The Extended Abstracts of
The 6" Seminar on Functional Analysis and its Applications
4-5th March 2020, University of Isfahan, Iran

MENGER PROBABILISTIC NORMED RIESZ SPACES
AND HYERS STABILITY

EHSAN MOVAHEDNIA *! AND PARVANEH LO'LO’ 2

! Department of Mathematics, Behbahan Khatam Alanbia University of
Technology, Behbahan, Iran
movahednia@bkatu.ac.ir
2 Department of Mathematics, Behbahan Khatam Alanbia University of
Technology, Behbahan, Iran
lolo@bkatu.ac.ir

ABSTRACT. In this paper, we introduce the concept of Menger
probabilistic normed Riesz spaces. Next, we investigate the Hyers
Ulam Rassias stability of preserving lattice cubic functional equa-
tion in Menger probabilistic normed Riesz spaces.

1. INTRODUCTION

The theory of probabilistic metric spaces was introduced by Menger
[?] in 1951. He emphasized that replacing the number d(p, q), which
gives the distance between two points p and ¢ in a non-empty set S,
by a distribution function F),, whose value F, (t) at t € [0,400) is
interpreted as the probability of the distance between the points p and ¢
is smaller than ¢. Menger’s idea was developed by the mathematicians.
The theory of probabilistic normed spaces, was introduced by Serstnev
in 1963 [?].
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A classical question in the theory of functional equations is the fol-
lowing: When is it true that a function which approximately satisfies a
functional equation D must be close to an exact solution of D? If the
problem accepts a solution, we say that the equation D is stable. The
first stability problem concerning group homomorphisms was raised by
Ulam [?] in 1940.

Riesz spaces or vector lattices are real vector spaces equipped with
a partial order. Under this partial order the Riesz spaces must satisfy
some axioms, including the axiom that it is a lattice. Riesz spaces are
named after Frigyes Riesz who first defined them in 1930 [?].

A non empty set X with a relation ”<” is said to be an ordered set
whenever the following conditions are satisfied

1. z < x for every x € X

2. x <y and y < x implies that x = y for all z,y € X;

3.z <y and y < z implies that x < z for all x,y,z € X.

An order set (X, <) is called a lattice if any two elements z,y € X
which have a least upper bound denoted by = V y = sup{z,y} and a
greatest lower bound denoted by z Ay = inf{z,y}.

A real vector space X which is also an order set is an order vector
space if the order and the vector space structure are compatible in the
following sense

1. If x,y € X such that x <y, then z + z < y + 2 for all z € X

2. If z,y € X such that z <y then azr < ay, for all a > 0.

If (X, <) is lattice and order vector space then it is called Riesz space.
A norm ||.|| on Riesz space X, is called lattice norm if ||z] < |y||
whenever |z| < |y|. A normed Riesz space (X, ||.||, <) is called Banach
lattice if (X,].]|) is Banach space, (X, <) is Riesz space and ||.|| is
lattice norm, for all x,y € X.

Let X be a Riesz space, let the positive cone X+ of X consist of all
x € X such that x > 0. For every z € X, let

T =zVv0, x=-zV0, |z]=2V -z

Let X be a Riesz space, for all z,y, z € X, the following assertions
hold

LLe+y=zVy+zAy, —(xVy) =—xA—y.

222+ yVe)=(+yViz+z), 2+ (yAz)=(x+y A(z+2).

3ozl =t + 27, Jx+y| < |z + |yl

4. v < y is equivalent to z+ <y and y~ < z~.

S.(xVy)Az=(xAy)VyAz), (xAy)Vz=(xVy A(yV z).
A Riesz space X is Archimedean, if x < 0 holds whenever the set
{nz : n € N} is bounded from above.
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Definition 1.1. Let X, Y be Archimedean Riesz spaces. The function
P: X —Y is called positive if P(X1) = {P(|z|]):x € X} C Y.

Theorem 1.2. For a function P : X — Y between two Riesz spaces
the following statements are equivalent

1. P is lattice homomorphism. (It means that P(xVy) = P(x)V P(y)
forall x,y € X).

2. P(z™) = P(x)* forallx € X.

3. P(x Ny) = P(z) N P(y), forall z,y € X.

Definition 1.3. Let X and Y be two Banach Lattices and P : X — Y
a positive function. We define
(P;) Lattice homomorphism functional equation: for all z,y € X

P (x| Vv lyl) = P(lz]) v P(lyl).
(P,) semi-homogeneity: for all x € X and every number a € R™,
Plalz]) = aP(|z]).

(P;) homogeneity of degree 3: for all z € X and every number

B eRT,
P(B|z]) = B°P(|z|).

Remark 1.4. Given two Banach lattices X and Y, let a positive function
P : X — Y satisfy property (P;). Then the following statements are
valid

L. P(Jz Vy|) < P(z|) vV P(ly|) for all z,y € X.

2. The semi-homogeneity implies that P(0) = 0.

3. P is an increasing operator, in the sense that if x,y € X are such
that [z < |y|, then P(|z[) < P(ly|).

A distance distribution function (briefly, a d.d.f.) is a non-decreasing
function F' defined on R* that satisfies F'(0) = 0 and F(4+o00) = 1, and
is left continuous on (0,00). The set of all d.d.f’s will be denoted by
AT; and the set of all F'in A% for which lim, ,, - F(x) =1 by D*.
The elements of AT are partially ordered via F' < G if and only if
F(xz) < G(x) for all x € RT.

The space AT has both maximal element ¢, and a minimal element
€~ defined by

0 ifx<0 0 ifr<+4oo
€o(r) = () =
1 ifxz>0 1 ifzx=00

A t-norm T is continuous if and only if it is continuous in the first
component, i.e., if for each y € [0, 1] the one place function

T(,y):[0,1] = [0,1] z+—— T(x,y);
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is continuous. A continuous t-norm 7' is Archimedean if T'(z,x) < x
for all x € (0,1).

Definition 1.5. [?] A Menger probabilistic normed Riesz space ( Menger
PNR- space for short) is a qua-ternary (X, v, T, <) where (X, <) is a
real Riesz space, T' is a continuous t-norm and v : X — DT (forz € X
the distribution function v(z) is denoted by v, and v,(t) is the value
of v, at t € R) satisfying the following conditions

M1) v,(0) =0 for all z € X;

) v, =¢ iff x =0 (0 is the null vector in X);

) Vau(t) = I/x(| ) forall z € X and o € R\ {0};

) Vagy(t1 +t2) > T (v(t1), vy(t2)), for all z,y € X and t1,t, € RT;
) norm Riesz Menger property: v,(t) > v,(t) whenever |z| < |y| for
all z,y € X and t € RT.

Example 1.6. Let (X, ].||,<) be a normed Riesz space. Define v :
X — D% by
— ift>0
Ve(t) = t+ |zl
0 ift<0
then (X, v, T, <) is a Menger PNR space.
Definition 1.7. [?] Let (X, v, T, <) be an Menger probabilistic normed

Riesz space. Let {z,,} be a sequence in X. Then {z,} is said to be
convergent if there exists an x € X such that

nh_)IIolo Vg, —z(t) = 1.
In this case z is called the limit of {z,}.

Definition 1.8. [?] The sequence {z,} in Menger probabilistic normed
Riesz space (X, v, T, <) is called Cauchy if for each ¢ > 0 and 6 > 0,
there exists some ng such that

Ve —an, (0) > 1 —¢,
for all m,n > ng.

Clearly, every convergent sequence in a Menger probabilistic normed
Riesz space is Cauchy. If each Cauchy sequence is convergent in a
Menger probabilistic normed Riesz space (X, v, T, <), then it is called
Menger probabilistic Banach Riesz space (briefly, Menger PBR- space).

Theorem 1.9. [?] Let (X,v,T,<) be a Menger probabilistic normed
Riesz space, then lattice operators are continuous.
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2. MAIN RESULTS

Theorem 2.1. Let f be a function from Menger probabilistic normed
Riesz space (X,v,T,<) to Menger probabilistic Banach Riesz space
(Y, u, T, <), where T is an Archimedean continuous t-norm and v, jt, #
€0, forallpe X and q €Y. Let

15 (@ovraviy)—rf @vaf(y) (T) 2 Vo) (t) (2.1)

for all xg,x,y € X, with xy # 0 and for all T,n > 1 and t > 0. Here
p: X XX — X is a mapping such that

p(S1(2), 51(y)) < T¢(2, ), (2.2)

for some « € [0,1). Then there erxists a unique function g : X — Y
which satisfies property P1 and inequality

He@)—1@)(t) 2 Vo) (T —77)1) (2.3)
1s thus valid for every v € X.

Proof. Replacing y and n with x and 7, respectively, in (7?), we get

f5 (51 ()~ () (1) = Vep(ar) (1), (2.4)
for all x € X. Hence

S

) > Voo (1), (2.5)

for all x € X. Putting x = S;(z) in the above inequality, (??) and
(M5), we obtain

t
H L 1(Sa(@)=f(S1(2)) (;)

HLf(S1(2)~f (=) (

v

V(81 (2),51(2)) (1)
¢
2 V(p(:v,m) T_a ) (26)
for all x € X. Therefore
By psa)- i) (1771 2 Ve@a (t), (2.7)

for all x € X and ¢t > 0. By comparing (??) and (??) and by using
(M4), we have

B psaan s (T 7)) 2 Vo) (8), (2.8)
for all z € X. Again, replacing x by S;(z) and using (M5) in the last
inequality, we get

oy piss@n—p) (T T = Vosi@si@) ()
> Vrag(ea) (1), (2.9)
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for all z € X. It follows that
P p(ssn-Lesiy (T 770 2 Voea(t). (2.10)
Comparing (??) and (??) and by using (M4), we obtain
B pssen—s) (T F 7247270 2 v (1), (211)

for all z € X and ¢t > 0. By following this process, we have

n—1
MT%f(Sn(ac))—f(:c) <7__1 (Z 7_]{:(04—1).[;)) Z Vgo(a:,m) (t) . (212)
k=0

for all n € N. Replacing n by n — m in the above inequality, for some
m € N, such that n > m. We get

n—m-—1
Hd (S (@)~ f () (Tl( > Tk(al)f)) > V(e (1)(2.13)
k=0

Substituting z with S,,(z) in (??) and using (M5), we obtain

n—m-—1
-1
P F(Sn (@)= F(Sm(x)) (T ( Z

k=0

Tk(al)t>> 2 V(S (2),5m(z)) (t)

t
Z Vgo(x,x) Tm 5
for all x € X. Therefore

n—1
Hds F(Sn (@)~ e £ (Sm(2) <Tl (ZTk(al)t>> > Vo) (1)(2.14)
k=m

Let ¢ > 0 and € > 0 be given. Since v, , , (t) € D, 80 lim; o0 Vp(a ) (t) =
1. Therefore there is some ty > 0, such that

ch(:c,z) (to) Z 1 — €.

7.0&

Fix some ¢ > t,. Since ), Fhla=1) — ~
T—T

ng > 0, such that for each n > m > ng, the inequality

, so there exists some

n—1
T_IZTk(a_l)t < ¢ (2.15)

k=m
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n—1
-1 k(a—1)

holds. It follows that

Bt (S (@)~ 2 (Sma () 2
k=m
2 I/go(m,x)(tO)
> 1—¢ (2.16)

for all z € X. Hence {Z f(S,(z))} is a Cauchy sequence in Menger
probabilistic Banach Riesz space (Y, pu, T, <) and thus this sequence
converges to g(z) € Y. It means that

Bm fi 45, @) -g@ () = 1 (217)

n—oo

for all x € X. Furthermore, by putting m = 0 in (?7), we obtain

n—1
u%f(sn(x))—f(x) (T_l <Z Tk(a_l)t>> 2 Vap(x,a:) (t) (218)
k=0

Therefore

T.t
It (S (@) () (E) 2 V(o) (W) : (2.19)

Since vy, [ty # €s and T is an Archimedean continuous t-norm, then
norm probabilistic is continuous [?]. Thus as n — oo, we have

Hg(@)— () (1) = V() (T — T9)1). (2.20)
Next, we show that g satisfies P1. Replacing n by 7 in (77), we get

[t (@ovravry) - favr @) (E) 2= Vo) () (2.21)
We have

14 (S1 @vy)—r @) () = Vo) (t) (2.22)
Substituting z, y with S, (x) and S, (y) respectively, in the last inequal-
ity, we get
FLF(S1(Sn(@)VSn )~ FSn@IVTISa@) (E) 2 Vip(Sn(@),8u () (£)- (2.23)
It follows that

L4 (S 1 (V)7 (Sn (2))V7 £ (Sn (1)) () Vip(Sn(),5n () (1)

AVARLY,

)
Vo) (7)) (224)
for all z € X. This yields

n(l—a
Bt F(Snr @9 e FSm @ e fsn) (D) 2 Vplagy (T(T"7)(R.25)
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Since norm probabilistic is continuous, so the term on the right-hand
side of the above inequality tends to 1 as n — oo. Therefore

Hg(avy)-g@)vew) (t) = 1. (2.26)
So

gz Vy) =g(x)Vey) (2.27)
Consequently, the property (P1) holds and the proof is completed. [
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Abstract
In this reaserch we introduce the concept of best coapproximation on Banach lattices with

a strong unit. We study the existence problem of best coapproximation in these spaces. Also,
we develop the theory of best coapproximation in quotient of Banach lattice spaces and discuss
about the relationship between the coproximinal elements of a given space and its quotient space.
Finally, we show that every lattice isomorphism is an coapproximation preserving map.

1 Introduction and preliminaries

Another kind of approximation, called best coapproximation was introduced in normed linear spaces
by C. Franchetti and M. Furi [2]. The theory of best coapproximation is much less developed as com-
pared to the theory of best approximation in abstract spaces. In this parer, we develop the theory of
best coapproximation by elements of closed downward sets, which are nacassarily nonconvex sets, in a
Banach lattice with a strong unit. Also, we introduce the notion of best coapproximation in quotient
Banach lattice spaces. We shall determine some conditions which coproximinality can be transmitted
to quotient spaces and vice versa. Finally, we obtain some conditions for maps under which preserve
best coapproximation by downward subsets of Banach lattices.

A real vector space X is said to be an ordered vector space whenever it is equipped with an order
relation < (i.e., < is a reflexive, antisymmetric, and transitive binary relation on X). A vector lattice
space (or a Riesz space) is an ordered vector space X with the additional property that for each pair
of vectors z,y € X, the sup{z, y} and the inf{x, y} both exist in X. As usual, sup{z,y} is denoted
by x Vy and inf{x,y} by x A y. Recall that a vector subspace W of a vector lattice space X is said
to be a vector sublattice, whenever W is closed under the lattice operations of X, i.e., whenever for
each pair x,y € W the vector x V y and x A y (taken in X') belongs to W. A subset A of a vector
lattice space is called solid whenever |z| < |y| and y € A imply z € A. A solid vector subspace
of a vector lattice space is referred to as an ideal. For any vector x in a vector lattice space define
vT=2V0, 27 =2 A0and |z| := 2V (—x). The element 27 is called the positive part, 7~ is
called the negative part, and |x| is called the absolute value of x. If X is an ordered vector space,
then the set X* = {x € X : z > 0} is called a positive cone of X, and its members are called
the positive elements of X. An element 1 € X is called a strong unit if for each x € X there exists
0 < A € R such that x < Al. Then for each € X there exists 0 < A € R such that |z| < Al
Using 1 we can define a norm on X by

|| = inf{\ >0 : |z <AL}, (1)

Recall that a norm ||.|| on a vector lattice space is said to be a lattice norm whenever |x| < |y| implies
|zl < |lyl|. A vector lattice space equipped with a lattice norm is known as a normed vector lattice
space. If a normed vector lattice space is also norm complete, then it is referred to as a Banach lattice.
It is well known that X equipped with the norm (1) is a Banach lattice which is called a Banach
lattice with strong unit 1.

The closed ball with center at z and radius r defined on Banach lattice X as follows:

Blx,r)={ye X : |ly—z[|<r}={yeX z—ri<y<ax+r}

Let A be an ideal in Banach lattice space X. We recall that the equivalence class determined by x
in % will be denoted by x = x + A. In % we introduce a relation < by letting <y whenever there

exist 1 € ¢ (ie., z; —x € A) and y; € y with 21 < y;. Clearly, % under the relation < is an

ordered vector space and it is easy to show that % is a vector lattice space (for more details see [1]).

Let A be a closed ideal of a Banach lattice space X. Then the vector lattice space % under the

quotient norm

|lz]| = infi[lyl| - y € 7},

is a Banach lattice space. In fact, the quotient vector space % is itself a Banach lattice space.

A linear operator T : X — Y between two lattice vector spaces X and Y is said to be a lattice
(or Riesz) homomorphism whenever T'(x V y) = T(x) V T'(y) holds for all x,y € X. Note that every
lattice homomorphism is a positive operator, i.e., it carries positive vectors to positive vectors. This
is equivalent to saying that every lattice homomorphism is order preserving, i.e., x < y implies that
T(x) <T(y), and also it is equivalent to

T(x)] = T(|x])

for all x € X. It is important to note that the range of a lattice homomorphism is a lattice sub-
space. A lattice homomorphism which is in addition one-to-one is referred to as a lattice isomorphism.

Clearly, the map x — z, from X to %, is a linear operator called the canonical projection of X onto

%. The lattice homomorphisms are closely related to ideals. For every ideal A of a Banach lattice

space X, the canonical projection of X onto the Banach lattice space % is a lattice homomorphism

(for more details see [1]).
Let W be a nonempty subset of a normed linear space X. An element wg € W is called a best
coapproximation to x € X from W if for every w € W,

lw = woll < flz —w][;

The set of all elements of best coapproximation to x € X from W is denoted by Ryy(x). If each
x € X has at least one best coapproximation wg € W, then W is called a coproximinal subset of X.

2 Best coapproximation by downward sets

In this section we show that a closed downward set is coproximinal and obtain some results on best
coapproximation elements.

Definition 2.1. A nonempty subset W of an ordered vector space X is called downward if
(weW x<w)=zxzecW.

A simple example of a downward set is a set of the form {y € X y < g} , where

g € X. For another example, let f : X — R be an increasing function, then its lower level
sets Se(f) ={z € X : f(x) < ¢} for all ¢ € R, are downward.

Proposition 2.2. Let W be a downward and coproximinal subset of Banach lattice space X and
wi,wy € Ryy(x). Then wy A wy € Ryy(x).

Corollary 2.3. Let W be a vector sublattice and Ry (x) be a subspace of Banach lattice space X,
then Ry (z) is a vector sublattice of X.

Theorem 2.4. Let W be a nonempty subset of Banach lattice space X and x € X \ W. Then
wqy € Ryy(z) if and only if for every w € W,

w— 1l <wy < w+ryl

where 1, = ||z — w].
Theorem 2.5. Let W be a closed downward subset of Banach lattice X. Then for each € X such
that x > W, W is a coproximinal subset of X .
Example 2.6. Let X = R and W = (—00,0]. Then W is a closed downward set in X and so is
coproximinal and we have Ry (1) = [—1,0].

Let S be a vector sublattice of X, we define

S={zeX:||w|<|z—w| YweS}=RT{0}
Proposition 2.7. Let S be a vector sublattice of Banach lattice X. Then,
(a) SN S = {0}.

(b) for all w € S we have d(w, S) = |Jw]|.

Theorem 2.8. Let S be a coproximinal vector sublattice of Banach lattice X . If S is a vector sublattice
of X, then S is proximinal.

3 Best coapproximation in quotient spaces

In this section we discuss about coproximality of sublattices in quotient of Banach lattice spaces.

Proposition 3.1. A subset W of a vector lattice space X is downward in X if and only if % is downward
n %
Corollary 3.2. Let W be a closed and downward subset and A be an ideal of X. Then % IS COprox-

o X
iminal in I

Theorem 3.3. Let S be a sublattice and A be an closed ideal in Banach lattice X such that A C S.

If S is coproximinal in X, then % is a coproximinal sublattice of %

Theorem 3.4. Let S be a sublattice and A be a closed and proximinal ideal in Banach lattice X such

that AC S. If % is coproximinal in %, then .S is a coproximinal sublattice of X.

Theorem 3.5. Let S be a sublattice and A be an closed ideal in Banach lattice X such that A C S.
If S is coproximinal in X , then we have

Q(Rs(z))
In particular if A is proximinal in X, then

Q(Rs(r)) = Rs(Q(z)).

S
A

R

M

(Q(x));

SN(|¥5)

4 Coapproximation preserving maps

In this section we shall obtain characterization of coapproximation preserving maps on Banach lat-
tices.

The following lemma characterizes the maps which preserve downwardness of downward subsets of
vector lattices.

Lemma 4.1.[3] (1) Let X and Y be two vector lattices and T : X — Y be an injective positive
operator, such that T lisa positive operator. Then W is a downward subset of X if and only if

T(W) is a downward subset of Y.
2) f T': X — X is a positive operator and f : X — R is an increasing function, then
Se(foTl)={zx e X : foT(x) <c} forall c € R are downward.

The next theorem which has been proved in [1], page 94, described necessary and sufficient conditions
for an operator between two vector lattice spaces, that is a lattice isomorphism.

Theorem 4.2. [1] Assume that an operator T : X — Y between two vector lattice spaces is one-to-one
and onto. Then T is a lattice isomorphism if and only if 7" and T~ are both positive operators.

Proposition 4.3. Let X and Y be two Banach lattices with strong units 1x and 1y, respectively and
T : X — Y be an injective positive operator such that T~ is positive and T(1y) = 1y. Then, T
is a norm isometry, i.e. ||[T(z)| = [|z|| for all x € X.

Definition 4.4. Let X and Y be Banach lattices with strong units 1y and 1y, respectively. A linear
operator T': X — Y is called a coapproximation preserving operator if for all downward sets W in

X and all z € X:
(a) W is a downward subset of X if and only if T(W) is a downward subset of Y.

(b) T(Ry (x)) = Rpw)(T(x)).

Theorem 4.5. Let X and Y be Banach lattices with strong units 1x and 1y, respectively. Let
T : X — Y be an injective positive operator which T—1 is a positive operator and T(lx) = 1y.
Then 1" is a coapproximation persevering operator.
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Abstract
H*-algebra is defined by Warren Ambrose. These structure are complete algebra w.r.t. norm ||-|| 4

that corresponding with inner product (-, -) 4. Trace class is a sub-algebra of /1 *-algebra and define on it
a trace norm 7(-). The space (7(A), 7(-)) is a complete sub-algebra of H *-algebra.

algebra; H™-algebra; trace class Primary: 06F25; Secondary: 16R30.

1 Introduction

An algebra is a vector space A with a multiplication A x A — A s.t. (a,b) — ab which is associative and
linear in each of the two variables of multiplication operator. A Banach algebra is an algebra A over field
with equipped the norm ||-|| 4 that is a Banach space such that for all a,b € A, ||ab|| 4 < ||a|| 4 ||b]| 4- An unital
Banach algebra is a Banach algebra with a unit element 1 4 such that |1 4|| 4 = 1p. An involution is a map
a — a* from A into A such that (a™)* = a, (ab)* = b*a™ and (aa + b)* = aa™ + b*, fora,b € Aand a € C.
Each Banach algebra equipped with an involution is called Banach x-algebra or B*-algebra. A C'*-algebra is
a Banach algebra .4 with an involution such that ||a™al|| 4 = HaHal for every a € A.

2 H*-Algebra

H™-algebra is defined by Warren Ambrose in [1]. We survey some properties of this algebra. Also we checking
the difference between that and the similar algebra in an example.

Definition 2.1. Banach algebra A is called H™*-algebra if:
i. The underlying Banach space of A is Hilbert space.
ii. For each a € A, there exist adjoint ¢* € A such that

(ab,c) 4 = (b,a"c) 4 and (ab,c) 4 = (a,cb™) 4 (2.1)

forall a,b, c € A.
1/2

This means, the algebra norm |[a|| 4 and the Hilbert space norm (a, a) ;= are equal. Also, the adjoint a™ of a
may not be unique.

Example 2.2. We explain two example for H *-algebra and relation between this and C"*-algebra:

i. Complex number, C, with inner product («, ) = Re (a8*) and induced norm by this, is an H*-algebra and
C'*-algebra.

ii. The Clifford algebra A = Clj,, is a real H*-algebra w.rt. (A, pu) = 2"[Aflg = 2" ) 4 Aaps. Then
|)\|% = (M) =2"> 4 )\124 be an induced norm by above inner product on Clps (i.e. i* = j2 = —1).
Assume A = i + j, then A\ = 2, |A)\|p = 4 and \)\|% — 8. Hence |\)\|g # |)\]% Therefore Cl,, with this
norm is not a C'*-algebra (For more information see [2]).

Let A be an H*-algebra and ¢ € A. Then aA = {0} is equivalent to Aa = {0}. Define Z =
{a € AlaA ={0}}.

Definition 2.3. An H *-algebra is proper or semi-simple if Z = {0}.
Theorem 2.4. An H*-algebra is proper if and only if every element has a unique adjoint.

Definition 2.5. Let A be an H*-algebra and a, e, f € A. Then a is self-adjoint member of A if ¢* = a. a
is positive member of A if (az,z) 4 > 0 for all z € A. a is normal element if a*a = aa®. e is idempotent
ife? = ¢ = (. e is sa-idempotent (projection) if e be an idempotent and a self-adjoint element. Idempotents
e, f are called doubly orthogonal if ef = fe = 0 and (e, f) 4 = 0. An idempotent is primitive if it can not be
expressed as the sum of two doubly orthogonal idempotents.

Theorem 2.6. Every proper H™-algebra contains a non-empty maximal family of doubly orthogonal primitive
sa-idempotents.

Definition 2.7. Let 7' is a bounded linear operator in Banach algebra X, then 7" will be called a right central-
izer of X if T satisfies the identity T'(zy) = (Tx)y. We will use the symbol R(X) to denote the collection of
all right centralizers of X.

Let a be arbitrary and La : A — A be the operator of the left multiplication by a, i.e. La(x) := ax. Then
La € R(A). We define C(A) to be subspace generated by the operators La, a € A. C(A) is the closed
subspace of R(.A) in the operator norm.

2.1 Trace-Class for H*-Algebras

In continuous, A is a proper H *-algebra. We discuass about trace—class and trace—functional.
Saworotnow show that for each a # 0 in A there exists a sequence {e,} of mutually orthogonal projections
and a sequence {\,} of positive numbers such that a*a = ) Anpen. Also that a*ae, = ena™a = A\pep, for

each n. Then they define |a] :== ) pnen, where py, := /Ay, > 0. For each a € A there exists a unique
positive member [a] of A such that [a]* = a*a (note that [a]* = [a]).

Definition 2.8. Trace-class for A is the set 7(A) = {xy|zr,y € A}. Also, if a = 2y € 7(A), define

tra = (1,5
Trace tr is a positive functional, i.e. if a € A be a positive then tr (a) > 0. There exists b € A such that
tr (b) < 0. Therefore in follow use “| - | to build a norm of this functional. For every a € A, |a] is a positive

member of A.

Definition 2.9. With above assumption, we define 7(a) := tr([a]) = tr (D2 | tinen) = Y21 in for every
a € A.

Corollary 2.10. Suppose A be an H*-algebra. Then
?4, forall a € A;
ii. [tra| < 7(a), forall a € T7(A);
iii. If a € 7(A) and S is a right centralizer then 7(Sa) < ||S|| 7(a);
iv. ||a]| 4 < 7(a), forall a € T(A);
v.7(ab) < ||al|| 4 - ||bl| 4, for all a,b € A;
vi. T(ab) < 7(a)7(b), forall a,b € 7(A).

i. T(a*a) =tr(a*a) = ||a

3 Completeness of Trace Class

In this section, investigated trace-class space 7(.A) with norm 7(-) and show that (7(.4), 7(-)) is a complete
space. Therefore by Proposition 2.10, part (v1), this space is Banach algebra.

Lemma 3.1. If a € 7(A) then the mapping f, defined on C(A) with f,(S) = tr(Sa) is a bounded linear

functional and || f4|| = 7(a).
Theorem 3.2. Each bounded linear functional on C(.A) is of the form f, for some a € 7(A).

This means, the above correspondence between 7(.A) and C'(.4)* is an isometric isomorphism. 7(.4) can be
identified with the space of all bounded linear functionals on C'(.A).

Corollary 3.3. 7(.A) is a Banach algebra in the norm 7 ().
Proof. T(A) is complete since it is isometric to the dual of C'(A). []

Theorem 3.4. For every right centeralizer S the mapping fq(x) = tr (Sx), is a bounded linear functional on

7(A) such that || fg|| = ||.S||. Conversely, each bounded linear functional on 7(.A) is of the form fg for some
S € R(A). Thus R(A) is isometric isomorphic to T7(A)*.
Example 3.5. Consider standard structure /o(N) with the common addition and scalar product. Suppose
a = (ay,a9,---) = {a;j};21,b = (b1,bo,--+) = {b;};2; € 0o(N) where a;,b; € F = C. We de-
fine a-b = {a;-b;}; 21, (a,b) 4 == > ;=1 aib; and a* := (a1,as,---) where @; is conjugate of complex
number a;. Then |ja|l 4 = <a,a>}42 3 > an|?)Y/? is induced norm. A is an H*-algebra, because
(ab,c) 4 = (b,a*c)y = (a,cb*) 4 = > a;bic;, but it has not C*-algebra structure. For check this, let
a=1(2,3,0,0,--). Then [|a||% # |a*a| 4

Let 0; = {57;]-};?11, i € N, where ¢;; is the Kronecker delta. Then {¢;} is family of doubly orthogonal
primitive sa-idempotents.

For every a = {an}, 21, [a] = {|lan|},=;- Then tr(a) = > 7 ap and 7(a) = > 2 |ayp|. Therefore
Jall 4 = (a.a) i = V/7(aa).

Finally, (7(.A), 7(-)) is a Banach algebra, but is not a C*-algebra.
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ON THE PERTURBATION OF FRAMES
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ABSTRACT. There are several results on the perturbation of frame
sequences in Hilbert spaces that have introduced by Christensen.
We state some results on the perturbation of dual frames.

1. INTRODUCTION

A sequence {f;} in a Hilbert space H is called a frame if there exist
constants A, B > 0 such that

AlFIP <Y AR PSBIFIP (f € H).
=1

The numbers A and B are called frame bound, also they are not unique.
In addition, it follows from the definition that if {f;} is a frame for H,
then span {f;} = H. The frame is called tight frame when A = B. If
A = B =1, it is called a Parseval frame. We say that {f;} is a frame
sequence if it is a frame for span {f;}. The sequence {f;} C H is a
Bessel sequence if at least the upper frame bound B exists. In this case
the bounded operator T : [*(N) — H defined by T{c;}32, = > "2, i fi
is usually called the pre-frame operator. Furthermore, the composing

2010 Mathematics Subject Classification. Primary: 47H10; Secondary: 47H09.
Key words and phrases. Frames; Dual frames; Perturbations; Riesz bases.
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of operator T" with its adjoint gives the frame operator

S:H—H, Sf:= TT*fzi(f,S‘lfi)fi.

i=1
If both of the frame conditions are satisfied, then S is invertible and
self-adjoint. Moreover, the following is holds

F= D 587 ) i = D S ST

A sequence {g;}2, C H is called a dual frame for {f;}32, if
i=1

The classical choice for {g;}22, is {S71f;}32,. Every frame at least has
a dual. In fact, if {f;}22, is a frame, then {S™!f;}5°,, which is a frame
with bounds B~! and A™1, is a dual for {f;}3°,; it is called the canonical
dual, a dual which is not be the canonical dual is called an alternate
dual, or simply a dual.

Example 1.1. [2] Let {e;}3°, be an orthonormal basis for H and con-
sider the frame

{fz}fil = {617617627637 e }a

which is a frame with bounds A = 1, B = 2. The canonical dual frame
is given by

1 1
STUAYR =< ey, —eq, e, €3, - -
{57 it {212123 }
As an example of non-canonical dual frame we mention

{gi}21 ={0,e1,e9,€3,--- }

ifi=1 — § 5€1, 5€1,€2,€3," "
Gisi=1 361 361, 62,68

Theorem 1.2. [1] Let {f;}2, be a frame for H with the pre-frame
operator T. Then {g;}2, is a dual for {f;}32, if and only if

g =S""fi+u

and

for some Bessel sequence {u;}2, such that

[e.e]

Z<f>fi>ui =0, (feH).

=1
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2. MAIN RESULTS

The question of stability where plays a crucial role states that if {e;} is
an orthonormal basis and {g;} in some sense is "close” to {e;}, does it
follow that {g;} also is a basis?A classical result states that if {e;} is an
orthonormal basis for a H, then a sequence {g;} in H is a orthonormal
basis if there exists a constant A € (0, 1) such that

1S el — g0 < IS el

for all finite sequences of scalars {c;}. We will now discuss a natural
extension of this result to the frame setting. That is, assuming that { f;}
is a frame for a Hilbert space H, we want to find conditions on a per-
turbed family {g;} that imply that it is a frame.We discuss also similar
results for dual frames.

We apply the following lemma frequently.

Lemma 2.1. [1] Let X be a Banach space and U : X — X a linear
operator, if constants A1, Ay € (0,1) there exist such that

|Uz = zf] < Mllzl] + XellUz], (2 € X),

then the linear operator U is bounded and invertible. In addition,

1+
X).
el < el < Tl (e X)
and
1-— -1 1 + )\2
X).
— ol < T2 el (e )
Theorem 2.2. [3, 5, 6] Let {f;}3°, be afmme with bounds A, B for H.

Let {g;}2, € H and suppose that there exist constants i, Ag, it > 0
such that maz (A + 4= 7 A2) <1 and

| Zci(fi — gl < Al ZcifiH + Ao Zcigi“ + (Z | ci |2)
i=1 i=1 i=1 =1
for all scalars ¢y, cq, -+ c(n € N), then {g;}32, is a frame with bounds
2 2
A 1_)\1+)\2+\/LZ B 1+)\1+)\2+\/L§ '
1 + )\2 11— /\2

Theorem 2.3. [3, O, 6] Suppose that {g;}2, € H and a sequence
{fi}2, be a frame for span{f;}52, , with bounds A, B. If there exists

2
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constant Ay, >0, Ao € [0,1] and scalars ¢y, ca, -+ - ¢, € N such that,

1

n n " . .
||Zcz(fz_gz)’| <)\1||Zcifi“+>\2”ZCigiH+,u Z el .
i=1 p — =
Aq Aot —B\ 2
then {g;}22, is a Bessel sequence with bound B (1 + H—lf;;;\@) :
Theorem 2.4. [3, 5, 6] Assume that {g;}2, C H and a sequence

{fi}2, is a frame for H with bounds A, B and K is a compact operator
from ? into H with

K{ci}i2y = Zcz(fz — 9i)-
i=1
Then the sequence {g;}2, is a frame for spand{g;}

0o
i=1"

Theorem 2.5. Suppose that {f;}5°, is a frame, then there exists an
infinite dual {g;}5°, € H such that
K{ei}2i =Y cilgi — Sp'fi).
i=1
is a compact operator from 1* to H.

Theorem 2.6. Let {g;}52, be a dual frame of {f;}52, and {h;}32, be a
Bessel sequence such that
K{e}2 = cilgi — hi).
i=1

Then {h;}2, is also a dual of {fi}2,.
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