisfy condition (P).
(ii) All C-epiretractable acts satisfy condition (P).
(iii) S is a group.

A right S-act A satisfies Condition (E) if as = as′ for a ∈ AS , s, s′ ∈ S, implies that
there exist a′ ∈ A, u ∈ S such that a = a′u, us = us′. By a straightforward argument, we
can see that the right S-act Θ satiesfies condition (E) if and only if S is left collapsible.

Theorem 2.9. The following conditions are equivalent over a monoid S:
(i) All acts satisfy condition (E).
(ii) All C-epiretractable acts satisfy condition (E).

Proof. (ii)⇒ (i) Since the right S-act Θ satisfies condition (E), S is left collapsible.
Now since A×S satisfies condition (E) for any S-act A, by [6, Theorem 3.5], we have the
result. �

Theorem 2.10. The following conditions are equivalent over a monoid S:
(i) All acts are torsion free.
(ii) All C-epiretractable acts are torsion free.
(iii) Every right cancellable element of S is right invertible.

Theorem 2.11. The following conditions are equivalent over a monoid S:
(i) All acts are free.
(ii) All C-epiretractable acts are free.
(iii) S = {1}.

Recall that any cofree S-act can be considerd of the form XS = {f | f : S −→ X}
where X is a non-empty set and (fs)t = f(st) for any s, t ∈ S. Thus if the right S-act SS
is cofree then for some set X, | S |=| XS | which implies that S = {1}. Now we have the
following proposition.

Theorem 2.12. The following conditions are equivalent over a monoid S:
(i) All acts are cofree.
(ii) All C-epiretractable acts are cofree.
(iii) S = {1}.
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3. Conclusion

In this paper over a monoid S, we introduce a class of right S-acts namely C-epiretractabe
acts which are useful to characterize monoids over which all acts are projrctive, injective(
w-injective, fg-w injective, pw-injective, divisible), flat (weakly falt, principally weakly
flat).
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Abstract. A geodesic circle in Finsler geometry is a natural extension of that in a
Euclidean space. In this paper, we characterize Finsler manifolds admitting a concircular
transformation such that the difference of the two Ricci tensors is a constant multiple
of the metric. We characterize a concircular transformation with some PDEs on the
tangent bundle, and then we obtain the solution.
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1. Introduction
A geodesic circle in an Euclidean space is a straight line or a circle with finite positive

radius, which can be generalized naturally to Riemannian or Finsler geometry. Firstly, In
1940, Yano introduced concircular transformations on Riemannian manifolds [7]. Exactly,
a geodesic circle in a Riemannian manifold, as well as in a Finsler space, is a curve with
constant first Frenet curvature and zero second one. In other words, a geodesic circle is a
torsion free curve with constant curvature. A concircular transformation on a Riemann-
ian manifold is a conformal transformation which preserves geodesic circles ( [2], [7]).
Many researchers have developed the theory of concircular transformations to different
contents. In 1970, Vogel showed that every concircular transformation on a Riemannian
manifold is conformal. This notion has been extended to Finsler geometry by Agrawal and
Izumi [1]. Also, a similar result is proved by Bidabad and shen in 2012 [4]. That is, every
transformation which preserves geodesic circles has to be conformal. So, by the modified
definition, a diffeomorphism φ, between two Finsler manifolds (M,F ) and (M̄, F̄ ), is said
to be concircular if it maps geodesic circles to geodesic circles. Also, two Finsler metrics
defined on a manifold are said to be concircular if they have the same geodesic circles.

In a coordinate system, For a Finsler metric F = F (x, y) on a manifold M , the fun-
damental metric tensor gij(while gij is its inverse), the Cartan torsion Ci

jk and the mean
Cartan torsion Ii (respectively) will be denoted as follow:

gij := ∂̇i∂̇j(
F 2

2
), 2Cijk := ∂̇kgij , Ii := gjkCijk = Cr

ir, (∂̇i =
∂

∂yi
).(1)
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Clearly, a Finsler metric will be a Riemannian metric if its Cartan torsion or mean Cartan
torsion be null [3]. In this paper, we consider concircular transformations on a Finsler man-
ifold, where the difference of whose Ricci tensors are a constant multiple of the Finsler
metric F̄ . A geodesic circle in an Euclidean space is a straight line or a circle with
finite positive radius, which can be generalized naturally to Riemannian or Finsler ge-
ometry. Firstly, In 1940, Yano introduced concircular transformations on Riemannian
manifolds [7]. Exactly, a geodesic circle in a Riemannian manifold, as well as in a Finsler
space, is a curve with constant first Frenet curvature and zero second one. In other words,
a geodesic circle is a torsion free curve with constant curvature. A concircular transfor-
mation on a Riemannian manifold is a conformal transformation which preserves geodesic
circles ( [2], [7]). Many researchers have developed the theory of concircular transforma-
tions to different contents. In 1970, Vogel showed that every concircular transformation on
a Riemannian manifold is conformal. This notion has been extended to Finsler geometry
by Agrawal and Izumi [1]. Also, a similar result is proved by Bidabad and shen in 2012 [4].
That is, every transformation which preserves geodesic circles has to be conformal. So, by
the modified definition, a diffeomorphism φ, between two Finsler manifolds (M,F ) and
(M̄, F̄ ), is said to be concircular if it maps geodesic circles to geodesic circles. Also, two
Finsler metrics defined on a manifold are said to be concircular if they have the same
geodesic circles.

In a coordinate system, For a Finsler metric F = F (x, y) on a manifold M , the fun-
damental metric tensor gij(while gij is its inverse), the Cartan torsion Ci

jk and the mean
Cartan torsion Ii (respectively) will be denoted as follow:

gij := ∂̇i∂̇j(
F 2

2
), 2Cijk := ∂̇kgij , Ii := gjkCijk = Cr

ir, (∂̇i =
∂

∂yi
).(2)

Clearly, a Finsler metric will be a Riemannian metric if its Cartan torsion or mean Cartan
torsion be null. In this paper, we consider concircular transformations on a Finsler man-
ifold, where the difference of whose Ricci tensors are a constant multiple of the Finsler
metric F̄ .

2. Preliminary
Let M be an n−dimensional manifold of class C∞. We denote by π : TM → M the

bundle of tangent vectors and by π0 : TM0 → M the fiber bundle of non-zero tangent
vectors. A Finsler structure on M is a function F : TM → [0,∞), with the following
properties:

I) F is differentiable (C∞) on TM0;
II) F (x, y) is positively homogeneous of degree one in y, i.e. F (x, λy) = λF (x, y),∀λ >

0, where we denote an element of TM by (x, y).

III) The Hessian matrix of F 2

2 is positive definite on TM0; gij := 1
2

∂2F 2

∂yi∂yj
.

A Finsler manifold (M, g) is a pair of a differential manifold M and a tensor field
g = (gij) on TM which defined by a Finsler structure F. The spray of a Finsler
structure F is a vector field on TM as:

G = yi
∂

∂xi
− 2Gi ∂

∂yi
(3)
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and Gi be the geodesic coefficients of F , which are defined by

Gi =
1

4
gil{F 2

xmyly
m − F 2

xl}(4)

where gij(x, y) :=
1
2 [F

2]yiyj (x, y) and (gij) := (gij)
−1.

The geodesics of F are characterized by the second order differential equation:
d2ci

dt2
+ 2Gi(c(t), ċ(t)) = 0.

The Riemann curvature Ry : TpM → TpM is a linear transformations on tangent spaces,
which is defined by

Ry = Ri
k

∂

∂xi
⊗ dxk(5)

Ri
k := 2

∂Gi

∂xi
− yj

∂2Gi

∂xj∂yk
+ 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.(6)

For a two-dimensional plane P ⊂ TpM and y ∈ TpM \ {0} such that P = span{y, u}, the
pair {P, y} is called a flag in TpM . The flag curvature K(P, y) is defined by

K(P, y) :=
gy(u,Ry(u))

gy(y, y)gy(u, u)− gy(y, u)2
.

We say that F is of scalar curvature if for any y ∈ TpM \ {0} the flag curvature K(P, y) =
λ(y) is independent of P containing y. This is equivalent to the following condition in a
local coordinate system (xi, yi) in TM :

Ri
k = λF 2{δik − F−1Fyky

i}.
If λ is a constant, then F is said to be of constant curvature.
The Ricci curvature is the trace of the Riemann curvature, i.e.,

Ric(y) := Rm
m(y)(7)

and R(y) := 1
n−1Ric(y) is called the Ricci scalar.

Let F̄ and F be two Finsler metrics on an n-dimensional manifold M . There is a
relation between the geodesic coefficients Ḡi and Gi as follows:

Ḡi = Gi +
F̄;ky

k

2F̄
yi +

F̄

2
ḡil{F̄;k.ly

k − F̄;l}.(8)

If F̄ = ec(x)F then we have

Ḡi = Gi + (cky
k)yi − F 2

2
ci,

where ci = gilcl.

Example 2.1. Examples of geodesic circles are small circles on the sphere. It is not
required that a geodesic circle is a closed curve. It might be something like a spiral even
if the length is infinite.

Lemma 2.2. (Yano [7]): c is a geodesic circle in Riemannian space if and only if ...c
is a scalar multiple of ċ. In this case necessarily ...

c = −⟨c̈, c̈⟩.ċ .
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Lemma 2.3. Let F̄ and F be two conformally related Finsler metrics on a same
manifold M with F̄ = u−1F. Then we have

• F̄ and F are concircular if and only if
ui|j = λgij , urCk

ri = 0, (ui := uxi , ui := girur),(9)
where λ = λ(x) is a scalar function on M and the symbol | means the horizontal
covariant derivative of Cartan (or Chern) connection.

3. Main results
Theorem 3.1. Let (M,F ) be a Finsler metric and admitting a concircular transfor-

mation F̄ = u−1F satisfying
(10) Ricḡ −Ricg = (n− 1)cF̄ 2

where c is a constant and u = u(x) is a scalar function on M , Then we have:
1. If c is zero we have the solution in (22).

2. For any c we have the solution in (23).

proof of Theorem 3.1. We give a brief introduction for some basic points needed
here. It is known that if two sprays Ḡi and Gi satisfy equation Ḡi = Gi +H i, then their
Reimann curvature tensors satisfy
(11) R̄i

k = Ri
k + 2H i

;k − ymH i
;m.k + 2HmH i

.m.k −H i
.mHm

.k

where the symbol “ ; ” denotes the horizontal covariant derivative of Berwald connection
of Gi.
Now, since F̄ = u−1F, the sprays Ḡi and Gi (related to F̄ and F , respectively) satisfy the
following equalities:

Ḡi = Gi − 1

u
u0y

i +
1

2u
F 2ui, Ḡi

j = Gi
j −

1

u
(ujy

i + u0δ
i
j − yju

i + F 2Ci
jru

r)(12)

by taking H i

(13) H i = −1

u
u0y

i +
1

2u
F 2ui

and plugging (13) into (11), we obtain

R̄i
k = Ri

k +
uu0;0 − (umum)F 2

u2
δik +

1

u
F 2ui;k +

umum
u2

yiyk − 1

u
(yiuk;0 + yku

i
;0)

−umur

u2
F 2(yiCkmr + ykC

i
mr) +

1

u2
F 2(uur;0 − 3u0u

r)Ci
kr +

1

u
F 2urCi

kr;0

+
urum

u2
F 4(Ci

prC
p
km − Ci

mr.k).(14)

Then by (14), the Ricci curvatures R̄ic := R̄m
m and Ric := Rm

m are related by

R̄ic = Ric+
n− 2

u
u0;0 +

1

u2
[uum;m − (n− 1)umum + uIrur;0 + ur(uIr;0 − 3u0Ir)]F

2

− 1

u2
urum(Ci

jmCj
ir − 2IiCimr + Im.r)F

4.(15)

Now suppose F and F̄ are concircular. Then by Lemma 2.3, we have
(16) ui|j = λgij , u

rCk
ri = 0, (ui := uxi , ui := girur),
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where λ = λ(x) is a scalar function on M and the symbol | means the horizontal covariant
derivative of Cartan (or Chern) connection of F. Plugging (16) into (14) and (15), we
respectively have

R̄i
k = Ri

k + u−2(2λu− umum)(F 2δik − yiyk),(17)
Ricḡ = Ricg + (n− 1)u−2(2λu− umum)F 2.(18)

Substituting (10) into (18) yields
umum − 2λ(x)u(x) + c = 0(19)

where ∥∇u∥2 := umum = gimuium.
∥∇u∥2 − 2λ(x)u(x) + c = 0(20)

We have along the unit speed geodesic γ(t) in the direction of grad u = u′. ∂∂t . Hence we
get

(u′)2 − 2λ(x)u(x) + c = 0(21)
Case I: c = 0. From (21) we can obtain the solution of u in the following

(22) u(x) =
1

2
(

∫ √
λ(x)dx+ const)2.

Case II: for any c we have

u(x) =
1

2
λ(x+ const)2 +

c

(2λ)
.(23)

Therefore the general solution of u is

(24) u(x) =
1

2
(

∫ √
λ(x)dx+ const)2 + af(x)

where a is a constant. □

References
1. P. Agrawal, On the concircular geometry in Finsler spaces, Tensor N.S. 23 , 333-336 (1972).
2. A. Fialkow, The conformal theory of curves, Transaction of Am. Math. Society, vol 51, 435-497, (1942).
3. A. Deicke, Uber die Finsler-Raume mit Ai = 0, Arch. Math. (1953), 4, 45-51.
4. B. Bidabad and Z. Shen, Circle-preserving transformations in Finsler spaces, Publ. Math. Debr. 81,

2012, 435-445.
5. W. Kühnel, and H-B. Rademacher, Conformal diffeomorphisms preserving the Ricci tensor, Proceedings

of the American Mathematical Society, 123, 9, (1995), 2841-2848.
6. W. Kühnel, Conformal Transformations between Einstein Spaces, 1988.
7. K. Yano, concircular geometry I,II,III,IV,V (16) (1940-1942), 446-451.

833



Generalized harmonic analysis on the Amalgam spaces

Navid Sabzali ∗

Department of Mathematics, Behbahan Branch,Islamic Azad University, Behbahan, Iran

Abstract. In this paper, we deal with the amalgam spaces in the following way. Let G
be a locally compact group and p, q > 0. In this paper, we investigate some inclusions and
important properties of the amalgam space Lπ

(p,q)(G). Also in this work, we investigate

the property that when f ∗ g exists, for all f, g ∈ Lπ
(p,q)(G), for the case that G an

IN-group.
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1. Introduction

The first version of the amalgam spaces has been introduced on the real line as

(Lp, lq)(R) :=



f ∈ Lp

loc(R) :

[∑

n∈Z

(∫ n+1

n
|f |pdx

) q
p

] 1
q

< ∞



 ,

where 1 ≤ p, q < ∞ and Lp
loc(R) is the space consisting of all locally integrable functions

on R; see [3]. Then Bertrandias et al [1] generalized this definition for some special abelian
locally compact groups G.

In 1979, Stewart [4] extended the definition of Bertrandias to locally compact abelian
group G.
In 1980, Busby and Smith [2] generalized the definition of Stewart for an arbitrary locally
compact group G, not necessarily abelian. This definition is based on a so-called U − V
uniform partition π of G, where U and V are relatively compact open neighborhoods of
identity with U ⊆ V. These spaces were denoted by Lπ

(p,q)(G); see [2] for more information

about these spaces.
An important aspect of amalgam space theory is that spaces Lp(G) are their particular
cases. For example if G is compact, then Lπ

(p,q)(G) reduces to Lp(G). Also if G is discrete

then, Lπ
(p,q)(G) = ℓq(G). This provides the possibility of extending the known results in

∗Speaker. Email address: Sabzali.navid5@gmail.com

834



N. Sabzali

the theory of spaces Lp(G) to amalgam spaces. For measurable functions f and g on G,
the convolution multiplication

(f ∗ g)(x) =
∫

G
f(y)g(y−1x)dλ(y)

is defined at each point x ∈ G if the function y 7→ f(y)g(y−1x) is λ−integrable. Then f ∗g
is said to exist if (f ∗ g)(x) exists for almost all x ∈ G a.e. Moreover (f ∗ g) exists locally
almost every where (l.a.e) if (f ∗ g) exists a.e on any compact subset K ⊆ G.

2. Preliminaries

In this section we provide some required definitions, preliminaries and known results;
see [2] and [5] for more information.

Throughout the work G is a locally compact group with the fixed left Haar measure λ.
Let U and V be two relatively compact open neighborhoods of the identity element of G,
such that U ⊆ V . The partition π of G is called Borel if it consists of disjoint Borel subsets
of G. A Borel partition π is called (U − V )−uniform if for each E in π there is x ∈ G
such that xU ⊆ E ⊆ xV . A Borel partition is called uniform if it is a (U − V )−uniform
partition, for some U and V with U ⊆ V . By [2, Proposition 3.3], for a locally compact
group G, uniform partitions exist in abundance. In fact for every symmetric relatively
compact open neighborhood of the identity U , there exists a (U −U2)−uniform partition
of G. Recall that a relatively compact neighborhood of identity is called invariant if
xW = Wx, for each x ∈ G. It is easily verified that for any such a this neighborhood of
identity W , if π1 is a (W −W 2)−uniform partition of G, then

π−1
1 = {E−1 : E ∈ π}

is also a (W −W 2)−uniform partition of G.
Let π be an U −V uniform partition of G. The amalgam space of Lp and ℓq (p, q > 0)

is the space, consisting of all functions on G which are locally Lp and have lq behavior
at infinity in the sense that the Lp− norms over certain compact subsets of G form an
ℓq−sequence. In fact a complex-valued function f on G is called locally Lp and globally
lq relative to Borel partition π, if for each E in π

fE = fχE ∈ Lp(E),

and

∥f∥π(p,q) =
(∑

E∈π
∥fE∥qp

) 1
q

< ∞.

The space consisting of all such a these functions will be denoted by Lπ
(p,q)(G). By [2]

and [2] Lπ
(p,q)(G) is a Banach space, for p, q ≥ 1.

In [2, Proposition 3.8], it has been proved that if p, q > 1, then for all different uniform
partitions π1 and π2 of G, there are M1(π1, π2),M2(π1, π2) > 0 such that

(1) M1(π1, π2)∥f∥π2

(p,q) ≤ ∥f∥π1

(p,q) ≤ M2(π1, π2)∥f∥π1

(p,q)

for all λ−measurable functions f on G.
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3. Main results

We begin our study of amalgam spaces with some important inclusion relations.

Theorem 3.1. Let G be a locally compact group and p ≥ 1, q > 1. Then G is compact
if and only if Lπ

(p,q)(G) ⊆ L1(G).

Proof. If G is compact, then Lπ
(p,q)(G) = Lp(G) ⊆ L1(G). Now suppose that G is

not compact. Then there exist the infinite families {xαn} of G and {Eαn}∞n=1 of π such
that

xαnU ⊆ Eαn ⊆ xαnV

for all n ≥ 1. So

0 < λ(U) ≤ λ(Eαn) ≤ λ(V ) (n ∈ N).
Define

f :=

∞∑

n=1

1

nλ(Eαn)
χxαnU .

Thus for each n ∈ N

∥fEαn
∥p =

∥∥∥∥
χxαnEαn

nλ(Eαn)

∥∥∥∥
p

≤ 1

n(λ(U))
1− 1

p

.

This implies that

(∥f∥π(p,q))q =
∞∑

n=1

∥fEαn
∥qp ≤

1

λ(U)
q(1− 1

p
)

∞∑

n=1

1

nq

and so f ∈ Lπ
(p,q)(G) by q > 1. But

∫
f(x)dλ(x) =

∞∑

n=1

1

n

∫
χαnU (x)

λ(Eαn)
dλ(x) ≥ λ(U)

λ(V )

∞∑

n=1

1

n
= ∞,

which implies that f ̸∈ L1(G). This completes the proof. □

Now similar to the proof of Theorem 2.1, the following result is immidiate.

Theorem 3.2. Let G be a locally compact group, p > 1, q > 1. Then G is discrete if
and only if L1(G) ⊆ Lπ

(p,q)(G).

Theorem 3.3. Let G be a locally compact group and 0 < p, q < ∞. If either p or q is
less than 1, then Lπ

(p,q)(G) is a topological vector space.

Proof. For show this claim, it is sufficient to show that ∥.∥π(p,q) is a quasinorm.

Let f, g ∈ Lπ
(p,q)(G) with fα = fχEα and gα = gχEα for any α ∈ I.

If 1 ≤ p < ∞ and 0 < q < 1, we have

(∥f + g∥π(p,q))q = (
∑

α∈J ∥(f + g)α∥qp) ≤
∑

α∈J(∥fα∥p + ∥gα∥p)q
≤∑α∈J ∥fα∥qp +

∑
α∈J ∥gα∥qp ≤ (∥f∥π(p,q))q + (∥g∥(p,q))q.

So

(∥f + g∥π(p,q))q ≤ 2
1
q
−1

(∥f∥π(p,q) + ∥g∥π(p,q)).
□
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The Amalgame spaces have been studied for p ≥ 1, q ≥ 1 and in this case they known
that Lπ

(p,q)(G) is Banach space. However, if p or q is less than 1, it is a topological vector

space by using the following inequality.

Theorem 3.4. Let π and π
′
be respectively U −V and U

′ −V
′
uniform partitions of a

locally compact group G. Moreover, let 0 < p, q < ∞. Then, there exists M > 0 such that

(2) ∥f∥π
′

(p,q) ≤ M∥f∥π(p,q)
for any f ∈ Lπ

(p,q)(G).

Corollary 3.5. Let G ba locally compact group and 0 < p, q < ∞. Then f exists
l.a.e for any f ∈ Lπ

(p,q)(G).

Several authors have studied the existence of convolution on various function spaces.
they proved an important conjecture related to Lp−spaces, called Lp−conjecture. In fact
he proved that for 1 < p < ∞, f ∗ g exists and belongs to Lp(G) for all f, g ∈ Lp(G) if and
only if G is compact. This subject have been studied more recently. The main aim of the
present work is investigating the property that when f ∗ g exists, for all f, g ∈ Lπ

(p,q)(G),

for the case that IN-group (we say that a locally compact group G is an IN-group if there
is a compact neighborhood W of the identity such that xW = Wx for any x ∈ G).We
summarize all important results that we can easily obtain according to the above results
in the next theorem.

Theorem 3.6. Let G be a IN-group. Then we have the following statements.

(i) If p ≥ 1, q > 2, then G is compact if and only if for all functions f, g ∈ Lπ
(p,q)(G),

f ∗ g exists l.a.e.
(ii) If 0 < p < 1, 0 < q < 1, then G is discrete if and only if for all functions

f, g ∈ Lπ
(p,q)(G), f ∗ g exists l.a.e.

(iii) If p ≥ 1, 1 ≤ q ≤ 2, then for all functions f, g ∈ Lπ
(p,q)(G), f ∗ g exists.

(iv) If 0 < p < 1, q > 1 and f ∗ g exists l.a.e, for all functions f, g ∈ Lπ
(p,q)(G), then

G is discrete.
(v) If 0 < p < 1 and f ∗ g exists l.a.e for all functions f, g ∈ Lπ

(p,1)(G), then G is

discrete.
(vi) If 0 < q < 1, then f ∗ g exists l.a.e, for all functions f, g ∈ Lπ

(1,q)(G).
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Abstract. Let G be a finite group with trivial center and np(G) be the number of Sylow
subgroups of G. Put L = L2(q), where q ∈ {27, 32}, and suppose that np(G) = np(L),
for every prime p ∈ π(G). In this paper we show that G ∼= L, if q = 27, and G ∼= L or
Aut(L), if q = 32.
Keywords: projective special linear group, sylow subgroup, characterization
AMS Mathematics Subject Classification [2010]: 20D06, 20D20

1. Introduction
Let G be a finite group, n be a natural number and denote by π(n) the set of all prime

divisors of n. By Sylp(G) for every p ∈ π(G), we denote the set of Sylow p-subgroups of G,
and np(G) = |Sylp(G)|. A finite groupG is called characterizable by the order of normalizer
of its Sylow subgroups, if S ∼= G for every finite group S with |NS(P )| = |NG(Q)|, for
every P ∈ Sylp(S) and Q ∈ Sylp(G). This type of characterization is done for some simple
groups such as Alternating groups, Ln(q) [2], L2(p

k) [1] and Un(q) [3].
Let S be one of the above simple groups. If np(G) = np(S) for every prime p and

|G| = |S|, it is clear that G ∼= S. in [4] the assumption of |G| = |S| was replaced with
Z(G) = 1 and the authors proved the following theorem for some simple groups S = L2(q).

Theorem 1.1. Let G be a finite group with trivial center such that np(G) = np(L2(q),
for every prime p ∈ π(G), where q ∈ {16, 17, 19, 23, 25}. Then if q ∈ {16, 17, 19}, G ∼=
L2(q) and if q ∈ {23, 25}, L2(q) ⩽ G ⩽ Aut(L2(q)).

Also in [5], the following theorem was proved:

Theorem 1.2. Let G be a finite group with trivial center such that np(G) = np(L2(29),
for every prime p ∈ π(G). Then G ∼= L2(29).

In continue, we investigated the simple groups L2(27) and L2(32), and we show that
in this problem, G ∼= L, for L = L2(27), and G ∼= L or Aut(L), for L = L2(32).

∗Speaker. Email address: m.sajjadi@pnu.ac.ir
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2. Preliminaries
Lemma 2.1. Let G be a finite group and M be a normal subgroup of G. Then both

Sylow p-number np(M) and the Sylow p-number np(G/M) of the quotient G/M divide the
Sylow p-number np(G) of G and moreover np(M)np(G/M)|np(G).

Definition 2.2. A finite simple group is called a simple Kn-group if its order is
divisible by exactly n distinct primes.

Theorem 2.3. If G is a simple K3-group, then G is isomorphic to one of the following
groups: A5, A6, L2(7), L2(8), L2(17), L3(3), U3(3) and U4(2).

Lemma 2.4. Let S be a simple K4-group. Then S is isomorphic to one of the following
groups:

(1) L2(r) with r a prime satisfying r2 − 1 = 2a3buc, wherea≥ 1, b ≥ 1, c ≥ 1, u > 3 a
prime.

(2) L2(2
m) with 2m − 1 = u and 2m + 1 = 3t, where m ≥ 1, u and t are primes and

t > 3.
(3) L2(3

m) with 3m − 1 = 2u and 3m + 1 = 4t, where m ≥ 1, u and t are primes.
(4) L2(24), L2(52), L2(72), L2(34), L2(35).
(5)M11,M12, J2, A7, A8, A9, A10, L3(4), L3(5), L3(7), L3(8), L3(17), S4(4), S4(5), S4(7),

S4(9), U3(4), U3(5), U3(7), U3(8), U3(9), L4(3), S6(2), O
+
8 (2), G2(3), U4(3), U5(2),

3D4(2),
2F4(2), Sz(8), Sz(32).

Lemma 2.5. Let G be a finite solvable group and |G| = mn, where m = pα1
1 · · · pαr

r ,
(m,n) = 1. Let π = {p1 · · · pr} and hm be the number of π-Hall subgroups of G. Then
hm = qβ1

1 · · · qβs
s , satisfies the following conditions for all i ∈ {1, 2, · · · , s}:

1. qβi
i ≡ 1 (mod pj), for some pj.

2. The order of some chief factor of G is divisible by qβi
i .

Lemma 2.6. Let n ≥ 2 and q = pf . Then
1. Out(PSL(n, q)) ∼= Z(n,q−1) : Zf : Z2 if n ≥ 2;
2. Out(PSL(2, q)) ∼= Z(2,q−1) × Zf .

Note that by Lemma 2.6, Out(PSL(2, 27)) ∼= Z2 × Z3, and Out(PSL(2, 32)) ∼= Z5.

Definition 2.7. A group G is said to be an almost simple group related to S if and
only if S ⊴G ≤ Aut(S) for some non-abelian simple group S.

Remark 2.8. For some simple and almost simple groups G, we present the number
of some p-Sylow subgroups, which we have calculated in GAP.

1. n2(L2(27)) = 819 = 32 · 7 · 13, n3(L2(27)) = 28 = 22 · 7, n7(L2(27)) = 351 = 33 · 13,
n13(L2(27)) = 378 = 2 · 33 · 7, n2(PGL2(27)) = 2457 = 33 · 7 · 13, n3(PΣL2(27)) = 364 =
22 · 7 · 13, n2(Aut(L2(27))) = 2457 = 33 · 7 · 13.

2. n2(A5) = 5, n2(A6) = 45, n2(A7) = 315, n2(A8) = 315, n2(A9) = 2835, n2(A10) =
14175, n7(L2(7)) = 8, n7(L2(8)) = 36, n2(L2(17)) = 153 = 32 · 17, n2(L3(3)) = 351 =
33 · 13, n2(U3(3)) = 189 = 33 · 7, n2(U4(2)) = 135, n3(L2(13)) = 91 = 7 · 13, n2(G2(3)) =
66339 = 36 · 7 · 13.
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3. n2(L2(32)) = 33, n3(L2(32)) = 496 = 24 · 31, n11(L2(32)) = 496 = 24 · 31, n31(L2(32)) =
528 = 24 · 3 · 11.

4. n2(Aut(L2(32))) = 33, n3(Aut(L2(32))) = 496 = 24 · 31, n11(Aut(L2(32))) = 496 =
24 · 31, n31(Aut(L2(32))) = 528 = 24 · 3 · 11.

3. Main result
Theorem 3.1. Let G be a finite group with trivial center. Put L = L2(q), where

q ∈ {27, 32}, and suppose that np(G) = np(L), for every prime p ∈ π(G). Then G ∼= L,
for q = 27, and G ∼= L or Aut(L), for q = 32.

Proof. We prove the theorem in two separate parts:
Part 1: q = 27.

We break the proof of each part into four steps:
Step 1. |L2(27)| = 22·33·7·13, then π(G) = {2, 3, 7, 13} and |G| = 2α1 ·3α2 ·7α3 ·13α4 , for

some integer αi’s. Put m = 13α4 , therefore in Lemma 2.5, hm = n13(G) = n13(L2(27)) =
2 · 33 · 7, by Remark 2.8. Then Lemma 2.5 implies that 7 ≡ 1 (mod 13), that is a contra-
diction. Hence G is non-solvable. So G has a normal series 1⊴N ⊴H ⊴G where N is a
maximal normal solvable subgroup of G and H/N is a non-abelian simple group or H/N is
a direct product of isomorphic non-abelian simple groups. In fact H/N ∼= S1×S2× ...×Sr,
where S1 is a non-solvable simple group and S1

∼= S2
∼= ... ∼= Sr.

Step 2. Suppose that H/N is a simple K3-group. Use Lemma 2.3. If H/N ∼= A5,
Lemma 2.1 and Remark 2.8 imply that 5|819, that is a contradiction. If H/N ∼= A6, L2(7),
L2(8), L2(17), L3(3), U3(3) or U4(2), by Remark 2.8, similar to the above we get a contra-
diction. LetH/N be a simpleK4-group. Use Lemma 2.4. IfH/N ∼= L2(r), By [6], Table 1,
we conclude that H/N ∼= L2(13), because π(H/N) = {2, 3, 7, 13}. Lemma 2.1 and Remark
2.8 imply that 91|28, that is a contradiction. In other cases, except H/N ∼= L2(3

m), G2(3)
and 3D4(2), By [6], Table 1, and also considering π(H/N) = {2, 3, 7, 13}, we get a con-
tradiction too. If H/N ∼= G2(3), then Lemma 2.1 and Remark 2.8 imply that 66339|819,
which is impossible. If H/N ∼=3 D4(2), Since L2(8) ≤3 D4(2) (see Atlas of finite groups,
page 89), similar to the above, 36|351, which is impossible. So H/N ∼= L2(3

m), then by [6],
Table 1, and also considering π(H/N) = {2, 3, 7, 13}, we conclude that, H/N ∼= L2(27).

Step 3. Let K = {x ∈ G | xN ∈ CG/N (H/N)}, then G/K ∼= G/CG(H). Hence
L2(27) ⩽ G/K ⩽ Aut(L2(27)). Since Out(L2(27)) ∼= Z2 × Z3, hence G/K ∼= L2(27),
L2(27) · 2 ∼= PGL2(27), L2(27) · 3 ∼= PΣL2(27) or L2(27) · 6 ∼= Aut(L2(27)).

Step 4. If G/K ∼= L2(27), then K = N . Suppose that K ̸= N . By Lemma 2.1 we
conclude that np(K) = 1 for every prime p ∈ π(G). Then K is a nilpotent subgroup of
G. Since CG(H) ∼= K/N and N is a maximal normal solvable subgroup of G, then K ia
a non-solvable normal subgroup of G, which is a contradiction. Hence K = N and then
G/N ∼= L2(27). Also it was shown that N = 1 and therefore G ∼= L2(27).

If G/K ∼= PGL2(27) or PΣL2(27), then by Lemma 2.1 and Remark 2.8 we conclude
that 2457|819 and 364|28, respectively, which are impossible.

If G/K ∼= Aut(L2(27)), similar to the above 2457|819, that is a contradiction.
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Part 2: q = 32.

Step 1. |L2(32)| = 25 · 3 · 11 · 31, then π(G) = {2, 3, 11, 31} and |G| = 2α1 · 3α2 ·
11α3 · 31α4 , for some integer αi’s. Put m = 31α4 , therefore in Lemma 2.5, hm = n31(G) =
n31(L2(32)) = 24 · 3 · 11, by Remark 2.8. Then Lemma 2.5 implies that 11 ≡ 1 (mod 31),
that is a contradiction. Hence G is non-solvable. So G has a normal series 1⊴N ⊴H ⊴G
where N is a maximal normal solvable subgroup of G and H/N is a non-abelian sim-
ple group or H/N is a direct product of isomorphic non-abelian simple groups. In fact
H/N ∼= S1×S2× ...×Sr, where S1 is a non-solvable simple group and S1

∼= S2
∼= ... ∼= Sr.

Step 2. Suppose that H/N is a simple K3-group. By Use of Lemma 2.1 and Remark
2.8 similarly to Part 1-Step 1, we get a contradiction. Let H/N be a simple K4-group.
Use Lemma 2.4. In all cases, except H/N ∼= L2(2

m), By [6], Table 1, and also considering
π(H/N) = {2, 3, 11, 31}, we get a contradiction, also If H/N ∼= L2(2

m), we conclude that
H/N ∼= L2(32).

Step 3. Let K = {x ∈ G | xN ∈ CG/N (H/N)}, then G/K ∼= G/CG(H). Hence
L2(32) ⩽ G/K ⩽ Aut(L2(32)). Since Out(L2(27)) ∼= Z5, hence G/K ∼= L2(32) or
L2(32) · 5 ∼= Aut(L2(32)).

Step 4. If G/K ∼= L2(32), then similar to Part 1-Step 4, we can conclude K = N .
Then G/N ∼= L2(32). Also it was shown that N = 1 and therefore G ∼= L2(32).

If G/K ∼= Aut(L2(32)), similarly we obtain G ∼= Aut(L2(32)) (note that in this case,
np(G/K) = np(G), for every p ∈ π(G), see Remark 2.8-4).

Here the proof of Theorem 3.1 is completed. □
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Abstract. By introducing strongly p-limited completely continuous subspaces of the
space of operator ideals, we will give some characterizations of this concept in terms of
limited p-convergent of all its evaluation operators related to that subspace. In partic-
ular, when X∗ or Y has the p-Gelfand-Phillips property (in short, p-GPP), we give a
characterization of p-GPP ofM of a closed subspaceM ⊂ K(X,Y ) in terms of strong
p- limited complete continuity ofM.
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1. Introduction

A subset A of a Banach space X is called limited, if every weak∗ null sequence (x∗n)
in X∗ converges uniformly on A, that is

lim
n→∞

sup
a∈A
|〈a, x∗n〉| = 0.

Every relatively compact subset of X is limited, but the converse of this assertion, in
general, is false. If every limited subset of a Banach space X is relatively compact, then
X has the Gelfand-Phillips (GP) property. For example, the classical Banach spaces c0
and `1 have the Gpp and every separable Banach space, every Schur space (i.e., weak and
norm convergence of sequences in X coincide), spaces with their duals containing no copy
of `1, such as reflexive spaces, have the same property.
A sequence (xn) in a Banach spacee X is called weakly p-summable with 1 ≤ p <∞, if for
each x∗ ∈ X∗, the sequence (〈xn, x∗〉) ∈ `p and a sequence (xn) in X is said to be weakly

p-convergent to x ∈ X if the sequence (xn − x) ∈ `weakp (X), where `weakp (X) denoted the
space of all weakly p-summable sequences in X [2].
The weakly ∞-convergent sequences are simply the weakly convergent sequences. A
bounded set K in a Banach space is said to be relatively weakly p-compact, 1 < p < ∞,
if every sequence in K has a weakly p-convergent subsequence. If the limit point of each
weakly p-convergent subsequence is in K, then we call K a weakly p-compact set. An op-
erator T ∈ L(X;Y ) is limited p-convergent if it transfers limited and weakly p-summable
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sequences into norm null ones. we denote the space of all limited p-convergent operators
from X into Y by Clp(X,Y ). A Banach space X has the p-GP property (1 ≤ p < ∞)
if every limited and weakly p-summable sequence in X is norm null. In other words, if
1 ≤ p < ∞, X has the p-GP property if and only every limited and weakly p-compact
subset of X is compact. Also one note that every GP space has the p-GP property [3].
Here, we introduce the concept of strongly p-limited completely continuous subspaces of
the space of operator ideals and we give a characterization of the p-GP property of M
of a closed subspaceM⊂ K(X,Y ) in terms of strong p-limited complete continuity ofM.

2. strongly p-limited completely continuous subspaces

For a subspace U(X,Y ), one can find the evaluation operators related to M by φx
and ψy∗ , where φx(T ) = Tx and ψy∗(T ) = T ∗y∗ for x ∈ X, y∗ ∈ Y ∗ and T ∈M.
We recall that an operator T : X → Y between two Banach spaces is limited completely
continuous (abb. lcc) if T carries weakly null and limited sequences in X to norm null
ones, and the class of lcc operators is denoted by Lcc(X,Y ). [4]
Also subalgebra A of U(X) is limited completely continuous if for each S ∈ A, the left and
right multiplications LS and RS are limited completely continuous on A, where LS(T ) =
ST and RS(T ) = TS [1].
Here we give a similar definition of limited completely continuous subalgebras of U(X) by
using limited p-converging operators instead of lcc operators.

Definition 2.1. A linear subalgebra A of U(X) is p-limited completely continuous
if for each S ∈ A, the left and right multiplications LS and RS are limited p-convergent
operators on A.

Now, we give a refinement of this concept for subspaces of U(X,Y ):

Definition 2.2. A linear subspace M ⊂ U(X,Y ) is called strongly p-limited com-
pletely continuous in K(X,Y ) (resp., U(X,Y )) if for all Banach spaces W and Z and
all compact operators R : Y → W and S : Z → X, the left and right multiplication
operators LR and RS as operators from M into K(X,W ) and K(Z, Y ) (resp., U(X,W )
and U(Z, Y )) respectively, are limited p-convergent.

In the following theorem we present a wide class of subspaces of L(X,Y ) with strong
limited complete continuity. At first we need a following lemma:

Lemma 2.3. A subset H ⊂ K(X,Y ) is relatively compact iff:

(a) H(BX) is relatively compact,
(b) H∗(y∗) is relatively compact for all y∗ ∈ Y ∗,

or
(a) H(x) is relatively compact for all x ∈ X,
(b) H∗(BY ∗) is relatively compact.

Proposition 2.4. A bounded linear operator T : X → Y is p-limited completely
continuous if and only if for every limited weakly p-compact set A in X, T (A) is relatively
compact.

Theorem 2.5. Let M ⊂ L(X,Y ) be a linear subspace such that all of evaluation
operators φx and ψy∗ are limited p-convergent. Then M is strongly p-limited completely
continuous in K(X,Y ).
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As a corollary, we extend Theorem 2.5 to some classes of operator ideals. We recall
that an operator ideal U is closed if its components U(X,Y ) are closed in L(X,Y ).

Corollary 2.6. Let U be a closed operator ideal and M be a linear subspace of
U(X,Y ) such that all of evaluation operators φx and ψy∗ are limited p-convergent. Then
M is strongly p-limited completely continuous in U(X,Y ).

Now we will prove that the converse of the above result is also valid in every operator
ideal U .

Theorem 2.7. Let M be a linear subspace of U(X,Y ) such that for some Banach
spaces W and Z, the operators LR : M→ U(X,W ) and RS : M→ U(Z, Y ) are limited
p-convergent for all finite-rank operators R : Y → W and S : Z → X. Then all of
evaluation operators φx and ψy∗ are limited p- convergent.

Corollary 2.8. Let U be a closed operator ideal and M be a linear subspace of
U(X,Y ). Then the following assertions are equivalent:

(a) all of evaluation operators φx and ψy∗ are limited p-convergent,
(b) M is strongly p-limited completely continuous in U(X,Y ),
(c) M is strongly p-limited completely continuous in K(X,Y ),
(d) for some Banach spaces W and Z, the operators LR : M→ U(X,W ) and RS :
M→ U(Z, Y ) are limited p- convergent for all finite-rank operators R : Y → W
and S : Z → X.

Corollary 2.9. Let M be a linear subspace of K(X,Y ). Then the following asser-
tions are equivalent:

(a) all evaluation operators φx and ψy∗ are limited p- convergent,
(b) for all Banach spaces W and Z and all limited p- convergent operators R : Y →W

and S : Z → X, the operators LR and RS are limited p- convergent.

The following theorem, gives a relationship between p- GP property and strongly p-limited
completely continuous subspaces of operator ideals.

We note that if a Banach space X has the p-GP property, then each limited operator on X
is limited p-convergent. So Every linear subspace M of L(X,Y ) with the p-GP property
is strongly p-limited completely continuous.
Finally we show that under some conditions the converse is true. At first we need two
following theorems.

Theorem 2.10. Let M⊂ K(X,Y ) be a linear subspace. If X∗ has the p-GP property
and φx is limited p-convergent, then M has the p-GP property.

Theorem 2.11. Let M ⊂ K(X,Y ) be a linear subspace. If Y has the p-GP property
and ψy∗ is limited p- convergent, then M has the p-GP property.

Theorem 2.12. Let M⊂ L(X,Y ) be strongly p-limited completely continuous. If X∗

or Y has the p-GP property, then M has the p-GP property.
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Abstract. This paper proposed a method based on operational matrices of Chelyshkov
wavelets for solving a boundary value problem of second order and transforms it to a
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1. Introduction
Differential equations form the backbone of various science and engineering problems

viz. structural mechanics, image processing, control theory, stationary analysis of circuits,
etc. Many practical problems give rise to second order differential equations. For instance,
in structural mechanics the governing equation of motion [5]

m
d2y

dx2
+ c

dy

dx
+ k y = f(x) y(0) = α , y(L) = β.

is expressed in the form of differential equation with respect to the rate of change in time.
Since analytical methods are not adequate for finding accurate solutions to most dif-

ferential equations, numerical methods are required. Wavelet method has been proven
to be an efficient tool in analyzing dynamic systems and differential equations arising in
other science and engineering problems [1,2].

Chelyshkov Wavelets (ChWs), ψn,m(x) = ψ(k, n,m, x), are defined on the interval
[0, L) by [3,4,6]:

ψn,m(t) =

{√
2k(2m+ 1)Pm(2k t

L − n), n
2k
L ≤ t < n+1

2k
L,

0, otherwise.
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where Pm(t) is the Chelyshkov polynomial, which is defined as follows:

(1) Pm(t) := ρm,M (t) =

M−m∑

j=0

aj,m t
m+j , m = 0, 1, . . . ,M,

where:
aj,m = (−1)j

(
M −m

j

)(
M +m+ j + 1

M −m

)
.

These polynomials are orthogonal over the interval [0, 1] with respect to the weight function
w(t) = 1. According to the definition (1) it is obvious that for a fixed integer M , the
polynomials Pm(t) , m = 0, 1, . . . ,M are polynomials exactly of degree M .

The ChWs {ψn,m(t) |n = 0, 1, . . . 2k − 1, m = 0, 1, . . .M} forms an orthonormal basis
for L2[0, L]. By using the orthogonality of ChWs, any function f(t) ∈ L2[0, L] can be
expanded in terms of ChWs as:

(2) f(t) =

∞∑

n=0

∞∑

m=0

cn,m ψn,m(t),

where cn,m = ⟨f(t), ψn,m⟩ =
∫ L
0 f(t)ψn,m(t) dt. If the infinite series in Eq. (2) is

truncated, then it can be written as:

f(t) ≃
2k−1∑

n=0

M∑

m=0

cn,m ψn,m(t) = CTΨ(t),

where C and Ψ are m̂ = 2k(M + 1)-vectors, given by:

CT = [c0,0, c0,1, . . . , c0,M , c1,0, . . . , c1,M , . . . , c2k−1,0 . . . , c2k−1,M ]

= [c1, c2, . . . , cm̂],(3)
Ψ(t)T = [ψ0,0(t), . . . , ψ0,M (t), ψ1,0(t), . . . , ψ1,M (t), . . . , ψ2k−1,0(t), . . . , ψ2k−1,M (t)]

= [ψ1(t), ψ2(t), . . . , ψm̂(t)].(4)
The purpose of this paper is introducing an operational method for solving the follow-

ing differential equation with boundary conditions, by using ChWs:
(5) αy′′(x) + βy′(x) + γy(x) = r(x) , y(0) = y0 , y(L) = yL ,

where y0, yL, α, β and γ are given constants and r(x) is a known function.

2. Main results
2.1. Operational Matrix of Integration for ChW Vector Ψ(t). Let Ψ(t) be

the ChW vector of size m̂ = 2k(M +1) defined in (4). The integral for vector Ψ(t) can be
approximated by:

(6)
∫ x

0
Ψ(t) dt ≃ PΨ(x),

where P = [pi,j ] is an m̂ × m̂ matrix, known as the operational integral matrix for the
ChW, defined by:

pij = ⟨
∫ x

0
ψi(t) dt, ψj(x)⟩.
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In a similar way and by some calculations and simplifications we will get

(7)
∫ x

0

∫ t

0
Ψ(z) dz dt ≃ P2Ψ(x),

2.2. Solving the Equation. We start by considering an approximation for y′′(x) in
terms of Chws i.e.
(8) y′′(x) ≃ CT Ψ(x)

where the vector C is unknown currently. Then we will have
(9) y′(x) ≃ CT PΨ(x) + y′(0)

and thereby
(10) y(x) ≃ CT P2Ψ(x) + y′(0)x+ y0 ,

where y′(0) is not given and must be determine. By substituting the boundary condition
y(L) = yL in Eq. (10) we obtain

yL = CT P2Ψ(L) + y′(0)L+ y0 ,

and this gives us

y′(0) =
yL − y0
L

− CTP2Ψ(L)

L
.

Substituting y′(0) in Eqns. (9) and (10) we have

y′(x) = CTPΨ(x)− CTP2Ψ(L)

L
+
yL − y0
L

,

y(x) = CTP2Ψ(x)− CTP2Ψ(L)

L
x+

yL − y0
L

x+ y0.

For simplicity and ease of calculations we define yL0 := yL − y0, F := P2Ψ(L), 1 :=
ETΨ(x), x := BTΨ(x) and r(x) ≃ RTΨ(x) and substitute these abbreviations together
with Eqs. (8), (9) and (10) in Eq. (5) and simplifying we will have:

(11)
(
αI+ βP+ γP2 − 1

L
F(βET + γBT )

)T

C =
(
R− yL0

L
(βE+ γB)− γyLE

)

Solving this system of linear equations will be obtainedC and leads us the approximate
solution of Eq. (5) as:

(12) y(x) ≃ CTP2Ψ(x) +
1

L

(
yL0 −CTF

)
x+ yL

3. Numerical results
In this section, an example presented to verify the capability and efficiency of the

proposed method.
Example. Consider the following ordinary differential equation
y′′(x)− 2y′(x) + 3y(x) = e−x

(
6x2 − 14x+ 4ex(x− 1) sin(x)− 4ex(x− 1) cos(x) + 24

)

with boundary conditions

y(−1) = 5e+ 2 sin(1) , y(3) =
9

e3
+ 6 sin(3) ,

which has the exact solution
y(x) = e−x

(
x2 − x+ 3

)
+ 2x sin(x)
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Figure (1) shows the absolute error of the approximated solution produced by the presented
method with M = 4 and k = 5. As one can see the accuracy of the method is acceptable
in many problems.

-1 1 2 3

1.×10-8

2.×10-8

3.×10-8

4.×10-8

5.×10-8

Figure 1. Error function of Example for M = 4 and k = 5

4. Conclusion
As seen, in the presented method, using wavelets transforms solving of a differential

equation to solve a linear system of equations with desired accuracy.
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Abstract. An ideal I in a commutative Noetherian ring R is called normally torsion-
free if AssR(R/Ik) ⊆ AssR(R/I) for all positive integers k. In this paper, by using
some monomial operators such as expansion, weighted, monomial multiple, monomial
localization, contraction, and deletion, we introduce several methods for constructing
new normally torsion-free monomial ideals based on the monomial ideals which have
normally torsion-freeness.
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1. Introduction

Let R be a commutative Noetherian ring and I be an ideal of R. A prime ideal p ⊂ R
is an associated prime of I if there exists an element v in R such that p = (I :R v). The set
of associated primes of I, denoted by AssR(R/I), is the set of all prime ideals associated
to I. We will be interested in the sets AssR(R/Ik) when k varies. Brodmann [2] proved
that the sequence {AssR(R/Ik)}k≥1 of associated prime ideals is stationary for large k. In
fact, there exists a positive integer k0 such that AssR(R/Ik) = AssR(R/Ik0) for all integers
k ≥ k0. The least such integer k0 is called the index of stability of I and AssR(R/Ik0) is
called the stable set of associated prime ideals to I.

Many problems arise in the context of Brodmann’s theorem. One of them is related
to normally torsion-free ideals. An ideal I in a commutative Noetherian ring R is called
normally torsion-free if AssR(R/Ik) ⊆ AssR(R/I) for all positive integers k (see [4, Def-
inition 1.4.5]). A few examples of normally torsion-free monomial ideals appear from
graph theory. Already, it has been proved that a finite simple graph G is bipartite if and
only if its edge ideal is normally torsion-free. Moreover, it is well-known that the cover
ideals of bipartite graphs are normally torsion-free. In addition, it has been verified that
every transversal polymatroidal ideal is normally torsion-free. However, normally torsion-
free square-free monomial ideals have been studied, but little is known for the normally
torsion-free monomial ideals which are not square-free.
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The main motivation in this paper is to introduce several methods for constructing
new normally torsion-free non-square-free monomial ideals based on the monomial ideals
which have normally torsion-freeness.

2. Main results

Proposition 2.1. [6, Proposition 2.1] Let I be an ideal in a commutative Noetherian
ring S. Then there exists a positive integer t such that It is a normally torsion-free ideal.

Lemma 2.2. [6, Lemma 2.2] Let I be a square-free monomial ideal in a polynomial
ring R = K[x1, . . . , xn]. If I is normally torsion-free, then, for all positive integers s, Is

is normally torsion-free.

Lemma 2.3. [6, Lemma 2.4] Let I be a monomial ideal of R = K[x1, . . . , xn] such that
I = I1R + I2R, where G(I1) ⊆ R1 = K[x1, . . . , xm] and G(I2) ⊆ R2 = K[xm+1, . . . , xn]
for some positive integer m. Then Is =

∩s
i=1(I

i
1 + Is+1−i

2 ) for all s ∈ N.

Theorem 2.4. [6, Theorem 2.5] Let I be a monomial ideal in R = K[x1, . . . , xn] such
that I = I1R+I2R, where G(I1) ⊆ R1 = K[x1, . . . , xm] and G(I2) ⊆ R2 = K[xm+1, . . . , xn]
for some positive integer m. If I1 and I2 are normally torsion-free, then I is so.

From now, we introduce several methods for constructing new classes of monomial
ideals which have normally torsion-freeness. Thus we need to recall the definition of the
expansion operator on monomial ideals, which has been stated in [1].

Let K be a field and R = K[x1, . . . , xn] be the polynomial ring over a field K in the
variables x1, . . . , xn. Fix an ordered n-tuple (i1, . . . , in) of positive integers, and consider

the polynomial ring R(i1,...,in) over K in the variables

x11, . . . , x1i1 , x21, . . . , x2i2 , . . . , xn1, . . . , xnin .

Let pj be the monomial prime ideal (xj1, xj2, . . . , xjij ) ⊆ R(i1,...,in) for all j = 1, . . . , n.
Attached to each monomial ideal I ⊂ R a set of monomial generators {xa1 , . . . ,xam},
where xai = x1

ai(1) · · ·xnai(n) and ai(j) denotes the jth component of the vector ai =
(ai(1), . . . , ai(n)) for all i = 1, . . . ,m. We define the expansion of I with respect to the

n-tuple (i1, . . . , in), denoted by I(i1,...,in), to be the monomial ideal

I(i1,...,in) =

m∑

i=1

p
ai(1)
1 · · · pai(n)n ⊆ R(i1,...,in).

We simply write R∗ and I∗, respectively, rather than R(i1,...,in) and I(i1,...,in).
For example, consider R = K[x1, x2, x3] and the ordered 3-tuple (1, 3, 2). Then we

have p1 = (x11), p2 = (x21, x22, x23), and p3 = (x31, x32). So for the monomial ideal
I = (x1x2, x

2
3), the ideal I∗ ⊆ K[x11, x21, x22, x23, x31, x32] is p1p2 + p23, namely

I∗ = (x11x21, x11x22, x11x23, x
2
31, x31x32, x

2
32).

Theorem 2.5. [6, Theorem 3.3] Let I be a monomial ideal of R. Then I is normally
torsion-free if and only if I∗ is.

Here, we state the second method for constructing new normally torsion-free monomial
ideals. To achieve this, one requires to recall the following definition.

Definition 2.6. [6, Definition 3.4] A weight over a polynomial ring R = K[x1, . . . , xn]
is a function W : {x1, . . . , xn} → N, and wi = W (xi) is called the weight of the variable
xi. Given a monomial ideal I and a weight W , we define the weighted ideal, denoted by
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IW , to be the ideal generated by {h(u) : u ∈ G(I)}, where h is the unique homomorphism
h : R → R given by h(xi) = xwi

i . For a monomial u ∈ R, we denote h(u) = uW .

For instance, consider the monomial ideal I = (x21x2x
6
3, x

3
2x4x

4
5) in the polynomial ring

R = K[x1, x2, x3, x4, x5]. Furthermore, let W : {x1, x2, x3, x4, x5} → N be a weight over R
with W (x1) = 2, W (x2) = 4, W (x3) = 2, W (x4) = 3, and W (x5) = 1. Thus, the weighted
ideal IW is given by IW = (x41x

4
2x

12
3 , x122 x34x

4
5).

Theorem 2.7. [6, Theorem 3.10] Let I be a monomial ideal of R, and W a weight
over R. Then I is normally torsion-free if and only if IW is.

Lemma 2.8. [6, Lemma 3.12] Let I be a monomial ideal in a polynomial ring R =

K[x1, . . . , xn] with G(I) = {u1, . . . , um}, and h = xb1j1 · · ·x
bs
js

with j1, . . . , js ∈ {1, . . . , n} be
a monomial in R. Then I is normally torsion-free if and only if hI is normally torsion-
free.

Now, we recall the definition of the monomial localization of a monomial ideal with
respect to a monomial prime ideal as has been introduced in [5]. Let I be a monomial
ideal in a polynomial ring R = K[x1, . . . , xn] over a field K. We also denote by V ∗(I) the
set of monomial prime ideals containing I. Let p = (xi1 , . . . , xir) be a monomial prime
ideal. The monomial localization of I with respect to p, denoted by I(p), is the ideal
in the polynomial ring R(p) = K[xi1 , . . . , xir ] which is obtained from I by applying the
K-algebra homomorphism R → R(p) with xj 7→ 1 for all xj /∈ {xi1 , . . . , xir}.

Theorem 2.9. [6, Theorem 3.15] Let I be a monomial ideal in a polynomial ring
R = K[x1, . . . , xn], and p ∈ V ∗(I). If I is normally torsion-free, then I(p) is so.

To state the subsequent results, we need the definition of the contraction operator
as has been given in [3, P. 303]. Let I be a monomial ideal in R = K[x1, . . . , xn] with
G(I) = {u1, . . . , um}. For some 1 ≤ j ≤ n, recall that the contraction I/xj is obtained
by setting xj = 1 in ui for each i = 1, . . . ,m. Note that the contraction I/xj is exactly
the monomial localization of I with respect to p = m \ {xj}, where m = (x1, . . . , xn) is the
graded maximal ideal of R = K[x1, . . . , xn].

Theorem 2.10. [6, Theorem 3.19] Let I be a monomial ideal in R = K[x1, . . . , xn],
and 1 ≤ j ≤ n. If I is normally torsion-free, then I/xj is so.

To express the next result, we require the definition of the deletion operator, as has
been given in [3, P. 303]. Let I be a monomial ideal in R = K[x1, . . . , xn] with G(I) =
{u1, . . . , um}. For some 1 ≤ j ≤ n, the deletion I \ xj is formed by putting xj = 0 in ui
for each i = 1, . . . ,m.

Theorem 2.11. [6, Theorem 3.21] Let I be a square-free monomial ideal in R =
K[x1, . . . , xn], and 1 ≤ j ≤ n. If I is normally torsion-free, then I \ xj is so.
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Abstract. In mathematics, a multi-valued function, also called set-valued function, is
similar to a function, but may associate several values to each input. The complexity
of multi-valued mapps is usually measured by the topological entropy. The aim of this
paper is to give new definition of topological entropy (or just entropy) for multi-valued
maps. Some related properties are also presented.
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1. Introduction
Definition 1.1. Let (X, d) be a metric space. We denote by 2X the power set of X,

i.e., the family of all subsets of X .

Let F : X −→ 2X be a multi-valued function, a function f : X −→ X is called selection
of F if f(x) ∈ F (x), for all x ∈ X.

A multi-valued function F : X −→ 2X is called finite if card F (x) < ∞, for every
x ∈ X.

Define F 0(x) := {x} and Fn : X −→ 2X by

Fn(x) :=
∪

y∈Fn−1(x)

F (y),

for every n ∈ N.

1.1. Mail results.

Lemma 1.2. Let (X, d) be a metric space. Then dn : X ×X −→ [0,+∞) defined by

dn(x, y) := sup
0≤i≤n−1

{d(F i(x), F i(y))}

is a metric on X, where d(A,B) := supa∈A,b∈B{d(a, b)}.
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Proof. We only prove the triangle inequality. Let x, y, z ∈ X and a ∈ ∪
0≤i≤n−1 F

i(x), b ∈∪
0≤i≤n−1 F

i(y) and c ∈ ∪
0≤i≤n−1 F

i(z) are arbitrary. Then

d(a, c) ≤ d(a, b) + d(b, c) ≤ dn(x, y) + dn(y, z).

Hence, dn(x, z) ≤ dn(x, y) + dn(y, z). □

Example 1.3. Suppose that C is the set of complex numbers and F : C −→ C is
defined by F (z) :=

√
z then d(

√
1,
√
4) = 3 and d(

√
1,
√
−4) =

√
5.

Suppose that A ⊆ X is a subset, the subset F−1(A) is defined by

F−1(A) := {x ∈ X : F (x) ⊆ A}.
F : X −→ 2X is said to be continuous if F−1(U) is an open set, for every open set U ,
and it is uniformly continuous if for every number ϵ > 0 there exists δ > 0 such that if
a ∈ F (x), b ∈ f(y) and d(x, y) < δ then d(a, b) < ϵ.

Definition 1.4. For a natural number n, ϵ > 0, and a compact subset K of X we say
that a subset G of X is an (n, ϵ)-span of K with respect to G, if it satisfies the following
properties:
If x ∈ K, then there is y ∈ G such that dn(x, y) ≤ ϵ (i.e.,

x ∈
n−1∩

i=0

F−i(
∩

a∈F i(y)

Bϵ(a)).)

So,

K ⊆
∪

y∈G

n−1∩

i=0

F−i(
∩

a∈F i(y)

Bϵ(a)).

Definition 1.5. If n is a natural number, ϵ > 0 and K is a compact subset of X then
we denote the smallest cardinality of any (n, ϵ)-spanning set of K with respect to F by
rn(ϵ,K). (When we need to emphasise on F we shall write rn(ϵ,K, F )).

Since K is compact, then rn(ϵ,K) < ∞. and it is clear that rn(.,K) is a non-increasing
map on (0,+∞).
If K a compact subset of X, and ϵ > 0 then r(ϵ,K, F ) = lim supn→∞

log rn(ϵ,K)
n , we also

denote r(ϵ,K, F ) by r(ϵ,K, F, d).
The value of r′n(ϵ,K) could be ∞, and r′n(.,K) is a non-increasing map on (0,+∞).

Definition 1.6. Let h(F,K) = limϵ→0 r(ϵ,K, F ), where K is a compact subset X.
Then the topological entropy of F is h(F ) = supK h(F,K), where the supremum is taken
over the collection of all compact subsets of X. We sometimes write hd(F ) instead of h(F )
to emphasis the dependence on d.

Lemma 1.7. If F : X −→ 2X is a multi-valued function and f : X −→ X is a selection
of F , then hd(f) ≤ hd(F ).

Proof. Let F : X −→ 2X be a multi-valued function, and f : X −→ X is a selection
of F and K be an open subset of X. Since

sup
01≤i≤n−1

{d(f i(x), f i(y))} ≤ sup
0≤i≤n−1

{d(F i(x), F i(y))},
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any (n, ϵ)-spanning set G of K with respect to F is an (n, ϵ)-spanning set of K with respect
to f . Therefore rn(ϵ,K, f) ≤ rn(ϵ,K, F ). Thus r(ϵ,K, f) ≤ r(ϵ,K, F ) and h(K, f) ≤
h(K,F ). So hd(f) ≤ hd(F ). □

Now we shall give an equivalent definition. In this definition we use of the idea of
separated sets which are dual to spanning sets.
For a natural number n, ϵ > 0, and a compact subset K of X, a subset E of X is called
an (n, ϵ)-separated of K with respect to F , if it satisfies the following property:
If x, y ∈ E, and x ̸= y, then dn(x, y) > ϵ.

If n is a natural number, ϵ > 0 and K is a compact subset of X then sn(ϵ,K) denotes
the largest cardinality of any (n, ϵ)-separated subset of K with respect to on F . (When
we need to emphasis F we shall write sn(ϵ,K, F )).

Theorem 1.8. rn(ϵ,K, F ) ≤ sn(ϵ,K, F ) ≤ rn(
ϵ
2 ,K, F ).

Proof. If E is an (n, ϵ)-separated subset of K with the maximal cardinality then E is
an (n, ϵ)-spanning set for K, because if x ∈ K then there is y ∈ E such that dn(x, y) ≤ ϵ.
Therefore rn(ϵ,K, F ) ≤ sn(ϵ,K, F ). To show the other inequality suppose E is an (n, ϵ)-
separated subset of K and G is an (n, ϵ

2)-spanning set for K. Define Φ : E −→ G
by choosing, for for each x ∈ E, some point Φ(x) ∈ G with dn(x,Φ(x)) ≤ ϵ

2 . Then
Φ is injective, because if dn(x, y) ≤ ϵ

2 and dn(z, x) ≤ ϵ
2 then dn(y, z) ≤ ϵ, which is a

contradiction. Therefore the cardinality of E is not greater than the cardinality of G.
Hence sn(ϵ,K, F ) ≤ rn(

ϵ
2 ,K, F ). □

Since K is compact, then sn(ϵ,K) < ∞. and it is obvious that sn(.,K) is non-
increasing map on (0,+∞). Theorem 2.1 also implies that sn(ϵ,K, T ) < ∞. If K is a
compact subset of X, ϵ > 0 then we define s(ϵ,K, T ) by lim supn→∞

log sn(ϵ,K)
n .

Also we write s(ϵ,K, F, d) if we need to emphasis to the metric d. The value of sn(ϵ,K)
could be ∞, and it is obvious that sn(.,K) is a non-increasing map of (0,+∞).

Corollary 1.9. We have
(1) r(ϵ,K, F ) ≤ s(ϵ,K, F ) ≤ r( ϵ2 ,K, F ),
(2) s(.,K) is non-increasing map of (0,+∞),
(3) h(F,K) = limϵ→0 s(ϵ,K, F ), h(F ) = supK h(F,K) = limϵ→0 s(ϵ,K, F ), where

the supremum is taken over the collection of all compact subset of X.
Theorem 1.10. If (X, d) is a metric space, F is uniformly continuous and m is a

natural number then h(Fm) = mh(F ).

Proof. Let C be a (ϵ,mn)-span K with respect F . So for every each x ∈ K there is
y ∈ C such that

max
1≤i≤mn−1

max
a∈F i(x),b∈F i(y)

{d(a, b)} < ϵ.

Hence for each x ∈ K there is y ∈ C such that
max

1≤i≤n−1
max

a∈Fmi(x),b∈Fmi(y)
{d(a, b)} < ϵ.

Thus C is a (ϵ, n)-span K with respect Fm. Hence
rn(ϵ,K, Fm) ≤ rmn(ϵ,K, F ),

and we have
1
n log rn(ϵ,K, Fm) ≤ m

mn log rmn(ϵ,K, F ).
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So h(Fm) ≤ mh(F ).
If F is uniformly continuous then for given ϵ > 0 there is δ > 0 such that if a ∈ F (x),
b ∈ f(y) and d(x, y) < δ then d(a, b) < ϵ. Therefore a (δ, n)-spanning set for K with
respect to Fm is an (ϵ,mn)-spanning set for K with respect to F . So

rn(δ,K, Fm) ≥ rmn(ϵ,K, F ).

Hence
r(δ,K, Fm) ≥ mr(ϵ,K, F ).

So h(Fm) ≥ mh(F ). Thus h(Fm) = mh(F ). □
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Abstract. This paper is concerned with the control of chaos in a chaotic dynamical
system which is investigated by time-delayed feedback control technique. By designing
appropriate feedback strength and delay, the chaotic system is controlled to be stable,
or stable bifurcating periodic solutions emerge near an unstable equilibrium. Therefore,
regarding the delay of the system as a bifurcation parameter and analyzing the charac-
teristic equation of the corresponding linearized system, stability and the existence of
Hopf bifurcation are theoretically proved. Furthermore, some numerical simulations are
provided to examine the analytical results.
Keywords: Chaotic system, Chaos control, Time-delayed feedback, Stability, Hopf bi-
furcation.
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1 and at most 3)

1. Introduction
In recent years, the trend of analyzing and understanding chaos has been developed

to a new phase of controlling and utilizing the chaotic systems. Thus, the topics of chaos
and chaotic control are growing rapidly in many different fields such as biological systems,
ecological and chemical systems, and so on [4,6]. Delayed feedback control (DFC) is a
convenient and powerful tool to stabilize unstable periodic orbits(UPO’s) or control of
unstable steady states. The method is based on a feedback of the difference between the
current state and the delayed state [2–4]. The delay time is set to correspond to the
period of the desired unstable periodic orbit (UPO) and the feedback term vanishes after
the UPO is stabilized [2,3].
In this paper, we consider the following time delayed feedback control system

(1)
ẋ(t) = βx(t)− y2(t),

ẏ(t) = µ
(
z(t)− y(t)

)
,

ż(t) = x(t)y(t) + (α− µ)y(t) + αz(t) +K
(
z(t)− z(t− τ)

)
,

∗Speaker. Email address: abdulhussain_ surosh@stu.sku.ac.ir
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where, K ∈ R is the feedback strength which represents the intensity of control per unit
of time.
The organization of this paper is as follows. In Section 2, we first focus on the stability
and local Hopf bifurcation and determine the ranges of delay τ in which the equilibrium
point of the chaotic system can be controlled to be stable. Then, we obtain some sufficient
conditions such that Hopf bifurcations occur. In Section 3, numerical simulations for a set
of parameters proposed in [5] are performed to illustrate the obtained analytical results.
The brief conclusions are finally given in Section 4.

2. Main results
In this section, we investigate the effect of delay on the dynamic behavior of system

(1). We discuss stability analysis of the system at the equilibrium point E∗(x∗, y∗, z∗)
for which x∗ = −(2α − µ) = µ − 2α, y∗ =

√
β(µ− 2α) and z∗ =

√
β(µ− 2α). This

equilibrium point is feasible if (H1) : β(µ − 2α) > 0 holds. Under the transformation
X = x − x∗, Y = y − y∗, Z = z − z∗ and hypothesis (H1), we linearize the system as
follows:

(2)





dX
dt = βX(t)− 2y∗Y (t),

dY
dt = −µY (t) + µZ(t),

dZ
dt = y∗X(t) +

(
x∗ + (α− µ)

)
Y (t) + (α+K)Z(t)−KZ(t− τ).

Then, the characteristic equation can be described by
△(λ, τ) = λ3 +m2λ

2 +m1λ+m0 + (n2λ
2 + n1λ+ n0)e

−λτ = 0,(3)
where
m2 = −K − α+ µ− β, m1 = µ2 + (−K − x∗ − 2α− β)µ+ (α+K)β

m0 =
(
− βµ+ (K + x∗ + 2α)β + 2y∗

)
µ n2 = K, n1 = −(βK −Kµ), n0 = −Kµβ.

When τ = 0, Eq. (3) becomes
△(λ) = λ3 + (m2 + n2)λ

2 + (m1 + n1)λ+m0 + n0 = 0.(4)
Hence, E∗ becomes asymptotically stable if
(H2) m2 + n2 > 0, m0 + n0 > 0, (m2 + n2)(m1 + n1) > m0 + n0.

holds. For Hopf bifurcation analysis, let λ = iω (ω > 0) be a root of Eq. (3), then we
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Figure 1. Phase portrait of the system (1) for τ = 0 or K = 0.

obtain
ω6 + (m2

2 − n2
2 − 2m1)ω

4 + (m2
1 − n2

1 − 2m2m0 + 2n2n0)ω
2 +m2

0 − n2
0 = 0.(5)

Let ω2 = z, then from (5), we get
z3 + pz2 + qz + r = 0.(6)
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where
p = m2

2 − n2
2 − 2m1, q = m2

1 − n2
1 − 2m2m0 + 2n2n0, r = m2

0 − n2
0.

Suppose h(z) = z3 + pz2 + qz + r and h′(z) = 3z2 + 2pz + q. Since limz−→+∞ h(z) = +∞
and h(0) = r = m2

0 − n2
0 < 0, then (6) has at least one positive real root and we can state

the following results.
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Figure 2. Chaos still exists for K = −7.75 and τ = 0.034.

Lemma 2.1. For the polynomial Eq. (6), we have the following results.
(i): If (H3) : r > 0 & ∆ = p2 − 3q < 0, then Eq. (6) has no positive roots, i.e.,

the necessary condition for this eqution to have positive real roots is ∆ ≥ 0;
(ii): If and only if ∆ > 0, z∗1 = −p+

√
∆

4 > 0 and h(z∗1) ≤ 0, then Eq. (6) have
positive real roots. More precisely, if the condition (H4) : r > 0, z∗1 > 0, h(z∗1) < 0
holds, then (6) has two positive roots, z1 and z2.

Lemma 2.2. When τ = τ
(j)
k (k = 1, 2, 3; j = 0, 1, 2, · · · ), i.e.

τ
(j)
k =

{
1
ωk

[arccos(P ) + 2jπ], Q ≥ 0
1
ωk

[2π − arccos(P ) + 2jπ], Q < 0,
(7)

where

Q = sin(ωkτk) =

(
n2ω

4
k + (m2n1 −m1n2 − n0)ω

2
k +m0n1 + n0m1

)
ωk

n2ω4
k + (n2

1 − 2n0n2)ω2
k + n2

0

,

P = cos(ωkτk) =
(n1 −m2n2)ω

4
k + (m0n2 −m1n1 +m2n0)ω

2
k −m0n0

n2
2ω

4
k(n

2
1 − 2n2n0)ω2

k + n2
0

,

and if (H4) in Lemma 2.1 holds, then Eq. (3) has a pair of complex conjugate pure
imaginary roots ±iω0, and all other roots have nonzero real parts.

Furthermore, let λ(τ) = η(τ)+iω(τ) be a root of (3) near τ = τ
(j)
k satisfying η(τ (j)k ) = 0

and ω(τ
(j)
k ) = ωk, then, the following transversality condition holds.

Lemma 2.3. If h′(zk) ̸= 0 and (H3) in Lemma 2.1 holds, then d
[
Reλ

(
τ
(j)
k

)]
dτ ̸= 0 and

h′(zk) have the same sign.

Define τ0 = τk0 = min1≤k≤3{τk}, ω0 = ωk0 , z0 = ω2
0, according to the derived Lemmas

2.1, 2.2, 2.3, we can conclude the existence of Hopf bifurcation as described in the following
theorem.

Theorem 2.4. For system (1), the following results hold.
(i): If the condition (H3) in Lemma (2.1) holds, then E∗ is asymptotically stable

for all τ > 0.
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(ii): If ∆ = p2 − 3q > 0, h′(z0) ̸= 0 and if there exists only one positive real root,
then there exists a positive number τ0 such that the equilibrium E∗ is locally
asymptotically stable when τ ∈ [0, τ0) and unstable when τ > τ0. Moreover,
system (1) undergoes a Hopf bifurcation at E∗ when τ = τ0.

(iii): If (H4) in Lemma (2.1) and h′(zk) ̸= 0 hold, then there is a positive integer
m such that E∗ is stable when τ ∈ [0, τ+0 )∪ (τ−0 , τ+1 )∪ · · · (τ−m−1, τ

+
m) and unstable

when τ ∈ [τ+0 , τ−0 ) ∪ (τ+1 , τ−1 ) ∪ · · · (τ+m−1, τ
−
m−1) ∪ (τ+m,∞). Moreover, the system

(1) undergoes a Hopf bifurcation at E∗ when τ = τ
(j)
k for k = 1, 2; j = 0, 1, 2, · · · .

3. Numerical simulations
For the parameters β = −10, α = 37, µ = 55, we get E∗(−19, 13.784, 13.784). Also, for

the purpose of controlling chaos, we consider K > −1.72, especially K ∈ (−1.72,−13.75).
Thus when τ = 0 or K = 0, system (1) is chaotic (see Fig. 1).
The graphical results with initial value (0.1, 0.1, 10.38) show that when τ < 0.048, the
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Figure 3. (LHS) Stable equilibrium for K = −7.75 and τ = 0.034. (RHS)
Stable periodic solution for K = −7.75 and τ = 0.231.

equilibrium E∗ still displays chaotic behavior (see Fig. 2). When τ ∈ (0.048, 0.13], E∗ is
asymptotically stable. Fig. 3 shows a phase trajectories of system (1) for τ = 0.12. For
the critical value τ = τ

(0)
1 = τ0 = 0.213, the system undergoes a Hopf bifurcation and a

periodic solution emerges around E∗. Thus for τ = 0.231, a limit cycle appears which is
showed in Fig. 3. By increasing of τ , stability of E∗ changes and the system regains its
complex dynamical behavior, and becomes chaotic when τ > 0.36.

4. Conclusion
In this study, the time-delayed feedback control method is used to stabilize UPOs

and unstable equilibrium point of the chaotic system. We investigated stability and Hopf
bifurcation both analytically and numerically.
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Abstract. Uniform structures on the fuzzy spaces are defined using different set of
axioms and basic terms.In this paper we present another characterization of fuzzy uni-
formities in the style of Weil that we call it T - Weil uniformity. We formulated and
investigated a definition of entourage uniformity alternative to that one of Hutton. It
is expressed in terms of coproduct of fuzzy spaces. We have showed that every fuzzy
topological space is T - Weil quasi- uniformizable.
Keywords: T-fuzzy topological space, T - Weil uniformity, T - Weil quasi- uniformizable
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1. Introduction
Fuzzy topological structures is just a kind of mathematics developed on fuzzy sets.

In mathematics literature, extensive study of fuzzy topological spaces and fuzzy uniform
structures is done by various researchers. Uniformity in fuzzy topology was studied by
three authors, B. Hutton [2] , U. Höhle [1] , and R. Lowen [5] . The approaches of
U. Höhle and R. Lowen underpinned by power sets of the form IX×X or TX×X and B.
Hutton approach is based on exponential power sets of the form (TX)T

X . In this paper we
present another characterization of fuzzy uniformities in the style of Weil that we call it
T - Weil uniformity. We formulated and investigated a definition of entourage uniformity
alternative to that one of Hutton. It is expressed in terms of coproduct of fuzzy spaces.
We have showed that every fuzzy topological space is T - Weil quasi- uniformizable.
Keywords: T-fuzzy topological space, T - Weil uniformity, T - Weil quasi- uniformizable.

2. fuzzy topological space
Definition 2.1. A frame Tis a complete lattice satisfying the distribution law x∧ ∨(A) =

∨{x ∧ a|a ∈ A},the bottom resp top of T will be denoted by 0 resp 1.

Definition 2.2. [4] Let X be a nonempty ordinary set, δ ⊂ TX , δ is called a T-fuzzy
topology on X, and (TX , δ) is called an T-fuzzy topological space orT-fts for short, if δ
satisfies the following three conditions:

(LFT1) 0, 1 ∈ δ

∗Speaker. Email address:yaghoobim@yahoo.com
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(LFT2) ∀A ⊂ δ, ∨A ∈ δ
(LFT3) ∀U, V ∈ δ, U ∧ V ∈ δ.
Definition 2.3. [4] Let (X, δ), (Y, µ) be T-fts, f→ : X → Y an T-fuzzy mapping. We

say f→ is an T-fuzzy continuous mapping from (TX , δ) to (TY , µ) or call f→ continuous
for short, if its T-fuzzy reverse mapping f← : TY → TX maps every open subset in (TY , µ)
as an open one in (TX , δ) i.e. ∀ V ∈ µ, f←(V ) ∈ δ.

Definition 2.4. [4] Let X be a nonempty ordinary set, i, c : TX → TX mapping on
TX .

i is called an interior operator on TX , if it fulfills the following conditions :
(I01) i(1) = 1
(I02) ∀ A ∈ TX , i(A) ≤ A
(I03) ∀ A,B ∈ TX , i(A ∧B) = i(A) ∧ i(B)
(I04) ∀ A ∈ TX , i(i(A)) = i(A) .
For an interior operator i on TX , define the T-fuzzy topology generated by i as δ =

{A ∈ TX |i(A) = A}.
c is called a closure operator on TX , if it fulfills the following conditions :
(C01) c(0) = 0
(C02) ∀ A ∈ LX , A ≤ c(A)
(C03) ∀ A,B ∈ TX , c(A ∨B) = c(A) ∨ c(B)
(C04) ∀ A ∈ TX , c(c(A)) = c(A).
For a closure operator c on TX , define the T-fuzzy topology generated by c as δ =

{A ∈ TX |c(A′) = A′}.

3. T-Weil Uniform Spaces
Definition 3.1. [3] (Binary coproducts of TXi , (i ∈ {1, 2}) :The coproduct of TX1

and TX2 is a C-ideal of TX1 × TX2 as a down-set A ⊆ TX1 × TX2 satisfying {f} × S ⊆
A ⇒ (f,∨S) ∈ A and

S × {g} ⊆ A ⇒ (∨S, g) ∈ A.

the set of all C-ideals of TX1 × TX2 is TX1 ⊕ TX2 .
For any frame homomorphism

→
fi: TXi → TXi

′
, (i ∈ {1, 2}),

→
f1 ⊕

→
f2 for the unique

morphism from TX1 ⊕ TX2 to TX1
′ ⊕ TX2

′define as follow:
→
f1 ⊕

→
f2 (

∨
γ∈Γ(fγ ⊕ gγ)) =

∨
γ∈Γ(

→
f1 (fγ)⊕

→
f1 (gγ)).

Definition 3.2. E ∈ TX ⊕ TX is T-Weil entourage of TX if and only if {µ ∈
TX |(µ, µ) ∈ E} is a cover of TX . That is ∨{µ ∈ TX |(µ, µ) ∈ E} = 1. The collection
T−W Ent(X) of all T-Weil entourage of TX may be partially ordered by inclusion.

Proposition 3.3. Let E be a T-Weil entourage. Then
(a) for any f ∈ TX , f ≤ st(f,E)
(b) En ⊆ En+1 for every natural n.
(c) For any down set A of TX × TX , A ⊆ (EoA) ∩ (AoE).
(d) for any f ∈ TX , st(st(f, F ), F ) ≤ st(f, F 2).
Definition 3.4. Let X be a nonempty set and E ⊂ TwEnt(X). We say (X, E) is a

T-Weil quasi uniformity on X if it satisfies the following conditions :
(T−WQU1) E is a filter of (T−W Ent(X),⊆),
(T−WQU2) For each E ∈ E there is F ∈ E such that FoF ⊆ E.
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The pair (X, E) is said to be a T-Weil quasi-uniform space.
A T-Weil quasi uniform space (X, E) is called a T-Weil uniform space if it satisfies
(T−WU3) for any E ∈ E , E−1 is also in E .
It is useful to note that the symmetric T- Weil entourages E of E form a basis for E .

In fact, if E ∈ E then E−1 ∈ E so E∩E−1 is a symmetric T-Weil entourage of E contained
in E.

Definition 3.5. Let (X, E), (X ′, E ′) be two T-Weil uniform spaces. A mapping f :

X → X ′ is said to be uniformly homomorphic if (
→
f ⊕

→
f )(E) ∈ E ′ whenever E ∈ E .

We will denote by T-W Unif the category whose objects are T-Weil uniform spaces
and morphisms are uniformly homomorphism mappings.

4. Relationships between T-Weil quasi uniformity and T-valued space
Theorem 4.1. Let (X, E) be a T-Weil quasi uniform space. Mapping i : TX → TX

be defined as follows: ∀ A ∈ TX i(A) = ∨{C ∈ TX |∃E ∈ E , st(C,E) ≤ A}. Then i is an
interior operator on TX .

Proof. (I01) Since st(C,E) ≤ 1 for every E ∈ E , so i(1) = 1.
(I02) i(A) = ∨{C ∈ TX |∃E ∈ E , st(C,E) ≤ A} since C ≤ st(C,E) for all C ∈ TX ,

i(A) ≤ A.
(I03) We need to prove i(A) ∧ i(B) ≤ i(A ∧ B), for arbitrary A,B ∈ TX . In fact,

since for arbitrary E,F ∈ E and arbitrary A,B,C,D ∈ TX such that st(C,E) ≤ A and
st(D,F ) ≤ B, we have st(C ∧ D,E ∩ F ) ≤ st(C,E) ∧ st(D,F ) ≤ A ∧ B. So i(A) ∧
i(B) = ∨{C ∧D|C,D ∈ LX ,∃E,F ∈ E , st(C,E) ≤ A, st(D,E) ≤ B} ≤ ∨{C ∧D|C,D ∈
TX , ∃E,F ∈ E st(C ∧D,E ∩ F ) ≤ A ∧B} = i(A ∧B).

(I04) By (I02) we have i(i(A)) ≤ i(A). We want to show that i(A) ≤ i(i(A)).LetC ∈
TX , E ∈ E , st(C,E) ≤ A. By (WQE2) ∃F ∈ E , FoF ⊂ E .Then st(C,FoF ) < st(C,E)and,
by Proposition 3.7(d)we have st(st(C,F ), F ) < st(C,FoF ) ≤ A .Then st(C,F ) ≤ i(A),
C ≤ i(i(A)) and ,so

i(A) = ∨{C ∈ LX |∃E ∈ E st(C,E) ≤ A} ≤ i(i(A)).

□
Definition 4.2. Let E be an T- Weil quasi uniformity on X ,the interior operator

defined in 4.1 is called the interior operator on TX generated by T- Weil quasi uniformity E .
The T-fuzzy space generated by the T-Weil quasi-uniformity E , denoted by δ(E), (X, δ(E))
is called the T-Top corresponding to (X, E).

Theorem 4.3. Let (X, E) be a T-Weil quasi-uniform space, mapping c : TX → TX be
defined as ∀ A ∈ TX , c(A) = ∧{st(A,E)|E ∈ E}. Then c is a closure operator on TX .

Proof. (C01) Since for every E ∈ E st(0, E) = 0 ,so c(0) = 0.
(C02) Since A ≤ st(A,E) for every E ∈ E then A ≤ c(A).
(C03) We need only to prove c(A ∨ B) ≤ c(A) ∨ c(B) for arbitrary A,B ∈ TX . It is

trivial,
st(A∨B,E1 ∩E2) ≤ st(A,E1)∨ st(B,E2). Suppose e ∈ TX such that e ̸≤ c(A)∨ c(B)

,then e ̸≤ c(A), e ̸≤ c(B) ,then there exist E,F ∈ E such that e ̸≤ st(A,E), e ̸≤ st(B,F )
.Then e ̸≤ st(A ∨ B,E ∩ F ), e ̸≤ c(A ∨ B) ,so c(A ∨ B) ≤ c(A) ∨ c(B). (C04) For every
A ∈ TX , we have st(st(C,F ), F )) < st(C,FoF ) . For every A ∈ TX , E ∈ E , c(A) =
∧{st(A,E)|E ∈ E}. By (WQE2), there exist F ∈ E such that FoF ⊂ E, c(c(A)) ≤
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st(st(A,F ), F ) ≤ st(A,FoF ) ≤ st(A,E) .Then c(c(A) ≤ c(A) and by (C02) c(A) ≤
c(c(A)) and, so c(c(A)) = c(A). □

Definition 4.4. Let E be an T-Weil quasi-uniformity on X. The closure operator de-
fined in 4.3 is called the closure operator on TX generated by the T−Weil quasi-uniformity
E .

Theorems 4.1, 4.3 shows that every T−Weil quasi- uniformity can generates a T-valued
space, but the unexpected result is that its converse is also true.

Remark 4.5. Let (X, δ) be a T-valued space.For every U ∈ δ, define a self mapping
fU on TX as follows:

∀ A ∈ TX ,

fU (A) =





1 A ̸≤ U    
U 0 ̸= A ≤ U
  0 A = 0

It is easy to find that fU is value increasing, fU (∨A) = ∨A∈AfU (A), fUofU = fU . Let
D = {f ∈ Ω(LX)|∃ A ∈ [δ]<w, f ≥ ∧U∈AfU} then for all g, f ∈ D there exist h ∈ D such
thath ≤ g ∧ f. (1) Take A ∈ [δ]<w such that f ≥ ∧U∈AfU = ∧U∈A(fUofU ) since for every
V ∈ A fV ofV ≥ (∧U∈AfU )0(∧U∈AfU ) so take g = ∧U∈AfU we have g ∈ D and gog ≤ f.
(2)

Theorem 4.6. Let (X, δ) be a T-valued space.Define Ef = ∪{α⊕ α|α ∈ Uf}such that
Uf be the cover of all f -small elements of TX .Then Eδ = {Ef |f ∈ D}is a T-Weil quasi
uniformity on X.

Proof. T−WQU1) It is obviously satisfied by (1). T−WQU2) Let Ee ∈ Eδ we can
take f ∈ D such that f3 ≤ e. By Lemma 4.4.3, we have EfoEf = (∪α∈Uf

α⊕α)o(∪α∈Uf
α⊕

α). Let (a, c) ∈ EfoEf then (a, b) ≤ (α, α) and (b, c) ≤ (β, β) where α, β ∈ Uf then
a < α < st(α,Ef ), c < B < st(α,Ef ) we prove st(α,Ef ) is e-small.

Let λ ∧ st(α,Ef ) ̸= 0, (γ, γ) ∈ Ef with γ ∧ α ̸= 0 and γ ∧ λ ̸= 0 then α, γ is f -
smallness then γ < f(λ), α < f(γ) then α < f2(λ). Therefore, for every (γ′, γ′) ∈ Ef

such that γ′ ∧ α ̸= 0 we have γ′ ≤ f(α) < f3(λ) ≤ e(λ). Then st(α,Ef ) is e-small
then st(α,Ef )⊕ st(α,Ef ) ∈ Ee so (a, c) ∈ Ee. By T−WQU1and T−WQU2 ,Eδis T−Weil
quasi-uniformity on X. □

Corollary 4.7. by theorem [4.6] can be restated as “every L-fts is fuzzy weil quasi-
uniformizable’.
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Abstract. Tensors as vector fields structures and manifolds as great geometrical-topological
structures have many applications in the fields of big data, such as tensorial analysis
methods, geometric and topological data analysis. Based on the types of norms, met-
rics, and scalable structures that have been defined on the data space, different methods
could be defined for various data analysis purposes. Nowadays, the hybrid methods be-
tween tensorial algorithms and manifold learning (MaL) methods have been attracted
some attention. In image and signal processing, from image recovery to face recognition,
these methods have appeared very excellent. According to our experiments by MAT-
LAB R2020b, the hybrid algorithms are powerful other than algorithms based on the
universal popular parameters for comparing.
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tion

AMS Mathematics Subject Classification [2010]: 15A69, 58J60, 68T07

1. Introduction

Matrix and tensor completion methods have many applications in various fields of big
data analysis, prediction based on collected data, image processing, and computer vision.
Incomplete, distorted, and noisy data has always been a major challenge in the field of
big data analysis, especially image processing [5]. This problem appears in digital images
as a variety of noise and image distortion. Matrix and tensor completion methods have
the ability to compensate to a significant degree (up to 90 percent distortion) [10]. On
the other hand, manifold learning methods based on a manifold theory with the ability
to reduce the dimension and eliminate noise and outliers data, significantly increase com-
putational efficiency [4]. The use of hybrid methods has become very common today. By
combining these large mathematical structures in geometry (manifolds) and algebra (ten-
sors), advanced and precise methods can be achieved that, while having high efficiency
with significant detection and recovery rates, also have high computational efficiency [6].

∗Speaker. Email address: hamidreza.yazdani@gmail.com
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2. Notations and Preliminaries

In this section, we briefly state some preliminaries for tensor calculus and tensor com-
pletion. For more details and information, please refer to [5], and [10].

Definition 2.1. A tensor is a multidimensional array, The dimensionality of it is de-
scribed as its order. An Nth-order tensor is an N -way array, also known as N -dimensional
or N -mode tensor, denoted by X. We use the term order to refer to the dimensionality of
a tensor (e.g., Nth-order tensor), and the term mode to describe operations on a specific
dimension (e.g., mode-n product) [1]. We denote the set of all n-dimensional tensors of
order m by Tm,n. For tensor A, if all of ai1,...,in are invariant under any permutation of
indices, then A is called a symmetric tensor. We show the set of all real n-dimensional
symmetric tensors of order m with Sm,n.

Definition 2.2. The inner product of two tensors X and Y of the same size is defined
as < X,Y >. Unless otherwise specified, we treat it as dot product defined as follows [9]:

(1) < X,Y >:=

I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN=1

Xi1,i2,··· ,iN yi1,i2,··· ,iN

Figure 1. The representation of tensors.

Definition 2.3. Generalized from matrix Frobenius norm, the F-norm of a tensor X
is defined as [5]:

(2) ||X||F :=
√
< X,X > =

√√√√
I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN=1

X2
i1,i2,··· ,iN

Definition 2.4. The well-known optimization problem for matrix completion as fol-
lows:

MinX :
1

2
||X −M ||2Ω

s.t.rank(X) ≤ r,

where X,M ∈ Rp×q, and the elements of M in the set Ω are geven while the remaining
are missing. We aim to use a low rank matrix X to approximate the missing elements [2].

Definition 2.5. The tensors is the generalization of the matrix concept. Given a
low-rank tensor T with missing entries, the goal of completing it can be formulated as the
following optimization problem [3]:

MinX :
1

2
||X − Y ||2F

s.t.||X|| ≤ c
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Figure 2. The comparision scheme of matrix completion vs tensor completion.

YΩ = TΩ

where X,Y, T are n-mode tensors with identical size in each mode. Figure 2 shows the
comparision between matrix and tensor completion problems.

Definition 2.6. A manifold is a Hausdorff topological space which looks locally like
a finite-dimensional Cartesian space Rn, a topological space in which case one speaks of a
manifold of dimension n or n-fold, but possibly an infinite-dimensional topological vector
space, in which case one has an infinite-dimensional manifold [7]. The circle and torus are
simple 1-and 2-dimensional manifolds. The topological manifold of M is called smooth
(differentiable) if M has continuous differentials. In fact, the topological manifold C0

is continuous and the topological manifold whose derivatives of any order is continuous
order, called C∞ or smooth.

Figure 3. The comparision scheme of some manifold learning methods
with 1000 points.

3. Main Results

Dimensionality reduction is the transformation of high-dimensional data into a mean-
ingful representation of reduced dimensionality [4]. Ideally, the reduced representation
should have a dimensionality that corresponds to the intrinsic dimensionality of the data.
The intrinsic dimensionality of data is the minimum number of parameters needed to ac-
count for the observed properties of the data [6]. Traditionally, dimensionality reduction
was performed using linear techniques such as Principal Components Analysis (PCA),
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factor analysis, classical scaling, and t-SNE [4]. However, these linear techniques can-
not adequately handle complex nonlinear data. Thus, Manifold Learning methods have
emerged. Manifold learning is an approach to non-linear dimensionality reduction. Al-
gorithms for this task are based on the idea that the dimensionality of many data sets
is only artificially high, For more details, see figure 3 [6]. In less than 20 years, with
the development of dimensionality reduction methods, manifold’s theory has been widely
used in the field of artificial intelligence and has led to the discovery of a new concept
called manifold learning. The main idea is that the dimension of the data set or space is
artificially high and with appropriate geometric methods, a low-dimensional manifold can
be achieved that contains valuable and important information of the original data space
(Whitney Theorem). This embedded manifold is called the Whitney manifold. The main
goal of manifold learning methods is to reduce the dimension and increase computational
efficiency. The concept of a tensor is also presented in the form of a tensor field, so the
combination of tensor methods and manifold learning methods in recent years is very
much in the spotlight and promises the emergence of faster and more efficient methods for
processing all types of big data, especially high-resolution images. The format of digital
images and videos has been changed. In the field of applications of manifold learning
methods, we can mention handwriting manifold learning through LLE or Isompe methods
(in general, Isompe is one of the most basic methods for manifold learning, which can
be considered as MDS and PCA expansion while maintaining geodesic distances between
points). Application in image processing in the stages of recovery and recognition in med-
ical images such as brain MRI, face recognition, and high ability to reconstruct human
face images is also one of the important applications.

4. Conclusion

In this paper, we have investigated new computational methods that lead to advanced
hybrid algorithms for the registration, reconstruction, recovery, and recognition of objects
and human images (face detections). These methods integrate and combine two powerful
objects in mathematics i.e. tensors and manifolds. According to our studies and exper-
iments, in addition to computational savings due to reduced dimensions, these methods
have high detection and recognition rates more than 90 percent and even up to 99 percent
in some cases. On the other hand, these methods have suitable computational costs and
more efficient than other methods. The combination of conventional linear dimensional
reduction methods such as PCA and LDA with tensors and the development of new algo-
rithms such as MPCA and MLDA is a testament to this claim. In any type of problem,
depending on the case study conditions such as type of images or data (structured, semi-
structured, or unstructured), by choosing the appropriate tensor analysis method, mul-
tiplication and metric, the type of optimization method depending on equal or unequal
constraints of the problem, or convexity or concavity, the best method, and algorithm
for achieved a better result, should be selected. Finally, the hybrid between tensors and
manifolds methods result in efficient and hopeful methods for big data analysis, especially
digital images.
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Abstract. In this paper, a non-linear programming problem is investigated in which
the objective function is defined by the weighted power mean and the feasible region
is formed as a special type of fuzzy relational equalities. In this type of fuzzy relational
equalities, fuzzy composition is considered as the weighted power mean operator. Some
theoretical properties of the feasible region are described. Based on the structural prop-
erties of the problem, it is proved that the maximum solution of the feasible region is the
unique optimal solution for the problem and finally, an example is presented to illustrate
the proposed method.
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1. Introduction

The Resolution of fuzzy relational equations (FRE) with max-min composition was
first studied by Sanchez [6]. Besides, Sanchez developed the application of FRE in medi-
cal diagnosis in biotechnology. In addition to the preceding application, FRE theory has
been applied in many fields, including fuzzy control, discrete dynamic systems, predic-
tion of fuzzy systems, fuzzy decisionmaking, fuzzy pattern recognition, fuzzy clustering,
image compression and reconstruction, fuzzy information retrieval, and so on. The solu-
tion set of FRE is often a non-convex set that is completely determined by one maximum
solution and a finite number of minimal solutions [1]. This non-convexity property is sig-
nificant bottleneck making major contribution to the increase of complexity in problems
that are related to FRE, especially in the optimization problems subjected to a system of
fuzzy relations. The optimization problems with general nonlinear objective functions
and FRE or FRI constraints were studied in [2-5]. In general, a heuristic algorithm was
applied to deal with this kind of problems. However, some fuzzy relation nonlinear opti-
mization problems could be solved by some specific method. In this paper, we study the
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following non-linear optimization problem in which the objective function is defined as
the weighted power mean function and the constraints are formed as the fuzzy relational
equalities:

(1)
max

∑n
j=1(wc

p
j + (1−w)xp

j )
1/p

A⊙ x = b
x ∈ [0,1]n

where I = {1,2, ...,m }, J = {1,2, ...,n }, 0 ≤ w ≤ 1 and p > 0. Also, A = (aij )m×n, 0 ≤ aij ≤ 1
(∀i ∈ I and ∀j ∈ J), is a fuzzy matrix, b = (bi)m×1,0 ≤ bi ≤ 1 (∀i ∈ I), is an m–dimensional
fuzzy vector, 0 ≤ cj ≤ 1 (∀j ∈ J) are fuzzy cost coefficients, and ”⊙” is the max-weighted
power mean composition, that is, x ⊙ y = (wxp + (1 − w)y p)1/p. If ai is the i’th row of

matrix A, then the constraints can be expressed as ai ⊙ x = bi(i ∈ I), where
ai⊙x=max

j∈J
{aij⊙xj }

and aij⊙xj=(wa
p
ij+(1−w)x

p
j )

1/p
.

2. Unique optimal solution for problem (1)

In this section, it is proved that problem (1) has indeed the unique optimal solution.
Denote S(A,b) = {x ∈ [0,1]n : A⊙ x = b}, that is, set S(A,b) represents the solution set of
system (1). Similar to the general mathematical programming problem, a vector x satis-
fying the constraints in (1), i.e., x ∈ S(A,b), is said to be a feasible solution of problem (1).

Definition 1. A solution x̄ ∈ S(A,b) is said to be the maximum solution of S(A,b) when
x ≤ x̄ for all x ∈ S(A,b).

Lemma 1. Let i ∈ I , j0 ∈ J and aij0 >
bi
p√w . Then, ai ⊙ x > bi .

Proof. Since the operator ⊙ is an increasing function on [0,1]2 in both variables, we note
that aij0 ⊙ xj >

(
bi
/

p
√
w
)
⊙ xj = (bp

i + (1−w)xp
j0
)1/p ≥ bi . Thus, for each x ∈ [0,1]n we have

ai ⊙ x =max
j∈J
{aij ⊙ xj } ≥ aij0 ⊙ xj0 > bi . □

Lemma 2. Let aij0 ≤ bi
p√w for some i ∈ I and j0 ∈ J . If bp

i ≥ 1−w and aij0 < [(bp
i +w−1)/w]1/p,

then aij0 ⊙ xj0 < bi , ∀xj0 ∈ [0,1].
Proof. Since b

p
i ≥ 1 −w, then [(bp

i +w − 1)/w]1/p ≥ 0. Now, the result follows from the
relations aij0 ⊙ xj0 < [(bp

i +w − 1)/w]1/p ⊙ 1 = bi .□

Lemma 3. Let aij0 ≤ bi
p√w for some i ∈ I and j0 ∈ J . Also, suppose that either bp

i < 1−w or

aij0 ≥ [(bp
i +w−1)/w]1/p. Then, xj0 = [(bp

i −wa
p
ij0
)/(1−w)]1/p is the unique solution to the

equality aij0 ⊙ xj0 = bi .
Proof. It is easy to verify that aij0 ⊙ xj0 = bi . Now, Since the operator ⊙ is an increas-
ing function , we have aij0 ⊙ xj > bi if xj > [(bp

i − wa
p
ij0
)/(1 − w)]1/p and aij0 ⊙ xj < bi if

xj < [(bp
i −wa

p
ij0
)/(1−w)]1/p. □
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Definition 2. A solution For an arbitrary fixed i ∈ I , let J −(i) = { j ∈ J : aij > bi/
p
√
w }.

Additionally, define J∞(i) =
{
j ∈ J : b

p
i ≥ 1−w , aij < [(bp

i +w − 1)/w]1/p
}
and J(i) = J −

{J −(i)∪ J∞(i)}.

According to Lemmas 1-3, the following corollary is directly attained. This corollary
characterizes all the feasible solutions to the equation ai ⊙ x = bi .

Corollary 1. x′ is a solution for ai ⊙ x = bi if and only if J −(i) = ∅ , J(i) , ∅ and
(a) x′j ∈ [0,1], ∀j ∈ J∞(i).
(b) x′j ≤ [(bp

i −wa
p
ij )/(1−w)]1/p, ∀j ∈ J(i).

(c) There exist at least some j0 ∈ J(i) such that x′j0 = [(bp
i −wa

p
ij0
)/(1−w)]1/p.

Definition 3. Let x̄(i) ∈ [0,1]n such that

x̄(i)j =
{

[(bp
i −wa

p
ij )/(1−w)]1/p , if j ∈ J(i)

1 , if j ∈ J∞(i)
Theorem 1. x̄(i) is the unique maximum solution to the equation ai ⊙ x = bi .
Proof. Based on Corollary 1, x̄(i) satisfies ai ⊙x = bi . Suppose that x′ is a feasible solution
for ai ⊙ x = bi . So, from Corollary 1, x′j ≤ [(bp

i −wa
p
ij )/(1 −w)]1/p, ∀j ∈ J(i), and x′j ≤ 1,

∀j ∈ J∞(i). Therefore, x′j ≤ x̄(i)j , ∀j ∈ J . □

Definition 4. Let x̄(i) be as in Definition 2, ∀i ∈ I . We define x̄ =min
i∈I
{x̄(i)}.

Theorem 2. x̄ is the maximum solution of S(A,b).
Proof. By contradiction, suppose that x′ ∈ S(A,b) and x̄j < x′j for some j ∈ J . Based on

Definitions 3 and 4, either x̄j = 1 or x̄j = [(bp
i −wa

p
ij )/(1 −w)]1/p for some i ∈ I such that

j ∈ J(i). Therefore, since x′j ∈ [0,1], then wemust have [(bp
i −wa

p
ij )/(1−w)]1/p < x′j for some

i ∈ I such that j ∈ J(i). But, in this case, Corollary 1(b) implies that x′ violates ai ⊙ x = bi ,
i.e., x′ < S(A,b). □

Theorem 3. x̄ is the global optimal solution for problem (1).
Proof. The result follows from Theorem 2 and the fact that operator ⊙ is an increasing
function on [0,1]2. □

3. Numerical results

Consider the following non-linear programming problem (1):

min Z = −0.6582x1 − 0.029x2 +0.6277x3 − 0.3x4+0.0157x5 − 0.4737x6+0.2926x7


0.6763 0.8969 0.8403 0.3000 0.0710 0.0758 0.3529
0.3362 0.2721 0.1956 0.3396 0.0101 0.2557 0.1193
0.1637 0.5426 0.2534 0.3701 0.4916 0.5761 0.2454
0.5161 0.1330 0.9090 0.1477 0.3827 0.7212 0.2452
0.2319 0.8371 0.1275 0.8609 0.5201 0.6163 0.0654



⊙ x =




0.8657
0.6520
0.6926
0.8833
0.8350




x ∈ [0,1]7
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where w = 3/4 and p = 3. Moreover, c1 = −7.6582 ,c2 = −2.029,c3 = 6.6277,c4 = −6.3,c5 =
0.0157,c6 = −7.4737 and c7 = 7.2926. For each i ∈ I , we have J −(i) = ∅. Also, J(1) = {2,3},
J(2) = {1,4}, J(3) = {2,5,6}, J(4) = {3} and J(5) = {2,4}. According to Definition 3, the max-
imum solutions of ai ⊙ x = bi , ∀i ∈ I , are attained as follows:
x̄(1) = [1, 0.7552 , 0.9341 ,1,1,1,1], x̄(2) = [0.9982 ,1,1, 0.9970 ,1,1,1],
x̄(3) = [1 , 0.9471 , 1 , 1 , 0.9908 , 0.9107 , 1], x̄(4) = [1 , 1 , 0.7955 , 1 , 1 , 1 , 1] and x̄(5) =
[1 , 0.8286 , 1 , 0.7456 , 1 , 1 , 1]. Hence, by Definition 4 and Theorem 3, the global opti-
mal solution is obtained as follows:

x̄ = [0.9982 , 0.7552 , 0.7955 , 0.7456 , 0.9908 , 0.9107 , 1].

4. Conclusion

In this paper, we introduced a non-linear weighted power mean optimization model
constrained with fuzzy relational equalities. These fuzzy equalities were defined by the
weighted power mean operator. It is proved that the maximum solution of the feasible
region is the unique global solution of the problem.
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Abstract. Let A be a C∗-algebra, φ : A → A be a linear homomorphism and e be
an element in a Hilbert A-module M satisfying ∥e∥ = 1. In this paper, we demonstrate
an algebraic structure on M , denoted by πe under which (M,πe) is a Banach algebra.
Moreover, applying the concepts of φ-module map and φ-morphism, we establish a nec-
essary and sufficient condition for a φ-module map (resp. φ-morphism) on M to be a
homomorphism on (M,πe).

Keywords: Full Hilbert C∗-module; generalized module map.

AMS Mathematics Subject Classification [2010]: Primary: 47L08, Secondary:
47C05.

1. Introduction

A left pre-Hilbert module M over C∗-algebra A is a left A-module equipped with an A-
valued inner product denoted by < ., . > from M×E to M such that for every x, y, z ∈ M ,
λ ∈ C and a ∈ A, satisfies the following conditions:

(i) < x, x >≥ 0;
(ii) < x, x >= 0 if and only if x = 0;
(iii) < x+ λy, z >=< x, z > +λ < y, z >;
(iv) < x, y >=< y, x >∗;
(v) < ax, y >= a. < x, y > .
A left pre-Hilbert A-module M is called a left Hilbert A-module or left Hilbert C∗-

module over C∗-algebra A, if it is complete with respect to the norm ∥x∥ = ∥ < x, x > ∥ 1
2 .

The Hilbert A-module M is called full if AM := span{< x, y >: x, y ∈ M} is dense
in A. Note that AM is an ideal in A, called the range ideal of M . We denote by < M,M >
the closure of AM and call it the support of M . Therefore, M is a full Hilbert A-module
if < M,M > is equal to A.

As an example, suppose that A is a C∗-algebra and takeM := A. Then, A with respect
to its product as the usual action, is a left A-module. Additionally, A equipped with the
inner product < a, b >= ab∗ is a HilbertA-module. Additionally, if a ∈ A and {eλ} is an
approximate identity for A, then lim

λ
< a, eλ >= lim

λ
ae∗λ = a. Hence < M,M >= A and

therefore M is a full Hilbert A-module.

∗Speaker. Email address: mosadeq@mshdiau.ac.ir

877



M. Mosadeq

Hilbert C∗-modules are a generalization of Hilbert spaces, but there are some differ-
ences between these two classes. For more information on Hilbert C∗-modules the reader
is referred to [2].

In the remainder of this section, we introduce two important classes of operators
between Hilbert modules.

Definition 1.1. Let A be a C∗-algebra and φ : A → A be a linear homomorphism.
(i) A linear mapping T : M → M is called a φ-module map if T (ax) = φ(a)T (x)

for all a ∈ A, x ∈ M.
(ii) A linear mapping T : M → M is called a φ-morphism if < T (x), T (y) >= φ(<

x, y >), for all x, y ∈ M.

It is easy to see that if T is a φ-morphism, then T is necessarily a linear operator and a
φ-module map. Also applying the polarization identity one immediately conclude that T
is a φ-morphism if and only if < T (x), T (x) >= φ(< x, x >), for all x ∈ M. The notion
of φ-morphism was introduced by Bakic and Guljas in 2002. The reader is referred to [1]
for more details.

Remark 1.2. Let T : M → M be a φ− morphism. It is known from [1], that T is
a contraction and ImT is a closed subspace of M . Also it is a Hilbert C∗-module over
C∗-algebra Imφ such that < ImT, ImT >= φ(< M,M >).

Example 1.3. Let A be a C∗-algebra and consider A as a Hilbert A-module. Suppose
that φ : A → A is a linear ∗-endomorphism and u is an arbitrary unitary element in
A. Define T : A → A by T (a) := φ(a)u. Then, T is a φ-morphism. Moreover, T is a
Surjection if and only if φ is an epimorphism.

We end this section with the following lemma which can be found in [3].

Lemma 1.4. Let M be a full Hilbert A-module and a ∈ A. Then, ax = 0 for all x ∈ M
iff a = 0.

2. A method to construct a homomorphism on Hilbert modules

Throughout this section, A is a C∗-algebra. The following theorem manifests an

algebraic structure on a Hilbert A-module M under which M is a Banach algebra.

Theorem 2.1. Suppose that M is a left full Hilbert A-module. If there exists an element e 
∈ M such that ∥e∥ = 1, then the mapping π : M × M → M defined by πe(x, y) :=< x, e > .y is 
a product on M which making it into a Banach algebra. We denote by (M, πe) the 
aforementioned Banach algebra [4].

Theorem 2.2. Let φ : A → A be a linear homomorphism, M be a full Hilbert A-module 
and let T : M → M be a surjective φ-module map. Then T is a homomorphism on (M, πe) if 
and only if φ(< x, e >) =< T (x), e > for all x ∈ M.

Theorem 2.3. Let φ : A → A be a linear homomorphism, M be a full Hilbert A-module 
and let T : M → M be a surjective φ-morphism. Then T is a homomorphism on (M, πe) if and 
only if T (e) = e.

Corollary 2.4. Let e be an element in A such that ∥e∥ = 1 and φ : A → A be a 
surjective linear homomorphism. Then φ is a homomorphism on (A, πe) if and only if φ(e∗) 
= e∗.
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Example 2.5. Let e be a unitary element of A and φ : A → A be the inner auto-
morphism φ(a) := eae∗. Then, φ is a surjection satisfying φ(e∗) = e∗ and by the previous
corollary φ is a homomorphism on (A, πe).
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