PREFACE

The 8th seminar on Linear Algebra is the latest in a successful series

of meetings that began in more than 15 years ago. The meeting is
being organized in cooperation with the Iranian Mathematical Society
(IMS) and covers a wide and inclusive range of topics in applied and
core linear algebra, as well as applications, both emerging and estab-
lished.
The organizing committee of the seminar warmly welcomes the par-
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have made endeavor to make the seminar as worthwhile as possible. We
wish to express our thanks to all whose help has made this gathering
possible. In particular, we would like to express our gratitude to the
administration of University of Kurdistan, the Iranian Mathematical
Society, and Tejarat Bank.
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ABSTRACT. In this paper, We present the generalizations of the
LSMR and NSCG methods for solving matrix equations. First,
based on the LSMR algorithm, the BI-LSMR and GI-LSMR algo-
rithms are derived by minimizing the Frobenius norm of residual
matrix of normal equation. In addition, by extending the idea
of LSMR algorithm, we also present the LSMR-M algorithm for
solving the general coupled matrix equations. Next, based on
NSCG and NS-CGNR methods, we establish the iterative methods
which are inner/outer iterations for solving the sylvester equation
and matrix equation AXB = C. Convergence conditions of each
method are studied in dept and by using the numerical experi-
ments the efficiency of the methods versus some well-known itera-
tive method are shown. We also show that the Hermitian splitting
and quasi-Hermitian splitting can induce accurate, robust, and ef-
fective preconditioned Krylov subspace methods.
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ABSTRACT. For a symmetric matrix it was shown by Bunch, Dem-
mel and van Loan that there is no difference between the general
and the structured condition number. We show that this may
change for other structures.

1. INTRODUCTION

The sensitivity of a problem determines, in general, the maximally
achievable accuracy when solved by a numerical algorithm. For exam-
ple, for a linear system Ax = b the sensitivity is characterized by the
condition number ||A7!||||A]|. This is true if there are no perturbations
in the right hand side; otherwise the condition number increases at
most by a factor 2.

Assume a linear system with condition number of about 101 is solved
using IEEE754 double precision with a relative rounding error unit
u = 27% ~ 1071%. Then that means that at most 6 decimal figures of
the solution components can be expected to be correct. An algorithm
is stable if the computed solution achieves approximately that maxi-
mally achievable accuracy. The concept extends to general numerical
problems.

2010 Mathematics Subject Classification. Primary 47A55; Secondary 39B52
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When solving special linear systems, for example with symmetric,
Toeplitz or circulant matrix, special solvers are available. Such solvers
are often much faster than a general solver such as Gaussian elimina-
tion. Input parameters are only the necessary parameters to identify
the matrix.

For example, it suffices to know the first row of a symmetric positive
definite Toeplitz matrix to identify the matrix, and a fast algorithm
needs only O(n?) operations compared to O(n?) operations for Gauss-
ian elimination. However, as only the first row is input to the Toeplitz
solver, perturbations are necessarily restricted to Toeplitz perturba-
tions.

Therefore it is necessary to adapt the definition of the sensitivity,
i.e. the condition number, to structured perturbations. This opens
the mathematical question how big is the difference between the sen-
sitivity with respect to general perturbations compared to structured
perturbations.

For a symmetric matrix it was shown by Bunch, Demmel and van
Loan that there is no difference between the general and the structured
condition number. We show that this may change for other structures.
For example, the condition number may square for linear systems with
circulant matrix. For that structure particularly fast algorithms, based
on Fast Fourier Transformations, requiring only O(nlog(n)) operations
are available.

If, as in the example above, the general condition number is of the
order 10, the structured condition number may be of the order 10°.
Thus a solution computed by Gaussian elimination cannot be more ac-
curate than 6 decimal figures, whereas a circulant solver might achieve
11 correct digits. To my knowledge, such an algorithm is not available,
a challenge for numerical analysts.

For general Toeplitz matrices the situation is even worse. The factor
for a linear system with n unknowns between the general and the struc-
tured condition number may be up to about a factor 2". This result
was obtained together with Sekigawa, and it has intimate relations to
the ratio ||PQ|| and || P||||@]| for polynomials P and ). The infimum of
that ratio is explicitly known for a number of norms. For the spectral
norm, which is used here, it is only known up to some factor.

The situation changes for the matrix condition number (instead of
the condition number for linear systems). Here I can show that for
quite a number of structures there is no difference at all between the
general and the structured condition number. Such structures include
symmetric, persymmetric, skewsymmetric, symmetric Toeplitz, general
Toeplitz, persymmetric Hankel, general Hankel and circulant matrices.



The result can be interpreted in the way that amongst the worst per-
turbations there is always a structured one.

The famous Eckart-Young theorem states that the condition number
is equal to the reciprocal of the distance to the nearest singular matrix.
That 80-year old theorem is quite intuitive: Approaching a singular
problem should necessarily increase the condition number, i.e. the
sensitivity. It is shown that the theorem extends to all the structures
mentioned above.

For simplicity and convenience, perturbations are often normwise.
However, that bears a significant disadvantage. All components of a
matrix may be perturbed, in particular zero components. However,
zero components are often determined by the structure of the underly-
ing problem, for example the discretization of some continuous equa-
tions. Therefore, a more versatile and general point of view are compo-
nentwise perturbations. The most common case are entrywise relative
perturbations. In that case, zero components are not changed.

The natural question arises whether there is a difference between
general and structured componentwise perturbations. In that case the
picture changes completely. We could construct parametrized examples
where the general structured condition number tends to infinity for the
parameter approaching zero. However, the structured componentwise
condition number is always less than 8. That means the solution of the
problems are insensitive to structured perturbations, but arbitrarily
sensitive to general perturbations.

Thus there is no relation between the general and the componentwise
structured condition number. Similarly, for structured perturbations,
there is no relation between the componentwise condition number and
the distance to the nearest singular matrix. More precisely, there are
parametrized examples of structured matrices with structured compo-
nentwise condition number tending to infinity, whereas the structured
componentwise distance to the nearest singular matrix is always equal
to 1. In other words, no entrywise change of less than 100 per cent can
produce a singular matrix, that is the distance to the nearest singular
matrix is equal to the distance to the zero matrix.

Attempting to rescue a version of the Eckart-Young theorem, it re-
mains the questions whether there is a relation between the general
(unstructured) componentwise condition number and the general com-
ponentwise distance to the singular matrix. That was an open problem
for some time. We solved that question by developing an extension the
100-year old Perron-Frobenius theory from positive or non-negative
matrices to general real or complex matrices. The result characterizes
the relation up to a constant factor less than 6.



The condition number characterizes the maximally achievable accu-
racy of a numerical solution. However, in general the condition num-
ber is not known. That lead Wilkinson to his famous definition of
the textitbackward error: What is the smallest perturbation of a given
problem such that a computed solution is the exact solution of the
perturbed problem. If such a perturbation is of the size of the relative
rounding error unit, an algorithm is stable.

Many algorithms have been analyzed to be stable, and that is possi-
ble without knowing the condition number. Again, the question about
structures arises. It is well-known that for normwise perturbations
there is no difference between the general and the structured backward
error. For other structures that problem has been analyzed as well.

At the 19th Householder meeting 2014 in Spa, Belgium, Jim Dem-
mel posed the question about the relation between the general and
symmetric backward error under componentwise perturbations. That
question arose in practice: Algorithms are known to be backward sta-
ble in the general componentwise sense, but it was not clear whether
that also implies stability with respect to symmetric componentwise
perturbations.

We solved that problem not only with respect to symmetric, but with
respect to all the structures mentioned above. The result will appear
this year in SIMAX. It says that for all those structures there are prob-
lems being arbitrarily sensitive with respect to normwise structured
perturbations, but not sensitive at all with respect to componentwise
structured perturbations.
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ABSTRACT. An efficient refinement algorithm is proposed for the
symmetric eigenvalue problems. The algorithm is simple, and it
mainly consists of matrix multiplications. It constructs an arbi-
trarily accurate eigenvalue decomposition, up to the limit of com-
putational precision. Since the proposed algorithm is based on
Newton’s method, it converges quadratically for simple eigenval-
ues. Numerical results demonstrate the excellent performance of
the proposed algorithm in terms of convergence rate and overall
computational cost.

1. INTRODUCTION

Let A be a real symmetric n x n matrix. We are concerned with the
symmetric eigenvalue problem Ax = Ax, where A\ € R is an eigenvalue
of A and x € R" is an eigenvector of A associated to A. To solve the

2010 Mathematics Subject Classification. Primary 47A55; Secondary 39B52,
34K20, 39B82.
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problem is important, since it is one of the significant tasks in scientific
computing. Excellent overviews can be found in [1].

The purpose of this paper is to develop an algorithm for calculating
an arbitrarily accurate result of the eigenvalue decomposition

A=XDXT, (1.1)

where X € R"™"™ is the orthogonal matrix whose ith columns are the
eigenvectors ¥ of A and D € R™™ is the diagonal matrix whose
diagonal elements are the corresponding eigenvalues \;, i.e., D;; = \; for
¢t =1,...,n. For this purpose we discuss iterative refinement methods
for (1.1) together with the convergence analysis.

Several efficient numerical algorithms for (1.1) have been developed
such as the bisection method with inverse iteration, the QR algorithm,
the divide-and-conquer algorithm or the MRRR algorithm via House-
holder’s tridiagonalization, the Jacobi algorithm and so forth. Since
they have actively been studied in numerical linear algebra for decades,
there are highly reliable implementations of them such as LAPACK
routines.

We stress that we do not intend to compete with such existing algo-
rithms but develop an iterative refinement algorithm for improving the
results obtained by any of them, i.e., the proposed algorithm can be
regarded as a supplement to the existing ones for constructing (1.1).
In fact, we assume that an approximation X of X in (1.1) is given,
where X should be accurate to some extent. A sufficient condition for
the convergence of the iterations is given by our analysis.

Another possible approach to achieving an accurate eigenvalue de-
composition is to use some multiple precision arithmetic library such as
MPFR with GMP in the Householder’s tridiagonalization and the sub-
sequent algorithm. In this case, however, the accuracy of the results
depends on the arithmetic precision in use. Let u denote the rela-
tive rounding error unit according to working precision (For example,
u = 275 for IEEE 754 binary64). Define \p.. := max; |\;]. Then it
is known (cf. e.g., [1]) from the standard error analysis for the existing
algorithms that the absolute error bound of each computed eigenvalue
A; for \; is given as

~

|>\Z - )\z| < p(n>u : /\max7

where p(n) is a modestly growing function of n. This means that
small eigenvalues may not achieve high relative accuracy. If A\, =
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min; |\;| # 0, then the relative error bound of Xz becomes
:\\i - AZ :\\z - AZ )\max
P < BEA < 3= — g n(a),

where r(A) is the spectral condition number of A. In general, we do not
know beforehand how much arithmetic precision suffices to achieve the
desired result accuracy, especially for such small eigenvalues. More-
over, the use of such multiple precision arithmetic for entire compu-
tations is often much more time-consuming than pure floating-point
arithmetic due to the difficulty of the optimization for today’s com-
puter architecture. Therefore, we prefer the approach by the itera-
tive refinement rather than that by simply using the multiple precision
arithmetic. More precisely, the use of higher precision arithmetic in
our proposed algorithms is basically restricted to matrix multiplica-
tion, which accounts for the majority of the computational cost. For
example, XBLAS [1], the extended and mixed precision BLAS, and
other accurate and efficient algorithms for dot products [2, 5] and ma-
trix products [3] based on error-free transformations are available for
practical implementation.
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ABSTRACT. This paper is concerned with examining the applica-
bility of the conjugate gradient least-squares (CGLS) method for
determining the Hermitian tridiagonal least-squares solutions of
the quaternion matrix equation AXy B 4+ CXosD = E. All compu-
tations in the presented algorithm are quaternionic.

1. INTRODUCTION

The quaternions arise in various fields such as computer graphics,
control theory, signal processing, and etc. For an overview on the
properties of quaternions, one may refer to [1, 2] and references therein.
Throughout the current work, the set of all m x n matrices over the
quaternion ring is denoted by Q™*", i.e.,

Q = {a1+agitagj+ask | i* = j> = k* = ijk = =1, a1, as,a3,a4 € R}.

2010 Mathematics Subject Classification. Primary 15A24; Secondary 65F30,
65F10.
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For a given n x n matrix A, the symbols A¥ and tr(A) are respec-
tively exploited to represent the conjugate transpose and the trace
of A. The real part of a quaternion a is denoted by Re(a), i.e., if
a = a; + agi + agj + ask then Re(a) = a;. The set of all n x n
Hermitian, anti-Hermitian, Hermitian tridiagonal and anti-Hermitian
tridiagonal quaternion matrices are respectively indicated by HQ"*",
AHQ™ ™, THQ™ ", and TAHQ"*". Moreover, the notation KQ"*"
stands for the set of all n X n quaternion matrices so that their main
diagonal, the first diagonal below this, and the first diagonal above the
main diagonal are zero. The inner product over Q™*" is defined by
(A, B) = Re(tr(Bf A)) for A, B € Q™" and the induced matrix norm
is specified by

Al = v/ (A, A) = \/Re(tr(A" A)).

As a natural extension for the matrix groups X = (X3, X3) and Z =
(Zy, Z5), the inner product between X and Z is elucidated by

(X1, X2),(Z1, Za)) = (X1, Z1) + (Xa, Zo) .

Thence || X|* = || X1]]2 + || X2]|? for X = (X1, X5).
In this paper, we focus on the solutions of the following problem.

Problem 1. Presume that the n X n quaternion matrices A, B,C, D
and E are given. Find the matrices X; and X5 such that

|AX1B + CXyD — FE|| = min, (1.1)
and X = (X1, Xs) € THQ™" x THQ" ",

Here we would like to point out that Ling et al. [2] have extended
the LSQR algorithm [3] to determine the Hermitian tridiagonal least-
squares solutions of the matrix equation AXB = F.

For simplicity, we consider the linear operator M : Q™*" x Q™" —
Q™" such that for X = (X3, X»)

M(X) = AX,B + CX,D. (1.2)

Using (1.2), the matrix equation AX;B + CX,D = E can be reformu-
lated to M(X) = E.

Definition 1.1. Let G be a linear operator from Q"*" to Qm*",
then the adjoint of G is denoted by G* and satisfies (G (X),Z) =
(X,6"(2)).



2. MAIN RESULTS

Lately, Peng [1, 5] has successfully extended the CGLS method to
determine the least-squares solutions of two kinds of matrix equations
over two special classes of matrices. In this section we develop the
CGLS method for solving problem (1) which is propounded in Algo-
rithm 1. The following lemma has a fundamental role for developing
the CGLS algorithm to solve Problem 1.

Lemma 2.1. Presume that THQ™ ", TAHQ™ " and KQ™ " are de-
fined as before. Then,

Q?’LX?’L — TH@TLXN @ VH‘AH@RXH @ KQHX?’L7

where @ stands for the orthogonal direct sum with respect to the inner
product (., .).

Remark 2.2. For simplicity, we mention the linear operator £ from
Q™™ to THQ" " as follows:

£:Qn><n N THQan
A — Al

where A; € THQ" ", Ay € TAHQ™" and A3z € KQ™"*" is the unique
representation of matrix A, i.e., A = Ay + Ay + As.

For an arbitrary A € Q™*", suppose that the operators H gives the
Hermitian part of matrix A, ie., H(A) = (A4 + A"). In addition,
assume that IC(A) reset to zero all elements of the matrix A except
the main diagonal, the first diagonal below this and above the main
diagonal where A is a given arbitrary matrix. It is not difficult to see

that L(A) = K(H(A)).

Algorithm 1. The CGLS method for solving problem (1).
Data: Input A, B,C,D,E; the initial guess X (0) =
choose tolerance e.

(0,0) and

Initialization:
° k =0
R(0) = E — M(X(0))
P(0) = (M*(R(O)))
. Q(O) P(0)

While HP(k)H > ¢ Do:

X(k+1) = X (k) + il Q(k)

1) = R(k) — el M(Q(k))

R(k +
P(k+1) = L(M*(R(k + 1))



g( ; 1) = Pk +1) + LEDEQ(k)

EnDDo

Now we present the following useful theorem which represents prop-
erties of the sequences produced by the proposed algorithm. By Theo-
rem 2.3, it turns out that the solution of problem (1) can be computed
by Algorithm 1 within finite number of steps in exact arithmetic.

Theorem 2.3. Suppose that k steps of Algorithm 1 have been per-
formed, i.e., P(I) # 0 and M(Q(l)) # 0 for I = 0,1,...,k. The
sequences P(l) and Q(1) (I =0,1,...,k) produced by Algorithm 1 sat-
isfy

(1) (P(2), P(5)) =0,
(2) (M(Q()), M(Q(j))) = 0,
(3) (&), P(5)) =0,

fori,j=0,1,2,....k (i # j).

The following theorem shows that the residual matrices associated
with the approximate solutions produced by Algorithm 1 satisfy an
optimality property.

Theorem 2.4. Suppose that m steps of Algorithm 1 have been per-
formed, i.e., P(l) # 0 and M(Q(l)) # 0 forl =0,1,...,m — 1. Pre-
sume that the subspaces IC,,, = span{Q(0),...,Q(m—1)} and MK,, =
span{M(Q(0)), ..., M(Q(m — 1))}. Assume that P(m) # 0, then the

mth approximate solution obtained by Algorithm 1 satisfies

1£ = MX(m)| = m(;)ri B — M(X)|.
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ABSTRACT. In this paper we deal with gs-majorization, introduce
generalized even majorization(ge-majorization) and prove that gs-
majorization and ge-majorization coincide on R™ when n > 3.

1. INTRODUCTION

Let © = (z1,...,2,)" and y = (y1,...,9a)" be two vectors in R”

and let o+ = x%, ..., x¥ ) be the vector obtained by rearranging the

coordinates of z in decreasing order. i.e. z1 > x5 > ... > x}:. Then z

is said to be majorized by y (written z < y) if

k k
o<yt k=1,2,...,n (1.1)
i=1 =1

n n

and Y. xF = Yy, A matrix D is called doubly stochastic if it is
i=1 i=1

nonnegative and summation of all entries in each row and each column
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equals to 1. Let x < y, then there exists a doubly stochastic matrix D
such that x = Dy. If x = Dy for some generalized doubly stochastic
matrix(a matrix with all row and column summations equal to one,
but not necessarily nonnegative), we say that x is gs-majorized by y.
We know that every generalized doubly stochastic matrix is an affine
combination of permutations. If we consider only even permutations,
we say that x is ge-majorized by y. In this paper we prove that gs-
majorization and ge-majorization coincide on R™ when n > 3.

2. GE-MAJORIZATION

First we state some Known facts about majorization. Let e =
(1,1,...,1)". We have the following theorem for doubly stochastic ma-
trices.

Theorem 2.1. (Birkhoff’s theorem) The set of n x n doubly stochas-
tic matrices is a convex set whose extreme points are the permutation
matrices.

Definition 2.2. A matrix D is called even doubly stochastic if it is a
convex combination of even permutation matrices.

Definition 2.3. A matrix D is called g-doubly stochastic(ge-doubly
stochastic) if it is an affine combination of permutation(respectively
even permutation) matrices.

We have some definitions about majorizations corresponding to va-
riety of doubly stochastic matrices.

Definition 2.4. We say that x is even majorized by vy, if x = Dy for
some even doubly stochastic matrix D and write x<_.y.

Definition 2.5. We say that = is gs-majorized(ge-majorized) by y if
x = Dy for some g-doubly stochastic(respectively ge-doubly stochastic)
matrix D and write <y (respectively =<,.y).

Our aim is to show that gs-majorization and ge-majorization coincide
on R™ when n > 3.

Theorem 2.6. The concepts of gs-majorization and ge-majorization
coincide on R™ when n > 3, i.e. x<,5y if and only if x<4y.

Proof. We prove this theorem in two parts:

Part 1: n = 3.

Let yo = (y1,y2,y3)" € R®. We consider two cases:
Case 1: If y = ae for some o € R. Then

{ZL‘; x'<gsyO} = {[L’; m’<gey0} = {yO}a



and we are done.

Case 2: If yy # ae for all & € R. Without loss of generality assume y; #
yo. All permutations of g lie in the hyper plane x4y +2 = y; +y2 + ys.
We show even permutations of y, are affinely independent. Suppose
yh = (ys,y1,92)" and ¥ = (y2,y3,71)" be two even permutaions of yq.
We show that y, — yo and y; — yo are linearly independent. If they are
linearly dependent then y; — yo = A(yy — yo) for some A € R i.e.

y1—Ys = Ay — 42)

Yo =y = A(y2 — ys)

Ys — Y2 = A (Y3 — Y1)
Simplifying these relations shows that

Since y; # y» and A2 — X + 1 = 0 has no real solution we get to
contradiction. So y; — yo and y{ — yo are linearly independent.

Part 2: n > 3.

First we show that every transposition can be written as an affine
combination of even permutations. Without loss of generality assume
Y = (Y2, 1, U3, Un)'s Yo = (Y1, Y2, Y3, Un)'s 2 = (?Jl,y%ys)t, 7=

<y3uy17y2)t7 2= (Z/z;y37y1)t and zy = (y27y17y3>t' We see in part 1
that

20 = onz + a2 + az?’,

for some a1, as and ag such that a3 + as + a3 = 1. Now

Y= (al (Ztﬂ Yas -y yn) + g (Z/t7y47 B yn) +as (Z//ta Yas -y yTL))t

and we conclude that every transposition can be written as an affine
combination of even permutations. Now suppose II = Il II;_;...II;
where II; (1 <i<k) are transpositions. We use induction on k. If
k = 1, it is obvious by part 1. Now, suppose that the theorem holds
for £ — 1. We prove that the relation holds for k.

1 Mg I (yo) = Z a; P; (vo),
i1

where Y a; = 1, P;s are even permutations and m is an integer. Now

O Mgy, .., 1L (90)) = 1, <Zazpi(yo)>

= Y ally P (o).
i=1



I P (yo) = Zﬁj@j (Pi (%0)),

where ) 3; =1 and ();s are even permutations. Hence

I (M I0) () = )i | D B5Q5P (vo)
i=1 j=1

= Z o'iP'i (yo),
=1

mm

where Y o/; = 1 and P/s are even permutations. The proof is com-
i=1

plete. 0

If n =1 or n = 2, then the only even permutation is identity and
hence ge-majorization and equality coincide.
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ABSTRACT. Singular Spectrum Analysis (SSA) is a powerful non-
parametric time series analysis method which mainly is based on
matrix analysis and classical time series. In order to apply this
method, at the first stage, window length must be determined. An
improper value of window length yields misleading results in SSA.
In this paper, we review the criteria that should be consider to find
a suitable value for window length.

1. INTRODUCTION

Singular Spectrum Analysis (SSA) is a powerful non-parametric tech-

nique in time series analysis that has been developed and applied to
many practical problems. Most recent developments in the theory and
methodology of SSA can be found in [1].
The aim of SSA is to decompose the original series into the sum of a
small number of independent and interpretable components such as a
slowly varying trend, oscillatory components and a structureless noise.
The whole procedure of SSA depends upon two basic, but very impor-
tant, parameters:

e the window length, L,
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e the way of grouping.

Choosing improper values of these parameters yields incomplete re-
construction and misleading results in forecasting. In spite of the im-
portance of the choosing parameters, no theoretical solution has been
yet proposed to this problem. Of course, there are worthwhile efforts
and various techniques for selecting the appropriate value of L (see,
for example, [2] and references therein). In this paper, we consider
choosing window length based on several criteria.

The structure of this paper is as follows: Section 2 presents a brief
description of the SSA. Section 3 shows the main results. The final
section discusses the conclusions of the study.

2. SHORT DESCRIPTION OF SSA

The basic SSA method consists of four steps: In the first step, we
transfer a one-dimensional time series Yy = (y1,...,yy) into the tra-
jectory matrix X = [Xy,--+, Xg| with X; = [y;,- -+, yr4j-1]" where
L(2 < L < N—1), is the window length and K = N — L+ 1. Then, we
use singular value decomposition (SVD) of X and decompose it to the
sum of L elementary matrices: X = X; 4+ --- 4+ X. In the next step,
we are splitting the elementary matrices into several groups and sum-
ming the matrices within each group. Finally, by diagonal averaging,
we convert each matrix, resulted from the grouping step, to the form of
a Hankel matrix which can be subsequently converted to a time series.
The resulting filtered time series can be used for further analysis such
as forecasting.

3. MAIN RESULTS

3.1. Lag-Covariance. Let us first consider the behavior of matrix
XX /K, that is lag-covariance matrix. Denote the trace of the matrix
XX as Tg™ = tr(XX") we have the following theoretical results:

Lemma 3.1. Consider the trajectory matriz X as defined before. Then
N

TN =T =Y wiNa? (3.1)
j=1

where, wi" = min{min{L, K}, j, N—j+1} = w;"" and K = N—L+1.
Proof. See [3] O

1))



Lemma 3.2. T is an increasing function of L on {2, ..., [, a
decreasing function on {[NH} +1,..,N —1}, and

Le{gl..?%—l} T)%N = T}Q"‘a"’N (3.2)
where Ly is the median of {1,...,N}.
Proof. See [3] O
Theorem 3.3. T /K is an increasing function of L on {2,..., N—1}.
Proof. See [1] O

3.2. Rank of trajectory matrix.

Theorem 3.4. Let d denotes the rank of the trajectory matrix X in
SSA. Thus, the mazximum rank of the trajectory matrix X is achieved
at L = Lax-

Proof. See [1] O

3.3. Separability. SSA decomposition of the series Yy can only be
successful if the resulting additive components of the series are approx-
imately separable from each other. We have two types of separability,
strong and weak, that are explained in the following.

3.3.1. Strong separability. Assume that Yy = Y]\(,l) + YJS,Q). Moreover
let XM and X® are corresponding trajectory matrices respectively.
In addition, assume that we have X = X(SI&D + Xg\;D by using SVD
and grouping. Then strong separability of the series ij,l) and Y]f,m,
happens if X:(Sl\}D =X & Xéz\;D = X®@ . Although, strong separability
does happens in practice rarely; theoretically it happens if the columns
(rows) of X and X®) are orthogonal and singular values are isolated.
Considering the coefficient of variation for the differentiation of singular
values, we checked and found that the maximum separation for a wide
class of series will be obtained when L = L ..

3.3.2. Weak separability. Quantity w-correlation is a natural measure
of similarity between two series Y, = [yiz),- ,y§v)] (1=1,2):

1) (2
w_ (W)

P12- =
V00 f09)

where, (Y]\(;),Y]y)> = Z;Vlw yé)y;,(,ﬁ, (i,7 = 1,2) (See, [4]). If

the absolute value of the w-correlations is small, then the corresponding

w

12



series are almost w-orthogonal, but, if it is large, then the two series
are far from being w-orthogonal and are therefore weakly separable.
Hassani et al ([5]) showed the minimum value of w-correlation attains
at L = L.y, for a wide class of time series.

3.4. Number of entities of trajectory matrix. There are L x K
observations in the trajectory matrix. Now, it is easy to see that L =
Loy gives maximum value of the number of entities of the trajectory
matrix.

3.5. Accuracy Measure. Mahmoudvand et al ([2]) have considered
this issue by means of simulation and showed that there are a mean-
ingful differences among the optimal values of window length that used
for reconstruction and forecasting. They showed that, optimal value
for reconstruction is again close to L., but it is depend on the several
conditions for the forecasting procedure. Moreover, Golyandina ([!])
have considered the basic model ”"signal + residual” and showed that
the error behaviour depends on the type of residuals, deterministic or
stochastic, and whether the noise is white or red. In her paper, the
choice of L close to one-half of the time series length was approved to
be appropriate in most cases.

4. CONCLUSION

The considered theoretical criteria in this paper show that choos-
ing L = Ly is the best value for reconstruction in a wide class of
time series. However, there is not any general recommendation for the
forecasting procedure.
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ABSTRACT. In this paper, we show the dependence of the residual
matrix on the starting matrix, and give necessary and sufficient
conditions for a starting matrix to produce a zero residual for solv-
ing the matrix equation AX B = C where A and B are nonsingular
matrices.

1. INTRODUCTION

In this paper, we will consider the following matrix equation
AXB =C, (1.1)

where A € R™*" B € R**® are nonsingular matrices and X, C' € R"*%.
Different methods are devoted to find the special solution structures
of the matrix equation (1.1) such as symmetric, skew-symmetric or
symmetric positive definite solution X; see [2, 3, 1] .
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In this paper, we will develop nessesary and sufficient conditions for
a starting matrix to produce a zero residual matrix.
This paper is organized as follows. In section 2 we show the functional
dependence of the residual matrix on the starting matrix. In section
3 we give nessesary and sufficient conditions for a starting matrix to
produce a zero residual matrix.
Thoroughout this paper, we use the following notations. Let R™*" be
the set of m x n real matrices. The symbols AT, ||A||s and trace(A) will
denote the transpose, 2-Norm and trace, respectively, of a matrix A €
R™ " For any matrices A and B in R"* < A, B >p= trace(A’ B)
denotes the inner product. The associated norm is the Frobenius norm
obtained by ||.||r.
Further, vec(.) will stand for the vec operator, i.e.
vec(A) = (al,al,...,al)T for the matrix A = (ay,as,...,a;) € RS,
where a;,7 = 1,2,...,s is the j-th column of A and A ® B = (a;;B)
denotes the Kronecker product of the matrices A and B. Let A =
[A1, ..., A)) € R™*P* and B = By, ..., B] € R™" where A; and B; are
n x s matrices. The matrix A7 ¢ B are defined by
(AT o B)zg =< Ai, Bj >p.

2. THE GENERALIZED GLOBAL ARNOLDI FACTORIZATION

We can easily see that the matrix equation (1.1) is equivalent to the
following linear system of equations

(BT ® A)wec(X) = vec(O).
Now , we need to define the matrix Krylov subspace associated with
triplet (A, V, B) as follows.

Definition 2.1. Let A € R™*", B € R*** and V € R"**. The matrix
Krylov subspace is defined by

GK = GKy(A,V,B) = span{V, AV B, ..., A* 'V B*1}. (2.1)
The generalized global Arnoldi algorithm [1] leads to
AVi(I, ® B) = Vi(Hy ® I,) + Ri(e} ® 1), (2.2)

where Ry = hpy15Vit1, Vi € Rnxks Vg oV, = I, Hy, € R¥** is upper
Hessenberg. The matrix Ry is the residual matrix and is F-orthogonal
to the columns of V. If the rsidual Ry is the zero matrix then equation
(2.2) is called a truncated generalized global Arnoldi factorization when
k < mns.

We expose the functional dependence of the residual matrix on the
starting matrix, and give necessary and sufficient for a starting matrix

15



to produce a zero residual.
The following result is an extension of the implicit Q- Theorem proved
in [1].
Theorem 2.2. Suppose

AV (Iy ® B) = Ve (Hy, @ I) + Ri(ef @ I),

Auk(]k &® B) = Uk(Gk ® ]5) + Fk(ez ® ]S),
where columns Vi, and Uy, are F-orthogonal and Hy, Gy are both upper
Hessenberg with positive subdiagonal entries.

If Vi(e1 ® L) = Up(eg ® ) and VgoRk = UgoFk =0, then Vi, = U,
Hk = Gk and Rk = Fk.

Proof. The result can be easily proved by induction on k. 0

In the following, we show relations between a generalized global
Arnoldi factorization and block Krylov matrices.
Consider the block Krylov matrix and the companion matrix, respec-
tively,

K = (Wi, AV,B, ..., AF1V, BF 1),
C = ey, ..., ex, ] € RF*F,
where ¢ = (cq, ..., cx) 7.
Observe that
AK(I,® B) - K(C®I,) = R(el ® ), (2.3)

where R = A’“VlBk—Zf;Ol ci1 AWV Bt = A*V BF — K (c®1,). Also, we
can easily show that 7 = vec(R) = ((B¥)T @ A*) =S¥ L e (BY' @
AM)vec(Vy). Note that # = p(BT; A)vec(Vy), where p(z,y) = z*y* —
Zf;ol cip12'y’. The vector ¢ must be chosen such that solves the least
squares problem

minepr | AMVIBY — K(c® L) || r = min.ege||p(BT; A)vec(V1)]|2. (2.4)

To solve the minimization problem (2.4), consider the global QR factor-
ization K = Q(R®1,) where Q is F-orthonormal, R is upper triangular
and p;; = eiTRei > 0.

Multiplying (2.3) on the right (R™! ® I,), we obtain

AK(I, @ BY(R'@ L) - K(CQL)R'®I,) = R(el @ I)(R'®1,).

By Kronecker product propertices, we can rewrite the above equation
as follows:

AQ(Iy ® B) — Q(G® I,) = Fle} ® I,),
where G = RCR™Y, F = ,ﬁfzk It can be esaily shown that Q(e; ®
I) = Ve; ®1,) and QT o R = 0 so QT o ' = 0. Thus extension

16



Q-implicit theorem will imply Q = Vi, G = Hy, and F' = Rj. Putting
Hj, = G yields
B, = 6£+1erk _ Prithst
Pk.k
Moreover, Let py, solves minimization problem in (2.4). Also, Ry = i—’;.
Thus, we have ’

R A
ri = vec(Ry) = vec( Fa) =k
Pk Pk

It follows that X
Prrk1 = |lpk(BT; A)vec(Vi)|la.
The following Theorem summarizes the preceding discussion.

Theorem 2.3. Suppose AVy (I, @ B) = Vi(Hy, @ I,) + Ri(el @ I,)
be a k-step generalized global Arnoldi factorization, and suppose that
dim(GKy(A,V,B)) = ks. Then

pk(BAT; A)vec(Vy)
= = .
|k (BT5 A)vec(Vh)||2

Moreover, py solves min”pk<BAT;A)U€C(‘/]_)H2.
In the following, we will develop nessesary and sufficient conditions for
a starting matrix to produce a zero residual matriz.

Theorem 2.4. suppose AVy (I}, ® B) = Vi(Hy @ I,) + Ri(el @ I,) be a
k-step generalized global Arnoldi factorization with Hy, unreduced. Then
R, =0 if and only if Vi1 = X(y ® I5) where AX (I, ® B) = X(J ® I)
with rank(X) = ks and and J a Jordan matriz of order k .
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ABSTRACT. Recently we generalize the max algebra system to the
class of nonnegative tensors. In this paper we give some basic
properties for the left (right) inverse, under the new system. The
existence of order 2 left (right) inverses of tensors is characterized.

1. INTRODUCTION

Definition 1.1. [!] The max algebraic addition (@) and multiplication
(®) are defined as follows:
(i) Suppose that A, B € %T’"] then we have A @ B € %Kn’n] and

(ADB);, 4, = i ® biy iy = WX (@ i biy i) - (1.1)
(i) Suppose that A € R and B € R where m > 2,k > 1 then
we have A®@ B € %[ngfl)(’ffl)ﬂml and
(A X B)im...am—l - ig.sizl CLiiQ...imbi2a1 “'bimamfl (1‘2)
= 1§i12r.1%§§n {aiig...imbiQQI...bimam_l} ;
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where i € {1,...,n}, aq,...,pp_1 € [n]k_l. In particular for x € %7} we
have

(A®zx), = 1§g}%§§n {iiy. iy Tiy- T3, } -
Theorem 1.2. [I] Let A (and B, C) be an order m + 1 (and order
k+ 1, order r + 1), dimension n tensor, respectively. Then we have

A®B®C) =A®B)®C.

Definition 1.3. A diagonal tensor is a tensor that only the entries of
which all the indices are equal can be different from zero. A diagonal

tensor with all diagonal entries equal to 1 is called the unit tensor and
denoted by I.

Theorem 1.4. [1] Let AT € RI™™, then
(i). fA®I=0, then A=0.
(ii). IfI® A =0, then A =0.

Lemma 1.5. Let A € %T’"] and P, () are both matrices, then
(PRA®Q) = X _ {5, Pii Qiaia e+ jmim ) -

et 1< im <

2. MAIN SECTIONS AND RESULTS

Since the operation @ in max algebra is not invertible, inverse ma-
trices are almost non existent. It is known that in max algebra, gener-
alized permutation matrices are the only type of invertible matrices

Theorem 2.1. [3] The inverse of a nonnegative matriz A is nonnega-
tive if and only if A is a generalized permutation matriz.

Recently in [2] the left and right inverse of tensors under the general
product, are defined. In conventional multilinear algebra we know that,
not all tensors have inverses. We will see that in max algebra the
invertible tensors are even more limited.

Definition 2.2. Let A be a tensor of order m and dimension n, and
let B be a tensor of order k and dimension n. If A ® B = I, then A is
called an order m left inverse of B in the max algebra sense, and B is
called an order k right inverse of A in the max algebra sense.

Theorem 2.3. Let A € ?RLT’”] be a diagonal tensor. Then

A has an order k left inverse if and only if a;. ; # 0,1 = 1,2,...,n.
Moreover, an order k diagonal tensor I with diagonal entry l;; ; =
aii.i~FV s the unique order k left inverse of A.
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Theorem 2.4. Let A € ?RT’"] be a diagonal tensor. Then

A has an order k right inverse if and only if ay. ; # 0,1 =1,2,....n.
In this case, an order k diagonal tensor R with diagonal entry r; ; =
m=N/a;! . is the unique order k right inverse of A.

We will now characterize the left (right) inverse of order 2 for a tensor
A e %T’n], for this purpose we require the following lemma.

Lemma 2.5. If A ¢ 5}?[1”’”] and A has an order 2 left (right) inverse,
then

(i). This left (right) inverse does not have a row such that all entries
are nonzero (zero). (ii). This left (right) inverse does not have a
column such that all entries are nonzero (zero). (iii). A does not have
a face such that all entries are nonzero (zero).

Proof. This follows from Definition 1.1 and Definition 2.2. 0

Theorem 2.6. If A € %T’n], and A has an order 2 left (right) inverse
G, then G must be a generalised permutation matrix.

Theorem 2.7. If A € %[f’n}, then A has an order 2 left inverse if
and only if there exists a generalised permutation matriz G such that
A =G ®1. Moreover, G™! is the unique order 2 left inverse of A.

Proof. If A = G ® 1, for a generalised permutation matrix G, then A
has an order 2 left inverse G=1. Assume C' is an order 2 left inverse of
A, then C® A =1, this equation conclude that C' must be a generalised
permutation matrix ( by Theorem 2.6), thus A = C~! @ I. Suppose
that B is also an order 2 left inverse of A, we can also get A = B! ®L.
Hence (C~' — B™') @ I = 0, By Theorem 1.4, we have C~! = B~1.
By the fact that a nonsingular matrix has a unique inverse matrix, it
follows that B = C' and the desired results hold. O

Theorem 2.8. If A € %T’"], then A has an order 2 right inverse if
and only if there exists a generalised permutation matriz () such that
A=1® Q. In this case, Q~' is the unique order 2 right inverse of A.

Proof. If A = 1® @ for a generalised permutation matrix ¢, then A
has an order 2 left inverse Q~!. If T is an order 2 right inverse of A,
then A @ T" = I, imply that 7 is a generalised permutation matrix (
by Theorem 2.6). So A = I ® T~!'. Hence if A has an order 2 right
inverse, then there exists a generalised permutation matrix 7" such that
A=1Ix®T.

If R is any order 2 right inverse of A, then AQ R=1Q® R =1. Set
D=Q®R, then =1® D. By Definition 1.1, D must be the identity
matrix of dimension n. Hence the proof is complete. O
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Notice that for m = 2 (when A is a matrix), we have the right inverse
is equal to left inverse, (refer to max algebra theory).

Theorem 2.9. Let A and B be tensors such that AQB = 0. Then the
following hold: (i). If the order 2 left inverse of a tensor A (resp. B)
exists, then B =0 (resp. A =0). (ii). If the order 2 right inverse of
a tensor A (resp. B) exists, then B =0 (resp. A=0).

Definition 2.10. We define a new class for tensors as follows:
FZ{Ae%W%A:G@H:H@G, }
where G is a generalized permutation matriz
For example the unit tensor is belong to this class.
The following theorem is an interesting and fundamental extension

of Theorem 2.1 for tensors, in which we charactrize the invertible ten-
sors completely.

Theorem 2.11. Let A € %T’"].Then a matrix B such that
A®B=1=B®A,
exists if and only if A is belong to T'.

Proof. Let A € I', thus there exists a generalised permutation matrix
G such that A = G ®1 =1® G. By puting B = GT, we will have
A® B =1= B®A. On the other hand, if A B=1= B®A,
Theorems 2.7 and 2.8 conclude that A is belong to I'. 0
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ABSTRACT. The purpose of this study is to present a matrix method
for solving system of linear Fredholm integro-differential equations
of the second kind on unbounded domain with degenerate kernels
in terms of generalized Laguerre polynomials. The method is based
on the approximation by the truncated generalized Laguerre series.

1. INTRODUCTION

The main object of this paper is to approximate the solution system
of Fredholm integro-differential equations of the second kind on a semi-
infinite domain of the following form [1, 2]:

U'x)=F(x)+ p/ooow(t)K(x,t)U(t)dt, xRy, (1.1)
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* Speaker.

22



along with initial condition U(0) = A, where p € R, and
Ux) = [w(@), ua(z), ... um(2)]",
F(z) = [fi(z), f 2( )y s fn ()],
K(z,t) = [k, i,j = 1,2,...7
A = lay,ag,...,am)"
In system (1.1), w(t) = t*¢ *(a > —1) and the known kernel K(z,t)
might has singularity in the region D = {(z,t) : 0 < z,t < oo} and
F(x) is continuous function and A is fixed constant vector, and U(x)
is the unknown vector function of the solution that will be determined.
Let A = [0,00) and w(®(z) = 2%~ be a weight function on A in the
usual sense. We define

(a) < OO},

L2 ., (A) = {v : v is measurable on A and ||v|,

equipped with the following inner product and norm:
1
(0ot = [ ula)ele)u® @)z, ol = (0.0
A

Next, suppose L () be the generalized Laguerre polynomials of de-
gree n, defined by the following:

1
L9 (z) = —a%e" 0y (e7™2™*), n=0,1,...
n!

Generalized Laguerre polynomials are orthogonal in Li(a)(/\) Hilbert

space with the weight function w(® (z) = 2%~ satisfy in the following
relation

/ 2%e L (2) L) (z)dz = 20 m, V0, m >0,
0

T'(n+a+1)
T(ntl)

where 9,, ., is the Kronecher delta function and 5 =

2. APPROXIMATION OF FUNCTIONS

A function f(z) € L? ) (A) may be expressed in terms of generalized
Laguerre polynomials as:

where the generalized Laguerre coefficients fl-(a) are given by

00 (@) a,—x
(@) _ L (x)  ae™ o
fi _/o (H—a) NEES) flz)dz, i=0,1,....

?
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In practice, only the first (n + 1) terms of generalized Laguerre poly-
nomials are considered. Then we have

ﬂ@:iﬁ%ﬁmzﬂu,
=0
F=[f 1 fON, Ly = (L5 (2), L (@), ..., L (@) (2.1)

We can also approximate the function of two variables, k(z,t) € L? ) (A?)

as follows:
ZZL 'L\ (t) = LTK L,

=0 7=0
Here the entries of matrix K = [k; ]o‘) n+1)x(n+1) Will be obtained by

I
Lo _ @) (k) LV 0))
YL (), LV @) (L), L (1))

? J J

, fori,j=0,1,...n

3. MAIN SECTIONS AND RESULTS

Theorem 3.1. Suppose L, be the generalized Laguerre vector defined

in (2.1) then
/ Ltdt ~ PLx,
0

where P is the (n + 1) X (n + 1) operational matrixz for integration as
entries follows:

Y (=)0 +a+ DT (k+a +7+2)
_ZZ(Z'—k;)!(j—r)!(k:+1)!r!r(k+a+1)r(r+a+1)'

we consider the ith equation of (1.1) as follows:
ui(z) = fi(z) +p / e ki, tuy(t)dt, wi(0) = a;. (3.1
0 e

In order to approximate the solution of equation (3.1), we approximate
functions f;(z), u;(z) and k;;(x,t) with respect to generalized Laguerre
polynomials (basis) as mentioned in the previous section as follows:

filw) = F' Ly, uj(z) ~ C/F Ly, ui(0) ~ Ch Ly, kij(z,t) ~ LT Ki;L,.(3.2)
By substituting the approximations (3.2) into equation (3.1), we obtain:

Cl = F—l—pz GQPTCL+Cho), i=1,..,m, (3.3)
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where
Q= /0 t*e 'L, Lldt = [qi(?)], i,j=0,1,...,n.

By solving linear system of algebraic equations (3.3) by direct or iter-
ative methods, we can achieve the vector C! for i = 1,...,m, then we
will have

Cl=0"P+CH = wi(z)~Cl'L,, i=1,..,m.
That are the approximate solution for our system of (1.1).

Example 3.2. For the first example, consider the following system
of linear Fredholm integro-differential equations on the half line (con-
structed):

) = e+ [ the 4 ) unt) + uale)

uy(x) = folx) + /000 t2e t(t — 2%)(ug(t) — ug(t))dt, (3.4)

_ 9.2 S8T3077T46120759955 ..  6631788499575074881 _
e ) o B pmemeei T Cinesonisiost 214 2(1) =
0007169254740002 L T 2% — Tgor4s0ss00ast0ss - Oubject to initial conditions

u1(0) = 1 and us(0) = 1. The exact solutions of this problem are
up(x) = 2 + 22 + 1 and uy(x) = 22 + 1. If we apply the presented
method in this paper and solve equation (3.4) with n = 3. For this
system we get:

w(z) = %Lo(x) - %Ll(x) 2L (2) — 6Ls(x) = 2° + 20 + 1,
ug(z) = %Lo(m) — 5Ly (z) 4+ 2Lo(x) + (0)Ly(w) = 2 + 1,

which is the exact solution.
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ABSTRACT. Counsider an n x n matrix polynomial P()) and a set
¥ comnsisting of k < n distinct complex numbers. In this paper, a
(weighted) perturbation of P()) is constructed such that the per-
turbed matrix polynomial has the specified set ¥ in its spectrum.

1. INTRODUCTION

In the last decades, the study of matrix polynomials, especially with
regard to their spectral analysis, has received the attention of several
researchers and has met many applications. Some basic references for
the theory and applications of matrix polynomials are [2, 3] and refer-
ences therein. In 2012, Psarrakos [1] introduced and studied a spectral
norm distance from an n X n matrix polynomial P(\) to the set of n.xn
matrix polynomials that have a prescribed scalar © € C as a eigenvalue
of a desired algebraic multiplicity. In particular, he computed lower
and upper bounds for this distance, constructing an associated pertur-
bation of P(A) for the upper bound. In this paper, spectrum updating
problems, we construct a perturbation of P(\) for which the perturbed
matrix polynomial has & < n prescribed distinct eigenvalues.
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65F15.

Key words and phrases. mtrix polynomial, eigenvalue, perturbation, singular
value.

* Speaker.

26



For A; e C" (j =0,1,...,m) and a complex variable A\, we define
the matriz polynomial

P(A) = Ap A" + Ay X" AN A=) AN (L)
7=0

If for a scalar p € C and some nonzero vector v € C", it holds that
P(u)v = 0, then the scalar u is called an eigenvalue of P(\) and the
vector v is known as a (right) eigenvector of P(\) corresponding to p.
Similarly, a nonzero vector v € C" is known as a (left) eigenvector of
P()\) corresponding to p when v*P(u) = 0. The spectrum of P()),
denoted by o(P), is the set of its eigenvalues.

The multiplicity of an eigenvalue A\g € o(P) as a root of the scalar
polynomial det P()\) is called the algebraic multiplicity of Ao, and the
dimension of the null space of the (constant) matrix P()g) is known as
the geometric multiplicity of \g. The singular values of P(\) are the
nonnegative roots of the eigenvalue functions of P(A)*P()\), and they
are denoted by s1 (P (X)) > s2 (P (\)) > -+ > s, (P (\)) (i.e., they are

considered in a nondecreasing order).

Definition 1.1. Let P()) be a matrix polynomial as in (1.1) and let
A; € C™™ (7 =0,1,...,m) be arbitrary matrices. Consider perturba-
tions of the matrix polynomial P(\) of the form

Q) =P+ AN =D (A +A)N. (1.2)
§=0
For ¢ > 0 and a set of given nonnegative weights w = {wo, ..., wn},

with wy > 0, define the class of admissible perturbed matrix polyno-
mials

B(Pe,w) ={Q(\) asin (1.2) : [|A;]| <ew;, 7=0,1,...,m},
and the scalar polynomial w(\) = Wy \™ + W A4+ -+ Wi A + wp.

Definition 1.2. Consider a complex function f and k distinct scalars
py fhoy - iy € C. The divided difference relative to p; and pivy (1 <
i < k-1, 1<t < k—1i)is denoted by f [, fis1,---, i) and is
defined by the following recursive formula [1]:

S iy ptigas - ooy ick—1) = J i1, Miva, - - Higk)

f[/l’lvnu’ﬂ-k]: .
Hi — itk

Definition 1.3. Suppose that P()) is a matrix polynomial as in (1.1)
and a set of distinct complex numbers X = {py, o, ..., ux} (K < n) is
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given. For any scalar v € C, define the nk x nk matrix

YP (i1, o] P(p2) 0
_F',y [P, E] = ’YQP[:UD M2, ,LL3] /YP[IU’% ,LL3] e 0
fyk_lp[/'bla s 7/~Lk] ’yk_zp[ﬂ% s 7:U’k] e P(/*Lk)

2. CONSTRUCTION OF A PERTURBATION

In this section, we construct an n x n matrix polynomial A, () such
that the given set ¥ = {u1, po,..., ) (K < n) is included in the
spectrum of the perturbed matrix polynomial @, (\) = P(X) + A(N).
Without loss of generality, hereafter we can assume that the parameter
7 is real nonnegative [1]. Also, for convenience, we set p = nk — k + 1.

Definition 2.1. Suppose that

u(y)=[w) - w() ] @) =[w0) - w) ] eCm

is a pair of left and right singular vectors of s, (F, [P, ¥]), respectively,
such that (u;(v),v;(v) € C*;j =1,...,k). Define the n x k matrices

U() =lw() - w(y)] and V(y) =[vi(y) -~ ()]
Suppose that v > 0 and rank(V (7)) = k. Consider the quantities

g
0, =
- Hj
and for p = 2,3, ...,k define the following vectors

(_l)i ( H 0jp> Up—i(V)] )

Jj=p—i

L 1<i<j<k,

0 =v(), B0)=v0)+ )

i=1

the vectors u,(7),p = 1,...,p are defined similarly. Analogously to
Definition 2.1, we define the n x k matrices

U(y) =[a1(y) -+ r(y)] and V(y) =[01(y) - 9x()].

We also consider the quantities

1 < fbi ay 1< .
ai,s:—z ((—) ugwj> andﬂS:E;ai,s, i,s=1,...,k,

w (pul) 2 \ \Jpul

where we set a; s = 0 whenever p; = 0. Then, define the n x n matrix

A, = —s,(F,[P,X))U () diag{ L1 ! }V(W,

E,E7...,E
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where V ()t denotes the Moore-Penrose pseudoinverse of V(v), and
the n x n matrix polynomial A, () = > A, ;)\, where
j=0

1 & 1 i\’
Aw‘:gz< (—) ij7>, i=1,2,...k (21
=1

w (|pal) \ i
By straightforward computations, we verify that the matrix poly-
nomial A, (X\) satisfies A, (p;) = B;A,, for ¢ = 1,..., k. Notice that
rank(V (v)) = k implies 0;(y) # 0, (i = 1,...,k) and V(7)V(y) = L,
where [; denotes the k& x k identity matrix.
Moreover, since u(7y), v(7) is a pair of left and right singular vectors of

s, (Fy[P,X]), we have F,[P,X]v(y) = s, (Fy[P, X])u(y). Substituting
W (7y), .-, k() and 01(7), ..., 0k(7y) into these equations yields
Sp (Fy[P,E]) wi(y) = P () 05(y), t1=1,2,...,k.

Therefore, for the matrix polynomial

QN =PN AN =S4 +A )N (22

=0
and for every ¢ = 1,2, ...k, it follows

Q~ (111) 0i(v) = P (1) 0:(y) + A, (i) 0:(y) = 0.
As a consequence, if rank(V (7)) = k, then py, pa, . . ., g are eigenval-
ues of the matrix polynomial () in (2.2) with 01(7), 02(7), ..., 0x(7)
as their associated eigenvectors, respectively.

Theorem 2.2. Consider a matriz polynomial P(\) as in (1.1) and a
given set of k < n distinct complex numbers ¥ = {1, o, . .., i }. For
every v > 0 such that rank(V (7)) = k, the scalars py, pa, .. ., g are
eigenvalues of the matriz polynomial Q(X) in (2.2), with corresponding
eigenvectors v1(7y), 02(7Y), - - ., Ux(7y), respectively.
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ABSTRACT. A new method is presented for solving generalized
saddle point problems. In this method, the problem is split into two
smaller subsystems. One of them is solved directly by the Cholesky
factorization and the other by an iterative method. Convergence
of the method is investigated. Some numerical are given to show
the effectiveness of the method.

1. INTRODUCTION

We consider large and sparse saddle point problems of the form

s (B ) (D)-(4)= o

where A € R™" is non-symmetric positive definite (z7 Az > 0 for
all 0 # 2z € R" ), C € R™™ is symmetric positive semidefinite and
B € R™*" m < n, is of full rank. Moreover, z, f € R" and y,g € R™.
Such systems arise in a variety of scientific computing such as mixed
finite element discretization of the Navier-Stokes equations [3]. When
C' = 0 and the matrix A is symmetric positive definite, Li et al. in [1]
proposed a preconditioner of the form

(I, —-BT(BB")™! I, 0
Pa‘( 0 I, B —aBBT )~ (12)

2010 Mathematics Subject Classification. Primary 65F10, 65F50.
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for the system (1.1) and investigated its properties. Here, I, and
I,, are the identity matrices of dimension m and n, respectively, and
a > 0. Recently, Zhu et al. have used the preconditioner P, for the
system (1.1) when C' = 0 and A is positive definite and analyzed its
properties. In this paper, we generalized the preconditioner P, to the
system (1.1).

2. GENERALIZATION OF THE PRECONDITIONER

Let
(I, —B"(vyI,, + aC)"Y(BB™")™! I, 0
Pay = ( 0 I, vB aBBT )’ (2.1)
where «,y > 0. Premultiplying both sides of the system (1.1) by P, 4
yields )
A 0 x f
ol = 7 2.2
(2 e)(3)-(7) =
where

A = A+ aBY(yI, + aC)™'B — yBY (vI,, + «C) " (BBT) " BA,
B = B(yA—aBTB), C = BBT(yI,, +a0),
f=F=B"(yInm+aC) [y(BB)'Bf —ag], §=B(f-aB'y).
System (2.2) is equivalent to

{ (Mo — Noy) = f, (2.3)
BBT(yI,, + aC)y = § — B(yA — aB” B)x, '

where M, ., = A+ aB" (v, + aC)'B and N, , = vBT (v1,, + aC)!
(BBT)"'BA. From Eq. (2.3) we can compute the vector = from the
first equation and then from the second equation we can obtain the
vector y. Both of the matrices BBT and ~1,, + aC are symmetric
positive definite and of small size. Hence, we can use the Cholesky
factorization of these matrices to compute y. Therefore, all we need is
to present a method to compute the vector x from the first equation in
(2.3). To do so, we propose the following stationary iterative method

My ,ax* ) = N, _a®) ¢ f (2.4)

where 2(© is an initial guess. Since A is positive definite and the
matrix aBT (I, + aC)™' B is symmetric positive definite, it follows
that the matrix M, is positive definite. Hence, one may use a direct
method such as the LU factorization or an iterative method such as the
GMRES(m) algorithm (see [3]) to solve the system with the coefficient
matrix M, ,. Hence all it remains is to investigate the convergence of
the stationary iterative method (2.4).
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Theorem 2.1. For a fized value o > 0, p(M;2Ngs) — 0 asy — 0.
Proof. Let (A, z) be an eigenpair of Go, = M} N, with [lz]ly = 1.
Then
A= | 27 N, 2 | < | 2 BT(I,,, + rC)"*(BBT)"'BAz |
| 2" M, x| T R(2H Az) + ra® BT (1, + rC) 1B’

where r = a/y. Let py = -+ = pp, = 0 < pgry < -+ < pyy, be the
eigenvalues of C'. Since C' is symmetric, there is an orthogonal matrix
U such that C = UT DU, where D = diag(uy, ..., itm). Now, we have
| 22 BT (I, + rC)"*(BBT)"'BAx |?

< |4 |31 BT (BB") ™ (I + rC) ™' Ba|3

< Al (z"B" (I, + rC) " (BB") " (I, + rC) "' Bx)

1113
J?nin(B)
AR

Ormin(B)

min

IN

(z"B"(I,, + rC)*Bax)

(w™ (I, + 7D)*w),

where w = UBzx # 0 and oy, (B) is the smallest singular value of B.
On the other hand, we see that

ra BY(I,, + rC) ' Bz = rw™ (I, + D) 'w.

We have
lim w? (I, + rD)"'w = lim w™ (I, + D) *w = |03, (2.5)
r—00 r—r00

where @ = (w1, ..., wy,0,...,0)T € C™. Hence

1Al V(L +rD)"w
Omin(B) R(xH Az) + rwf (L, + rD)" w
From Eq. (2.5) we deduce that the right-hand side of the latter in-

equality tends to zero as r — oo (for « fixed and v — 0 ) and this
completes the proof. O

[ A<

From Theorem 2.1, it follows that for fixed o and a sufficiently small
value of y, we have p(M '1yN067’Y) < 1 which guarantees the convergence
of the method.

3. NUMERICAL EXPERIMENTS

We consider the steady-state Navier-Stokes equation

{ —vAu+ (u.V)u+Vp =f,

vu —o i 2=[01]x[0,1],
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TABLE 1. Numerical results for the test problem.

Proposed method | THSS method
(o) = (1,107°)
Grid (n,m) Iters CPU a Iters CPU
8 x 8 (162,62) 3 0.02 0.07 233 0.83
16 x 16 | (578,256) 8 0.30 0.03 281 3.55
32 x 32| (2178,1024) | 5 6.36 0.02 557 22.23
64 x 64 | (8450,4096) | 7 40.11 - - -

where v > 0. By the IFISS package [2], this problem is linearized
by the Picard iteration and then discretized by using stabilized Q1-P0
finite elements (See [3]). This yields a generalized saddle point prob-
lem of the form (1.1). In the implementation of the proposed method
the linear system with the coefficient matrix M, , is solved by the
GMRES(50) algorithm with the stoping criterion ||rx|lz < 1077||70]|2
(ry is the residual vector) and the remaining systems are solved di-
rectly by the Cholesky factorization. We use the stopping criterion
6k = ||lz® — 2=V < 1077. The right-hand side vectors f and g are
taken such that x and y are two vectors of all ones. Matrix properties of
the test problem for different sizes together with the numerical results
are given in Table 1. In this table “Iters” and “CPU” stand for the
number of iterations and CPU time (second). To show the effectiveness
of the proposed method the obtained results are compared with that
of the inexact Hermitian and skew-Hermitian (IHSS) method proposed
by Benzi and Golub in [1]. As seen, the proposed method is superior
to the IHSS method in terms of both CPU time and iterations. For
the grid of dimension 64 x 64 and for best value a the IHSS method
does not converge in 1000 iterations and we have d1999 = 0.0009.
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ABSTRACT. In this paper, some algebraic and geometrical proper-
ties of the C'—congruence numerical range of matrices are studied.
The emphasis is on the study of some geometrical properties for
the special case C' = diag(1,0,...,0).

1. INTRODUCTION

Let M,, be the algebra of all n x n complex matrices, and let U,, be
the group of unitary matrices in M,,. Suppose that A,C € M,. The
notion of C'—congruence numerical range of A was first introduced by
R.C. Thompson in 1980, e.g., see [5], as follows:

Re(A) = {tr(CUTAU) : U eU,}. (1.1)

In fact, Thompson replaced the conjugate transpose of the underlying
matrix in the definition of C'—numerical range, which has important
application in quantum control and quantum information, e.g., see [1]
and its references, by the transpose in order to give the definition of
the corresponding C'—congruence numerical range.

In this note, we are going to study some algebraic and geometrical
properties of the C'—congruence numerical range of matrices. For this,
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in Section 2, Theorem 2.1 characterizes the shape of this set for the
case n > 3. Also, we introduce the notions of congruence zero set
and the congruence level sets related to the Ej;—congruence numerical
range of matrices, where {£;; : 1 <14,j < n} is the standard basis of
M,,. The emphasis is on the study the connectivity of the congruence
zero set.

2. MAIN RESULTS
The following theorem can be found in [2].

Theorem 2.1. Let A,C € M,. Ifn > 3, then Rc(A) is a circular
disk centered at the origin in the complex plane.

For the case that n = 2 and C' € M, is arbitrary, we have no char-
acterization of the shape of Ro(A). But if we consider C' = Ey; € M,
then by the result from [1], we have:

{zeC:|z| =0} if n>2

R(A) = REll(A) = {{ZE(C:|Z| :o’} if n=1

1
where o is the largest singular values of 5(14 + AT).

Now, we introduce and study the notions of the congruence zero set
and the congruence level sets of matrices.

Definition 2.2. For A € M,,,
(i) the congruence zero set of A is defined and denoted by

Z(A)={rcC" : 240, 1Az = 0};

(ii) Let A € R(A). The congruence level set of A corresponding to A
is defined as

LS(AN) ={z e C" : 2TAz = \}.
Example 2.3. let A be the Jordan block of order 2 with eigenvalue

. 0 1
0, that is, A = {0 0

Z(A) ={(z,0)" : x€C, x#0} U {(0,2)" : z€C, z#0}.
Also, we have
LS(A,0) = {(x,0)" : z€C,|z| =1} U {(0,2)" : 2 € |z| =1}

By the fact that 0 € R(A), we have LS(A,0) # 0. Also, since
LS(A,0) C Z(A), Z(A) # 0. Furthermore, we have the following
important properties of LS(A, ) and Z(A).

} . In view of Definition 2.2, we have
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Theorem 2.4. Let A € M, and X € R(A). Then the following asser-
tions are true: .

(i) LS(4,3) = LS(A5” )

(ii) LS(e"A\)=e2LS(A,\) = LS(A, e ™\) forallt €R;

(iii) Z(A) = Z(4A0).

2

Proof. By Definition 2.2, and a simple calculation, the results can be
easily verified. 0

Remark 2.5. Let A € M,,. We know that A*—QAT is a symmetric matrix.
So, by Theorem 2.4((i), (iii)), to study the algebraic and topological
properties of LS(A, \) and Z(A), it is enough to consider the case that
A is a symmetric matrix.

Next, we study the relationship between the connectivity of Z(A)
and LS(A,0). For this, we need the following lemma, which can be
found in [3].

Lemma 2.6. Let X be a topological space, and C' C X be a connected
set. Suppose that for every x € C' there exists a connected subset Y, of
X such that x € Y, and X = U;UEC Y,. Then X is connected.

Theorem 2.7. Let A € M,. Then the following assertions are true:
(i) Let U € U,. Then Z(A) is connected if and only if Z(UTAU) is
connected;
(ii) Z(A) is connected if and only if LS(A,0) is connected.
Proof. (i); We know that UU* = I,,. So, if x € Z(A), then
(U*)"(UTAU)(U*z) = 2T (UUNTAUU )z

= Az

= 0,
and hence U*z € Z(UT AU). Therefore, the mapping

f:Z(A) — Z(UTAU)

flz)=U"x
is well defined. Since U is unitary, f is one by one, onto, and || f(z) —
f@)|l =z —y|| forall z,y € Z(A). So, f is homeomorphism, and

hence the result holds.
(ii); The normalization z — ‘i—” is a continuous mapping from Z(A)

onto LS(A,0). So, LS(A,0) is connected if Z(A) is connected.
Conversely, assume that LS(A,0) is connected. It is easy to see that

Z(A) = |J {oz:a>0}
)

z€LS(A0
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So, the result follows from Lemma 2.6, by setting X = Z(A) and
C = LS(A,0). O

At the end of this section, we study the connectivity of the congru-
ence zero set for 2 x 2 complex matrices.

Theorem 2.8. Let A € My, and o1 > g9 > 0 be the singular values of

the matriz A+2AT. Then Z(A) is connected if and only if o9 = 0.

Proof. By Theorem 2.4(iii), we have Z(A) = Z(B), where B = #.
Since B is a symmetric matrix, Takagi’s factorization of B implies that
there exists a unitary matrix U € M, such that B = UTXU, where
Y. = diag(o1,09). So, by Theorem 2.7(i), Z(A) = Z(B) is connected if
and only if Z(X) is connected. Assume that oy > 0. By Definition 2.2,
we have:

Z(%) = {(z,y) € C* : (z,y) # (0,0), o12* + 09 = 0}
{(z,y) €C* : (z,y) # (0,0)
, (Vo —iy/ozy)(Vorx +iy/ozy) = 0}

= {(:c,%ix) :xeC,x#0}

Vo1
U r,—~——1x) : v € C,z #0}.
(-2 i #0}
Since two sets in the last equality are nonempty and separated, Z(X)
is disconnected. Hence, if Z(A) is connected, then oy = 0.
Conversely, let 05 = 0. Then by Definition 2.2, we have either Z(X) =
C2\ {0} or Z(X) 2 C\ {0}. So, Z(A) = Z(X) is connected. O
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ABSTRACT. We investigate the monotonicity and inverse of band
matrices which are used in the study of convergence analysis for
finite difference, spline and non-polynomial spline methods. The
application of the results is discussed in two-point boundary value
problem and some numerical results are given to illustrate the ef-
ficiency of method.

1. INTRODUCTION

In this section we recall some details concerning band matrices. First

we define a band matrix [1, 2, 3].
Definition 1: The matrix M, «, is called a band matrix if integers r
and s, 1 < r,s < n exist with the property that m;; = 0, whenever
t—7 >58,7 —i>r. The bandwidth w for such a matrix is defined to
be w=r+s—1.

Definition 2: Let A = (a;;) € R,x, The matrix A is said to be
monotone if AX > 0 implies X > 0, where X = [z1, 29, ..., 2,]". The
matrix A is monotone if and only if the elements of the inverse matrix
A~ are nonnegative (see [2] pages 202-203.)

Band matrices have been used in the error analysis of numerical so-
lutions of two-point boundary value problems in ordinary differential
equations by the finite difference and spline methods [, 5]. Whenever

2010 Mathematics Subject Classification. 34C12, 15A09, 65F05..
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finally we faced the linear system of equations we usually require de-
terminants, inverses, and bounds for inverses of these matrices.
Let us consider a mesh with nodal points z; on [a, b] such that:

Ata=20<11 <<+ <xp < Tpr1=Db,x; =a+1ih, (1.1)

where h = 22 for i = 0(1)n + 1.
Let P,(x, z,y), be a tridiagonal matrix given by

P.(x,z,y) = ; (1.2)

Denoting D,, = det[P,(x, z,y)], then (1.2) the expansion of the de-
terminant in terms of elements of the last row leads to the following
recurrence relation

D,=2zD, 1 —2yD, o,n=1,2,...., D_1=0,Dy=1, (Z > O) (13)

Several new results can now be derived directly from the difference
equation (1.3)

1—1 xyD; _1—D;+1
Lemma 1. If z —zy # 1 then > . D, = yl_;—ﬂy
Lemma 2. Dn = det[Pn(x,z,y)] = ll X lg X ... X ln, Dz = ZZ’Di_l,’i =
1,2,...,n where [; = z — l%’i > 21 =z

Theorem 1. If R = P" + AP""!, where P is given by (1.2) and
A € RT,n €N, then R is a monotone matrix and

“(n-2)
1 —(n—1) P

R'=<[P — P

_ _ 1
T+ IR <

(b—a)’
U

8h?

)(nfl)’
provided p(%) < 1.

By considering F(z) = P,(—1,2z,—1) and G(2') = P,(1,2/,1) then we
have the following lemmas.

Lemma 3. If we consider the matrices F'(z) and G(z) then:

(FY(2)G"() " = ﬁ > (”) P00 ()G (), 2 £ 2
(1.4)

i=0
Lemma 4. By consider the matrices F'(z) and G(z') then we have:
1 = n

P EF ) = o S () O F e 2 4,

(z—2 — 1
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2. APLICATION
We consider the nonlinear two-point boundary value problem
u® = f(z,u),u(a) = \,u(b) = p,a < x < b. (2.1)
with boundary conditions:

u(a) = A, u®(a) = Ay, u(a) = A3, u®(a) = Ay, u® (a) = A5,
{ u(b> = M1, u(2)(b) = M2, u(4)(b) = M3, U(G)(b) = M4, U(S)(b) = He;

(2.2)
where f(x,u) is sufficiently differentiable on [a,b] and a,b,\;, (i =
1,2,3,4,5) and p;, (i = 1,2,3,4,5), are arbitrary real finite constants.
For each segment [x;, z;11],4 = 0, 1,2, ..., n—1 by using the non-polynomial
spline relation derived in [5] we have

[(u¢+5 + U¢,5) — 1O(ui+4 -+ ui,4) + 45(ul-+3 + Uifg) — 120(u@-+2 + ul;g)‘i‘
210(ui+1+ui_1)—252ui] = hlo[Oé(li+5+li_5)+6(li+4—|—li_4)+’7(l¢+3+li_3)

+ 5(li+2 -+ li_Q) + n(li-i-l + li—l) + 7712],2 = 5, 6, ey — 5. (23)

At the mesh point z; the proposed differential equation (2.1) may be
discretized by:

To obtain unique solution for the nonlinear system (2.3) we need eight
more equations to be associate, so that we use the boundary conditions.

To obtain the eight-order boundary formula we use equations (12)-(19)
in [5].

3. NUMERICAL RESULTS
We Consider the following boundary-value problem
ul9(x) 4+ u(x) = —10(2z sin(x) — 9cos(x)), -1 <z < 1.

The exact solution of this problem is (2% — 1) cos(z), and the boundary
conditions (2.2) obtain by the exact solution and [5]. We applied our
presented method to solve this problem with different value of param-
eters a, 3,7,0,n, T in [5].

_ _ _ _ _ 11
Method (I) for a = 0,8 =0,7=0,6 = 144,77 9, a111%197' a
Method (IT) for a« = 0,5 = O,fy = 12096,52; 224,77 ;1%4& and;;l; 3091
Method (III) for o = 0, 8 = 36288077 514407 0 = 726800 1 = Tsiaao 2nd
- — 15619

- joss] 1 61 22103 11477
Method (IV) for & = =557+ 8 = Z350086° ¥ = Tao66730° 0 = 3851200 11 =
215687 4 - _ 1718069
887040 = 3991630
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TABLE 1. Observed maximum absolute errors for n = 16, 32

n Method (I) Method (IT) Method (III) Method (IV)
16 1.66x107% 8.67x1077 2.82x10°© 4.24x107
32 5.01x1079 3.01x107Y 7.51x107%  9.52x107?
Order 8.3 8.7 8.5 8.8
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ABSTRACT. In this paper, we obtain algebraic systems from solv-
ing Kuramoto—Sivashinsky equation. Then the algebraic system
is solved by the gaussian elimination method. Also the solution of
Kuramoto—Sivashinsky equation is approximated as a linear com-
bination of quartic B-spline functions.

1. INTRODUCTION

In this paper, we obtain algebraic systems for the Kuramoto—Sivashinsky

(KS) equation

U + Uy + QUgy + VUgaer = 0, 2 € [a,b], t €[0,T], (1.1)

with the initial condition
u(z,0) = fo(z), a <x <b, (1.2)

and boundary conditions
u(a,t) = go(t), u(b,t) = gi(t), (1.3)
uz(a,t) = ug(b,t) =0, (1.4)
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Uge (@, 1) = Uge (b, t) = 0, (1.5)
where v is a positive constant and « is a real constant. The KS equa-
tion is commonly used in various fields of science and engineering such
as reaction diffusion systems, flame propagation and viscous flow prob-
lems, for example see[2]. The layout of the paper is as follows: In
Section 2, we obtain algebraic systems for KS. In Section 3, we report
our numerical results.

2. SOLUTION OF KS EQUATIONS VIA QUARTIC B-SPLINE

We define quartic B-splines by the following relationships

( (2 —zi9)%, z € (22, %i-1),
(Z — Zi,2)4 — 5(2 — 22;1)4, S [Zz‘,l, Zi)7
(2 — zi9)* —5(2 — 2z1)*
Bz<Z> = % < +10<Z - Zi>47 A [Zi, Zi+1)7
(2143 = 2)* = 5(2i42 — 2)%, 2 € [2i41, 2i12),
(ziv3 — 2)%, 2 € [Zia, Zits),
0, otherwise.

To solve the KS equation by collocation method with quartic B-
splines as basis functions, we define the approximation for u(z,t) as

N+1
Uz, t) = > ci(t)Bi(w), (2.1)
i=—2
where ¢;(t) are time-dependent quantities to be determined from the
boundary and collocation conditions and B;(x) are the quartic B-spline
basis functions. The interval [a, b] is partitioned into a mesh of uniform
length h = (b—a)/2, by the knots z; where j = 0,1,2,..., N such that
a=2zy<2..2v-1 < 2y and z; = 2y + jh. Also the numerical solution
u(z,t) is given at mid knots x; = (ZL;Z) We discretize the time de-
rivative of the KS equation using a finite-difference formula. Using the
finite difference method, we can write

n+1 n

u —Uu

1
— 5 ((uum)”H + alug,)™ + U(ummﬂ) +

(%) ((wt1a)" + 1) + 01taa)”) =0, (22)

where At is a time step size and u!' = u(z;, "' + At). To linearized

the non-linear term (uu,)""* in (2.2) we can use the Taylor expansions.

(uum)n—i-l — u"u;‘H + Un—HuZ . (uux)n
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With substituting the approximate solution (2.1) for u and putting
the values of the mid values U, its derivatives and using boundary
conditions (1.3) and (1.5), we obtain the following algebraic systems
for KS equation.

AC =Q,
where
Cl/g - 61/4 G//Q — &/5 Cl/l 0 0 Ce 0
CL/4 — d5 (l/g CL/Q CL/l 0 0
CL/5 CL/4 CL/3 CL/Q a’1 Ce 0
A= ,
0 c. CL,5 a'4 (1’3 CL/Q CL’1
0 0 ds day as a9y — d
0 . 0 0 ds dy—dy ds— do
o n+1l n+l n+1 n+1\7T
C=(qg" ™, N ev)
n+1 n+1
n VRN (| G I c g™
Q = (W"(w0) = (d + ) 2= W () — 6575, W (aa),
12 12
n+1 n+1y\ T
n n , gl<t ) n , , gl(t )
LW (37N73), v (fL’Nfz) —dy—,V (fol) - (CL1 + GQ)— )
12 12
with
;o1 Atu™ | Atug | 3aAt | 120At s 76 | 11Atu™ | T6Atuy | 12aAt
a1 N 6t T %m—l_"z > T NG » (2 N 6T o T R +76A2t2"
96vAt s _ 230 ul  30aAt | 144vAt s 76 11Atu" u
ont > 3 = S5 T 753 202 Aj_” ont A4 = g o T a2 T
120At — 96vAt , 1  Atu" Uy 3aAt 12vAt
212 2r% 0 95 T 16 ot e T o T
and

U =y — %(a(uux)” + U(umm)”)

Then we obtain the linear system consists of N equations in N un-
knowns. This system solved by gaussian elimination method. Also the
above algebraic systems can be solved by iterative method, for example
jacobi method. In the jacobi method, we use the following formula

" = DY E+ F)a" + D7Q,

where E' is an upper triangular matrix with the diagonal elements zero
and F' is a lower triangular matrix with the diagonal elements zero,
also D is diagonal matrix such thatA =D — E — F.

3. NUMERICAL EXAMPLES

We now obtain the numerical solutions of the KS equation. In order
to illustrate the efficiency of the present method for our problem in
comparison with the exact solution, we report the global relative error
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(GRE) using formula

> U (s, t) —u(w,b)|
GRE = = iear .
where U is numerical solution and « denotes exact solution.

Consider the KS equation with @« = 1 and v = 1 in the interval
[—30, 30], with the exact solution
u(z,t) = b+%(%)%(—9 tanh (k(z — bt — 1)) + 11 tanh® (k(z — bt — 10))).
The boundary conditions and the initial conditions is taken from the
exact solution. We have taken b = 5,k = %(%)% and g = —12. In
Table 1 we give a comparison between the global relative error found
by our method and method in [1]. Note that we have computed the
numerical results by Mathematica (9) programming.

Table 1: Global relative error for example.

partitions | Af = 0.0, N = 100 | At = 0.01, N = 200 | Af = 0.0001, N = 1000
Time Method in[1]
1 1.02778e-4 1.03495¢-4 6.7923¢-04
P 6.03004¢-4 1.50962¢-4 1.1503¢-03
3 7.6671e-4 1.94541e-4 1.5941e-03
4 9.50268¢-4 2.39339¢-4 2.0075¢-03

4. CONCLUSION

In this paper the B-spline collocation method is used to solve the
Kuramoto-Sivashinsky equation with initial and boundary conditions.
The numerical results given in the previous section demonstrate the
good accuracy of the scheme proposed in this research.
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ABSTRACT. In this manuscript, we study the notion of excess of fu-
sion frames. We state some results in alternate dual fusion frames.

1. INTRODUCTION

Fusion frames or frame of subspaces, were introduced in 2003 by
Casazza and Kutyniok [I]. Fusion frames arise in more applications,
both of practical as well as theoretical nature. The notion of excess of
fusion frames were introduced in 2008 [3]. In this paper, we represent
some results in excess of fusion frames in an easer way. In 2007, Gavruta
introduced alternate dual of fusion frames [2]. We state some results
about alternate dual of fusion frames.

1.1. Fusion Frames. First, we review the basic definitions related to
the fusion frames. Throughout this paper, H is a real or complex
Hilbert space and [ is a countable index set.

Definition 1.1. Let {W;};c; be a sequence of closed subspaces in H
and {v;};e; be a family of weights, i.e., v; > 0 for all i € I. We say
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that the family W = {(W;, v;) }icr a fusion frame or frame of subspaces
with respect to {v;}ier for H, if there exist constants 0 < A < B < oo
such that

Allz])* <Y vf || Pw,(2)|* < Blla|* ¥z € A,
iel
where Py, denotes the orthogonal projection onto W;. The fusion
frame W = {(W;,v;) }ier is called a tight fusion frame, if A = B and
Parseval, if A= B = 1. If all v;s take the same value v, then {W;};c;
is called v-uniform. Moreover, {W;};c; is called an orthonormal fusion
basis for H if H = @, W;. If W = {(W,,v;) }ier possesses an upper
fusion frame bound but not necessarily a lower bound, we call it a
Bessel fusion sequence with Bessel fusion bound B.

Notation For any family {#,;};c; of Hilbert spaces, we use

(D eHi)e = {{fj} fi e LY 1P < oo}

i€l jeJ
with the inner product
L Aah) =D g, {fiYAg) e O] oM.
JjeJ iel
It is easy to show that (D, ®H,)s, is a Hilbert space.

Definition 1.2. Let W = {(W,,v;) }ier be a fusion frame for H. The
synthesis operator Ty : (> ,c; ®W;)e, — H is defined by

Tw({fiYier) =Y vifis {fitier € O Wi,
iel iel
In order to map a signal to the representation space, i.e., to analyze it,
the analysis operator T3, is employed, which is defined by

Ty H— (Y &Wi, with Ty(f) = {0:Pw,(f) }ier.
i€l
for any f € H. The fusion frame operator Sy, for W is defined by
Sw(f) = TwTi(f) = D viPw(f).
iel
It follows from [!] that for any fusion frame the operator Sy is in-
vertible and positive and AI < Sy, < B. Any f € H, has the repre-

sentation f = Ziel UZZS;VIPWi(f)-

47



Definition 1.3. We call a fusion frame {W,};c; for H, a Riesz decom-
position of H, if for every f € H, there exists a unique f; € W; such

that f = ZiEI fz

Definition 1.4. If W = {(W,,v;)}icr is a fusion frame for H, then
Sy W = {(Sw Wi, ) Yier is called the canonical dual fusion frame.

The alternate dual of a fusion frame were introduced in [2].

Definition 1.5. Let W = {(W;, v;) }scr be a fusion frame for H with
the frame operator Sy,. The fusion Bessel sequence W' = {(W/, w;) }ier
is called an alternate dual fusion frame if

T = ZviwiPWi/S;VIPWi(x), for all xeH.
iel
The pair (W, W) is called dual pair.
Like discrete frames, it is easy to show that if W and W' are Bessel
fusion and (W, W') is a dual pair, then both YW and W' are fusion
frames.

In an analogous way as in frame theory, the concept of excess were
introduced for fusion frames in [3].

Definition 1.6. Let W = {(W;,v;) }ser be a fusion frame for H with
synthesis operator Tyy. The excess of W is defined as

e(W) = dimN (Tyy),
where N(Ty) = ker(Tyy).

Definition 1.7. Let W and W’ be fusion frames with respect to the
same family of weights. We say that they are unitary equivalent, if
there exist an unitary operator on H, such that W; = U(W)).

2. MAIN RESULTS

For unitary equivalent fusion frames, we have the following result.

Proposition 2.1. Let W = {(W;,v;) }ier and {(W/,v;) }ier be unitary
equivalent fusion frames . Then e(W) = e(W').

Similarly, the following statement holds for equivalent weights.

Proposition 2.2. Let W = {(W;, v;) }ier be a fusion frame and {w; }icr =
{aw; }ier, for some a > 0. Then V = {(W;,w;) }ier s a fusion frame
and e(W) = e(V).

As in the case of ordinary frames, we have the following result for
Riesz decomposition for H.
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Lemma 2.3. Let W = {(W;,v;) }ier be a Riesz decomposition of H.
Then the excess of W is equal to zero.

For alternate dual fusion frames, we have the following proposition.

Proposition 2.4. Let W be a fusion frame for H andV be its alternate
dual. The following statements hold.

(1) If W is a Parseval fusion frame for H, then W is alternate dual
for atself. Hence, in general each fusion frame is not necessary
an alternate dual for itself;

(2) There is no need of W be the alternate dual of V;

(3) e(W) is not equal to e(V), in general. ( Notice that, the excess
of a frame is equal to the excess of its alternate dual.)
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ABSTRACT. This brief note describes some new non-polynomial
splines methods of order 2 and 4 for approximating eigenvalues
of a two point boundary-value problem involving the differential
equation v’ (z) + (Ag(z) — p(x))u(x) = 0. Convergence analysis of
these methods is discussed. Numerical results are given to illus-
trate the efficiency of methods.

1. INTRODUCTION

We shall consider the second-order homogeneous linear differential
equation
u’(2) + (Ag(x) — p(x))u(z) =0, (1.1)
associated with one of the following pairs of homogeneous boundary
conditions where g(x) > 0 and p(z) > 0, on [a, b]:
(1) u(a) = u(b) =0,
(I1) u'(a)=1u'(b) =0, (1.2)
(I11) u'(a) — du(a) =0, u'(b)+ ou(b) = 0.
Such boundary-value problems occur frequently in modem physics and
engineering.
2010 Mathematics Subject Classification. 65L10, 65F15.

Key words and phrases. Non-polynomial spline, Two-point boundary value prob-
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2. NON-POLYNOMIAL CUBIC SPLINE FUNCTIONS

We consider a uniform mesh A with nodal points z; on [a, b] such
that

Ata=xg <1 <9<+ <Tp_1<xTp=2>b

where x; = a + lh, for [ = 0,1,2,--- ,n, where by h = b_T“ Also we
denote a function value u(x;) by ;.

A function Sa(x) of class C*[a,b] which interpolates u(x) at the
mesh points z;,0 = 1,2, ...,n, depends on a parameter 7, is termed as
parametric cubic spline function and reduces to ordinary cubic spline
Sa(x) in [a,b] as 7 — 0 see [1].

For each segment [x;, x;11],{ = 0, 1,2, ..., n—1 the polynomial, Sx(z),
has the form

Sa(x) = a+b(x—x)+¢sinT(x—x;)+d cosT(x—1;), 1=0,1,2,....n
(2.1)
where ay, by, ¢;, and d; are constants and 7 is free parameter.

Let u; be an approximation to u(x;), obtained by the segment S ()
of the mixed splines function passing through the points (x;,u;) and
(2141, u41), to obtain the necessary conditions for the coefficients in-
troduced in (2.1), we do not only require that Sa(x) satisfies (3.3) at
x; and x;4q and that the boundary conditions of (3.3) are fulfilled, but
also the continuity of first derivative at the common nodes (x;, u;).

To derive expression for the coefficients of (2.1), in terms of w;, w41, M;
and M, we first denote:

Sa(x) = uy, Sa(Ti41) = Wi,

Sg(l’l) = Ml, Sg(xl-i-l) = Ml+1. (22)
From algebraic manipulation we get the following expression:
M, wpr —w My — M
= e b -
ap = u + oy ! A + gy )
M cos — My, —M,

= d = —— 2.3
“ 72sin 6 ’ T (2:3)

where 0 = Th.

Following [1] using the continuity of the first derivative at (x;,u;),
that is S, (1) = Sj,(71), we get the following consistency relations
forl=1,..,n.

1
aMiy + 28M; + oM, = (ﬁ)(qu — 2uy + W), (2.4)
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where

. (%)(90509 )8 = (%)(1 — feotd),

and 8 = Th.

When 7 — 0, that § — 0, then («,5) — (%, %), and the relations

defined by (2.4), reduce into ordinary cubic spline relation:

h2
_<Ml+1 + 4Ml + Ml—l) = (ul+1 — 2ul + Ul_1>. (25)

6
3. CONVERGENCE ANALYSIS

The problem (3.3) has an infinite sequence of real and positive eigen-
values 0 < A\; < Ay < ... Applying the (2.4) with o = %,B = % we get
the n — 1 linear system of equations

(J 4+ h*BP)Y — h?BAQY =0, (3.1)
where A is an approximation to A and J = (J;;),B = (b;;), R =
diag(r;), Q@ = diag(¢:),Y = [y1, .., Yn—1]* has the following form

2, 1=j=12,...,n—1,
0, otherwise,

%, i=j=12..n,
bij = 127 ‘Z —j’ = 1, (33)
0, otherwise,

The matrices B™'J + h?P and Q are symmetric [3]. The eigenvalues
h?A will be real and positive if the matrices Q and B~1J + h?P are
symmetric and positive definite. we have

(B~'J + h*P)Y — h*AQY =0, (3.4)
(B~'J + h*P)Y — h*AQY = B™'T, (3.5)
we get

= ?76 = %)7 (36)
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4. NUMERICAL RESULTS

In this section, two numerical examples are solved by the method
outlined in Section 2.
Example 1. u”(z) + Au(z) = 0, and «(0) = u(1) = 0. the eigenvalues
of Example 1 are \,, = (mm)%,m =0,1,2, ...
Example 2. u”(z) + Zu(z) = 0, and u(1) = u(e) = 0, and also the

eigenvalues of Example 2 are \,, = (mm)? + %, m=20,1,2,...

TABLE 1. Observed maximum absolute errors for n = 8,16, 32, 64
Example 1 Example 2
n a=1p-1a-3f-F a-15-1a-3%5=3%
8 1.27x1071T 0.84x10714 1.56x1072 4.82%x1073
16 3.17x1072  6.12x107° 3.84%x107%  2.96x107*
32 7.92x1073 3.82x1076 9.56x1074 1.84x107°
64 1.98x1073  2.39x10°7 2.38%x107°  1.15x1076
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ABSTRACT. In this paper, we find some characterizations of the
sub-classes of normal operators, self-adjoint operator, partial isome-
tries and normal partial isometries in the class of closed range op-
erators (Moore-Penrose invertible operators) using some operator
inequalities.

1. INTRODUCTION

Let H be a complex Hilbert space and B(H) be a space of all
bounded linear operators on H. For an operator A € B(H), we write
A* for its adjoint, R(A) for its range, and N(A) for its kernel. An
operator A € B(H) is said to be self-adjoint or Hermitian if A = A*
and normal if AA* = A*A.

Recall that an operator A € B(H) is said a partial isometry provided
that [|Az|| = ||z|| for every z € N(A).

Seddik, studied some inequalities on elementary operators and could
find some characterizations for special subclasses of invertible operators
such as invertible self-adjoint operators, invertible normal operators
and ..., using these inequalities.

2010 Mathematics Subject Classification. Primary 47A30; Secondary 47A05,
47B15.
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In [I, 2], the author focus on closed range operators i.e. Moore-
Penrose invertible operators instead of invertible operators, but the
results are restricted to EP-operators. In this paper we discuss very
recent results about this topics.

For this purpose we need the following preliminaries.

Definition 1.1. Let A be an algebra with involution and a € A. If
there exists an element x € A satisfied the following four equations

ara =a rar = x
(ax)* = ax (xa)* = za,

(%)
then z is called a Moore-Penrose inverse of a and denoted by af.

It is easy to show that the Moore-Penrose inverse of an element a is
unique.

A well-known result about this type of inverse states that if H is a
Hilbert space and T" € B(H) then 7" has a Moore-Penrose inverse if and
only if 7" has a closed range.

In this case TTT is the projection on R(T) and T'T is the projection
on R(T™).

A closed range operator T is called EP, if the ranges of S and S* are
the same or equivalently STS = SST.

The ascent and descent of T' € B(H) are respectively defined by

asc(T) = min{p € NU {0} : ker(T?) = ker(TP™)},
and
dSC(T) = min{p e NU {0} : R(TP) — R(TP'H)}'
If they are finite, they are equal, and their common value is called the
index of T" and it is denoted by ind(T).

2. MAIN RESULTS
The main results of this paper are as follows.
Theorem 2.1. [3] Assume that ind(T) < co. Then the following prop-

erties are equivalent:

(i) T is normal,
(ii) VX € B(H); |[TXTT|| + |TTXT|| > 2| TT'XT'T| ;
(iii) VX € B(H); |T*X|| + | XT?|| > 2||TXT]|.
Theorem 2.2. [3] Assume that ind(T) < oco. Then the following prop-
erties are equivalent:

(i) T is a complex coefficient of a self-adjoint operator,
(i) VX € B(H); |TXT'+ T'XT| > 2|TT'XT'T||;
(iii) VX € B(H); |[T?X + XT?|| > 2||TXT||.
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The following theorem, first was proved in [!] with the additional
assumption that A is an EP-operator and recently improved for all
closed range operators by Menkad|/].

Theorem 2.3. LetT € B(H) be a non-zero operator with closed range.
Then the following statements are equivalent:

(i) ﬁ is a partial isometry,
(il) VX € B(H),||[T*XT" + TIXT*| = 2|TTTX T,
(iii) |[T*@ T+ TT @ T*||, = 2.

Theorem 2.4. Let T € B(H) be a non-zero operator with closed range.
Then the following statements are equivalent:

(i) ﬁ is a normal partial isometry,
(ii) VX € B(H), ||[TXTT|| = |T'"TXTT"|,
(ii)) VX € B(H),||TXTH|| + |[TTXT| = 2|TTTXT'T|.
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ABSTRACT. In this note, we investigate on some Birkhoff-james
type orthogonality in C*-semi-inner product spaces which are a
generalization of Hilbert C*-modules.

1. INTRODUCTION

The notion of orthogonality in an arbitrary normed space, with the
norm not necessarily coming from an inner product, may be introduced
in various ways. Among these, the one which is frequently met with
in the literature is the Birkhoff-James orthogonality. It is defined as
follows.

Definition 1.1. Let X be a normed space. For z,y € X, we say
that = is Birkhoff-James orthogonal to y, and denote it by x Ll gy, if
|z + Ay|| > ||z for all A € C.

It is well-known that Birkhoff-James orthogonality is equivalent to
semi-inner product orthogonality for some suitable semi-inner product
on the normed space that generates the norm of the space [3].

First, we recall the definition of semi-inner product in the sense of
Lumer and Giles.

2010 Mathematics  Subject  Classification. Primary  46L05; Secondary
461.08,46B20.

Key words and phrases. Birkhoff-James orgthogonality, C*-semi-inner product
space, Hilbert modules.
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Definition 1.2. A semi-inner product on a complex vector space X is
a complex valued function [z, y] on X x X with the following properties:

i) [M\y+2,2] = My, 2] + [z, 2] and [z, \y] = A[z, y], for all complex
A,
ii) [z,z] >0, for all z € X and [z, z] = 0 implies x = 0;
iit) [fz, y]I* < [, 2][y, y].

In [1], authors defined a generalization of semi-inner product space
as follows.

Definition 1.3. Let A be a C*- algebra and X be a right A-module.
A mapping [.,.] : X x X — A is called a C*-semi-inner product or
C*-s.i.p., in brief; if the following properties are satisfied:
(i) [z,2] >0, for all z € X and [z, x] = 0 implies = = 0;
(ii) [z, 0y + Bys] = alz,y1] + Blz,yo|, for all ,y1,y2 € X and
a, e C;
(iii) [z,ya] = [z,yla and [za,y] = a*[z,y], for all z,y € X and
a € A,
(i) [y, 2l* < [y, )l [, 2]
The triple (X, A,[.,.]) is called a C*-semi-inner product space or we
say X is a semi-inner product A-module.

Let (X, A,[.,.]) be a C*-semi-inner product space. For any z € X,
the function ||z := ||z, #]||2, defines a norm on X. Also we can define
|| := [z, z]2.

Our purpose in this work, is to investigate some Birkhoff type or-
thogonality in C*-semi-inner product spaces.

2. MAIN RESULTS

In fact, on semi-inner product A-module X, we can define three
similar type of orthogonality:

rlyy & Jlz+yal > ||z Va € A;
rloy & |z +ya| > |z Va € A;
rlyy & |+ yal* > |z Va € A.

It can be easily seen that
rlsy=axloy=xli1y = xlpy.

In [I], Arambasic and Rajic studied these types of orthogonality in
Hilbert C*-modules.
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Proposition 2.1. Let X be a Hilbert module over a C*-algebra A.
Then for each x,y € X,

(x,y) =0= 2Ly = xlpgy.

The converse of both relation is not true.

Theorem 2.2. For a Hilbert module X over a C*-algebra A, the fol-
lowing relations are equivalent:
i) (z,y) =0;
i) xloy;
i) zlgy.
Also in [2], they found some conditions under which the first orthog-

onality coincide with each one of Birkhoff-James orthogonality or inner
product orthogonality.

Theorem 2.3. Let A be a C*-algebra and X be a semi-inner product
A-module. For x,y € X, if [z,y] = 0 or [y,z] = 0 then x1iy and
therefore x L gy.

Theorem 2.4. Let A be a C*-algebra and X be a semi-inner product
A-module. For x,y € X, if [x,y] = [y,z] = 0 then zLsy.

For the converse, we have the following theorem.

Theorem 2.5. Let A be a C*-algebra and X be a semi-inner product
A-module and x,y € X such that x Loy and [x,ylly, x| is positive. Then
we have [z,y]y, x] = 0.
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ABSTRACT. In this paper by a new refinement of the Hermite-
Hadamard integral inequality, as:
a+b fa) + f(b)

’ a
1= bia/a f(t)dt < %(7f(a)+2f(%b)+7f(b)) R

where, f is a real-valued convex function on the interval [a, b], we
obtain a different refinement of Heinz inequality.

) <

1. INTRODUCTION

Let B(H) be the space of all bounded operators on a Hilbert space
H. A norm [||.||| is called unitarily invariant norm if |[|[UAV ||| = ||| Al||
for all A € B(H) and for all unitary operators U,V € B(H).

If A, B, X are operators on a complex separable Hilbert space such that
A and B are positive, then for every unitarily invariant norm |||.|||, the
function f(v) = |||[A*XB'"" + A"“XB"||| is convex on the interval
[0, 1], attains its minimum at ¥ = 1, and attains its maximum at v = 1
and v = 0. Moreover, f(v) = f(1—v) for 0 < v < 1. From [1] we know

2010 Mathematics Subject Classification. Primary 47A55; Secondary 39B52,

34K20, 39B82.
Key words and phrases. Convex function, Heinz inequality, unitarily invariant

norm.
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that for every unitarily invariant norm, we have the Heinz inequalities

2H‘A%XB%

<|||A"XBYY + AVXBY||| < ||[AX + XBJ||. (1.1)

In this paper, we use a similar method to [2, 3] and get different re-
finement of (1.1). Our results are better than those in [1] and different
from [2, 3].

2. MAIN RESULTS
From [3], we know the following Hermite-Hadamard integral inequal-

ity for convex functions.

Lemma 2.1. Let f be a real-valued function which is convex on the
interval [a,b]. Then

a b a
£ ;b)ébia/f(t)dtgw‘

We will use the following lemma.

Lemma 2.2. Let f be a real-valued function which is convex on the
interval [a,b]. Then

1O < s [ sta < g (@ 4 2050+ 710)

Proof. Using the previous lemma, we can easily verify the inequality

& (1@ 2n 5D +1p) < O

Next we will prove the following inequality:

[ o < @+ 25 + 7o),
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We have
a+b

bia /ab f(t)dt = bia </ f(t)dt+/:b f(t)dt>

S 1 f(a)+f(“7“’)'b—a+f(b)+f(“7”’).b—a>
b—a 2 2 2 2

— 1 (@ + 2150 + 1)

a+b
2

47(a) + 8( )+4f(b))

S 2

1@+ 250+ T10)).

= al- 5=

(
(4@ + 275+ 3041 + £0) + 450))
(

Applying the previous lemma to the function
fw) = [[[A"X B + A X B

on the interval [;1, 1 — p] when 0 < p < 1 and on the interval [1 — y, ]
when % < o < 1, we obtain a refinement of the first inequality in (1.1).

Theorem 2.3. Let A, B, X € B(H) such that A, B are poitive. Then
for 0 < pu < 1 and for every unitarily invariant norm, we have

Q(HA%XB%

1 17“ v —v -V v
<m’/ﬁb ||A"X B + A"V X B”||| dv

< g7 llarxmr s A 1o aixn!
<|[|[a*x B 4 AEX )|

)

Proof. First assume that 0 < p < % Then it is follows by previous
lemma that

1— 1 1=u
£ g+“)<1_2u F(t)dt

< % <7f<u) + 2f<ﬂ> +7f(1 - u))

2
< f(1) +£(1 —M)7
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and hence

1 1 1w
fy) S 7oy o

<5 (o +27)
< f(w).
Thus,

1
1—-2u

2 (HA%XB%

1—
< “larx B+ A X B dv
m

< grllarxpe s aexp| 2 aixt

)
< |[|A*X B 4+ ATEXBY|| .

Now, assume that % < o < 1. Then by applying above way to 1 — p, it
follows that

1—
Q‘HA%XB% ‘ < 1 / M|”AVXB1_V+A1—VXBV|HdV
2u—1J,
< é(? l|arx Bl At X B+ 2| adx B3 )
< [||[A*X B+ AEXBY|].
Since
1 1=
lim — L ‘ [ arxmtr e 4
Hﬁ‘% |1 - 2:u| n
— lim L (7[||A*X B 4 AVEX B + 2 [|a2xB3|)
p—si 8
- x|
the result follows by combining previous inequalities. 0
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ABSTRACT. Nonstandard finite differences (NSFD) schemes can
improve the accuracy and reduce computational costs of traditional
finite-difference schemes. In addition, NSFDs produce numerical
solutions which also exhibit essential properties of solution. In
this paper, we derive a NSFD scheme based on Mickens’ rules for
reaction-diffusion-convection (RDC) systems. The new scheme is
a modification of the fully implicit method by using a nonlocal
approximation for reaction term of RDC. The proposed scheme
improves the accuracy and guarantees the positivity requirement,
as is demanded for the solution of RDC. Numerical simulations
on a catalytic particle are used for illustrating the accuracy and
performance of the proposed scheme as a compared to standard
finite difference scheme.

1. INTRODUCTION

In order to solve reaction-diffusion-convection equation, analytical
and numerical solution techniques are used. Analytical solution of this
equation may be carried out when simple and idealized conditions are
satisfied. However, if the solution parameters change in time, use of the
numerical solution techniques is necessary for the solution of advection-
diffusion reaction equation.
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It is desirable that the numerical solutions satisfy the same properties
as the exact solution such as positivity, total variation dimensioning or
monotonicity [3, 4]. In this paper, we propose a modification of fully
implicit scheme for the RDC problem in catalytic particle [1]. The
proposed scheme enables us to solve accurately the examined PDE and
it is the positivity preservation of the solution which exhibit essential
property of solution.

2. MODIFIED FULLY IMPLICIT (MFI) SCHEME
Consider underlying equation, which can describe the reaction-diffusion-
convection problem in a catalytic particle:

oC(z,t) 9%C(,t) 7P66C(x,t)
ot T Oz ox

with initial and boundary conditions:
C(z,0)=0, C0,t)=1, C(1,t)=1.

— ¢*C(x, ), (2.1)

The function C(x,t) corresponds to the normalized concentration and
endowed, Pe is the Peclet number, which denotes the relationship be-
tween the convective and diffusive transport and ¢ is Thiele modulus,
which relates chemical reaction rate and the diffusive transport; the
dimensionless parameters z € [0,1] and ¢t > 0 denote the spatial coor-
dinate and time, respectively.

Making use of the nonstandard discretization [2] of the reaction term
$*C'in (2.1), it is now desired to find an accurate modified fully implicit
scheme which is positivity preserving and can be written as:

n n n n 1 n n
C(8,) = a(Cisr + C7-1) + B(CTE + O + (5 —a = B)(CF T +CF), (2.2)

here a and b are arbitrary parameters to be determined below. The
stencil of the involved nodes of the scheme is displayed in Figure 1.

Ct Cx Cxx C

FIGURE 1. Involved nodes in the modified fully implicit scheme.

The corresponding finite difference approximation provides the equa-
tion difference

pc™tt = NC™, (2.3)
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where P and N are the following tridiagonal matrices:

Pe 1 1 2 1 Pe 1
P = tridiag { — - 40—+ —+ (= —a—b); — — — bQ}, 2.4
" wg{ sar Bz it Az TG e ig T A T (2.4)
1 1
N = tridi —ag?; — —$2(= —a—b); —ag? . 2.5
mmg{ ag®; = <i>(2 a—b);—a¢ (2.5)

The parameters a, b and At are chosen according to the following
theorem:

Theorem 1. Sufficient for scheme (2.3) to be positive is,

2
aSO,b<P6 < 1

Theorem 2. Under conditions of Theorem 1, the fully implicit variant
scheme is stable and convergent with local truncation error O(At, Az?).

3. NUMERICAL RESULTS

To obtain a reference solution of (2.1) the Laplace transform was
applied and for the analytical solution we found

exp(maox)[exp(mi) — 1] + exp(miz)[1 — exp(ms)]
exp(mi) — exp(maz)

FlC(z, )] =

(3.1)

with

m1 = 5

2

Pe — \/Pe? 4+ 4(s + ¢?) Pe + \/Pe? 4+ 4(s + ¢?)
meo = R
2

where F[C(x, s)] is the Laplace transform of C'(z,t). Unfortunately,
the inverse Laplace transform for F[C(z, s)] is not available. In order
to determinate the solution in the time-domain, we have used the nu-
merical inversion by Zakians algorithm [5].

We apply new scheme to (2.1) with different values of Pe and ¢, see
Figure 2-3. If one of the conditions in (2.6) is violated, then the nu-
merical solution may exhibit spurious oscillations, see Figure 4.

PRI TR
a

FIGURE 2. Concentration profiles at different times and their error loga-
rithms when Pe = 10 and ¢ = 2.

66



PUPUSPUPSPAPENS
e .

e

FIGURE 3. Concentration profiles at different times and their error loga-
rithms when Pe =1 and ¢ = 0.1.

| ! 1 ]

FIGURE 4. Numerical results for the modified fully implicit scheme

with b = —£<; +300.
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ABSTRACT. In this paper, we introduce fractional-order into a
predator—prey model. The nonstandard finite difference (NSFD)
scheme is implemented to study the dynamic behaviors in the
fractional-order predator—prey model. Numerical results show that
the NSFD approach is easy and accurate for implementing when
applied to fractional-order predator—prey model.

1. INTRODUCTION

Study of the fractional differential equations (FDEs) as a dynami-
cal system is a novel and appealing subject which has motivated the
leading research literatures in recent years. FDEs have gained consid-
erable importance due to their application in various sciences, such as
physics, mechanics, chemistry, engineering and biological sciences [2].
Recently, most of the dynamical systems based on the integer—order
calculus have been modified into the fractional order domain due to
the extra degrees of freedom and the flexibility which can be used to
precisely fit the experimental data much better than the integer—order
modeling.
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This paper is devoted to the construction of a nonstandard dis-
cretization scheme given by Mickens to the Griinwald-Letnikov (GL)
discretization process for solving the fractional-order predator—prey
model.

2. PRELIMINARIES

Derivatives of fractional-order have been introduced in several ways.
In this paper we consider GL approach. The GL method of approxima-
tion for the one-dimensional fractional derivative takes the following
form [2]

Dx(t) = f(t,x(t)), x(0)=uz0, te€][0,ty] (2.1)

wn

D%z (t) = lim h™* (—1)3( )x(t — jh),
h—0 =0 ]

where 0 < a < 1, D* denotes the fractional derivative, h is the step

size and [£] represents the integer part of . Therefore, Eq. (2.1) is

discretized in the next form
n

Zc?m(tn_j) = f(tn,z(t,)), n=123,..

J=0

where t,, = nh and ¢; are the GL coefficients defined as

) cg =h"", ji=1,2,3,..

The nonstandard discretization technique is a general scheme where
we replace the step size h by a function ¢(h) [3]. By applying this tech-
nique and using the GL discretization method, it yields the following
relations

n+1
=Y Ea(tuig) + ftnsr, 2(tnga))
i=1
T(tpir) = — . ,

0]
where ¢§ = ¢(h)~.
3. NSFD SCHEME FOR FRACTIONAL—-ORDER PREDATOR-PREY
MODEL
Consider the fractional-order predator—prey system [1],
D*a(t) = (t)(r — ax(t) — by(t)),
Dy(t) = y(t)(—d + cx(t)),
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where 0 < a; <1, for e = 1,2 and x > 0, y > 0 are prey and predator
densities, respectively, and all constants 7, a, b, c and d are positive.
Applying Mickens scheme by replacing the step size h by a func-
tion ¢(h) and using the GL discretization method, yields the following
equations:
n+1

Z 1 2(tnsi—y) = r2(ty) — az(tusr)T(tn) — bo(tusr)y(tn),

n+1
D Y(tnray) = —dy(tnsn) + cx(tnin)y(tn).
=0
Invoking some algebraic manipulations to Eqs. (3.1), the following

relations are obtained
n+1

—Zc?lx(th_j) + rz(ty,)
j=1

tn == 705 )
#(tni) ST ax(ty) + by(tn)
n+1
_ZCJO‘Q?J(tle—j) + cx(tni1)y(tn)
i=1
y(tn = as )
+1) ¢yt +d
where
Cgl = ¢1<h)_a17 682 - ¢2(h>_a27
with . "
e —1 e —1
h) = h) =
sl =2 am =

The equilibrium points of system are Ey = (0,0), E; = (£,0) and
By = (4, <244). The stability analysis of such kind of system have been
studied [1]. In the special case a = 0 it is known that the equilibrium
point Fs is a centre for the integer order system a; = ap = 1. In the
fractional case 0 < «; < 1, for ¢ = 1,2 the equilibrium point FEs is
locally asymptotically stable. The numerical simulations in the next
section will support this result.

4. NUMERICAL RESULTS

In this section, numerical results from the implementation of NSFD
scheme for the fractional-order predator—prey system are presented.

In Fig. 1is depicted phase trajectory of the fractional-order predator—
prey system for commensurate order oy = «ay = 1 with parameters
a=0,b=1,¢c=1,r =2,d = 3 with the initial conditions z(0) = 1,
y(0) = 2, for simulation time 300s and step size h = 0.1.
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In Fig. 2 is depicted phase trajectory of the fractional-order predator—
prey system for incommensurate order a; = 0.90, s = 0.80 and pa-
rameters a = 0,b = 1,¢c = 1,7 = 2,d = 3 with the initial conditions
z(0) = 1 and y(0) = 2, for simulation time 300s and step size h = 0.1.
Therefore Fig. 2 illustrate that the equilibrium point E, = (3,2) is
locally asymptotically stable for all « € (0,1).

P - S

x(1), y(t)

w

0 50 100 150 200 250 300 350 "o 1 2 3 4 5 6 7 8

Fig. 1. Plot of populations x, y over time for the case a; = a2 =1 and h = 0.1.

7L ==yl

0 5‘0 160 léﬂ 2&0 Zéﬂ 380 350 0 1‘ é f‘i 4 ; é ; 8
Fig. 2. Plot of populations x, y over time for the case a1 = 0.90, a2 = 0.80 and h = 0.1.

5. CONCLUSION

In this paper we study the fractional-order predator—prey model.
Numerical solutions of this model are given. The reason for consider-
ing a fractional-order system instead of its integer—order counterpart is
that fractional-order differential equations are generalizations of inte-
ger order differential equations. Also using fractional-order differential
equations can help us to reduce the errors arising from the neglected
parameters in modeling real life phenomena.
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ABSTRACT. In this paper, first, we introduce the new concept of
2-pre Hilbert C*-module. Next, we present the concept of C*-
2 linear operators which coincides with Lewandowska’s definition
[ Lewandowska, Z.: On 2-normed sets, Glasnik Mat., 38 (58),
99-110(2003)]. Finally , we define the notion of 2-adjointable map-
pings between 2-pre Hilbert C*-modules.

1. INTRODUCTION

The concept of 2-inner product has been intensively studied by many
outhors in the last three decades.The basic definitions and elementery
properties of 2-inner product spaces can be found in [1] and [2].

Recently, M.Frank and e.t. defined the notion ¢-perturbation of an
adjointable mapping and proved the supperstability of an adjointable
mapping on Hilbert C*-modules(see [3]).

In this paper, first, we introduce the definition 2-pre Hibert C*-
module spaces and give several important properties. Next, we present
the concept of A-2 linear operators which coincides with Lewandowska’s
definition (see [1, 5]). Also, we define 2-adjoinable mappings between
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2-pre Hilbert C*-modules and prove an analogue of ¢-perturbation of
adjoitable mappings in paper([3]).

2. MAIN SECTIONS AND RESULTS

Let X be a left module over a C*-algebra A. An action of a € A on
X is denoted by a.x € X, x € X.

Definition 2.1. A 2-pre Hilbert A-module is a left A-module X equipped
with A-valued function defined on X x X x X satisfing the following
conditions:

Iy) (z,z|z) is a positive element in A for any x, z € X and (x,z|z) =0
if and only if x and z are linearly dependent;

L) (z,z|z) = (2, z|z) for any z, z € X;

I3) (y,z|2) = (z,y|2)* for any z,y, z € X

Iy) (ax+2' y|z) = a(z,y|z)+ (2, y|2) for any « € C and z, 2y, 2z €
X;

I5) (az,y|z) = a(z,y|z) for any x,y,z € X and any a € A.
The map (.,.|.) is called A-valued 2-inner product and (X, (.,.|.)) is
called 2-pre Hilbert C*-module space.

Example 2.2. Every 2-inner product space is a 2-pre Hilbert C-module.

Example 2.3. Let A be a C*-algebra and J C A be a left ideal. Then
J can be equipped with the structure of 2-pre Hilbert A-module with
A-valued inner product (z,y|z) := xy*z2* — xz*zy* for any z,y,z € A.

Definition 2.4. Let X be a 2-pre Hilbert A-module. we can define a
function ||.].|[x on X x X by ||z]z||x = ||(x,z|2)||2 for all 2,z € X.

Proposition 2.5. ||.|.||x satisfies the following conditions:
N1) ||az|z||x < |lal] ||z|z||x for any x,z € X and a € A;
N2) (z,yl2) (y,z]2) < lylz|% (z,2]2) for any z,y,z € X;
N3) I, yl2)|1? < [z, 22| (v, yl2)|

Proof. N1 is obvious; N3 follows from N2, so let us prove N2.

Let ¢ be a positive linear functional on A. Then ¢((.,.|.)) is usual
2-inner product on X. Applying the Schwartz inequality for 2-inner
product (see [2], page 3) we obtain for all z,y,z € X,

o((x,yl2) (y,212)) = é((x, yl2)y, = |2))
< ¢((x,212))7 o(((2,yl2)y . (2. y|2)y |2))?
< o((w, 202))? o((x,yl2) (y.yl2) (z,y]2))
< o((x,2]2)

z,2]2))? ||(y, yl2)||7 6((x,9]2) (y,2]2))7.
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Thus, for any positive linear functional ¢, we have

o((z,yl2) (y,2[2)) < |lyl=llx ¢((z,2[2))

hence
(@,y12) (y,2l2) < llylzll% (z,2]2).
U
Theorem 2.6. The function ||.|.||x is a 2-norm on X.
Proof. Now, we verify that ||.|.||x satisfies the following properties of
2-norms: )
1) I3 and I, show that ||ax|y||x = ||(az,az|y)||z = || ||z|y||x for

all z,y € X and a € C.

2) I, follows that ||z|y||lx = 0 if and only if x and y are linearly
dependent for all x,y € X.

3) it follows from I, that ||z|y||x = ||(z,z|y)||2 = |jy|z||x for all
z,y € X.

4) By proposition 2.5 (N3), we have

Iz +2lyllx = l(z + 2",z +2"y)|
= l[(z, zly) + (', 2y + (2, 2'y) + (=", 2" |y)) ]
< [(z, 2|yl + 2/ (@, 2'[y)[] + [|(z, 2’|y
< (I 2l + 1@ 2 )12 = (lelyllx + 112yl 1x)?
for all z,2’,y € X. This show that (X, ||.|.]|x) is a 2-normed space. O

2.1. 2-adjointable mappings. In continue, we let A be a C*-algebra.
Now, we start with following definition.

Definition 2.7. Let X and Y be two 2-pre Hilbert A-modules. An
operator f : X x X — Y is said to be A-2 linear if it satisfies the
following conditions:

D) f(o+ 9.2 +w) = f(z,2) + fww) + fy,2) + fy,w) for all
Y, z,w € X;

2) flax,By) =a B f(x,y) forall a, 3