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PROPERTIES OF SIGN-REAL SPECTRAL RADIUS
H.R.AFSHIN ! AND M.ZANGIABADI 2*

ABSTRACT. The sign-real spectral radius for square real matrices introduced in [S.M.
Rump, 1997 ,Theorems of PerronFrobenius type for matrices without sign restrictions,
Linear Algebra Appl. 266 142.] . In this note We investigate and derive various charac-
terizations, and properties of it. In certain aspects our quantity shows similar behavior

to the Perron root of a nonnegative matrix.

1. INTRODUCTION AND PRELIMINARIES

We use standard notation from matrix theory. In particular, Qg,, denotes the set of k-
tuples of strictly increasing integers out of {1, ...,n}. For A € M,, (R) and € Qg , A[u] €
M, (R) denotes the principal submatrix of A consisting of rows i € u and columns j € p.
In [1] a new quantity for real matrices is defined, namely the sign-real spectral radius. For
a real matrix A, the quantity po (A) = maz {|\| ; X is a real eigenvalueof A} is called
the real spectral radius of A. If A has no real eigenvalues , py (A) = 0 by definition.
Denote by S the set of signature matrices, i.e. the diagonal matrices with diagonal entries

equal to either +1 or —1. The sign-real spectral radius of a real matrix A is defined by
o5 (A) = max po (S4)
Sep

that the sign-real spectral radius is interesting in itself and, in certain aspects, shows
similar behavior to the Perron root of a nonnegative matrix: for example, the inheritance
property on going to principal submatrices , the identical characterization of pj (A) =0

, and especially the max-min characterizations . Moreover pg (A) is proved to be always

2000 Mathematics Subject Classification. Primary 15A48 ; Secondary 15A18.
Key words and phrases. Sign-real spectral radius;Signature matrices; Perron-Frobenius theory.
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2 H.R.AFSHIN AND M.ZANGIABADI

a simple eigenvalue of some SA unless A is permutationally similar to a strictly upper

triangular matrix

2. MAIN RESULTS

The sign-real spectral radius of the real n x n matrix A has the following properties(see
[1, Lemma 2.1]):
1. If A" denotes the transpose of the matrix A signature matrices S;, S € ¢ a permu-
tation matrix P and a nonsingular diagonal matrix D then
P (A) = pj (A7) = p§ (S1AS82) = pf (PTAP) = p§ (D~'AD),
o8 (DA) = p§ (AD),
oS (ad) = lal p§ (A) for a € R.
2. if there exists a matrix C € M, (R) , rankC = 1 with Cj; := sign (A;;) for A;; # 0
and Cj; € {—1,1} for A;; = 0 then p§ (A) =p (] A ).
3. If Ais a triangular matrix and A;; are the diagonal entries of the matrix A , then
py (A) = max; | Aj; | .
The following further properties of sign-real spectral radius will be used in the proof of
Theorem 2.12 (see [1])

Lemma 2.1. For every orthant there exists some signature matriz S such that SA has
an eigenvector in that orthant corresponding to a real nonnegative eigenvalue, i.e.,
VTep 35€p d0#£z€R":

>0 and SA. Tx=X.Txz for some 0<AER

for nonsingular A one has py (A) >0

Lemma 2.1. shows in particular that pUS (A) is always equal to a real eagenvalue of some

SA.

Lemma 2.2. The sign-real spectral radius has the inheritance property, that is, it cannot

increase on going to a principal submatriz:
PEQrn forl<k<n = pj(Aul) <pf(A).

Lemma 2.3. for A € M, (R) there exists signature matrices S1, So and 0 # z € R™ with
x>0 and S1ASy .x = pOS (A) .x
for B (X) := adj (\I — S1AS5) one has B (p§ (A)) > 0.

Note that in general we do not have adjB (\) > 0 for A > pg5 (A) a for nonegative

matrices (see.[3,theorem 3.1]).
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Lemma 2.4. For a real matriz A € M, (R) pg (A) = 0 if and only if A is permutationally

similar to a strictly upper triangular matriz .
Corollary 2.5. if p§ (A) =0, then A is nilpotent .

Definition 2.6. let A € M, (R) define the function ¢4 from R"™ to the set of nonegative

numbers by

2.1 = mi
(2.1) A (z) min

for all nonzero x € R"

Lemma 2.7. let A € M, (R) then

Az), ASz),
(2.2) max  min ‘( 2); = p5 (A) = max inf max ‘ﬂ .
zeR"z#0 x;#0 Z; Sep x>0 1 x;
The function ¢4 (z) := ming, o ‘ is basically the Collatz-Wielandt function
T

(see.[2, Chapter 1.3).])
We note the similarity to the corresponding result for nonnegative matrices. For any
Ae M, (R),A>0 we have

Azx), A
(2.3) max min (4z) = (4z)
z>0x#0 x;7#0 Z; x>0 ¢ Z;

)
=
Il
=
[anr)
=
B
><

As in Perron-Frobenius theory.

Lemma 2.8. For A € M, (R) n > 2 exactly one of the two following statements is true.
(i) p5 (A) is a simple eigenvalue of SA for some S € ¢ .
(ii)A is permutationally similar to a strictly upper triangular matriz (and therefore pj§ (A) =

0).

In classical Perron-Frobenius theory the spectral radius is a simple eigenvalue for irre-

ducible matrices.

Definition 2.9. A nonnegative n-square matrix A, n > 2, is called reducible (decompos-

able) if it is permutationally to a matrix of the form

B C

(2.4) 0 b

where B and D are square submatrices. Otherwise, A is irreducible (indecomposable).
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Corollary 2.10. Let A be an irreducible real matriz n x n then pg (A) is a simple eigen-
value of SA for some S € ¢ .

Unlike Perron-Frobenius theory, the eigenvector z may consist of zero components, even

if A has no zero entry. Consider

3 3 4 3
A=14 -1 3 with ps (A) =5 and r= |2
08 —-1.2 1 0

There is no S € ¢ such that SA has an eigenvector corresponding to an eigenvalue +5

or -5 without zero component, and the eigenvalue +5 or -5 is always simple. However,
o8 (4) = p§ (A[u]). for p= (1,2)

Lemma 2.11. For A € M, (R) the following are equivalent:

(i) There exists p € Qn_1,n with p5 (A) = p5 (A[u]) .

(ii) There exists some S € ¢ such that SA has a lef or a right eigenvector to the eigenvalue

A = pg (A) with a zero component.

Theorem 2.12. let A € M, (R) and function p4 defined in (2.1) then
(1) the function @ is homogeneuse of degree 0 ;

(ii) if x # 0 and p is the largest real number for which
| Allz|—p|z|=0

then p = pA(z)
(iii) if t €eR" , 2 #0 and y = (In+ | A)"™" | & | then o (y) > @i (2)
Proof. (i) For ¢t > 0 and 0 # z € R™ we have

(A (tz));
(tz);

(ii) The function of ¢ 4 (z) impleis that

t(Ax)

t:Ei

(Az);

)

=wa(z)

w4 (tz) = min ‘

= min
(tx); #0 ‘

tr; #0

= min ‘
T

Al [z | —pa(z)|z]>0

and that there exists an integer k , 1 < k < n such that z; # 0 and the k th coordi-
nate of | A| .|z | —pa(z) |z |is 0. Thusif ¢ > pa(z) so (|A|.|z]|—c|z]), <
(|A].|z]|—pa(z)|z]|), =0 thus the kth coordinate of | A | . | z | —c| z | is nagative .

The result follows.
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(iii) We have | A | . | 2 | —pa () |  |> 0 Multiplying both sides by (I,+ | A[)"™", we
obtain

[ A (It | AN 2 | —a () (It [ A" 220
, since A and (I,+ | A|)""' commute, that is, | A | y — o4 (#)y > 0 But by part (ii),
©wA(y) is the largest number satisfying | A | y — ¢4 (y) y > 0 Hence

pa(y) > pa(z)
0

Theorem 2.13. let C be a complex matriz , A € M, (R) , | C |<| A | then for every
eigenvalue t of C'
|t 1< 95 (A)

Proof. let Cy = ty where y # 0 then | C || y |>| t || y | by triangle inequality . But
| C'|<| A | and therefore

(2.5) [ Ay [zl Clly =[]y |
Hence by Theorem 2.12 | ¢ |< ¢4 (| y |) where ¢4 is defined in (2.1) and by lemma 2.7

(2.6) [t1<pally ) <p5(4)
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GENERALIZED NUMERICAL RANGES

GHOLAMREZA AGHAMOLLAET"

ABSTRACT. Let A and C be two n x n complex matrices. In this note, by a simple proof,
we show that the C'—numerical range of A is convex whenever C is Hermitian. We also
introduce a new generalization of the numerical range of matrix polynomials, and we

investigate some algebraic and geometrical properties of this notion.

1. INTRODUCTION

Let M, be the algebra of all n x n complex matrices, and U, be the group of n x n

unitary matrices. For A,C' € M,,, the C—numerical range of A is defined as:
We(A) = {tr(CU*AU) : U € Uy}.

Westwick in 1975, [9], by using the Morse theory, proved that W (A) is convex whenever
C' is Hermitian. Later Poon in 1980, [6], give another proof of this result. In section 2 of
this note, we give a simple proof of this result.

Suppose that
(1.1) PA) = Ap\™ + Ay A Lo AN+ Ay

is a matrix polynomial, where A; € M, (i = 0,1,...,m), A, # 0 and X is a complex
variable. The numbers m and n are referred to as the degree and the order of P()\),
respectively. Matrix polynomials arise in many applications and their spectral analysis
is very important when studying linear systems of ordinary differential equations with

constant coefficients, see [5] and its references. The matrix polynomial P()), as in (1.1),

2000 Mathematics Subject Classification. Primary 15A60; Secondary 15A18.
Key words and phrases. C—numerical range, matrix polynomial.
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is called a monic matriz polynomial if Ay, = I. A scalar \g € €' is an eigenvalue of P(X)
if the system P()\g)z = 0 has a nonzero solution zy € €™. This solution z( is known as
an eigenvector of P(\) corresponding to Ag, and the set of all eigenvalues of P()\) is said
to be the spectrum of P(X). So, o[P(A\)] = {u € € : det(P(n)) = 0}. The (classical)

numerical range of P(\), as in (1.1), is the set:
WI[PAN)]:={peC : z*P(u)xr =0 for some nonzero z € C"},

which is closed and contains o[P())]; see [5] for more information. The numerical range of
matrix polynomials plays an important role in the study of overdamped vibration systems
with a finite number of degrees of freedom, and it is also related to the stability theory;
see e.g., [5]. In section 2 of this note, we introduce a new generalization of the numerical
range of matrix polynomials, and we investigate some algebraic and geometrical properties
of this notion. In the last few years, the generalization of the numerical range of matrix
polynomials has attracted the attention, many interesting results have been obtained; see
e.g., [1,7, 8]

2. C'—NUMERICAL RANGE OF MATRICES

Let A € M,. The classical numerical range of a matrix A € M, is defined as
W(A) := {z*Az : z € €", z*z = 1}, which has been studied extensively for many
decades. It is useful in studying and understanding matrices and operators, see [3], and
has many applications in numerical analysis, differential equations, systems theory, etc.
One generalization of the classical numerical range of matrices, due to Goldberg and Straus
[2], is the notion of C'—numerical range of matrices which is stated in previous section.
This notion is related to optimization problems, and has important applications in quan-
tum control and quantum information. Now, we state some important properties of the

C'—numerical range of matrices.

Proposition 2.1. Let A,C € M,,. Then the following assertions are true:

(i) Wec(A) is a compact and connected set in €';

(1)) Welal + BA) = atr(C) + fWe(A), where a, f € C;

(Z’L’L} Wv*cv(U*AU) = Wc(A) = WA(C), where U,V € Uy,;

(iv) If C = qE\ + /1 —|q|*E12, where ¢ € € with |q| <1 and E;; € My, has 1 in
(i, j)—position and 0 elsewhere, then W (A) = Wy(A) == {z*Ay : z,y € OC", z*z =
y'y =1, 'y = q}; and
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(v) We(A) is star-shaped with respect to star-center 1(A) () here g nonempty subset S
of a real linear space is said to be star-shaped with respect to star-center s € S if [s,z] C S,

whenever x € S, where [s,z] denotes the line segment {(1 —t)s+tz : 0 <t <1}.

Remark 2.2. The set W,(A) in Proposition 2.1(iv), is called the g—numerical range of
A € M,. Tt is a generalization of the classical numerical range of A; namely: W;(A4) =
Wg,1(A) = W(A). For more information, see [4].

Let E and F be two Hermitian matrices. Suppose that < denotes the majorization.
It is known that A\(E 4+ F) < A(E) + A(F'), where A(X) is the vector of eigenvalues of any
Hermitian matrix X € M,,. Also, if A\(E) < A(F'), then Wg(A) C Wg(A) for any A € M,

[2]. Now, we state the our main result of this section.
Theorem 2.3. Let A,C € M, and C be Hermitian. Then W (A) is convex.

Proof. Let \,u € We(A) and 0 < ¢ < 1 be given. So, there exist U,V € U,, such that
A =1tr(CU*AU) and p = tr(CV*AV). Thus,

(1= A+ tp = tr([(1 = HUCU* + tVOVI* AT) € Wi _ppcv-sover-(A).
Since (1 —t)UCU* +tVCV™* is Hermitian and A\((1 — ) UCU* +tVCV*) < (1 —t)\(C) +
t)\(C) = )\(C), W(lft)UC'U’ﬁI»tVCV* (A) g WC(A) Hence, (1 - t))\ + t/l: € WC’(A), and the

proof is complete. O

3. C—NUMERICAL RANGE OF MATRIX POLYNOMIALS

Let P(\) = ApA™ + Ay (A1 4 -+ + A1\ + Ag be a matrix polynomial as in (1.1).

In this section, we introduce a new generalization of W[P())].

Definition 3.1. Let P(\) be a matrix polynomial as in (1.1). For a given matrix C' € M,
the C—numerical range of P()) is defined and denoted by

WelPN)]={p e : tr(CUP(p)U) =0 for some U € U,}.

If tr(C) = 0, then, by Proposition 2.1(v), W¢(P(p)) is star-shaped with respect to
star-center 0 = M for all u € €. So, W¢[P(\)] = €. Hence, to avoid trivial
consideration, we shall assume that ¢r(C) # 0 in this section.

For the special case P(A\) = A\ — tr(C)A, where A € M,,, we have W [P()\)] = W (A).
Hence, the C'—numerical range of matrix polynomials can be considered as a generalization

of the C'—numerical range of matrices.
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Let ¢ € € with |g| < 1 be given. Assume that P()) is a matrix polynomial as in (1.1).
The g—numerical range of P()) is defined, see [7], as

Wy PN ={peC : 2*P(p)y =0 for some nonzero vectors z,y € C" with ™y = ¢},

which is a generalization of W[P())], namely, W1[P()\)] = W[P()\)]. Now, set C =
qE11++/1 — |q|?E12 € M,,. Then, by Proposition 2.1(iv), we have W¢[P(\)] = W,[P())].
Hence, the C—numerical range of matrix polynomials is a new generalization of the
g—numerical range (consequently, the numerical range) of matrix polynomials.

It is clear that W [P())] is a closed set in ', but need not be bounded; see e.g., [5,
Example 1] for C = Ey; € M,,. Here, for the boundedness of the C'—numerical range of

matrix polynomials, we state the following theorem.

Theorem 3.2. Let C € M, and P()\) be a matriz polynomial as in (1.1). If0 ¢ We(Anm),
then W [P(N)] is bounded.

We consider two vectors x = (z1,22,...,2,)" v = (y1,y2,---,yn)’ € C". The vector
x is obtained from y by pinching if there exist 1 < 7,5 < n (not equal), and 0 < ¢t < 1
such that z; = ty; + (1 — t)y;, z; = (1 —t)y; + ty; and =y = y,, for k #4,j. We say that
x << y if z is obtained from y by a succession of a finite number of pinchings. For more

information about these notions, see [2].

Proposition 3.3. Let P(\) be a matriz polynomial as in (1.1), and C1,Cy € M, be
two normal matrices with the vectors of eigenvalues A(C1) and A(Csq), respectively. Then
We, [P(A)] C We,[P(MN)] if one of the following holds:

(i) A(C1) << ACa);

(1) Cy and Coy are Hermitian matrices, and \(C1) < A(C5).

In view of symmetry, we state the following proposition.

Proposition 3.4. Let C € M, and P(\) be a matriz polynomial as in (1.1). Then the
following assertions are true:

(1) If all the powers of X\ in P(X) are even (or all of them are odd), then Wa[P(X)] is
symmetric with respect to the origin;

(1) If all entries of the matrices C, Ag, A1, ..., Ap, lie on a line in the complex plain passing

through origin, then Wo[P(X)] is symmetric with respect to the real azis.
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NUMERICAL SOLUTION OF IMPULSIVE DIFFERENTIAL
EQUATIONS WITH FIXED TIME BY ORTHONORMAL
POLYNOMIALS

M. AHMADINIA™ AND Z. MOHSENZADEH?

ABSTRACT. There are many bases of orthogonal polynomials that each one is specified
by its inner product indeed, its weight function. In this talk we use Chebyshev, Laguerre,
Hermite and Legendre polynomials to approximate the solution of Impulsive differential
equation with fixed time by collocation method (linear system), and compare the results.

Finally, some experiments are given.

1. INTRODUCTION AND PRELIMINARIES

Many evolution processes are subject to short term perturbations which act instan-
taneously in the form of impulses. Thus, the study of impulsive differential equations
provides a natural description of observed evolution processes of several real word prob-
lems in medicine, biology, physics, engineering, etc. We introduce some basic knowledge

of system with impulsive effect at fixed instants of time, considering the following system

jj:f(tax)a t# by,
(1.1) sz[k(m), t:tk,
x(to+) = To,

2000 Mathematics Subject Classification. Primary 34A37; Secondary 05E35.
Key words and phrases. Impulsive differential equations; Collocation method; Basis of orthogonal poly-
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where f : Rt x Q — R" I : Q@ — R",Q C R" is an open subset and t, < t;,1 and with
limity ooty = 00,as usual Ax(t) = z(tT) —x(t”) , z(t*) and x(¢~) denote the right and

left limits of x at t respectively.

Definition 1.1. The function x(t), ¢ € (%o, b) is said to be the solution of the system (1.1),
if the following conditions are satisfied:

(1) z(tg) = 2o, (t,z(t)) € RT x Q for t € (g, b),

(2) for t € (to,b),t # tr, k € N, the function x(t) is differentiable and dﬂ;—gt) = f(t,z(t)),
(3) the function x(t) is left continuous in (tg,b), if t € (t9,b) and t =y, t # b then

o(t™) = z(t) + Te(z(t)).

Theorem 1.2. If f : Rt xQ — R™ is continuous in (ty, tp+1]xQ, k € N, limit(t Y-t x)f(t, Y)
is finite and exists and f is locally Lipschitz continuous with respect to x in RT x Q, then

the solution x(t) of problem (1.1) is unique.

Proof of theorem, see [1-2].

In this paper, we consider the following impulsive differential equation

T = ax, t#£k ,t>0,
(1) Ar=fo,  t=k,
z(0T) = =z,

where a # 0,8, z0 € R, 14+ # 0,k € N. This Problem studied in [3] by Ran, Liu and Zhu.
They solved the problem by multistep methods and they focus on Runge-Kutta method.
We solve the problem by collocation method with different orthonormal bases and present
some advantages.

Problem (1.2), in (0, 00), has a unique solution
z(t) = zoe® (1 + B)1

where [t] denote the greatest-integer function of t .So, it is easy to obtain the following

theorem.

Theorem 1.3. The solution x = 0 of Eq.(1,2) is asymptotically stable (x(t) — 0 as
t — 00) if and only if | (1 + B)e®) |< 1.
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2. THE METHOD

Consider the following linear combination
n
u(t) ==Y cxPi(t),
k=0

{P}32, is an orthonormal polynomails basis and c;’s are n + 1 unknown coefficients, we
choose n — 1 points t1,...,t,-1 in the domain and require u(t) to satisfy the differential
equation (1.2) at just these n-1 points, these points are called collocation points, and
u(t) is called approximate solution of collocation method(with orthonormal basis) which
satisfies initial condition. We have to solve the following system

n

ch(Pk(t])_aPk(t])) =0, yj=12,...,n—-1,
k=0

n
chpk(()) = Zy.
k=0

3. MAIN RESULTS

In this section, we use first and second kind of Cebyshev polynomial (with weight
functions ﬁ and V1 — z? respectively), Legendre polynomial (with weight function
(1 —2)%(1+ )" when a,b are greater than -1), Laguerre polynomial( with weight function

~%2¢ standard form @ = 0) and Hermite polynomial ( with weight function e % ) as

e
collocation polynomials. See [4]. We solve the system(1.2) by different values of «, 3,z
by collocation method and compare them with Runge-Kutta method as a powerfull multi
step method. The following examples will be helpfull to describe the main results of this

paper.

Example 3.1.

z = 1.2z, t#k,t>0,
(3.1) Ax=—-09z, t=k,

z(0T) =1,
Example 3.2.

T = -39z, t#k,t>0,
(3.2) Az = 10z, t==k,

z(0T) =3,
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We consider m = 10, m is the number of mesh points in all orthonormal bases and
also the number of steps in Runge-Kutta method. The tables show some advantages of
the collocation method with orthonormal bases. The error in the Runge-Kutta method is
accumulated at the end of last subinterval(impulsive equation is defined on interval which
has finite number of subintervals with impulses at the boundary of subintervals). The

error of the collocation method (the maximum error) will be risen at the first subinterval.

Table 1: Collocation error of problem(2.1)

Basis H Error ‘ Speed(s) ‘ Cond number

ChebT || 1.2¢ — 10 2.15 3.70283e + 21

ChebU | 1.2¢ —10 1.88 6.9899¢ + 21
Hermate || 1.2e — 10 2.47 6.5540e + 21
Legendre || 1.2e — 10 2.37 2.3258¢e + 21
Laguerre || 1.2e — 10 2.06 3.5269¢ + 14

Table 2: Collocation error of problem(2,2)

Basis H Error ‘ Speed(s) ‘ Cond number

ChebT || 2.5¢ —6 1.97 4.9867e + 22
ChebU | 2.5e — 6 1.96 4.9775e 4 22
Hermite || 2.5e — 6 1.92 3.1226¢e + 22
Legendre || 2.5e — 6 2.98 1.6563e + 22
Laguerre || 2.5e — 6 2.03 1.14119e + 15

Table 3: Runge-kutta error of problems(2,1)

3 — LobattolII B
1.68¢ — 007

2 — Radaul A
1.22e¢ — 004

Table 4: Runge-kutta error of problems(2,2)

2 — LobattolIIB | 3 — Gauss
1.22e — 004 3.67¢ — 010
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BOUNDING THE DEPARTURE FROM NORMALITY OF THE
ITERATION MATRICES FOR SOME SPECIAL COEFFICIENT
MATRICES OF LINEAR SYSTEMS

MORAD AHMADNASAB!* AND NABI MOZAFARI?

ABSTRACT. Let Az =bfor A€ C**" and b € C* be a linear system and z(®, 2+ =
Tz™ + d be one of Jacobi’s or Gauss-Seidel’s iteration formula for solving the linear
system. In this work, we introduce some bounds on the departure from normality of the

iteration matrices T for some special coefficient matrices A.

1. INTRODUCTION

In exact arithmetic, the sequence {z(¥)} produced by the successive iteration
(1.1) AN Gy O |

is converging for any z() if and only if p(T) < 1 where p(T) is the spectral radius of T'.
However, it is shown [3] that for certain matrices T, the condition p(T') < 1 is not enough
for the convergence of the sequence (1.1) in finite precision arithmetic. The phenomenon
is attributed to the conjunction of the nonnormality of T' and the finite precision of the
computer arithmetic [1]. A large variety of the efforts including (but not limited to)
Henrici (1962), Wilkinson (1965), Parlett (1974), Van der Sluis (1975), Chatelin (1988,
1993), Chaitin-Chatelin and Frayssé (1996), Ipsen (2003) and Gheorghiu (2003) could be
listed concerning the relation between the condition of a matrix and its departure from
normality, i. e., the measure of either v(T') = | TT* — T*T|| or A(T) = ||N||, where N is
the strictly triangular part of the Schur form 7' = D + N associated with T'.

2000 Mathematics Subject Classification. 65G10; 65G30, 65N12.
Key words and phrases. Iterative linear system solvers, finite precision arithmetic, diagonally dominant
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BOUNDING THE DEPARTURE FROM NORMALITY OF THE ITERATION MATRICES 17

In this paper, as a part of an ongoing work, we introduce some bounds on the departure
from normality of both Jacobi’s iteration matrix 7Ty and Gauss-Seidel’s iteration matrix
Tas for some special coefficient matrices A. We leave the question about the cases which
causes higher nonnormality of iteration matrices for future research. Here, we measure
the departure from normality of matrix 7" by v(T) = ||TT* — T*T||. An example will be

presented to demonstrate what are proved in the theories.

2. MAIN RESULTS

The measure of nonnormality of the iteration matrices is crucial in convergence of the
iterative linear system solvers [1]. So in this section, we bound the departure from nor-
mality of some iteration matrices associated with some special coefficient matrices A. More
specifically, we bound the departure from normality of the iteration matrix 7" when the
coefficient matrix A in Az = b is one of 1) diagonally dominant, 2) irreducible and weakly
row diagonally dominant or 3) symmetric positive definite.

We assume that reader is familiar enough with Jacobi’s iterative method and Gauss-
Seidel’s iterative method, but we just recall the definitions of Jacobi’s iteration matrix and
Gauss Seidel’s Iteration matrix. Let write A = D — L — U where D = diag(ai1, ..., ann),
—L is strictly lower triangular part of A, and —U is strictly upper triangular part of A.
Then Jacobi’s iteration matrix is Ty = D~'(D — A), and Gauss Seidel’s Iteration matrix
is Tgs = (D — L)flU.

Definition 2.1. The n x n matrix A is said to be strictly row diagonally dominant when
|azi| > 377_1 jzilaij| holds for each i = 1,... ,n. Ais strictly column diagonally dominant
when [aj;| > >3, ;. laij| holds for each j =1,...,n.

Theorem 2.2. If A is strictly row diagonally dominant, the departure from normality

(defined by infinity-norm) of both Ty and Tgs are bounded by 2.

Proof. When A is strictly row diagonally dominant, the assertion of Theorem 6.2 in [2]
ensures that |Tgs|lco < [|T7]leo < 1. And as we have v(T)oo = ||TT* — T*T || < 2||T|%,
therefore v(T)s < 2||T||%, < 2 where T stands for either Ty or Tgs. O

Remark 2.3. If we use the 1-norm, the same bounds as those of Theorem 2.2 exist for the

departure from normality of 7" when A is strictly column diagonally dominant.

Definition 2.4. A is an irreducible matrix if there is no permutation matrix P such that

An o An

PAPT =
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Definition 2.5. The matrix A is said to be a weakly row diagonally dominant, if for all

i, |aii| > > p; |aix| with strict inequality at least once.

Although for any operator norm, one has p(T) < ||T'||, but in general, the difference
between ||T'|| and p(T") may be arbitrary large. Nevertheless given any € > 0, it is shown in
le,r < p(T) +e.
Here € > 0 could be arbitrary small which means that there are some operator norms on

(2], Lemma 6.5, that there is an operator norm || - || 7 such that p(T") < ||T’

T whose sizes are almost equal to those of p(T') but for each case we would like to provide
an explicit bound even though they are not so sharp. The instruction for building such

an operator norm is the following [2]:

Algorithm 2.6. Building up an operator norm || - |7 with the property that for any
£>0, |T|l7e < p(T) +¢

(1) Calculate the Jordan form of T such that J = V=TV,

(2) For an arbitrary but fixed € > 0, let D, = diag(1,e,...,e" '),

(3) Define ||T||.7 = ||J||lso where J = D-'JD..

Now, for example, for a given T' with p(T") < 1, if we choose € > 0 such that p(T)+¢ < 1,

then we can get an operator norm with the property ||T'[|. 7 < 1.

Theorem 2.7. Given A € C"*"™ is irreducible and weakly row diagonally dominant, there
are some operator norms || - || such that both v. 7(Ty) and v.7(Tas) are less than 2
where v p(T) = ||TT* — T*T |7 .

Proof. We prove the assertion related to the Jacobi’s iteration matrix. The argument for
the case of Gauss-seidel’s iteration matrix is the same. For the mentioned matrices A, we
have p(T7) < 1 [4]. On the other side, one can apply Algorithm 2.6 and choose ¢ > 0 to
get an operator norm || - || 7, with the desired property ||T||. 7, < 1. Therefore v. 7(T)

defined using this operator norm is less than 2. O
Definition 2.8. The symmetric matrix A € R**™ ig called symmetric positive definite, if
zT Az > 0, for 0 # z € R".

Theorem 2.9. Given A € R™*" is symmetric positive definite, there is an operator norm
| - e, such that veq(T) = || TT* — T*T |7 is less than 2 for T = Tgs.

Proof. For a symmetric positive definite matrix, it is known [2] that p(Tgs) < 1. Now,
we choose € > 0 such that p(Tgs) + ¢ < 1. Then applying Algorithm 2.6 results in an
le.70s < p(Tgs) + € < 1. So, using this
norm, we have v, 7(Tgs) < 2. O

operator norm || - |7, such that p(Tgs) < [|[Tas



BOUNDING THE DEPARTURE FROM NORMALITY OF THE ITERATION MATRICES 19

5 3 0
Example 2.10. The matrix A= | 3 5 —1 | is both strictly diagonal dominant and
0 -1 5

symmetric positive definite and we have vy (T7) =0, || Ty |lco = 0.8, Voo (TGs) = 0.62, and
|TGs||so = 0.6 which support the bound introduced in Theorem 2.2. Since A is symmetric
positive definite too, so we can approach to make (and to bound) the special operator norm
in Theorem 2.9. First, we calculate the Jordan form of Tizg such that J = V™!1TqgV.
Then we define D, = diag(1,e,e2). Now, for ¢ = 1075, ||Tasle. 755 = ||/]loo = 0.4 where
J = DZ'JD.. Therefore, using the new operator norm, we have v, 1. (Tas) < 2x(0.4)? =
0.32 < 2.
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A COMPARATIVE STUDY OF SVD-QR METHOD WITH ITERATIVE
REFINEMENT FOR SOLVING SYMMETRIC POSITIVE DEFINITE
GENERALIZED EIGENPROBLEMS

MORAD AHMADNASABY AND FATEMEH BABALOU!

ABSTRACT. Given a generalized eigenvalue problem Az = ABz for A, B € R**". Under
the assumption that both of A and B are symmetric and one of them is symmetric
positive definite, we study some properties of a symmetric version of SVD-QR reduction
method and contrast it with Cholesky-QR method. Our study shows the ability of SVD-
QR in providing comparable accurate solutions. Beside, for some special problems in
this area, the possibility of choosing and applying an appropriate version of SVD-QR
method illustrates its flexibility which results in the solutions with less need to apply an

iterative refinement.

1. INTRODUCTION

The symmetric definite generalized eigenvalue problem
(1.1) Az = \Buz,

where A, B € R**™ are symmetric and B is positive definite, arises in many applications in
science and engineering [2]. The QZ algorithm [5] can be used to solve (1.1). This method
is numerically stable but it does not exploit the special structure of the problem and so does
not necessarily produce real eigenpairs in floating point arithmetic. A standard method,
apparently first suggested by Wilkinson, begins by computing the Cholesky factorization,

optionally with complete pivoting. A version of this reduction method which uses the
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QR algorithm for solving the resulted standard eigenvalue problem is known as Cholesky-
QR method [3]. For some interesting works on symmetric positive definite generalized
eigenproblems, SPDGEP, see [3] and references therein where they studied and compared
the behavior of Cholesky-QR method and Cholesky-Jacobi method and see [4] for more
recent publications on enclosing all eigenpairs of SPDGEP.

In this paper, we introduce a symmetric version of SVD-QR. reduction method, namely
symmetric SVD-QR, for solving SPDGEP. The basic SVD-QR method for the first time
was introduced in [1]. This method needs the nonsingularity of one of A or B, the fact
that is guaranteed by positive definiteness of either A or B. Our main goal is to display
the good accuracy obtained by symmetric SVD-QR method, for some problems, compared
with some known methods from the literature such as Cholesky-QR method. In addition,
we exemplify the flexibility that this family of SVD basis offers to some SPDGEP problems
whose both matrices A and B are nonsingular. Numerical examples are presented showing

the efficiency of the proposed method.

2. MAIN RESULTS

In this section, we first introduce a modification of SVD-QR which is suitable for solving
some SPDGEP with A symmetric positive definite and B symmetric. Then another version
of this method, suitable for the problems with A symmetric and B symmetric positive
definite will be presented shortly. Here we consider, merely, small or moderate SPDGEP

problems. For more explanations on how the method works, refer to [1].

Algorithm 2.1. When A is symmetric positive definite and B is symmetric.

1. Use the SVD of matrix B to write it in the form B = UgV}} as explained in [1],

2. Solve AC' = Up for C' using Cholesky factorization,

3. Use the QR algorithm to compute the eigenvalues u;, s =1,...,rp of VEC =M,
where rp is the rank of B

4. The set of finite eigenvalues of SPDGEP is sp(A,B) = {\; = 1/u; ; 0 # u; €
o(M)}.

We denote this version of our method by SSVDQR1. The error introduced by this
reduction method can be proportional to | V2 ||||A=L|Us]-

Now, let Az = ABxz be an SPDGEP with B symmetric positive definite and A sym-
metric. An appropriate version of SVD-QR for this case can be driven from Algorithm

2.1 by changing the role of A and B, and introducing the set of finite eigenvalues of this
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SPDGEP by the union of the eigenvalues of the matrix M and a set of n —r 4 zeros where
r4 is the rank of A. We denote this version of the method by SSVDQR2.

When A (resp. B) is nonsingular, then the lower rank matrix B (resp. A), the better
performance of the corresponding version of the method [1]. The new feature is that, we
discuss and solve a more complete set of generalized eigenvalue problems with A symmetric

and B symmetric positive definite and vice versa.

3. NUMERICAL EXPERIMENTS

We use 6(5\) = %, as the forward error of the computed eigenvalue A where the exact A
means what is obtained by MATLAB’s Symbolic Math Toolbox. To evaluate the backward
error, we use the explicit expression 7(Z, 5\) = m, where r = AB# — A# is the
residual [3].

Example 3.1. We consider an example which was adapted in [3] to show that it is possible
for the Cholesky-Jacobi method to be stable when Cholesky-QR method with and without

1 a 0 6§
2 00

pivoting is unstable. Let A = (g 0 3 0l B = diag(e,1,e,1), where a = 1,
0 0 0 ¢

§ =103, and ¢ = 10!, Here cond(A

~—

= 1.50e+6 and cond(B) = 1.00e+11.

(a) We solved the problem Az = ABz by SSVDQRI1 method and also by Matlab
version of the Cholesky-QR method. Table 1 displays good forward and backward errors
of the solutions obtained by SSVDQRI. It is well known that when B is ill-conditioned,
numerical stability can be lost in the Cholesky-based method [3]. Here the first two
smallest eigenvalues of the pencil A — zB produced by the Cholesky-QR method show
poor forward and backward errors, so we use the iterative refinement introduced in the
Algorithm 4.1 in [3] to improve the accuracy of the solution. Table 2 shows the forward
and backward errors before and after iterative refinement of the solutions of Cholesky-QR
method. We denote by it, the necessary number of iterations to get the acceptable forward
and backward errors.

(b) For the same matrices A and B, the same numbers a and 4, let consider a range of
e from 10710 to 107!, Figure 1 displays the logarithmic scale of condition number of B
against the logarithmic scale of backward error n2(Zmin, S\mm) for the eigenvalue Amin Of
minimal modulus. The Cholesky-QR method performs unstably for most of the matrices
B in the figure, while SSVDQRI1 displays excellent stability.
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TABLE 1. Forward and backward errors of the solutions obtained by SSVDQR1 for Example 3.1 (a).

A e(}) n(z, \)

-1.99e-06 1.48e-15 | 2.01e-19
1.00 2.22e-16 | 3.3le-17

1.00e+11 1.52e-16 3.14e-27

3.00e+11 0 1.48e-27

TABLE 2. Forward and backward errors of the solutions produced by Cholesky-QR method for

Example 3.1 (a) before and after iterative refinement.

Before refinement After refinement
A e(N) n(z,\) | it e(}) n(z, \)
-1.99e-06 2.53e-06 1.69e-09 1 6.45e-12 4.30e-18
1.00 5.07e-06 8.97e-07 1 2.22e-16 4.56e-15

—S— SSVDQR1
—4— Cholesky—QR

10 11 12 13 14 15 16 17 18
Cond(B)

FIGURE 1. log,o(Cond(B)) versus log;o(n2(Zmin, Amin)) for Example 3.1 (b).

(c) For the same matrices A and B, the same numbers «, §, and ¢ as those of the case
(a), if we solve the new problem Bz = AAzx using SSVDQRI, then the forward errors and
the backward errors are poor for some of the eigenvalues and eigenpairs respectively: note
that for these kinds of problems the error can be proportional to ||B~!| and here it is
|B~Y| = 10'8. It is interesting to remark that for this latter case, the second version of
our method, that is the SSVDQR2, produces extremely good forward errors and backward
errors and there is no need to any refinement. On the other side, since A is not positive
definite, the Cholesky-QR. (and even the Cholesky-Jacobi) method is not applicable . The
idea of finding the finite nonzero eigenvalues of A — zB as the reciprocal of the finite

eigenvalues of the pencil B — zA does not seem to be advantageous because as we have
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already seen, for the problem Az = ABzx of this example, Cholesky-QR does not obtain

accurate results.
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MAJORIZATION AND M-CONVEX SETS

F. AKBARZADEH '* AND A. ARMANDNEJAD?

ABSTRACT. In this article a class of polytopes associated with majorization, gw and

gs-magorization is studied and a connection to discrete convexity is established.

1. INTRODUCTION AND PRELIMINARIES

The ith largest components in a vector z € R" is denoted by z};). For vectors z,v € R"
we say that z is majorized by v, and write £ <,, v, whenever 2?21 z;) < Z§:1 vy, for
k=1,2,...,n with equality for £ = n. It is well known that x <,, v if and only if there
exists a doubly stochastic matrix D such that z = Dv. A complex matrix A € M, is g-row
stochastic if Ae = e where e = (1,...,1)! € R®. A complex matrix D € M, with the
property that D and D! are g-row stochastic matrices is said to be g-doubly stochastic.
For z,y € R", we say that y is gs-majorized (respectively gw-majorized) by x and write
y <gs « (respectively y <4, ) if y = Rz for some g-doubly (respectively g-row) stochastic
matrix R. The following propositions give some equivalent conditions for <5 and <, on
R™.

Proposition 1.1. [2, Proposition 2.1] Let © and y be two distinct vectors in R™. Then,
Y <gs = if and only if z ¢ span{e} and tr(z) = tr(y).

Proposition 1.2. [1, Lemma 2.2] Let x € R*. Then y <4y = for every y € R if and
only if © ¢ span{e}.

2000 Mathematics Subject Classification. Primary 15B36 ; Secondary 15A39.
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A majorization permutahedron M, (v) is a polytope associated with a majorization
x <o v (here a € {m, gw, gs} ) in R" defined by M, (v) = {z € R" : z <, v}. For a set
V, P(V) denotes the class of all subsets of V. Put V = {1,2,...,n}, a function p from
the class P(V) into R is called submodular if p(X UY) + p(X NY) < p(X) + p(Y) for
each X, Y C V.

Example 1.3. For z € R the function z : P(v) — R defined by z(s) = ),

submodular function.

jes Zj 18 a

For each submodular function p the base polyhedron associated with p is the following
set:
B(p) ={z e R" : z(s) < p(s), Vs P(V)and z(V) = p(V)}.
For a vector v € R" define supp®(v) = {j : 5 > 0} and supp (v) ={j :j <0} A
nonempty set B of integers in Z" is said to be an M-convex set if for each z,y € B and
i € supp™ (z—y), there exists j € supp™ (z —y) such that z—e; +e; € B and y+e;—e; € B.
The following propositions describe the relationship between the M-convex sets and

submodular set functions.

Proposition 1.4. [4, Proposition 4.14] Let p be an integer-valued submodular set func-
tion. Then B := B(p) NZ" is M-convez.

Proposition 1.5. [4, Proposition 4.1] For an M-convez set B we have z(V') = y(V) for
any ¢,y € B.

2. M-CONVEXITY OF M, (v) NZ"
In this section we investigate the M-convexity of M (v) NZ" for every a € {m, gw, gs}.

Definition 2.1. For a vector v € R”, the set of integral vectors in M, (v) is denoted by
M. (v). In fact M2 (v) = Mg(v) N Z"

Here we give a necessary and sufficient condition for M-convexity of M,,(v). Let V =
{1,2,..n} and v € R". Define the set function p, : P(v) — R by p,(s) = Z‘js:'lv[j] for
every ¢ # s CV and p,(¢) = 0.

Theorem 2.2. [3, Theorem 1] Let v € R". Then p, is submodular and My, (v) = B(py).
Therefore M,,(v) is a base polyhedron.

Corollary 2.3. [3, Corollary 2] If v is integral, then M? (v) is M-convez.

Now, we show that for every vector v € R”, M;s(v) is M-convex.
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Theorem 2.4. For a vector v € R”, Mgs(v) is M-convez.

Proof. Tt is clear that for every z,y € Més(v), i € supp™(z —y) and j € supp (z — y)
we have tr(z — e; + e;) = tr(z) — tr(e;) + tr(e;) = tr(r) =1+ 1 = tr(z) = tr(v). So
r—e +e € M;s(v), and similarly y +e; —e; € Més(v). Therefore Més(v) is M-convex.

El

The following result shows that when Méw(v) is M-convex.
Theorem 2.5. Let v € R". Then Méw(v) is M-convez if and only if v € span{e}.

Proof. Let v € span{e}. So My, (v) = {v}, and hence M;w(v) = {v} or ¢. Therefore
Méw(v) is M-convex.

Now suppose that v ¢ span{e}, therefore Méw(v) = 7Z". We can consider z,y € Z"
such that z(V) # y(V), so by Proposition 1.5, Méw(v) is not M-convex. O
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x-G-FRAMES IN HILBERT C*-MODULES

A. ALIJANI"* AND M.A. DEHGHAN?

ABSTRACT. Certain facts about frames and g—frames are extended for the new g-frames
in Hilbert C*-modules where they are called *-g-frames. It is shown that #-g-frames for
Hilbert C*-modules share several useful properties with g-frames for Hilbert C*-modules.
The *-g-frames are compared with g-frames by one example. The paper also studies the

important operator associated to a given %-g-frame.

1. INTRODUCTION AND PRELIMINARIES

Frames were first introduced in 1952 and their theory was generalized and various gener-
alizations consisting of vectors in Hilbert spaces and Hilbert C*-modules were developed.
In 2005, the notion of g-frames was introduced by Sun [5]and afterward, a new extention
of frames in Hilbert C*-modules, *-frames, were studied by Alijani and Dehghan [2]. In
the new extention, vector bounds are applied instead of real bounds. In this paper we
are going to introduce a collection of g-frames in a Hilbert A-module that have bounds
in the C*-algebra A. The theory of frames in a Hilbert C*-module are important beacuse
there are many differences between Hilbert C*-modules and Hilbert spaces. For example,
the Riesz representation theorem and orthogonal complement of subspaces do not ex-
tend to Hilbert C*-modules. This makes the study of the frames for Hilbert C*-modules
interesting.

The paper is organized as follows. We continue this section with a review of the basic

definitions and notations of Hilbert C*-modules, and frames. The concept of *-g-frames in
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Hilbert C*-modules is introduced in the Main results sectuion. In this section, nontrivial
example of such *-g-frames and corresponding operator associated with a given *-g-frame
are also presented.

Let us recall some definitions and basic properties of C*-algebras and Hilbert C*-
modules that we need in the rest of the parer.

Let A be a C*-algebra. A pre-Hilbert C*-module # is a Hilbert C*-module or, simply,
a Hilbert A-module if it is complete with respect to the norm ||f|| = ||{/f, f)H%4

The C*-algebra A itself can be recognized as a Hilbert .A-module with the inner product
(a,b) = ab*.

Let (H,(-,-)1) and (K, (-, -)2) be Hilbert .A-modules. A (not necessarily linear or bounded)
map T : H — K is said to be adjointable (with respect to the A-inner products (H, (-, -)1)
and (KC, (-, -)2)), if there exists a map T™* : K — H satisfying (T'f, g)o = (f,T*g)1 whenever
f € H,and g € K. The map T* is called the adjoint of T". The class of all adjointable
maps from #H into K is denoted by B.(H,K) and the class of all bounded .A-module maps
from H into K is denoted by By(H,K). It is known that B.(H,K) C By(H,K). We
write By(H) and By(H) for B.(H,H) and By(H,H), respectively. (We avoid the classical
notation B(H, K) which has different usage by operator theorists and frame theorists.)

Throughout the paper, we fix the notations A and J for a given unital C*-algebra and
a finite or countably infinite index set, respectively. Also, the Hilbert A-modules # and
Kj, for j € J, are assumed to be finitely or countably generated.

The remainder of the section introduces some extentions of frames in Hilbert spaces
and Hilbert C* modules.

A g-frame for a given separable Hilbert space H is a family of ordered pairs {(A;, K;) :
j € J} consisting of separable Hilbert spaces K; and bounded linear operators A; : H —
K satisfying

AIFIP < Y114 FI1P < BILFIP
JjeJ
for all f € H and some positive constants A, B independent of f [5] .

Before, the notion of frames for Hilbert spaces had been extended by Frank-Larson [3]
to the notion of frames for Hilbert A-modules as a family {f;};cs in a Hilbert .A-module
‘H satisfying

AT < BN 1Y < BUE f)
Jj€J
for all f € H and some positive constants A, B independent of f. Parallel to this, Khosravi-
Khosravi [4] extended the concept of g-frames from Hilbert spaces to Hilbert C*-modules.
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By a g-frame for a given Hilbert A-module # we mean a family of ordered pairs {(A;, ;) :
j € J} consisting of Hilbert A-modules K; and operators A; € B,(#, K;) satisfying

AU, ) <D (N A f) < B(F, f)
jeJ

for all f € H and some positive constants A, B independent of f.

2. MAIN RESULTS

Now, we are going to define a new version of g-frames in Hilbert C*-modules.

Definition 2.1. Let H and K; be Hilbert A-modules and A; € B.(#H,K;) for j € J. A
*-g-frame for H is a collection of ordered pairs {(A;, ;) : 7 € J} such that

(2.1) ACF AT <Y (A f, 0 ) < B(f, f)BY,

JjeJ
for all f € H and strictly nonzero elements A and B in A.

(Throughout the paper, series like (2.1) are assumed to be convergent in the norm
sense.)

The numbers A and B are called the lower and the upper *-g-frame bounds, respectively.

Remark 2.2. If {(Aj,K;) : j € J} is a xg-frame for the Hilbert A-module H with an
upper bound B, then {A;}c; is uniformly bounded by || Bl|.
The proof is similar to the one given for ordinary g-frames [1] and can be obtained by

using the properties of positive elements in C*-algebras.

We mentioned that the set of all of g-frames in Hilbert A-modules can be considered
as a subset of x-g-frames. To illustrate this, let {(A;,K;) : j € J} be a g-frame for the
Hilbert A-module H with g-frame real bounds A and B. Note that for f € H,

(VAL VA LA <Y (AiF, 05 ) < (VBILAlL, /) (VB)La.
JjeJ
Therefore, every g-frame for a Hilbert A-module H with real bounds A and B is a x-g-
frame for % with A-valued *-g-frame bounds (v/A)1 4 and (v/B)14.
To throw more light on the subject and understand the use of the concepts, we include
a example of nontrivial *-g-frame and we show that A-valued bounds are preferred to

real-valued bounds in some cases.
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Example 2.3. Let A = £*° and let H = Cy, the Hilbert A-module of the set of all null

sequences equipped with the A-inner product
((zi)ien, (Yi)ien) = (Ti¥i)ien-
The action of each sequence (a;) € A on a sequence (z;) € H is implemented as (a;)(x;) =
(aiz;). Let j € J =N and (a;)ien = (1 4 1)ien € €. Define A; € B,(H) by
Aj(mi)ien = (dijajzj)ien,  V(zi)ien € H.
We observe that
1
> (g Aje) = (L4 ) wiTien
JEN
1 1
= (L4 Dien(z, 2)(1 + Ziew, Vo = (zi)ien € H.
Thus {(A;,H)}jes is a tight *-g-frame with bounds (14 3);cn, (The element (1+ 1);en is

strictly nonzero in A4). But it is not a tight g-frame for Hilbert °°-module Cy. Note that,
{(Aj,H)}jer is a g-frame with optimal lower and upper real bounds 1 and 2, respectively.

Frame operator is an important notion in the theory of ordinary frames. The definition

of frame operator for *-g-frames is similar to the definition of g-frame operators.

Definition 2.4. Given a *-g-frame {(A;, K;)};cs in the Hilbert A-module H with bounds
(A, B), its corresponding *-g-frame operator is an operator S by Sf = ZjeJ ASA; f for
all f € H.

In this case, the x-g-frame operator has some properties similar to g-frame operator and

some others is not similar.

Theorem 2.5. Let {(Aj,Kj)}jer be a *-g-frame for H with x-g-frame operator S and
lower and upper x-g-frame bounds A and B, respectively. Then S is positive, invertible

and adjointable. Also,
AT < ISI < IBIP 5 f =) AjAS7'f,
JjeJ
are valid for f € H.

Proof. Since (Sf, f) = ZjeJ(Ajf, A;f), for f € H, and the set of positive elements of A
is closed, S is a positive element in C*-algebra B,(#) and S is also adjointable. We show

that S is invertible . For see this, we use an another operator. By positivity of .S, there
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is a positive element G in B,(H) such that S = G*G. Let {G f, }nen be a sequence in Rg
such that Gf, — g as n — oco. For n,m € N,

1A = fns fo = F) A*| S IKS(fa = fin), fo = Frud | = 1G (F = fin) 17

Since {G fy, }nen is a cauchy sequence in H, ||A{fn — fm, fn — fm)A*]| — 0 as n,m — oo.
Note that for n,m € N,

IKfn = fns fo = fdl| = IAT A fo = fms fr = frn) A*(A) 71|
<NATPNA S = fons fu = i) A"

Therefore the sequence {fy}nen is cauchy in H and hence there exists f € H such that
fn — f as n — o0o. Again by the definition of x-g-frames, the following inequality holds,

G (fa = DIZ < ABIPIKFn = fo fu = DI
Thus ||Gf, — Gf|| — 0 as n — oo implies that Gf = g. It concludes that R is closed.

By a like proof G is injective. Therefore G is injective, closed range and self-adjoint and
hence S is invertible. For the rest of the proof, we show the inequality. The definition of
*-g-frames implies that (f, f) < A7YSF, f)(A*)~" and (Sf, f) < B(f, f)B*, and then

IATHIZ2ICE A< ISE OIS IBIPIKE AN Ve A

If we take supremum on all f € H, where ||f|| < 1, then ||[A7!|72 < ||S|| < ||B||?. In the

end, for f € H, we obtain f =SS~ f = ZjeJ A;TA]-S*If. O
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UNITAL ENDOMORPHISMS OF CERTAIN NATURAL UNIFORM
SUBALGEBRAS OF THE EXTENDED DISK ALGEBRA

DAVOOD ALIMOHAMMADI"*, MALIHEH MAYGHANI? AND MARYAM IZADI®

ABSTRACT. Let Q be a domain in the complex plane such that Q@ C D and let K = Q,
where D is the open unit disk {z € C : |z| < 1}. We take A(D,K) = {f e C(D) : f|x €
A(K)}, where A(K) is the algebra of continuous complex-valued functions on K which
are analytic on int(K). It is known that A(D, K) is a natural uniform algebra on D.
In this note we study endomorphisms of certain natural uniform subalgebras of A(D, K)
and investigate necessary and sufficient conditions for which these endomorphisms to be

compact.

1. INTRODUCTION AND PRELIMINARIES

Let B be a unital commutative semi-simple Banach algebra with the maximal ideal
space M(B). If T is a unital endomorphism of B, then there exists a continuous map
¢ : M(B) = M(B) such that f\f = fogo for all f € B. In fact ¢ is equal to the adjoint
T* restricted to M(B) (see [3]). If B is a natural Banach function algebra on a compact
hausdorff space X, then every unital endomorphism T of B is continuous and has the
form T'f = foyp for some continuous self-map ¢ of X. If X is a compact plane set and
B contains the coordinate function Z, then obviously ¢ = T'Z and so ¢ € B. If B is a
natural uniform algebra on compact plane set X and T is a unital endomorphism of B,
then ||T'|| < 1.

2000 Mathematics Subject Classification. Primary 46J10; Secondary 46J15.
Key words and phrases. Analytic functions, Banach function algebras, Compact endomorphisms.

* Speaker.
33



34 D. ALIMOHMADI, M. MAYGHANI AND M. IZADI

Definition 1.1. Let K and X be compact plane set such that K C X. We take A(X,K) =
{feC(X): flgk € A(K)} , where A(K) is the algebra of all continuous complex-valued

function on K which are analytic on int(K).

It is known that A(X, K) is a natural uniform algebra on X.

H.Kamowitz in [2] showed that if T is a unital endomorphism of the disk algebra A(D), T
is compact if and only if T is induced by a self-map ¢ of D in A(ID) such that ¢ is constant or
l¢llg < 1. F.Behrouzi and H.Mahyar in [1] studied endomorphisms of certain subalgebras
of A(D) and investigated necessary and sufficient for which these endomorphisms to be
compact.

In this note we study endomorphisms of certain subalgebra of A(D, K), where K = Q
and € is a domain which is contained in open unit disk ID. Also, we investigate necessary
and sufficient conditions for which these endomorphisms to be compact. Our results are

generalized of some results were given in [1] and [2].

2. MAIN RESULTS

We first give a sufficient condition for which a self-map ¢ of D induces an endomorphism

of a subalgebra B of A(D, K) which is a natural Banach function algebra on D.

Proposition 2.1. Let Q) be a domain in the complex plane which is contained in D and
let K =Q. Let B be a subalgebra of A(D, K) which is a natural Banach function algebra
on D under a norm. If ¢ € B and (D) C Q, then ¢ induces an endomorphism of B.

Proposition 2.2. Let K = {z € C: |z| < r}, where 0 < r < 1. Then there exists a

self-map @ of D with ¢ € A(D,K) such that ¢ does not induce any endomorphism of
AD, K).

We now give a sufficient condition for which a unital endomorphism of a uniform sub-
algebra, B of A(D, K) be compact.

Theorem 2.3. Let Q) be a domain in the complex plane which is contained in D and let
K = Q. Let B be a natural uniform subalgebra of A(D,K). If ¢ € B such that ¢ is

constant or (D) C Q, then ¢ induces a unital compact endomorphism of B.

In the following result we give a necessary condition for which a unital endomorphism
T of a uniform subalgebra B of A(D, K) be compact.

Theorem 2.4. Let Q) be a domain in the complex plane which is contained in D and let
K = Q. Let B be a natural uniform subalgebra of A(D,K) such that Z™ € B for some
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positive integer m. If T is a unital compact endomorphism of B, then T is induced by a
self-map ¢ of D such that ¢ is constant on K or o(K) C D.

We now show that if K = {z € C: |z] <r} where 0 < r <1 and ¢ = T'Z is one-to-one
on int(K), it must be ¢(K) C int(K). For giving this result we need the following lemma.

Lemma 2.5. Let §2 be a domain in the complex plane and let ¢ be an one-to-one analytic
complez-valued function on Q. If f is a continuous complez-valued function on p(2) such

that foy is a analytic function on Q, then f is an analytic function on p(2).

Theorem 2.6. Let K = {z € C: |z| < r}, where 0 < r < 1. Suppose that T is a unital
endomorphism of A(D,K) and ¢ =TZ. If T is compact and ¢ is one-to-one on int(K),
then p(K) C int(K).
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A NUMERICAL TECHNIQUE FOR SOLVING POPULATION
BALANCE INTEGRO-DIFFERENTIAL EQUATION

AMJAD ALIPANAH !

ABSTRACT. In this paper, triangular orthogonal functions (TF’s) method is applied as
a basis in collocation method, to solve the population balance integro-differential equa-
tion, which arise in the description of particle-size distribution of a continuous, mixed-
suspension, mixed product removal crystallizer with taking account of the effect of par-
ticle breakage. To demonstrate the validity of this method obtained results have been

compared with other methods.

1. INTRODUCTION AND PRELIMINARIES

Population balance equations are rather complicated, so they are often analyzed in
terms of the moments of the number density function. The method of weighted residual [3],
Vorobyev’s method, Adams-Moultion-Shell method, Block pulse method, Shifted Legender
[1] method and Wavelet- Galerkin [2] method have been used to approximate the solution
of population balance equations. In this paper, the method of triangular orthogonal
functions (TF’s) [4, 5, 6] is used to solve the population balance equation described which
arise in the description of particle-size distribution of a continuous, mixed-suspension,

mixed product removal crystallizer with taking account of the effect of particle breakage.
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2. ORTHOGONAL TRIANGULAR FUNCTIONS

A set of triangular functions (TF’s) [4, 5, 6], ¥,,(¢) containing m functions on the

semi-open interval [0,7T) is given by
W, (t) = T1(t) + T2(t),

where

TA(1) = [TLo(), 70 (1), TL(), - Tl (1]

T
(2.1) T2(1) = [T20(8), T2 (1), T2(t), -, T2 (1)]
The ith component of the vector T1(¢) is defined as

15 i <t < (i + 1)h,

(2.2) T1;(t) =
0, otherwise

and the ith component of the vector T2(t) is defined as

(tih) i <t < (i +1)h
(23) TQZ(t): s > (Z ) )

0, otherwise

where i = 0,1,2,--- ,(m —1) and h = L,

m

We note that the elements T'1,(¢) and T2;(¢), i =0,1,---,(m—1) are mutually disjoint,

thereby condition of orthogonality for TF’s is given as

h h

T T
/ Tli(t)le(t)dt = §5i’j’ / T2Z’(t)T2j (t)dt = gém,
0 0

where d; ; is the Kronecker delta. In general, a function f € L?[0,T) may be expanded

into m—term TF’s series as

F(t) = [ao,al,--- aq, - ,am_l}Tlm(t) n [bo,bl,--- by ,bm_l]T2m(t)

(2.4) = ATT1,,(t) + BTT2,,(t)
where, the components of vectors A and B are given as follows

(2.5) a; = f(ih), bi=f(G+1h), i=0,1,---,(m—1).
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3. THE POPULATION BALANCE DIFFERENTIAL EQUATIONS

In this Section, we discuss on the solution of population balance integro-differential
equation by TF’s. A continuous mixed suspension, mixed product removal crystallizer op-
erating at steady state can be described by a stretched differential and integro-differential
equations.

For the binary uniform breakage model

dy(7) T T T

1
(3.1) ——+ (1+K79)y(1) = /{/0 [(g)qy(g) + (9_ 1)qy(9— 1)}do, 0<T7<hb

In the above equation, y and 7 are the dimensionless number density function and the

dimensionless crystal size, and k and g are empirical constants. Also b is the dimensionless

maximum crystal size within the crystallizer. The initial condition of y(7) is,

(3.2) y(0) = 1.

Equation (3.1) is normalized by changing the independent variable 7 = bt to the following

equations:
1dy(t o0
(3.3) E% + (1 + wb?t?)y(t) — 2f<.‘,bqt/ 2172y (2)dz = 0.
t

Note that Eq. (3.3) is a linear integro-differential equation.

3.1. Numerical Results. Since there is no exact solution for Eq. (3.3), the method of
TR’s is compared with The method of weighted residual [3], Shifted Legender technique
[1] and Wavelet-Galerkin method [2]. We solve Eq. (3.3) for k = %2, b=6.1 and ¢ = 4.
Also numerical results for m = 256 and 512 are given in Table 1.

All computations in this section have been performed by Maple 7 with 32-digit arithmetic.

Table 1: Numerical results of Eq. (3.1) by triangular functions for k = % and b =6.1.

t m = 256 m = 0512 SLMI1] WGM]2] MW
0.0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000C
0.2 0.8191159 0.8191039 0.81909 — 0.8191
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0.25 0.7793877 0.7793724 —_— 0.751078 —
0.5 0.6086274 0.6085970 0.6085871 0.589568 0.6085
1.0 0.3743327 0.3742944 0.3742819 0.360626 0.3743
1.5 0.2332566 0.2332201 0.2332079 0.220917 0.2332
2.0 0.1461565 0.1461256 0.1461153 0.133500 0.1461
2.5 0.897779x10~! 0.897556x 10! 0.897477x10! 0.77125%x 107! 0.8972
3.0 0.514459%x 101 0.514299%x 101 0.514245%x 101 0.402498 x 101 0.5141
3.5 0.254505%x 101 0.254416x 101 0.254385%x 101 0.172186x 101 0.2545
4.0 0.976645x 1072 0.976216x10~2 0.507987x 1072 0.507987x 1072 0.9701
4.5 0.253146x 102 0.252934x 102 0.252858x 1072 0.665560x 1072 0.2529
5.0 0.372999x 1073 0.372073x1073 0.371718x1073 0.739025x10* 0.3700
5.5 0.253467x10~* 0.251331x10~* 0.462496x10~* 0.224699x10~* 0.4565
6.0 0.6216x 106 0.6039%x 106 0.576900x 106 0.495014x106 0.5746
REFERENCES

. R.Y CHANG AND M.L. WANG, Shifted Legendre function approzimation of differential equations; Ap-
plication to crystalization Processes, J. Chem. Engng, 8 (1984), 117-125.

. MING-QUAYER CHEN, CHYI HWANG AND YEN-PINO SHIH,A Wavelet-Galerkin method for solving
population balance equations, Computers Chem. Engng, 20(2) (1996), 131-145.

. P.N. Singh and D. Ramkrishna, Solution of population balance equations by WRM, Comput. Chem.
Engng, 1 (1977), 23-31.

. A.DEB, G. SARKAR AND A. SENGUPTA, Triangular orthogonal functions for the analysis of continuous
time systems, Elsevier, New Delhi, 2007.

. E. BABOLIAN, Z. MASOURI, S. HATAMZADEH- VARMAZYARB, Numerical solution of nonlinear Volterra-
Fredholm integro-differential equations via direct method using triangular functions, Computers and
Mathematics with Applications, 58 (2009) 239-247.

. A. DEB, A. DASGUPTA, G. SARKAR, A new set of orthogonal functions and its application to the
analysis of dynamic systems, Journal of the Franklin Institute, 343 (2006) 1-26.

! DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, UNIVERSITY OF KURDISTAN, PASDARAN

STR., P. O. Box 416, SANANDAJ, IRAN.

E-mail address: A.AlipanahQuok.ac.ir



V' Extended Abstract of 6'" Seminar on

Linear Algebra and its Applications, -
o I S YT slaala 294 404
A”'“ 18-19 Khordad 1390, 8-9 June 2011, — S TR ST
rak ummgnbra_&lrsw

University Arak University, Arak, Iran

NUMERICAL SOLUTION OF NONLINEAR TIME VARYING
SYSTEMS

H. ALMASIEH"

ABSTRACT. A numerical method based on orthogonal triangular functions (T'F)s is pro-
posed to approximate the solution of nonlinear time-varying systems. The proposed
method is considered the expansion of the nonlinear optimal trajectory and optimal con-
trol in the system, using (T'F')s. These (T'F)s together with the operational matrices of
integration and product are presented and applied to reduce the solution of nonlinear

time-varying systems to the solution of algebraic equations.

1. INTRODUCTION

Time-varying systems are a very important class of systems whose control and opti-
mization have been of interest to many investigators. Orthogonal functions have received
considerable attention in dealing with various problems of dynamic systems. The solution
of time-varying delay systems have been considered by hybrid functions in [1]. Deb et al
in [2] have applied (T'F)s to analysis of dynamic systems. Optimal control of time-varying
systems has been presented in [3]. Also a collocation type method for linear quadratic opti-
mal control problems has been considered in [4]. In this paper, We review some properties

of TFs. Then we will employ T'F's to solve the nonlinear time-varying systems.

2. REVIEW OF TRIANGULAR FUNCTIONS (T'F)s
Definition 2.1. Let () be the ith component of an m—set of BPF's, we introduce
(2.1) Pi(t) = T1i(t) + T2(1),

2000 Mathematics Subject Classification. 37N35 ; 93C10.
Key words and phrases. Nonlinear Functions, Time-varying Systems, Triangular Functions.
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NONLINEAR TIME VARYING SYSTEMS 41

where T'1;(t) and T2;(t) are the ith components of two m-sets of triangular functions
(T'F)s over the interval [0,T") as the following form

—ih) . .
22) L) = 1— &) ih <t < (i 4 1)h,
. ' 0, otherwise,
—ih . .
23) rop = | S i St< Dk,
' 0, otherwise,

where i =0,1,2,...,(m — 1),[2].

2.1. Function Approximation by TFs. Assume f(t) be an £2[0,T) function, the ex-

pansion of f™(¢) in terms of TF's can be defined as follows

m—1

Lfi"T1(t) + fi41T2(t)]
0

1

f(#)

1=

(2.4) = 1) + P T2(t), no> 1,
where, the constant coefficients are the samples of function as
(2.5) fi = f(ih),

where 1 = 0,1, ..., m.
For each function f(t,s) € £2([0,T) x [0,T)), we can rewrite the TF expansion as

f(t,s) = T1T (&) F''T1(s) + T17 (t) F>T2(s)

(2.6) +T27 (1) F*' T1(s) + T2 (1) F*T2(s),

where F'1, F12_ F2! and F?? are m x m matrices and can be obtained easily as follows:

(F')i; = f(h,jh),

(F')i; = f(ih,(j + 1)h),

(F*Y)i; = f((G+1)h, jh),
(2.7) (F?)i; = f((i+1Dh,(j +1)h),

where 7,7 =0,1,....m — 1, [5].
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2.2. Multiplication of TFs. It is obviously that
T1(t)T27(t) ~ 0,

and
T2(t)T17 () ~ 0.

Also we know that

/T T1(t)T17 (t)dt = /T T2(t)T27 (t)dt = ﬁI,
0 0 3

(2.8) /OT T1(t)T27 (t)dt = /OT T2(t)T17 (t)dt = %I,

where T is m x m identity matrix, [3].

Also, if A be an m X m matrix, we have

T17(t)AT1(t) ~ ATT1(t),

(2.9) T2T (1) AT2(t) ~ ATT2(t),

where A is an m—vector such that its elements are equivalent with the diagonal elements
of A, [2].

2.3. Operational Matrices of Integration. The operational matrices for integration
have given by Deb in [2]

(2.10) /Tl(T)dT:/ T2(7)dT = PyT1(s) + P,T2(s),
0 0
where
0 1 1 1 11 1
0 0 1 01 1 1
h h
(2.11) P1:§ 0 00 1 ,P2:§ 0 01 1
0 00 0 000 --- 1

Now we expand the numerical solution of nonlinear time-varying by orthogonal triangular

functions.
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3. PROBLEM STATEMENT

Nonlinear time varying dynamic systems are characterized in general by

(3'1) (L‘(t) = f(tvsax(s)vu(s))v (L‘(O) = 2o,

where z(t) € IR™ is a state vector and the vector function u(t) € IR™ is the control

function. Eq.(3.1) can be written as

t
(3.2) z(t) = zo(t) +/ f(t,s,2(s),u(s))ds.

0
Suppose the kernel in Eq.(3.2) may be written in a nonlinear case as follows
(3.3) f(t,s,1(5),u(s)) = g(t, 5)[x(s)]” + h(t, 5)[u(s))?, p,qg =1,

by using Eqgs.(2.4) and (2.6), the Eq.(3.3) can be expanded as
g(t,s)[z(s)]P + h(t,s)[u(s)]? ~ T1T ()0 T1(s) + T17(£)QT2(s)
(3.4) + T2T (1) T1(s) + T2 (1) T2(s),
where
O =G11X'"? + H11U',
Oy = G12X?%P + H120%,
O3 = G21X'P + H21U'',
(3.5) Q4 = G22X? 4+ H22U%,

and X'? and X are diagonal matrices with the elements as {z; ymotand {zPYm '
and U% are diagonal matrices with the elements as {u;9}™5" and {u;7}™,, respectively,
which are defined in Eq.(2.5).

Now, by using Eqs.(2.9) and (2.10), we expand Eq.(3.2) in terms of T'F's as the following

(3.6) X1 TT1(t) + XoTT2(t) = XoT T1(t) + Xol T2(t) + w1 T T1(t) + wy ! T2(t),
where
@ =P (O] +07),
Equating the like coefficients of T1(¢) and T2(¢) in Eq.(3.6), we obtain a new equation as
the following
AMY(X1,0h) = X1 —w —Xo=0,
(38) Ag*(Xl, Ul) == X2 — W2 — XU =0.
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There exists a system of linear algebraic equations which can be solved for the coefficients
{z;?}%, and {u;7}]2, in Eq.(3.8).

4. CONCLUSION

A numerical method based on TF's is developed to obtain the solution of nonlinear

time-varying systems. The main objectives of this paper are as follows:

(i) We used TFs to reduce the solution of nonlinear time-varying systems to the
solution of algebraic equations without using any projection method.
(ii) These T'F's evolved from a simple dissection of BPF's and they yield a piecewise
linear solution of nonlinear time-varying systems with less computational errors.
(iii) The constant coefficients in the expansion of T'F's are the samples of function and

unlike other bases, we do not require any integration.
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THE APPLICATION OF CYCLIC MATRICES IN GENERAL LINEAR
GROUPS

AZIZOLLAH AZAD

ABSTRACT. Let F be a finite field of size ¢ = p™, where p is prime number. The general
linear group GL(n,q) is the group of invertible n x n matrices with entries in F' under
matrix multiplication. A matrix g in GL(n, q) is called a cyclic matrix if its characteristic
polynomial is equal to its minimal polynomial. This work we tries to determined elements
of GL(n, q) which are cyclic. Moreover, we show that every cyclic matrix in general linear

group has abelian centralizer.

1. INTRODUCTION AND PRELIMINARIES

Let G = GL(n,q) general linear group. We call a subset N of G a set of pairwise
non-commuting elements if XY # Y X for any distinct elements X,Y in N. If |[N| > |M|
for any other subset of pairwise non-commuting elements M in G, then N is said to be
a maximal subset of pairwise non-commuting elements. In a finite general linear group
GL(n, q) the class of cyclic matrices plays an important role both algorithmically (see [4]),
and in representation theory (for the recognition of irreducible representations). This
paper uncovers a new role in which cyclic matrices help to determine the maximum size

of a set of pairwise non-commuting elements of GL(n,q).

2. MAIN RESULTS

In this section we introduce Singer generators and he following is an example of a

definition.

2000 Mathematics Subject Classification. Primary 20D60; Secondary 00X00, 00X00.
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Definition 2.1. An element A € GL(n, q) is cyclic if its characteristic polynomial is equal

to its minimal polynomial.

Example 2.2. Let J(f) denote the companion matrix for the polynomial f

0 1 0 --- O
o o0 1 --- 0
J(f) =
O o0 0 --- 1
a;  as e ay
and let
J(f) 1o 0 0
0  J(f) I
Im(f) = '
: J(f) I
0 - 0 I

with m diagonal blocks J(f). By construction the characteristic polynomial of the block
matrix J,,(f) equals f™. Also, [2, Example 1, page 140] shows that f™ is the minimum
polynomial of J,,,(f). Therefore J,,(f) is a cyclic matrix.

If A is a cyclic matrix, then (see [3, Theorem 2.1(3)]) the centralizer of A, Cqr(n q)(A)
is abelian and we have |Cqrn,q)(4)| < ¢".

Definition 2.3. Let V be the n-dimensional vector space k™ over the field k of size q.
Let A, (q) be the set of abelian subgroups A of GL(n,q) such that the A-module V has
a decomposition V; @ --- ® V, into indecomposable A-modules satisfying the following
properties:

1- A=Ay x--- x A;, where A; C GL(V;);

2-for i = 1,...,r, we have A; = Cgr(v;)(a;), for some element a; € GL(V;) such that V;

is an indecomposable (a;)-module.

Theorem 2.4. Let G = GL(n,q). There exist matrices X and Y in G such that
[Ca(X)| = (¢ —=1)" and |Ca(Y)| = ¢" — 1.

Theorem 2.5. Let A € GL(n,q) be a cyclic matriz. Then (g —1)" <|Cq(A)| =4q¢" — 1.

Theorem 2.6. Let A € GL(n,q). Then the following equivalent:
(a): A is cyclic;
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(b): Each n x n matriz B over F, such that A x B = B x A is of the form' Y =
E;L;OlaiAi;
(c): Cg(A) is abelian.
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TWO MINIMAL RESIDUAL METHODS FOR LINEAR POLYNOMIALS
IN UNITARY MATRICES

MANSOUR DANA

ABSTRACT. Two minimal residual methods for solving linear systems of the form (aU +
BI)x = b where U is a unitary matrix, are compared numerically. The first method uses
conventional Krylov subspaces, while the second involves generalized Krylov subspaces.
Experiments favor the second method if || > |3|. Moreover, the greater the ratio ||/|3],

the higher the superiority of the second method.

1. INTRODUCTION AND PRELIMINARIES

In [1], the authors proposed the minimal residual method, called MINRES-N, for solving
linear systems with normal coefficient matrices whose spectra are located on algebraic
curves of a low order k. Unlike the well-known GMRES algorithm based on conventional
Krylov subspaces, MINRES-N applies the minimum residual principle to the so-called

generalized Krylov subspaces. For the system oflinear equations
(1.1) Az =1b

with a normal n-by-n matrix A, the generalized Krylov subspaces are spans of the initial

segments of the generalized power sequence

(1.2) b, Ab, A*b, A%b, AA*D, A*'b, A®D, . ..

2000 Mathematics Subject Classification. Primary 15A18; Secondary 15A21.
Key words and phrases. Krylov subspace methods, minimal residual methods, normal matrices, unitary
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MINRES-N specialized for the case k = 2 is called MINRES-N2. This case was examined
in close detail in [1]. A more precise description of the matrix class for which MINRES-N2

was designed is as follows: these are normal matrices satisfying an equation of the form
(13) 011A2 + 2c19AA* + CQQAA*2 + 2¢10A + 2¢19A + 2¢00 A" + oo, = 0,

where at least one of the coefficients ¢q1, ¢12, and cg9 is nonzero. The computer implemen-
tation of MIN RESN2 is different for the cases

|lein] + [ea2| # 0
and
(15) Cl1 = C29 = 0

The former case was considered in [1], and the latter was examined in [2]. In particular,
equations of form (1.3) with additional conditions (1.5) hold for unitary matrices and
for linear polynomials in such matrices. The numerical comparison of MINRES-N2 and
GMRES conducted in [2] revealed the considerable superiority of our method. This result
was expected a priori. Indeed, the arithmetic work performed at a step of MINRES-N2
is O(n) and is independent of the index m of this step; by contrast, in GMRES, the
arithmetic work per step is O(mn). It would be more fair to compare MINRES-N2 with
a minimal residual method that works in conventional Krylov subspaces but is specially
designed for matrices of the form A = aU + BI, where U is a unitary matrix. Indeed,
such a method exists (see [3]) and has given rise to a renewed discussion of matrix classes
for which methods governed by recursions of fixed length (independent of the order n)
can be constructed. For brevity, methods possessing this property are called economical.
We use the method proposed in [3] (the JR method) as a good example for recalling the
history of economical methods (see Section 2). The JR method is described in Section
3. The computational scheme of MINRES-N2 is briefly recalled in Section 4. In the
concluding section, Section 5, we present the results of a numerical comparison between

the JR method and MINRES-N2.

2. MAIN RESULTS

Definition 2.1. Let A be a given n-by-n matrix. We fix a vector = and consider the

power sequence
(2.1) z, Az, A%z,... A™g.

The span of vectors (2.1) is called the mth Krylov subspace generated by A and z.
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Definition 2.2. Tt is well known that a matrix A € Mn(C) is normal if and only if the

Hermitian adjoint A* can be represented as a polynomial in A:
(2.2) A" =p(4)
We say that A is an s-normal matrix if relation (2.2) holds for a polynomial p of degree s.

Theorem 2.3. Let A € M,(C), where n > s+ 2. Then, A belongs to the class CG(s) if
and only if either A is an s-normal matriz or the degree d(A) of its minimal polynomial

does not exceed s + 2.

Theorem 2.4. Let A be an s-normal matriz. Then,

(1) if s > 1, then A has at most s distinct eigenvalues;
(2) if s =1, then A has the form

(2.3) A = aH + B,
where H is Hermitian and « are complex scalars.

Definition 2.5. A normal matrix A is said to be (I, k)-normal if there exist polynomials

pi(2) and qx(Z) of degrees [ and k, respectively, such that
(2.4) A%qr(A) = pi(A).

Theorem 2.6. Let A be an (I, k)-normal matriz. Assume that | and k are minimal
integers for which relation (2.4) holds. Then,
(1) if T > k+1, then d(A) < I?;
(2) ifl=k+1, then d(A) <I? orl =1,k =0;
(3) if 1 < k and the constant term By of qi(Z) is nonzero, then d(A) < k? +1;
(4) ifl <k —1 and By =0, then d(A) < k?;
(5) ifl=k—1 and Bo =0, then d(A) < k% or 1 =0,k = 1;
(6) if l=F, thend(A) <k’+1orl=Fk=1.
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A WEIGHTED DRAZIN INVERSE AND APPLICATIONS

MANSOUR. DANA ! | PARISA. PIRIAEI 2* AND NEDA. HEIDARIAN 3~

ABSTRACT. In this paper the notation of the ClineGreville W-weighted Drazin inverse
of a rectangular matrix is extended to bounded linear operators between Banach spaces.
We give new characterizations of the W-weighted Drazin inverse, and we study the

perturbations and the the continuity of the W-weighted Drazin inverse.

1. INTRODUCTION AND PRELIMINARIES

The main theme of this paper can be described as a study of a weighted Drazin inverse
for bounded linear operators between Banach spaces. This inverse is an extension of the
ClineGreville [1] W-weighted Drazin inverse of a rectangular matrix.

Fix W € B(X,Y). For A,B € B(X,Y), define the W-product of A and B by
Ax B = AWB. Also, for A € B(X,Y), denote the W-product of A with itself m
times by A*". Let A,B € B(X,Y),W € B(X,Y) and let A be W-Drazin invertible.
Then AW and W A are Drazin invertible, and set k1 = i(AW) and ky = i(W A). Hence
X = N(WA)k)@P R(WA)2) and Y = N((AW)*) @ R((AW)*1). Let us consider the
equation WAWx = b, b € R((W A)*?) given.with 2 € Y to be found. Let us remark that
R(Aqyw) = R((AW)*) = R((AW)a), R((W A)%2) = R((W A),), and that & € R((AW)*),
namely x = Ay b satisfies .We study the sensitivity of the solution z to variation in the
data b and A, provided that b € R((WA)*?) and = € R(Agw)).

2000 Mathematics Subject Classification. Primary 47A05 Secondary 47A53, 15A09.
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2. MAIN RESULTS

Definition 2.1. Let us recall that if S is an algebraic semigroup (or associative ring),
then an element a € S is said to have a Drazin inverse, or @ is Drazin invertible [2] if there
exists z € S such that

o™ =a™ e for some non — negative integer m, (1.1)

r=az® and ar = za. (1.2)

If @ has a Drazin inverse, then the smallest non-negative integer m in (1.1) above is
called the (Drazin) index i(a) of a. It is well known that there is at most one z such that
Egs (1.1) and (1.2) hold. The unique z is denoted by a4 and called the Drazin inverse of

a.

Example 2.2. Let A be the Banach algebra of all complex-valued functions continuous
on the set [0,1]|J[2, 3] equipped with supremun norm Define a by a(t) = 0 if t € [0,1]
,a(t) =tif t € [2,3] ,n=1,2,.... Then a is Drazin invers with a, defines by a,4(t) =
0if t€[0,1],aq(t)=1if t€[2,3].

Theorem 2.3. Theorem (1.1): Let X and Y be Banach spaces, A € B(X,Y), and W €
B(X,Y). Then the following conditions are equivalent:
(i) A is W-Drazin invertible, that is the equations:
(i.1) (AW)EFLXW = (AW)* for some non-negative integer k,
(i.2) XWAWX = X,
(i.3) AWX = XW A
have a solution X € B(X,Y).
(i) AW is Drazin inverible,
(13i) W A is Drazin invertible,
(iv) asc(AW) = p < oo , R((AW)P*) is closed for some k < 1, and des(WA) < oo .
(v) asc(WA) = q < oo, R((W A)ITL) is closed for some L < 1, and des(AW) < oo .
If any of the five conditions is satisfied, then the above three Egqs. (i.1).(i.3) have a
unique solution, and X = AP = Agw = AW A)2 = (AW)2A .

Theorem 2.4. Let A € B(X,Y),W € B(X,Y), and let A be W-Drazin invertible with
k = maxi(AW),i(WA). Then Agw= A~ (AW)kA, where A = (AW)k+2|R[(Aw)k] is the
restriction of (AW)*+2 to R[(AW)F].
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Theorem 2.5. Let a € A be Drazin invertible, and let b € A obey the condition (W) at a.
Then b is Drazin invertible, bb” = aa”, bP = (1 +a” (b —a))~ta? = aP (1 + (b—a)a?)™!
and i(a) = i(b).

Theorem 2.6. Let A,B € B(X,Y),W € B(X,Y), let A be W-Drazin invertible and

let B obey the condition (W) at A. Then B is W-Drazin invertible, (BW)(BgwW) =
(AW)(AqwW), i(BW) = i(AW), BA,W = (I+AqwWEW) YAgw = Agw (I+WEW Ad, W)~ 1,
R(Baw) = R(Aqw) and N(Baw) = N(Aqw).

Remark 2.7. 1. If A € B(X,Y) is a finite-rank operator, then AW is a finite-rank operator.
Thus, AW is Drazin invertible, and A is W-Drazin invertible for each W € B(X,Y).
Furthermore, if W € B(Y, X) is a finite-rank operator, then each A € B(X,Y) is W-
Drazin invertible.

2. Let H,K be complex Hilbert spaces. If A € B(H, K) has closed range, then there
exists a unique operator AT € B (K, H) called the Moore.Penrose pseudo inverse of A
which satisfies the following properties: AATA = A, ATAAT = Af, (AAT)* = AAT and
(ATA)* = ATA. Tt is well known that AT = A*(AA4*)f = (4*A)T A*. Furthermore, because
A*A and AA* are self-adjoint operators we obtain (A*A)t = (4*A)g and (AA*)T = (AA*),,
that is AT = A*(AA*)g = (A*A) A" .

Thus, we obtainA" = A*(Ag4 4+ A*), and the A*-weighted Drazin inverse of A exists if
and only if R(A) is closed, that is if and only if A has a Moore.Penrose pseudoinverse. In
this case Aga- = A(A*A)12 = A(A*A)*.

Theorem 2.8. Let A € B(X,Y) Z,W € B(Y,X), let A be W-Drazin invertible and let
b,c € R(WA)*2). If x,y € R(Aqw) satisfy WAWz =b and WAWy = c, then

llc = bl
< kgw(A)
[16]]

Theorem 2.9. Let A,B € B(X,Y), W € B(X,Y), let A be W-Drazin invertible and
let B obey the condition (W) at A. and let b € R(WA)*?). If z,y € R(Aqw) satisfy
WAWz =b and WBWy = b, then
ly ==l _ (4) [Aa,wW (B - AW|
T~ A W (B — AW

— El

]

Theorem 2.10. Let A,B € B(X,Y), W € B(X,Y), let A be W-Drazin invertible and
let B obey the condition (W) at A and let b,c € R(WA)*?). If z,y € R(Aqw) satisfy
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WAWz =b and WBWy = ¢, then

ly — || _ [ Ad,w |
[zl = 1= [AawW (B - A)W||

X (| Ag,wW (B = A)W[[|b]] + [lc = bl])
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GENERALIZATIONS OF BOHR INEQUALITY FOR OPERATORS

BAHRAM DASTORIAN!

ABSTRACT. This paper is focused on the operator inequalities of the Bohr type. a num-
ber of generalizations of Bohr inequality for operators in B(H) are established. Moreover,
Bohr inequalities are extended to multiple operators and some related inequalities are
obtained. show some related operator inequalities by means of operator matrices, and
finally we will present a generalization of the operator Bohr inequality for multiple op-

erators.

1. INTRODUCTION AND PRELIMINARIES

Let S(H) be the space of all bounded linear operators on a complex separable Hilbert
space H. This paper is focused on inequalities of Bohr type. The classical Bohr inequality
[1] asserts that

ja + 0 < |al* + 6]

for complex numbers a, b and real numbers p,q > 1 such that 1/p + 1/q = 1. Denote by
|A| the absolute value operator (or modulus) of A € B(H): |A| = (A*A)'/2, where A* is
the adjoint operator of A. We write A > 0 if A is a positive operator, meaning (Az, z) > 0
for all z € H, and A > B if A and B are self-adjoint operators and if A — B > 0.For an
n x n complex Hermitian (self-adjoint) matrix A, A > 0 means that A is a positive matrix,
i.e., (Az,z) = x* Az is nonnegative for all x € C". This notion is analogous to the notion

of positive operator. A < 0 represents that —A is positive. The condition a,y > 0 and

Key words and phrases. Bohr inequality, Hilbert space operator,
Matrix inequality, Operator absolute value .
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a7y > 2 can be recognized as positive definiteness of the matrix

e

Similarly, the condition o,y < 0 and ary > 32 is equivalent to positive definiteness of the

matrix —X. we present inequalities through operator matrices. First observe
|A|? A*B I
A+BP=(1 1 ()
| | ( ) < B*A |B|? I
Thus, we can associate each absolute value square of the sum of two operators with a 2 x 2

block operator matrix. Writing in symbols, we have

|A]2 A*B )

A+ B> —
| | <B*A |B|?

And this map is addition-preservative. Furthermore, if for A, B,C, D € (H),
|A|? A*B < IC|> C*D
B*A |B)? | — \ D*C |DJ?

|A+ B> <|C+ DJ?

then

This suggests that one may convert a problem of absolute value operators to a problem of
2 x 2 operator matrices. On many circumstances the later approach is more transparent

and easy to handle. Consider, for instance, the inequality

laA + BB|* < z|A* +y|B?, o, BER, 7,y >0

Since
A + BBJ? —> oA apA*B
afB*A  (?|B|?
and
A2 0
z|AP? + y|B|? — z|] )
0 y|B|
thus if

o?|A]? apA*B < z|A? 0
aBB*A  BB|? |~ 0 y|B?
then the above inequality holds. This leads to the condition for above inequality to hold:

(z—a®)(y — B?) > o’
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First of all, we recall Bohr inequality for Hilbert space operators.

Theorem 1.1. (Bohr inequality). (See [2].) Let A,B € B(H) and p,q > 1 real numbers
such that 1/p +1/q = 1. Then

|A+ B|? < p|A]* + ¢|B?

Proof. Notice that

|A+ B|? — AP A°B
B*A |B|?
and
plAPP 0
plA|* + ¢|B)* —
0 ¢|BJ?
Then must

AR 4B\ _ ( pla? 0
BA B )T\ 0 gBP

This leads to the condition
pml =15,
-1 q¢g-—-1 -

that is,

Then the inequality holds by hypothesis. O
Theorem 1.2. For A, B € B(H) and p,q,s > 0 such that 1/p+1/q =1/s,
s|A+ B’ < plA® +q|BP?

Proof. We must have

that is,

p—s>0,qg-5>0,(p—s)(g—s)>s
Then the inequality holds by hypothesis. O
Theorem 1.3. For A, B € B(H) and s,t € R, p,q > 0 such that s> /p+12/q =1,

|sA+tB|? < p|A|* + ¢|B?
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2
- - t
p—Ss s S
—st  q—t?

p—5>>0, ¢—12>0,(p— s (qg—t?) > (st)?

Proof. We must have

that is,

Then the inequality holds by hypothesis. D

2. BOHR INEQUALITY FOR MULTIPLE OPERATORS

Next we consider operator inequality in more general form. We would like to compare
1 |as A + B;B|? with p|A|? + q| B|?
Theorem 2.1. Let A,B € B(H) and oy, Bi,p,q ER fori=1,2,...,n. Set
¥ = EZT'L:IC“ZZ —p, Q= 2?:151'2 —qand © =5 05 f3;.
The inequality
Sl A+ BiB[* < plA® + | B
holds if ¥ < 0,92 <0 and ¥Q > 62,

Proof. Expanding ¥, |a; A + 3;B|?, we get
1 oA+ Bi B2 — plA]? — q|B]? = |1 A+ B1B)? + |ae A+ BoB|* + ... + |an A + B, BJ?

R a?|A? a1/ A*B - a?|A? auB,A*B p|A|? 0
o f1B*A  (%|B|? B A BB 0 ¢|B]?
Then must
Ezn:la? —-p Xl b <0
Y X BZ—q ) T

\I!®<0
e Q)

which is equivalent to ¥ < 0,0 < 0 and ¥Q > 02 O

Thus

Theorem 2.2. Let A, B € B(H) and «y, Bi, Nis i € R fori=1,2,...,n. Set
Uy =3 0f, 0 =X, 8, ©1 =3 iffi,
Uy =S A, Qo =N puf, Oy = T Nipi

If \Ifl Z \112,91 Z QQ and @1 == @2, then

¥ |y A+ B;BI2 > B0 |NA + B
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U -y O -0 >0
O -0y Q—Qy |

Then the inequality holds by hypothesis. O

Proof. we must have

Theorem 2.3. Let A; € B(H) and aj,p; € R for i =1,2,...,n. Define X = (1,5 where
0[22 - D, [ :.7
Zij = .,
aaj, 1 F g
If X <0, then
ISP @i Ail? < Spil Aif?

X Jp— i i i -]
1) 2

Note that X;; is just the principal submatrix of X determined by deleting all but ith and

Proof. If

jth row and column. Thus if X is negative semidefinite, which occurs if and only if all

principal submatrices of X are negative semidefinite, then inequality holds. O
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FROM QUASI-MONOTONE OPERATOR TO MONOTONE OPERATOR
ALI FARAJZADEH"

ABSTRACT. In this paper, we show that for a given convex subset K of a topological
vector space X and a multi-valued map T : K — X, if there exists a nonempty subset
S of X* with surjective property on K and T + w is quasimonotone for each w € S, then

T is monotone.

1. INTRODUCTION AND PRELIMINARIES

Let X be a real topological vector space, X* its dual space, and K C X be nonempty.
A multivalued map T': K — X* is called

(i) monotone if
(¥ —y*,z —vy), Vo* € T(x), y* € T(y).
(ii) pseudomonotone ( [1]) if
(z*y—z) > 0= (z",y —xz) >0, Vz* € T(x), y* € T(y).
(ii) quasimonotone ( [1]) if

("5 —2) > 0= (a",y — ) 2 0, Vo' € T(x), y* € T(y).

2000 Mathematics Subject Classification. 49J40, 90C33.
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It is clear that a monotone map is pseudomonotone, while a pseudomonotone map is
quasimonotone. The converse is not true. If T is pseudomonotone ( respective, quasi-
monotone) and w € X*, then T+ w is not psudomonotone (respective, quasimonotone)
in general. In the case of a single-valued, linear map T defined on the whole space R",
it is known that if T+ w is quasimonotone, then 7' is monotone [2].Many authors ( see,
e.g., [4, 5]) extend this result for a nonlinear Gateaux differentiable map defined on a

convex subset K ( of a Hilbert space) with nonempty interior. Very recently, Hadjisavvas

[3] extends the above result to multivalued maps defined on a convex subset of a real
topological vector space with no assumption of differentiability or even continuity on the
map T, and the domain of T need not have a nonempty interior. In this paper, we first
introduce surjectivity of a subset of X™* on a segment of K. By using this concept we can

extend the results obtained in [3]. Before stating the main result, we recall some definitions.

Definition 1.1. We say that S C X* is surjective on the line segment [z, y] C K whenever
the following equality holds,

S(z—y)={{"z—y):2* €S} =R

Definition 1.2. Let K C X be convex and S C X*. We say that S is surjective on K if
for every x € K there exists y € K such that S is surjective on [z, y].

Definition 1.3. ( [3]). Given v € X* and a convex subset K of X, the element v is called

perpendicular to K if v is constant on K, i.e.,
(v,7) = (v,y), Vr,y € K.

Also the straight line S = {u + tv : t € R}, where u,v € X* with v # 0, is said to be

perpendicular to K if v is perpendicular to K.

Remark 1.4. If K C X is nonempty convex and u,v € X* with v is not perpendicular to
K then the straight line S = {u + tv : t € R} is perpendicular to K. Indeed, let z € K
be an arbitrary member of K. There exists y € K such that ¢ = v(z — y) # 0. For each
a € R, define t = wﬂ hence a = (tu+v)(xz—1y). This means S has surjective property.
Hence every set satisfies in Definition 3 has the property cited in Definition 3. The simple
example X = %2 S = {(z,2) : € R} and K = {(x,2?) : € R} shows that the converse
does not hold. In the other words the set S has surjective property but it is not a straight

line.
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2. MAIN RESULTS

Lemma 2.1. Let X be a real topological vector space, K be nonempty and convex subset
of X and T : X — X be a multivalued map. Assume z,y € K, S C X* has surjective
property on line segment [x,y] and T + w quasimonotone on [x,y|, for allw € S. Then T

is monotone on [x,y].

Now we are ready to present the main result which improves Theorem 1 in [3].

Theorem 2.2. Let X be a real topological vector space, K be nonempty and convex subset
of X and T : X — X be a multivalued map. Assume S C X* has surjective property on

K and T + w quasimonotone for all w € S. Then T is monotone on K.

REFERENCES

1. S. KARAMARDIAN, S. SCHAIBLE,Seven kinds of monotone maps, J. Optim. Theory Appl., 66 (1990)
37-46.

2. S. KARAMARDIAN, S. SCHAIBLE, J.P. CROUUZEIX, Characterizations of generalized monotone maps,
J. Optim. Theory Appl., 76 (1993) 399-413.

3. N. HADJISAVVAS, TRANSLATIONS OF QUASIMONOTONE MAPS AND MONOTONICITY, Appl. Math. Lett.,
19 (2006) 913-915.

4. Y. He , A relationship between pseudomonotone and monotone mappings, Appl. Math. Lett., 17
(2004) 459-461.

5. G. Isac, D. MOTREANU,Pseudomonotonicity and quasiomonotonicity by translations versus mono-
tonicity in Hilbert spaces, Austral. J. Math. Anal., 1 ( 2004) 1-8.

! DEPARTMENT OF MATHEMATICS, RAzI UNIVERSITY, KERMANSHAH, 67149, IRAN.

E-mail address: ali-ff@razi.ac.ir, faraj1348@yahoo.com



" Extended Abstract of 6 Seminar on

Linear Algebra and its Applications, -
et T SIS VP ety 504 4 1A
i 18-19 Khordad 1390, 8-9 June 2011, — g
rak Linear Algebra & Ifs Applcations

Uniyersity Arak University, Arak, Iran

ON THE SUMMATION OF POWERS OF GRAPH EIGENVALUES

G. H. FATH-TABAR

ABSTRACT. Suppose G is a graph and A1, A2, ... A, are the eigenvalues of G. The k —th
spectral moments My (G) of G is defined as the summation of A¥, 1 < 4 < n. In this
paper, M;(G), 1 < k < 8 for regular graph are presented.

1. INTRODUCTION AND PRELIMINARIES

Let G be a graph and {vq,...,v,} be the set of all vertices of G. The adjacency matrix
of G is a 0, 1-matrix A(G) = [a;j], where a;; is the number of edges connecting v; and v;.
The spectrum of G is the set of eigenvalues of A(G), together with their multiplicities. It
is a well-known fact in algebraic graph theory that a graph of order n has exactly n real
eigenvalues A\; < Ay < ...\,. The basic properties of graph eigenvalues can be found in
the famous book of Cvetkovic, Doob and Sachs [2]. Throughout this paper our notation
is standard and can be taken from the standard books on graph theory [2, 4]. A bipartite
graph is a graph whose vertices can be divided into two disjoint sets U and V such that
every edge connects a vertex in U to one in V [4]. Equivalently, a bipartite graph is a
graph that does not contain any odd-length cycles. A walk is a sequence of graph vertices
and graph edges such that the graph vertices and graph edges are adjacent. A closed
walk is a walk in which the first and the last vertices are the same. Finally, for a real
number z, [z] denotes the greatest integer < z and the number of zero eigenvalues of a
graph G is denoted by no(G).Here, the k—th spectral moment of G, My (G), is defined as
Mi(G) = 3" | A¥, where k > 0. By a result in algebraic graph theory if G has exactly m
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edges and ¢ triangles, A(G) = [a;;] and A¥(G) = [b;;] then the number of walks from u to
v with length & is by, [1].

2. MAIN RESULTS

The aim of this section is to prove the main results of this paper. The first theorem has

a easy proof and you can see in all algebraic graph theory books.

Theorem 2.1. Let G be a graph. Then My(G) represents the number of closed walks of
length k in G. In particular, Ms(G) = 2m and My (G) = 2Zg1(G) — 2m + 8¢(G), where
q(G) is the number of quadrangles in G. Moreover, if G is bipartite then Myr_1(G) = 0,

for each positive integer k.
Proof. For proof of this theorem, See [3]. O

Theorem 2.2. Suppose G is a bipartite r—regular graph containing q = q(G) quadrangles
and h = h(G) hezagons. Then Mg(G) = 2nr — 6nr? + 5nr3 — 48q + 48qr + 12h.

Proof. Every closed walk of length 6 in G is constructed from one edge, a path of length
2, a path of length 3, a star S4, a hexagon, a quadrangle or a splice of a quadrangle and
an edge. By a simple counting procedure, it is not difficult to prove the number of such
closed walks are 2m = nr, 6nr(r — 1), 3nr(r — 1)2, 12n(3) = 2nr(r — 1)(r — 2), 12h, 48q
or 48q(r - 2), respectively. Thus, Mg(G) = 2nr — 6nr? + 5nrd — 48q 4 48qr + 12h, as
desired. O

Theorem 2.3. Suppose G is a bipartite r—reqular graph without quadrangles with a com-
mon vertex. Then Mg(G) = 8r + 1056q + 160 — 800h — 13nr + 16nr? + 412 — 8nr3 4 6nr* +
448hr + 208qr? — 816gr — 2073 + 8%, where o = o(G) is the number of octagons in G.

Proof. Every closed walk of length 8 in GG is constructed from one edge, a path of length 2,
a path of length 3, a path of length 4, a star Sy, splice of a star Sy and K by identifying
a pendant of Sy and a vertex of Ky, a star S5, a quadrangle, splice of a quadrangle by Ko,
splice of a quadrangle and a path of length 2 by identifying the vertex of degree 2 in the
path and one vertex of quadrangle, splice of K5 and a graph constructed from the splice of
a quadrangle and K> such that two new vertices of degree 3 are adjacent, splice of Ky and
a graph constructed from the splice of a quadrangle and Ks such that two new vertices of
degree 3 are not adjacent, splice of a quadrangle and a path of length 2 by identifying a
pendant of the path and one vertex in quadrangle, a hexagon, splice of a hexagon by Ko,

an octagon. By a counting procedure, it is not difficult to prove the number of such closed
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walks are 2m = nr, 14nr(r — 1), 16nr(r — 1)2, [4nr(r — 1)3 — 8¢], 72n(g), 48n(§)(7" —1),
48n(}), 264q, 448(r — 2)q, 48(r — 2)(r — 3)q, 64(r — 2)2q, 32(r — 2)%q, 64(r — 1)(r — 2)q,
96h, 96(r — 2)h and 160, respectively. Thus, Mg(G) = 8r 4+ 1056 + 160 — 800h — 13nr +
16n7r2 4+ 472 — 8nr® + 6nr* + 448hr + 208q7“2 — 816qr — 2073 + 87’4, which completes the
proof. O
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ON THE NILPOTENCY CLASS OF THE AUTOMORPHISM GROUP
OF SOME FINITE ABELIAN 2-GROUPS

S. FOULADI'* AND F. MAHMOODI?

ABSTRACT. Let G be the direct product of two cyclic groups of orders 2 and 2™, where
m > 1. By considering Aut(G), the group of all automorphisms of G, as a group of

matrices, we show that the nilpotency class of Aut(G) is equal to 2.

1. INTRODUCTION AND PRELIMINARIES

There is a well-khown result about the automorphism group of a finite p-group which
states that for a finite non-cyclic p-group G, Aut(G) is nilpotent if and only if Aut(G) is
also a p-group, see [6, Theorem 1]. Moreover in [4] some results about the nilpotency class
of the automorphism group of some finite p-groups is given.

Under some conditions, the group of all automorphisms of finite p-groups can be considered
as a group of matrices such that the entries are homomorphisms, see [1, Theorem 3.2].

In this paper by using the above method, we find the nilpotency class of the automorphism
group of some finite abelian 2-groups. In particular, Let H be a cyclic group of order 2
and K be a cyclic group of order 2™, where m > 1. By considering Aut(H x K) as a
group of matrices, first we see that Aut(H x K) has the some order as H x K and so is a

2-group. Then we show that the nilpotency class of Aut(H x K) is equal to 2.
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2. NOTATION AND BASIC RESULTS

In this section we give the notation that are used throughout the paper and give some
basic results that are needed for the main results of the paper.
Let G and L be groups. The set of all homomorphisms from G to L is denoted by
Hom(G, L). If « € Hom(G, L) and z is an element of G, we write a(z) for the image of
under . The nilpotency class of a group G is shown by cl(G). The center of a group G
is denoted by Z(G) and the derived subgroup of G is shown by G’. Also Z,, is the cyclic
group of order n.

Now we state following lemmas that will be used the sequel.

Lemma 2.1. [2, Lemma C ] Let A, C and U be abelian groups.
(i) Hom(A,U) =2 Hom(U, A).
(ii) If B is a subgroup (quotient) of A, then Hom(B,U) is a subgroup (quotient) of
Hom(A,U).
(iii) Hom(A x C,U) = Hom(A,U) x Hom(C,U).
(iv) Hom(Zy, X Zy,) = Zg, where d = ged(m,n).

Lemma 2.2. Let G = Zym, where m > 1.
(i) If p is odd, then Aut(G) = Zpm-1(p_1)-
(ii) If p =2, then Aut(G) = Zg X Zom-2, for m > 1 and Aut(Zsg) = 1.

Proof. If followes from [5, iii.2.m. Theorem, p.83 |. O

by [3] we note that if G and L are arbitrary groups and 6,¢ € Hom(G, L), then the
map 0 + ¢ from G to L defined by (04 ¢)(g) = 0(g9)¢(g) is again a homomorphism if Im#é
and I'm¢ commute. We define the homomorphism 0 by 0(z) =1 for all z in G.
Now we state the following theorem which plays an important role in our proof of the

main theorem.

Theorem 2.3. [1, Theorem 3.2] Let G = H x K, where H and K have no common direct
factor. then Aut(G) = A, where

< a p ) : a € Aut(H), B € Hom(K, Z(H))

A= )

v € Hom(H, Z(K)), J € Aut(K)
In particular |Aut(G)| = |Aut(H)||Aut(K)||[Hom(H, Z(K))||Hom(K, Z(H))|.
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By the above theorem we see that A is a group under matrix multiplication:

a f o BI B CYCY’—F,B’Y’ a6’+ﬁ5’
v o)\ yo! +8v 4B +88" )
where the sum of homomorphisms is defined as above and the multiplication of homomor-

phisms is the functional composition.

a
Also we can consider any automorphism 6 of H x K as a matrix ( ? ) and for any

v

(h,k) € H x K, we have 0(h, k) = < a P ) < h ) - ( a(h)B(k) )
vy 4 k v(h)s (k)

Therefore in order to proof our theorem we use A instead of the group of all automor-
phisms.

For the rest of the paper we fix our notation as below:

Let H = (z) and K = (y) be cyclic groups of order 2 and 2™ respectively, where m > 1.
We define the homomorphism g from K to H by 3(y) = = and the homomorphism v from
H to K by v(z) = y2m71. Moreover the identity automorphism is denoted by 1 also we
let A, B,C" and D as below:

A:{ (1 ﬁ) : 0 € Aut(K) o,
0 o

B:{ 1 0) e (k) }

v 4

C’:{ ! 0) 1 0 € Aut(K) },
0 ¢

D:{ 1 ﬁ) :56Aut(m}
v 4

3. MAIN RESULTS

In this section we show that the nilpotency class of the automorphism group of H x K

is equal to 2.

Lemma 3.1. We have Aut(H x K) = A and so |Aut(H x K)| = |[H x K| = 2™+,
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Proof. We see that H and K have no common direct factor. Therefore we can complete

the proof by using Theorem 2.3, Lemma 2.1 and Lemma 2.2. 0

By the above lemma we see that Aut(H x K) is also a 2-group. Therefore Aut(H x K)
is nilpotent and so we can find the nilpotency class of Aut(H x K).

Lemma 3.2. Let G = H x K. Then any element of A belongs to one of the sets A, B,C
or D.

Proof. By Lemma 3.1, Aut(G) = A. Also Aut(H) = 1 and |Hom(K, Z(H))| = |Hom(H, Z(K))| =

1 !
2 by Lemma 2.1. This yields that any element of A is ( . b , where ' € {3,0},
Y
v € {v,0} and § € Aut(K), completing the proof. 0

Lemma 3.3. for any 6 € Aut(K), we have

(i) By =0,

(ii) B =B,

(iii) oy =1,

(iv) v8+ 8 =0,
)

(V) y+y=p8+8=0.

Proof. (i) Since m > 1, we have fy(z) = ﬁ(mefl) = 227" =1 or equivalently By = 0.

(ii) We may assume that 6(y) = y*, where (4,2) = 1. Since i = 2k +1 (k > 1), we see that
Bé(y) = B(y') = 2 = =, as desired.

(iii) We have dy(z) = d(y 2m_1) = 42" where §(y) = y* and (4,2) = 1. Since i =2k + 1

(k > 1), we conclude that y™2"~" = 42", which complets the proof.

(iv) This is obvious by considering the following equation
(8 +98)(w) = VBWIB(y) = v(wh(@) ="y =y =1,
(v) This is the same as (iv). O
Lemma 3.4. We have
: : L g
(i) the inverse of any element 0 s
(ii) the inverse of any element

1
(iii) the inverse of any element ( 0
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1 1 )
(iv) the inverse of any element ( ? ) €D is ( f, ), where 6(y) =y*, '(y) =
Y Y

v, (1,2) = (4,2) =1 and 2™~ +ij = 1 ( mod 2™ ).

) 1 B 1 g\ (1 B+p5tY) (10
Proof. (i) We see that ( 0 & ) ( 0 51 ) = ( 0 g5 ) = ( 01 )byLemma
3.3 (ii), (v).

(ii), (iii) are the same as (i).
1 1 1 5 1 0
(iv)Wehave( B)( ﬁ,>:< Py '6+'6,>=< ,)by
v 6 v 6 v+oy B+ 0 yB84460
Lemma 3.3. Moreover v + 06’ = 1 since 2™~! +ij = 1 ( mod 2™ ). O
Theorem 3.5. We have Z(A) = C, |Z(A)| =2"""1 and |A'| = 2.

Corollary 3.6. The nilpotency class of Aut(H x K) is equal to 2.

Proof. By Lemma 3.1, Aut(H x K) = A and is of order 2™*!. Therefore |A/Z(A)| = 4
by Theorem 3.5 and so A" < Z(.A). Consequently cl(A) = 2.
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GENERALIZED INVERSE EIGENVALUE PROBLEM USING
PRESCRIBED MIXED EIGENDATA

K. GHANBARI' AND F. PARVIZPOUR?**

ABSTRACT. In this paper we consider a generalized inverse eigenvalue problem J, X =
ACr X, where J, is a Jacobi matrix and C, is a nonsingular diagonal matrix that may
be indefinite. Let Ji be k x k leading principal submatrix of .J,. Given C,,, two vectors
X2 = (Tpt1, Thto,- .- ,xn)T, Yo = (Yk+1, Yk+2, - - .,yn)T I ]R”fk, two distinct real num-

T

bers A, p, we construct a Jacobi matrix J, and two vectors X1 = (z1,Z2,...,%%)" ,

Y1 = (yl,yg,...,yk)T € R* such that J,X = ACLX, and J,Y = uC,Y, where
X=X, XHT and Y = (Y7, v5)T.

1. INTRODUCTION AND PRELIMINARIES
A tridiagonal symmetric matrix of the form

ar by

by ax b

bn—2 an—1 bp—1

bn—1 Gn

with positive (or negative) off-diagonal entries, is called a Jacobi matrix. The standard TEP

is to construct a Jacobi matrix J, by a complete set of eigenvalues or a set of eigenvalues

and partial information of eigenvectors. The standard ITEP involves the eigenvalue problem

of the form

(1.1) Jo X = AX.
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Most versions of the standard IEP have been collected by Gladwell [3]. The generalized

inverse eigenvalue problem (GIEP) involves the eigenvalue problem of the form
(1.2) Jpn X = ACp X,

where C), = diag(c1,co,...,cy) is a prescribed nonsingular definite or indefinite matrix.
Atkinson [1] considered GIEP when C), is positive definite. Ghanbari [2] studied GIEP by
using m-functions, when C), is indefinite. Z.Peng and X.Han [4] studied the standard IEP
to construct a Jacobi matrix J, by using ordered defective eigenpairs and a leading princi-
pal submatrix. Now it is natural to ask how to solve the GIEP version of this problem. We
generalized this work to GIEP (1.2), where C), = diag(cy,c2,...,¢,) is a non-singular ma-
trix. If C, is a positive definite diagonal matrix, then C,, = diag(d?,d3,...,d%?) = D%. In
this case we may transform the equation J, X = C, X to an =AY, where J= D~'J,D7!
which is a Jacobi matrix, and Y = DX. If C, is indefinite, this transformation is impos-
sible. This is the main reason that we study GIEP to answer this complication. Therefor
we state the main problem of the paper as follows.

Problem A. Given a kxk Jacobi matrix Ji, a non-singular matrix C,, = diag(c1,co, ..., cp),
real number A\, pu(\ # p), and real vectors Xo = (Tpi1,The,... Tn). € RVF Yy =
Ykt 1, Ykg2, - - - Yn)” € R*F where (1 < k < n—1), find real vectors X| = (z1,za,...,2;)" €
R YL = (y1,y2,...,yx)" € R¥, and an n x n Jacobi matrix J, such that J; is k x k
leading principal submatrix of J, and (A, X), (u,Y) are eigenpairs of (J,,C)), where
X = (X1T7X2T)T7 Y = (Y1T7Y2T)T'

2. MAIN RESULTS

Let o(Jy,,Cy) be the set of eigenvalues of the pair (J,,C)) i.e a numbers A such that
JpX = ACp, X has a nontrivial solution. The same notation applies for o(Jy, Ck), (1 <
k < mn —1), where (Jg,Cy) is the k x k principal minor of the pair (J,,C,). We denote

the corresponding trailing minor by (J,—_g, Ch—k)-

Definition 2.1. Let « and § real numbers, define ¢g(a) =1,

(2.1) vi(a) = det(aC; — J;), (i=1,2,...,n)
and

(g = L] pimi(@) i) n
22 pilen )= vi-1(8) @i(B) | F= b2

We need the following Theorem from [3].
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Theorem 2.2. Suppose that the vector X = (x1,29,...,2,)"

€ R” is an eigenvector
corresponding to the eigenvalue X of the pair (J,, Cy), where Jy, is the n xn Jacobi matriz
and Cp, = diag(ci,¢2,...,cn), then

(1) 1T, # 0,

(2) If x; =0, then Ti—1Ziy1 <0 (’L =2,3,...,n— 1),

ZE1<P¢—1(>\) .
3) xj=——"F—(1=2,3,...,n).
() biby ... b1 ( )

Using Theorem 2.2 and some algebraic calculations shows that,

Theorem 2.3. Considering the notations of the Problem A and Theorem 2.2, we have
(1) If X & o(Jx, Ck), then xp 1 # 0 and

- k—1 k—1 4
(2.3) Xy = 2 T b I 0ss- s 06-2(N)
ey i i
(2) If X € o(Jk, Ck), then z41 =0 and
k-1 T
(2.4) X, = b1b2 waﬂl 31_[2 oo Pe=1(A) |

where z s an arbitrary nonzero real number.
Definition 2.4. Let X = (z1,z9,...,z,) and Y = (y1,y2,...,yn), we define

Ti Ti+1

n
, di = ciriyi, (1=1,2,...,n—1)
Yi  Yi+1 ' Z 7

j=i+1

(2.5) D; =

Theorem 2.5. If the following conditions are satisfied, then Problem A has an unique

solution,

(A — 1) X7 Cr_ Yook (N i (1)
ChTh+1Yk+19k (A, 1)

(1) >0,

d.
(2) A=p) gy >0 (i =k+1k+2...,n—1).
[

Proof. Since condition (1) holds, all the values of @g()), ¢r(1), Tri1, Yki1, X4 Ys and
ckdr (A 1) + (1 — A)o are not equal to zero. Thus

ckbEThr1Yk+1Pk (N 1)

+XTC, +Ya=0
(1 — N or (N r (1) 2okt

(2.6)
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therefore
1
[ A=) X CokYoor Mk () |
(2.7) by =
ChTh+1Yk+19k (A, 1)
Since @i (AN k() # 0, then X\, u & o(Jg, Ck), by Theorem 2.3, zp11yr+1 7 0 and
b k—1 k—1 r
(28) Xl = LA Hb]a(pl(A)Hb]?a(pkfl(A) 5
j= j=
by k—1 k—1 r
kYk+1
(29) Y1 = * H bja ¥1 (N’) H b]7 SRR (Pk—l(ﬂ)
we(p) |5 i

Moreover we have
@i p1Tip1 + bip1Tip2 = Acip1Tip1 — bz

(2.10) .
Qit1Yit1 + Vi1 Yiv2 = pcit1Yiv — biys, =k, k+1,...,n—1)

nTp = AepTp — by 1Tp 1
nYn = WCnYn — bp—1Yn—1

Eliminating a;(: =k + 1,k +2,...,n — 1) from (2.10) and (2.11), we have

(2.11)

(2.12) biDi=A—p)di,i=k+1Lk+2,...,n—1).

Eq. (2.12) and condition (2) imply that b; > 0 exists uniquely and can be expressed as
di .

(2.13) bi:(A—u)ﬁ,(z:k+1,k+2,...,n—1).

Since D; #0(i = k+1,k+2,....,n—1),a;(i = k+1,k+2,...,n—1) exists uniquely, and
x; and y; are not equal to zero simultaneously, we have from (2.10) that

bi—17i—1 + bz

cA— , ; #0
Z;
(2.14)  a; = G=k+1,k+2,...,n—1)
bi—1yi-1 + biyit1 B
G — y Lj = 0
Yi
From (2.11) and z,y, # 0, a, can be expressed as
ap = CpA — bnflxni1 )
n
(2.15)

Yn—1

n

ap = Cppb — bp—1
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INVERSE EIGENVALUE PROBLEMS FOR PENTADIAGONAL
MATRICES

K.GHANBARI' AND H.MIRZAET**

ABSTRACT. In this paper, we propose an algorithm for constructing a pentadiagonal

matrix with given prescribed three spectra.

1. INTRODUCTION AND PRELIMINARIES

Let H be a block tridiagonal matrix of the form

Ay BT
B A, BY

Bs_1 As
Where Aq,...,Ay are symmetric matrices in S),, B; are upper triangular matrices in M,
and n = ps. If p = 2 then H is a pentadiagonal matrix. In this case H is of the form
ar b
by az by Co
cpt by az3 b3 c3

-2 bp_1 ay
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The pentadiagonal case occurs in the inverse problem for vibrating beams, the pentadi-
agonal matrix giving the stiffness matrix of the beam has a very special form; certain
terms in it must be positive, and others entries must be negative, we will not be con-
cerned with these matters of sing(see[2]). Boley and colub[1] proposed an inverse eigen-
value problem for a general symmetric matrix of the form(1.1) with given spectral data
o(H) = \)Lo(Hy) = ()" and o(H9) = ()72, where o(H) denote spectra of
matrix H, H; obtained by deleting the i-th row and column of H and H; ; obtained from
H by knocking off the i-th row and i-th column and j-th row and j-th column of H re-
spectively. In this paper, we construct a pentadiagonal matrix H with given spectral data
o(H) = ()30 (Hin1) = (1)}~ and o(Hsymso) = (v3)1 2

2. MAIN RESULTS

Let Hy,41 and Hy,q1,m+2 be a matrices of the form

B b,, 0

T T B 0
Hypp1 = b,,  amyo Crn+2 s Hi1,mt2 = 0 C

0 cmi2 C

where B and C' are pentadiagonal matrix of order m and p respectively that m+p+2 =n,
bl =(0,...,0,¢y) and c%w = (bmt2, Cm+2,0,...,0). Express the eigenvalue problem for
H,, 41 in terms of the normalaised eigenvectors (y;)i* and (z;)] of B and C, respectively.
Thus if X = [21,..., Zm, Tm+1, Tm+2, - - - » Tn—1] be eigenvector of Hy, ;1 then we can write
X as follows

b1

Y Pm
(21) X = 1 Tm+1 ) Y = [ylayQa"' aym]a Z = [217221"' azp]

dp



INVERSE EIGENVALUE PROBLEMS ... 79

The eigenvalue problem becomes

A— o1 —S1 Y41
>\ - Um _Sm pm

—51 . —Sm A — Am42 —t s —tp Tm+1 =0
—1 A—m q1
—tp A—1p ap

where o0; and 7); are eigenvalues of matrices B and C, in H,,, 11 ;42 respectively and

(2.2) 8i = CmYm,i » tj = bmi221j + Cmy222;

Thus
{am+2 >\+Z] 1A—0’ +El€ IA—Vk}$m+IZ_OZ_]'2

Lemma 2.1. If all (VZ-)TIF2 and (ui)?fl are distinct then Tyq1; #0;0=1,2,--- ,n—1.

By lemma 2.1 we have

Pn71(>‘)
am+2 — >‘+Z>\_gj +Z>\—Vk PNV

where P,,_1(A), Py, (X\) and @Q,(X) are characteristic polynomials of matrices Hy, 41, B and
C, respectively. This yields

_ Puoa(w)
P (vi) @ (Vi

Now c2, and y,,; may be computed from (2.2) and from trace formula we can compute
Gm+2 and Q1.
Now we consider eigenvalue problem for matrix H. Thusif X = [z1,..., Zm, Tmi1, Tmt2, .-« Tn)

be eigenvector of H then we can write X of the form(2.1) with I5(identity matrix) instead
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of 1 and eigenvalue problem becomes as follows

A—o1 —hq —81 m
—hy o =hym A—amy1 —bmia —dy - —dp Tmit | _ g
—s1 0 =Sm —bmyp1 A—ami2 —ti - i Tm41
—d —ty A—m Q1
—d, —tp A=1p dp
where
hi = cm-1Ym—1,i + bmYm,i , di = cmy121,
Thus for s = 1,2,--- ,n we have

h3 2 h;
_ m P 5j P dit —
(am+1_>\z+2j—1rjgj+ k= 1)\_yk)$m+1z+(m+1+zj 1X— ] + k= 1>\_yk)$m+2z—0
2

h 2
(m+1+2] B saj- +Zk IA_Vk)meZ—i-(amH—)\ +Z] 1/\_0_ +Zk IA—yk)xm+QZ:0

Lemma 2.2. If all (\;)7 and (1)} 2 are distinct then (Tmy1,, Tma2,:) 7 036 = 1,2,-++ ,n—
1.

By lemma 1.2 the determinant of the system above must be zero and we can compute
hj and dj. With known h; and dj, we derive 21, y,,—1 and elements of matrix which follow
in m + 1-th and m + 2-th rows and columns.

With ¥, ym—1,21 and z2 matrices B and C' in Hy, 41 42 can be computed by using the
block lanczos algorithm (see [2]). Summarizing the previous results we come to the main

theorem as follows

Theorem 2.3. Combining conditions of lemma 2.1 and lemma 2.2 we can construct a
pentadiagonal matriz H by three prescribed spectra.
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GRUSS TYPE INEQUALITIES IN BANACH xMODULES

A. G. GHAZANFARI"”

ABSTRACT. We obtain some further generalization of the Griiss type inequalities in inner
product modules over unital Banach x-algebras for C'*-seminorms and positive linear

functionals.

1. INTRODUCTION AND PRELIMINARIES

Let A be a x-algebra. A seminorm v on A is a real-valued function on A such that for
a,be Aand A € C: y(a) >0, y(Aa) =|\y(a), ~v(a+b) <~v(a)+y(b). A seminorm =y
on A is called a C*-seminorm if it satisfies the C*-condition: y(a*a) = (y(a))? (a € A).
By Sebestyen’s theorem [1, Theorem 38.1] every C*-seminorm 7 on a x-algebra A is
submultiplicative, i.e., y(ab) < v(a)y(b) (a,b € A), and by [3, Section 39, Lemma 2 (i)]
v(a) = v(a*). For every a € A, the spectral radius of a is defined to be r(a) = sup{|}A| :

A€ oyla)}.

Definition 1.1. Let A be a *-algebra. A semi-inner product A-module (or semi-inner
product *-module) is a complex vector space which is also a right A-module X with a

sesquilinear semi-inner product (-,-) : X x X — A, fulfilling
(x,ya) = (r,y)a (right linearity)
(z,z) € AT (positivity)
for z,y € X, a € A. Furthermore, if X satisfies the strict positivity condition
x=0 if (z,x) =0, (strict positivity)
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then X is called an inner product A-module (or inner product *-module).

Let v be a seminorm or a positive linear functional on A and I'(z) = (v ((m,x)))1/2
(x € X). If T is a seminorm on a semi-inner product A-module X, then (X,T) is said to
be a semi-Hilbert A-module.

If T is a norm on an inner product 4-module X, then (X, T') is said to be a pre-Hilbert
A-module.

A pre-Hilbert A-module which is complete with respect to its norm is called a Hilbert
A-module.

Since (z + y,z + y) and (x + iy, x + iy) are self adjoint, therefore we get the following
Corollary.

Corollary 1.2. If X is a semi-inner product x-module then the following symmetry con-
dition holds:

(,y)" = (y,z) forz,ye X. (symmetry)

Example 1.3. (a) Let A be a x-algebra and 7 a positive linear functional or a C*-
seminorm on A. It is known that (A,7) is a semi-Hilbert .4-module over itself
with the inner product defined by (a,b) := a*b, in this case I' = ~.

(b) Let A be a hermitian Banach x-algebra and p be the Ptak function on A. If X is
a semi-inner product A-module and P(z) = (p((z,z)))"/?(z € X), then (X, P) is
a semi-Hilbert 4-module.

(c) Let A bea A*-algebra and || be the auxiliary norm on A. If X is an inner product
A-module and |z| = | (z,z) |"/?(z € X), then (X,]|-]|) is a pre-Hilbert .A-module.

(d) Let A be a H*-algebra and X (a semi-inner product) an inner product A-module.
Since tr is a positive linear functional on 7(A) and for every z € X we have
tr((z,z)) = || |z| ||? therefore (X, || |.| ||) is a (semi-Hilbert) pre-Hilbert A-module.

2. MAIN RESULTS

We assume, unless stated otherwise, throughout this section that 4 is a unital Banach
x-algebra. The following Lemma 2.1 is a version of [3, Lemma 2.1] for a semi-inner product
A-module and the following Lemma 2.3 is a version of ([3, Lemma 2.4]) for an inner product
A-module.

Lemma 2.1. Let X be a semi-inner product A-module, and =,y € X,a, 8 € C. Then

Re({ay —z,2 — fBy) > 0
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if and only if

< a+p a+p
T — _

1 2
< la-— .
5 Y 5 y>_4la BI* (y, y)

Lemma 2.2. Let X be an inner product A-module and x,y,e € X. If (e, e) is idempotent,

then e (e,e) = e, and therefore

(e,e) (e,z) = (e,xz), (x,e) = (x,e) (e, e).

Lemma 2.3. Let X be an inner product A-module and v be a C*-seminorm or a positive
linear functional on A and T'(z) = (v((z,2)))"/? (z € X). Ifz,e € X and (e, e) is an

idempotent then

0 <{z,x)— (x,€){e,x)
and

y({z,z) — (z,e) (e,x)) < /{rel(fCF(m — Je)?.

Lemma 2.4. Let X be an inner product A-module, v be a C*-seminorm on A and
D(z) = (Y(z,2)))? (z € X). Ifz,y,e € X, (e,e) is idempotent and o, 8, \, u are real
or complex numbers such that

1 A 1
F(x—a;LBe> §§|a—ﬁ|, F(y— ;ue> < —|A = p

hold, then one has the inequality

1({a9) — (@,€) (e,)) < 3l — BIIA — sl

Furthermore, if there is a non zero element f in X such that (e, f) = 0 and T'(f) # 0,

then the constant i 18 best possible.

Theorem 2.5. Let X be an inner product A-module, v a C*-seminorm on A and
I'(z) = (’y((x,x)))% (x € X). If z,y,e € X, (e,e) is idempotent and o, B, \, ju are real
or complex numbers such that

1 A 1
F(x—a+ﬁe> §§|a—ﬁ|, F(y— ;ue> < —|A = p
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hold, then one has the inequality

Furthermore, if there is a non zero element f in X such that (e, f) =0 and T'(f) # 0 then

the constant i 18 best possible.
Similarly for a positive linear functional ¢, the following theorem holds.
Theorem 2.6. Let X be an inner product A-module, ¢ a positive linear functional A and

O(x) = (tp((w,w)))% (x € X). If z,y,e € X, (e,e) is idempotent and o, B, \, u are real

or complex numbers such that

d <x — a;66> < % a—f|0(e), @ (y— >\;—M€> < 1|>‘ — p|®(e)

hold, then one has the inequality

(2.2)  Je((z,y) — (z,€) (e, y))]

1 a+p\?
|a—ﬁ||x—u|<1>(e>2—(ga—m?@(e)?—@(z— . ))

1
1 >\ 2 2
X <Z|)\—M|2(I>(e)2 - (y— —;'ue> ) .

Furthermore, if there is a non zero element f in X such that (e, f) =0 and ®(f) # 0,

then the constant i 18 best possible.

<

==
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Remark 2.7. If in the above theorem ¢ is a state on A then, obviously, inequality (2.2)

becomes the following;:

(2.3) le((z,y) = (z,e) (e, 9))]

1 1 ) a+6 1\
< ey — = Zley — _ _
< o= plr—ul <4|a o - o (o -2 ))
2\ 3
1 9 A+
><<4|)\ 1] <I>(y 5 e)) .

Now Put G = <x’1y> - <$,6> <67y>7 Gy = <$7$> - (I,Q) (6,]7), Gy = <y7y> - (ya 6) <67y> and
R(z) = (r(z,z))?

. By inequality (3.4) in [4] we have
P(GG") < p(Ga)r(Gy).

Therefore we may obtain another refinement of [5, Theorem 5.1]:

For every positive linear functional ¢ on A we have

1 1 2
p(GGT) < Z|0‘ = BlIX = | = <Z|04 —-BE-a (ZE — a—;—ﬁe> )

1
1 A+ u 2\ 2
ZIN=ul? = —

and we know that there is a state ¢ on the C*-algebra A such that p(GG*) = ||GG*|| =
IG11>.

M
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SCHWARZ TYPE INEQUALITIES IN SEMI-INNER PRODUCT
MODULES

A. G. GHAZANFARI*

ABSTRACT. Let A be a proper H™-algebras or a unital Banach -algebra, v a C”*-
seminorm or a positive linear functional on .4 and X be a semi-inner product A-module.
We define a real function T’ on X by I'(z) = (v((z,z)))*/? and show that the Schwarz
inequality holds, therefore (X, T") is a semi-Hilbert A-module.

1. INTRODUCTION AND PRELIMINARIES

A proper H*-algebra is a complex Banach *-algebra (A, ||.||) where the underlying Banach
space is a Hilbert space with respect to the inner product (.,.) satisfying the properties
(ab,c) = (b,a*c) and (ba,c) = (b, ca*) for all a,b,c € A. A C*-algebra is a complex Banach
x-algebra (A, ||.||) such that ||a*a| = ||a||? for every a € A. If A is a proper H*-algebra or
a C*-algebra and a € A is such that Aa =0 or aA =0 then a = 0.

For a proper H*-algebra A, the trace class associated with A is 7(A) = {ab: a,b € A}.
For every positive a € 7(A) there exists the square root of a, that is, a unique positive
a? € A such that (a%)2 = a, the square root of a*a is denoted by |a|. There are a positive
linear functional ¢r on 7(A) and a norm 7 on 7(A), related to the norm of A by the
equality tr(a*a) = 7(a*a) = ||a||? for every a € A.

Let A be a proper H*-algebra or a C*-algebra. A semi-inner product module over A is
a right module X over A together with a generalized semi-inner product, that is with a
mapping (.,.) on X x X, which is 7(.A)-valued if A is a proper H*-algebra, or A-valued if
A is a C*-algebra, having the following properties:
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) (x,y+ 2) = (z,y) + (x,2) for all z,y,z € X,

(ii) (z,ya) = (z,y)a for z,y € X,a € A,
) (xz,y)* = (y,z) for all z,y € X,

(iv) (z,z) >0 for z € X.

We shall say that X is a semi-inner product H*-module if A is a proper H*-algebra and
that X is a semi-inner product C*-module if A is a C*-algebra.
If, in addition,
(v) (z,z) =0 implies z = 0,
then X is called an inner product module over A. The absolute value of z € X is defined
as the square root of (z,z) and it is denoted by |z|.
In this paper we obtain a version for the Schwarz inequality in semi-inner product

modules over proper H*-algebras and unital Banach *-algebras.

2. MAIN RESULTS

Let A be a x-algebra. A seminorm v on A is a real-valued function on A such that for
a,be Aand A € C: y(a) >0, «y(Aa) =|Ay(a), ~(a+b) <~v(a)+y(b). A seminorm =y
on A is called a C*-seminorm if it satisfies the C*-condition: y(a*a) = (y(a))? (a € A).
By Sebestyen’s theorem [1, Theorem 38.1] every C*-seminorm < on a x-algebra A is
submultiplicative, i.e., y(ab) < y(a)y(b) (a,b € A), and we know that y(a) = y(a*). For
every a € A, the spectral radius of a is defined to be r(a) = sup{|A| : A € o 4(a)}.

The Pték function p on *-algebra A is defined to be p : A — [0,00), where p(a) =
(r(a*a))l/ 2. This function has important roles in Banach x-algebras, for example, on C*-
algebras, p is equal to the norm and on hermitian Banach *-algebras p is the greatest
C*-seminorm. By utilizing properties of the spectral radius and the Ptdk function, V.
Pték [4] showed in 1970 that an elegant theory for Banach x-algebras arises from the
inequality r(a) < p(a).

This inequality characterizes hermitian (and symmetric) Banach -algebras, and further
characterizations of C*-algebras follow as a result of Ptik theory.

Let A be a *-algebra. We define AT by

n
At = {ZaZak:nEN,ak eA for k= 1,2,...,n},

k=1
and call the elements of AT positive.
The set A" of positive elements is obviously a convex cone (i.e., it is closed under convex

combinations and multiplication by positive constants). Hence we call A" the positive
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cone. By definition, zero belongs to A*. Tt is also clear that each positive element is
hermitian.

We recall that a Banach x-algebra (A, ||.]|) is said to be an A*-algebra provided there
exists on A a second norm |.|, not necessarily complete, which is a C*-norm. The second

norm will be called an auxiliary norm.

Definition 2.1. Let A be a *-algebra. A semi-inner product A-module (or semi-inner
product *-module) is a complex vector space which is also a right A4-module X with a

sesquilinear semi-inner product (-,-) : X x X — A, fulfilling
(z,ya) = (z,y)a (right linearity)
(z,7) € AT (positivity)
for z,y € X, a € A. Furthermore, if X satisfies the strict positivity condition
z=0 if (z,z) =0, (strict positivity)

then X is called an inner product .A-module (or inner product *-module).

Let v be a seminorm or a positive linear functional on A and T'(z) = (v ((x,x)))1/2
(x € X). If T is a seminorm on a semi-inner product A-module X, then (X,T) is said to
be a semi-Hilbert .4-module.

If I is a norm on an inner product 4-module X, then (X,T") is said to be a pre-Hilbert
A-module.

A pre-Hilbert A-module which is complete with respect to its norm is called a Hilbert
A-module.

Since (z + y,z + y) and (x + iy, x + iy) are self adjoint, therefore we get the following
Corollary.

Corollary 2.2. If X is a semi-inner product x-module then the following symmetry con-
dition holds:

(z,y)" = (y,z) for z,y € X. (symmetry)

Example 2.3. (a) Let A be a x-algebra and 7 a positive linear functional or a C*-
seminorm on A. It is known that (A,7) is a semi-Hilbert .4-module over itself
with the inner product defined by (a,b) := a*b, in this case I' = ~.

(b) Let A be a hermitian Banach x-algebra and p be the Ptak function on A. If X is
a semi-inner product A-module and P(z) = (p((z,z)))"/?(z € X), then (X, P) is

a semi-Hilbert A-module.
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(c) Let A be a A*-algebra and |-| be the auxiliary norm on A. If X is an inner product
A-module and |z| = | (z,z)|'/?(z € X), then (X, |- |) is a pre-Hilbert A-module.

(d) Let A be a H*-algebra and X (a semi-inner product) an inner product A-module.
Since tr is a positive linear functional on 7(A) and for every z € X we have
tr((z,z)) = || |z| ||? therefore (X, || |.| ||) is a (semi-Hilbert) pre-Hilbert .A-module.

If X is a semi-inner product C*-module, then the following Schwarz inequality holds:

(2.1) Kz, )12 < Iz, MKy, )l (2,9 € X).

(e.g. [5, Lemma 15.1.3]).

If X is a semi-inner product H*-module, then there are two forms of the Schwarz
inequality: for every z,y € X
(2.2) tr((z,y))? < tr((z, ) tr((y,y)) (the weak Schwarz inequality),
(2.3) (@, y))? < tr((z, z))tr((y,y)) (the strong Schwarz inequality).
First Saworotnow proved the strong Schwarz inequality, but the direct proof of that for a
semi-inner product H*-module can be found in [3].

Now let A be a *-algebra, ¢ a positive linear functional on A and X be a semi-inner A-

module. We can define a sesquilinear form on X x X by o(z,y) = ¢ ({x,y)); the Schwarz

inequality for o implies that

(2.4) o (2, 9)° < o (2, 2)) 9 ((y,)) -

Theorem 2.4. Let A be a *-algebra and X be a semi-inner product A-module. If v is
a C*-seminorm on A and I'(z) = (7(($,$)))1/2 (x € X) then the Schwarz inequality
holds, that is

(2.5) (v ({2, y))* < v ({z,2)) ¥ ({3, ) -

Therefore T' (z +vy) < T (z) + T'(y) for every z,y € X. Thus T is a seminorm on X and
(X,T) is a semi-Hilbert A-module.

Proof. [2] O

Remark 2.5. Let ¢ be a positive linear functional on a unital Banach x-algebra A, X a
semi-inner A-module and z,y € X. Put a := (z,z),b := (y,y), c := (z,y), and let X be

an arbitrary real number. Then

. <A{x —yAc',x —yAc’ ) =a— 2Xcc’ + A°cbc”.
(2.6) 0 < {r —yAc*, z — yAc*) 2Xect + A2ebe*
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From (2.6) and [1, Proposition (22.7)] we have
2xect < a+ A2ebet,  therefore 2X\p(cc®) < @(a + Aebe*) = p(a) + N2 (cbc*)
< pla) + Np(ec)r(h)

Thus for all A € R inequality 0 < A (cc*)r(h) —2A¢(cc*) +¢(a) holds. So the discriminant
o(cc*)? — p(cc*)p(a)r(b) = p(cc*)(p(cc*) — p(a)r(b)) < 0. This implies that

(2.7) pec”) < pla)r(b) or oz, y) (y, x)) < oz, 2))r({y,y)-

Now suppose that X is a semi-inner product C*-module on C*-algebra A and a,b,c are
as above. There is a state ¢ on A such that ¢(cc*) = ||cc*|| = ||¢/|?>. Using inequality (2.7)

we have

lel? = p(cc*) < (a)r(b) < [lall]b]-
Therefore (2.7) is a refinement of Schwarz’s inequality for semi-inner product C*-modules
[5, Lemma 15.1.3].
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ON THE EIGENVALUES OF INTEGRAL EQUATIONS USING A
MESHLESS METHOD BASED ON RADIAL BASIS FUNCTIONS

A. GOLBABAI', E. MOHEBIANFAR?*, H. RABIEI®

ABSTRACT. In this paper, a meshless method based on radial basis functions is used to
find the eigenvalues of integral equations. The approach leads to a generalized eigenvalue
system Az = ABzx which is solved numerically. To confirm the efficiency of the method,
two examples are solved and it will be showed that the numerical results are in good
agreement with exact solutions. The role of the shape parameter is investigated for these

examples.

1. INTRODUCTION AND PRELIMINARIES

The eigenvalue problem of linear operators is of central importance for all vibration
problems of physics and engineering. The vibrations of elastic structures, the flutter
problems of aerodynamics, the stability problem of electric networks, the atomic and
molecular vibrations of particle physics, are all aspects of the same fundamental problem.
So, much thought has been devoted to the designing of some efficient methods by which
the eigenvalues of a given linear operator can be found. That operator may be a linear
Fredholm kernel function.

Consider the second kind integral equation of the form
(1.1) f(z) = g(z) + MH[)(x), Q=]a,b],
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where
b
(Hf)(z) = / k(. ) (£)dt.

In this equation the eigenvalue A and the eigenfunction f are unknown, and the functions
g and k are given. Equation (1.1) may have no non-zero eigenvalues, a finite number, or
denumerably infinite number of eigenvalues. For example a Volterra kernel has no non-
zero eigenvalues [1], or a Symmetric kernel that is nonnull (i.e. that is not identically zero)
has at least a real eigenvalue [1, 2].

The method of radial basis functions (RBFs) is a well-known family of meshless methods
[3, 4]. These functions have been used for solving various kinds of problems but rarely
used for eigenvalue problems [5]. A radial basis function ® = ¢(||x — x*||2) depends only
on the distance between x € R? and a fixed point, x* € R¢. This property implies that
the radial basis functions ® are radially symmetric about x*. Some well-known RBF's are
listed in Table 1 where r is the Euclidean distance between x* € R? and any x € R, i.e.
r = ||x —x*||2 and ¢ is a shape parameter.

Table 1 : Some well-known RBFs.

Name o(r)

Cubic 3
Gaussian exp(—r2c?)
Multiquadric (MQ) V2 +¢c2

Inverse multiquadric (IMQ) (V72 + ¢2)~!

2. MAIN RESULTS

In this section, we describe our method to find the approximate eigenvalues of Eq. (1.1).
We know that if the eigenvalues of Eq. (1.1) exist then they are equal to the eigenvalues

of the following equation
(2.1) f(z) = AHf)(z),
By substituting f(x) with its approximation Z;VZI a;¢i(z) we have
N N
(2.2) D ajpi(z) =AY oHej(x).
7=1 7=1

where ¢;(z) = ¢(||x — zj2) for j =1,2,..., N and {xj}jyzl are calld centers.

To obtain H¢;(x), we can use different numerical integration methods. So, H¢;(x) can
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be substituted by its approximation

b
(2.3) Hopj(x) = / k(. 1)y (1) sz (0, 1) by (81) = I( 7).

where {w;}¥, and {t;}, are the wights and nodes of composite trapezoidal method. By
substituting (2.3) in (2.2) we get

N N
(2.4) Zajgbj(m) = )\Zajf(m,xj).
3=1 j=1

To obtain the unknown coefficients {c;}X_ |, we can use collocation method. So, Collo-

Jj=b
cating (2.4) at the centers gives the following generalized eigenvalue system

(2.5) Aa = ABa

where A = [¢j($i)]N><Na B = [I(l'i,$j)]N><N and o = [011, . ,aN]T.

To show the efficiency of the method, we present two examples and approximate their
eigenvalues using multiquadric function. The numerical results are presented in Table
2 and Table 3. In these tables, £, denotes to the relative error between the exact and

numerical solutions.

Example 2.1. Consider the integral equation [2]:
1
flz) = g(z) + /\/ (zt + 2t?) f(t)dt,

-1

with the exact eigenvalues A; = 3/2 and X\p = 5/2.

Table 2 : Numerical results for Examples 2.1 using ¢ = 1.

Exact solution A =15 A =25

N App. values Er App. values Er
20 1.4917356 0.0055096 2.4547184 0.0181126
40 1.4980301 0.0013132 2.4890947 0.0043621
80 1.4995222 0.0003185 2.4973307 0.0010677
160 1.4998877 0.0000748 2.4993396 0.0002641

320 1.4999703 0.0000198 2.4998462 0.0000615
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Example 2.2. Consider the integral equation [2]:
1
flz) =2 / e"e' f(t)dt,
0
with the exact eigenvalue A = 2/(e? — 1) ~ 0.3130353.

Table 3 : Numerical results for Examples 2.2 using ¢ = 1.

Exact solution A =0.3130353

N App. values Er
20 0.3127464 0.0009228
40 0.3129667 0.0002191
80 0.3130186 0.0000533
160 0.3130312 0.0000130
320 0.3130343 0.0000031

One of the most important features of RBFs is the shape parameter (c) which causes a
tradeoff between error and stability. The choice of the optimal shape parameter has been
a hot topic in the literature. So, the relation between relative error and shape parameter

is shown in Figure 1 for examples 1.

Relative Error

Shape Parameter

Fig. 1. Relative error between exact solution (A; = 1.5) and its approximation for

various shape parameters (c) using 20 uniform points.
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COMPUTING MINIMAL POLYNOMIAL OF PARAMETRIC
MATRICES

AMIR HASHEMI', BENYAMIN M.-ALIZADEH?* AND MAHDI DEHGHANI DARMIAN?®

ABSTRACT. In this paper, we study the minimal polynomial of a parametric matrix.
Using the concept of Grobner systems for parametric ideals, we introduce the notion of
a minimal polynomial system for a parametric matrix, i.e. we decompose the space of
parameters into a finite set of cells, and for each cell we give the corresponding minimal

polynomial of the matrix. We also present an algorithm for computing this system.

1. INTRODUCTION AND PRELIMINARIES

It is well known from the Cayley Hamilton theorem that any matrix over real numbers
satisfies its characteristic equation. i.e., for any matrix A, , over real numbers, if f(s) =
det(sl, — A) = s" + ap 15" ' +--- + an, then f(A) = 0. There is another polynomial
known as the minimal polynomial, say m(s), such that m(A) = 0. This is the least degree
monic polynomial which satisfies the equation m(A) = 0. The reason behind the interest
in computing the minimal polynomial of a matrix is its applications in solving a system
of polynomial equations, polynomial factorization, cryptography, effective Galois theory,
etc. A classical approach to compute the minimal polynomial of a matrix A,«, is to

determine the first matrix A* for which {I, A, A%, ..., A*} is linearly dependent. Let k

be the smallest positive integer such that A% = Zi':ol a;A?, then the minimal polynomial

k k-1

of Ais m(s) = s" —ay_1s «++ — a8 — ap. The Gram-Schmidt orthogonalization
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procedure with the standard inner product is the perfect theoretical tool for determining
k and the «;’s (see [3], page 643).

In this paper we are interested only in parametric matrices. Many problems in engi-
neering and science can be modeled by appropriate operations on parametric matrices,
and have to be repeatedly solved for different values of parameters. In this direction, the
minimal polynomial of a parametric matrix may have a wide range of applications. For
example, we can solve the problem of diagonalizability of a parametric endomorphism
(on a finitedimensional vector space) using the minimal polynomial of the corresponding
matrix (which is a parametric matrix): It is diagonalizable if and only if its minimal
polynomial factors completely (over the base field) into distinct linear factors. But, the
minimal polynomial of a parametric matrix has not, to our knowledge been studied in the
literature. The following example shows that the traditional minimal polynomial may not

be used for such a matrix.

a 2 0
Example 1.1. Let A= | 0 b 0 € Ms3,3(K) where a, b and ¢ are parameters
2 ¢ a—1

. By computing the minimal polynomial of A by the traditional way, the result may be
m(s) = s + (1 — 2a — b)s? + (a® + 2ab — a — b)s — a®b + ab which is of degree equal 3 for
each evaluation of parameters. But in fact, if we substitute a =1, b=0and ¢ =4 in A,

2

the real minimal polynomial is m(s) = s* — s which is of degree 2.

In fact, one may be interested in finding for what parameters values, the minimal
polynomial of the abovematrix is of degree 2 and for what values it is of degree 3; more
specially, one may be also interested in finding out the structure of the solution space.
For this purpose, we introduce the notion of minimal polynomial system for a parametric
matrix, and we present an algorithm for computing it. In doing so, we use the idea of
Grobner systems.

We remrk first the concept of Grobner bases and for more details we refer to [1]. Let
R = K[z] be the polynomial ring over the field K on the variables = = zg, ..., z,.

Below, we denote a monomial z° --- 23" € R by z® where o = o, ..., ap) € N+l g
a sequence of non-negative integers. A monomial ordering on R is a total order < on the
set of all monomials which has the following two properties:

1) It is multiplicative; i.e., z* < z? implies 2%t < 27 for all o, B,y € N*H1,
2) The constant monomial is the smallest; i.e., 1 < z* for all « € N**+1.
A classic example of a monomial ordering is the lexicographical monomial ordering,

denoted by <jey. For two monomials 2z, z? € R, we have £ <., z if the left most
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non-zero entry of o — f3 is positive. Let I = (fy,..., fi) be the ideal of R generated by the
polynomials f1,..., fx. Alsolet f € R and < be a monomial ordering on R. The leading
monomial of f is the greatest monomial (with respect to <) appearing in f, and we denote
it by LM (f). The leading monomial ideal of I is defined to be LM (I) = (LM (f)|f € I).
A finite subset {g1,...,9x} C I is called a Grébner basis for I w.r.t. < if LM(I) =
(LM (g1), -, LM (gi))-

Now consider S = K]a, 2] where K is an arbitrary field, a = a1, ..., ap, is a sequence of
parameters and z = xy, ..., T, is a sequence of variables. Let <, be a monomial ordering
on the variables and <, be a monomial ordering involving the parameters. The compatible
elimination product of <; and <, is an ordering on S, denoted by <, , which is defined
as follows: For all a, 8 € N**! and 7,0 € N, 2% <, , 1%’ <= z% <, 7Por (z® =

tPand a7 <, a).

Definition 1.2. Let F C S = KJa, z] be a finite set of parametric polynomials. Let also
G = {(G;, N;, Wi)}f:1 be a finite triple set where N;, W; C Kla] and G; C S are finite for
i=1,...,£. The set G is called a Grobner system for (F') w.r.t. <, if for any ¢ and for
any homomorphis o : K[a] — K, where K is an extension of K we have

e 0(G;) C K'[z] is a Grdbner basis for o((F)) C K [z] w.r.t. <,

e o(p) =0VYpe N; C Kla]

e o(q) #0 Vg € W; C K[d]
We call {(G;, N;, W;)}_, a reduced Grobner system, if all G;’s are reduced Grébner basis,

with corresponding conditions.

Montes in [4] has proposed DISPGB; an efficient algorithm to compute a Grdbner
system of a parametric polynomial ideal. We have implemented this algorithm in MAPLE
12.

2. MAIN RESULTS

In this section we introduce the concept of minimal polynomial system, like the Grobner
system and we describe an algorithm to compute it. Then we use this concept to compute

the minimal polynomial of parametric matrices.

Definition 2.1. Let A be a matrixs over Kla], where K is a field and a = ay,...,ay is a
sequence of parameters. Let also s be a variable and M = {(m;, N;, W;)}{_, be a finite
triple set where N;, W; C Kla] and m; € K]a, s] are some polynomials for i = 1,...,£. The
set M is called a minimal polynomial system for A if for any ¢ and for any homomorphis

o : Kla] — K, where K is an extension of K we have
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e o(m;) C K'[z] is the minimal polynomial of o(A)
e 0(p) =0Vpe N, CKla]
o(q) # 0 Vg € W; C Kla]

We call N; and W;, the null and non-null conditions respectively.

Example 2.2. Let A be the matrix of Example 1.1. The following triples show a minimal
polynomial system for this matrix. Let us consider the element (s2—s, {c—4,b,a—1},{}) of
this system. Thus, for each values of a, b, ¢ € K satisfying the null conditions {¢—4,b,a—1}

and the non-null conditions (which is empty), the minimal polynomial of A is equal to

52 — 5. For instance, the specialization a = 1,b = 0 and ¢ = 4 satisfies the null conditions,

2

and therefore s — s is the minimal polynomial of A for this specialization.

(3 + (1 —b—2a)z? + (—a + a® — b+ 2ab)x — a?b+ab, {}, {b,2b+ 1,b+ 1,a —b—1})
(23 + (2 —2a)7? + (a®> = 3a + 1)z —a+a? {b+1}, {a,—1 —a+a?a—1})
(w3—x,{b+1a 1}, {1

(23 =222 =23+ 1, {b+1,-1 —a+a*}, {a})

(2% + (— 2a+1)x +( a+a®)z, {b}, {a —1,a%> — 3a +1})

(23 — 3a=1 113624- - lx {b, a* —3a+1} {a—1})

(23 +(—2a+3)2% + (a®> —2a+ §)z— (3)a+(1)a?), {2b+1}, {2a—1,1—4a+2a%,2a—3})
(m3—§m —4m+8,{2b+1 2a — 3}, {})

(23 + 1 —12a=2,2 4 Lda-l foh 4 1,1 —da + 24}, {2a — 1})

(m3+( 3b — 1)z? + (30? +2b)x — b® — b%, {a —b— 1}, {b,b+1,2b+ 1,c — 4})
(23 + 222 +z, {b+1,a}, {c—4})

(3 — 22, {bya — 1}, {c —4})

(23 + 32? — o — %, {26+ 1,20 — 1}, {c — 4})

(22 + (-1 —-2b)z +b+ 0% {c—4,a—b—1}, {b,b+1,2b+1})

(22 4+, {c—4,b+1,a}, {})

(xQ—w {c—4,b,a — 1}, {})

(2?2 — 3, {c—4,2b+1,2a — 1}, {})

Now a natural question remains yet that how one can compute a minimal polynomial
system for a parametric matrix. We answer this question by the following theorem. Based
on this theorem, we present MINPOLSYS algorithm to compute a minimal polynomial

system for a parametric matrix.

Theorem 2.3. Let A be an n X n parametric matriz over Kla] where K is a field and
a=ai,...,an be a sequence of parameters. Let x = xg,...,x, be a sequence of variables

and f(s) = Tpsy +Tp1sp1 + -+ - + 0. Furthermore, let F C Kla, ] be a set of n? equations
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derived from f(A) = 0 and G = {(Gi, Ni,Wi)},_, be a Grébner system for (F) w.r.t.

<agz With Gy <jez -+ <lex 01 and Ty <jeg -+ <iex To. For any i, if d; = |G| then
substituting ¢4, = 1 and z4,41 = -+ = v, = 0 in G; and substituting the solution of
the equations corresponding to this new polynomials in f(s)|Idi:1@di+1:...:1n:0, we get a

polynomial m;(s) which is the minimal polynomial of A corresponding to the condition sets
N; and W;.

Algorithm 1 MINPOLYSYS

REQUIRE A, , a parametric matrix over K|a]
ENSURE A minimal polynomial system of A
T= (Vi gaeA¥i ] i =1,...,n)

G := The reduced Grobner system of I w.r.t. <,
minpolysys:= {}

FOR {Gi,Ni,Wi} G DO

d:=|G;|
G; = G; |$d:1,$d+1:---ixn:0
Let (zg,...,24—1) be the unique solution of the system corresponding to G

m = s+ 0 st

minpolysys := minpolysys U {m, N;, W;}
END FOR
RETURN minpolysys
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WHEN IS THE NUMERICAL RANGE OF A NILPOTENT MATRIX
CIRCULAR?

M. T. HEYDARI! AND F. LOTFI?*

ABSTRACT. The problem formulated in the title is investigated. The case of nilpotent
matrices of size at most 4 allows a unitary treatment. The numerical range of a nilpotent
matrix M of size at most 4 is circular if and only if the traces trM*M? and trM* M3
are null. The situation becomes more complicated as soon as the size is 5. The condi-
tions under which a 5 x 5 nilpotent matrix has circular numerical range are thoroughly

discussed.

1. INTRODUCTION AND PRELIMINARIES

Let ¢ be a holomorphic self-map of the unit disc U := {z € C: |z|] < 1}. The function
¢ induces the composition operator C,, defined on the space of holomorphic functions
on U by C,f = f op. The restriction of Cj, to various Banach spaces of holomorphic
functions on U has been an active subject of research for more than three decades and it
will continue to be for decades to come (see [5], [6] and [1]). Let H? denote the Hardy
space of analytic functions on the open unit disc with square summable Taylor coefficients.
In recent years the study of composition operators on the the Hardy space has received

considerable attention.
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2. MAIN RESULTS

An elliptic automorphism ¢ of U that does not fix the origin must have the form
© = 0y © Py © Oy, for some fixed p € U — {0} and w € JU. If we wish to show this depen-

dence of ¢ on p, we will denote the elliptic automorphism ay, o p,, © @, by .

For each nonnegative integer n let
V1 —p?
b(2) 1= Yy ()",
—pz

be the Guyker basis of the Hardy space H? (see [2] for more detail).
We are going to find the matrix representation of the composition operator €', with

respect to {b,}. By a simple computation, it follows that

w™(1 —wp? —p(1 —w)z
(Coa)(z) = LU P00, (),

Hence, for nonnegative integer n and m,

w" (1 — wp?)
1—p2?

p(1 —w)w"

(Cnppbna bm> = (bna bm> - 1 —p2 (an, bm)-

In [2] Guyker established that the matrix representation for Cy,, relative to {by,} is lower
triangular with diagonal entries [1,¢, (p), @, (p)%,---]. So we need to determine matrix
entries on and below the matrix diagonal. If n = m, (2by,, b)) = p.

Now let m > n. We have

VL ) )

(1 —p2)bpt1,bym) = ((1—pz -
pz
= ((p - Z)bnabm>
= p(bn,bm> - <anabm>-

Hence we have the following recursion formula

<ana bm> = p<bna bm> + p(an_H, bm> - <bn+1a bm>

By solving this recursion formula we have

(2bn, b)) = (p)minil(p@bmabm)_l)
2

m—n—1

= (p"—1p :
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and hence
0, if m <mn;
(Cprnv bm) = wn, if m = n;
w™(1 —w)p™™", if m >n.

Therefore the matrix representation of the composition operator C,, with respect to the

Guyker basis {b,} of H? is

1 0 0 0

(1 —w)p w 0 0

(1—w)p?> w(l—w)p w? 0

Cp, = | 1—w)p® wl—wp® w?(l—-wp w?
1 —w)p* wl —wp® w(1-wp® w(l—w)p
(1-w)p’ wl—wp* w(l-w)p® w(l—wp’

Hence the (7, j) element of this matrix is:

w1 if i = j;
al(f;-) =< w1 —w)p'd ifi>j;
0 ifi < j.

where the indices 7,7 vary over the positive integers.
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MATRIX REPRESENTATION OF A COMPOSITION OPERATOR ON
HARDY SPACE

M. T. HEYDARI"*

ABSTRACT. Let ¢ be an elliptic automorphism of the unit disc U:= {z € C: |z| < 1}.
The function ¢ induces the composition operator C,, defined on hardy space H? by
Cof = foe. Then we can find an orthogonal basis such that the matrix representation

C, is lower triangular in this basis.

1. INTRODUCTION AND PRELIMINARIES

Let ¢ be a holomorphic self-map of the unit disc U := {z € C : |z| < 1}. The function
¢ induces the composition operator C,, defined on the space of holomorphic functions
on U by C,f = f o . The restriction of Cy, to various Banach spaces of holomorphic
functions on U has been an active subject of research for more than three decades and it
will continue to be for decades to come (see [5], [6] and [1]). Let H? denote the Hardy
space of analytic functions on the open unit disc with square summable Taylor coefficients.
In recent years the study of composition operators on the the Hardy space has received

considerable attention.

2. MAIN RESULTS

An elliptic automorphism ¢ of U that does not fix the origin must have the form
© = 0y © Py © Oy, for some fixed p € U — {0} and w € JU. If we wish to show this depen-

dence of ¢ on p, we will denote the elliptic automorphism a0 p,, 0 by . In particular
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we assume that 0 < p < 1.

For each nonnegative integer n let
1 — p2
bn(2) i= 2l (2)"
be the Guyker basis of the Hardy space H? (see [2] for more detail).

We are going to find the matrix representation of the composition operator €, with

respect to {b,}. By a simple computation, it follows that

w'(1 —wp? — p(1 —w)z)

(Co,bu)(2) = — ba(2).
Hence, for nonnegative integer n and m,
w" (1 —wp?) p(l — w)w"
(C@pbn,bm> == 1—7[)2<bn’bm> - W(an,bm)

In [2] Guyker established that the matrix representation for Cy,, relative to {b,} is lower
triangular with diagonal entries [1, Lpp,(p), <pp'(p)2, --+]. So we need to determine matrix
entries on and below the matrix diagonal. If n = m, (2b,,, by,) = p.

Now let m > n. We have

1—
= ((p— 2)bn, bm)
= p(bn,bm) — (2bn, biy).

(U= srstn) = (1= 92 L (2" )

Hence we have the following recursion formula

<ana bm> = p<bna bm> + p(an_H, bm> - <bn+1a bm>

By solving this recursion formula we have

(2bn, b)) = (p)m_n_l(p<me’ bm) — 1)
= (' -1pm "

and hence
0, if m <mn;
(Cppbn, b)) = ¢ w" if m = n;

m—n

w™(1 —w)p™ ", if m >n.
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Therefore the matrix representation of the composition operator C,, with respect to the
Guyker basis {b,} of H? is

1 0 0 0 0 0

(1 —w)p w 0 0 0 0

(1—w)p? w(l—w)p w? 0 0 0

Cp, =] (1— w)p® w(l —w)p? w?(1 —w)p w? 0 0
(1 —w)p* wl —w)p? w1 —w)p?> w3l —w)p w 0
1-wp’ wl—wp* w1 -wp® w(l-wp® w'(l-wp w

Hence the (7, j) element of this matrix is:

wi™! if i = j;
aij =< w Nl —w)yp'd ifi>j;
0 if i < j.

where the indices 7,7 vary over the positive integers.
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CONDITIONAL MULTIPLICATION OPERATORS ON L%(%)

M. R. JABBARZADEH

ABSTRACT. In this paper we provide a necessary and sufficient condition for the condi-
tional multiplication operators to have closed range. Moreover, spectrum of these type
operators on L2 (X) investigated in the sense of conditional expectation operators and

matrix theory respectively.

1. Introduction and Preliminaries

Let (X, X, 1) be a complete o-finite measure space. For any complete o-finite subalgebra
AC XY and 1 <p < oo, the LP-space LP(X, A, 4) is abbreviated to LP(A) where p , is
the restriction of 1 to A. Also its norm is denoted by ||.||, on which L”(A) is a Banach
subspace of LP(X). Given a B € ¥. We shall abbreviate the space LP(B’EBH“\EB) to
LP(B) on which ¥Xp ={BnNnC:C € X}.

We denote the linear space of all complex-valued Y-measurable functions on X by
LY(%). The support of a measurable function f is defined by o(f) = {z € X : f(z) #
0}. Equalities and inequalities between measurable functions and also equality between
sets can be interpreted as the almost everywhere sense, and the set of measure zero,
respectively. For each nonnegative f € L%(X) or f € LP(X), by the Radon-Nikodym

theorem, there exists a unique measurable function E(f) with the following conditions:

(i) E(f) is A-measurable and integrable,
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(ii) If F is any A-measurable set for which [, fdu exists, we have the functional relation

/F fp = /F E(f)dp.

Now associated with every complete o-finite subalgebra A C X, the mapping E :
LP(X) — LP(A), 1 < p < oo, uniquely defined by the assignment f +— E(f), is called the
conditional expectation operator with respect to A. The mapping E is a linear operator
and, in particular, it is a contraction operator. In case p = 2, it is the orthogonal projection
of L2(X) onto L%(A). The role of this operator is important in this note and we list here

some of its useful properties:

e If f is an A-measurable function, then E(fg) = fE(g).
B(HP < B(fP).

If f >0 then E(f) > 0; if fO then E(f)O0.

o(f) Co(E(f)), for each f € LP(X).

E(|f?) = |E(f)|? if and only if f € LO(A).

For more details on the properties of E see [4].

Recall that an A-atom of the measure y is an element A € A with p(A)0 such that for
each F' € 3, if F C A then either u(F) = 0 or u(F) = p(A). A measure space (X, %, p)
with no atoms is called non-atomic measure space. It is well-known fact that every o-
finite measure space (X, A, 1 ) can be partitioned uniquely as X = (UneN An) UB, where
{A, }nen is a countable collection of pairwise disjoint A-atoms and B, being disjoint from

each A, is non-atomic (see [6]).

Let ‘H and K be Hilbert spaces. The set of all bounded linear operators from X into H
is denoted by B(K,H). For A € B(K,H), the null-space and the range of A are denoted
by N (A) and R(A), respectively. If A € B(H), the spectrum of A is denoted by Sp(A).

Let u € L°(X) N D(E), where D(E) denotes the domain of E. The mapping T, :
LP(Y) = LP(X), 1 < p < o0, defined by

Tu(f) = uB(f) + fE(u) — E(u) E(f)

is called the conditional multiplication operator induced by a weight function u. Note that
if v is an A-measurable function or A = ¥, i.e. E = I, then T, = M,, where M, is a
multiplication operator. These operators were initially introduced in [3] by A. Lambert

and T. G. Lucas where, some operator properties of them are also studied in [2].
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2. Characterization of Conditional multiplication operators

In this section we present a necessary and sufficient condition for the operator T, :
LP(X) — LP(X), 1 < p < oo, for which it has closed range. Also we investigate under
what conditions the operator T}, on the Hilbert space L?(X) is compact. Moreover the
spectrum of T, on L?(Y) is studied.

Although the following theorem is stated in [3], however, we rewrite them by the lan-

guage of operator matrices .

Theorem 2.1. An operator T, : L*(X) — L*(X) is bounded if and only if E(|u|?) €
L>®(A).

Theorem 2.2. Let T, be a bounded linear operator on L?(X). Then T,
(a) is normal if and only if u € L*®(A).
(b) is self-adjoint if and only if u € L*>°(A) is real-valued.

Proof. (a) It is not difficult to verify that

(2.1) [T*T,] = Mgy + EMyu—pw))r  EM ;g ew ]
ME(u)(u—E(u)) Mgy
and
(2.2) = | M Mee BMy 75 ] .
E(uw)(u—F(u)) Mu—E(u)EMa—m + Mipw)?

At first glance it can be readily inferred that the matrices (2.1) and (2.2) are equal (en-
trywise equality ) whenever u = E(u), i.e., u € L°(A). Therefore, by Theorem 2.1 we get
that [|ullco < V/I|E(Ju|?)||ec < oo. Hence, Ty, is normal if and only if u € L>(A).

(b) By the equality of the T,, and T,; matrices, we conclude that u € L*(A), and u is

real-valued. Hence the proof is complete.

Lemma 2.3. Let Ty, : LP(X) — LP(X), 1 < p < oo, be a bounded linear operator. Then
N(T,) = LP(X \ S), where S = o(E(u)).

Proof. For given non-zero f € LP(X), let f € N(T,). Then uE(f) + fE(u) —
E(u)E(f) = 0. Taking the conditional expectation E of both sides equation, gives
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E)E(f) =0. Thus SNo(E(f)) = 0. But o(f) C o(E(f)), therefore SNo(f) = 0 which
implies that f ¢ LP(S). Consequently, f € LP(X \ S), since LP(X) = LP(S) @ LP(X \ 5).

Conversely, let f € LP(X \ S). Then fE(u) = 0 which implies that E(u)E(f) = 0.
Thus fg(u) |E(f)Pdp < [¢|E(f)Pdp = 0, which yields uE(f) = 0. So that T,,f = 0 i.e.,
f e N(Tw).

Theorem 2.4. Suppose T, : LP(X) — LP(X), 1 < p < o0, is a bounded linear opera-

tor.Then T, has closed range if and only if E(|lu]) > 0 a.e. on S = o(E(u)) for some
30.

Conversely, suppose E(|u]) > 6 a.e. on S and {T},f,}72, be an arbitrary sequence in
R(T,) such that ||Ty, fr, — gl|, = 0 for some g € LP(X). Hence

E(Tufy) = E(u)E(f,) 2 E(g).

By our assumption, E(1/|u|) < 1/§ a.e. on S. Therefore, we have

2l < B@IBGxs < PP

This follows that % xs € LP(X). Consequently,

E(fn) L—p> ggz; XS
and so
fo 2 {g + E(g) — u]_f(gg) } EX(‘Z) = f.

Thus T, f LGN T.f and hence g = T, f, which implies that T;, has closed range.

Lemma 2.5. Let H and K be separable Hilbert spaces. Suppose that A € B(H), B € B(K)
and C € B(K,H). If A and B are normal operators, then

A C
5

) — Sp(4) U Sp(B).

Proof. See [1].

Theorem 2.6. For a bounded linear operator T, : L?(X) — L*(X) we have

Sp(T,) U{0} = ess rang{E(u)} U {0}.
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Proof. Let S¢ = X\o(E(u)) # 0. Since L2(SC,ASC,N|ASC) C N(Ty), then R(T,) =
N(TH* C L%(S, ‘AS’“\AS)' Hence, T, is not onto and so 0 € Sp(73,). On the other hand,
a moment’s consideration of the matrix of T,  represented in (??) and Lemma 2.5 show

that Sp(Ty) = Sp(Ty) = Sp(Mm) = ess rangE(u).

Example 2.7. Let X = [T, 7], 4 be the Lebesgue measure on the o-algebra X consist-
ing of all Lebesgue measurable subsets of X. Moreover, suppose A is the o-subalgebra
generated by the all symmetric intervals about origin. For given a f € L?(X), then under
the above hypotheses, E(f) is just equal to the even part of f namely, W (see [3]).

Define u(x) = 22 + sinz + 1. Then we have

Tuf = (%sinx + 22 + 1) f(z) + %sinxf(—m),

1 1
T f = (5 sinz + 22 4+ 1) f(z) — 3 sinzf(—z),
and E(|u|) > 1 on X. Hence by the previous results T}, is bounded, one to one and has

closed range while it is neither normal nor compact operator on L?(X).
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A COLLOCATION METHOD FOR THE SOLUTION OF
ONE-DIMENSIONAL BURGER’S EQUATIONS

R. JALILIAN' AND F. HATAMI**

ABSTRACT. In this paper, we develop a collocation method based on cubic B-spline to
the solution of one-dimensional Burger’s equations cu,, = ut+uu, subject to appropriate
initial and Dirichlet boundary conditions, where £ > 0 is a small positive constant. We

developed a new two-level three-point scheme of order O(k? + h?).

1. INTRODUCTION AND PRELIMINARIES

Consider the following one-space dimensional nonlinear parabolic equation ,
(1.1) EUgy = Ut + Uly (z,t) € (0,1) x (0,77,
subject to the initial condition ,
(1.2) w(@,0)=f(z), 0<z<I,
and boundary conditions ,
(1.3) u(0,t) = a(t), wu(l,t) =p(t), t>0,

where € = ﬁ, and Re is the Reynolds number characterizing the size of viscosity. The
numerical solution of nonlinear parabolic equation both in cartesian and polar coordinates

are of great importance in problems of viscous fluid flow and heat transfer.
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2. TEMPORAL DISCRETIZATION

Let us consider a uniform mesh A with the gride points );; to discretize the region
Q =1[0,1] x (0,T]. Each A;; is the vertices of the gride point (z;,t;) where z; = ih ,
t=0,1,2,..,N and t; = jk , k= 0,1,2,... and h and %k are mesh sizes in the space and
time directions respectively.

First we use the following finite difference approximation to discretize the time variable

with uniform step size k,

Ot n

—

k(1 —~d)

where §u" = u” —u" ', u" = u(z,t,) and u® = u(z,0) = f(z), (0 <z <1). We

n
T

It

(2.1) uy

suppose that ¢(x,t,,u",ul) = u™ul. Substituting the above approximation into equation
(1.1) and discretizing in time variable we have

Ot
(2.2) Uy = mun + (@, tny u", ug).

Simplifying the above equation we have :

(2.3) ek(1 — yop)uh, = 6" + k(1 — v6y) P, ty, u™, uly).
Now observe that we can write equation (2.3) in the following form
(2.4) —eut, + P @)Ut + ¢ (30t ul) = ¢ (o),
with boundary condition

(2.5) u'(0) = altn), (1) = pB(tn),

where v* = u™ and

( 1

p* (]7) = =k’

_ 1 _ _ _
8 qf(z) = fj,yugml + mu” 1 ﬁ(ﬁ(x,tn,u” Lyt

L ¢ (z,u"uy) = (T, tn, u”, uy).

Thus now in each time level we have a nonlinear ordinary differential equation in the form
of (2.4) with the boundary conditions (2.5) which we solve it using B-spline collocation
method.

Theorem 2.1. The above time disretization process that we use to disretize equation (1.1)

in time variable is uniformly convergent of the second order.
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Suppose that e; = u’ —u(t;) be the local truncation error at ith level time in (2.4) then

we have :

leil| < Cik?

where C; is some finite constant.

Proof. Using equation (2.1) and replacing v = 3 the above result is straight forward. O

Theorem 2.2. Let E,.1 be the global error in time discretizing process then we have :
|Eni1ll <CK*,  t<T/k

where C is some finite constant.

Proof. The global truncation error in (n + 1)th level is E,11 = >, €; thus we have :

n n n
1Bl = 11D el < D lleill < Y Cik* < nC'k* < C'n(T/n)k* = CF,
=1 =1 =1

where C' = C'T. 0

3. B-SPLINE COLLOCATION METHOD

In this section we use B-spline collocation method to solve (2.4) with the boundary
conditions (2.5) in each time level. Let A* = {0 = z¢p < 21 < ... < zy = 1} be the partition
in [0, 1]. B-splines are the unique nonzero splines of smallest compact support with knots
at zg < 21 < ... < xny—-1 < zn. We define the cubic B-spline for 1 = —1,0,..., N + 1 by

the following relation:

(3.1)
( (2 —zi_9), T € (T2, 1],
h3 4+ 3h%(z — ;1) + 3h(z — z;1)? — 3(z — z;_1)3, x € [Ti-1, %],
Bs,; % h3 + 3h%(zi41 — 7) + 3h(zit1 — )% — 3(zit1 — 7)3, T € [z, Tit1],
(zip2 — )3, T € [Tit1, Tita),
[ 0, otherwise.
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It can be easily seen that the set of functions Q = {B_;(z), By(x), ..., By+1(x)} are lin-
early independent on [a,b] thus © = Span(Q) is a subspace of C2[0,1], and © is N+3
dimensional. Let us consider that S*(x) € © be the B-spline approximation to the exact
solution of problem (2.4), thus we can write S*(x) in the following form :

N+1

(3.2) §'(x) = 3 i Bila),

i=—1
where ¢} are unknown real coefficients and B;(z) are cubic B-spline functions. By forcing

S*(x) to satisfy the collocation equations plus the boundary conditions, we have
(3.3) LS*(z;) =q" (i), 0<i<N

)

§*(wo) = altn) , S*(zn) = B(tn)

where Lu* = —eu}, + p*(z)u* + ¢*(z, u*, u}).
Substituting (3.2) into (3.3) and using the properties of B-spline function we have :
—be

?(02‘—1 —2¢; +cjyq) +p"(wi)(cioy + 4 + i)+

3 .
¢ (@i, (cj 1 +4cj +cip), E(Cfﬂ —¢i 1)) =4q"(2i),0 <i <N,
Simplifying the above relation leads to the following system of (N —1) non-linear equations
in (N + 3) unknowns:

(3.4)
(=6 +h%pi)ci_1 + (126 +4h%pf)ci + (—6e + h2p})chyy + P dF = hiqf, 1<i<N-1.

where pf = p*(z;), ¢f = ¢*(z;) and ¢} = ¢* (i, (¢} +4ef + i), 7 (ch1 — ¢f1)-
Thus to solve the system and obtaining a unique solution to C* = (¢*, ¢f, ..., €, €y )
we need to obtain two extra equations using the boundary conditions and eliminate c*

and cj_ ;. Using the first boundary condition we have :
w(0,tn) = §7(0) = a(tn) = 2y + 45 + e,

Now eliminating ¢* ; from the above equation and substituting into equation (3.4) fori =0

we have :
(—6e + h2p}) (a(t) — dcf — b)) + (12e + 4h2ph)ch + (—6e + h?ph)ci + h2¢f = h2qj.
Simplifying the above equation we obtain the following relation for the first boundary ,

(3.5) 36ech + h2gh = h?q + (6 — h?ph)a(ty), for i=0
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where 5 5
$o = ¢" (20, altn), 7 (e = €21)) = ¢" (20, altn), 5 (e + 21 — aftn)).

Similarly, eliminating cj, ; from the last equation (3.4) for i = N, we find
(3.6) 36ech + h2di = h2qy + (6 — 2piy)B(t), for i=N
where

(C7v+1 —Cn_1))

S| w

¢y = ¢ (@n ulen) us(zn)) = ¢ (xn, B(1),

= lan, Bl1), — (e + 2k — B(D)
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UPPER BOUND FOR NORM OF INVERSE SOME BAND MATRICES

WITH APPLICATION IN NON-POLYNOMIAL SPLINE
R. JALILIAN!

ABSTRACT. We present a sixth-order non-polynomial spline method for the solutions
of two-point boundary value problem u™® + f(z,u) = 0, u(a) = a1,u” (a) = a2, u(b) =
B1,u” (b) = B2, in off step points. Numerical method of sixth-order with end conditions of
the order 6 is derived. upper bound for norm of inverse five-diagonal matrix are derived.

The convergence analysis of the method has been discussed.

1. INTRODUCTION AND PRELIMINARIES
Consider the special nonlinear fourth-order boundary value problem given by
(1.1) u(4)—|—f(x,u):0,a<x<b,a,b,$E§R,
with the functional and second-order derivative boundary conditions

(1.2) u(a) = o, u"(a) = az,u(b) = p1,u" (b) = Po.

It is assumed that f(z,u) is real and continuous on [a,b], and «;, 5;,7 = 1,2 are finite

real constants. We introduce the set of grid points in the interval [a, b]

h—
Ty = a, xlféza—i—(l——)h, h = Na’ l1=1,2,...,N, zy =b.

Non-polynomial quintic spline function S;(x) which interpolates u(z) at the mesh points

Ty 1 [ =1,2,...,N, depends on a parameter 7 and reduces to ordinary quintic spline

2000 Mathematics Subject Classification. Primary 34C12; Secondary 15A09, 65F05, 65L.10.

Key words and phrases. Band matrix; Non-polynomial spline; Boundary formula; Convergence analysis.
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Si(z) in [a,b] as 7 — 0.
For each segment [z, 1,7, 1], 1 =1,2,.., N — 1, the quintic spline Sj(z), is defined as
2 2
3

(1.3) Si(x) = Zali(x —x) +esint(z —x) + freosT(x — 1), [ =0,1,2,..., N,
i=0

where aj;, (i = 0,1,2,3),¢; and f; are constants and also 7 is free parameter. To derive

expression for the coefficients, we first denote:

4
(1.4) Sl(l“zi%) = Ul l”(xli%) = Mli%? Sz( )(l“zi%) = iné-

From algebraic manipulation we can obtain the coefficients. Using the continuity of first
and third derivatives at (z,;), that are S;_,(z;) = Sj(z;) and S} (z;) = S]" (1), we

obtain the following relations: The elimination of M;’s gives

w_s — Ay g +6u_ 1 —dup 1ty s = h4[0‘(Fl—g +F ) +B(F s + Fy1)
(1.5) +7Fl_%], I =3(1)N -2,

2. END CONDITION

To obtain the unique solution of the nonlinear system (1.5) we need four more equations.
By using Taylor series and method of undetermined coefficients the boundary formulas
associate with boundary conditions for the sixth-order method can be determine as follows.

In order to obtain the six-order boundary formula we define the following identities

3 5
2, " 4, (4) | 14 (4) —
(2.1) coto + Z cju; 1+ AhZug + poh*uy” + h ijuJ;% +i =0,
J=1 Jj=1
4 6
(2.2) cotio + Z c;-ujf% + Nh?ugy + bt Zp;-uyi)l +th =0,
=1 j=1 ?
4 6
(2.3) CouN + Z Cj*uN—j+% + X *h2uy + bt Z pj*ugélj+% +th 1 =0,
- 4) - (4)
2, " 4 4 4 4 _
(2.4) cHun + Zc}‘-uN_j_i_% + N hfuy + h*pyuy’ + h Zp;uijJr% + 1ty =0.

J=1 J=1
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3. CONVERGENCE ANALYSIS

In this section, we investigate the convergence analysis of the method. The equations
(1.5) along with boundary condition (2.1)-(2.4) yields nine diagonal nonlinear system of

equations, and may be written in matrix form as
(3.1) AUM 4 pBEY (UMY = RM),

P is monotone three diagonal matrix defined by

r

3 i=j=1,N,
9 i=j=2,3..,N—1,

{ 0 otherwise.

(3.2) Dij = «

Theorem 4.1 Let A be the N x N matrix

p

§ 1=j5=1N,
¢ i=j=23,. N—1,

{ 0  otherwise,

(33) Nij =

sufficient conditions on ¢ and z so that A~' > 0 is £ > r where

—vr 2 Vé"’t‘l, (x > 2). Consequently the matrix P which is special case of the matrix A

for £ = 3 and z = 2 is monotone matrix. Thus the matrix Ay = P?, is a monotone matrix.

r =

By using [1] the symmetric matrix Ay, is irreducible and monotone and also

[5(b — a)* + 10(b — a)?h? + 9
384ht ‘

(3-4) 1451l <

(3.5) AT + B (@TY) = RO 44O,
o)

where the vector U

is the vector of order NV of local truncation errors.
From (3.1) and (3.5) we have:

(3.6) [A]EM) = [Ag + h* BF,(UM)EM) = ¢,

Lemma 4.1 If M is a square matrix of order N and ||[M|| < 1, then (I + M)~! exist and

I +M) M < =i

where

= u(ml_%),l =1,2,..., N, is the exact solution and t() = [t(l),tél), ...,tg\lf) ;]T
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TABLE 1. Maximum absolute errors in solution.

m  In[2] In [2] In [3] In [3]  Our method
3 1.9x107* 3.7x107% 1.4x107° 1.4x10°° 3.3x10°7
4 4.6x107° 2.9x1077 8.3x1077 83x1077 1.1x107?
5 1.1x107° 1.9x107% 5.4x107% 5.4x10=% 3.8x10~ !

Lemma 4.2 The matrix [Ag 4+ h*BF,(UM)] in (3.6) is nons(ilr)lgular, provided Y < 1281808610
af;

where A = [5(b—a)*+10(b—a)?h?+9h*] and Y = max|W|,l =1,3,..,N—1.(The norm
vy

referred to is the L, norm). We give alternative method in the theorem 4.2 to show that

the matrix [A = Ag+h*BF,(UM1)] is monotone. O

Theorem 4.2 If Y < %, then the matrix A given by (3.6) is monotone where
A=5(b—a)* +10(b — a)2h% + 9h*.

Theorem 4.3 Let u(z,;_ 1 ) be the exact solution of the boundary value problem (1.1) with
boundary conditions (1.2) and we assume w1 [ =1,2,...,N be the numerical solution

obtained by solving the nonlinear system (3.1). Then we have
1)) — 6 . 4 - 7
HE( )H = O(h’), (provided Y < 123&532333}\0,& = 77%), = %10,7 = 1—290).

4. NUMERICAL RESULTS

In this section we present the results obtained by applying the numerical method dis-
cussed in pervious sections to the following two-point boundary-value problem. Consider

the differential equation

12
4.1 @ _gett = ———— 0 1
(4.1) u e O <z<l,
with the boundary conditions:
-1
(4.2) u(0) = 0,u(1) = In(2),u"(0) = —1, w'(0) = —

The analytical solution is u(z) = In(1 + z).

Acknowledgements: Financial assistance of [lam university is greatly appreciated.
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GENERALIZATION OF THE HSS METHOD FOR SYLVESTER
MATRIX EQUATIONS

MOHAMMAD KHORSAND!

ABSTRACT. In this paper, we propose some new algorithms based on Hermitian and
skew-Hermitian splitting methods for solving a class of Sylvester equations AX + XB =
C, where both coefficient matrices A and B are (non-Hermitian) positive semi-definite,
and at least one of them is positive definite, and obtain some HSS-like iterations for
solving Sylvester equations. Some numerical examples illustrating the effectiveness of

these algorithms are presented.

1. INTRODUCTION

Consider the Sylvester matrix equation

(1.1) AX+XB=C
where A € C"*", B e C"™*™, X and C € C"*™. Equation (1.1) can be written as
(1.2) Az =¢
where the matrix A is of dimension nm x nm and is given by
(1.3) A=I,9A+BT®I,
where ® denotes the Kronecker product (A ® B = [a;; B]) and
¢ = (c11,¢21,7*+ ,Cn1,€12,C22," " ,Cn2," " 5 Cnn)
&= (T11,%21," "+, Tp1, 12,722, * T2, ", Tnn)-

Of course, this is a numerically poor way to determine the solution X of the Sylvester

2000 Mathematics Subject Classification. Primary 15A24, 15A30, 15A69.; Secondary 65F10, 65F30,
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equation (1.1), as the system of linear equations (1.2) is costly to solve and can be ill-
conditioned. In this paper, we generalize the Hermitian and skew-Hermitian splitting

iterations for Sylvester equations.

2. HSS METHOD FOR SYLVESTER EQUATIONS

Hermitian and skew-Hermitian splitting (HSS) iteration method was firstly proposed
by Bai, Golub and Ng [1] for non-Hermitian positive definite linear system (1.2) as follows:
Given an initial guess z(0), for k=1,2,---, until {x(k)} convergence, compute
{ (0L + H)ZF2) = (0l — §)2®) + ¢

2.1 A -
( ) (aInm + S)Zﬁ(kJrl) = (OéInm — H)(f;(kJr%) +é

where H = %(/i + A*) and S = %(fl — A*) are Hermitian and skew-Hermitian parts of
matrix A and « is a given positive constant. Substituting A from (1.3) in H = %(A + A*)

and § = %(/Al — fl*) and using the Kronecker product’s properties we have
(2.2) H=1,®H,s+Hgr 1,
(2.3) S=1,954+Sgr @I,

where H4,S4, Hp, Sp are Hermitian and skew-Hermitian parts of A and B respectively.
Also, one can easily see that HgT = Hp and SgT = Sp. By relations (2.2), (2.3)

(2.4) (alpm + H)i = (al, + Ha)X + XHp
(2.5) (L — S)

=

= (al, — S4)X — XS5.
Substituting (2.4) and (2.5) in the first equation of the system (2.1) one obtains
(alp, + H))X + XHp = (al, — S4)X — XSp + C.

Similarly for the second equation in (2.1) we obtain the following system, equivalent to
(2.1), as
26) (oI, + H)X®+3) 4 X6+ = (al, — S4)X® — XK Sy + C

' (al, + SA)XE+D 4 x k) gy = (af, — HA)X®2) — XE+3) Hp 4 C
Similarly, changing the parentheses order in (2.4) and (2.5) we will have
e HaX*+2) 4 X529 (al, + Hp) = —SaX® + X®)(al,, — Sp) + C

' SuX*+D) 4 Xk+D (oI, + Sp) = —H, X *+2) 4 X*+2)(al,, — Hg) + C

which is equivalent to the system (2.1). It is easy to show that the following system is
equivalent to (2.1), (2.6) and (2.7).
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(2.8)
(81, + H)X¥+2) 4 x*t2)(21, + Hp) = (1, — SA)X® + x*)(2],, — Sp) + C
(81, + S )X*D 4 xEED (2] 4 §p) = (1, — Ha)XF+2) 4 Xx*H2)(2, — Hp) +C

Now suppose that in Sylvester equation (1.1) both coefficient matrices A and B are
(non-Hermitian) positive semi-definite, and at least one of them is positive definite. It is
easy to show that the coefficient matrix A in system (1.2) is positive definite, and so by
Theorem 2.2 in [1] the HSS iteration (2.1) converges to the solution of the system (1.2)
and this yields that all systems (2.6), (2.7) and (2.8) converge to the solution of Sylvester
equation (1.1). Therefore we can state the following theorem:

Theorem 2.1. Suppose that A € C**™ and B € C™*™ are (non-Hermitian) positive
semi-definite, and at least one of them is positive definite. Let Hy = %(A + A*),S4 =
1(A-A*),Hp = X(B+ B*),Sp = (B — B*) are Hermitian and skew-Hermitian parts of
A and B respectively, and let o be a positive constant. Then each of the HSS iterations
(2.6), (2.7) and (2.8) converge to the solution of Sylvester equation (1.1) with the same
convergence rate and iteration matriz

M(a) = (al +8)" (ol — H)(aI + H)™ (ol — §)

with H and S as in (2.2) and (2.3). Furthermore its spectral radius is bounded by

a—\
o+ 5\1

() = max
A€A(H)

)

where A(H) is the spectral set of the matriz H.

Now we obtain the optimal values of parameter o and upper bound o(c) of p(M ()

as follows.

Corollary 2.2. Suppose that A € C"*™ and B € C™*™ are (non-Hermitian) positive
semi-definite, and at least one of them is positive definite. Let Hx,S4, Hp and Sp are
Hermitian and skew-Hermitian parts of A and B respectively. Let, for simplicity, )\(I:I) =
5\, AHa) = X\, AMHp) = p denote the eigenvalues. Also, let Apin and A\pax denote the
minimum and mazimum value of the eigenvalues of matrices respectively, and let o be a

positive constant. Then

a— A
04—1—5\

o =argmin{  max
a AminSASAmax

} = \/(Amax + ,U«max)(Amin + Nmin)a and

Amax +Umax _ 1

Amin min
ola*) = S <1

Ama,x +max
)\min‘}’ﬂmin + 1
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Proof. Tt is easy to show that A([,, ® Hx) = A(H,4) and \M(Hgr ® I,) = \(Hpg). Moreover
af:\max a_()\max‘i‘l»’zmax) a—j\min a_(Amin‘i‘Mmin)
a+;\max Z Oé+(>\max+ﬂmax) and a+;\min S a‘l‘(Amin‘i‘Mmin)

:max{

If o* is such a minimum point of the upper bound o(a) of p(M(c)) then it must satisfy

. Now we have

~

Oé—)\i
Cl(-i—;\i

(2.9) o(a) = max
Xi€A(H)

+
p

max

a® — Anax < 0 and o* — Ay > 0, therefore

—Ami —Amax = (Amin+mi o (Amax+
Amin ,— ¢ Ama, } S max { ( min ﬂmln) _ ( max llmax) } =
a+Amin a+Amax

U(C\f) = max { a+()\min+llmin)’ Oé+(Amax+llmax)

a*f()\min‘i‘ﬂmin) _ (Am x+ﬂm x)*a* *x R R
C“)‘(‘l_(Amin‘i'/»’/min) - ()\m:x‘i‘l»’zm:x)"‘a* =0 = \/(Ama‘x + Mmax)(Amln + lj'mll'l)

and the optimal value of upper bound of p(M(«)) is obtained as follows:

Ama.x‘i‘l»’zmax _ 1

U(CM*) _ oF — %‘min < \/(Amax + Nmax)(kmin + ,Ufmin) - (>\min + Nmin) _ Amin~+/min <1.
a* + Amin \/(Amax + Nmax)(kmin + ,Ufmin) + (>\min + Nmin) é\m%ﬁmax +1
O

3. IHSS METHOD FOR SYLVESTER EQUATIONS

If we solve the system (2.1) approximately then we will have IHSS (inexact HSS) itera-
tions. Define the residual of Sylvester equations (1.1) by R = C' — AX — X B. By solving

the first equation of (2.1) approximately, and considering (2.2) one can obtain

(alpym + H)z® =r®) = (al, @ I, + I, ® Hy + Hgr © 1,,)Z*) = R®).

The previous equation can be written as the following equivalent alternative systems

(3.1) (al, + Hy)Z® + ZW Hg = R*)

(3.2) HAZ(k) + Z(k)(afm 4 HB) — R(k)

(3.3) (%In + Hy)Z®) 4 Z(’“)(%Im +Hg)=R®

Similarly, by solving the second equation of (2.1) approximately, alternative systems
3.4 ol + SOZ2%+3) 4 zk+3) g, — plk+3)

( ) ( n A) B

(3.5) S4Z*+2) 1 7*+3) (al,, + Sp) = RE+2)

(3.6) (1 + 82058 + ZE+D(T L, + Sp) = R+

can be obtained. Therefore the THSS algorithm for Sylvester equations can be written as

follows:
IHSS Method for system AX + XB =C
1. Compute RO =C — AX©® — xOp
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2. FOR k=0,1,2,--- , until convergence DO

3 solve one of the systems (3.1) or (3.2) or (3.3), with the CG method

4 xk+3) = x (k) 4 z(k)

5. Rt — ¢ — axtty) — x(kti)p

6. Solve one of the systems (3.4) or (3.5) or (3.6), with a Krylov-based method
7. Xk+1) = x(kb+3) 4 Z(k+3)

8. R+ — o — Axk+l) _ x(k+1) B

9. END DO

The convergence results for IHSS iterations are similar to Theorem 3.1 in [1].

4. NUMERICAL EXPERIMENTS AND CONCLUSION

All numerical experiments presented in this section were computed in double precision
with some MATLAB codes on a computer Intel(R) Core(TM)2Duo CPU T7250 2.00 GHz

with 2.00 GB RAM memory. All iterations are started from the zero matrix for initial X (©
IR®)||p
1RO
report number of iterations and CPU time (in parentheses) and compare HSS and THSS

iterations with BCG and CGNE methods. We consider four test problems as follows:
Problem 1. A = tridiag(—2,4,—1) and B = tridiag(—1 — 47,2, —1 + 3%7), with
v = 10.

Problem 2. A = pentadiag(1,—16,30,16,1) and B = hilbert(5).
Problem 3. A = tridiag(—1— 35,2, -1+ 35) and B = tridiag(—1— %,
with v = 10. In all of these problems we consider m = 5 and n = 100.

< 1071°, For each experiment we

and terminated when the current iterate satisfies

27 -1+ mQJ}rl)’

The results of the previous problems are given in the following table:

‘ Method H Problem 1 ‘ Problem 2 ‘ Problem 3 ‘
BCG 76(0.019 25(0.003) | 65(0.015)
CGNE 67(0.021 11(0.015) | 96(0.042)
HSS 20(0.072 7(0.052) | 32(0.151)
THSS 20(0.020 7(0.015) | 32(0.079)

— | — | ~— | —

Problem 4. A = tridiag(—2,4,—1) and B = AT. The results of this problem are
givie ienhhseéollop i BESSARIR] THSS iterations have some advantages over BCG and CGNE

iterations, especially when n is small or m << n; because in this case the number of
HSS and IHSS iterations is less than other methods and CPU time has not significant

difference.
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| Method || n=8 | n=16 | n=32 | n=64 | n=128 | n=256 |

BCG | 23(0.015) | 31(0.021) | 46(0.031) | 55(0.109) | 39(0.531) | 38(4.102)

CGNE || 31(0.015) | 55(0.016) | 68(0.033) | 71(0.141) | 71(0.873) | 70(6.489)

HSS 22(0.015) | 25(0.016) | 26(0.124) | 26(0.561) | 26(3.494) | 26(27.456)

THSS | 22(0.005) | 25(0.012) | 26(0.046) | 26(0.327) | 26(1.825) | 26(13.571)
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QUASI-DETERMINANT OF NON-SQUARE MATRICES
M. MABUDI'* AND A. H. SANATPOUR?

ABSTRACT. In this paper, inspiring the rook polynomials, the concept of determinant of

square matrices is extended suitably to non-square matrices.

1. INTRODUCTION

Matrices are widely used in different branches of science and engineering. Determinant
of a square matrix is one of the most important concepts in the matrix theory, which
is specially used in solving systems of linear equations. In this paper, we extend the
concept of determinant of square matrices to non-square matrices. Indeed, for arbitrary
natural numbers k and n, we associate a real number to a k X n matrix Agy,, denoted
by q — det(Akw«n), and call it quasi-determinant of Agy,. We also show that the function
q — det : My, — R has the main properties of the well-known determinant function
det : My x, — R, where My, is the set of all £ x n matrices with real entries. Our
proposed method for introducing quasi-determinant is an innovative method inspired by
rook movements in the chess game which also yields to some already known concepts like
rook polynomials [2]. This method is indeed based on a suitable use of dispersed diagonal

method, which can be also used for square matrices.

2. MAAIN RESULTS

For arbitrary natural numbers k£ and n, the coefficient of ™ (m € N) in the rook

polynomial is defined to be the number of maximum possible ways of placing m rooks in

2000 Mathematics Subject Classification. Primary 65F40; Secondary 15A15.
Key words and phrases. Determinant, Quasi-Determinant, Non-Square Matrix, Numerical Linear Al-

gebra.
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a k x n chessboard such that none of them threat each other, that is every two rooks are
placed in different columns and different rows [1]. Inspiring this idea, next we introduce
the concept of quasi-determinant for a & X n matrix with real entries. Before stating our
procedure we bring some contractions and definitions.

The Priority Principle: For natural numbers k& and n, consider the matrix

ai;p a2 - Aln

a1 a2 - Q2n
M =

ak1 Qg2 - kg

kxn

as a chessboard with no black squares:

a1l | a12 |- | G1n
a1 | G22 |+ | G2p
Qk1 | Ok2 | * " | Gkn

. In each row the priority among the entries is from left to right.
. In each column the priority among the entries is from up to down.

. The priority among the columns of the matrix is from left to right.

_ W N =

. The priority among the rows of the matrix is from up to down.

We study the set of all £ x n matrices in two groups:
First Type: Matrices Ay, in which & < n.
Second Type: Matrices Ay, in which k > n.
Now, we are in the position to introduce our procedure for calculating quasi-determinant

of a k x n matrix Agy,.

Procedure: First, we state our procedure for the matrices of the first type (k < n).

Step 1. Put the first rook in the square of a;; and calculate all possible positions of putting
k—1 rooks in the chessboard such that none of them threat each other. Considering
the Priority Principle, write down the product of entries of each possible positions.

Step 2. Do the same procedure described in step 1 by putting the first rook in the square
of a;; (2 <i<n).

Step 3. Apply the sign +/—, alternatively, to all the products obtained in step 1 and 2.
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Step 4. Consider every two signed product of step 3 in a bracket and apply the sign +/—,

alternatively, to these brackets.

Now, the quasi-determinant of Ay, is defined to be the sum of the finally obtained entries
in step 4. In order to get the definition of quasi-determinant for the matrices of the second
type, do the same procedure as described above with focus on column-operations instead

of row-operations.

It must be mentioned that the quasi-determinant of a square matrix A, «,, using the
above procedure, is equal to the previously known determinant of A, «,. This means that
the above mentioned procedure leads to a generalization of square determinants. Next, as
an example we apply the above mentioned procedure to compute the quasi-determinant

of a non-square matrix.

Example 2.1. Consider a general 2 x 3 matrix

A=

a1 a12 G13]
2x3

a1 a2 a23

and put it on the board:

ail | ai2 | a13

az1 | a2 | G23

Using the Priority Principle, we focus on the row-operations and begin with a1;. Having
the Priority Principle in the mind, we place the second rook such that two rooks do not
threat each other. So, the only possible positions for the second rook in the board will be
as3 and ago. Therefore, in step 1 we have the products a11a12 and ai1a9e3. Doing the step
2, we obtain the products ajoa91, a12a93, ai3as; and ajzase. Applying the signs +/— of

step 3 we obtain
+aiiaze — a11623 + G12021 — 412023 + A13021 — A13022.
Finally, applying the brackets of step 4 we get
+la11a22 — ar1a23] — [a12a21 — a12a23] + [a13021 — ai3a22),
which yields to the value of quasi-determinant of A as below:

q — det(A) = ajra2 — ar1a23 — a12a21 + a12a23 + a13a21 — A13G22.
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Example 2.2. Consider a general 3 x 2 matrix

ail  ai12
A= | ay axp
as;  as2

3x2

Applying a similar discussion like the one given in Example 2.1, we get:
q —det(A) = arna — araze — az1a12 + a21a32 + az1a12 — a31022.

Next, we show that row (and column) expansion, which is used in computing the de-
terminant of square matrices, can be also used in computing the quasi-determinant of
non-square matrices in some cases. Before stating this result, we need to give the follow-

ing definitions:

Definition 2.3. (Minor) For natural numbers k& and n, the (i, 7)-minor of the matrix
Ajxn, denoted by M;;, is defined to be the quasi-determinant of the (k — 1) x (n — 1)

matrix obtained by removing the i** row and j* column of Ay .

Definition 2.4. (Cofactor) For natural numbers &k and n, the (i, j)-cofactor of the matrix
Ajxn, denoted by Cjj, is (—1)"*J times the corresponding minor M;;, that is
Cij = (=1)"* M.

Theorem 2.5. Let k and n be natural numbers with |k —n| =1 and Agxn = (aij)kxn be
a k X n matriz with real entries. If k < n, then for each 1 <1 <k we have

q—det(A) = a;1Ci1 + apCio + -+ + ainCin.
Also, if k > n then for each 1 < j < n we have

q— det(A) = aleIj + CLQjCzj + -+ aijkj.

The validity of Theorem 2.5 in the general case (of arbitrary natural numbers & and n)

is leaved as a question.

Remark 2.6. Besides row and column expansion, there are also some other well-known
properties of determinant of square matrices which can be proved for the quasi-determinant

of non-square matrices. Some of these properties are regarding the following items [2]:
e Multiplying one of the rows of a matrix of the first type by a constant.

e Multiplying one of the columns of a matrix of the second type by a constant.

e Quasi-determinant of the transpose of a non-square matrix.
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e Quasi-determinant of upper and lower triangular non-square matrices (after suit-

ably defining these concepts).

Remark 2.7. An interesting property of quasi-determinant of non-square matrices is that
if |k —n| =1 then ¢ — det(Akxy) is equal to the determinant of the related square matrix

obtained by adding one row or one column with all entries equal to 1.
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SOME PROPERTIES OF HANKEL MATRIX WITH APPLICATION IN
SINGULAR SPECTRUM ANALYSIS

RAHIM MAHMOUDVAND! * AND NADER NAJARI?

ABSTRACT. Hankel matrices play an important role in diverse areas of mathematics such
as approximation and interpolation theory, theory of moments, stability theory, theory
of orthogonal polynomials, system theory. In this paper we study some properties of
Hankel matrix and mention to its application in the singular spectrum analysis, which

used as a powerful technique in time series analysis.

1. INTRODUCTION AND PRELIMINARIES

In linear algebra, a Hankel matrix, named after Hermann Hankel, is a matrix with constant
skew-diagonals. The Hankel matrix is closely related to the Toeplitz matrix (a Hankel
matrix is an upside-down Toeplitz matrix) [1]. A Hankel matrix is a matrix, finite or
infinite, whose i, j entry is a function of 4 j [2]. Hankel matrices are an important family
of matrices and have various applications in mathematic, physics, engineering, statistics
and so on.

Singular Spectrum Analysis (SSA) is a non-parametric powerful technique for time series
analysis incorporates the elements of classical time series analysis, multivariate statistics,
multivariate geometry, dynamical systems and signal processing ([3]). The aim of SSA is to
make a decomposition of the original series into the sum of a small number of independent
and interpretable components such as a slowly varying trend, oscillatory components and
a structureless noise. A short description of the SSA technique is given in the following

(for more information see [3]).
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Definition 1.1. An L x K Hankel matrix H is a rectangular matrix of the form:

hi hso ... hg
H— 7712 .h3 TLK-H
hy hpir ... hy

where, N =L+ K — 1.

1.1. Short Description of SSA. The basic SSA method consists of two complementary
stages: decomposition and reconstruction; each stage include two separate steps. At the
first stage we decompose the series and at the second stage we reconstruct the noise free

series and use the reconstructed series for forecasting new data points.

Stage I. Decomposition. 1st step: Embedding. Embedding is as a mapping that trans-
fers a one-dimensional time series Y = (y1,...,yn) into the multi-dimensional series
X1,..., Xg with vectors X; = (yi,...,vi1r-1) € RY , where L (2 < L < N —1) is the
window length and K = N — L 4+ 1. The result of this step is the trajectory matrix

(1.1) X =[X1,...,Xk] = (ﬁij)ﬁ}il-

Note that the trajectory matrix X is a Hankel matrix, which means that all the elements
along the diagonal 7 + 7 = const are equal.

2nd step: SVD. In this step we perform the SVD of X. Denote by Ay,...,Ar the
eigenvalues of xXxT arranged in the decreasing order (A > ... Ay > 0) and by Uy,..., Uy,
the corresponding eigenvectors. The SVD of X can be written as X = X; +--- + X,
where X; = VAU VT and V; = XTU; /v (if A = 0 we set X; = 0).

Stage II. Reconstruction. 1st Step: Grouping. The grouping step corresponds to split-
ting the elementary matrices into several groups and summing the matrices within each
group. Let I = {i1,...,i,} be a group of indices ij,...,i,. Then the matrix X; cor-
responding to the group I is defined as X; = X; + --- + X;,. The spilt of the set
of indices {1,...,L} into disjoint subsets I,...,I, corresponds to the representation
X =Xy, +---+ Xy, . The procedure of choosing the sets I,..., I, is called the grouping.
For a given group I, the contribution of the component X; is measured by the share of
the corresponding eigenvalues: » . A;/ Zgzl i, where d is the rank of X.

2nd Step: Diagonal averaging. The purpose of diagonal averaging is to transform a

matrix to the form of a Hankel matrix which can be subsequently converted to a time
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series. If z;; stands for an element of a matrix Z, then the k-th term of the resulting series
is obtained by averaging z;; over all 7, j such that i+j = k+1. By performing the diagonal
averaging of all matrix components of X;; in the expansion of X above, we obtain another
expansion: X = Xh +...4+X I,, Where X I; 18 the diagonalized version of the matrix X I
This is equivalent to the decomp051t10n of the initial series Yx = (y1,...,yn) into a sum
of m series; y; = E;’l 1 g}ij) where }7]&,]) = @413'), . ,@{]\J,)) corresponds to the matrix f([]. .

In what follows, we use two groups of indices, Iy = {1,...,r} and [y = {r+1,...,L}
and associate the group I = I; with signal component and the group Io with noise. It is
worth mentioning, if z;; is the 4 4% entry of the matrix X then applying diagonal averaging
formula follows that:

_ 1 =
(1.2) Y; = W Z Tij,j41—i
i=s1

where, s1 = max{1,j+1—K}, s = min{L, j} and g; is the " element of the reconstructed

series Y.

2. MAIN RESULTS

Theorem 2.1. Let A be an arbitrary L X K matriz and B be its corresponding Hankelized
form. Then:

(2.1) TY > 1%
where, TE = tr(UUT).

Proof. The element b;; of the matrix B is as follows (see the property of a Hankel matrix

in equation (1.2)):

1 >
2.2 b = ———— _
( ) ij 82_81+12al,sl
l=s1
where, s; = max{l,s — K}, so = min{L,s — 1}. Note that equation (2.2) indicates that
b,s—1 is just the arithmetic mean of the elements {a;s_;;! = s1,..., 52}, which is denoted

as in the following. Let us now consider T} — T§:

L K L K N+1 s9
L L _ 2 2 . 2 9
T-Tg = Y D> af=D > 0= > (atsi—0i)
i=1 j=1 i=1 j=1 5=2 l=s1
N+1 s9 N+1 s9
2 —2 _\2
= > Y (@—ad) =Y (@i —a)* 20,
5=2 l=s51 $s=2 l=s1
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Corollary 2.2. Let {\,,...,Ar,} and {\i,,..., A5} denote the eigenvalues of the ma-
trices A and B, respectively. Then:

N+1

L L
(2.3) YNhin =) dipg+ Y o
i=1 i=1 §=2

52

where 02 = Y (ajs-1 — bl,s,l)2 is the diagonal variance of the s secondary diagonal of

l=s1

the matriz B, and s; = max{l,s — K}, sy = min{L,s — 1}.

Corollary 2.3. Matrixz B is the nearest matriz to A among all Hankel matrices of dimen-
ston L x K with respect to Tﬁ.([t shows that hankelization by diagonal averaging attains

mazximum information.)
Theorem 2.4. Let B denote the Hankelized form of the arbitrary L x K matriz A. Then:
7% n = Tk~ T,

Proof. Let us first show that tr(AB”) = ¢tr(BBT).

L K N+1 sy
T
tr(AB") = Zzaijbij = Z Z a1y
=1 j—1 s=1 I=s;
N+1 s»o N4+1
= L =2 T
= Z Z as—10s = Z wy_ a5 = tr(BB")
s=1 [=s1 s=1

Using the above equality, we have:

Tx-s = tr((A—-B)(A-B)")
= tr(AAT) + tr(BBT) — 2tr(ABT)
= tr(AAT) —tr(BBT) = T% — T%.

g

Corollary 2.5. Let {\i,,..., A} { Mg, s Angt and {\,_,,.... A\r,_p5} be the eigen-
values of the matrices A, B and A — B, respectively. Then:

L L L
(2.4) D X =D Xia— D Aip-
=1 =1 =1
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Corollary 2.6. Let {\1,,..., AL, }, { Mgy s ALt and {\i, 5,..., AL, 5} be the eigen-
values of the matrices A, B and A + B, respectively. Then:

L L L
(2.5) D Niaes = Xig +3) Aig
i=1 i=1 i=1
3. CONCLUSION

In this paper the role of Hankel matrix and hankelization by diagonal averaging are
considered in SSA procedure and several theorems about the propeties of Hankel matrix
and hankelization process are presented. According to the mentioned theorems and their
conclusions it can be seen that hankelization is an optimal procedure in SSA. Moreover
review of SSA show that embedding time series to Hankel matrix in the first step and
smoothing via hankelization in the final step makes SSA differ from (and reliable than)
principal component analysis which is an SVD based technique for analysis of multivariate
data.
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RELATIONSHIP BETWEEN SINGULAR VALUES AND RANK OF
THE HANKEL MATRIX

RAHIM MAHMOUDVAND!* AND MOHAMMAD ZOKAEI?

ABSTRACT. Hankel matrices are an important family of matrices and have various ap-
plications. In this paper the effect of changing dimension of the Hankel matrix on the

singular values is considered.

1. INTRODUCTION AND PRELIMINARIES

A Hankel matrix is a matrix, finite or infinite, whose ¢, j entry is a function of 7 + 5
[1]. In other words a matrix whose entries are the same along the anti-diagonals is called
a Hankel matrix. Hankel matrices play a role in diverse areas of mathematics such as
approximation and interpolation theory, theory of moments, stability theory, theory of
orthogonal polynomials, system theory, as well as in communication and control engineer-
ing including filter design, identification, model reduction and broadband matching (for
more details see [2]). Thus, these type of matrices were subjected to intensive study with
respect to their spectrum ( collection of eigenvalues ) and many interesting results were
derived. Since closed form computation of eigenvalues is not known the effect of changing
dimension of matrix on eigenvalues were not investigated in detail. Here we consider this
problem and try to find the effect of changing dimension of the hankel matrix on singular

values.

2000 Mathematics Subject Classification. Primary 15A18; Secondary 15A03, 47B35.
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2. MAIN RESULTS

Definition 2.1. An L x K Hankel matrix H is a rectangular matrix of the form:

hi hso ... hg
H— 7712 .h3 TLK-H
hy hpir ... hy

where, N =L+ K — 1.

Throughout of this paper, the matrices to be considered are over the field of real num-
bers. Moreover we consider different values of L whereas N is supposed to be fixed. Recall
that for any operator A the operator AA” is always positive, and its unique positive square
root is denoted by |A|. The eigenvalues of |A| counted with multiplicities are called the
singular values of A. As we know the number of non-zero eigenvalues of HH” is equal to
the rank of H. Below, we try to find some inequalities between the ordered eigenvalues
with respect to different values of L. Let Af’N denote the j™ ordered eigenvalue of HH”
where H is the Hankel matrix L x K. According to Cauchy’s Interlacing Theorem (see,

[3]) it can be given the following theorem:

Theorem 2.2. Let H be a L x K Hankel matriz as defined above. Then, we have:

L,N L—m,N— L,N S
(2.1) AT = A " mz)\jerforj—l,...,L—m.
As it appeared from the title of this paper, we would like to find a relationship between
)\L—m,N
J
consider four cases and show that we can find general relation for some classes of hankel

and )\]L’N, therefore Theorem 2.2 shouldn’t use directly. In the following we

matrix.

Case 1: L > 1, rank of H = 1. It is obvious that we have one positive eigenvalue.

Therefore we can write:

L L K+il-1

LN _ LN _ Ty _ < 2

(2.2) A=A =@EET) =Y Y B
j=1 =1 j=I

It is not difficult to see that, eigenvalue )\IL N increases with L till [%] and then decreases
for L > [%] + 1. Therefore we have )\ffm’N < )\IL’N,L < [%] provided that the
conditions of case 1 satisfied. In the following example we give a model that has these

conditions.
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Example 2.3. Let hy = e®t®{ ¢ = 1,... N. It is easy to see that the corresponding

hankel matrix H has rank one.

Case 2: L =2, rank of H = 2. In this case, there are at most two eigenvalues which are

the solution of the following quadratic equation:

2

N-1 N N-1 N N-1
2 2 2 2 2 _
(2.3) Y — E hj + E h]- A+ E hj E hj — E h]‘h]‘_H =0
Jj=1 Jj=2 Jj=1 Jj=2 Jj=1

Equation (2.3) has two real solutions, and hence we have two real eigenvalues. The first

eigenvalue (larger one) is:

N-1 9 N 9 9 5 \2 N-1 2
>3 hi+ 3 b4 | (A —h%)" +4 21 hjhji1
= ]:

2N
(2.4) AN =

Equation (2.4) shows that:

2

> ALY i Nz_lh-n > h2h?
Z M ! 2. iy | 2 hilyy
)\2,N . Jj=1

1 - )2

LN e [N 272
<A by | < hiR
]:

N
where Ai’N = ‘21 h; (when L =1).
‘]:

As it indicated in case 1 we can’t find a general inequality between A]L*m’N and )\JL’N.
But this example show that we can do it considering some conditions. Of Course in practice
it seems that the first condition usually satisfied for a wide classes of models. For example

it can be seen that the condition is equivalent to monotonicity of the sequence {hj}j-vzl
N-1

For a non-negative (or non-positive) monotone sequence, we have > hjhjy1 > hihy.
j=1

Applying equation (2.4) follows )\2 N> ZN ! h2 >\1 N=1 Greater class has obtained if

we consider positive data which all observations are bigger that the first one and hy > %

N—1
Under this condition it is easy to show that Z hjhji1 > hihy and therefore )\2 N > >\1 N
Jj=
Of Course we will see in the next example that there are some models that have not these
condition but A% N> > )\1 N
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Case 3: L > 2, rank of H = 2. In this case HH” has two positive eigenvalues. To obtain

the eigenvalues first of all note that:
(2.5) det \I—-HHT) =X e Mt e +er
where the coefficients of ¢; can be obtained from following lemma:

Lemma 2.4. (Theorem 1.2.12 in [4]) If A is a real or complex n x n matriz with eigen-
values A1, ..., A\, then for 1 <k <n,

(1) sk(A) = (=1)*c:

(2) si(A) is the sum of all k x k principal minors of A.

Equation (2.5) shows that the eigenvalues of HH” in this case are the solution of the

following quadratic equation:

(2.6)
L K+I-1 L—1L—1 K+1—-1 K+1—-1 k+1—1 2
SRS SCES 9 311 ol7) N (b ST B B o0 IS
=1 j=l 1=1 i=1 j=l j=l j=l

The first eigenvalue (larger one) is:

L
2.

h? + VA
LN _ =1 j=
(2.7) AN = !

2

where Ay, is the discriminant of the quadratic equation (2.6).

K+i1-1
l

Case 4: L > 2, rank of H > 2. Applying equation (2.5) it can be obtained characteristic
equation and solving it give eigenvalues of HH’. However, calculating their functional
forms are very sophisticated in this case and therefore we consider several series to check

the interesting relationship between eigenvalues.

Example 2.5. Let hy = ag + ajt + aot?,t = 1,...,N. It is easy to show that rank of
corresponding hankel matrix H is 3. Figure 1 show three eigenvalues of H for g = 1,01 =
2,9 = 3, N = 20. As it appeared from this figure we can say that all eigenvalues of H
N+1
2

increase for L < [ ] and then decrease.

3. CONCLUSION

In this paper we studied the behaviour of the singular values of a hankel matrix with
respect to it’s dimension. We considered four cases and showed that for a wide classes of
hankel matrix, )\JL’N increases with L in L € {1,..., [%] }.
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FI1GURE 1. Plot of )\JL’N with respect to L for N = 20.
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INVERSE EIGENVALUE PROBLEM FOR A SPECIAL KIND OF
SYMMETRIC MATRICES

SIMA MASHAYEKHI** , S. MEHDI KARBASSI 2 AND S. ABOLFAZL SHAHZADEFAZELI 2

ABSTRACT. In this paper, inverse eigenvalue problem for bordered diagonal matrices are
reconsidered. These are matrices whose elements are equal to zero except for the first
row, the first column and the diagonal elements. The necessary and sufficient conditions
for existence of a symmetric bordered diagonal matrix, in which a; = ma; are the
diagonal elements and bj—1 > 0,5 = 2,--- ,n are the elements of first row of this matrix,
are determined. A new algorithm to make such matrices is derived and some numerical

examples are given to illustrate the efficiency of the method.

1. INTRODUCTION AND PRELIMINARIES

We consider the problem of constructing a symmetric bordered diagonal matrix of the

form:
ay by by b1
by maj 0 0
(1.1) A= by 0 may --- 0 ,@1 €ER,b;>0, meR
bn—l 0 0 s mai

This class of matrices appear in certain symmetric inverse eigenvalue and inverse Sturm Li-
ouville problems, which arise in many applications, including control theory and vibration

analysis [1, 2, 3].
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Throughout this paper, we denote by A; the j x j leading principal submatrix of A , by
¢j(A) the characteristic polynomial of A; and by )\gj ) < )\éj ) << >\§j Jthe eigenvalues of
Aj,j =1,...,n. This work is motivated by the results in [4, 5]. The authors introduced
two special cases of inverse eigenvalue problems, for constructing a symmetric tridiagonal

matrix with constant diagonal elements.

We develope the case in which there exists a unique matrix, A, of the form as defined
n (1.1), if and only if

(1.2) A <A B A AP aTD )
(1.3) AW 42D = m+ 1\ | j=2,...,n, meR.
Note that the cases peresented in [5] are obtained for m = —1 and m = 1 in relation(1.3).

We also show that in computation of matrix A, the characteristic polynomial of every
leading principal submatrix of A is independent of other submatrices and hence any ele-
ment of A may be calculated independently. This leads to an algorithm for constructing
a matrix of the form (1.1) which is much simpler than the algorithm in [4], besides fewer

calculatiopns are required. Finally, we show an example to illustrate the results.

2. MAIN RESULTS

In this section we construct a symmetrical borderd diagonal matrix A of the form (1.1),
from the minimal and maximal eigenvalues Agj ), )\5-] ) of all its leading principal submatrices
A;,5 = 1,2,...,n. For convenience of discussion, let us define by = 1, ¢o(A) = 1 and

$j(X) = det(M; — Aj). We start with the following well known result:

We also need the following theorem:

Theorem 2.1. Let 2n—1 real numbers )\gj), )\g-j) ,j=1,---,n be given. Then there exists

a unique n X n matriz A of the following form

ap by by - by
b1 a9 0 0
(2.1) A= b2 0 az --- 0 ,ajER,bj>0

bp-1 0 0 -+ a,
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such that Agj) and )\g-j) are the minimal and the mazimal eigenvalue of each leading prin-

cipal submatriz A;,j =1,...,n of A, respectively, if and only if

(2.2) A <A« d@ A A a ) ),

Proof. Seel[5]. O

From this theorem the following corollary is deduced.

Corollary 2.2. If 2n — 1 real numbers )\g ),)\§) ,j = 1,-+-.n satisfy (2.2), then the

elements of unique matriz A are in the following form:
ay = AV
and for j =2,....,n
WO TS O — ai) ¢J_ OIS O — a)
;1O TS O —ay) - qsy 1O T 0 - i)

(2.3) a; =

AP =251 (A (WD)
i1 OV TS O — ) — ;1 OO TES 07 — a:)

(2.4) b =

ar b1 by -+ by
b1 maq 0 ot 0
(2.5) A= b2 0 ma --- 0 ,a1 €R,b;>0, meR
b1 0 0 - ma

the sequence {¢j(\)} satisfies the recurrence relation
(2.6) Bi(N) = (A —ma1)’ 2| (A = a1)(A — may) Zzﬂ] , 2<j<n

Proof. The result can be verified by direct expansion of determinant of A, easily. O

Corollary 2.4. If A is a matriz of the form (2.5), then may is the repetitive eigenvalue
of order j — 2 of leading principal submatriz A; for 2 < j <n. (See equation (2.6) ).
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(4) ()
A0 =] .
a unique n. X n matriz A of the form (2.5) such that Agj) and Ag-]) are the minimal and the
mazimal eigenvalue of the leading principal submatriz A; , j =1,...,n of A, respectively,
if and only if

Theorem 2.5. Let 2n—1 real numbers X ,j=1,...,n be given. Then there exists

(2.7) A <A @ A A o)
(2.8) A 420D = m+ A" j=2,...,n, meR
Proof. We have proved this theorem with attention to lemmas and theorems that we
introduced later. g
Example 2.6.

>\§6) >\§5) )\YL) )\53) )\52) )\gl) )\52) )\:())3) )\514) )\g5) )\éG)

—21.151 —-9.117 —-8.13 —6 —59 —4.7 -3.1898 —3.0898 —0.9598 0.0272 12.0612
These numbers satisfy (2.7) and (2.8) of the Theorem 2.2, i.e.

A AW = (0934 + DAY L =26

Therefore with the given spectral data, the symmetric bordered diagonal matrix is as

follows:
—4.7000 1.3462  0.5301 3.2765  2.8375  15.9643
1.3462 —4.3898 0 0 0 0
A= 0.5301 0 —4.3898 0 0 0
3.2765 0 0 —4.3898 0 0
2.8375 0 0 0 —4.3898 0
15.9643 0 0 0 0 —4.3898

Now suppose the matrix A is given in above form. Clearly, A is in consonance with (1.1),
with m = 0.934 and the eigenvalues of leading principal submatrices A; of A are:
o(Ay) ={-4.7}

o(As) = {—5.9000 , —3.1898}

o(As) = {—6.000 , —4.3898 , —3.0898}

o(Ay) = {—8.1300 , —4.3898 , —4.3898 , —0.9598}

o(As) = {—9.1170 , —4.3898 , —4.3898 , —4.3898 , 0.0272}

o(Ag) = {—21.1510 , —4.3808 , —4.3898 , —4.3808 , —4.3898 , 12.0612}
We observe relations (2.7) and (2.8) hold and

A +A0 = (0934 + DAY = —9.0808 , j=2,....6.
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ON SOLVING SYSTEM OF LINEAR EQUATIONS BY THE VHPM
M. MATINFAR'* AND M. GHASEMI?

ABSTRACT. As we know finding the exact solutions or the solutions that are close to
the exact ones of the system of linear equations is very important because we can’t use
the approximate value for some systems. For example in electronic systems using the
solutions that aren’t close to the exact ones can be very dangerous. Hence, applying the
appropriate method with high rate of convergence and accuracy is very important. In
this paper we introduce the Variational Homotopy Perturbation Method (VHPM) as a

helpful and reliable method for finding the solutions of the system of linear equations.

1. Introduction and Preliminaries

The chines researcher J.H.He introduced an effective method for solving different kinds
of PDEs and ODEs and called that Variational Iteration Method (VIM) [1]. Combined
VIM with Homotopy Perturbation Method (HPM) [2] made the modification on the result
of combination and called that the VHPM. This method is an effective instrument for
solving linear and nonlinear PDEs and ODEs. It has been applied for solving different
kinds of equations and by comparison which was made between the obtained results and
the exact solutions, rapid convergence was approved [3, 4]. Recently Keramati used HPM
[5] for solving the system of linear equations for the first time. In this article we use
the VHPM for solving this system and show that this method is effective not only for
differential equations but also for system of linear equations and this ability of the VHPM
made it more reliable and applicable. In following first we introduce the VHPM and to
demonstrate the above idea numerical examples are given. In solving procedure we show
that the VHPM is easy to apply and has rapid convergence.

2000 Mathematics Subject Classification. 34A30; 35A15.
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2. Basic idea of the VHPM

To illustrate the basic idea of the VHPM, we consider the following general differential

equation
(2.1) Lu+ Nu = g(x)

where L is a linear operator, N is a nonlinear operator and ¢g(z) is an inhomogeneous term.
According to the VIM as illustrated in previous subsection we can construct a correction

functional as follows:
t
(2.2) Unt1(z) = up(z) + / X7){Lu,, + Ny, — g(7) }dT,
0

where \(7) is a general Lagrange multiplier. Now we apply the homotopy perturbation
method

00 t o0 t
(2.3) nzz‘apnun = ug(z) +p /0 A(7) {N (Z pnﬂn>} dr — /0 A(7)g(7) dr,

n=0

which is the coupling of VIM and He’s polynamials and is called the Modified Variational
Iteration Method (MVIM). The comparison of like powers of p gives solutions of various
orders. For later numerical computation, we let the expression ¢, = Y -, ui(z,y,t) and

on =Y i oVi(x,y,t) to denote the n-term approximation to u(x,y,t) and v(x,y,t).

3. Numerical example

Example 1.4

Now consider this system of linear equations:

10z — 22 + 223 = 6,
—x1 + 1lxe — 3 + 314 = 25,
221 —xo + 1023 — x4 = —11,
3ro — x3 + 8x4 = 15.

(3.1)
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with the exact solution z = (1,2,—1,1)!. As the same as previous example \; = =1

10
Ay = 1—11, A3 = I—& and \y = %. By considering the VHPM for each equation we have:

ko k k
kz_ofﬁlkp = X10—1—0[—kz_0962kp +2]§$3k1) ]+1_03
ko k k k
kzofﬁ%p = X20—ﬁ[—k20961kp —kzoﬁ%kp +3§$4kp ]+ﬁa
3k 30" 5 1k 2% 4k 10’
k=0 k=0 k=0 k=0

o0

- k Py k K 19
> wpt = X40—§[3Zfﬁ2kp =) wup ]+§'
k=0 k=0 k=0

(3.2)

By choosing
XU = (07 07 07 O)ta

and by comparison of like powers of p we have:

6
0. _ 9
P 7T 10’
plixy = _—1(—36 + 2z30)
1 T11 10 20 30)s
p’izy = I—O(—mm + 2x31),
(3.3)
and for second equation:
po T20 = §a
11
1 -1
D T2 = H(—ﬂvw — 30 + 3749),
9 -1
DT = H(—ﬂvn — 31 + 3741),
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and as the same as second one for two last ones:

0 . x - _].]_
p T30 = 10 )
plizy = _—1(23310 — 90 — Z40)
. 10 b)
-1
plirzy = 1—0(23311 — o1 — Z41),
15
PO ‘T4 = R
plizy = %(39620 — Z30),
2 _1
P Ty = ?(3:521 — Z31),

So, by this recursive formulation we can find the component of the solution of this system
of linear equations. Obtained results that are provided in table (2) shows that with this

method we have high rate of convergence.



152 M. MATINFAR, M. GHASEMI

Table 2: The obtained results by the VHPM

iteration T To T3 T4
1 0.6000 2.2727 —1.1000 1.8750
2 1.0473 1.7159 —0.8052 0.8852
3 0.9326 2.0533 —1.0493 1.1309
4 1.0152 1.9537 —0.9681 0.9738
) 0.9890 2.0114 —1.0103 1.0214
6 1.0032 1.9922 —0.9945 0.9944
7 0.9981 2.0023 —1.0020 1.0036
8 1.0006 1.9987 —0.9990 0.9989
9 0.9997 2.0004 —1.0004 1.0006
10 1.0001 1.9998 —0.9998 0.9998

4. Conclusion:

This paper presents the new use of the VHPM for solving the system of linear equations.
By studying the tables, it is clear this method is very good because of it’s simplicity, rapid
convergence and excellent agreement with the exact solution of the systems and contrary

on the other methods it doesn’t need difficult and time consuming computation.
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ON SOLVING FULLY FUZZY SYSTEM EQUATIONS BY TS
DECOMPOSITION METHOD

M. MATINFAR'* AND H. KAMYAB

ABSTRACT. This paper tries to extend the TS decomposition method for solving fully
fuzzy linear systems (FFLS). For finding a fuzzy vector Z that satisfies A% = b, where A
and b are respectively a fuzzy matrix and a fuzzy vector, we employ Dubois and Prades
approximate arithmetic operators on LR fuzzy numbers. We also transform the FFLS
and use the TS decomposition method for solving an FFLS.

1. Introduction and Preliminaries

A general model for solving a fuzzy linear system whose coefficient matrix is crisp and

the right-hand side column is an arbitrary fuzzy vector, first proposed by Friedman et al.

[5].
Definition 1.1. Consider the n x n fuzzy linear system of equations:

( — —_— —_— — . __ ~
(a11 ®@ 1) ® (a12 ® x2) B ... B (a1p, ® Tp,) = by,
(@21 @ 77) ® (a22 @ T2) @ ... ® (d2n @ Tp) = b,

(n1 @ 1) ® (an2 ® T2) @ ... ® (Gnn ® Tp) = by

The matrix form of the above equations is

\

A®7 =0,

2000 Mathematics Subject Classification. 34A30; 49M27.
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where the coefficient matrix A = (aij), 1<i,j <nisanxn fuzzy matrix and z;, b; €
F(R). This system is called a fully fuzzy linear system (FFLS).

In this paper we are going to find a positive solution of FFLS ARz = E, where

A= (A,M,N) >0, b= (b,h,g) >0 and 7 = (z,y,2) > 0. So we have

(A,M,N) ® (z,y,2z) = (b, h,g).

Definition 1.2. [2] Consider the positive FFLS (1.1). 7 is a solution, if and only if

Az = b,
(1.2) Ay+ Mz = h,
Az+ Nz =g.

In addition, if y > 0,z > 0 and z —y > 0 we say Z = (z,y, z) is acosistent of positive FFLS

or for abbreviation consistent solution. Otherwise, it will be called dummy solution.

2. TS decomposition

We shall prove our main results on Triangular and Symmetric decomposition in this
section. Assume that A = (4, M, N) be a non-negative fuzzy matrix, where A is a non-

singular and nonsymmetric. We can write

(Az, Ay + Mz, Az + Nz) = (b, h,g).

Thus we have

Az =b,
(2.1) Ay+ Mz = h,
Az+ Nz =g.

In other words we have

Aj:b :>$:A_1b,
Ay=h—Mz =y=AYh— Mz),
Az=g— Nz = 2= A"'(g— Nz).

Theorem 2.1. [1] For every nonsingular and nonsymmetric nxn matriz A, whose leading
principal sub matrices are nonsingular, there exists S and T such that A =TS, where T

is triangular and S is symmetric and positive definite.
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Compute T'S-decomposition for crisp matrix A as

A=TS.
For system of (1.2) we have
TSx = b,
(2.2) TSy=h— Mz,
TSz=g¢9g— Nzx.
If Sz =t1,Sy =ty and Sz = t3 then
Tty = b,
(2.3) Tty =h— Mg,
Tts =g— Nzx.

At first we solve system of (2.2) and with applying cholesky decomposition or the conjugate
gradient method we can solving system of Sz = t1, Sy = t3 and Sz = t3 or system of (2.1).

For more information we can see [3, 4].

3. Numerical example

Example 3.1. Consider the following FFLS (taken from [2]):

(63 1? 4) (5? 23 2) (33 2? 1) g1 (58, 30, 60)
(12,8,20) (14,12,15) (8,8,10) 7o | = | (142,139,257
(24,10,34) (32,30,30) (20,19, 24) 73 (316,297, 514)

TS-decomposition for matrix A as follows:

A=TS,
that is
6 5 3 6.000 0 0 1.0000 0.8333 0.5000
12 14 8 = 8.6667  4.000 0 0.8333 1.6944 0.9167 |,
24 32 20 13.8333 11.000 2.000 0.5000 0.9167 1.5000

Thus, by using Eq.(9) we obtain

71 =(4,1,3), T2 =(505000,2), F3=(3,0.5000,1),
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(4,1,3)
z = | (5,0.5000,2)
(3,0.5000, 1)
As we see, the mentioned system has a same solution with LU decomposition method

which is proposed in [2].
4. Conclusion

In this paper a general model structure is presented for solving of linear equations (sys-
tems) with fuzzy variables and parameters. We proposed TS-decomposition for solving

the extended fully fuzzy linear systems and compared with some other works.
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ROOT- APPROXIMABLITY ELEMENTS OF Aut(SH,)
FARZOLLAH MIRZAPOUR

ABSTRACT. In this paper we study the root of automorphisms on Siegel upper half plane

of complex dimension 3.

1. INTRODUCTION AND PRELIMINARIES

Let Sym(n,C) be the space of n x n complex symetric matrices. Let SD, = {Z €
Sym(n,C) : || Z]|2 < 1} be the Siegel n—disk. Then SD,, = {Z € Sym(n,C) : || Z||2 < 1}
and dSD,, = {Z € Sym(n,C) : ||Z]l2 = 1}. The Shilov boundary of SD,,, denoted by
0n,SD,, is USym(n) = U, N Sym(n,C) the set of n x n unitary symmetric matrices. Let
SH, = {Z € Sym(n,C) : ImZ > 0} be the Siegel upper half plane. C1(SH,) the compact-
ification of SH,, which is diffeomorphic to SD,,. Then 9SH,,, 9,SH,, are diffeomorphic to
0dSDy,, 0,SD,, respectively. 0,SH,, is the shilov boundary of SH,. 91SD2 = 9dSD3 \ 92SDs
and 0;SHy = OSH3 \ 02SHs are the other strata of 9SDs and 9SHs respectively|1].

Definition 1.1. The symplectic group Sp(n,R) is defined as
Sp(n,R) = {M € GL(n,R) : M J,M = J,,},

where

(0] I

Jn = " ] €SL(2n,R).
-1, O

2000 Mathematics Subject Classification. Primary 26A51; Secondary 28A78.
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Equivalently

C D —cT AT
<= ATC and BTD are symmetric and A”D — CTB = I,.

(A B)ESp(n,R)@MA:(DT _BT>

Recall that Sp(n,R) acts on SH,, as follows:

A B _
A4:(C D>PMMP4AZ+EKZ+D)P

We will call these maps generalized Miibius transformations On SH,,, where the action M
and —M coincide. Then

PSp(n,R) = Sp(n,R)/{£I,}

is equal to the group of biholomorphisms of SH,,. The action of M € Sp(n,R) extends
continuously to C1(SH,,). Well known normal forms of conjugacy in SL(2,R) = Sp(1, R).

Theorem 1.2. Let X € SL(2,R), X # +1I5. Then X is conjugate to one and only of the
following normal forms in SL(2,R):

(a) (1)/& 2 a>1,

10 1 0
o=(3) =57
(c) Cib Z), a2+ b2 =1.

X € SL(2,R) is called hyperbolic, parabolic and elliptic if X is cojugate to one of the
forms in (a), (b) and (c) respectively.
We give in [1,theorem 3.3|,the normal forms of Sp(2, R) according to the location of a fixed
point of M, the spectrum of M and conjugacy of M to X ® Y, where X,Y € SL(2,R).
Every M € Sp(2,R) is conjugate to one of the forms:

a 0 0 0 a 0 0 0
0 8 0 0 1 o 0 0
Ila , I1b
) 0 0 ot ) 0 0 al —a?2
0 0 0 -1 00 0 ot
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a b 0 0 1 0 0
b a 0 0 1 2 0 0
Iic) ¢ | 12) ¢ la| < 1
0 a b 0 ¢ 2a 1
0 —b a 0 0 -1 0
10 0 0 0 0
0 a0 0 0 0
13) + “ a # +1, 14) “ o=+l
501 0 L0 10
00 0 1/a 0 & 0 o
aq 0 —C1 0
0 0 0
1) a2 a2+ =1,
cgc 0 o
0 6 O a;l
a1 0 b1 0
0 0 b
I11) @2 2l @+ =a =1

where 4,61 and d9 = 0, +1.

2. MAIN RESULTS

In order to determine the square root of automorphisms, we consider different cases
according to the location of a fixed point of M. If H is upper half plane in C, then the
Aut(H) = PSp(1,R) = PSL(2,R) = SL(2,R)/{*1>}.

Definition 2.1. Let G be a topological group with unit e. An element z in G is called
root- approximable, if there exists a sequence (z,) in G such that

(i) 22 =2, n=0,1,2,..., (ii) lim z, =e.
n—o0

Theorem 2.2. Aut(H) is root approzimable group.

Since the Aut(SH,) = Psp(2,R) = SP(2,R)/{+I4}. Every M in Sp(2,R) is root approx-
imable iff for all N in Sp(2,R), NMN~! is root approximable. Therefore it is enough to

show that the canonic form in theorem 3.3[1] is root approximable.
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Theorem 2.3. Some elements of Aut(SH,) have a square root in Aut(SH,), thus it has

root approzimable subgroups.
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CHARACTERIZATION OF COMPLEX 2-INNER PRODUCTS BY
COMPLEX FORMS

S. A. MOUSAVI"

ABSTRACT. Let X be a complex linear space of dimension greater than 1. In this paper,
we define a family of complex forms on X*. We are going to characterize all complex
2-inner product on X by this family. Moreover, a number of basic properties of these

forms are obtained.

1. INTRODUCTION AND PRELIMINARIES

The concepts of 2-inner products and 2-inner product spaces have been intensively

studied by many authors in the last three decades [1]. Here we give the basic definition

and the elementary properties of 2-inner product spaces [2, 3].

Definition 1.1. Let X be a linear space of dimension greater than 1 over the field K, when

K =

C (or K = R). Suppose that (-,-|-) is a K-valued function defined on X3 = X x X x X

satisfying the following conditions:

211:
212:

213

(xz,z|z) >0, and (z,z|z) = 0 if and only if z and z are linearly dependent,

<$7 $|z> = (zv Z|l‘>,

: (y,z]2) = (z,yl2),
214:
215:

(ax,y|z) = a(z,y|z), for any scaler a € K

(z +2',ylz) = (z,yl2) + (¢, yl2),

where z,2',y.2 € X. The functional (-,-|-) is called a complex (or real) 2-inner product

on X and (X, (-,+|-)) is called a complex(or real) 2-inner product space (or 2-pre-Hilbert

space).

2000 Mathematics Subject Classification. Primary 46C50; Secondary 15A63, 47A07.
Key words and phrases. 2-inner product space, form.
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Example 1.2. If (X, (-,-)) be a complex inner product space, then the following function

(,y) (z,2)

(L1) @l i=|

defines a complex 2-inner product, called standard (or simple) complex 2-inner product
on X.

Some basic properties of the 2-inner product spaces can be immediately obtained as
follows:

o (z,0ylz) = <96 yl2),
e Re(x,y|z) = [(z zlr +y) — (2, 2|z — y)],
~la

* (z,y|az) |2<96,y|2>,
* (0,ylz) = (z,0]z) = (z,y[0) =0,
o |(z,y]2) |? < (z,7|2) (y,y|z), and we have equality if and only if z, y and z are lin-

early dependent. This inequality is called Cauchy-Bunyakovsky-Schwarz inequality
(CBS-inequality for short) for 2-inner products.

Proposition 1.3. Let (X, (-,-|-)) be a complex 2-inner product space. For z,y,z,w € X,
let a = (z,ylz + w) — (z,y|lz —w), b = (z,y|z + w) — (z,y|z —w), ¢ = (z,w|z +y) —
(z,w|zr —y) and d = (z,w|x +1y) — (z,w|z —1y). We have the following

(1) Re(a) = Re(c), Im(a) = Im(d), Re(b) = Im(c), and Im(b) = Im(d),

(2) a+1b=c+d.

Suppose X is a real linear space and let 7' : X* — R be a real covariant tensor of rank 4.

Let Tx denote the set of all real covariant tensor of rank 4 with the following properties:

(1) T(z,z,z,2) > 0, and we have equality if and only if 2 and z are linearly dependent,
(2) T(z,y,z,w) =T(y,z,z,w) and T(z,y, z,w) = T(z,y,w, z),
(3) T(x’ y’ z’ w) —"_ T(x’ Z’ w’ y) —"_ T(x’ w’ y’ Z) = 0.

Misiak in [4] characterized real 2-inner products in the following way by above family

of real covariant tensors of rank 4.

Theorem 1.4. ([4], Theorem 6) L -|-) be a real 2-inner product on X and let

et (-,
(1.2) T(z,y,z,w) = %

[(z,ylz + w) = (2, ylz — w)].

Then we have T € Tx and

(1.3) (r,y|z) =T(z,y,2,2).
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Conversely let T € Tx. Then 1.3 defines a real 2-inner product on X, for which 1.2 is

true.

In this paper, we will characterize complex 2-inner products by a new family of complex

forms on X of rank 4.

2. BASIC RESULTS

Let X be a complex linear space and T' : X* — C be a complex form on X*, such
that T is linear in the first and third arguments and conjugate-linear in second and forth
arguments. We call this function a complez form of rank 4.

To characterization of complex 2-inner products on X, we need the following proposi-

tions.

Lemma 2.1. Let X be a complex linear space and T : X* — C be a complex form of rank
4. Then we have

1
T(z,y,z,w) :Z[T(x,y,z+w,z+w) —T(x,y,2 —w,z —w)

(2.1) +iT(x,y, z + 1w, z +ww) — 1T (z,y,z — 1w, z — 1w)]
1
ZZ[T(x-i—y,m—l—y,z,w) —T(x—y,x—y,z,w)
(2.2) +iT(z + 1y, x + 1y, z,w) — 1T (x — 1y, — 1y, z,w)].

Proposition 2.2. Let X be a complex linear space and T : X* — C be a complex form of

rank 4. The following are equivalent:
(2.3) T(x,x,2,2) =T(z, 2,2, 1), Ve,z € X,

(2'4) T("'E’ y, Z’ w) = T(z’ w’ "'E’ y)’ Vm’ y’ Z’w E X'

Proposition 2.3. Let X be a complex linear space and T : X* — C be a complex form of

rank 4. The following are equivalent:

(25) T(xayazay) = 07 VﬁUayaZ € Xa
(26) T($7y7z7w) —)—T(x,w,z,y) = 07 Vx,y,z,w € Xa
(27) T(ZE,y,Z,’LU) +T(z,y,x,w) = 07 vxayazaw € X.

Corollary 2.4. Let X be a complezx linear space and T : X* — C be a complex form
of rank 4. Then 2.5 implies 2.3. In the case of T(x,y,z,w) = 0 if at least three of the

arguments coincide, 2.3 conversely implies 2.5.
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Example 2.5. Suppose (X, (-,-)) be a complex inner product space. T : X* — C defined
by T(z,y, z,w) = (x,y) (z,w) is a complex form of rank 4, T'(z,z, z,z) = T(z, z,z,z) for
all z,z € X, but 2.5 is not true.

Corollary 2.6. Let X be a complex linear space, T : X* — C be a complez form of rank
4, and T(x,z,2z,2z) > 0 for arbitrary z,z € X. Also assume that T(z,z,2z,2) =0 if x = 2.
Let 2.5 be true. Then for arbitrary z,y,z,w € X we have

(2.8) T(z,y,22)T(y, 2, 2,2) < T(2,2,2,2)T(y,y,2,2),
and T'(z,y,z,w) = 0 if at least three of the arguments coincide.

Let X be a complex linear space of dimension greater than 1. Now, let §x denote
the family of all complex forms on complex linear space X of rank 4, with the following
properties:

(1) T(z,z,2,2) > 0 for all x,z € X, and T(z,z,2,2) = 0 if and only if z and z are
linearly dependent,

(2) T(z,y,z,w) = T(y,z,w,z) for all z,y,z,w € X,

(3) T(z,y,z,y) =0 for all z,y,z € X.

Corollary 2.7. For arbitrary T € Fx, 2.3 and 2.5 are true and T(z,y,z,w) = 0 if at

least three of the arguments are coincide.

There are a one-two-one relation between §Fx and the set of all complex 2-inner products

on X, as shows below.

Theorem 2.8. Let (X, (-,-|-)) be a complex 2-inner product space and let

(2.9) T(z,y,z,w) = i[(x, ylz +w) — (z,y|z — w) + 1 (z,y, 2 + w) — 1 (z, y|z — w)].

Then we have T € Fx and
(2.10) (z,yl2) = T(z,y,2,2).

Conversely, let T € Fx. Then 2.10 defines a complex 2-inner product on X, for which 2.9
18 true.

A complex 2-inner product space (X, (-,-|-)) and a complex form of rank 4, T' € Fx,
which are related by 2.9, or equivalently by 2.10, are said to be associated.
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Example 2.9. Let (X, (-,-)) be a complex inner product space, then the following function
(r,y) (z,w)
(z,9) (z,w)

defines a complex form on X of rank 4 and it’s associated 2-inner product is standard

(2.11) T(z,y,z,w) :=

2-inner product on X.

Corollary 2.10. Let (X, (-,-|)) be a complex 2-inner product space. Then for all z,y,z €
X and a € C we have

(2.12) (x,y|z) = (x + az|z) .

Acknowledgements: This paper has been partially supported by the SBUK Center
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THE DISTANCE FROM A MATRIX POLYNOMIAL TO MATRIX
POLYNOMIALS WITH TWO PRESCRIBED EIGENVALUES

A.M. NAZARI'* AND E. KOKABIFAR?

ABSTRACT. For a matrix polynomial p(A) and two given distinct complex numbers 1
and p2, we introduce a (spectral norm) distance from p(A) to the set of matrix polyno-
mials that have p; and p» as two eigenvalues. we compute the bounds for this distance

and construct the associated perturbations of p(\).

1. INTRODUCTION AND PRELIMINARIES

In this paper we obtain lower and upper bounds for the distance from a matrix poly-
nomial to matrix polynomials that have two prescribed eigenvalues.

At first we reconstructive some definitions from [1] consider ann x n matrix polynomial
(1.1) PA) = A N + Ay N L AN+ A

where X is a complex variable , and A; € C™*" (j =0, 1,...,m) with det A, # 0.

Definition 1.1. For the matrix polynomial in (1.1) and two given distinct complex num-

bers uq and us we define the distance from p(A) to p1 and ps as eigenvalues by
e(p1, o) = min{e > 0; IQ(A) € B(p, e, w) with p1 and g aseigenvalues}

where we denote the perturbation of the matrix polynomial p(\) of the form

m

(1.2) Q) =p(N) + AN =D (4;+ 4N

Jj=0

2000 Mathematics Subject Classification. 65F15; 15A60, 65F35.
Key words and phrases. Matrix polynomial,Singular value,Perturbation.
* E.Kokabifar.

166



DISTANCE FROM A MATRIX POLYNOMIAL TO 167

where the matrices A; € C"*"(j = 0,1,...,m) are arbitrary and for a given 0 and given
set of nonnegative weights w = {wq, w1, ..., wy, } with w0, we define the class of admissible

perturbation matrix polynomials as
B(p,e,w) = {Q(X) as in (1.2); |Aj]| <ew; 7 =0,1,...,m}

The weights w; (j =0,1,...,m) allow freedom in how perturbations are measured.

2. MAIN RESULTS

Definition 2.1. For the matrix polynomial in (1.1) and two given distinct complex num-

bers p1 and po we define the 2n x 2n matrix as
p(p1) 0
(2.1) Flp(p1, p2);v) = _ ; 7EC
yREZp2) )
Lemma 2.2. For any two complex numbers j1 and ps we have that either son—1(F[p(u1, p2);y]) =

0 for every v # 0 or sop_1(F[p(p1, pi2);7]) # 0

where s (Flp(p1, p2); 7)) = so(Flp(pr, p2);v]) = o = son(Fp(p1, p2); 1) are the decreas-
ing ordered singular values of F[p(u1,pu2);7y]-

Lemma 2.3. If uy and pe are two eigenvalues of Q(X) = p(A\) + A(X) ,then for every
v # 0 the following relation holds

son—1(F[p(p1, p2);v]) < IF[A (1, p2);y]) |

where

By, ) = SV 20)

Henceforth for the sake of simplicity we denote % by f(m, wo) for f = A w,p,....

Lemma 2.4. Let puy and pe be two eigenvalues of perturbation matriz polynomial Q(\) =
p(A) + A(X) € B(p,e,w),then for every v # 0 ; the following relations holds,

( N 0 )‘

YA (1, p2)  A(p2) soa 1 (Flp(in1, 12); 7))

< w(pr) 0 )H_ | Flw (1, p2); Y] |
Y (p1, p2)  w(ps)

€ >

and in similar discussion from [1] in the remainder of the paper ,we assume that that
parameter -y is real and nonnegative. Now for A0 we try to construct a matrix polynomial
A, (X) such that the perturbation matrix polynomial Q,(X) = p(A\) + A,(A) has p; and
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W2 as two eigenvalues.

By the definition the scalar polynomial w()) as
W(A) = W A™ 4+ W A+ WA+ wp

and consider two quantities a; and «g in following

m

1 S (L2 iy 1 f:’l'j
) pjw; and g = — ) phw;
p2) (|M2|) Y w(|pal) G123

and vectors

uz(y) = uz(y) —Oui(y)  and  w3(y) =va(y) — Ovi()

v

e and matrix

where 0 =

2

Ay = =saum(Flplu )i () ug(vn(ﬁ ) )[vl(w v ()]
1+a2

where [v1(7) v3(v)]! is the Moore-Penrose pseudoinverse of [v; () v3(7)]. Then we define

the n X n matrix polynomial

m
N =) AN
=0

where
L1 By 1 fo |
Ay N = S( (=) + (—=))w;A
" 2 w(|pal) w(|p2l]) " p2l !
and observe that
1+« 1+«
Ap) = —5—0y=  and  Apz) = —5—4,

u2(7) v2 (Y
singular vectors of son_1(F[p(u1, 12);7y]) respectively , it follows

since ( w () ) , ( Ul(fy; ) € C?(ug(7y),ve(y) € C™ k = 1,2) is a pair of left and right

Du1(y)

p(p1)v1(y) = san—1(Fp(p1, p2);
F Dus ()

p(12)v3(y) = san—1(F[p(p1, p2);

as a consequence, for matrix polynomial

v
v

(2.2) Q,(\) =p(}) =3 (A + Ay )X
7=0
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we have that £11 and p9 are two eigenvalues of Q(\) corresponding to the vy (y) and v (7)

as two eigenvectors. Furthermore, it holds that

“A%j“ < %-32n—1(F[p(/ﬁ1aM2);')’]) ||A7|| (m + w(\}u\)) ;7=0,1,...m

Thus, for any 70 the distance e(u1, uo) satisfies

2.3 c(i1,m2) < 5t + s 1 (Flp(n )i 14|

For +0 we define
-1

(2.4) Biow (D, 111, 12,7) = San—1(F[p(p1, p2); 7)) ( wA(Iml) 0 )
|y (1, p2)  w(|pel)

and

1,1 1
=2 i
Then (2.4) and (2.5) imply that these quantities are a lower bound and an upper bound
of e, p2) -

(2.5) Bup (P i1, pi2,7) )s2n—1(Fp(p1; p2); 7)) 184

Theorem 2.5. Suppose p(\) is a matriz polynomial as in (1.1) and two complex numbers

w1 and po. Then for every 0
ﬁlow(pnula/f'%’)/) < 6(/1'13M2) < ﬁup(paﬂlaﬂ'ZafY)

where the bounds Biow (P, 1, p2,y) and Bup(p, 1, p2,y) are given by (2.4) and (2.5) re-
spectively . Furthermore Q~(X) in (2.2) lies on the boundary of B(p, Bup(p,1,7), w) and

has 1 and po as two eigenvalues.

Example 2.6. Consider the matrix polynomial

10 8 6 4 1 2 048 5 2 75 77
2 5 8 9 4 2 7807 749 3 3
pz)=| 6 09 9 8 [«>2+| 6 4 5 7 4 [z+]| 3 9 8 3 38
5 8 7 4 0 39 2 4 3 59 6 3 6
9 4 29 1 2 5 7 8 2 2 6 8 5 4

and set of weights w = {1,1,1} and consider y; = 2 and puy =1+ 1.
Then we have s, = so(F[p(p1, p2); v« = 0.3799375]) = 3.36866044288142 and

Biow (2, 144,0.3799375) = 0.47739043039715 < (1, iz) < Bup(p; 2, 1+1,0.3799375) = 1.03211838
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and

(Q0.3799375(\) =

9.969 — 0.302:¢
2.025 — 0.0903¢
5.809 + 0.144:
5.237 + 0.098:
9.036 + 0.109:

2.159 — 0.3551
2.085 — 0.084:
5.695 + 0.038:
3.200 + 0.261%
1.970 + 0.145¢
2.330 — 0.2584
7.123 — 0.037:
2.690 — 0.1162
5.059 + 0.349:
1.899 + 0.123¢

A.M. NAZARI, E. KOKABIFAR

7.997 4 0.067:
5.012 — 0.0423
0.076 + 0.042:
7.857 — 0.0054%
4.013 — 0.059:

—0.045 + 0.0734

7.040 — 0.039:
4.058 + 0.0954
8.845 — 0.097:
5.052 — 0.057:
6.919 + 0.046:
4.058 — 0.0164
9.007 + 0.120¢
8.902 — 0.170:¢
6.079 — 0.028:

5.829 + 0.042:
7.877+0.1114
9.065 — 0.057:
7.240 — 0.150z
2.007 + 0.033:

3.784 — 0.061%
7.793 + 0.045¢
5.109 — 0.022:
2.362 — 0.013:
6.986 + 0.041:

4.825 — 0.167:
8.780 — 0.0613
8.115 + 0.034:
6.352 + 0.169:
7.966 + 0.033:

REFERENCES

4.218 4 0.2044
9.065 + 0.0857
9.023 —0.2124
3.742 4 0.0461
8.916 — 0.053:

8.112 + 0.366:
0.018 + 0.1362
7.162 — 0.2215
3.684 — 0.112¢
7.941 — 0.1124

6.922 + 0.405¢
2.948 + 0.139:
3.265 — 0.129:
2.756 — 0.265¢
5.000 — 0.1364

0.951 — 0.0464
4.033 — 0.129:
8.038 + 0.178:
—0.119 + 0.018:
1.057 — 0.048¢

4.976 — 0.0823
7.120 — 0.122¢
3.928 + 0.223:
2.855 — 0.0564
2.094 —0.0174

7.019 — 0.090z
3.176 — 0.0562
7.819 +0.1764
5.890 — 0.125:
4.099 + 0.031%

T
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AN ALGORITHM OF PRECONDITIONS FOR SOLVING LINEAR
SYSTEMS

A. M. NAZARI** AND S. ZIA BORUJENI 2 AND L. BAHRAMPOUR ?

ABsTRACT. T. Kohno and H. Niki in [1] claim that always the relation p(T},) < p(Ts)
has been unconditionally satisfied. In this paper we introduce a counter examples with
show that their methods does not always hold. We present an algorithm which certainly

one of its stage reach the relation p(T},) < p(Ts). For this aim we use of Maple 12.

1. INTRODUCTION AND PRELIMINARIES

We herein consider the following preconditioned linear system: PAxz = Pb, where A =
(a;j )€ R™™ is a nonsingular M-matrix, P € R"*" is a preconditioner, and z,b € R"
are vectors. Without loss of generality, we assume that A has a splitting of the form
A =1—L—U, where I denotes the n x n identity, and —L and —U are the strictly lower,
and upper triangular parts of A, respectively. In 1991, Gunawardena et al. [2] proposed
the modified Gauss-Seidel method in which P = (I + S), with

— Q41 fori=12.n—-1, j=i4+1

S = (sij) = .
0 otherwise.

These authors proved that if 0 < aj;116;4+1; < 1 then the inequality: p(Ts) < p(T') < 1,

is satisfied, where p(Ts) and p(T) denote the spectral radius of the Gauss-Seidel iterative

matrices T's and T associated with A; = (I+5)A and A, respectively. In 2002, Kotakemori

et al. [3] proposed to use P, = (I + S,,), where S, is defined by

—Qf. 1<i<n-1,i4+1<j<n,
Sm = (S(m)) = iki - ) J=
0 otherwise,

2000 Mathematics Subject Classification. Primary 65F10.

Key words and phrases. precondition, M-matrix, iterative method * Speaker.
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where k; = min1;, I; = {j : |a;;| is mazimal for i+1<j <n}, for 1 <i <n. Then
Ap, = (I + Sp)A can be written as follows:

Am=I—L—U+ Sm — SmL — SuU = My, — Ny,

where M,, = (I - D,,)— (L+ Ey,) and N,,, =U - S,,,+ F,,, + S;,U and D,,,, E,, and F,, are
the diagonal and strictly lower and strictly upper triangular parts of Sy, L, respectively.

Under the condition 0 < a;,ar;; < 1, Kotakemori et al. derived the following result.

Lemma 1.1. (Kotakemori et al. [3], Lemma 3.4). Let A be an M-matriz. Suppose that
(1.1) Aii1Giv1) < Qig 05, 1 <i<n—2, j <.
Then the following inequality holds:

Mt > M

Theorem 1.2. Let A be an M-matriz. Let Ay = My — Ny and A,, = M,, — N,, be
Gauss-Seidel convergent splittings of As and A,,, respectively. Assume that only one
of the inequalities Apx > Agx or Apny > Agy, where x and y are positive eigenvectors
associated with Ty and T,,, respectively. Under the assumptions in Lemma 1, the following
inequality holds:

p(Tm) < p(Ts) < 1.

In [1], Toshiyuki Kohno et al. show that the p(T},) < p(Ts) doesn’t hold always and
propose the following preconditioners.
Method 1. They propose the preconditioner P,; = (I + Sp,1), where S,,; is defined
by
—ai2
Sm1 = (s(-ml)) = q —a for 2<i<mn, i<j<n,
0 otherwise,
where k; = min I, I; = {j : |a;j| is mazimal fori <j <n}, for 2 <i<n.
Method 2. They propose the preconditioner P,o = (I + Sp,2), where Sy,2 is defined

—a12

Sy = (81(;12)) _ ) for1l< j. <n o
—Qk, for 2<i<n,i<j<n,
0 otherwise,

where k; = minI;, I; = {j : |a;j| is mazimal fori+1<j<n}, for1 <i<n.
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Method 3. Morimoto et al. [4] proposed the preconditioner Py, = (I + S+ S,,,). For

this precondition, Sy, is

_ (Jm)y _ ) T for 1<i<n-—1, i+1<j<n,
Sm = (s;:") .
0 otherwise,

where [; = minI;, I; = {j : |a;j| is mazimal fori+2<j<n} forl <i<n-—1.

T. Kohno and H. Niki in [1] claim that by using their methods always the relation p(7,) <
p(Ts) has been unconditionally satisfied. In this paper we introduce a counter examples
with show that their methods does not always hold. We present an algorithm which
certainly one of its stage reach the relation p(T),) < p(Ts). For this aim we use of Maple
12.

Example. Consider the following matrix A

1 -0.1 -0.1 -01 -0.2 —-0.2
—0.1 1 -0.1 -01 -0.2 -0.2
-0.1 —-0.1 1 -0.1 -0.2 -0.2
-0.1 -0.1 -0.1 1 —-0.2 —-0.2
-0.1 -0.1 —-0.1 -0.1 1 —0.2
-01 -0.1 -0.1 -0.1 -0.1 1

we have p(Ts) = 0.3137. On the other hand for P,, we have: p(T},) = 0.3356. While this
matrix satisfies condition equation (1.2), the inequality p(7T,,) < p(Ts) does not hold.

Now we survey this example for Kohno et al.’s methods. For this matrix we have
p(Tm1) = 0.3210 p(Ty,2) = 0.3164. By using preconditioner Pj,,, we obtain: p(Ts;,) =
0.2538. Then by above result we have:

p(Tsm) < ,O(Ts) < p(TmQ) < p(Tml) < p(T).
2. MAIN RESULTS

For solving this problem we introduce following methods.
Method I. We present S/,
If p(S),1) < p(Ts), then S/

; instead of Sp,1 in following algorithm.

= Si1 1s true, else we define S) , as

ml —
—ai2
9 = (Sm 2) = 7
m —Qk; for3d<i<n,i<j<n
0 otherwise.

where k; = minI;, I; = {j : |a;j| is mazimal fori <j <n}, for 3 <i <n.
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If p(S],5) < p(Ts), then S} , is solution of our problem, else we define S/ , as

;

—a12
—a23
(Sm 3) _
m3 = = —as34
—Qik; forda<i<n,i<j<n
[ O otherwise.

where k; = minI;, I; = {j : |a;j| is mazimal fori <j <n}, for 4 <i <n.
And in order to we continue. Finally if p(Sy,,_5) > p(T5), then we must introduce

Spnn—1 as follows:

I .
! = (sm o 1) ={—aii1 for1<i<mn

m,n—1 1]

This algorithm lead to Ganavardena’s precondition.

Method II. We present S . instead of Sy,2 in following algorithm.
If p(S),) < p(Ts), then S, = Sy is true, else we define S/’ as follows:

.
—a12
—Q1k; forl<j<n
" "9 —as3
m2 — (Sm ) = 4 .
—Q2k; for2<j<n
—Qik; for3<i<n,i<j<n
{ 0 otherwise

where k; = minI;, I; = {j : |a;j| is mazimal fori+1<j<n}, forl1 <i<n.
If p(SI,) < p(Ts), then S, is solution. Else we define S . as

(

—a12
—ayg, forl1<j<n
—a23

m''3 —a2k; for2<j<n

m3 - (S ) =

—as34
—asg; for3d<ji<n
—Qik, fora<i<n,i<j<n
0 otherwise

\

where k; = minI;, I; = {j : |a;j| is mazimal fori+1<j <n}, for1 <i<n.
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And in order to we continue above method. Finally if p(Sy, ,,_5) > p(Ts) then we must

3 " .
introduce S, ,_; as follows:

—Qj44+1 for1<i<n
"o . . .
Zz,n—1:<5;?’n 1): —aj; forl<i<n-—1,i+1<j<n
0 otherwise

where [; = minI;, I; = {j : |a;j| is mazimal fori+2<j<n} forl <i<n-—1.

This algorithm lead to Morimoto’s precondition.

With these two algorithm we solve this problem, for instance if we apply Method I
and Method II for solving Example 4 respectively, we have following relations. p(S;2) =
0.3140827769 > p(Ts), p(Smr3) = 0.3136582529 = p(T5s). p(Spmr2) = 0.3003438688 <

p(Ts).
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APPLICATION OF THE BERNSTEIN POLYNOMIALS FOR SOLVING
THE NONLINEAR FREDHOLM INTEGRO-DIFFERENTIAL
EQUATIONS

Y. ORDOKHANI! AND S. DAVAEI FAR?*

ABSTRACT. In this article an efficient numerical method for finding solution of the non-
linear Fredholm integro-differential equations on base of Bernstein polynomials basis
would be presented. To do so with approximate the solution of integro-differential equa-
tion with CngS(m) form, mentioned equation will be converted to an equivalent matrix
equation. Coefficients vector C is the solution of this matrix equation. At the end with

presentation of a numerical example the method will be evaluated.
1. INTRODUCTION AND PRELIMINARIES

One of the most important mathematical dialogs which has capture the attention of
authors, scientists which is foundation of researches is the fascinating subject of integro-
differential equations. In this article, firstly we present operational matrices of integration
and product for the Bernstein polynomials (B-polynomials) and also dual operational
matrix of Bernstein basis vector, by the expansion of B-polynomials in terms of Legendre
polynomials. Then we utilize them for solving s-th order nonlinear Fredholm integro-

differential equation
S ] 1

@) S 00y (@) =g (@) + A / E(o )y (OFd,  0<at<l,
j=0 0

with the initial conditions

(1.2) y B (0)=bp, 0<k<s—1,

2000 Mathematics Subject Classification. 45J05; 65R20.
Key words and phrases. Bernstein polynomial; Integro-differential equation; Legendre polynomial.

* Sara Davaei far.
176



SHORT TITLE 177

where 37 () is the j-th derivative of the unknown function that will be determined, k(z, t)
is the kernel of the integral equation, ¢g(x) and p;(z),5 = 0,1,...,s are known analytic
functions, p is a positive integer and A, bg,k = 0,1,...,s — 1 are suitable constants. The
main characteristic of this technique is that it reduces these equations to those of an easily

soluble algebraic equation, thus greatly simplifying the equations.

2. EXPANSION OF B-POLYNOMIALS IN TERMS OF LEGENDRE BASIS AND VICE VERSA

A set of shifted Legendre polynomials on the interval [0, 1], denoted by {Ly(x)} for
k = 0,1,..., is orthogonal with respect to the weighting function w(z) = 1 over the

interval [0, 1]. These polynomials satisfy the recurrence relation
(k+1)Lgyi () = 2k +1) (22 — 1) Ly (x) — kLg—1 (x), E=1,2,...,

with Lo(xz) = 1 and Li(x) = 2z — 1. The orthogonality of these polynomials is expressed
by the relation

1 =k
1 K+1° J ’
@) [ L@ L) ds jk=0,1,2,
0

0, J#k,

when the approximant (2.1) is expressed in the Legendre form P, (z) l;L; (), by us-

m
=

J=0
ing Eq. (3.1) we can obtain the Legendre coefficients as [; = (2j+1) fol Lj(z
Now consider a polynomial P,,(z) of degree m, expressed in the m-th degree Bernstein
and Legendre bases on z € [0,1]:

m

(2.2) Pr(z) = ¢;Bjm(z) =Y Ly (z).
k=0

Jj=0
We write the transformation of the Legendre polynomials on [0, 1] into the m-th degree

Bernstein basis functions as

m
(2.3) Bk,m (:E) = Z wk,iLi (:E) y k= 0, cee M.
i=0
The elements wy, ;,k,% =0,1,...,m, form a (m + 1) x (m + 1) basis conversion matrix W

that with respect to [2] will be calculated as:

J

' m () (@
= B (MY B0

m-4+7+1 P k+z’)

—

) f(z)dz, 5=0,...
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Similarly, we write the transformation of the B-polynomials on [0, 1] into m-th degree

Legendre basis functions as

m
(2.4) Li(z) =Y M jBjm(®), k=0,...,m,
j=0
The elements Ay j,k,j =0,1,...,m form a (m + 1) x (m + 1) basis conversion matrix A.

Replacing Eq.(3.4) into Eq.(3.2), we obtain
m

(2.5) Cj :ZlkAk,ja jZO, NN
k=0

With respect to [2] the basis transformation (3.4) is defined by the elements

min{j, k}
1 (kN (K —k
= S o ()T, meetos ko
(j) pa i)\ j—i
of the matrix A for k,7 =0,...,m. If we denote the Legendre basis vector as
(2.6) L(z) = [Lo (), L1 (2) .., Lin()]",
using Eqs. (2.2, 3.3, 3.4) and (3.6) we have
=WL
- b@) = WL(),
L(z) = Ag (x)

3. B-POLYNOMIALS OPERATIONAL MATRIX OF PRODUCT

Suppose that C is an arbitrary (m + 1) x 1 vector, then €' is an (m + 1) x (m + 1)

operational matrix of product whenever
(3.1) T (x)¢" (x) =~ ¢" (z)C.
As we did in [3], this matrix is given by C = CW7T, where C is a (m +1) x (m+ 1) matrix

and details of obtaining this matrix is given in [3].

4. DUAL OPERATIONAL MATRIX

With taking integration of cross product of two Bernstein basis vectors, a matrix of

(m+1) x (m + 1) dimensional will be resulted which will be indicated as follow:

1
(41) H:/O b (2) 67 (z) da.
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This matrix is known by dual operational matrix of ¢(z) and by using Eq. (3.7) will be

calculated as follow:

H = /01 (WL (z)) (WL () de =W [/01 L () LT(x)dx] wT =wbwT,

that by using Eq. (3.1), D = diag (1, %, %, s ﬁ)

5. METHOD OF SOLUTION

Consider the s-th order nonlinear Fredholm integro-differential equation (1.1) with the
initial conditions (1.2).
Step 1: The functions of 4/ (z),j = 0,1,..., s is being approximate by the B-polynomials.

Therefore with approximation y*(x) in the form of

(5.1) y® (2) = C"¢ (),
we have
(5.2) yD(z) = QT p(x), 5=0,1, ..., s

where @;’s are (m + 1) x 1 vectors and details of obtaining these vectors is given in [3].
Step 2: The function of k(z,t) is being approximate by the B-polynomials in the form
of,

(5.3) k(z,t) =" (2) Ky (1),

where Kj is a (m + 1) x (m + 1) matrix.
Step 3: In this step, we present a general formula for approximate y?(t) with the B-
polynomials. To do so, by using Eqgs. (7.2, 5.1) we have

y2(t) = Q9()¢" ()Qo = ¢ (t) Qo o,
and so by use of induction y?(¢) will be approximated as
(5.4) yP (1) = Qi é(t) ¢ () (Qo)” Qo = ¢7 (1) (Q0)” ' Qo

Now, with approximate g(z) and p;(z),7 = 0,1,...,s in the forms of GT¢(z) and p;(z) =
Pqub(m),j =0,1,...,s, respectively and with substituting Egs. (7.2-7.4) into Eq. (1.1)

we have

S 1 p—
> P pla) ¢ (2) Q= G () + A /0 #(@) Ky g(0) 6" (1) (@) Qo
=0
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and therefore by using Eqs. (5.1, 6.1 ) we get
s . p-1
(5.5) > ¢ @ Qi =¢" (@) G+ AT @) K H Qo) Qo
5=0

The matrix equation (7.5) gives a system of m + 1 nonlinear algebraic equation which can
be solved for the elements of C in Eq. (7.1). Once C is known, y(z) can be calculated
from Eq. (7.2).

Example 1: Counsider the first-order nonlinear Fredholm integro-differential equation [5]

1 1
(5.6) y'(z) = * — ge—ffc2(e5 —1)+ / 277743 (1) dit, 0<z<I1,
0

with the initial condition y(0) = 1. The exact solution of this example is y(z) = e¢®. The
absolute difference error for m = 3,5,9 in Table 1 is being observed. As we observed
in this Table with increasing the value of m the resulted accuracy increased as well. It
is noted that with N = 5, the maximum absolute error on the grid points Sinc in the
Sinc method [5], is 3.72499 x 1073; but in the present method with m = 10, for equality
basis function(11 basis function) the maximum absolute error on the grid points Sinc is
3.4916 x 1071

Table 1
T presented method
m =3 m=2>5 m=9

0.0 9.9522F — 004 2.5022FE — 006 2.4740F — 012
0.2 4.2859F — 004 3.8321F — 007 1.9780F — 012
0.4 1.7370FEF — 004 1.4740FE — 007 2.5981F — 012
0.6 2.2852F — 004 2.6432FE — 007 3.8940F — 012
0.8 4.3482F — 004 4.7009F — 007 5.7709F — 012
1.0 9.4787E — 004 2.4950F — 006 3.3360FE — 012
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ON MC-MATRICES AND MC'-MATRICES

MEHDI PANAHI ! AND FAHIMEH AMIRI**

ABSTRACT. We present some properties of two classes of nonsingular matrices, the MC-
matrices and the M C’-matrices, and show that the class of symmetric MC-matrices and
the class of symmetric M C’-matrices are both subsets of the class of symmetric matrices

with exactly one positive eigenvalue.

1. INTRODUCTION AND PRELIMINARIES

The class of symmetric real matrices having exactly one positive eigenvalue will be
denoted by B. The class of positive matrices belonging to B will be denoted by A [1].
Clearly, A C B. These classes of matrices play important roles in many areas such as

mathematical programming, matrix theory, numerical analysis and statistics [1, 3].

In [3], Pena presented several properties of a symmetric positive matrix with exactly
one positive eigenvalue. In this paper some properties of the MC-matrices and the M C’-
matrices are presented. In addition we show that every symmetric M C-matrix and every

symmetric M C’-matrix has exactly one positive eigenvalue.

Let A = (ai;), B = (bjj) € R*™", and let k be a positive integer. Then we denote by
I the identity matrix; AT the transpose of A; p(A) the spectral radius of A; v, the row
vector (1,2,...,k);

2000 Mathematics Subject Classification. Primary 15A18; Secondary 15A48, 15A57.
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air a2 ... Qig
Alvg] =
agl Qg2 ... Gkk
the k& x k leading principle submatrix of A. We write A > B (respectively, A > B) if

aij > bi; (respectively, a;j > b;;) fori,j =1,2,...,n.

The remainder of the paper is organized as follows. In Section 2, we present some
properties of the MC-matrices, and show that every symmetric M(C-matrix has exactly
one positive eigenvalue. The M C’-matrices, are introduced in Section 3 and proved that

the class of symmetric M C’-matrices is a subset of B.

2. MC-MATRICES

Definition 2.1. Let A = (a;;) € R"*". Then

1. A is said to be a positive (respectively, nonnegative) matrix if a;; > 0 (respectively,
a;j >0) foralli,j =1,2,...,n [2].

2. A is called a nonsingular M-matrix if it can be expressed as A = sI — B, where B

is nonnegative and has a spectral radius p(B) < s [2].

Given a matrix A = (a;;) € R™", we define

sH(A) = maz {0,min{a;j | j #i}},i=1,2,...,n.

)

The matrix A can be decomposed into
A=Ct(A)+ ET(4),

where

a1l — ST(A) a1 — ST(A) . Qlp — ST(A)
cr(4) = : : : : ;

an1 — S (A) an2 — s (A) ... apn — st (A)
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E*(A) =

Definition 2.2. A matrix A = (a;;) € R™" with positive row sums is called an MC-
matrix if all its off-diagonal elements are positive, and —C*(4) is a nonsingular M-matrix
[4].

Example 2.3. Consider the positive row sums matrix

Clearly all its off-diagonal elements are positive. We have

2 -1 0 310
—Ct(A)=| -2 5 0 |=5r-]20 0 |=5-B,
0 -2 2 02 3

where B > 0 and p(B) = 3.5616 < 5. Thus —C™(A) is a nonsingular M-matrix and
then A is an MC-matrix.

The following results explain some properties of the M(C-matrices.
Theorem 2.4. If A = (a;;) € R™" is an MC-matriz, then (—1)""'det(A) > 0.

Lemma 2.5. Let A = (a;;) € R"™™ be an MC-matriz, and let D € R"*™ be a positive
diagonal matriz. Then DA is an MC-matriz.

The following theorem shows that the class of symmetric M C-matrices is a subset of
B.

Theorem 2.6. Let A = (a;j) € R™*" be a symmetric MC-matriz. Then A € B.

3. M C'-MATRICES

Definition 3.1. A matrix A4 = (a;;) € R"*" with at least one positive diagonal element
is called an MC'-matrix if all its off-diagonal elements are positive, and —CT(A) is a

nonsingular M-matrix.
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Example 3.2. Let

1 2 1
A= 4 -3 2
1 3 -1

A has at least one positive diagonal element and all its off-diagonal elements are posi-

tive. Clearly

0 -1 0
CctA) =] -2 5 o0 |,
0o -2 2

is a nonsingular M-matrix. Thus 4 is an M C’-matrix.

For an MC'-matrix A = (a;;) € R**", similar to the Theorem 2.4, we can deduce

(—=1)"'det(4) > 0.

Remark 3.3. We remark that a positive matrix is an M C’-matrix if and only if it is an
MC-matrix. But the classes of symmetric M C'-matrices and symmetric MC-matrices do

not contain each other. For example, let

-8 4 -2 4
A= and Ay = .
2 1 2 -1
Then, by simple computations, A; is an M C’-matrix, but not an MC-matrix. As is an
MC-matrix, but not an M C'-matrix.

The following results explain some properties of the M C’-matrices.

Lemma 3.4. Let A = (a;;) € R™*", and let P € R"*™ be a permutation matriz. Then
PT AP is an MC'-matriz if and only if A is an MC'-matriz.

Lemma 3.5. Let A = (a;;) € R™" be an MC'-matriz with a1y > 0. Then any k x k
leading principle submatriz Alvy] of A is an MC'-matriz.

Lemma 3.6. Let A = (a;;) € R**"™ be symmetric, and let

(—1)k=1det(Alg]) > 0 for all k =1,2,--- ,n.
Then A € B.
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Remark 3.7. It was shown in [1, Theorem 4.4.6] that a symmetric positive matrix A =
(aij) € R*™™™ belongs to A if and only if, for any k x k principle submatrix B of A,
(—1)¥~ldet(B) > 0 for all k = 1,2,...,n. Thus, Lemma 3.6 provides a weaker condition

such that a symmetric matrix has exactly one positive eigenvalue.

The following theorem showes that the class of symmetric M C’-matrices is a subset of
B.

Theorem 3.8. Let A = (a;j) € R"*™ be a symmetric MC'-matriz. Then A € B.

Proof. There exists a permutation matrix P such that the first diagonal element of P” AP
is positive. From Lemma 3.4, PT AP is also an M C’'-matrix. By Lemma 3.5, any k x k

leading principle submatrix of PT AP is an M C’-matrix, and hence
(=) =ldet((PTAP)[v]) > 0,k = 1,2,...,n.

Thus, due to Lemma 3.6, we have PTAP € B, and then A € B. O
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ON THE MAXIMALITY OF THE GRAPHS OF THE SKEW
HERMITIAN OPERATORS

ALI PARSIAN®*

ABSTRACT. For a Hilbert space (H,p) and any closed subspace E C H and any Skew
Hermitian linear map S : E — Hin this paper it is shown that the set A = {(z, Sz +
et)|z € E,et € E1} is a closed subspace of E x H and has the maximality property
in the sense of [4].It is also proved that for all such A that the map Py + P> : A — His
a norm preserving isomorphism of vector spaces.As an application some existence and

uniqueness theorems on Integral and Matrix Theory also proved.

1. INTRODUCTION AND PRELIMINARIES

A kind of Maximality on smooth manifolds were introduced by Courant and Wein-
stein [1,5] as a construction of prisymplectic structures.The algebraic counterpart of this
structure is given by Dorfman[3].a new construction and some applications of this concept
on Hilbert spaces are introduced in [4].In this approach we prove some new theorems on

operators and extend the domain of construction and applications in the sense of [4].

2. MAIN RESULTS

Let(H, p)be a Hilbert space and E be a closed subspace of it. The maps ©,® : (ExH)? —
R defined by

(2'1) @((67 h)v (6,7 h,)) = ,0(6, h,) + p(h, el)

(2'2) (I)((ev h)v (elvh,)) = ,0(6,6,) -I-p(h, hl)

2000 Mathematics Subject Classification. 15B57,11F72.
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are bilinear and (E x H, ®) is a Hilbert space [3].

Theorem 2.1. Let E C H and S : E — H be a skew Hermitian linear operator and
A= {(z,8z +et)|z € E,et € E+},then A is a closed subspace of E x H and

(2.3) O((x, Sz +et), (z', Sz +€+) =0

for all z,2',e,e' € E.Moreover A is Mazimal with the above property,i.e., there is not
(a,b) € E x H and e* € E*such that b # Sa + e* and O((x, Sz + et), (a,b)) = 0 for all
r € E,et € EX(z,y) € E x H.

Proof. obviously © is a subspace of E x H and O((z, Sz + e*), (z/, Sz’ + ¢'+)) = 0 for all
z,7' e, € E. let (u,v) € A and {(zp, ST, + ex) bnenbe a sequence of the elements of A
tends to(u,v). Then

O((u,v), (z, Sz + b)) = p(u, Sz + e*) + p(v, z)

= limp 00 (p(Tn, ST + 1) + p(Szpn + e, 1)

= limy 5000 ((Zn, Stn + ), (z, 5z + 1)) =0
So maximality of A implies that(u,v) € A and A is closed. Let there exists some (a,b) €
E x H such that ©((z,Sz + et),(a,b)) = 0 for all z € E,et € E*. Then p(x,b) +
p(z,—Sa) + p(et,a) =0 for all z € E,et € E*,(a,b) € E x H. So p(x,b— Sa) = 0 for
all z € E,and consequently b — Sa = et for some e € E.

El

Theorem 2.2. Let P; : A — H(i = 1,2) are the first and second projections,then the

linear map Py + P is surjective.
Proof. Let zL(P; + P,)(A),there are z,2',e,e’ € E such that
(2,2) = (z, Sz +et) + (Sz'*+ 4 €+, 2)
Therefore
2|1z[* = ®((2,2), (2,2))
= ®((2,2), (x, Sz + b)) + ®((2, 2), (Sz'+ + €'+, 2"))
=plz,x + St +e)+p(z, 2’ + Szt + ) =0
J.e,z = 0 and (P, + P)(A)is dense in H. Consequently if (P, + P»)(z,)is a Cauchy

sequence in H then z, is also a Cauchy sequence in A and (P, + P»)(A) = H.
U

Theorem 2.3. The map P) + Ps is injective and norm preserving.
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Proof. For any x,e € EE we have
|(z, Sz + e)||> = &((x, Sz + e), (z, Sz +et)
= p(z,7) + p(Sz + e, Sz +et) = ||z|? + ||Sz + e |? =
plx+ St +et x4+ Sz +et) = ||z 4+ Sz + et
Therefore ||(z, Sz + eb)| = ||z + Sz + et

Theorem 2.4. For any g € L?[a,bland f € C'[a,b],with the boundary condition f(a) =
f(b) =0, there is some A € R, such that

b
[ 00t =370 - 2s 07 @i =0

Proof. let H = L?[a,b],E = Span{f} and define S : E — H by S(f) = %.Then g =
Af4Af'+et for some A € Rand et € E+ therefore fab(f(t)g(t)—)\fZ(t)—)\f(t)f’(t))dt = 0.
O

Theorem 2.5. Let M be a fized skew Hermitian n X n matriz. Then the matriz equation

X+ MX =G has a unique solution for any n X n matriz G.

Proof. Let H = Mpxn,A,B € H E = M,p(A,B) = tr(B*A) and S(A) = £MA, then
p(S(A),B) + p(A, S(B)) =0, and the proposition is proved.
O

As a consequence of the following Theorem we have
Theorem 2.6. For any Skew Hermitian matriz M both I+ M and I —M are nonsingular.
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APPLICATION OF GENERALIZED PURCELL METHOD FOR
COMPLEX EIGENVALUE PROBLEM

M. RAHMANI'* AND S. H. MOMENI-MASULEH?

ABSTRACT. A new method based on generalized Purcell method is presented to obtain
the real and complex eigenvalues of an arbitrary matrix. For accelerating the convergence
of the iterative method, a new version of Aitkin’s acceleration for complex series is
proposed. In order to elucidate the accuracy of the proposed method, the method is
applied to the standard and challengeable matrices FS1836(n = 183) and STEAM1(n =
240) that obtained from Matrix Market.

1. INTRODUCTION

Assume that x + iy be the eigenvectors corresponding to eigenvalues A + iy of matrix

A. Based on relations for complex eigenvalues of a matrix A, we have

Ax =z — py
Ay = pz + Ay

which can be written in the following homogenous linear system of equations

(1.1) (A_M nl )(‘T’):o.
—ul  A—XI y

For initial values of g and Ay the new generalized Purcell iterative (GPI) method is

proposed for solving Eq. (1.1) leads to

= T Az 4+ yT Ay
" Ty 4 yTy

2000 Mathematics Subject Classification. Primary 65F05; Secondary , 65F10, 65F15.
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and
zT Ay — yT Ax
Hn Tz +yTy
for
n=01,2".

To accelerate the convergence of the proposed iterative method, a new version of Aitkin’s
method for complex series is proposed. Comparison with the QR method [2] shows that

the method gives reliable results.

2. GENERALIZED PURCELL METHOD

To obtain a decomposition of matrix A as AE = R such that R is upper triangular and
E is a invertible matrix we do as follows. Let{a;,7 = 1,2,...,n} be the row vectors of A
and E' = {el,i =1,2,...,n} be the standard basis for space R". Let by induction in the

step 5 we have
(2.1) Ej:{e%,e%,...,e;-,eg-ﬂ,...,efl}.

To make the set E/*!, the vectors eiﬂ for k = j+ 1,...,n are constructed by linear
combination of e} and e, such that a; will be orthogonal to new vectors eiﬂ in B9+, For

this purpose let

(2.2) aij = (e}, a5)/ (e}, a7),
and set
(2.3) el =€l —ayel i=j+1,...,n.

Lemma 2.1. If in equation (2.3) o;; =0 fori = j+1,...,n then aj is a linearly dependent

j—1
vector from {ay},_;.
in the case of lemma (2.1) put away a; and begin process by a1 .

Theorem 2.2. For k =1,...,n, every vector in R" can be expressed as a linear combi-

nation of vectors in EX in a unique way,or E* is a basis of R".
For avoiding divided by zero in (2.2) we select a; such that

(24:) )= argmaxjgkﬂnu(akae;)ua

or eg such that

(2.5) ) = argmazj<k<nll(az, e;) |-
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We call the selection process(2.4) row pivoting and the selection process(2.5) column piv-

oting.

Theorem 2.3. Let € be a least upper bound of the computation error for ij, den be the
relative computation error of ey and suppose [} = maxj<;<p JICHTE then den is less than or

Tenllz?
equal to Be(l — €)™

Lemma 2.4. The number of operations in Purcell method in step j is equal to n(2n+1)—
252, so Z;’Zl(n@j +1) —252) ~ tn® . Thus the compleity of Purcell method is o(3n?®) .

3. NEw ALGORITHMS FOR REAL & COMPLEX EIGENPROBLEMS

According to relation A(z +iy) = (A +1ip)(x +iy), to approximate (A +iu) and = + iy,
for a vector Z that obtained from GPI method, we define

FOu) = miny,|BZI3 2
. A— I ul T
= miny
—ul  A—XI y /),
By differentiation one can get
_ T Az +yT Ay
 wTr+yTy
B zT Ay — yT Ax
P e 1y Ty

The Jacobian of f is equal to J; = Dig(|z + iy|?, |z + iy|?).

The proposed method for the complex eigenproblem is summarized as following
Step 1: Set A\g = 0 and pp = 0 and select arbitrary e.

Step 2: For k=1,2,---, do:

Let 3t = argmin”sz:lHBZH%. (According to GPI method)
Let b; be row vectors of matrix B. Set

_ non(e3n, ban)

A = + Ae—1
lesnll3

and ) )

62g,n (e ban)
leznll3

Step 3: Repeat step 2 until |(Ag + ipg) — (A1 +ipg—1)| <€
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VECTOR OPTIMIZATION AND VECTOR VARIATIONAL
INEQUALITIES IN ASPLUND SPACES

M. REZAEI' AND E. BAYATMANESH?

ABSTRACT. Some properties pseudoinvex functions via limiting subdifferential are ob-
tained. Furthermore, the equivalence between vector variational inequalities and vector

optimization problems are studied under pseudoinvexity condition.

1. INTRODUCTION AND PRELIMINARIES

The study of vector variational inequalities has become an important research direction
of vector optimization problems. In particular, various relationship between vector vari-
ational inequalities and vector optimization problems have been established [1],[3],[4],[9].
For nondifferentiable locally Lipschitz functions similar results are obtained in terms of
monotonicity of their Clarke subdifferentials in [4]. The concept of generalized differentials
plays a fundamental role in modern variational analysis [2],[5]-[7]. In 1976 Mordukhovich
[5] presented and introduced a new subdifferential that it is defined by the limit of the
other subdifferentials which is called the limiting subdifferential. In [6],[7] one can find
the new recent works, applications and relations between their subdifferentials.

The following results are obtained and known in nonsmooth analysis (see [2], [6],[7]).
A vector £ € X* is said to be a proximal subgradient of f at z € K, if ({,—1) €
Né;z-f(x,f(x)), where epif = {(z,a) : @« > f(z)}. The set of all proximal subgradient

vectors of f at x is denoted by Opf(x). A vector £ € X* is a limiting subdifferential
2000 Mathematics Subject Classification. Primary 26A51 26B25 47N10 65K10.
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vector of f at x € K, if there exist two sequences & € X* and z; € X such that
& € Opf(x), & — & o — = and f(z;) — f(z). The set of all limiting subdifferential
vectors of f at x is denoted by 97, f(z). The notion of the limiting subdifferential was first
introduced, in the equivalent form, in [5]. One of the classes of functions whose set of lim-
iting subdifferentials is nonempty is the class of locally Lipschitz functions. Considering

this class, the following results are obtained and known in nonsmooth analysis (see [2],

[6,[7])-

Definition 1.1. A Banach space X is an Asplund, or it has the asplund property, if
every convex continuous function ¢ : U — R defined on an open convex subset U of X is

Fréchet differentiable on a dense subset of U.
Remark 1.2. One of the most popular Asplund spaces is any reflexive Banach space [6].

Theorem 1.3. [6] Let X be a Asplund space and ¢ : U — R proper and lower semicon-

tinuous around T € domey, then

Orp(7) = limsup Orpp(z).

T—T

Remark 1.4. [6] It is well known that
Or f(z) C O f(z) C Ocf(x) C Icrf(z).

Theorem 1.5. Let f be locally Lipschitz at x € K, then Opf(x) is closed. In fact, if
z; = @, & € O f(xi), and § — &, then € € O f(x).

Theorem 1.6. [ is locally Lipschitz, then the set of all limiting subdifferential vectors of

f is uniformly bounded.

Theorem 1.7. Let f be locally Lipschitz at x € K, then O f(x) is closed. In fact, if
z; =z, & € 0rf(z), and § — &, then £ € 9y, f(x).

Theorem 1.8. Let f be locally Lipschitz on a neighborhood of line segment [z,y]. Then
for every € > 0 there exists a point z in the e—neighborhood of [z,y] and ¢ € 0y f(2) such

that f(y) — f(z) < ((,(y —z)) +¢.

Theorem 1.9. [7] Let f be locally Lipschitz on an open set containing [z,y]. Then

fly) = flz) < (2",y — )

for some c € [x,y),z* € Orf(c).
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The rest of this section provides some relations between the prequasinvex and pseudoin-
vex functions.
Throughout this paper, we suppose that K C X be a nonempty set, n: K x K —+ X be a

vector-valued mapping and f : K — R be a function.

Definition 1.10. A set K is said to be an invex set with respect to 7 if for each z,y € K
and t € [0,1], z + tn(y,z) € K.

The following condition is useful in the sequel.
Condition C. Let n: X x X — X. Then for any z,y € X, A € [0, 1],

n(y,y + Mn(z,y)) = —An(z,y),
n(z,y + A n(z,y)) = (1 = Nn(z,y).
Remark 1.11. Yang et al.(2005) have shown if n satisfies Condition C, then

n(y +n(z,y),y) = An(z,y).

2. CHARACTERIZATION OF PSEUDOINVEX FUNCTIONS

Definition 2.1. The function f is said to be pseudoinvex with respect to n if, for each
z,y € K with ({,n(y,z)) > 0 for some & € 91, f(z), we have f(y) > f(x).

Example 2.2. Let K = {(z1,22) ERxR: 21 > —1,5F <z < 5}, forall z = (z1,22) €
K and y = (y1,y2) € K

sinys — sin sy

n(y,z) = (y1 — 21, P

and
f(x1,29) = x1 + sinxs.

For each z,y € K and £ € 01, f(x) we have

(f?"(yax» =y —x1 + siny2 — sin Ty.

Therefore
(En(y,2)) > 0= f(y) > f(z).

Then the function f is pseudoinvex.
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Definition 2.3. The function f is said to be prequasiinvex with respect to n if for each
z,y € K and each ¢ € [0,1], we have f(z + tn(y,z)) < max(f(z), f(y)). The function f is
said to be strictly prequasiinvex with respect to n if for each z,y € K and each t € [0, 1],

with f(z) # f(y) we have f(z +in(y,z)) < max(f(z), f(y)).
Theorem 2.4. Let f be a locally Lipschitz function on K, and for each z,y € K ({,n(z,y)) <
0 for each ( € O f(y), then [ is strict prequasiinver on K.

3. MAIN RESULTS

Proposition 3.1. If f is a locally Lipschitz function and pseudoinvex with respect to 0,

satisfies condition C, then f is strict prequasiinvexr on K.

Theorem 3.2. Let f: K — R be locally Lipschitz prequasiinvez function, n be continu-
ous with respect to the second argument satisfying Condition C. If (z*,n(y,z)) > 0, for a

z* € I f(x), then f(y) > f(x).

Proof. Since this theorem holds for the Clarke subdifferential (Theorem 3.2 [9]), therefore,
by using Remark 1.4, it holds also for limiting subdifferential. 0
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DIMENSION OF SCHUR MULTIPLIER OF LIE ALGEBRAS
MOHAMMAD REZA RISMANCHIAN'* AND MEHDI ARASKHAN?

ABSTRACT. The paper is devoted to give some bounds for the dimension of Schur multi-
plier of finite dimensional Lie algebras. Moreover, we present the concepts of irreducible
and primitive extensions of an arbitrary Lie algebra and give some equivalent conditions

for a central extension to be one of the latter notions.

1. INTRODUCTION AND PRELIMINARIES

An algebra is a vector space A over a field &k together with a bilinear map [, | : Ax A —
A. The bilinear map [, ] is called a Lie bracket. A subalgebra B C A is called an ideal if
[z,y] and [y, z] lie in B for all x € A and y € B. An algebra L is said to be a Lie algebra
if its Lie bracket has the following properties:

(1) [z,z] =0 for all z € L,

(2) [z, [y, 2]] + [, [z, 2]] + [z, [z, y]] =0 for all z,y,z € L.

Let S be a subset of L. Then the set

Cr(S)={ze€L|[z,s]=0 forall s€ S},

is called the centralizer of S in L. One may easily observed that C7,(S) is a subalgebra of
L. If S = L, then Cr(L) is equal to the center of Lwhich denoted by C(L). Let L be a

2000 Mathematics Subject Classification. 17B56, 17B99.
Key words and phrases. Lie algebra, Schur multiplier, irreducible and primitive extensions.
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Lie algebra and let V, W be subspaces of L. Then the linear span of the elements [v, w]
for v € V and w € W is called the product space of Vand W. It is denoted by [V, W]. If
V and W be ideals of L, then also [V, W] is an ideal of L. Also, if V =W = L, then the
subspace [L, L] = L? is an ideal of L. Tt is called the derived subalgebraof L.

Throughout this paper we shall use the term Lie algebra to mean a Lie algebra over some
fixed field k. Let 0 — R — F -5 L. —» 0 be a free presentation of a Lie algebra L,
where F' is a free Lie algebra. Then the Schur multiplier of L, denoted by M (L), is defined
to be the factor Lie algebra (RN F?)/[R, F]. It is easily seen that the Schur multiplier
of a Lie algebra L is abelian and independent of the choice of the free presentation of L.
Furthermore, if L is finite dimensional, then M (L) is isomorphic to H?(L,k), where L
acts trivially on k (see [1,2,3,4] for more information on the Schur multiplier of a finite
dimensional Lie algebra). An exact sequence 0 — M — K — L — 0 of Lie algebras
is a central extension of L if M is a central subalgebra of K. Note that the above free
presentation of L induces the following central extension, which is called a free central

extension of L,

R . F
(R, F] (R, F]
where 7 is the natural epimorphism induced by .

0— i>L—>0,

The following useful lemma, which its proof is straightforward, will be needed.

Lemma 1.1. Let F/R = L be a free presentation of the Lie algebra L and let 0 —
M — K % T — 0 be a central estension of another Lie algebra L. Then for each
homomorphism « : L — L, there exists a homomorphism (3 : F/[R,F] — K such that

B(R/[R, F]) C M and the following diagram is commutative:

R F -

. R, F] R, F] k .
ﬁ% 5\ a

0—— M —— K 0 . T 0,

where 1 is the restriction of § to R/[R, F].



DIMENTION OF SCHUR 201

2. MAIN RESULTS

In this section we study dim M (L). begin by the following theorem.

Theorem 2.1. Let L be a finite dimensional Lie algebra with ideal B and set A= L/B.
Then there exists a finite dimensional G with an ideal M such that

(i) LN B = G/M,

(i) M = M(L),

(131) M(A) is a homomorphic image of G.

Proof. Let 0 — R — F—L — 0 be a free presentation of a Lie algebra L, and
suppose B = S/R for some ideal S in F. Then A = L/B = % = F/S. Now, set
M = (F?NR)/[R,F] and G = (F?N S)/[R, F]. Then

L’NB = (F/R)’NS/R=((F?’+R)NS)/R=((F’NS)+R)/R= F*NS/F’NR = G/M.

Thus, (i) has been proven. By definition, M (L) = M and (ii) has been proven. By

definition,

F?NS/[R, F) -~ G

[S,F]/[R,F]  [S,F]/[R,F]

Therefore, M (A) is the image of G under some homomorphism, whose kernel is [S, F]/[R, F.

O

M(A) = F*NS/[R,F] =

This leads to the following result.

Corollary 2.2. Let L be a finite dimensional Lie algebra, B be any ideal of L, and
A= L/B. then dim M(A) < dim M (L) + dim M (L? N B).

Proof. From Theorem 2.1, dim M(G) = dim M(L) + dim M(L? N B) and dim M(4) <
dim G. Thus, dim M (A) < dim M (L) + dim M (L% N B). O

Now, we introduce the notions of irreducible and primitive extensions of a finite dimen-

sional Lie algebra.

Definition 2.3. Let e : 0 — M — K — L — 0 be a central extension of a finite

dimensional Lie algebra L. Then the extension e is called irreducible if there is no proper
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subalgebra K of K such that K = M + K;. If in addition dim(M N K?) =dim(M (L)),

then e is called a primitive extension.

Theorem 2.4. Let 0 — R — F — L — 0 be a free presentation of a Lie algebra
Lande: 0 — M — K 5L —50 be any irreducible extension of L. Then K is a
homomorphic image of the factor Lie algebra F/[R, F|, in such a way that there ezists an
ideal S/[R, F| in R/[R, F] such that

. F/IR,F] .. R/[R,F|
K= smme ™ ME SR

Moreover, if L is finite dimensional, then dim(M N K?) < dimM (L) and the extension e
is primitive if and only if SN F? = [R, F).

Proof. By Lemma 1.1, there exists a homomorphism 3 : F/[R, F] — K such that the
corresponding diagram with the central extension e in Lemma 1.1 is commutative. It is
easily shown that K = M + B(F/[R, F]) and Kerg C R/[R, F]. By the assumption e is
irreducible, so K = (F/[R, F]) and f is onto. Put Kerg = S/[R, F], for some suitable
ideal S in F', then we can obtain the required isomorphisms.

Now, suppose that L is finite dimensional. Then using the above notations, we have

MmKQERr\I(F2+S)E(RQFQ)-FSERPIFQE M(L)
N S N S - SNF?2  (SNF?)/[R,F)’
which imply that dim(M N K?) <dimM (L). Finally, by Definition 1.2 and using the above
isomorphisms, one can easily see that e is primitive if and only if SN F? = [R, F]. O
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ORTHOGONALITY OF OPERATORS

FARZANE SADEGHI'* AND ABBAS SALEMI?

ABSTRACT. A new notion of orthogonality for operators is introduced. Comparisons are
drawn between this orthogonality and an earlier one used by R. Bhatia. A condition has
acheived in the sense of this new orthogonality which converts Birkhoff-James orthogo-
nality to be symmetric. we also state its application in approximation theory, distance

problems and computing norm of inner derivation.

1. INTRODUCTION AND PRELIMINARIES

Let (X, ||.||) be a normed linear space of dimension greater than 1. If (X, ||.|]|) is an inner-
product space with inner-product (., .), then the most obvious definition of orthogonality is
x L y if and only if (x,y) = 0. More general definitions involving only normed properties
were introduced by G. Birkhoff, R.C. James, 1. Singer and C.R. Diminnie. One of these
definitions is known as Birkhoff-James orthogonality which we will denote by Lp;. It is

defined as follows
z Lpy if and only if ||z|| < ||z + zy|| for every complex numbers z.

In the concept of orthogonality, some immediate desirable properties which are usually

studied, are as follows:

(1) Symmetry: if z L y, then y L x.

2000 Mathematics Subject Classification. 15A60, 47A12, 47A58.
Key words and phrases. Birkhoff-James orthogonality, Davis-Wielandt shell, Maximal numerical range,
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(2) Homogeneity: if z L y, then ax L By for all real a and S.
(3) Additivity: ifz L y and z L 2, then 2 1 y + 2.

(4) Existance: if 2,y € X, then there is a real number « such that x L (az + y).

The last property is extremely useful in working with an orthogonality relation. Among
other things, it guarantees that the relation is not vacuous.

Let B(H) be the algebra of bounded linear operators acting on the Hilbert space H.
We identify B(H) with M, if H has dimension n. R. Bhatia has studied Birkhoff-James
orthogonality for matrices and operators in B(H). let A, B € B(H) the operator A is said
to be Birkhoff-James orthogonal to B if ||A|| < ||A + zB|| for all complex number z. In
Hilbert spaces this orthogonality is equivalent to the usual notion of orthogonality but in
general Banach spaces is neither symmetric nor additive. However it is homogeneous and

existent. Next characterization of orthogonality was proved by Bhatia.

Theorem 1.1 ([1], theorem 1.1). Let A,B € B(H). Then A Lp; B if and only if there
exists a sequence {xn} of unit vectors such that ||Az,| — ||A|l, and (Azy, Bz,) — 0.

Following Hestenes [3], operators A, B € B(H) are x-orthogonal if A*B = AB* = 0.
x-orthogonality is symmetric, additive and homogeneous but it is not existent. Note that

merely the assumption A*B = 0 implies A L gy B and even B 1 g; A. This follows from
|A+2B|? = [[(A+ 2B)* (A + 2B)|| = |[A*A + |2’ B*B|| > | A*A| = || A]*.

To formulate our new orthogonality relation, we need the concept of numerical range

of an operator which is defined as follows
W(A) ={(Az,z) : z € H, (z,z) =1}.

Motivated by theorical study and applications, there have been many generalizations of
the numerical range, one of these generalizations is the Davis- Wielandt shell of A € B(H)
defined by

DW (A) = {({Az, 2), (Az, Az)) : € H, {z,5) = 1}
Evidently the projection of the set DW(A) on the first coordinate is W(A). Another

generalization of W (A) is introduced by Stampfli in [4], the mazimal numerical range of
A € B(H) which is the set

Wo(A) ={\: (Azn,z,) = X where ||z,]| =1 and ||Az,|| — ||A]|}.
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If H is finite dimensional, Wy (A) corresponds to the numerical range produced by the unit
norm attaining vectors (vectors z such that ||z|| = 1 and ||Az| = ||z|). It is also clear
that Wy(A) is a level set of the Davis-Wielandt shell of A. Stampfli proved that Wy(A)
is nonempty, closed, convex and contained in the closure of the numerical range. He also

proved the following theorem.

Theorem 1.2 ([4], theorem 2). If 0 € Wy(A), then ||A||? + |22 < [|A + z||? for all z € C.
Conversely, if ||Al| < ||A+ z|| for all z € C, then 0 € Wy(A).
2. MAIN RESULTS

In this section we will state our definition, its relation with x-orthogonality and Birkhoff-
James orthogonality and at the end we will state its application in approximation theory

and distance problems.
Definition 2.1. Let A, B € B(H) then
AL B if and onlyif 0€ Wy(A*B).

Theorem 2.2. This notion of orthogonality is symmetric and homogeneous. It is also

existent if H is finite dimensional.
Proposition 2.3. Let A,B € B(H). If A is x-orthogonal to B, then A 1L B.
Theorem 2.4. Let A,B € B(H). Then

AL B ifandonlyif A*B Lp;I i.e. ||A*B| <||A*B+ zI|| for all z.

we demonstrate Turnsek’s characterization of isometries and coisometries in the sense

of Birkhoff-James orthogonality in the following.

Proposition 2.5 ([5], theorem 2.5). Let A,B € B(H). Then A Lp; B always implies

B 1y A if and only if B is a scalar multiple of an isometry or coisometry.

Corollary 2.6. Let A € B(H), C be a scalar operator. Then A L C if and only if
AlpgyC.

Now, we can prove the following theorem that gives a condition which converts Birkhoff-

James orthogonality to be symmetric.

Theorem 2.7. If A L B and A or B is a coisometry then, A Lpy B and B Ly A.
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Problems of approximating an operator by a simpler one have been of interest to oper-
ator theorists. Now with the notion of this orthogonality the distance of an operator to

the class of scalar operators can be found.

Definition 2.8. The distance of an operator to the class of scalar operators is defined as
follows
dist(A,CI) = min,ec||A + 21|

By means of this notion of orthogonality, we can introduce new notion of best approx-

imation.

Theorem 2.9. Let A,B € B(H). Suppose W is the linear subspace spanned by all scalar
operators, and A*B ¢ W. Then the zero operator is the best approzimation to A*B among
all operators in W if and only if A 1 B.

Proposition 2.10. If dist(A,CI) = Ao = A+ 2ol then Ay L I and dist(A,CI) = ||A]| if
and only if A L 1.

Recall that the operator D4(X) = AX — X A is called an inner derivation. Accorging

to what Stampfli proved in [4] and our orthogonality we state the following proposition.
Proposition 2.11. A L T if and only if ||Da| = 2]|A]|.
Corollary 2.12. dist(A,CI) = |D4].

Let A, B € M,,. We say that A is orthogonal to B in the Schatten p-norm (for a given
1<p<oo)if
|A*B||, < [|[A*B +I||, for all z

where,

™=

n

1Al = | D (s;(A)”

j=1
In the case p = 2, The quantity (A, B) = tr A*B defines an inner product, and the norm
associated with this inner product is [|.||2. So (A, B) =0 if and only if A L B.

Remark 2.13. As we know (see [1, section 2]), if 1 < p < 0o, then the norm ||.||, is Frechet

differentiable at every A. In this case
d 1%
o A+ 1B = pRe(tr(| A" 0" B))

for every B, where A = U|A| is a polar decomposition of A. If p = 1 this is true if A is

invertible.
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By [1, theorem 2.1] and Remark 2.13, we state the following theorem.

Theorem 2.14. Let A*B have a polar decomposition A*B = U|A*B|. If for any 1 <p <
oo we have tr|A*B|P~'U =0, then A L B in the Schatten p-norm. The converse is true
for all A, if 1 <p < o0, and for all invertible A, if p=1.

Acknowledgements: This research has been supported by the SBUK Center of Ex-

cellence in Linear Algebra and Optimization.
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AN ALGORITHM FOR COMPUTING THE INERTIA

MARYAM SHAMS SOLARY!*

ABSTRACT. In this note we try to design an algorithm for Computing the Inertia of n xn
complex matrix. Inertia is defined the nature and location of eigenvalues for complex

matrix. This algorithm helps us for finding inertia without compute eigenvalues.

1. INTRODUCTION AND PRELIMINARIES

The inertia of a n X n complex matrix A, is defined to be an integer triple, In(A)
(m(A),v(A),5(A)) where m(A) is the number of eigenvalues of matrix A with positive real
parts, v(A) is the number of eigenvalues with negative real parts and 6(A) is the number of
eigenvalues with zero real parts. In this paper, is developed the shift- and- invert Arnoldi
method by a suitable shift for converting generalized system to standard system. Then by

a block matrix method and Gerschgorin theorem, the nature and location of eigenvalues

were determined.

2. MAIN RESULTS

In [4], the authors have shown that the shift- and- invert Arnoldi method for the eigen-
problem Ap; = \;By; is mathematically equivalent to the standard Arnoldi method for

the transformed eigenproblem:

Ap; = \iByp;
Api — 0cByp; = A\iBp; — 0 B¢;
(A—0B)p; = (\i —0)By; = 1/(A\; — 0)p; = (A— oB) 'By;

2000 Mathematics Subject Classification. Primary 65F25, Secondary 65N25.
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My; = 0,
Where o is a shift. We gain the first shift by this process:
Az = ABz = || Az [[=| M| [| Bz I<[A] | B [l = |
| Az || Az | _

[Ea A

| . |I* is a matrix norm, see [2]. So we have:

Al
B~

Az =Bz = B ' Az =z =|| B Az |=[X] [z =] B 1A [z 2/x] [«
=BT A2

=

<IAT B IFA "= max x || Az |

<| Al

— Al

Suppose o = B If shift o is not suitable, i.e (A — oB) is not invertible, we find a new
shift by bisection on the interval [{Zlh, | B=1 || A ],

This process does not need Hessenberg form of matrices A and B. Therefore it saves time
compared with the definded method in [4]. Also we use norm 1 (|| . ||1) for saving time.
Now we explain another proof of Gerschgorin theorem. This proof will help us for better
describing the Inertia Algorithm: Let A = (a;;) € C,xpn be a square matrix of order n

with complex entries and let

n n
D'={zeCllz—ail< ) lagl}=Blau, Y layl), i=1...,n
=Li#i j=1,j#i

Theorem 2.1. (Gerschgorin) 1. Every eigenvalue of A lies in some D
2.If M is the union of m disks D; such that M is disjoint from all other disks of this type,

then M contains precisely m eigenvalues of A (counting multiplicities).

Proof. See [3]. O

By above theorem, all eigenvalues of A can be found in the union of disks

n

{z:|z —ai| <ri,i=1,2,...,n}, r;= Z laijl, i=1,...,n
J=1j#

So by Gerschgorin theorem we can describe
rp; = real (A(i,i)) — i, rn; = real(A(4,1)) + r;

and use them for finding the nature and location of eigenvalues. For example, if rp; >
0 for 1 < i < n agreement definition rp; then ith eigenvalue situated in positive part

of real numbers. If rn; < 0 for 1 <1i < n agreement definition rn; then ith eigenvalue
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situated in negative part of real numbers. Else eigenvalue may be zero but we do not sure,

so we must examine more.

Remark 2.2. The Gerschgorin Circles for matrix A show that eigenvalues are in the
[—14,8.5].

4 1.0 1 0 00O
-15 1 1 5 00
S 0 2 0 0 00
A=l0 1 1 -6 1 0 0
1 02 2 =900
0 50 5 0 00
0o 00 0 0 13

By defining rp; and rn; we can see 4 eigenvalues are situated in Positive Circle , 2 eigen-
values are in Negative Circle and 1 eigenvalue is in Zero Circle. R; ¢ = 1,2,3 give us

lower bound and upper bound for circles on real axes, see Figure 1.
R, =[1.5,8.5] = Positive eigenvalues
Ry =[—14,-3] — Negative eigenvalues

Rs =[—-1,1] = must be examined more

Note that if these circles overlap with each other, we can not determine the number of
eigenvalues in every circle. Thus we must try to plot another circle which contains both

circles.

Remark 2.3. The Gereschgorin Circles for matrix A show that eigenvalues are in the
[_77 6]

3 1 0 0 .5
1 4 0 0 1
A=10 -5 0 1 0
0 1 1 -4 1
0 0 1 1 =3

We can see Negative Circle and Zero Circle overlap with each other. So for describing
the situation of the eigenvalues needs to determine another circle, this circle must contain
two negative and zero circles, see Figure 2. This process is showed in Step4 of Inertia
Algorithm. The following is a modification of Inertia Algorithm in [4]. This Inertia

Algorithm works faster and more efficient than last algorithm.
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Inertia Algorithm
Step 1: Input matrices A,B.
Step 2: If B is singular or ill-conditioned, then first shift is: o = H, else: 0 =0
Step 3: M = (A —o0B) ! and use block inverse method for computing inverse of matrix
M.

Step 4: Gain rp; and rn; for matrix M by:
rp; = real (M (i,1)) — i, rn; = real(M(i,1)) +r;

a- If rp; >0 for 1 <i¢ < mn: It shows ith eigenvalue is in Positive Circle.

b-If rn; <0 for 1 <1 < n: It shows ith eigenvalue is in Negative Circle.

c-Else: eigenvalue may be zero but we are not sure. Therefore we must examine more.
Note: If upper bound of Negative Circle is bigger than lower bound of Zero Circle, try to
gain another circle that contains both of them. If lower bound of Positive Circle is smaller
than upper bound of Zero Circle, try to gain another circle that contains both of them.
Step 5: By Step(4-a) and Step(4-b) we have:

7w(M): The number of eigenvalues with positive real parts in Positive Circle.

v(M): The number of eigenvalues with negative real parts in Negative Circle.

d(M): The number which we do not have information about their nature in Zero Circle.
Step 6: Gain eigenvalues (0;),i = 1,2...5(M)for M = (A — 0B)~'B in Zero Circle.
Step 7: Set zero(M) =0

For j=1,2,...,0(M) do, \j =0+ 1/6;

If real (A;) > 0 then 7(M) = n(M) + 1

If real (A;) <0 then v(M) =v(M) +1

Else if real ()\;) = 0 then zero(M) = zero(M) + 1, 6(M) = zero(M)

Step 8: In(A) = (w(A),v(A),§(A)).

Example 2.4. Let A = gallery('lesp’,n), B = eye(n) n=1500. eig(A,B) after 247s and
Inertia algorithm after 46.443s gives us the nature of eigenvalues (All eigenvalues are neg-
ative).

Note: Matrix A is in Matlab Gallery and "eig” is a Matlab function for computing eigen-

values.

Example 2.5. Let A = BCSSTK13, B = BCSSTM13 where A is a real symmetric
positive definite matrix of size 2003 and B is a real symmetric positive semi-definite matrix
of size 2003 (Matrices A and B are in Harwell-Boeing matrix market).

Rank(A)=2003 and Rank(B)=1241 (Fluid flow generalized eigenvalues). eig(A,B) cannot
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work because A,B are sparse and eigs(A,B) also is the same because B is not symmetric
positive definite. So we use eig(full(A),full(B)), this function needs 735s for doing but
Inertia Algorithm needs 342.2653s. Both of them give us similar results (All eigenvalues

are positive).

Remark 2.6. If in Inertia algorithm we replaced inv(A) x B by (A \ B) we need only
60.4891s. We know that in Matlab software both of them give us similar results (i.e
inverse(A) multiply B) with different times.
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NUMERICAL RADIUS INEQUALITIES

L ALEMEH SHEIKH HOSEINI AND ABBAS SALEMI 2*

ABSTRACT. We present several numerical radius inequalities for Hilbert space operators.
In particular, we prove that if p,q > 1 with %+% = 1, then it is shown that w?(AX B) <

w (%(B|X|B)P + §(A|X*|A)q) for all A, B, X € B(H) such that A = A*, B = B* and

w(.) is the numerical radius. Also, we obtain a bound for w"(A?) and w"(4*), for r > 2.

1. INTRODUCTION AND PRELIMINARIES

Let B(H) denote the algebra of all bounded linear operators on a complex Hilbert space
H with inner product (.,.).For A € B(H), the usual operator norm of A is defined by

[A]l = sup{[|Az| : z € H, ||z]| = 1},

where ||z|| = (z,z)/2, and the numerical range of A is defined as the set of complex

numbers given by

W(A) = {(Az,z) : z € H, ||z|| = 1}.

The numerical radius of A is given by

w(A) = sup{|(Az,z)| : z € H, ||z|| = 1}.

It is well known that w(.) defines a norm on B(H), and that for every A € B(H) we have

1
Sl < w(4) < 4]
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The classical Young inequality for two scalars, which is a fundamental relation between
two nonnegative real numbers. This inequality says that if a,b > 0 and p,q > 1 such that
T
E =+ E = 1, then

aP  bY

(1.2) ab < — + —.
p q

The following inequality has been shown by Kittaneh in 2005.

Theorem 1.1. [3, Theorem 2] If A, B,C,D,S,T € B(H), then

(1.3) w(ATB+CSD) < %(||A|T*|2(1*0‘)A*+B*|T|2(°‘)B+C|S*|2(1’°‘)C*+D*|S|2(°‘)D||).
In 2009, Shebrawi and Albadawi extended Theorem 1.1, in the following form.

Theorem 1.2. [5, Theorem 2.5] Let A;, B;, X; € BH)(: = 1,2,...,n), and let f and g be
nonnegative functions on [0,00). which are continuous and satisfy the relation f(t)g(t) =t
for all t € [0,00). Then for all 7 > 1,

,’,erl
2

(1.4) W (YA XiB;) < (1> (A g* (X7 DAL + [BE (XD BilI)-
=1 =1

2. MAIN RESULTS

In this section, we establish a general numerical radius inequality for Hilbert space
operators which yields well known and new numerical radius inequalities as special cases.

To prove our results, we need the following basic lemmas.

Lemma 2.1. [4, Theorem 1] Let A be an operator in B(H), and let f and g be nonnegative
functions on [0,00) which are continuous and satisfy the relation f(t)g(t) = t for all
t € [0,00). Then

[(Az, y)| < [IF(|ADz[llg(JA*[)yll.

for all z and y in H.

Lemma 2.2. [4] Let A be a positive operator in B(H) and let = € H be any unit vector.
Then for all r > 1,

(Az,z)" < (A"z,x)

Lemma 2.3. Let a;, (i = 1,2,...,n) be a positive real number . Then for all r > 1,

n

n
Sar =Y
=1

=1
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Our main result in this paper, which leads to a generalization of (1.4) for » > 2 can be

stated as follows.

Theorem 2.4. Let A;,B;, X; € B(H)(: = 1,2,...,n), and let f and g be nonnegative
functions on [0,00) which are continuous and satisfy the relation f(t)g(t) = t for all
t €[0,00). if p,q > 1 with %—i— % =1, then for all v > 1,

n

21) W (S AIXB) < n”lw(Z(%(A:gZ(|X;‘|>Ai)“’ + §<B:f2<|Xz-|>Bz->“l>>.
=1 =1

Inequality (2.1) includes several numerical radius inequality as special cases. Samples
of inequalities are demonstrated in what follows.
For f(t) = t* and g(t) = t'~*,a € (0,1), in (2.1), we get the following inequality.

Corollary 2.5. Let A;,B;, X; e BH)(i=1,2,....,n),r > 1 and 0 < a < 1. Then

- * r— - 1 * * —« r 1 * « r
(22) W' AIXBy) <n’ lw(Z(];(Ai | XFPO AP + ;(Bi | X2 B;)")).
=1 =1
In particular,
- * r— - 1 * * r 1 * r
(2.3) W () AIXiBi) <n? lw(Z(];(Ai | X7 14:)"™ + ;(Bi | Xi|Bi)"™)).-
i=1 i=1

For X; = I(i = 1,2,...,n) in inequality (2.3) , we get the following numerical radius

inequalities for products of operators.

Corollary 2.6. Let A;, Bj,€ B(H)(i =1,2,....n) andr > 1. Then

n n
1 1
(24) W (Y AfBi) < ¥ (Yo (AP + —[BifPT)).
=1 i=1 p q
In particular,
n n 1 1
(25) W (3o AIB) < (YA + | Bif™).
i=1 i=1

Remark 2.7. The case n =1 in (2.4), provides the following inequality

(2.6) WP (A°B) < w(L|aP 4 L Bpray).
D q
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which is a numerical radius inequality for the product of operators and is related to the
Young inequality for operators. Note that a more general inequality can be obtained by
letting @ = 1/2 and n =1 in (2.2). In fact, we have

2.7) W (A XB) < w(%(A*|X*|A)”’ + é(B*|X|B)W).
For r =1 in (2.7), we obtain the inequality

(2.8) W (A*XB) < w(%(A*|X*|A)p + %(B*|X|B)q).

In particular if A, B are Hermitian, then

(2.9) W (AXB) < w(%(A|X*|A)p + %(B|X|B)q).

The inequality in (2.7) can be used to give an upper bound for the numerical radius of A2

and A3. In fact, we have
W77 (A7) < w(2(AA%)P + L(ar Ay,
D q

1 1
W (A%) < W(E(AIA*IA*)”’ + Q(A*IAIA)”’)-
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ISOMETRY AND HILBERT-SCHMIDT PROPERTIES FOR
COMPOSITION OPERATORS

VALI SOLTANI MASIH! *

ABSTRACT. The object of study in this paper are composition operator Cy, to be a
Hilbert-Schmidt operator on the Hardy-Hilbert space H?. we give necessary and suf-
ficient condition for composition operator C, to be a isometry and Hilbert-Schmidt

operator.

1. INTRODUCTION AND PRELIMINARIES

Let H? be the space of all analytic functions on the unit disc D having power series
representation with square-summable complex coefficient. The inner product on H? is
defined by (f,g) = Y02y anb, for f(2) = 30° janz™ and g (2) = Yo% 1 b,2". Let S (D)
denote the set of all analytic self-maps of the unit disc D. Every analytic self-map ¢ € S (D)
induces through composition a linear composition operator Cy, from H? to itself. For such

¢, we define an operator C,, on H? by

(Cof)(2) =(fop)(2)  (2€D)

for all f € H?, see[3, 2]. Let C (H2) denote the space of composition operators on H?.
The Hilbert-Schmidt operator, is the bounded operators S defined on a separable complex
Hilbert space H2, satisfying the following condition: If {e,: n € N} is an orthonormal
basis of H?, then Y °° [|Se,||* < oo, where ||.|| is a norm on C (H?) coming from the

inner product. see[l]. An operator S on a complex Hilbert space #H is a 2-isometry if

2000 Mathematics Subject Classification. Primary 42B30; Secondary 47B33, 30D05.
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5282 _988* 4+ T = 0, where I denotes the identity operator. As noted by Richter, in
[4], the notion of ‘2-isometry’ generalizes in a natural way the well-known definition of
isometry.

If S is a bounded operator on a Hilbert space, then S is said to be an m-isometry if
and only if >}, (=1)m* (’;’;)S*kS'k = 0. We also propose sufficient conditions for a

composition operator to be an m-isometry.

2. MAIN RESULTS
Composition operator are characterized form acting an orthonormal basis
{en:en(2) =2" forn=0,1,2,...}
on H?, for non-negative integers n.

Theorem 2.1. An operator A in H? is a composition operator if and only if Ae, = (Aey)"
forn=0,1,2,....

Proof. If A = C,, then Ae; = Cye; = Cpz = ¢ and Ae, = Cpe, = Cy2" = ¢", and
therefore Ae, = (Ae;)".

Conversely, suppose Ae, = (Ae;)" for all non-negative integers n. Define ¢ by ¢ = Ae;.
Since Ae; is in a H?, ¢ is analytic on I.

To show that A = C,, it suffices to prove that |¢ (z)| < 1 for all z € D, since then it would
follow that the composition operator C, is well-defined and bounded. Then

Aep, = (Aer)" = " = Cp2" = Cpey;

thus by linearity and continuity, it would follow that A = C,,.

To show that |p (2)| < 1, note that ¢" = Ae,, implies that ||¢"|| < ||A] for all non-negative
n. Since ¢ € H?, there exists an increasing sequence {r,} of positive number converging
to 1 such that lim, . @ (rnem) = (ﬁ(eig). We claim that |$(ei‘9)| < 1 for almost all 6.
Consider any § > 0 and define the set E by E = {e?: | (¢Y)| > 1+ 6}. Then

1 2

lemI2 = 5= [ 18 ()P0
T Jo

i ~ (10 2n
27‘(’/E|(p (6 >| do
2/ (146)*"dm

E

=m (E)(1+6)™"
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where m (F) is the measure of E. If m (F) > 0, this would imply that {||¢"||} — oo
as n — oo which contradicts the fact that [|¢"| < ||A|| for all n. Hence m (E) = 0 and
therefore | (e?)| < 1. Tt follows that |p(2)| < 1 for all z in D, see[3]. We claim that
lp(z)] < 1 for all z in D. If not, then there exists zp € D such that |¢(2)] = 1. By
maximum modulus principle [5] this implies that ¢ is a constant function; say ¢ (z) = A,
with A of modulus 1. Since Ae,, = (Aey)"”, it follows that Ae, = \". But then (A*ey, e,) =
(eg, Aey) = (eg, ™) = A", where A* is adjoint operator of A. so

1A%eol? = ) [(A%eq, ea)® = D [N = o0
k=0 k=0

since |A| = 1. This is a contradiction. O

The following theorem gives necessary and sufficient conditions for the composition

operator C, on H? to be a Hilbert-Schmidt operator.

Theorem 2.2. Let C, is a composition operator on a Hilbert space H?. Then Cy is a
Hilbert-Schmidt operator if and only if ||¢]| < 1.

n

Proof. Suppose that [|¢||< 1. For any n = 0,1,2,... and z € D the mapping e, (z) = z

are an orthonormal basis for H2. Form the Theorem 2.1 we have

N
> lICsenll” = ZII (Cpen)"|I? = lew I
n=0

< ZII@DIIQ” < ZHMIQ” =

then power series Y oo o||Cey,||? is converges. consequently the composition operator C\,

||<p||2

is a Hilbert-Schmidt operator.
Conversely, if ||¢]| = 1, then there exists zp € D such that |¢ (29)] = 1. By maximum
modulus principle this implies that ¢ is a constant function; say ¢ (z) = A, with X of
modulus 1. Since Cpe, = (Cyper)”, it follows that Cye, = A". But then (C;eo,en) =
(€0, Cypen) = (eg, ") = A", s0

oo oo
IC5eoll” =Y Cheo en)® = D A = o0
k=0 k=0

since |A| = 1. This is a contradiction. O

Recall that every composition operator C,, is invertible if and only if ¢ is a conformal

mapping of I onto itself, In this case, C; l=C

1. Consequently C,, is a bijective operator
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on H?, Thus Cy is an unitary operator and C7 = C,-1. For m =0,1,2,... we conclude
that C;"Cg = I, therefore composition operator C,, is a m-isometry operator.
The following corollary which proof above gives necessary and sufficient conditions for the

composition operator C, on H? to be a m-isometry operator, for m =0,1,2,....

Corollary 2.3. Let ¢ is a analytic self-map on D. Then ¢ is a conformal mapping of D
onto itself if and only if Cy, is a m-isometry, for m =0,1,2,....

Acknowledgements: The author gratefully acknowledge the financial support for this

work that was provided by University of Payame Noor.
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MAPS PRESERVING DIVERGENCE

ALI TAGHAVI'! AND ABOLFAZL SANAMI?*

ABSTRACT. Many well known distinguishability measures of quantum states are given by,
or drived from, f- divergences; special examples include the quantum relative entropy,
the Renyi relative entropies, and the Chernoff and Hoeffding measures. The distance
of statistical operators is conveniently measured in many statistical and information-
theoretical applications by quantum f- divergence. In this lecture, format of maps that

preserve quantum f- divergences on rank one projections of S(H) are presented.

1. INTRODUCTION AND PRELIMINARIES

Quantum mechanics was one of the very important new theories of the 20th century.
Quantum mechanics motivated the creation of new areas in mathematics; the theory of
linear operators on Hilbert spaces was certainly such an area. Quantum information theory
was born in the 1990s. Measurements on a quantum system provide classical information,
and due to the randomness classical statistics can be used to estimate the true state.
Entropy is the degradation of energy from order to disorder, and describes the tendency
of anything to degeneration. The subject of entropy is as a measure of uncertainty. Of
course, when talking about an uncertainty relation one needs a measure to express uncer-
tainty, and although there are many such thinkable measures we will restrict ourselves to
the one that is known as entropy? We consider the Shannon entropy, the Von Neumann

entropy and the quantum relative entropy.
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In the stochastic modeling of systems, the probabilities of the different outcomes of
possible measurements performed on the system are given by a state, which is a prob-
ability distribution in the case of classical systems and a statistical operator on Hilbert
space of the system in the quantum case. In applications, it is important to have a no-
tion of how far two states are from each other hand, as it turns out, such measures arise
naturally in statistical problems like state discrimination. Probably the most relavent sta-
tistically motivated distance measure is the relative entropy. Relative entropy has various
generalizations, most notably Renyi’s a-relative entropies [?] that share monotonicity and
convexity properties with the relative entropy, and are also related to error exponents in
binary state discrimination problems. A general approach to quantum relative entropies
was developed by Petz in 1985 [5], who introduced the concept of quasi-entropies.

Molnaf (2008) in [2] has shown that every bijective transformation on the space of all

density operators on a finite-dimensional complex Hilbert space which preserves the rela-
tive entropy is necessarily implemented by either a unitary or antiunitary operator on the
underlying Hilbert space. He and W. Timmermann ( 2009 ) in [4] proved that any bijective
map on the space of all quantum states which preserves the Jensen-Shannan divergence
is induced by a unitary or antiunitary. Moreover, in ( [3], 2010 ) L. Molnat and P.Szokol
show that every transformation on the space of all density operators on finite-dimensional
Hilbert space H which preserves the relative entropy is implemented by either a unitary
or antiunitary operator on H. Recently, L. Molnai proved that every bijective map on
the set of all invertible density operators which preserves the Umegaki relative entropy is
necessary is implemented by either a unitary or antiunitary operator on H.
The basic postulate of quantum mechanics is about the Hilbert space formalism. To each
quantum mechanical system a complex Hilbert space H is associated. In the traditional
approach to quantum mechanics, a physical system is described in a Hilbert space: observ-
able correspond to a self adjoint operators and statistical operators are associated with the
states. The physical states of a quantum mechanical system are described by statistical
operators acting on the Hilbert space. Note that, a statistical operator is positive operator
of trace 1 on Hilbert space H.

Let 2 be a finite dimensional €*-algebra. Unless otherwise stated, we will always assume
that 2 is a €*-subalgebra of B(H) for some finite-dimensional Hilbert spaces H, i.e., 2 is
a subalgebra of B(H) that is closed under taking the adjoint of operators. For simplicity,
we also assume that the unit of 2 coincides with identity operator I on H; if this is not the

case, we can simply consider a smaller Hilbert space. The Hilbert-Schmidt inner product
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on 2 is defined as
<A B>ps=TrA*B, A,Bec2
with induced norm || A ||ps= VTrA*A, A € Q.

Definition 1.1. Let A and B be positive semi-definite operators on H and let f be a

function on [0. + oo) such that f is continuous on (0,+o00) and the limit limxHOOfo)

exists in [—00. 4+ 00]. The f-divergence of A with respect to B is defined as
(1) Sy(AlB) =< B2, f(A(A, B) B >us.

when suppA < supp B and A(A4, B) : 2 — 2 is so-called modular operator acting on 2
as A(A,B)X = AXB~!. In general case, we define

(1.2) SH(AIB) = lim._, oSp(A||B +eI).

2. MAIN RESULTS

Theorem 2.1. Let f be a nonnegative convex continuous function on [0,+00) and the
[z

limit limx_mOT) exists in [—o0,400|, also ¢ : S(H) — S(H) be a surjective map

satisfying

(2.1) Si(AlB) = S¢(p(A)ll@(B)).

Then there is an either linear or conjugate-linear isometry V. on H such that @(A) =

VAV* for any rank one projections A € S(H).

Proof. The proof is divided into several steps.

First, we proved that ¢ preserves the rank of operators in both sides and next by
the previous step we can proved that ¢ preserves invertibility bidirectionally. Second, ¢
preserves rank one projections in both sides and it follows that the transition probability
between A and B is the same as between ¢(A) and p(B), i.e., we have tr o(P)p(Q) =
tr PQ. Therefore,there is an either linear or conjugate-linear isometry V on H such that
¢(P) = VPV* for any rank one projection P € S(H).
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LINEAR MAPS PRESERVING THE R-POTENCY OF OPERATORS
ALI TAGHAVI'* AND ROJA HOSSEINZADEH?

ABSTRACT. In this lecture, we give the forms of surjective linear maps on matrix algebras

preserving the r-potency of products of matrices.

1. INTRODUCTION AND PRELIMINARIES

The study of maps on operator algebras preserving certain properties or subsets is a
topic which attracts much attention of many authors. Some of these problems are con-
cerned with preserving a certain property of usual products or other products of operators.
For example see [1,3,4]. Let X be a Banach space. Denote by B(X) the algebra of all
bounded linear operators on X. Let r > 2 be a natural number. P € B(X) is an idem-
potent operator when P? = P, or an r-potent operator when P" = P. In [3], authors
considered surjective linear maps on B(X) preserving the nonzero idempotency of either
products of two operators or triple Jordan products of two operators. In this paper we

extend this result for r-potent operators on matrix algebras.

2. MAIN RESULTS

We need some lemmas to prove our results. Assume r > 2 is a natural number and ¢
is a linear surjective map on M,, such that preserves the nonzero r-potency of products of

operators
Lemma 2.1. ¢ is injective.
Lemma 2.2. Let N € M, be of finite-rank and N? = 0. Then ®(N) is nilpotent.

2000 Mathematics Subject Classification. 46J10, 47B48.
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Lemma 2.3. ¢(I) = Al for some constant X such that \*" = 1.

Theorem 2.4. [2] Let f(z) be a polynomial with at least two distinct roots, V(f(x)) =
{X € Mp;f(X) =0} and L : M,, = M, (n > 3) be a bijective linear map so that
L(V(f(z)) C V(f(z). Then for some invertible matriz S either L(X) = SXS~ ! or
L(X) = SXtS~! or for some 1 >0, k > 2, the polynomial g(x) we have f(x) = z'g(z¥)
and for some kth root of unity w, L has one of the two forms L(X) = wSXS™ ! or
L(X) =wSX!S~!,

Theorem 2.5. Let r be an integer such that r > 2 and ¢ be a linear surjective map on M,.
Then ¢ preserves the monzero r-potency of products of two operators if and only if there
exists an invertible matriz S € M,, such that either ¢(X) = ASXS™! or p(X) = ASX!S~!
for every X € M, where \>" =1 and X' denotes the transpose of X.
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APPLICATIONS OF LINEAR ALGEBRA ON THE THEORY OF
M-ROOT FINSLER METRICS

AKBAR TAYEBI' * AND ESMAEIL PEYGHAN?

ABSTRACT. The theory of m-th root metric has been developed by H. Shimada, and
applied to Biology as an ecological metric. It is regarded as a direct generalization of
Riemannian metric in a sense, i.e., the second root metric is a Riemannian metric. In
this paper, we characterize y-Berwald m-th root metrics. Then, we show that every m-th
root metric of isotropic E (resp. H)-curvature reduces a weakly Berwald metric (resp.
H=0).

1. Preliminaries and introduction

Let (M, F) be a Finsler manifold of dimension n, TM its tangent bundle and (z¢,y*) the
coordinates in a local chart on TM. Let F be the following function on M, by F = VA,
where A is given by
(1.1) A=a;, i () y? .. yim
with a;, _;, symmetric in all its indices [13]. Then F is called an m-th root Finsler metric.

Recently studies, shows that the theory of m-th root Finsler metrics play a very im-
portant role in physics, theory of space-time structure, gravitation, general relativity and
seismic ray theory [2][6][9][10][11]. For quartic metrics, a study of the geodesics and of
the related geometrical objects is made by S. Lebedev, [7], respectively, by V. Balan, S.
Lebedev and N. Brinzei [3].

In two papers [4] and [5], V. Balan and N. Brinzei study the Einstein equations for
some relativistic models relying on m-root Finsler metrics. Tensorial connections for such

2000 Mathematics Subject Classification. 53C60, 53C25.
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APPLICATIONS OF LINEAR ALGEBRA ON THE THEORY OF M-ROOT FINSLER METRICS 229

spaces have been recently studied by L. Tamassy [14]. B. Lie and Z. Shen study locally
projectively flat fourth root metrics under irreducibility condition [8]. Y. Yu and Y. You

shows that an m-th root Einstein Finsler metrics are Ricci-flat [16].

2. Some Notations

0A

For an m-th root Finsler metric on an open subset U C R", we put A; = oy and
Ay = 853 é“y ~. Suppose that A;; define a positive definite tensor and A" denotes its

inverse. Then the following hold

2_9

Am
.. .. -2 ..
(2.2) g7 = AT [mAAT + =2y,
m—1
; ; I 2_
(23) ylAi = mA, yZAZ'j = (m - I)Aj, Y; = EAW IAZ',
(24) A‘]Ajk = 6/6’ A‘]Al = my‘], AZA]AJ = mA

3. Locally Dually Flat m-root Metrics

A Finsler metric F = F(z,y) on a manifold M is said to be locally dually flat if at
any point there is a standard coordinate system (z*,4’) in TM such that L = F? satisfies
kayzyk = 2L,:. In this case, the coordinate (z') is called an adapted local coordinate

system [12]. In this paper, we characterize locally dually flat m-th root Finsler metrics.

Theorem 3.1. Let F' be an m-th root Finsler metric on an open subset U C R*. Then
F is a locally dually flat metric if and only if the following holds
1 2
1 A = { (5 = A + Al .
(3.1) =52 = DAy + Ady
Moreover, suppose that A is irreducible. Then F is locally dually flat if and only if there

exists a 1-form 0 = 6;(x)y' on U such that the following holds

(3.2) A

x

1 {20Al —i—mAHl}.

m

4. y-Berwald m-root Metrics

A Finsler metric F' is called an Antonelli metric or y-Berwald metric if there is a local
coordinate system (z,4%) in TM such that the spray coefficient is function of y* only. In
this case, the spray coefficient of F' are given by

1

G' = SThw)y'y"



230 A. TAYEBI AND E. PEYGHAN

Antonelli metrics were introduced by P. L. Antonelli for some studies in Biology and
Ecology [1]. Antonelli calls them y-Berwald metrics. This class of metrics arises in time
sequencing change models in the evolution of colonial systems. Here, we characterize m-th

root Antonelli metrics. More precisely, we prove the following.

Theorem 4.1. Let F be an m-th root Finsler metric on an open subset U C R*. Then,
F is a Antonelli metric if and only if there exist functions ka depending only on direction
such that the following holds

. 1.
(4.1) Ay = [Ty + §F§k,zyjyk]f4z’-

5. Isotropic Mean Berwald m-root Metrics

A Finsler metric F is called a Berwald metric if G* = %F;k(x)yj y* are quadratic in
y € T, M for any x € M or equivalently Berwald curvature vanishes. The FE-curvature is
defined by the trace of the Berwald curvature. A Finsler metric F' is called of isotropic
mean Berwald curvature if £ = ”T‘HCF*Ih, where ¢ = ¢(z) is a scalar function on M and
h is the angular metric. If ¢ = 0, then F' is called weakly Berwald metric. In continue, we
show that every m-th root isotropic mean Berwald metric reduces to a weakly Berwald

metric.

Theorem 5.1. Let F be an m-th root Finsler metric on an open subset U C R"™ with
n > 2. Suppose that F is of isotropic mean Berwald curvature. Then F is a weakly

Berwald metric.

6. On m-root Metrics with Isotropic H-Curvature

In [?], Arkar-Zadeh cosidered a non-Riemannian quantity H which is obtained from the
mean Berwald curvature by the covariant horizontal differentiation along geodesics. This
is a positively homogeneous scalar function of degree zero on the slit tangent bundle. The
quantity H, = Hijdmi ® dx? is defined as the covariant derivative of E along geodesics.

More precisely

Hij == Ejjjmy™.
In local coordinates, we have
oGk oGk
Oyt Oyl Oyk o™ Oyt OyI Oy Oym

L aGm PGk aGm G
oyt Oyl oykoy™ Oyl Oyidykoy™’
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Akbar-Zadeh proved that: ” Let F be a Finsler metric of scalar curvature on an n-

dimensional manifold M (n > 3). Then the flag curvature K=constant if and only if
H=0"

We show that for every m-th root metric with isotropic H-curvature, H = ”T‘HCF*Ih,

has vanishing H-Curvature.

Theorem 6.1. Let F' be an m-th root Finsler metric on an open subset U C R" with

n > 2. Suppose that F' is of isotropic H-curvature. Then H = 0.

[1]

[13]

[14]

[15]

[16]
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ACCELERATED NORMAL AND SKEW-HERMITIAN SPLITTING
METHODS FOR POSITIVE DEFINITE LINEAR SYSTEMS

F. TOUTOUNIAN! AND D. HEZARI?*

ABSTRACT. For solving large sparse non-Hermitian positive definite linear equa-
tions, Bai, Golub and NG proposed the Hermitian and skew-Hermitian splitting
methods (HSS). They recently generalized this technique to the normal and skew-
Hermitian splitting methods (NSS). In this paper, we present an accelerated nor-
mal and skew-Hermitian splitting methods (ANSS) which involve two parameters
for the NSS iteration. We theoretically study the convergence properties of the
ANSS method. Moreover, the construction factor of ANSS iteration is derived.

Numerical examples illustrating the effectiveness of ANSS iteration are presented.

1. INTRODUCTION AND PRELIMINARIES
Many problems in scientific computation given rise to solving the linear system
(1.1) Az = b,

with A € C"™" a large non-Hermitian positive definite matrix and z,b € C".
We observe that the coefficient matrix A naturally possesses the Hermitian/skew-
Hermitian (HS) splitting

A=H+S

2000 Mathematics Subject Classification. 65F10, 65F15.
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where

1 1
H= §(A+A*) and S = Q(A—A*)
with A* being the conjugate transpose of A. Bai, Golub and NG [2] presented
the HSS iteration method: given an initial guess (¥, for k = 0,1,2,..., until z*

converges, compute

(1.2) { (al + H)z*2) = (ol — §)z® 4+ b,

(af + S)ax® ) = (o — H)zk+3) 4 b,

where « is a given positive constant. They have also proved for any positive a the
HSS method converges unconditionally to the unique solution of the system of linear
equations.

Bai, Golub and Ng [2] recently generalized this technique to the normal and skew-
Hermitian splitting methods (NSS). They split the coefficient matrix A into

A=N+S

where N € C"™" is a normal matrix and S € C"" is a skew-Hermitian matrix,
and obtained the following normal/skew Hermitian splitting (NSS) method to itera-
tively compute a reliable and accurate approximate solution for the system of linear
equation (1.1):

The NSS iteration method: Given an initial guess z(®) € C*. For k = 0,1,2. .. until

{z®)} converges, compute

(af + N)zk+3) = (ol — S)a®) + b,
(al + S)z*+D) = (oI — N)ak+3) 4 p,

where « is a given positive constant. They have also proved that for any positive «
the NSS method converges unconditionally to the unique solution of the system of
linear equations.

In this paper, we introduce two constants for the NSS iteration and present differ-
ent approach to solve Eq. (1.1), called the accelerated normal and skew-Hermitian
splitting iteration, shortened to the ANSS iteration. Moreover, we analyze the con-
vergence properties of the ANSS iteration and present the numerical examples for

illustrating the effectiveness of ANSS iteration.
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2. THE ANSS METHOD

Throughout the paper, the non-Hermitian matrix A € C**" is positive definite if
its Hermitian part is Hermitian positive definite.
The ANSS iteration method: Given an initial guess (¥, for &k = 0,1,2... until

{z(M converges, compute

(al + N)zk+2) = (o — S)a®) + b,
(BI + S)z*+D) = (BI — N)zh+3) 4+ b,

where « is a given nonnegative constant and [ is a given positive constant, and
N € C"" is a normal matrix and S € C"*" a skew-Hermitian such that A = N+ 5.

In matrix-vector form, the ANSS iteration method can be equivalently rewritten

as
2D M(a,ﬁ)x(k) +G(o,8), k=0,1,2...
where
M(a, B) = (BT + S)"H(BI — N)(al + N) " (al — S)
and

G(a,B) = (a+B)(BI+S) al +N)!

Here, M(«, () is the iteration matrix of the ANSS iteration. The following theorem

describes the convergence properties of the ANSS iteration.

Theorem 2.1. Let A € C"™*" be a positive definite matriz, N € C**" be a normal
matriz and S € C"*™ be a skew-Hermitian matrix such that A = N + S, and «

be a nonnegative constant and [ be a positive constant. Then the spectral radius
p(M(a, B)) of the iteration matriz M(a, ) of the ANSS iteration is bounded by

N G
i, B) = max max %
(o +5) +1;

gj€o(s /62 + 0_2 v +in; EAN

where A\(N) is the spectral set of N and o(s) is the singular-value set of S. And, for

any given parameter o, if 5 satisfies

2 2 2 2

, < 6 S o+ 27mm
20Ymin + 772m'n + 7772,1111 20 maz + 77%11;:1: + 77r2naz }
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then §(«, B) < 1, and or if B satisfies

o+ 27mm S 5 and Omax S \/7mm + Nmin + 27min05

then §(a, B) < 1, i.e., the ANSS iteration converges, where Ymin and Ymaz, Mmin
and Nmae are the lower and the upper bound of the real, the absolute values of the
imaginary parts of the eigenvalues of the matriz N, respectively, and opmin, Omaz 0T€

the lower and the upper bound of the singular-value set of the matriz S, respectively.

Theorem 2.1 mainly discusses the available § for a convergent ANSS iteration
for any given nonnegative . It also shows that the choice of [ is dependent on
the choice of «, the spectrum of the matrix /N, the singular-values of S, but is not

dependent on the spectrum of A.
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DIMENSION OF THE SPACE OF RELATIVE SYMMETRIC
POLYNOMIALS ASSOCIATED WITH CYCLIC GROUPS

Y. ZAMANI ! AND E. BABAEI 2*

ABSTRACT. The dimension of the space of relative symmetric polynomials associated
with a certain cyclic subgroup of S, which is generated by a m- cycle is explicitly given
in terms of the generalized Ramanujan sum. This dimension can also be expressed as

the Euler ¢-function and M&bius function in some special cases.

1. INTRODUCTION AND PRELIMINARIES

Let G be a subgroup of the full symmetric group S, of degree m and suppose Y is an
irreducible complex character of G. Let Hy[z1, ..., ] be the complex space of homogenous
polynomials of degree d with the independent commuting variables x1, ..., Zy,. Let F;',;, 4 be
the set of all m-tuples of non-negative integers, a = (a1, ..., &y, ), such that >, «; = d.
For any a € Ty . let X* to be the monomial 7" #5”...z5y". Then the set {X*a €T} ;}
is basis of Hy[x1, ..., ). An inner product on Hylx1, ..., ] is defined by

(XY XPY = 6,4
The group G acts on Hy[z1, ..., Ty via

qa(mla ey xm) = Q(xoﬁl(l)a ey mo‘*I(m))'
It also acts on F;,rl 4 by

oo = (040(1), ...,Otg(m)).
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Let A be a set of representatives of orbits of F;: 4 under action of G. The idempotent
T (G, x) is defined by
x(1)
T(G,x) = ar Z x(o)o
c€G
in the group algebra CG. The range of Hy[z1,..., )] under the map T(G, x) is called

the space of relative polynomials of degree d associated with G and x and is denoted by
Hi(G, x). Since tro = Q(d, o) (see [4]), where Q(d, o) denotes the number of non-negative
integer solutions of the equation ait; + agte + ... + apty, = d, such that [ai,...,a,] is the
cyclic structure of ¢ € GG, we have

dim Hy(G, ) = X2 S5 (0)Q(d, 0).

|G| oeGG
We obtain the dimension of Hy(G,x), when G is a cyclic group. A similar result has

obtained for symmetry classes of tensors in [2].

2. MAIN RESULTS

Let o be a m- cycle, then the subgroup of S, generated by o is the cyclic group Cp,.
The elements of C,, are o*, k = 0,1,...,m—1. For any o € S,,, let ¢(0) denote the number
of cycles in disjoint cycle decomposition of ¢ including cycles of length one. Then for any
0 <k <m—1, o has (m,k) cycles of length (n’;‘k) and so c¢(o) = (m, k), where (m,k)
denotes the greatest common divisor of m and k. From group representation theory we

know that the irreducible characters of (), are
2milk

xi(c%) = exp( ), L=0,...,m—1.

Definition 2.1. Ramanujan sum is defined by

m—1

Cm(h)= > exp(

t=0,(t,m)=1

2miht

)7

where m is a positive integer and 5 is a nonnegative integer.

Ramanujan proved that

Con(h) = ¢(m)u((m"fh))
" N ammy)
where ¢ is the Euler ¢-function, (¢(1) = 1 and for m > 1, ¢(m) = the number of

positive integers less than m and relatively prime to m), and p is the Mdbius function,
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(u(1) = 1, u(m) = 0 if p?|m for some prime number p and pu(m) = (=1)", if m = p1...pr,

where p1, ..., p, are distinct prime numbers).

Definition 2.2. The generalized Ramanujan sum is defined by

[m1,...,mp]—1

S(hym,...,mp;dy, ..., dp) = Z exp([
t:U,(t,m1):dl,...,(t,mp):dp

where my, ..., m,, are positive integers and h is a nonnegative integer and di|my, ..., dp|my,
also [myq,...,m,] denotes the least common multiple of the integers my, ..., m,. If the set

is empty, then the generalized Ramanujan sum is defined S(h;mq,...,mp;dy, ..., dy) = 0.

The generalized Ramanujan sum is given in the following examples for some special

cases.

Example 2.3. S(0;m;d) = Cn(0) = ¢(°7) and if (h,m) =1, we have
m
s d) = O (h) = (™).

Now we calculate dim Hy(G, x), when G is the cyclic group of order m and x €Irr(G).

Our formula involves the known function that introduced in the beginning of this section.

Theorem 2.4. Let G be a cyclic subgroup of Sy, generated by a m-cycle ( G = (o), where
" =1) and Irr(G) = {x;| 0 <1 <m — 1}, then we have

dim Hy(G,x;) = Z Slmt(t” 1),0§l§m—1.
t|mm|dt -1

By using Example 2.3 and Theorem 2.4, we obtain the following corollaries.

Corollary 2.5. If G is a cyclic subgroup of S, generated by a m-cycle and x is the

identity character 1, then we have

NI

m_
+5 1

dim Hy(G,x) Z (7
™ i) Fi
Corollary 2.6. If G is a cyclic subgroup of Sy, generated by a m-cycle and x is a primitive

linear character of G, then

. 1 o dym
dim Hq(G, x) = — S [
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JOINT HIGHER RANK NUMERICAL RANGE OF SOME PAULI
MATRICES

AKBAR ZARE CHAVOSHI', HAMID REZA AFSHIN?* AND MOHAMMAD ALI MEHRJOOFARD?

ABSTRACT. In this article we characterize joint higher rank numerical range of some

Pauli matrices.

1. INTRODUCTION AND PRELIMINARIES

Let Aqy,---, A, € M,, where M,, denotes the set of all n X n complex matrices. The
joint numerical range of A = (Ay,---, A;,) and joint rank k-numerical range are defined

as the following sets

W (A)={(a1, - ,an) : Jx € C",z*x = 1,27 Ajz = a;,Vj},
Ay (A) = {(al, s ,am) AU € Mn,k, U*U = I, U*AjU = ajIk,Vj},

respectively. Clearly when k& = 1, A; (A) reduces to the joint numerical range. Consider

the following matrices:

7 10 X = 01 Y= 0 —i ’Z:10 ,
01 10 1 0 0 —1

we call any of them or their tensor product, Pauli matrix. This type of matrices appear
frequently in quantum computing. By considering discussions at WONRAO08, Kribs et.al.
[2] list five open problems that have direct relevance to joint higher rank numerical range
and quantum error correction. In this note we try to answer the first problem:

Problem Compute the joint higher-rank numerical range for an arbitrary Pauli matrices.
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Throughout this paper, for any iy,--- ,i, € {1,2},we fix the following notations

\Ilil,"',in = {A1 R---QA,: A € Ail,--- LA, € Azn}
F, = U v
jl:"':jn€{172}
such that Ay = {X,iY},As = {I,Z}, and we will usually consider them as an ordered

sequences with alphabetical order. For example

1,y Jn

Uy =(I®X,ilQY,ZQX,iZQY)
B=(I0LI®X,iIoY,I®ZX®,X®X,iX®Y,X® Z,
YRLIY®X,-YQY,iY®2Z,Z0I1,Z0X,iZQ0Y,Z® Z)

2. MAIN RESULTS

The following theorem shows that joint numerical range of Fj, lies in the boundary of a

4™ —dimensional sphere:

Theorem 2.1.
4n
(21) W(Fn) C (b17b27"' 7b4n) ER4n Zb?:2n
=1
Gutkin et.al. [1, Example 1] showed that when n = 1, equality holds in (2.1). In the

following example we show this is not true in general case.

Example 2.2.

16
(1,0,0,0,0,\/5,0,0,0,0,0,0,0,0,0,0) € {(bl,--- ,big) € RIS - Zb% - 4} \W (F3).
i=1
Let Fy = Pj,---,Pg and U = [a,b,c,d]’ € C* be such that for any i = 1,--- , 16,
U*RU = bi, then b2 = b3 = b14 = b15 =0 = b5 = bg = bg = blg and hence (0,0) €
{(a,d),(b,c)}, that contradicts with (bs, b7, b19,b11) = (v/3,0,0,0).

Theorem 2.3. Let S =2,2,---,2 be a sequence of length n € N, therefore

n n
w (\115) = {f = (1,()11...112,()11...121,- = ,bzz...z) S RQ : (.®1 (X + Z)) f > 0},
]:

where indices are arranged in alphabetical order.
Remark 2.4. Let Uy 4y .5, = {il,i2,"',inpk}zll where i1,--- i, € {1,2}. One read-

ily checks that there exist permutation matrix P = X% ® X? ® ---® X such that
ivsin,sinlj = 2,2, 2P P for any iq,--- ,4, € {1,2} and j = 1,2,---,2". So, by using
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Theorem 2.3, we can completely determine W (Vg5 ... o U E) for any E that is union of

)

some W; .. ;. ’s.

Example 2.5. Direct computation shows that (1,b;x,bry, -+ ,bzz) € W (Fy) iff there

exist z1, 9, x3, x4 € R such that

121 ToX1 T3T1 T4
ZToT2 T1T2 ZT4T2 Z3T2
(X +2) _ | | |
33 4T3 13 o3
T4T4 T34 ZToTy Z124
1 brx bxr bxx
B brz —ibry bxz —ibxy
- b b . b . b
bzr bzx —ibyr —iby x
bzz —ibzy —ibyz —byy

1.e.

2 _ 14brgtbzr+bzz
= 1 ,

|z1]
|:E2|2 — 1*b12+321*bzz’ ToT| = bIX*ibIY‘ZbZX*inY,
|I3|2 _ 1+bIZ_ZZI_bZZ’ T4Ty = bIX_ibIYZbZX+inY,

|:E4|2 — l—blz—ZzH-bzz ’

bxx—ibxygibyx—byy’ { Tyr, = bx1+bxz—4ibyl—ibYZ’

bXXJribXYZibYXerYY bxr—bxz *ZbYI‘H'bYZ
, .

T3To = T4To =

That is (1,[)])(,()[)/,--- ,bzz) € W(FQ) iff

(brx,bry,-- ,bzz) € R,
0< min{l +brz+bzr+bzz,1—brz+bzr —bzz,1+brz —bzr —bzz,1 —brz —byr + bzz},
(14 brz +bzr +bzz) (1 —brz +bzr —bzz) = (brx +bzx)” + (bry +bzy)?,
L—brz —bzr +bzz) (1 +brz —bzr —bzz
1—=brz —bzr+bzz) (1 +brz+bzr+bzz

( ) ( ) = (brx — ibry —bzx)” + bl
( ) (1 )
(L4+brz —bzr —bzz) (1 —brz +bzr —bzz)
( ) ( )
( ) ( )

(

(bxx — byy)> + (bxy + by x)?,
(bxx +byy)* + (bxy — byx),
(
(

bx1 4 bxz)? + (byr + byz)?,
bxr —bxz)? + (=bys + byz)?

14+brz —bzr —bzz) (1 +brz +bzr +bzy
1 —0brz —bzr+bzz)(1 =brz +bzr —bzz
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And there exist @1, @2, 03,04 € R and ky, ko, - , kg € Z such that

( sgn (bix —ibry +bzx —ibzy) (91 — @2 — 2kim + arg (brx — ibry + bzx — ibzy)) =0,
sgn (b[X — ib[y — bzx + ibzy) ((pg — Y4 — 2k27r —arg (b[X — Zb[y — bZX + szy)) = 0
< sgn (bxx —ibxy — ibyx — byy) (o1 — @4 — 2ksm — arg (bxx — ibxy —ibyx — byy)) =0,
sgn (b xx +ibxy — by x + byy) ((,02 — @3 — 2kqm — arg (bXX +ibxy — ibyx + byy )) =0,
sgn (bxr +bxz —ibyr —ibyz) (p1 — 3 — 2ksm — arg (bx1 + bxz — ibys —ibyz)) =0,
L sgn (bX] — bXZ — iby[ + ibyz) ((pg — Y4 — 2k67l' —arg (bX] - bXZ - Zby] + Zbyz)) 0.

The following lemma can easily verified by direct computation.

Lemma 2.6. Let Ay, -+, Ak j € My, n; are linearly independent matrices for any j €
{1,---,s}. Then {A;;1 ® Ajp2®@ -+ ® Ais,s}i1 oo s €1k} is linearly independent set.

Corollary 2.7. For any i1,--- ,ip € {1,2}, U;, ... ;. is linearly independent set.

sin

Lemma 2.8. for any i1, -+ ,in € {1,2}, Ay (U, ... 5,,) C {0}

Theorem 2.9. (i) Ao (Tg9...0) =0.
(ii) for any iy,--- i, € {1,2}, such that {iy, - ,in} # {2}, we have Ay (V;, ... ;) =
{0}
Example 2.10. Ay [ X, IQY,ZQY,Z0X,Z® Z,I1® Z) = .
Let )
UU =1
o U (I®X)U = a1,
U (T®Y)U = asl,
v=|° Y v zex)U=al,
; £ U (Z@Y)U = adl,
U (29 Z)U = asl,
| U (1® 2)U = agl.

By theorem 2.9 we have a1 = a9 = a3 = a4 = 0 and therefore
éa=ad=:¢cb=db=0,
ge=¢éh =gf =hf =0.
On the other hand, we can deduce from U* (Z ® Z)U = asI and U* (I ® Z) U = ag! that
aa — éc = bb — dd,
ée—gg:ff_ﬁha
ab = éd,
ef = gh.
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Now we see that
ab=ac=ad =0, ef =eg=eh =0,

ca=chb=cd=0, ge=gf =gh =0,
ba = bc = bd = 0, fe=fg=fh=0,
da =dc=db=0, he =hg =hf =0.

That is contradiction.

{1} :8={In}

Theorem 2.11. Agn (S) = 0 S C F\ (I}
H n on
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ABSTRACT. A densely defined, closed linear operator F' in a Hilbert space H is said to
be idempotent if ran(F) C dom(F) and F - F = F. Here ran(-) and dom(-) denote the
range and the domain respectively.

Let M = ran(F) and N = ker(F) where ker(-) denotes the kernel. Then the idem-
potency of F' means that

MNN={0} and M+N=H
and
Flz+y)==z (zeM, yeN).
When H is finite dimensional, that is, H = C", the domain of F coincides with the whole

space C". The situation is the same when F' is bounded, that is, continuous. In this case

F is nothing but an oblique projection onto M along N .

Since H is a Hilbert space, there is an orthoprojection P to M = ran(F) and one @
to N = ker(F).

Our first aim is to represent F' in terms of P and @ even in the unbounded case as
F=P(P+Q)~ "7 - (P+Q)~""
where P(P + Q)~'/? becomes a well defined bounded operator and ran((P + Q)'/?) =

dom(F).

When F is bounded, this formula becomes F = P(P + Q)™ !. In this case, Vidav
(1964) showed long ago that
_ 1
F=(I-PQ) 'PI-PQ) and |F||=———=
1= lPQIP
where || - || denotes the spectral norm.

Our second aim is to give a description of ||F|| in terms of ||P + Q]| as

1
F|| = :
1 VIP+QI-{2- 1P +QI}}

We prove also the following:

F=P(P-Q)"" and |F|=[(P-Q)7"Il
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ABSTRACT. One of the main topics in Medical Imaging is Computerized Tomography
(CT), which involves reconstruction of cross-sectional images of an object, and conse-
quently its whole image. This is done by using attenuation coefficient (function), which
is a function that quantifies the tendency of the object to scatter or absorb an x-ray of a
given energy. The attenuation function is unknown, but its integral along different line
segments in the cross section can be determined using Beer’s Law. This requires a great
deal of computation of line or plane integrals. From a pure mathematical point of view,
the problem is reconstruction of a function, defined in a compact region in a plane, from
the knowledge of its integrals along many different line segments in the region. In 1917,
J. Radon solved this mathematical problem in a different context. No real application
of the Radon work (Radon Transform) was known until early 1970s. At that time, G.N.
Hounsfield used Radon Transform to invent an x-ray computerized tomography scanner,
for which he received a Nobel Prize in 1972. (Hounsfield shared the prize with Allan
Cormack, who independently discovered some of the algorithms.) Since then, CT scan
machines have gone through many stages of improvements. The innovations not only
have been in the design of the machines, but also in the algorithms and techniques used
to recover, filter noise, and improve the quality and clarity of the pictures, as well as
making the process faster. In early 1990s, wavelets found their way in medical imaging.
They are used, instead of the Fourier Transform, in the ”inverse problem”; i.e., the re-
construction of the image from the data captured by the detectors. Also, they have been
used for improving the quality of the image and the speed. However, it should be men-
tioned that one needs much more mathematics than the wavelets in medical imaging. It
is very rewarding for mathematicians to see how some of the pure mathematics (Linear
Algebra, Analysis and Functional Analysis, etc.) is used to reconstruct the image. In
1917 and at the time that Radon was doing his pure mathematics research, no one could
predict that fifty some years later it will be used in the invention of CT scan machines.
These machines, and also the similar ones, have revolutionized the way physicians can
see inside the body without invasive surgery. The impact of using wavelets in this area
and others such as image and signal processing, data compression, and communications,

etc, is enormous and revolutionary.
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ABSTRACT. Let A be a finite subset of the positive real numbers. We present results
relating the structure of the set A and the cardinality of the set of spectral radius of the
set of n x n matrices with entries in A. Special attention will be given to the case where
A is a subset of the positive integers, namely relating it with classical results in additive

number theory.
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ALGEBRAS SPANNED BY TRIANGULARIZABLE MATRICES
BAMDAD R. YAHAGHI ~*

ABSTRACT. A version of a celebrated theorem of Burnside asserts that M, (F) is the
only irreducible subalgebra of M, (F) provided that the field F is algebraically closed.
In other words, Burnside’s theorem characterizes all irreducible subalgebras of M, (F')
whenever F' is algebraically closed. In view of this, by a Burnside type theorem for
certain irreducible subalgebras of matrices, we mean a result which characterizes such
subalgebras. In this talk, we will present a short survey of Burnside type theorems in

linear algebra.

1. INTRODUCTION AND PRELIMINARIES

First, we present a simple proof of a slight generalization of Burnside’s theorem. We also
present Burnside type theorems for irreducible R-subalgebras of M, (H), where H denotes
the division ring of quaternions, and for irreducible subalgebras of M, (R), a result which
is well known to the experts. For a given n > 1, we characterize all fields F' for which
Burnside’s Theorem holds in M, (F). Letting K be a field and F' a subfield of K which
is k-closed for all k£ dividing n with & > 1, we present a Burnside type theorem for
irreducible F-algebras of matrices in M,,(K) on which trace is not identically zero. (For a
k > 1, a field F is said to be k-closed if every polynomial of degree k over F'is reducible
over F', e.g., R is not 2-closed but it is k-closed for any integer greater than two. For a
quasi-algebraically closed field F, e.g., an algebraic extension of a finite field, we prove

that M, (F) is the only irreducible algebra in M, (F') which is spanned by triangularizable
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Key words and phrases. F-algebra, Trace, Spectra, Inner eigenvalues, (Absolute) Irreducibility, Trian-

gularizability, F-algebraic, Burnside's Theorem, Brauer group, (Quasi-)Algebraically closed field.
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matrices. If time permits, we present counterparts of some of our results over quaternions

and more generally over division rings.

2. MAIN RESULTS

Theorem 2.1. Let n € N and F be a field. Then every polynomial of degree up to n over
F splits into linear factors over F iff there exists an irreducible algebra of triangularizable

matrices in My (F), in which case Burnside’s Theorem holds in My(F).

Theorem 2.2. Letn € N, K a field, F' a subfield of K, and S an irreducible semigroup in
M, (K) such that {0} # tr(S) C F. Let A= Algp(S) and r € N be the smallest nonzero
rank present in A. Then, the integer r divides n and after a similarity A = Mn/r(A),
where A is an irreducible division F-algebra M, (K). Furthermore, the minimal polynomial
of every A € A is in F[X], and that after a similarity, A= M, (F) if and only if r = 1.

Theorem 2.3. Let D be a division ring, F a subfield of its center, and A an irreducible
F-algebra of F-algebraic matrices in M, (D). Let r € N be the smallest nonzero rank
present in A. Then, the integer r divides n and after a similarity A = M, /,.(A), where A
is an irreducible division F-algebra of F-algebraic matrices in M, (D). In particular, after
a similarity, A = M, (A1), where Ay is an F-algebraic subdivision ring of D if and only
ifr=1.

Theorem 2.4. Let D be a division ring, F a subfield of its center, and A an irreducible
F-algebra of triangularizable matrices in My (D) with inner eigenvalues in F. Then after
a similarity A = M, (F). Therefore, A is defined over F, A is absolutely irreducible, and
the subfield F is k-closed for each k=2,...,n.

Theorem 2.5. Let n > 1, H be the division ring of quaternions, and A be an irreducible
R-algebra in My (H). Then A is similar to one of the following R-algebras: My (H) (in
which case A = M, (H)), M,(C), and M,(R).

Proposition 2.6. Let n > 1, R and A be an irreducible algebra in M, (R). Letr € N
be the minimal nonzero rank present in A. Then A is similar to one of the following
algebras: My (R), in which case r = 1 and A = My (R); M,,/5(C), in which case r = 2;
and My, 4(H), in which case r = 4.

Theorem 2.7. Let F be a field and n > 1. The following are equivalent.
(i) The only irreducible algebra in My (F') is My (F), i.e., Burnside’s Theorem holds in
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(1i) Every irreducible family of matrices in M, (F) is absolutely irreducible.

(iii) The commutant of every irreducible family of matrices in M, (F') consists of scalars.

(iv) Every nonscalar matriz in My (F) has a nontrivial hyperinvariant subspace.

(v) The field F is k-closed, i.e., every polynomial of degree k over F' is reducible over
F, for all k dividing n with k > 1.

Theorems 2.8-11 are from Heydar Radjavi and the author.

Theorem 2.8. Let n > 1 and F be a quasi-algebraically closed, a.k.a. C1, field. Then
M, (F) is the only irreducible algebra in M, (F) which is spanned, as a vector space, by

triangularizable matrices in M, (F).

Theorem 2.9. Let n > 1, F be a subfield of the center of a division ring D which is C,
and A a finite-dimensional irreducible F-algebra in M, (D) which, as a vector space, is
spanned by triangulaizable matrices with inner-eigenvalues in F. Then, A is similar to

M, (F). In particular, A is absolutely irreducible.

Corollary 2.10. Letn > 1, F be a subfield of a field K which is Cy, and A a K -irreducible
finite-dimensional F-algebra in M, (K) which is spanned by triangulaizable matrices with

spectra in F. Then A is similar to M, (K). In particular, A is absolutely irreducible.

Theorem 2.11. Letn > 1 and F be a subfield of a field K which has trivial Brauer group.
Then every absolutely irreducible F-algebra in M, (K) which is spanned by triangularizable

matrices with spectra in F is similar to My (F).
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SIMPLICITY OF THE FIRST EIGENVALUE OF A NONLINEAR
ELLIPTIC SYSTEM

G.A. AFROUZI! AND M. MIRZAPOUR?*

ABSTRACT. This paper concerns a special property of the principle eigenvalue of non-
linear elliptic system with Dirichlet boundary conditions. We study the simplicity of the
first eigenvalue of system

—Apu = Nu[* Lot in Q,

—Agv = Au|* |’ tu in Q,

(u,v) € Wy () x Wy (),

with respect to the exponents p and ¢, where Q is a bounded domain in R".

1. INTRODUCTION AND PRELIMINARIES

Eigenvalue problems for the p-Laplacian operator subject to Zero Dirichlet boundary
conditions on a bounded domain have been studied extensively during the past two decades
and many interesting results have been obtained. The investigations principally have
relied on variational methods and deduced the existence of a principal eigenvalue as a
consequence of minimization results of appropriate functionals.

In this article we study the eigenvalue system

—Apu = )\|u|0‘_1|v|ﬁ_1v in €,
(1.1) —Agv = Au|* P tu in Q,
(u,0) € Wy (Q) x Wy (9),

where 2 C R" is a bounded domain, p, ¢ > 1 and «, 3 are real numbers satisfying
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326 G.A. AFROUZI, M. MIRZAPOUR

: (H) «, 8> 0 such that %4—%:1.
We mention that problem (1.1) aries in several fields of application. For instance, in the

case where p > 2, problem (1.1) appears in the study of non-Newtonian fluids, pseudo-

plastics for 1 < p < 2, and in reaction-diffusion problems, flows through porous media,

nonlinear elasticity, petroleum extraction, astronomy and glaciology for p = % (see [3],

[4])-
The principal eigenvalue A (p,q) of (1.1) obtained by the Ljusternick-Schnirelman the-

ory by minimizing the following functional
J(u,v) = g/ |Vul|Pdx + é/ |Vo|ldz,
D Ja q.Ja

on C'l-manifold:
{(u,v) € Wy (Q) x Wy(Q); Alu,v) = 1},
where

A(u,v) = / lu|*" Yo~ Luvdz.
Q
We recall that A1(p,q) can be variationally characterized as
(12) Mi(p,q) = inf{J (u,v), (u,0) € WoP () x Wy(@); Alu,v) =1}

From the maximum principle, we deduce that the corresponding eigenpair of \i(p,q),

(u,v) are such that u,v > 0. We called them positive eigenvector.

2. MAIN RESULTS

Firstly introduce

Ap(u, )

/|Vu|pdx+(p—1)/ |V<p|p<M)pdx
Q Q 4
- VP2V Vu<|u|p_2u>dm
p| Ve P =
2.1) - / Vulds +/ CLam.
Q Q@ !
Lemma 2.1. [2] For all (u,p) € (Wol’p(Q) NCY ()2 with o > 0 in Q and v € (0,1), we

have Ay(u, ), i.e.,
A
/|Vu|pdx2/%(pl|u|pdx,
Q o ¢’

and if Ap(u,p) =0 there is ¢ € R such that u = cp.
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Theorem 2.2. Let \i(p,q) be defined in (2), then Ai(p,q) is simple, i.e. if (u,v) and
(p, 1)) are two eigenvectors associated to A1 (p,q), then there exist real numbers ki, ko such
that u = k1 and v = ko).

Proof. Using Young’ inequality ( by (H)) and the definition of \{(p, q), we can write

B
o, 521" [%]
S Al(paQ)/Qu v uavﬁ dx

< Al(p,q)/ﬂuavﬁ[gWJréw}d

p uPf q v9

< M) [ (S e+ B |¢|}

uP q el

< o[ Herds+ £ [ 208

Due to Lemma 2.1, we obtain
I5} / —Agv
qJo vi1

—A
J(’U,,U) = g/ ,plu
P Jo uP
—A —A

[ verds= [ 2o [ vopas = [ 2247
Q q ub™! Q o v

By Lemma 2.1, there exist real numbers k; and ke such that u = kyp and v = kotp and
the theorem follows. O

Thus
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EIGENVALUES OF THE P-LAPLACIAN WITH NOLINEAR
BOUNDARY CONDITIONS VIA LJUSTERNIC-SCHNIRELMAN
PRINCIPLE

G.A. AFROUZI! AND M. MIRZAPOUR?*

ABSTRACT. This paper deals with the existence of nondecreasing sequence of nonnega-
tive eigenvalues for the problem

—Apu = Aa(z)u|u|P 2 in Q,
|VulP~2Vu.n + b(z)|uP2u =0 on 99,
by using the Ljusternic-Schnirelman principle, where the domain 2 is a bounded domain

in RY(N > 2) and 7 is the unit outward normal vector on 9.

1. INTRODUCTION AND PRELIMINARIES

In this article we study the eigenvalue problem

{ —Apu = Aa(z)u|ulP~2 in ,

(1.1)
|VulP=2Vun + b(z)|ulP2u =0 on L,

where @ C RV is a bounded domain with smooth boundary .
Definition 1.1. We say that u € WH(2)\{0} is an eigenfunction of (1.1), if
(1.2) / |VulP 2 VuVuds + / b(s)|ulP2uvds = )\/ a(x)u|ulPvdz,
Q a0 Q
for all v € WP(Q). The corresponding real number X is called the eigenvalue of (1.1).
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Define on W(Q) the functionals

(1.3) P = [ a@u@)pPds,

(1.4) Glu) = /Q VulPds + /8 )u(s) s,

where @ € L>®(Q2) and b € L*°(0N) such that a,b > 0 a.e. Then the directional derivatives
of F and G in the direction ¢ € WP(Q) are

F'(u = alulP2updr
( P =rf pdr,
(G (u), ) :p/ a|VuP~2VuVpdz +p/ blu|P 2 upds.
Q a0
1 qn _ 1,
LetA—EF andB—I—JG.

2. THE LJUSTERNIC-SCHNIRELMAN PRINCIPLE

Let X be a real Banach space and F, G be two functionals on X. For fixed o > 0, we

consider the eigenvalue problem
(2.1) F'(u) = pG'(u), u € N,, NER,

with the level set
Ny :={u € X; G(u) = a}.
We assume that:

: (Hy) F, G : X — R are even functionals such that F, G € C'(X,R) and F(0) =
G(0) = 0. In particular, it follows from this that F’ and G’ are odd potential
operators.

: (Hgz) The operator F' is strongly continuous (i.e. u, — u = F'(u,) — F'(u)) and
F(u) # 0, u € coN, implies F'(u) # 0, where coN, is the closed convex hull of
Ng.

: (H3) The operator G’ is uniformly continuous on bounded sets and satisfies (Sp),

i.e. as n — oo,
up = u, G'(up) = v, (G'(up),un) = (v,u) implies wu, — u.
: (Hy4) The level set N, is bounded and

u#0 implies (G'(u),u) > 0, tlim G(tu) = 400,

—00
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and

. /
uler}éa(G (w),u) > 0.

It is known that u is a solution of (2.1) if and only if w is a critical point of F' with respect
to Ny (see Zeidler[3 , Proposition 43.21]).

For any positive integer n, denote by A, the class of all compact, symmetric subsets K
of N, such that F(u) > 0 on K and y(K) > 0, where v(K) denote the genus of K, i.e.,
v(K) :=inf{k € N; 3h: K — RF\{0} such that h is continuous and odd}

We define:

) supgea, infy,cey F(u) if A,
= { 0 it A, =

QN
= =

Also let
_ ) sup{n € N; a, >0} if a3 >0,
1o if a; =0.
Now, we state the L-S principle:

Theorem 2.1 (3). Under assumptions (Hy) — (Hy), the following assertions hold:

[1] (Existence of an eigenvalue) If ap, > 0, then (1) possesses a pair tuy, of eigenvectors
and an eigenvalue p, # 0; furthermore F(uy) = ay,.

(2] (Multiplicity) If x = 0o, (1) has infinitely many pairs tuy, of eigenvectors correspond-
ing to nonzero eigenvalues.

[3] (Critical levels) oo > a1 > ag > ... >0 and a, — 0 as n — co.

[4] (Infinitely many eigenvalues) If x = oo and F(u) = 0, u € coN, implies (F'(u),u) =
0, then there exists an infinite sequence {p,} of distinct eigenvalues of (1) such that p, — 0
as n — 0o.

[5] (Weak convergence of eigenvectors) Assume that F(u) =0, u € coN,, implies u = 0,
Then x = oo and there exists a sequence of eigenpairs {(un, pin)} of (1) such that u, — 0,
pn — 0 as n — oo and u, # 0 for all n.

Proof. This Theorem if proofed in [1]. O
Proposition 2.2. The functional F given by (1.3) satisfies (Hg).
Lemma 2.3. For any u,v € X we have

(Bu— Bo,u—wv) > (lu"" = [lolP~) ([Jull = [lo])-

Proposition 2.4. Let G be defined in (1.4) then G' satisfies (Hg).
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Theorem 2.5. (Ezistence of L-S sequence) Let F, G be defined in (1.3), (1.4), then there
exists a nondecreasing sequence of nonnegative eigenvalues {\,} of (1.2) obtained by using
the L-S principle such that A, = ;%n — 00 as n — 0o, where each y is an eigenvalues of

the corresponding equation F'(u) = pG'(u) and p, = supge,, inf e F(u).
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COASSOCIATED PRIMES OF LOCAL COHOMOLOGY MODULES

M. AGHAPOURNAHR!*

ABSTRACT. Let R be a noetherian ring, a an ideal of R. Certain sets of coassociated

primes of top local cohomology modules over local rings are characterized.

1. INTRODUCTION AND PRELIMINARIES

Throughout R is a commutative noetherian ring. By a finite module we mean a finitely

generated module. For basic facts about commutative algebra see [3] and [9] and for local

cohomology we refer to [2].

A prime ideal p is said to be coassociated to M if p = Anng(M/N) for some N C M
such that M/N is artinian and is said to be attached to M if p = Anng(M/N) for some
arbitrary submodule N of M, equivalently p = Anng(M/pM). The set of these prime
ideals are denoted by Coassr (M) and Attr(M) respectively. Thus Coassg(M) C Attr(M)

and the two sets are equal when M is an artinian module. The two sets behave well with

respect to exact sequences. If 0 - M’ — M — M" — 0 is an exact sequence, then

Coassg(M") C Coassp(M) C Coassr(M') U Coassg(M")

and

Attp(M") C Attr(M) C Attr(M') U Attp(M").

There are equalities Coassp(M ®r N) = Coassg(M) N Suppp(N) and Attr(M ®r N) =
Attp(M)NSuppp(N), whenever the module N is required to be finite. We prove the second
equality in 2.1. In particular Coassr(M/aM) = Coassr(M) N V(a) and Attp(M/aM) =
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Attpr(M) N V(a) for every ideal a. Coassociated and attached prime ideals have been
studied in particular by Zoschinger, [13] and [14].
2. MAIN RESULTS

First we prove a lemma using Vector space properties.

Lemma 2.1. For all R—-modules M and for every finite R—module N,

Attr(M ®@r N) = Attr(M) N Supppr(N).

Proof. Let p € Attp(M ®r N), so p = Anng((M ®r N) g R/p). However this ideal
contains both Anng(M/pM) and Anng(N) and therefore p = Anng(M/pM) and p €

Suppg(N).
Conversely let p € Attp(M) N Suppp(N). Then p = Ann M/pM and we want to show
that p = Anng((M ®r N) Qg R/p). Since

(M ®r N)®r R/p = M/pM ®p/, N/pN,

we may assume that R is a domain and p = (0). Let K be the field of fractions of R. Then
Ann M =0 and N ®g K # 0. Therefore the natural homomorphism f : R — Endgr(M)

is injective and we have the following exact sequence
0 — Hompg(N, R) — Hompg(N, Endg(M)).
But Hompg(N,Endg(M)) =2 Homg(M ®r N, M). Hence we get

Anngp(M ®r N) C Anng Homg(M ®g N, M) C Anng Homg(N, R) C
Anng(Hompg(N, R) ®r K).

On the other hand Hompg (N, R) ® g K = Hompg(N ®g K, K), which is a nonzero vector
space over K. Consequently Anng(M ®r N) = 0. O
3. APPLICATIONS TO LOCAL COHOMOLOGY

Next we will study attached and coassociated prime ideals for the last nonvanishing

local cohomology module.

Theorem 3.1. Let (R, m) be a complete local ring and let a be an ideal of R. Let t be a
nonnegative integer such that H . (R) = 0 for all i > t.

(a) If p € Attp(H.(R)) then dim R/p > t.
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(b) If p is a prime ideal such that dim R/p = t, then the following conditions are
equivalent:
(i) p € Coassg(HL(R)).
(ii) p € Attr(HL(R)).
(i) HL(R/p) 0.
)

(iv) Va+p=m.

Proof. (a) By the right exactness of the functor H:(—) we have
(3.1) Hy(R/p) = H(R)/p H(R)
If p € Attp(H.(R)), then HE(R)/p HL(R) # 0. Hence H: (R/p) # 0 and dim R/p > ¢.

(b) Since R/p is a complete local domain of dimension ¢, the equivalence of (iii) and
(iv) follows from the local Lichtenbaum Hartshorne vanishing theorem.

If H:(R/p) # 0, then by (3.1) H'(R)/pH,L(R) # 0. Therefore p C q for some q €
Coassg(H.(R)) C Attg(H.(R)). By (a) dim R/q > t = dim R/p, so we must have p = g.
Thus (iii) implies (i) and since always Coassg(H!(R)) C Attg(H,(R)), (i) implies (ii).

If (i) holds then the module H:(R)/p H,(R) # 0, since its annihilator is zero. Hence,

using again the isomorphism (3.1), (ii) implies (iii). O

Corollary 3.2. Let (R,m) be a complete local ring, a an ideal of R and M «a finite R~
module and t a nonnegative integer such that Hfl(M) =0 for alli > t.
(a) If p € Attp(H,(M)) then dim R/p > t.
(b) If p is a prime ideal in Suppr(M) such that dimR/p = t, then the following
conditions are equivalent:
(i) p € Coassg(HL(M)).
(ii) p € Attr(HL(M)).
(iti) HY(R/p) # 0.
(iv) VaTp=m.
Proof. Passing from R to R/ Ann M, we may assume that Ann M = 0 and therefore using
Gruson’s theorem, see [?, Theorem 4.1], H{(N) = 0 for all i > ¢ and every R-module N.
Hence the functor Hfl(—) is right exact and therefore, since it preserves direct limits, we
get
H!(M) =2 M ®r H,(R).

The claims follow from 3.1 using the following equalities

Coassg(H%(M)) = Coassp(HL(R)) N Suppg (M)
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by [?, Folgerung 3.2] and
Attr(Hy(M)) = Attg(Hg(R)) N Suppg(M)
by 2.1. O
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APPROXIMATION OF THE GROWTH OF A NUMBER THEORETIC
DETERMINANT

MEHDI HASSANT'*

ABSTRACT. We consider the matrix A, = [aij]nxn defined by a;; = the greatest common

divisor of ¢ and j, and we show that
In(det(A,)) =nlnn+ fn + % Inn + O(Inlnn),

where 3 is an absolute certain constant. We recall more examples showing deep relation

between Matrix Theory and Number Theory.

1. INTRODUCTION AND PRELIMINARIES

Computing determinant of matrices with elements related to number theoretical func-
tions is a classical subject (see [2], pp 127-130). Most interested examples contain elements

involving ged(i, ), which denote the greatest common divisor of 7 and j; indeed, if we let
(1.1) A, = [aij]nxn with ajj = ng(i,j),

then it is known [3] that
det(4n) = ] w(k),
1<k<n
where ¢ denote the Euler function defined by ¢(k) = [{d € N:d < k and gecd(d, k) = 1}|.
Our main result (Theorem 2.1 below) gives an approximation for the size of det(A4,) as

n — 00.
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Before introducing the main result and its detailed proof, let us clear the situation. We

consider a diagonal matrix and its determinant. It is known that
det(diag[1,2,...,n]) =nl

But, n! is only a notation and in computational approaches, we need a true approximation
for it. This is well-known as Stirling’s approximation: n! = v/2wn(n/e)"(1 + O(1/n)).
Because of its great size, sometimes we consider this approximate formula in logarithmic

form
(1.2) In(n!) = nlnn —n + ~ n(2rn) +0(1).
2 n

Now, since (k) ~ k for a part of integers with positive density, we expect a big size for

det(Ay), too. So, it is natural to work with its logarithm.

2. MAIN RESULT

Theorem 2.1. For the matriz A, defined by (1.1) we have

1
In(det(Ay)) =nlnn+ fn + 3 Inn + O(Inlnn),

where B is an absolute constant, and it is defined by the following summation over all

1 1
RS ST (]

Proof. We recall the classical formula ¢(m) = m[],,,(1 — %) We have

n(det(4,)) = Y Ing(m)= > [Inm+> In <1——> = In(n!) + S,

m<n m<n plm

prime numbers

where

S = ZZ]n(l——)

m<n plm

We change the order of summations in S to obtain

g 5 g

p<n m<n p<n

m=0 [p]

—Zln<1——> <5+0(1)> :nZ%ln<l—%>+E,

p<n p
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where in the last sum p runs over all primes, and
1 1 1
E = —nz —In <1 - —> + O(Z —) = O(Inlnn).
p>n p p p<n p

Note that to obtain the last approximation we use >, 1/p = Inlnn + O(1). Therefore,

1 1
S = nzgln <1 - 5) + O(lnlnn).
P

we obtain

Now, we consider the above expression for S and the relation (1.2). We have
1

In(det(A4,)) =nlnn —n + nz ! In (1 —
o P p

1
) + 3 Inn+ O (lnlnn).
This completes the proof. Il

3. SOME REMARKS

Remark 3.1. The matrix A, is a special case of a family of matrices with elements involving
ged. More precisely, it is known that [3] if f is an arithmetical function (a function defined
on the set N), and if we let F(m) =}, f(d), then

det ([F(ged(Z,7))lnxn) = H f(k).

1<k<n
To approximate the above determinant, we can follow same method as the proof of The-

orem 2.1.

Remark 3.2. We consider the matrix

1
3.1 M, = [m;; ith i = | —— -
(3.1) n [mm]nxn w1 My {gcd(i,j)J
In fact, M is a 0 — 1 matrix in which m;; = 1 iff ged(7,7) = 1, and m;; = 0 otherwise.
This matrix is related to the problem of finding “the probability that two randomly chosen
integers are coprime”; the answer is 6/72 ~ %61, which is the density of elements 1 in

M, as n — co. About this matrix, we have
1 ifn=1,3,
det(M,) =4 -1 if n =2,
0 if n > 4.
We imply the validity of this result directly for n = 1,2,3. For n > 4 we note that
ged(i,2) = 1 iff ged(i,4) = 1. So, second and forth columns of M,, are similar. This

completes the proof.
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Remark 3.3. Finally, we recall a reasonable known result, which explains “why approx-
imation of the size of determinants is important subject?”. Our example is related to
the well-known and important problem “the Riemann hypothesis” [1]. The Riemann zeta
function is defined for R(s) > 1 by ((s) = Y 2, n~*, and extended by analytic continu-
ation to the complex plan with one simple pole at s = 1 with residue 1. The Riemann
hypothesis states that non-trivial zeros of the Riemann zeta function all lie on the line
R(s) = % Among various equivalences for the Riemann hypothesis, the following one is
about some certain matrices.

Let R, be the 0 — 1 matrix with size n x n defined by R;; =1 if j = 1 or if s divides j,
and R;; = 0 otherwise. Then, the Riemann hypothesis holds if and only if for every € > 0
there is a C(¢) > 0 such that

| det(R,)| < Cle)n=te.
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APPLICATION OF SOME NEW WEIGHTS IN BARYCENTRIC
RATIONAL INTERPOLATION

H. R. MOFIDI'* AND F. HADADI?

ABSTRACT. The barycentric form of rational interpolations has some advantages among
other representations of rational interpolants [2]. Some authors have suggested many
different kinds of weights for barycentric rational formula. We suggest some new weights
that are obtainable via the Maclaurin expansion of the given function and solution of an
optimization problem. The efficiency of new barycentric rational interpolating formula

is then investigated with several examples.

1. INTRODUCTION AND PRELIMINARIES
Theorem 1.1. Let {(z}, fj)}, 7 =0,1,...,n be (n+ 1) pairs of real numbers with x; #
zk, J # k, and let {u;} be n+ 1 real numbers. Then
a) if ux, # 0, the rational function
Z?:o gﬁ—]%f]
S

interpolates fr at xy. Conversely, every rational interpolant r € Ry, of the given values

(1.1) r(r) =

fj may be written as in (1.1) for some u;.
b) if up # 0 for all k, if the interpolation points have been ordered as xo < 11 < ... < Xy
and if sign(uj) = sign(uji1),then r(x) in (1.1) has an odd number of poles between x;

and Tji1.
Proof. [2]. O
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Berrut in [1] proved that with weights
u; = (-1 , i=0,1,...,n,

(1.1) is a rational function, with no pole in R. Another pole free rational interpolation
suggested by Floater and Hormann [4]. The weights for the barycentric form r(z) of (1.1)
are given explicitly as

Jj+d

: 1
1.2 R _1)\J
(12) w= V] =
en

where

I={0,1,....,n}, Ji={jel;i—d<j<i)
It is shown in [4] that r(z) in (1.1) has no pole in R, so the weights as defined by (1.2)
alternate in sign.

2. MAIN RESULTS

As seen in Theorem 1.1 one can change every rational function f(x) = 1% to barycen-
q(x
tric rational interpolation of the form (1.1). It means that there are u;’s with which we
_ qlz) j=
()
0,1,...,n. But, generally there is not enough information about f(z) to be used. Thus

can obtain 2(n + 1) unknown coefficients of f(x), in fact r(z;) = f; , u;

we cannot obtain u;’s from the above relations. Then we should use some other (n + 1)
conditions for this interpolation. To this end, we use the coefficients of terms z* in the
Maclaurin expansion of function f(z). Now suppose that the Maclaurin expansion of f(x)
is Y%, ciz’. Then r(z), as given by (1.1), has a Maclaurian expansion which agrees with
f(z) through the orders 1,z,z2,...,z". That is,

n Ug )
— i i T — X fi n+1

(2.1) > et = g + O0(z"*).
i=0 > im0

By multiplying [];" ,(z — #;) in both the numerator and denominator of r(z) we obtain

o Doioluifi Hri;g (z — zj))

T —x;

ciz' = + O(z" ).
2 = e T e )
J#i
Now let o be the coefficient of 2*,k = 0,1,...,n in [[}-0 (z — ;) we then have
J#i

n n

22) () (S Y (akat) = S (wfi(3 afat)) + 0@,
=0 0 k=0
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Let U = [ug,u1,...,u,]" and A be the following (n 4 1) x n matrix:

T
(co — fo)a(l) + 01a8 oo (co— fo)ad + cla%,I 4+ ..+ cnag
(co — fl)oz% + claé coo (co— f1)ak + 0104711,1 4+ ...+ cnaé
A=
(co — fa)al +craf ... (co— fo)all +cral |+ ...+ cpay

Then (2.2) is equivalent to find a vector U satisfying AU = 0. Existence of a nontrivial
solution for AU = 0 depends on f, so in application we look for an approximate solution

which satisfies the desired conditions of the given problem as close as possible.

Theorem 2.1. Let n > 0 be even and absolute values of u;’s satisfy (2.3) below. Then with

these weights, the barycentric rational interpolant r(x), as expressed in (1.1), is exactly

equal to .
1 b+ cx?

b+ cx? . j=0,1,....,. 851
(2.3) il =4 17 TN
§(b + mj) I =T
As mentioned before there is not necessarily a nontrivial solution U for AU = 0. Hence

in order to obtain a satisfactory approximate solution of this system we use the following

optimization problem:
min ||CU||3
(2.4) s.t,

Vi, e < |ug| <1 with U = [ug,...,u,]",

where € is a positive number and small enough. It is obvious that there is a solution for
(2.4). We then solve this problem for vector U and change the sign of its even entries
to obtain the desired weights. Substituting these weights, for u;’s, into the barycentric

formula (1.1) we get the desired rational interpolant.

3. Numerical Results

For the solution of each problem we first obtained the desired vector U via the solu-

tion of (2.4) and then the weights u; from U are inserted in r(z) to obtain the desired
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rational interpolation. We have used the MATLAB code Lsqlin to solve the optimization
problem (2.4) and also the MATLAB code of Berrut and Trefethen [3] for barycentric
interpolation. We have chosen £ = 107'2 to solve (2.4) in our computations. We tested
this method for a large class of functions a few of which are reported here. We compare
our method with Flo — Hor interpolant in (1.2) as a rational interpolant, and also with
cubic spline (perfect form) which is a strong piecewise interpolant, as a non-rational in-
terpolant. We denote our method by “New — Barycentric”. Our mean of error in tables

is max |f(z) —r(z)| , where r(z) is an approximation of function f(z) on [a, b].
aAsSTS

Example 1. As we saw in theorem 2.1 , we have the weights for which the New-

for n even. Error of New —

a
Barycentric formula is exactly equal to f(z) = P
cx

1
pUaEE for z € [-5,5], and n = 2. is 4.4 x 10716,

Barycentric for Runge example f(z) = — n
x

Example 2. Similar behavior happens for other sufficiently differentiable rational func-

73

m on interval [—5, 5] The
xr xT

second, third and forth column of this Table show the numerically computed errors for

tions, as it is shown in Tables 1 for function f(x) =

Flo— Hor, Cubic spline and New — Barycentric interpolants, respectively. As we see in
Table, New — Barycentric is a suitable interpolant for rational functions, and if A were

not ill-conditioned for larger n, the results would be better.

3

TABLE 1. Error in rational interpolation for f(z) = -5

n  Flo— Hor(d =3) Cubic Spline New — Barycentric

4 - 4.9 x 1072 3.1 x 10710
6 5.7 x 1072 5.4 x 1072 3.3 x 10710
8 5.7 x 1072 5.3 x 1072 5.3 x 10716

10 4.1 x 1072 4.4 x 1072 3.6 x 10716
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SOME NECESSARY AND SUFFICIENT CONDITIONS ON THE
REGULARITY OF INTERVAL MATRICES **

S. MOLLAHASANI'*, N. GHAFARI?

ABSTRACT. In this paper Interval matrices and their regularity is defined.Furthermore,

several necessary and sufficient conditions for regularity of interval matrices are given.

1. INTRODUCTION AND PRELIMINARIES

During the last 35 years(1973-2008), considerable interest has been dedicated to the
problem of regularity of interval matrices. It has resulted in formulations of altogether
forty necessary and sufficient conditions. Here, we investigate some of these conditions.

The details and proofs are discussed in [1].

Definition 1.1. [1] Given two n X n matrices A. and A > 0, the set of matrices A =
{A]|A—A.| < A} which is equivalent to A’ = {A|A < A < A} = [A, A] where A = A, — A
and A = A. + A is called an interval matrix with midpoint matrix A, and radius matrix
A.

Definition 1.2. [1] A square interval matrix A’ is called regular if each A € A’ is

nonsingular, and it is said to be singular otherwise (i.e., if it contains a singular matrix).

It is the purpose of this paper to show that this property can be reformulated in sur-
prisingly many surprisingly various ways. We do not include the proof of theorem since it

would take a very lengthy paper.
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2. NECESSARY AND SUFFICIENT CONDITIONS

The following theorem sums up some necessary and sufficient conditions for regularity

of interval matrices.

Theorem 2.1. For an n X n interval matriz A’ | the following assertions are equivalent
[1]:
(1) AT is regular,
(2) The inequality:
|Acz| < Alz],
and the equation:
|Acz = dA|x|,
have only the trivial solution z = 0, for each d € [0, 1] [3].

(3) If A'z" = A"z" for some A', A" € AT and ' # ", then there exists a j such that

Al # A and 2%z > 0 where A denotes the jth column of A" [2].

(4) For each B with |B| < A and for each b € R", the equation:
Acz + Blz| = b,

has a unique solution [4].

(5) For each y € Y), the equation:
Az — TyA |z| =y,

has a unique solution, where Y, = {y|ly| = e};e = (1,...,1)" , and T, = diag(y1, ..., yn)

2].

(6) For each b > 0 and for each y € Y, the equation:
|Acz| = A |x| + b,

has a unique solution z, satisfying Az, € %} [5].

(7) For each y € Y,, the equation:
|Acz| = A |z| + e,

has a unique solution z, satisfying Az, € %} [5].

(8) A is nonsingular and for each b > 0 the equation:
2] = AJA; 0] + b,

has a unique solution in each orthant [5].
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(9) A, is nonsingular and the equation:
~1
|z = AJAZ x| + e,

has a unique solution in each orthant [5].

(10) For each y € Y,, the matrix equation:
Acx — TyA |z| =1,

has a unique solution X, [2].

(11) For each y € Y,, the matrix equation:
QAC - |Q|ATy =1,

has a unique solution @, [4].
(12) det(A.)det(A,,) > 0 for each y,z € Y, [2].
(13) det(Ay;)det(Ay ) > 0 for each y, 2,9/, 2" €Y, [2].

347

(14) det(Ay;)det(Ay.) > 0 for each y, 2,y € Y, such that y and ¢’ differ in exactly one

entry [2].

(15) For each interval n-vector b the set:
X (AL, b) = {z|Az = bforsomeA € AL b e b},

is compact and connected.
(16) Each matrix of the form:

A=A, —dT,AT,,

where d € [0,1] and y, z € Y, is nonsingular [3].
(17) Each matrix of the form:

(A_y2)ijy if i=kand j€{m+1,..,n},

4 { (Ayz)ij, of either i #k, ori=kand j € {1,...,m —
ij =

Akm € [Akma ka]a

where y,z € Y, and k,m € 1,...,n, is nonsingular [2].
(18) Each matrix of the form:

Aij € { {4, Aig}, if (i) # (km),
[Aij, Aigl,  if (1) = (kym),

1}7
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where k,m € {1,...,n}, is nonsingular [2].

(19) For each y € Y,,, Aye is nonsingular and the system

A;elA,yex >0

z>0

has a solution, where Ay, = A, — T,A , A_y. = A, + T, A[2].

an

3. CONCLUSION

We described some important conditions for regularity of interval matrices in this paper

d more general results are achieved in [1]
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MODIFICATION OF ALLOCATING THE FIXED COST WITH
PRIORITIZATION USING FACET ANALYSIS

S. DANESHVAR1' , F. HEIDARI AND F. NAJAFZADEH"

ABSTRACT. Data Envelopment Analysis (DEA) is a technique based on Linear Pro-
gramming (LP) to measure the relative efficiency of Decision Making Units (DMUs).
Recently, an important application of DEA technique is on allocating the fixed cost
among peer DMUs so that the allocated cost to each DMU combines with other cost
measures (inputs). One of the important problems of this method is that some weight
get zero and as a result the corresponding inputs (outputs) used in evaluation of some
of the DMUs become ineffective. On the other hand, the aforementioned zero weights
may result in finding infinite cost values for allocation through DMUs. In this paper,

to solve these problems we have modified cost allocation model using facet analysis.

1. INTRODUCTION

When the expense exceeds the budget, an organization may require its subunits to pay
some expense. In 1999, Cook and Kress [1], proposed DEA approach to allocate the
fixed cost among DMUs. They treated the allocated fixed cost as an additional input in
performance evaluation. Generally based on [3], if each DMU has other cost measures,
then the allocated cost should be combined with these costs to form a single input during
performance measurement [4]. In section 2, by presentation fixed cost allocation with
prioritization, the relative efficiency and the allocated cost R; of DMU's can be computed.
Our proposed model that Modified the cost allocation model by facet analysis is provided
in section 3. A numerical example is presented to illustrate the proposed method in section

4. The paper ends with some conclusions.

Key words and phrases. Data Envelopment Analysis (DEA), Facet Analysis, Cost allocation.
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2. ALLOCATING THE FIXED COST WITH PRIORITIZATION

Suppose there are nDMUs, where each DMU; (j = 1,2,...,n) consumes m inputs
zij (1 = 1,2,...,m) to produce s outputs y,; (r = 1,,s). Suppose that a total fixed cost
R is to be assigned among n DMU's, and each DMUj is to be allocated a cost R; such
that E;’Zl R; = R. In this paper, the (m)th input z,,; is defined as the input which is
combined with the allocated cost R; to make a single input with a common weigh vy,.
Taking into assumption, the efficiency rating for each DMU, can be computed using the
CCR ratio model as follows:

a1 Uryro
Maz — 2=y U
st Viio+um (@mj+Ro)’

Z =1 UrYrj .
s.t = <1V
S v vm (Tm +R) 2

Z?:l Rj =R, u,, vy, Rj >0V, 1, J

(2.1)

The ratio form of model (2.1) can be transferred to the multiplier form by applying
Charnes-Cooper transformation. Also by placing d; = vy, x R; (j = 1,,n) in model (2.1)

, it can be transformed to the following linear programming model:

Mazx Zi:1 BrYro,

st 30y BrYrg = 24 Vilti; — Umimj — dj SOV j,
Z:Z_ll ViZio + UmTmo + do = 1,

doi=1di = vm X Ry iy, viydy >0V 7, 4,

(2.2)

Model (2.2) is considered as the fixed cost allocation with Prioritization. When DMU,
is under evaluation, preference is with this unit. In fact, DMU, distributes the fixed cost

R among DMU s to maximize its efficiency.

3. MODIFIED COST ALLOCATION WITH PRIORITIZATION MODEL USING FACET
ANALYSIS

First based on [5] consider the following model for all efficient DM U s:



(3.1)
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Maz 352 s; + 3501 87 = $§

s.t Z?:l AjTij —zio+s; =0, 1=1,..,m—1,
> i=1 AjTmj + NR — Tmo + 55, =0,

Z?:1 AjYrj — S:f =Y, T=1,...,8,
n>X,j=1..,n, j#0,

n+1 > Ao,

s;,st N Y, i, s, n free.

Let B = {0 € j|s§ = 0} where j = 1,,n. Then for t € B, solve the following models:

tx
i

s.t Zi:1 prYre = 1,

Sovet g = Yoy 0 — V@ — dj <0, ¥ j,
Zﬁ_ll ViZit + UmZTme +dp = 1,

> io1dj =vm X R,

fryVid; >0V 1, 0, g

Mazx v =wv

Maz i, = pi*

5.1 Zf«:l pryrt = 1,

S e — o i — vy — dj <0, V4,
Z:’;l ViTit + VT +dp = 1,

Y dj =vm xR,

Prs Viydj >0V 1, 4, g

Take ¢; and &, as follow: ¢; = Min {v!*| t € B}, e, = Min {uf*| t € B}. By placing

g; and ¢, as lower bound for respectively v; and u,, model (2.2) is modified as follow:

(3.4)

Maz Y70 ptryro

st S0y ey — 4 Vilti; — Umimj — dj SOV j,
Z:’?;ll V;Ti0 + UmTmo + dg = 1,

> i1 dj =vm X R,

Wy = EpyU; > Si,dj >0V, j

3.1. Numerical Example. We consider DM U s with two inputs and one output in Table

1.

Table 1: Inputs and output of 10 DMU's.
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DMU 1 2 3 4 5 6 7 8 9 10
X1 205 142 208 112 147 168 196 246 112 102
X2 35 28 14 16 28 24 21 28 40 27
Y 651 243 227 512 212 512 883 583 512 292

Suppose X is the input, which needs to be combined with the allocated cost, and the
total fixed cost to be distributed is R = 10. Table 2 and 3 show efficiency score and the
optimal solutions (v, vs, 1) of (2.2) and allocated cost based on different prioritization.

Table 2: Solving model (2.2) for DMU's.

DMU 1 2 3 4 5 6 7 8 9 10
\%1 0.005 0.007 0 0.009 0.007 0 0.005 0 0.009 0.01
1%} 0.001 0.001 0.071 0 0.001 0.042 0.002 0.036 0 0

o 0.001 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.002 0.002
Eff 0.700 0.376 0.546 1.000 0.317 0.718 1.000 0.702 1.000 0.626

Table 3: The result of model (2.2) for allocated cost in different prioritization.

DMU 1 2 3 4 5 6 7 & 9 10
R4 10 10 125 oo 10 125 10 1.25 oo o0
Ry 0 0 875 oo 0 875 0 875 oo oo
Rj (j=1,.,10,j#47 0 0 0 oo 0 0 0 0 oo oo

As seen in Table 2, when preference is with DMU,, DMUgy and DMU;0, the optimal
value of V5 is equal to zero. Therefore, by replacing v in R; = % , the obtained value for
allocated costs among DMU s are infinite. By applying model (3.1) for efficient DM Uy,
DMU; and DMUy, it is clear that DMU, and DMU; belong to B. Then by solving
model (3.2) and (3.3) for DMUys and DMU7 the value of lower bound for respectively

v1,v9 and uq can be obtained as follow:

g1 = Min {0.0009,0.0005} = 0.0005
g9 = Min {0.0062,0.0048} = 0.0048
Min {0.0002,0.0001} = 0.0001

€3

By placing above values in model (3.4), the results are summarized in Table 4 and table

Table 4: Solving model (3.4) for DMUs.
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DMU 1 2 3 4 5 6 7 8 9 10
\%1 0.004 0.006 0.001 0.008 0.006 0.001 0.001 0.001 0.007 0.009
Vo 0.005 0.005 0.064 0.005 0.005 0.038 0.005 0.031 0.005 0.005
I 0.001 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.002 0.005

Eff 0.689 0.366 0.515 1.000 0.310 0.715 1.000 0.680 0.899 0.598

Table 5: The result of model (3.4) for modified allocated cost in different prioritization.

DMU 1 2 3 4 5 6 7 8 9 10
Ry 0 0 0 833 0 0 0 o0 0 0
R4 214 259 123 0 255 1.27 0 1.27 284 3.12
Ry 7.86 7.41 876 1.66 7.45 033 0 873 7.16 6.88
Rj (j=1,..,10, j #1,4,7) 0 0 0 0 0 0 0 0 0 0

As seen in Tables 2 and 4 it is clear that model (3.4) reduces the number of efficient
DMUs. Therefore, improves the discrimination power. Also by using model (3.4), the
required cost values for allocation between DMU s in different prioritization are obtained

correctly.
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ABSTRACT. In this short note, we present a reliable process for computing the deter-

minant of any general block pentadiagonal and block heptadiagonal matrices. Then we

extend this process for block anti-pentadiagonal and block anti-heptadiagonal matrices.

We do this work by determinant of a block tridiagonal matrix.

The n — block x n — block general pentadiagonal (n > 6) and heptadiagonal (n > 8)

matrices are the forms:

(1.1)

A1 B, Dy

01 A2 B2 D2

E, Cy A3 Bj
En—3 Cn—2

En72

Ds

An—l
Cnfl

1. INTRODUCTION AND PRELIMINARIES

Bn—l
Ap,
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A B
C, Ay
Q1 Co
51 Q2

Sa

(12) H=

D,
By
Az
Cs
Q3

Eq
D,
Bs
Ay
Cy

Es
D3
By
As

Snf5

Es
D,
Bs

Sn—G Qn—S Cn—4
an4
Sn—4

E,
Ds

An—3
Cnf?)
Qn—3
Snf?)

E5

Dn—3
B2
Ap—1
Cn1

355

These types of matrices frequently appear in a variety of applications such as parallel

computing, telecommunication system analysis and in solving differential equations us-

ing finite differences. In many of these areas determinant and inverse of general anti-

pentadiagonal(AP) or anti-heptadiagonal(AH) matrices are required.

(14)  AH =

Ap

Bn—l
%

Cn—l

An—l
Cnfl

D3

Cn—2
En72

E,

Sn—3

D,

En—3

anl Anfl Cnf2 an?; Snf4
Qn—2

D,
By
By A3 Cy E;

By
Ao

D,

As
C3

Ay
Ci

Ay

Q1
S

In this note we derive recurrence sequences for computing the determinant of a block

pentadiagonal and block heptadiagonal matrices then we advance this process for finding

determinant of block anti-pentadiagonal and anti-heptadiagonal matrices. We will often

use the following convention: BTD for block tridiagonal, BPD for block pentadiagonal and
BAPD for block anti-pentadiagonal matrices. BHD for block heptadiagonal and BAHD
for block anti-heptdiagonal matrices.
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2. MAIN RESULTS

In [2, 4], Molinari and Salkuyeh proposed different processes for finding determinant of
BTD. We try to change these process for BPD and BHD matrices. Also we extend this
process for BAPD and BAHD matrices. Suppose:

Gy H;
F Gy Hp
F2 G3 H3
(2.1) N =
Fi o G 1 Hi
F_. G
Salkuyeh shows:
(2.2) detN = ._,deth;, A;=G;—F; (A7 \H; 1, A =Gy

For computing det(A;) and A", use of BST Algorithm in [3].
Molinari [2] described a transfer matrix T that built as the product of n matrices of size
(2mx2m) for finding det(N), [G;, H;—1 and F;_1 (i =1,...,1) are complex and nonsingular m>

m matrices]. Now by transfer matrix in [2], where T'(7) is the partial product of i matrices,

we have:
-H'G; —-H'F,_
T(i) = i PN T = 1), T(0)1y = Iy , T(1)11 = —H; 'Gy
Iom, 0
T(i)1 = —H;'GT(i — )11 — H'Fi_yT(i — 2)11
(2.3) det(N) = det[Ty, (1)]|det(H, ... H_1)

Theorem 2.1. For a BPD matriz similar matriz P in Equation( 1.1), when A;, D; and

E; are nonsingular blocks, we can find determinant matriz P by o BTD matrix.

Proof. We can make some partitions similar:

FEoi 1 Oy Aoi 1 Boi_ Doy, 0
F = 2i—1 2i G = 2i—1 2i—1 H; — 2i—1 ,i:1,2...,lthatl:ﬁ
0 Ey Coim1 Ay By Do; 2

This work helps us for finding det(P) by BTD matrix N in Equations( 2.1), ( 2.2) and
(2.3):
det(P) = det(N)
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Theorem 2.2. For a BHD matriz similar matriz H in Equation( 1.2), when A; , E; and

Si are nonsingular blocks, we can find determinant of matriz H by a BTD matrix.

Proof. For matrix H and (i = 1,2...,1 that | = %), suppose:

S3i—2 Qzi—1 O3 Asi—o Bsi_o D3> Esi_» 0 0
F; = 0 Szic1 Q3| Gi=|Csig Azi1 Bsi1|,Hi= D31 Ez1 0
0 0 S3; Q3i—2 Csi—1 Az Bs; Ds;  E3;

Now by BTD matrix N in Equations( 2.1), ( 2.2) and ( 2.3), we have:
det(H) = det(N)
0

Remark 2.3. If n is even for Theorem ( 2.1) or n mod 3 is zero for Theorem ( 2.2), we can

use above partitions.
For finding determinant of BAPD and BAHD matrices, we use the permutation matrix.

Example 2.4. W = wilkinson(n) returns Wilkinson matrix in Matlab. It is a symmetric,

tridiagonal matrix. So by permutation matrix(Q) we have:

31000 00 00 0O0O0T©O01 00000
1 210000 00 0O0O0T10 00001
0111000 000O01O0O0 00011
W=1]0010100,@=(0001000],@xW={[0010 1
0001110 001 0O0O0O 01110
0000121 010 00O0O0 1 2100
00 0O0O0T13 1 00 0O0O0DO 31000

For permutation matrix similar matrix Q, see [1], we can proof:
Q = Inverse(Q) = Transpose(Q)
For finding determinant of BAPD and BAHD matrices, we use of permutation matrix:

P = Qn—biock xn—block X AP and H = Qn—block xn—block X AH

Transfer BAPD and BAHD matrices to BTD matrices, by block permutation matrices

and devised matrices in Theorems ( 2.1) and ( 2.2).

SO O O O = N =

O O O O O = W
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AN ALGORITHM FOR COMPUTING THE INERTIA

MARYAM SHAMS SOLARY!*

ABSTRACT. In this note we try to design an algorithm for Computing the Inertia of n xn
complex matrix. Inertia is defined the nature and location of eigenvalues for complex

matrix. This algorithm helps us for finding inertia without compute eigenvalues.

1. INTRODUCTION AND PRELIMINARIES

The inertia of a n X n complex matrix A, is defined to be an integer triple, In(A)
(m(A),v(A),5(A)) where m(A) is the number of eigenvalues of matrix A with positive real
parts, v(A) is the number of eigenvalues with negative real parts and 6(A) is the number of
eigenvalues with zero real parts. In this paper, is developed the shift- and- invert Arnoldi
method by a suitable shift for converting generalized system to standard system. Then by

a block matrix method and Gerschgorin theorem, the nature and location of eigenvalues

were determined.

2. MAIN RESULTS

In [4], the authors have shown that the shift- and- invert Arnoldi method for the eigen-
problem Ap; = \;By; is mathematically equivalent to the standard Arnoldi method for

the transformed eigenproblem:

Ap; = \iByp;
Api — 0cByp; = A\iBp; — 0 B¢;
(A—0B)p; = (\i —0)By; = 1/(A\; — 0)p; = (A— oB) 'By;

2000 Mathematics Subject Classification. Primary 65F25, Secondary 65N25.
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My; = 0,
Where o is a shift. We gain the first shift by this process:
Az = ABz = || Az [[=| M| [| Bz I<[A] | B [l = |
| Az || Az | _

[Ea A

| . |I* is a matrix norm, see [2]. So we have:

Al
B~

Az =Bz = B ' Az =z =|| B Az |=[X] [z =] B 1A [z 2/x] [«
=BT A2

=

<IAT B IFA "= max x || Az |

<| Al

— Al

Suppose o = B If shift o is not suitable, i.e (A — oB) is not invertible, we find a new
shift by bisection on the interval [{Zlh, | B=1 || A ],

This process does not need Hessenberg form of matrices A and B. Therefore it saves time
compared with the definded method in [4]. Also we use norm 1 (|| . ||1) for saving time.
Now we explain another proof of Gerschgorin theorem. This proof will help us for better
describing the Inertia Algorithm: Let A = (a;;) € C,xpn be a square matrix of order n

with complex entries and let

n n
D'={zeCllz—ail< ) lagl}=Blau, Y layl), i=1...,n
=Li#i j=1,j#i

Theorem 2.1. (Gerschgorin) 1. Every eigenvalue of A lies in some D
2.If M is the union of m disks D; such that M is disjoint from all other disks of this type,

then M contains precisely m eigenvalues of A (counting multiplicities).

Proof. See [3]. O

By above theorem, all eigenvalues of A can be found in the union of disks

n

{z:|z —ai| <ri,i=1,2,...,n}, r;= Z laijl, i=1,...,n
J=1j#

So by Gerschgorin theorem we can describe
rp; = real (A(i,i)) — i, rn; = real(A(4,1)) + r;

and use them for finding the nature and location of eigenvalues. For example, if rp; >
0 for 1 < i < n agreement definition rp; then ith eigenvalue situated in positive part

of real numbers. If rn; < 0 for 1 <1i < n agreement definition rn; then ith eigenvalue
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situated in negative part of real numbers. Else eigenvalue may be zero but we do not sure,

so we must examine more.

Remark 2.2. The Gerschgorin Circles for matrix A show that eigenvalues are in the
[—14,8.5].

4 1.0 1 0 00O
-15 1 1 5 00
S 0 2 0 0 00
A=l0 1 1 -6 1 0 0
1 02 2 =900
0 50 5 0 00
0o 00 0 0 13

By defining rp; and rn; we can see 4 eigenvalues are situated in Positive Circle , 2 eigen-
values are in Negative Circle and 1 eigenvalue is in Zero Circle. R; ¢ = 1,2,3 give us

lower bound and upper bound for circles on real axes, see Figure 1.
R, =[1.5,8.5] = Positive eigenvalues
Ry =[—14,-3] — Negative eigenvalues

Rs =[—-1,1] = must be examined more

Note that if these circles overlap with each other, we can not determine the number of
eigenvalues in every circle. Thus we must try to plot another circle which contains both

circles.

Remark 2.3. The Gereschgorin Circles for matrix A show that eigenvalues are in the
[_77 6]

3 1 0 0 .5
1 4 0 0 1
A=10 -5 0 1 0
0 1 1 -4 1
0 0 1 1 =3

We can see Negative Circle and Zero Circle overlap with each other. So for describing
the situation of the eigenvalues needs to determine another circle, this circle must contain
two negative and zero circles, see Figure 2. This process is showed in Step4 of Inertia
Algorithm. The following is a modification of Inertia Algorithm in [4]. This Inertia

Algorithm works faster and more efficient than last algorithm.
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Ficune 2. Cireles show the reglons ineluding the Nega
tive,Positive and may be Zevo eigenvalues |

Inertia Algorithm
Step 1: Input matrices A,B.
Step 2: If B is singular or ill-conditioned, then first shift is: o = H, else: 0 =0
Step 3: M = (A — o0B)~! and use block inverse method for computing inverse of matrix
M.

Step 4: Gain rp; and rn; for matrix M by:
rp; = real (M (i,1)) — i, rn; = real(M(i,1)) +r;

a- If rp; >0 for 1 <1 < mn: It shows ith eigenvalue is in Positive Circle.

b-If rn; <0 for 1 <1i < n: It shows ith eigenvalue is in Negative Circle.

c-Else: eigenvalue may be zero but we are not sure. Therefore we must examine more.
Note: If upper bound of Negative Circle is bigger than lower bound of Zero Circle, try to
gain another circle that contains both of them. If lower bound of Positive Circle is smaller
than upper bound of Zero Circle, try to gain another circle that contains both of them.
Step 5: By Step(4-a) and Step(4-b) we have:

m(M): The number of eigenvalues with positive real parts in Positive Circle.
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v(M): The number of eigenvalues with negative real parts in Negative Circle.

d(M): The number which we do not have information about their nature in Zero Circle.
Step 6: Gain eigenvalues (6;),i = 1,2...5(M)for M = (A — 0B) !B in Zero Circle.
Step 7: Set zero(M) =0

For j=1,2,...,6(M) do, \j =0+ 1/6;

If real (A;) > 0 then (M) = n(M) + 1

If real (A\;) < 0 then v(M) =v(M) +1

Else if real ()\;) = 0 then zero(M) = zero(M) + 1, 6(M) = zero(M)

Step 8: In(A) = (n(A),v(A4),(A)).

Example 2.4. Let A = gallery('lesp’,n), B = eye(n) n=1500. eig(A,B) after 247s and
Inertia algorithm after 46.443s gives us the nature of eigenvalues (All eigenvalues are neg-
ative).

Note: Matrix A is in Matlab Gallery and "eig” is a Matlab function for computing eigen-

values.

Example 2.5. Let A = BCSSTK13, B = BCSSTM13 where A is a real symmetric
positive definite matrix of size 2003 and B is a real symmetric positive semi-definite matrix
of size 2003 (Matrices A and B are in Harwell-Boeing matrix market).

Rank(A)=2003 and Rank(B)=1241 (Fluid flow generalized eigenvalues). eig(A,B) cannot
work because A,B are sparse and eigs(A,B) also is the same because B is not symmetric
positive definite. So we use eig(full(A),full(B)), this function needs 735s for doing but
Inertia Algorithm needs 342.2653s. Both of them give us similar results (All eigenvalues

are positive).

Remark 2.6. If in Inertia algorithm we replaced inv(A) x B by (A \ B) we need only
60.4891s. We know that in Matlab software both of them give us similar results (i.e
inverse(A) multiply B) with different times.
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INVERSE THE WORKING MARTRIX BY LU FACTORIZATION IN
THE MULTICOMMODITY FLOW PROBLEMS

MARYAM SOLEIMANI ALYAR

ABSTRACT. This paper presents the algotrithm which may be used to maintain the
inverse of working matrix as an LU factorization. The working matrix that used in
this paper applied for solve the multicommodity flow problem by the primal simplex
algorithm obtain from the partition of basis matrix corresponding to the multicommodity

flow problem.

1. INTRODUCTION AND PRELIMINARIES

Multicommodity flow problem (which will be referred to as the MCF) is a network
flow problem where several commodities must share resources in a common capacitated
network. Practical instances of MCF problems can become very large. Many large-scale
production, communications, logistics, distribution planning, transportation and maneg-
ment problems can be formulated as MCF problems.

Let G = (N, A) be a directed graph consists of a set N of n nodes and a set A of m
arcs. Let N denote the node-arc incidence matrix for this graph. The flow of commodity
k on arc (7,7) is denoted by xfj while the whole flow vector for commodity k is denoted

koIf uj; is the capacity of arc (i,7), b ois a

by z* and its corresponding cost vector ¢
supply/demand vector for commodity & and Uikj is the individual capacity for commodity
k and K is the total number of commodities. Then, with these notations, we can the

formulate the MCF problem as follow:

2000 Mathematics Subject Classification. Primary 90-XX; Secondary 00X00, 00X00.
Key words and phrases. multicommodity flow, working matrix, LU factorization, simplex alorithm.
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(1.1) min Z ok

1<k<K
subject to
(1.2) Z xf] < wu;; for all (i,5) € A,
1<k<K
(1.3) NzF=bF fork=1,-- K,
k k _ . .
(1.4) 0<uz;;<U;j fork=1,--- K, for (i,j) € A.

The restriction (1.2) is the bundle constraint and the restriction (1.3) is the mass balance
constraint.

The paper is organized as follows: In section 2, the working matrix is recommend. In
section 3, a description of an LU update for maintain the inverse of working matrix as an

LU factorization is given. Finally, in section 4, we have the results.

2. COMPUTING THE WORKING MATRIX

Suppose B is the basic matrix associated with the initial basic feasible soluation(BFS)

for the MCF problem. Every basis in the basis partitioning method can be decomposed

as follow:
Ly Ry O
(2.1) Ly Ry O
Ly Ry I

where L1, Ry and I being square matrices. In this matrix Ly refers to network constraints
and arcs of the K spanning trees and it is a nonsingular matrix, then the inverse of
this matrix is exist and denoted by Ll_l. During the optimization process in the simplex

T

algorithm systems Bz = b and 77 B = ¢’ must be solved at each iteration. By partitioning

the z, 7 and also ¢, b corresponding to matrix B we have:

e For Bz = b:
2y = (Ry — LoL{'Ry) ' (by — Lo Ly 'by),
zy = L7'Ry — LT 'Ry,
r3 = by — Lyz; — R3x9.
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e For 7' B = (T
mg =0,
Ty = (cg — c1 L7 " Ry)(Re — LoaLT'Ry) 1,
m = (1 — ng)Lfl.
In this process we denoted the matrix (Ry — LgLflRl) by @ and will be referred to as the

working matrix or cycle matrix.

3. THE INVERSE UPDATE

The inverse update requires a technique ffor obtaining a new Q~! after a basis exchange.

In thois paper we use an LU update for this aim.

I 0 100
Let U'=[ 0 1 0 | andLi=| 0 I; 0
0 0 I 0 I I
U’ and L are upper etas and lower etas matrices, p1 = (1, , pi—1)  and 1 = (L1, -+ ,Im)".

Suppose we have a factorization of Q' in the form
(3.1) Q'=Uv'U*...UmFFs . F!

where F'!, ... | F'S are a combination of row and column etas. Consider the m by m working
basis of Q and denoted by Q. Suppose that the &k column of Q is replaced by Q(k).

- - I 0
3.1. Nonkey column leaves the basis. If k=m, thenlet 8 = F*-.- F1Q(k), let L™= ( 0 ) 4
Bm
—b
Um = I : , then we have Q' =U'... U™ 1 U™L™FS... Fl,
_/Bmfl
0 1
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41‘— 0, ’if’i:l*

i
Drt+l = B , where o = and B; = ny, ifi

—'T n;. o0.w. Yi-  0.W.

then DPUPTL = P pDP+HL,

3.2. Key column leaves the basis. In this subsection we used a swith between a key
column and a nonkeycolumn for updating the working basis. That is, Q' = DQ !, where
1|
D = —e/LT'Ry . We wish to obtain Q! in the same form as (3.1).
L
For this point we begin with Q~! = RU'U?...-U™F*Fs~!'... F'. We apply proposition
3.1 for this matrix until we obtain Q! = U'... UFIRFU* ... UmFsFs—L... FL

Acknowledgements: For solve the MCF problem by working matrix, we only need

to compute the inverse of working basis (Q!).The dimension of @ is at most equal to
number of network arcs and independent of number of commodities. By an Lu update we
have less computation than usaul matrix computationals. Therefore we could save running

time.
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A SUBGENERATOR FOR THE CATEGORY OF QUASI-HOPF
BIMODULES

SAEID BAGHERI

ABSTRACT. It has been already shown that for a bialgebra H over a field k, the
category ME of right Hopf modules is a Grothendieck category and H ®j, H is a
subgenrator in it. Furthermore, if H is a Hopf algebra, this category is equivalent
to the category of k-vector spaces.

Over a quasi-Hopf algebra H (as introduced by Drinfeld in 1990), the category
aME of quasi-Hopf H-bimodules has been introduced by F.Hasser and F. Nill in
1999. In this paper we will find a subgenerator for this category.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, k& will be a field and all (bi)algebras will be over k, un-
adorned ® and Hom mean ®; and Homy respectively.

Let A be a k-algebra and M be a left A-module. An A-module N is called
M-generated if there exists an epimorphism

M® N

for some set A. The class of all M-generated modules is denoted by Gen(M). We
say a left A-module N is M-subgenerated, if N is isomorphic to a submodule of an
M-generated left A-module (equivalently, if N is the kernel of a morphism between
M-generated left A-modules). The full subcategory of 4M, whose objects are the
M-subgenerated left A-modules is denoted by o[4M]. In fact o[4M] C 4M is the
smallest Grothendieck full subcategory containing M.

The reader is referred to [4] for the well developed theory of categories of this type.

For a bialgebra H over a field k, a k-vector space M is called a right H-Hopf
module if M is
i) a right H-module by oy : M @ H — M,
ii) a right H-comodule by o™ : M — M ®; H,
iii) for all m € M and h € H, oM (mh) = oM (m)A(h), form € M,h € H.

2000 Mathematics Subject Classification. Primary 16W30; Secondary 18A40, 18D10.
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Example 1.1. H-modules and Hopf modules. Let H be a k-bialgebra. For a
right H-module N, the right H-module N ®Z H is a right H-Hopf module with the
canonical comodule stucture

ONon =tdy®u: NQrH®H — N®;H, n®hQh —n®hh'

QN®H:idN®A: NeH — N®,HQQ,H n®h—n®Ah.
For every H-module morphism f: N — N', the map

is an H-Hopf module morphism.
In particular, H ®y H is a right H-Hopf modules. (see [1, 14.2, 14.3 and 15.8]).

The category Mg Let H be a k-bialgebra. The right H-Hopf modules, together
with the maps which are both right H-comodule and right H-module morphisms,
form a category that is denoted by Mg
In case H has an antipode, the comparison functor — @ H : Vecty, — Mg s an
equvalence of categories.

The right H-Hopf module H ®) H with the above construction is a subgenerator
in MIL. (see [1, 14.5, 14.6 and 14.15]).

1.1. Quasi-Bialgebras and Quasi-Hopf Algebras. [2]

A four tuple (H,A,e,¢) is called a quasi-bialgebra if H is an associative k-
algebra with unit, ¢ an invertible element in H @ H @ H, A : H — H ® H and
e : H — k are algebra maps, satisfying the following identities:

(1.1) (I®e)oAh)=h®1 , (e®@I)oA(h)=1®h VYheH
(1.2) IT@A)oAMh)=¢- (AR oA(h)-¢~ VheH

(1.3) IRIRA) (P ARIRI)(¢) =(1R)IRARI)(P)(¢®1)
( 3-cocycle)
(1.4) e =111
We use the version of Sweedlers notation: A(h) = > hi ® hs.
A quasi-antipode (S, «, 3) for a quasi-bialgebra H consists of an invertible alge-

bra anti-automorphism S : H — H and elements o, 8 € H such that the following
equalities hold:

(1.5) > S(hi)ahy =e(h)a and > hiBS(ho) = e(h)p
h h

(1.6) ZXlﬁS(XQ)aX?’ =1 and ZS(ml)cchﬁx?’ =1

for allh € H.

A quasi-Hopf algebra is a quasi-bialgebra H together with a quasi-antipode
(S, e, ).
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1.2. Quasi-Hopf Bimodules. Following F. Hausser and F. Nill [3], we define the
notion of quasi-Hopf H-bimodules as a generalization of the concept Hopf bimod-
ules over Hopf algebras.

Definition 1.2. Let H be a quasi-bialgebra, and M be an (H, H)-bimodule and let
o: M — M®®H, p(m)= Zm(()) ®m(1)

be an (H, H)-bimodule homomorphism. Then (M, p) is called a right quasi-Hopf

H-bimodule if the following relations, for all m € M, h € H, are satisfied:

(1.7) (idyy ® €)oo = idyy,

(1.8) ¢-(e®@idy)(o(m)) = (idy ® A)(o(m)) - ¢.

A morphism of right quasi-Hopf H-bimodules is an (H, H)-bimodule morphism
such that it preserves also the right weak H-coaction o : M — M ® H. The
category of right quasi-Hopf H-bimodules with the above morphisms is denoted by
aME.

A trivial example is given by M = H and o = A. Now we see another importat
example:

Example 1.3. Let N be a left H-module. Then N ® H with the following con-
structions, becomes a right quasi-Hopf H-bimodule. Va,b,h € H,m € M;

(1.9) a-(m®h) -b:=Y a1-m® ashb=A(a)(m ® h)(1®b)
and the coaction: p: N ® H — (N ® H) ® H defined by:
om®h):=¢ - (IQA)(mh) = le -m ® z%hy ® 2°hy
2. MAIN RESULT

Let H be a quasi-bialgebra. We will find a subgenerator for the category HMg of
quasi-Hopf bimodules.
Proposition. For any quasi-bialgebra H, with the structures given for h,a,b € H
by

h-(a®Db) A(h)(a®b) =Y hia®hsb
(@a®b)-h = a®bh=(a®b)(1®h)
"M aeb) = Y s'la®@s’h @’ =¢ ' (id@ A)(a®D),

H ® H is a subgenerator for the category HMg of quasi-Hopf H-bimodules.
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cvx-begin \\

variables X(n,n) Y(n,n) Z(n,n)\\
X(1,1)==0;
¥(2,2)==0;
Z(3,3)==0;\\
X(2,2)+Y(2,1)+Y(1,2)==0;\\
X(3,3)+Z(3,1)+Z(1,3)==0;\\
Y(1,1)+Y(1,2)+X(2,1)==0;\\
Y(3,3)+Z(3,2)+Z(2,3)==0;\\
Z(1,1)+X(1,3)+X(3,1)==0;\\
Z(2,2)+Y(2,3)+Y(3,2)==0;\\
X(3,2)+Y(3,2)+Z(1,2)$>$= 0;\\
X(3,2)+Y(1,3)+Z(2,1)$>%$= 0;\\
X(2,3)+Y(3,1)+Z(1,2)$>$= 0;\\
X(3,2)+Y(3,1)+Z(2,1)$>$=0;\\
X(3,2)+Y(1,3)+Z(2,1)$>$= 0;\\
X(2,3)+Y(3,1)+Z(1,2)$>%$= 0;\\
(M-X)==semidefinite(n);\\
(M-Y)==semidefinite(n);\\
(M-Z)==semidefinite(n);\\

cvx-end
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