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Preface

It is our great pleasure and honor to welcome you at the 10th Seminar on Linear Algebra and its
Applications (SLAA10). The SLAA10 will be held on 16-19 August 2020, hosted by the Faculty of
Mathematics and Computer & Mahani Mathematical Research Center, Shahid Bahonar University of
Kerman, Iran. As a part of the series of the bi-annually held seminars of the Iranian Mathematical
Society (IMS), this seminar aims to create a friendly discussion atmosphere for researchers in linear
algebra and numerical linear algebra.

The SLAA10 received 130 submissions in that each submission was reviewed by three dedicated
members of the Scientific Committee. According to a thorough discussion by the reviewers, 76
submissions were accepted for publication: 59 as oral presentations and 17 as posters. In addition, the
third and fourth Mehdi Radjabalipour Prize for Linear Algebra and its Applications will be awarded
during this seminar.

We are proud to present a very interesting program. The Seminar program included 10 plenary
talks with distinguished invited speakers and two workshops: “Linear Algebra in Data Mining” and
“Software in Numerical Linear Algebra (Chebfun Toolbox)”.

Finally, we immensely thank the authors for submitting their research papers to the SLAA10, and
are grateful to the members of the Scientific Committee for dedicating their attention and time to
assessing the papers. We are also very thankful to the members of the Executive Committee for their
efforts in the arrangement, promotion, and organization of the seminar.

Seminar Organizing Committee
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A message from Chandler Davis

Dear Abbas Salemi,

It is kind and appropriate for you to take the occasion of this impressive gathering on Linear Algebra
to celebrate the 75th birthday of Professor Mehdi Radjabalipour. I am eager to add my words of
appreciation and gratitude to him.

He is the bond between us, being my doctoral student and your doctoral supervisor. But in the
same sense, he is the bond from the long-past Operator Theory Seminar Peter Rosenthal and I ran at
the University of Toronto, to the present and future flourishing community he led at Kerman after his
return to his homeland. He gave us a glimpse of this community by inviting us to his international
seminar in Kerman: not virtual, I was most grateful of the opportunity to take part in person, my first
and only time in Iran. What a cheerful and impressive sight you all were! I was honoured to have this
connection to such a healthy school, leading in addition to fruitful contacts since that time with you
and other members of the Radjabalipour circle.

Long life to Mehdi Radjabalipour and his followers, and to his school, and to his science which is
our science, and to his country in this world which is our world. Let no one divide us.

Chandler Davis
August 18, 2020
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A message from Peter Rosenthal

I first met Mehdi shortly after he arrived in Toronto to begin his graduate studies. Heydar Radjavi
had told me that Mehdi was a very strong student and it soon became apparent to me that Heydar was
correct. Mehdi completed an excellent Ph.D. thesis under the supervision of Chandler Davis in 1973.

Over the many years since then, Mehdi oscillated between Canada and Iran.
I have been very privileged to be a co-author with Mehdi on a number of papers. Mehdi is an optimal

co-author. He is very knowledgeable and very creative. He is also very generous; he contributed more
than his share to each of the joint papers that he and I have been involved in. Thanks Mehdi.

Moreover, Mehdi is an extremely pleasant person to talk with, about mathematics and many other
things.

Happy Birthday Mehdi !!!

Peter Rosenthal
August 15, 2020
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Metrics and means on positive definite matrices

Rajendra Bhatia∗

Ashoka University, Sonepat, India

Abstract

This lecture will be an introduction to the use of some geometric ideas
in defining a mean (barycentre) of a collection of positive definite matrices.
Developed over the last fifteen years, these ideas have found use in diverse
areas, both theoretical and practical.

The lecture will be addressed to graduate students interested in operator
theory, linear algebra and matrix analysis. It is recommended that they read
up on the basic facts about positive definite matrices before the lecture (eg,
from Horn and Johnson, Matrix Analysis, Chapter 7; or R. Bhatia, Positive
Definite Matrices, Chapters 1 and 4.)

∗Speaker. Email address: rajenbhatia@gmail.com
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Crouzeix’s conjecture, extremal Blaschke products, and
K-spectral sets

Anne Greenbaum∗

Department of Applied Mathematics, University of Washington

Joint with: Kelly Bickel, Michel Crouzeix, Pamela Gorkin, Kenan Li, Thomas

Ransford, Felix Schwenninger, Elias Wegert

Abstract

In 2004, Michel Crouzeix conjectured that for any square matrix A and
any polynomial (or analytic function) f ,

‖f(A)‖ ≤ 2 max
z∈W (A)

|f(z)| (Crouzeix’s conjecture),

where W (A) := {q∗Aq : q∗q = 1} is the numerical range of A and ‖ · ‖ denotes
the spectral norm. In 2017, Crouzeix and Palencia showed that the inequality
holds if 2 is replaced by 1+

√
2, but the original conjecture remains unproved.

The form of functions f that maximize ‖f(A)‖
/

maxz∈W (A) |f(z)| is known:
f = B ◦ ϕ, where ϕ is any conformal mapping from W (A) to the unit disk
D and B is a finite Blaschke product of degree at most n − 1, when A is an
n × n matrix. For a given conformal mapping ϕ, the Blaschke product BE

that maximizes this ratio is referred to as an extremal Blaschke product. We
discuss some known properties of extremal Blaschke products. For example,
it is known that the left and right singular vectors corresponding to the largest
singular value of BE ◦ϕ(A) are orthogonal to each other. An interesting prop-
erty that has been observed numerically but has not been proved is that an
extremal Blaschke product BE corresponding to a given conformal mapping
ϕ often has degree much less than n − 1. We also do not know if/when the
extremal Blaschke product is unique. I will give an example where there are
two extremal Blaschke products.

Additional work has been aimed at showing that other sets Ω that do not
necessarily contain W (A) are K-spectral sets; that is, that for a given value
K, ‖f(A)‖ ≤ K maxz∈Ω |f(z)| for all functions f analytic in Ω. We show that
various annular regions are (1 +

√
2)-spectral sets and that a more general

convex region with a circular hole or cutout is a (3 + 2
√

3)-spectral set. I
show how these results can be used to give bounds on the convergence of
rational Krylov subspace methods.

∗Speaker. Email address: greenbau@uw.edu
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Joint numerical ranges and commutative matrices

Chi-Kwong Li∗

Department of Mathematics, College of William & Mary, Institute for Quantum

Computing, University of Waterloo

Joint with: Yiu-Tung Poon (Iowa State University) and

Yashu Wang (National Chung Hsing University)

Abstract

The connection between the commutativity of a family of n× n matrices
and their generalized joint numerical ranges is discussed. Implications of
the results to representation theory and quantum information science will be
mentioned.

∗Speaker. Email address: ckli@math.wm.edu
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Crouzeix’s conjecture

Michael L. Overton∗

Courant Institute of Mathematical Sciences, New York University, USA

Joint with: Anne Greenbaum and Adrian Lewis

Abstract

Crouzeix’s conjecture is among the most intriguing developments in matrix
theory in recent years. Made in 2004 by Michel Crouzeix, it postulates that,
for any polynomial p and any matrix A, ‖p(A)‖ ≤ 2 max(|p(z)| : z ∈ W (A)),
where the norm is the 2-norm andW (A) is the field of values (numerical range)
of A, that is the set of points attained by v∗Av for some vector v of unit length.
Crouzeix proved in 2007 that the inequality above holds if 2 is replaced by
11.08, and recently this was greatly improved by Palencia, replacing 2 by
1 +

√
(2). Furthermore, it is known that the conjecture holds in a number of

special cases, including n = 2. We use nonsmooth optimization to investigate
the conjecture numerically by locally minimizing the “Crouzeix ratio”, defined
as the quotient with numerator the right-hand side and denominator the left-
hand side of the conjectured inequality. We also present local nonsmooth
variational analysis of the Crouzeix ratio at conjectured global minimizers.
All our results strongly support the truth of Crouzeix’s conjecture.

∗Speaker. Email address: mo1@nyu.edu
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A survey on preconditioning techniques for double saddle point
systems: spectral and field-of-values analyses

Fatemeh Panjeh Ali Beik1,∗ and Michele Benzi2,†

1Department of Mathematics, Vali-e-Asr University of Rafsanjan,

P.O. Box 518, Rafsanjan, Iran

2Classe di Scienze, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy

Abstract

In this talk some preconditioning techniques are presented for a class of linear
systems with double Saddle point structure arising in finite element discretizations of
coupled Stokes-Darcy flow [3, 4] and modeling of liquid crystals directors [5]. We in-
vestigate different preconditionering techniques including block preconditioners [1–3],
constraint preconditioners [4] and augmented Lagrangian-based ones. We present
spectral and field-of-value analyses of the exact versions of these preconditioners. Nu-
merical experiments will be reported for test problems from two mentioned applica-
tions.

References

[1] F. A. P. Beik and M. Benzi. Iterative methods for double saddle point systems. SIAM J. Matrix
Anal. Appl., 39:902–921, 2018.

[2] F. A. P. Beik and M. Benzi. Block preconditioners for saddle point systems arising from liquid
crystal directors modeling. Calcolo., 55:29 2018.

[3] M. Cai, M. Mu and J. Xu. Preconditioning techniques for a mixed Stokes/Darcy model in
porous media applications. J. Comput. Appl. Math., 233:346–355, 2009.

[4] P. Chidyagwai, S. Ladenheim and D. B. Szyld. Constraint preconditioning for the coupled
Stokes-Darcy system. SIAM J. Sci. Comput., 38:A668–A690, 2016.

[5] A. Ramage and E. C. Jr. Gartland. A preconditioned nullspace method for liquid crystal
director modeling. SIAM J. Sci. Comput., 35:B226–B247, 2013.

∗Speaker. Email address: f.beik@vru.ac.ir
†Email address: michele.benzi@sns.it
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From matrices to matrix polynomials

Panayiotis J. Psarrakos∗

Department of Mathematics,

School of Applied Mathematical and Physical Sciences,

National Technical University of Athens

Abstract

The study of matrix polynomials of higher degree has attracted consider-
able attention in recent decades. The interest has been motivated by a wide
range of applications of polynomial eigenvalue problems in areas such as dif-
ferential equations, systems theory, control theory, mechanics and vibrations.
In this presentation, we will see how results of the standard matrix theory,
concerning Jordan structure, pseudospectra, eigenvalue condition numbers,
spectral distance problems, numerical ranges and (entry-wise) nonnegative
matrices, have been extended to the setting of matrix polynomials in a nat-
ural way. In particular, basic matrix theory can be viewed as the study of a
special case of matrix polynomials of first degree.

∗Speaker. Email address: ppsarr@math.ntua.gr

7



Choi-Davis-Jensen inequality revisited

Mohammad Sal Moslehian∗

Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures

(CEAAS), Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran

Abstract

Let f be an operator convex function defined on an interval J ⊂ R. Then the
so-called Choi–Davis–Jensen inequality f(Φ(A)) ≤ Φ(f(A)) holds for all self-adjoint
operators A with spectrum in J and all unital positive linear maps Φ. The converse
holds true. If f is convex but not operator convex, then it is known that the Choi–
Davis-Jensen inequality remains valid for 2×2 Hermitian matrices A. Several variants
and reverses of this inequality have been obtained by some mathematicians. In this
talk, we explore recent results on this inequality as well as Kadison’s inequality. In
addition, some asymmetric Choi–Davis-Jensen inequalities are presented.

References

[1] R. Bhatia and R. Sharma, Some inequalities for positive linear maps, Linear Algebra Appl.
436 (2012), 1562–1571.

[2] J.-C. Bourin and É. Ricard, An asymmetric Kadison’s inequality, Linear Algebra Appl. 433
(2010), 499–510.

[3] F. Hansen, H. Najafi, and M.S. Moslehian, Operator maps of Jensen-type, Positivity 22 (2018),
no. 5, 1255–1263.

[4] M. Kian, M.S. Moslehian, and R. Nakamoto, Asymmetric Choi–Davis inequalities, preprint.

∗Speaker. Email address: moslehian@um.ac.ir
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Geometry and inequalities associated with symmetric space
of noncompact type

Tin-Yau Tam∗

University of Nevada, USA

Joint with: Luyining (Elaine) Gan and Xuhua (Roy) Liu

Abstract

Denote by Pn the space of n×n positive definite matrices. For A,B ∈ Pn,
the (metric) geometric mean was introduced by Pusz and Woronowicz (1975),
while the spectral geometric mean by Fiedler and Pták (1997):

A]B = A1/2(A−1/2BA−1/2)1/2A1/2,

A\B = (A−1]B)1/2A(A−1]B)1/2.

where ] and \ denote the (metric) geometric mean and spectral geometric
mean.
The t-(metric) geometric mean and t-spectral geometric mean are paths join-
ing A and B in Pn, t ∈ [0, 1]:

A]tB = A1/2(A−1/2BA−1/2)tA1/2,

A\tB = (A−1]B)tA(A−1]B)t.

Pn can be equipped with a suitable Riemannian metric so that the curve A]tB
with 0 ≤ t ≤ 1 is the unique geodesic joining A and B in Pn.
The t-spectral geometric mean was introduced by Ahn, Kim and Lim (2007).
When t = 1/2, they are abbreviated as A]1/2B = A]B and A\1/2B = A\B.
We shall discuss the (metric) geometric mean and spectral geometric mean,
first in the space of Pn and then in the context of symmetric space associated
with a noncompact semisimple Lie group.

∗Speaker. Email address: ttam@unr.edu
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Chebfun and continuous linear algebra

Nick Trefethen∗

University of Oxford, UK

Abstract

At the heart of the Chebfun project is the realization of continuous ana-
logues of the discrete structures and operations of numerical linear algebra.
For example, there are continuous analogues of the QR and LU decomposi-
tions and the SVD. This talk will review the mathematics and the algorithms
of continuous linear algebra with Chebfun demonstrations.

∗Speaker. Email address: trefethen@maths.ox.ac.uk
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Generalized parallel sum of adjointable operators on Hilbert C∗-modules

Qingxiang Xu∗

Department of Mathematics, Shanghai Normal University

Shanghai 200234, P.R. China

Joint with: C. Fu, M.S. Moslehian and A. Zamani

Abstract

We introduce the notion of a tractable pair of operators as well as that of the
generalized parallel sum in the setting of adjointable operators on Hilbert C∗-modules.
Some significant results about the parallel sum known for matrices and Hilbert space
operators are extended to the case of the generalized parallel sum. In particular, a
factorization theorem on the parallel sum is proved, and a common upper bound of
two positive operators is constructed in the Hilbert C∗-module case. The harmonic
mean for positive operators on Hilbert C∗-modules is also dealt with.
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Anal. Appl. 26 (1969), 576–594.
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Hilbert spaces, Proc. Amer. Math. Soc. 17 (1966), 413–415.
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Numerically solving the singular semi-Sylvester equation1

Majid Adib and Alireza Movahedian∗

Department of Mathematics, University of Zanjan, Zanjan, Iran

Abstract

Matrix equations are one of the most widely used equations in various sciences.
The Sylvester equation is one of these important equations. In this paper we define
singular semi-Sylvester equation and then solve it using the Drazin-inverse generalized
minimum residual method. Finally, we show the efficiency of our method.

Keywords: Sylvester equations, Drazin-inverse

Mathematics Subject Classification [2010]: 15A03

1 Introduction

The semi-Sylvester equation AX − EBX = C where A ∈ Rn×n, E ∈ Rn×n, B ∈ Rn×n
and C ∈ Rn×s are given and X ∈ Rn×s is to be determined, is one of the most important
matrix equations in theory and applications and appear frequently in many areas. Several
direct and iterative methods are proposed for solving semi-Sylvester equation. During
last years, sevral projection methods based on Krylov subspace methods have also been
proposed [4]. Karimi and Attarzadeh showed that in a particular case, the semi-Sylvester
equation AX −EBX = C can be converted into the following multiple linear systems [3]

A(i)x(i) = b(i), i = 1, 2, ..., s. (1)

Ton et al. presented the Galerkin projection method for solving multiple linear systems [2].
Karimi and Attarzadeh have considered a special case of the semi-Sylvester equation [3],
in which the matrix B is normal. They studied the nonsingular case of multiple linear
systems (1) by presenting the following proposition and in this case, they applied Galerkin
projection method to solve the semi-Sylvester equation.

Proposition 1.1. (a) Assume A and B are symmetric matrices and E is symmetric
positive definite matrix and

λj <
〈Ax, x〉
〈Ex, x〉 , j = 1, 2, ..., s, (2)

where λj is the eigenvalues of B. Then Â(i) = A− λiE is symmetic positive definite.

(b) Let A, B and E be symmetric positive definite matrices and symmetric positive semi-
definite matrix, respectively. Then (A−λjE), j = 1, 2, ..., s are symmetric positive definite,
where λj is the eigenvalues of B.

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: ali.movahedian96@gmail.com
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In this paper, we intend to consider a general case that the above propositions 1.1 dose
not exist, that is, the multiple linear systems (1) be singular, so in this regard, we provide
the following definition.

Definition 1.2. We say that the multiple linear systems (1) is singular, if at least one
of the coefficients matrices is singular. Also we say that the semi-Sylvester equation is
singular if the corresponding multiple linear systems (1) is singular.

Now assume that the semi-sylvester equation is singular. In this case, we apply the
Drazin-inverse and DGMRES(m) method for solving the multiple linear systems (1) and
hence the semi-Sylvester equation. The results of this method will be compared with the
results of Galerkin projection method [3], in point of view CPU-time, accurancy and iter-
ation number. Note that the semi-Sylvester equation is the generalization of the standard
Sylvester equation (this means that, if E is identity matrix I or an arbitary nonsingular
matrix then the semi-Sylvester equation becomes the standard Sylvester equation).

2 Drazin-inverse generalized minimum residual method

Consider the following linear system Ax = b where A ∈ Rn×n is a singular matrix, b ∈
Rn and ind(A) is α. Here ind(A) is the smallest nonnegative number that satisfy in
rank(Aα+1) = rank(Aα). The matrix X ∈ Rn×n satisfying the conditions

AX = XA, AαXA = Aα, XAX = X,

is called the Drazin-inverse of the matrix A. The Drazin-inverse of A denoted by AD. In [5]
the author proposed an effective model of usage for DGMRES, denoted DGMRES(m),
which is analogous to the GMRES(m) and requires a fixed amount of storage for its
implementation. In restarted DGMRES (DGMRES(m)) the method is restarted once
Krylov subspace reachs dimension m, and the current approximate solution becomes the
new initial guess for the next m iterations. The restart parameter m is generally chosen
small relative to n to keep storage and computation requirments reasonable. In the sequel,
we review the DGMRES(m) method.
DGMRES(m) method is a Krylov subspace method for computing the Drazin-inverse
solution of consistent or inconsistent linear system Ax = b [6]. In this method, there are
not any restriction on the matrix A. Thus, in general, A is non-Hermitian,α = ind(A)
is arbitrary, and the spectrum of A can be any shape. Thus, it is unnecessary for us to
put any restriction on the linear system Ax = b. So the system may be consistent or
inconsistent. We only assume that ind(A) is known. DGMRES(m) method starts with
an initial vector x0 and generates a sequence of vectors x1, x2, · · · as follows

xm = x0 + qm−1(A)r0, r0 = b−Ax0, (3)

where qm−1(λ) is a polynomial in λ of degree at most m− 1 defined as follows

qm−1(λ) =
m−α∑

i=1

ciλ
α+i−1, α = ind(A). (4)

We define pm(λ) = 1− λqm−1(λ) and rm = pm(A)r0. Thus we have

xm = x0 +

m−α∑

i=1

ciA
α+i−1, rm = b−Axm = r0 −

m−α∑

i=1

ciA
α+ir0. (5)
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The Krylov subspace used is as follows

Km−α(A,Aαr0) = span{Aαr0, Aα+1r0, · · · , Am−1r0}. (6)

We can orthogonize the Krylov vectors {Aαr0, Aα+1r0, · · · , Am−1r0} by the Arnoldi- mod-
ified Gram-Schmidt process [1,4]. Let we set resulting orthonormal vectors as the columns
of the matrix V̂k as follows

V̂k = [v1|v2 · · · |vk], k = 1, 2, · · · ,m. (7)

Thus we can write
xm = x0 + V̂m−αξm, ξ ∈ Rm−α, (8)

which we need to determine ξm. First, note that rm = r0 −AV̂m−αξm, so we have

Aαrm = Aαr0 −Aα+1V̂m−αξm = βv1 −Aα+1V̂m−αξm. (9)

Next, we write AV̂k = V̂k+1H̄k where

H̄k =




h11 h12 · · · · · · h1k
h21 h22 · · · · · · h2k

0 h32
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . hkk
0 · · · · · · 0 hk+1,k.




. (10)

Note that H̄k ∈ R(k+1)×k and rank(H̄k) = k. If we apply (10) to Aα+1V̂m−α we have

Aα+1V̂m−α = AαV̂m−α+1H̄m−α = Aα−1V̂m−α+2H̄m−α+1H̄m−α = V̂m+1Ĥm,

Ĥm = H̄mH̄m−1 · · · H̄m−α.

ThusAαrm = βv1−V̂m+1Ĥmξm. We also have V̂ T
m+1V̂m+1 = I(m+1)×(m+1) and rank(Ĥm) =

m− α. We finally have the (m+ 1)× (m− α) least squares problem

‖Aαrm‖ = ‖βe1 − m̂ξm‖ = min
ξ∈Rm−α

‖βe1 − Ĥmξ‖ (11)

Note that n is normally very large and m� n, which implies that the problem in (11) is
very small. Also, note that since Ĥm is a full rank, we can determine ξm by applying the
QR decomposition on Ĥm. Thus Ĥm = QmRm, where Qm ∈ R(m+1)×(m−α) is a unitary
matrix, that is, QTmQm = I(m−α)×(m−α) and Rm is an upper triangular matrix. Since

Ĥm is full rank, so Rm is nonsingular, therefore we can compute ξm by solving the upper
triangular system as follows

Rmξm = β(QTme1), e1 = [1, 0, · · · , 0]T . (12)

Consequently, the algorithm of the DGMRES(m) method is as follows

Algorithm 2.1. (DGMRES(m) algorithm).

1. Choose an initial guess x0 = 0 and compute r0 = b−Ax0 and Aαr0.

2. Compute β = ‖Aαr0‖ and set v1 = β−1(Aαr0).
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3. Orthogonalize the Krylov vectorsAαr0, A
α+1r0, · · · , Am+α+1r0 via the Arnoldi-Gram-

Schmidt process carried out like the modified Gram-Schmidt process:
For j = 1, · · · ,m do

u = Avj
For i = 1, · · · , j do

hi,j = 〈u, vj〉
u = u− hi,jvi

end
hj+1,j = ‖u‖, vj+1 = u/hj+1,j

end (The vectors v1, v2, · · · , vm+1 obtained by this way form an orthonormal
set.)

4. For k = 1 : m form the matrices V̂k ∈ Rn×k and H̄k ∈ R(k+1)×k

V̂k = [v1|v2| · · · |vk], H̄k =




h11 h12 · · · · · · h1k
h21 h22 · · · · · · h2k

0 h32
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . hkk
0 · · · · · · 0 hk+1,k.




5. Form the matrix Ĥm = H̄mH̄m−1 · · · H̄m−α.

6. Compute the QR decomposition of Ĥm : Ĥm = QmRm;Qm ∈ R(m+1)×(m−α) and
Rm ∈ R(m−α)×(m−α). (Rm is upper triangular.)

7. Solve the (upper triangular) system Rmξm = β(QTme1), where e1 = [1, 0, · · · , 0]T .

8. Compute xm = x0 + V̂m−αξm(then ‖Aαrm‖ = β

√
1− ‖QTme1‖2). If satisfied then

stop.

9. Set x0 = xm, compute r0 = b−Ax0, and go to 2.

3 Numerically solving the semi-Sylvester equation and some
experiments

In this section, we want to numerically solve the semi-Sylvester equation AX−EBX = C,
by using the following theorem.

Theorem 3.1. Let A ∈ Rn×n. Then A is a normal matrix if and only if it is unitarily
similar to a diagonal matrix

Now let in the semi-Sylvester equation, B is a normal matrix. So, according to Theorem
3.1 there are a unitary matrix QB and a diagonal matrix ΛB such that

B = QBΛBQ
T
B, (13)

where the diagonal components of ΛB are eigenvalues of B and the columns of the unitary
matrix QB are normalized eigenvectores of B. By substitution of (13) in AX−EBX = C,
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we have AXQB −EXQBΛB = CQB. By taking X̂ = XQB and Ĉ = CQB, we obtain the
following multiple linear systems

Â(i)x̂(i) = ĉ(i), i = 1, 2, · · · , s, (14)

where Â(i) = (A − λiE), x̂(i) is the i-th column of X̂ and ĉ(i) is the i-th column of Ĉ.
Therefore, the semi-Sylvester equation is converted to s linear systems. Notice, in this
paper we considered the general case; that is, we did not impose any conditions and
constraints on coefficients matrices of the resulting system. Therefore, it is possible to
solve the semi-Sylvester equation by using s-time of the DGMRES(m) method.

Now we use the corresponding multiple linear systems form (form (14)) to solve the
semi-Sylvester equation and we consider the singular case. In this case, we used the
DGMRES(m) method to solve these systems. The described method is written with
MATLAB.. In the following, we give an example. In this example the coefficients matrices
are singular and ill-conditioned. The initial matrix X0, is the zero matrix and the stop
condition is ‖Aαri‖2 ≤ 1e − 04. The results obtained are presented in following table
which are compared with Galerkin projection method in point of view CPU-time, iteration
numbers and residuals norm. In the table the symbols itration and time are total
iteration numbers and total CPU-time respectively.

Example 3.2. In this example we consider semi-Sylvester equation that coefficients ma-
trices are singular, the maximum condition number is 3 : 36e + 22 and ind(A(i)) are all
equal to 5. The matrices constituting the semi-Sylvester are as follows:

A = 5 ∗ hilb(n, n), E = hilb(n, n),

B = tridiag

(
−1 +

1

1 + s
, 5,−1 +

1

1 + s

)
, C = ones(n, s),

where n = 1000 and s = 4. The numerical results obtained

method(1000,4,m) problem Tol time(s) iteration min ‖Aαri‖2 max ‖Aαri‖2
Galerkin exapmle 3.2 1e-04 2.17 430 2.2590e-19 7.6387e-05

DGMRES(10) exapmle 3.2 1e-04 1.35 4 6.5855e-23 2.0287e-05

4 Conclusions

As the results of the table presented in the previous section show that when the coefficients
matrices are singular and ill-conditioned, in point of view CPU-time, iteration numbers
and residuals norm ‖Aαri‖2 , the DGMRES(m) method has a more better performance
than the Galerkin projection method.
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Abstract

Global Krylov subspace methods are generally used with restarting to reduce stor-
age costs. At the time of restart, some information is lost and this slows down the
convergence. Here, an implicitly restarted global GMRES method is proposed that
uses the implicitly generalized global Arnoldi algorithm to retain this information.
This method deflates the smallest eigenvalues and augments the approximate block
harmonic Ritz vectors to the generalized Krylov subspace but not with the usual start-
ing block vector. Ultimately, the efficiency of this method is evaluated by virtue of an
example.
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1 Introduction

Consider the following matrix equation

AXB = C (1)

where A ∈ Rn×n and B ∈ Rs×s are nonsingular and C ∈ Rn×s (s � n) are given
matrices and X ∈ Rn×s is an unknown matrix. Note that the matrix equation (1) can be
reformulated by the following linear system

Ax = c,

where A = BT ⊗A and the vectors x = vec(X) and c = vec(C). However, it seems quite
costly and ill-conditioned to solve the above linear system of equations. The matrix equa-
tion (1) was put into quite a few applications such as control theory and image restoration.
Over the last decade, several iterative methods have been proposed to solve the matrix
equation (1), for example, the global GMRES methods [4], the NSCG method [1]. The
convergence of the global FOM and global GMRES for solving AXB = C are investigated
in [2]. For solving matrix equations, we are able to make use of restarting techniques.
Restarting is fundamentally needed to reduce storage requirements and orthogonaliza-
tion costs. However, restarting slows down the convergence and makes the choice of the

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: nazizizadeh@yahoo.com
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new starting vector difficult. To overcome these problems, implicit restarting has been
presented as a new variant of restarting.

This new technique can be viewed as a truncated form of the implicitly shifted QR
iteration. In [5], implicit restarting with Arnoldi iteration is applied and is showed that the
rate of convergence improves. In [3], implicitly restarted GMRES for solving nonsymmetric
equations has investigated.

In this paper, the restarting global Krylov subspace method is employed for solving the
matrix equation (1). At the time of restart, some information is lost and this slows down
the convergence. However, some important information is kept at the restart time. So to
store this information, it should be updated a starting matrix of the generalized global
Arnoldi algorithm. Accordance with this, the generalized global Arnoldi factorization is
updated through QR iterations. This iteration is an extension of the implicit double- shift
QR iteration. This iterative scheme is called the implicitly generalized global Arnoldi
algorithm (IGGA). Eventually, the global GMRES is combined with IGGA Algorithm
to solve matrix equation (1). This method is called implicitly restarted global GMRES
(Gl-GMRES-IR).

This paper is organized as follows. In section 2, the generalized global Arnoldi pro-
cess is reviewed. Subsection 2.1 is allocated to the implicitly generalized global Arnoldi
process and its relations. In section 4, the Gl-GMRES method and its eigenvalue prob-
lem are investigated. Eventually, this method will be compared with another methods.
Thoroughout this paper, the following notations are used. Let Rm×n be the set of m× n
real matrices. The symbols AT , ‖A‖2 and trace(A) will denote the transpose, 2-norm
and trace of a matrix A ∈ Rm×n, respectively. For any two matrices A and B in
Rn×s, < A,B >F= trace(ATB) is defined as the inner product. The associated norm
is the Frobenius norm obtained by ‖.‖F . Further, vec(.) will stand for the vec opera-
tor, i.e. vec(A) = (aT1 , a

T
2 , ..., a

T
n )T for the matrix A = (a1, a2, ..., as) ∈ Rn×s, where

aj , j = 1, 2, ..., s is the j-th column of A and A⊗B = (aijB) denotes the Kronecker prod-
uct of the matrices A and B. Let A = [A1, ..., Ap] ∈ Rn×ps and B = [B1, ..., Bl] ∈ Rn×ls,
where Aj , Bj ∈ Rn×s. The matrix AT �B is defined by (AT �B)ij =< Ai, Bj >F .

2 The generalized global Arnoldi process

Let V be a matrix of size n× s. Then the generalized Krylov subspace is defined as

GKm(A, V,B) =span{V,AV B,A2V B2, . . . , Am−1V Bm−1}

={
m∑

i=1

αiA
i−1V Bi−1|αi ∈ R, i = 1, . . . ,m},

where A0 = B0 = I.
The generalized global Arnoldi process allows us to construct an F-orthonormal basis for
the generalized Krylov subspace, for more details see [4]. This Algorithm uses the Gram-
Schmidt process to compute an F-orthonormal basis Vm = [V1, V2, . . . , Vm], Vi ∈ Rn×s for
the generalized Krylov subspace GKm(A, V,B) and an upper Hessenberg matrix Hm ∈
Rm×m. Let Hm be the corresponding m + 1 by m matrix with last row having only the
nonzero element hm+1,m. The relations:

AVm(Im ⊗B) = Vm(Hm ⊗ Is) + R̂m(eTm ⊗ Is),
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= Vm+1(Hm ⊗ Is), (2)

VTm � (AVm(Im ⊗B)) = Hm, (3)

hold, where Vm ∈ Rn×ms. One can also verify that VTm�Vm = Im,VTm�R̂m = 0. R̂m ∈ Rn×s

is called the residual matrix. An alternative way to write (2) is as follows:

AVm(Im ⊗B) = (Vm, Vm+1)

(
Hm

hm+1,me
T
m

)
⊗ Is, (4)

where hm+1,m = ‖R̂m‖F and Vm+1 = R̂m
hm+1,m

.

By this representation, it is obvious that (4) is just a truncation of the complete reduction

A(Vm, V̂n−m)(Im ⊗B) =

(Vm, V̂n−m)

(
Hm M

hm+1,m(e1e
T
m) Ĥn−m

)
⊗ Is, (5)

where (Vm, V̂n−m) ∈ Rn×n is F-orthonormal, and Ĥn−m ∈ R(n−m)×(n−m) is an upper Hes-
senberg matrix. In the subsection 2.1, the generalized global Arnoldi Algorithm through
a new version of implicit shifted QR iteration is updated and so it is called implicitly
generalized global Arnoldi process.

2.1 The implicitly generalized global Arnoldi process

In this section, the generalized global Arnoldi factorization via QR iterations is updated.
This will lead to an updating formula that may be used to implement iterative techniques
to derive the residual matrix R̂k = hk+1,kVk+1 to zero. In the following, we describe one
iteration step of the p shifts of the generalized implicit shifted QR iteration.

Let the positive integer k be a fixed pre-specified integer of the modest size. Let p
be another positive integer and consider k + p steps of the generalized global Arnoldi
Algorithm. Therefore, the relation

AVk+p(Ik+p ⊗B) = Vk+p(Hk+p ⊗ Is) + R̂k+p(e
T
k+p ⊗ Is),

holds, where R̂k+p = hk+p+1,k+pVk+p+1.

Let τ1 be a shift. In addition, consider the QR factorization of Hk+p− τ1Ik+p = Q1R1,
where Q1 ∈ Rk+p×k+p is an orthogonal and R1 is an upper triangular matrix. Then it can
be easily shown that

AVk+p(Q1 ⊗ Is)(Ik+p ⊗B)− Vk+p(Q1 ⊗ Is)((τ1Ik+p +R1Q1)⊗ Is)
= hk+p+1,k+pVk+p+1(e

T
k+pQ1 ⊗ Is). (6)

Since Hk+p − τ1Ik+p = Q1R1 and QT
1Q1 = I. Multiplying this relation from right side in

Q1 and left side in QT
1 , it gets

QT
1Hk+pQ1 = R1Q1 + τ1Ik+p. (7)

Substituting (7) in (6), it yields

AVk+p(Q1 ⊗ Is)(Ik+p ⊗B) = (Vk+p(Q1 ⊗ Is), Vk+p+1)

(
QT

1Hk+pQ1

hk+p+1,k+p(e
T
k+pQ1)

)
⊗ Is,
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where QT
1Hk+pQ1 is still an upper Hessenberg matrix.

Now, if we apply p shifts, as a result, we will have

AV+k+p(Ik+p ⊗B) = (V+k+p, Vk+p+1)

(
H+

k+p

hk+p+1,k+p(e
T
k+pQ)

)
⊗ Is, (8)

where V+k+p = Vk+p(Q ⊗ Is), H
+
k+p = QTHk+pQ and Q = Q1 . . . Qp with Qj be the

orthogonal matrix associated with the shifts τj , j = 1, 2, . . . , p. Now partition V+k+p and

H+
k+p in the following form

V+k+p = (V+k , V̂p), H+
k+p =

(
H+

k M

h+k+1,ke1e
T
k Ĥp

)
, (9)

and consider
hk+p+1,k+pe

T
k+pQ = (0, 0, . . . , h̃k+p+1,k+p, b

T ). (10)

Substituting (9) and (10) into (8), it follows that

A(V+k , V̂p)(Ik+p ⊗B) = (V+k , V̂p, Vk+p+1)
(



H+
k M

h+k+1,ke1e
T
k Ĥp

h̃k+p+1,k+pe
T
k bT


⊗ Is

)
. (11)

Since the first k columns on both sides of (10) are equal, then it obtains

AV+k (Ik ⊗B) = V+k (H+
k ⊗ Is) +R+

k (eTk ⊗ Is),

where R+
k = h+k+1,kV̂p(e1 ⊗ Is) + h̃k+p+1,k+pVk+p+1 (in fact, R+

k is a new version of R̂k).
Hence

AV+k (Ik ⊗B) = (V+k , V +
k+1)

(( H+
k

h+k+1,ke
T
k

)
⊗ Is

)
, (12)

where V +
k+1 =

R+
k

h+
k+1,k

and h+k+1,k = ‖R+
k ‖F . Note V+k � (V̂pe1) = 0 and V+k � Vk+p+1 = 0.

Thus (12) is a logical generalized global Arnoldi factorization of (BT ⊗ A). The above
process run until R+

k = 0. The above process is called the implicitly generalized global
Arnoldi (IGGA).

3 The global GMRES method and its eigenvalue problem

In this section, a brief description of the Gl-GMRES method for solving the matrix equa-
tion (1) is given. For further details, refer to [2, 4].

Let X0 ∈ Rn×s be an initial guess for (1). At the mth step of the Gl-GMRES method
find the approximation solution Xm = X0 + Vm(d ⊗ Is) such that d ∈ Rm, and the
cloumns of Vm are an F-orthonormal basis for GKm(A,R0, B). The corresponding resid-
ual matrix will be Rm = R0 − AVm(Im ⊗ B)(d ⊗ Is), which should be F-orthogonal to
AGKm(A,R0, B)B. This orthogonality relation is equivalent to the minimiztion problem

min
∥∥∥‖R0‖F e1 −Hmd

∥∥∥
2
. Now, in order to accelerate the convergence of the Gl-GMRES

method, it requires to compute k (1 ≤ k ≤ m) harmonic Ritz pairs. Let the columns
of Vm be the F-orthonormal basis of GKm(A,R0, B), we look for k harmonic Ritz pairs
(θ̃i, g̃i) that satisfy

AVm(g̃i ⊗ Is)(Im ⊗B)− θ̃iVm(g̃i ⊗ Is) ⊥F AGKm(A, R̃0, B)(Im ⊗B), (13)
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for i = 1, 2, · · · , k.
Here, we want to deflate k smallest of eigenvalues in magnitude. Hence, we can compute
(θ̃i, g̃i) via solving the following generalized small-sized eigenvalue problem

(
(AVm(Im ⊗B))T � Vm

)
g̃i =

1

θ̃i

(
(AVm(Im ⊗B))T � (AVm(Im ⊗B))

)
g̃i. (14)

By (2) and (3), the relation (14) can be rewritten as

HT
mg̃i =

1

θ̃i
H

T
mHmg̃i. (15)

If Hm is nonsingular, then relation (15) can be written to the following form

(Hm + h2m+1,mH
−T
m eme

T
m)g̃i = θ̃ig̃i. (16)

Also, we define ”the harmonic Ritz block vectors” as Ỹi = Vm(g̃i⊗Is), and the correspond-
ing harmonic residual block vector is as Ṙi = AỸiB − θ̃iỸi. In the following propositions,
two important results for the harmonic residual block vector is mentioned.

Proposition 3.1. The residual matrix for a harmonic Ritz block vector is F-orthogonal
to AGKm(A, R̃0, B)B.

Proposition 3.2. The residual harmonic Ritz block vector is a multiple of the residual
matrix associated with Gl-GMRES method, i.e Ṙj = γjR0, where R0 = Rm at the time
restart.

We will develop an implicitly restarting Gl-GMRES algorithm that is called Gl-GMRES-
IR algorithm. This Algorithm is described in 3.3.

Algorithm 3.3. The implicitly restarted Gl-GMRES (Gl-GMRES-IR).
Input: A ∈ Rn×n, B ∈ Rs×s, C,X0 ∈ Rn×s and tol > 0, m and p are integer numbers and
k = m− p is the desired number of shifts.

1. Compute R0 = C −AX0B. Set V = R0.

2. Apply the generalized global Arnoldi in [4] with m = k+ p iteration and obtain H̄m

and Vm+1.

3. Solve min‖VTm+1 � R̃0 − H̄md‖2 for d.

4. Compute Xm = X0 + Vm(d⊗ Is) and R̃m = C −AXmB. If ‖R̃m‖F < tol stop.

6. Set X0 = Xm, then the implicitly generalized global Arnoldi Algorithm to obtain
Vm+1, H̄m, compute the k smallest eigenvalues of the matrix (16).Then go to step
3.3.

4 Numerical results

In this section, the numerical behavior of the Gl-GMRES-IR against the GlFOM and
GlGMRES methods [4] is evaluated. Here, m and k show the number of iterations for
each restart and the number of the harmonic Ritz block vectors, respectively. The initial
guess is taken to be zero and the right hand side matrix of the matrix equation (1)
is C = rand(n, s). The condition ‖C − AXlB‖F < 10−6‖C‖ is considered as stopping
criterion.
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Example 4.1. In this example, the matrix A is selected from matrix market collection 1

and B is a bidiagonal matrix with 0.01, 0.2, 10, 20, . . . , 10(s−2) and 0.1′s on the main and
the super diagonal, respectively. As observed from Table 1, Gl-GMRES-IR is faster than
the other methods.

Table 1: Numerical results of the four methods on the cavity01 and the sherman4 matrices
with s = 25,m = 10, 20 and k = 6. Here, iter., res.norm and CPU show the number of
iterations, residual norm and run time.

(cavity01, B) (sherman4, B)

Methods iter res.norm CPU iter res.norm CPU

Gl-GMRES-IR(10, 6) 700 9.9963e-07 20.1721 103 8.5244e-07 3.0247

Gl-FOM-DR(10, 6) 781 7.1374e-07 30.2738 192 1.6216e-07 10.6267

GlGMRES(10) 1273 9.9929e-07 54.4906 232 9.9045e-07 4.3000

GlFOM(10) 2001 1.5200e-06 35.5204 301 9.9780e-07 14.9061

Gl-GMRES-IR(20, 6) 126 9.9584e-07 38.9868 11 9.2388e-07 0.1391

Gl-FOM-IR(20, 6) 145 9.9341e-07 47.4272 31 6.6698e-07 9.8022

GlGMRES(20) 297 9.9980e-07 41.5393 6 6.5130e-07 0.2912

GlFOM(20) 848 9.9950e-07 49.8374 16 2.7356e-07 2.5751
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Abstract

We investigate some classes of positive mappings (not necessarily linear) in the
setting of C∗-algebras. First, we give some results about the superadditivity and
the starshapeness of such maps. Then, for a certain class of unital positive maps
Φ : A −→ B between unital C∗-algebras, we present the relation between the n-
positivity, the linearity and the continuity of Φ.
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1 Introduction

Let H and K be complex Hilbert spaces. Let us denote by B(H ) and B(K ) the algebras
of all bounded linear operators on H and K , respectively. In the case when H = Cn, we
identify B(Cn) with the matrix algebra of n×n complex matrices Mn(C). Here we consider
the usual Löwner order ≤ on the real space of self-adjoint operators. An operator A is said
to be strictly positive (denoted by A > 0) if it is a positive invertible operator.Thanks to
the Gelfand–Naimark–Segal theorem, we may assume that any C∗-algebra is a closed C∗-
subalgebra of B(H ) for some Hilbert space H . We use A ,B, · · · to denote C∗-algebras
and A+ and A++ to denote the sets of all positive and positive invertible elements of A ,

respectively. The geometric mean is defined by A]B = A
1
2

(
A−

1
2BA−

1
2

) 1
2
A

1
2 for operators

A ∈ A++ and B ∈ A+. If A commute with B, then A]B = (AB)
1
2 .

A map Φ : A → B between C∗-algebras is said to be ∗-map or self-adjoint if it is ∗-
preserving i.e. Φ(A∗) = Φ(A)∗ and it is called positive if it holds that Φ (A+) ⊂ B+. It
is called strictly positive, whenever Φ (A++) ⊂ B++. We say that Φ is unital if A ,B are
unital and Φ preserves the unit. For simplicity of notation, we denote both units of A
and B by I. A map Φ is called n-positive if the map Φn : Mn(A ) → Mn(B) defined by
Φn([aij ]) = [Φ(aij)] is positive, where Mn(A ) stands for the C∗-algebra of n× n matrices
with entries in A . A map Φ is said to be completely positive if it is n-positive for all

n ∈ N. We say a positive map Φ : A → B is in the class S
(n)
mon+, whenever the map Φn is

monotone on positive elements of Mn(A ).

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: dadkhah61@yahoo.com
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2 Main results

We start our work by giving some examples of positive maps in the class S
(n)
mon+.

Example 2.1. Some examples of positive maps in the class S
(n)
mon+:

• Every 2n-positive map is in the class S
(n)
mon+.

• Power functions Φp : C → C defined by Φp(x) = |x|p (1 ≤ p < 2) are in the class

S
(2)
mon+, however, Φp (1 ≤ p < 2) are only 3-positive but not 4-positive.

• Every positive semidefinite matrix P ∈ Mn(C) induces a map φP : Mn(C) → C
defined by φP (A) = |tr(AP )|, which is a 3-positive semi–norm on Mn(C) belonging

to the class S
(2)
mon+

• Every positive linear functional ϕ : A −→ C on a C∗-algebra induces a non-linear

3-positive map Φ : A −→ C given by Φ(A) = |ϕ(A)| that belongs to the class S
(2)
mon+.

A map Φ : X ⊆ A → B is said to be superadditive on a subset X of A , which is
closed under addition, if

Φ(A+B) ≥ Φ(A) + Φ(B)

for every A,B ∈X and it is strongly superadditive, if

Φ(A+B + C) + Φ(A) ≥ Φ(A+B) + Φ(A+ C)

for every A,B,C ∈X .

It is knwon that [1] if Φ : A → B is in the class S
(2)
mon+, then it is strongly superadditive

on A+.

A map Φ : X ⊆ A → B is called starshaped if Φ(αA) ≤ αΦ(A) for any A ∈ X and
every α ∈ [0, 1].
It is known that every starshaped function f : [0,∞)→ [0,∞) is superadditive. However,
the converse of this statement is not true, in general. The next theorem shows that the
strong superadditivity of a continuous positive map Φ (with Φ(0) = 0) on a subset X
(closed under addition) of A+ implies the starshapeness of Φ on the X .

Theorem 2.2. Let A ,B be two C∗-algebras. If Φ : A → B is a continuous (non-linear)
positive map, which is strongly superadditive on any subset X (closed under addition) of
A+, then the following statements are equivalent:

(i) Φ(0) = 0,

(ii) Φ(αA) ≤ αΦ(A) for every α ∈ (0, 1] and A ∈X ,

(iii) Φ(αA) ≥ αΦ(A) for every α ∈ [1,∞) and A ∈X .

In [1], the authors presented the relation between the n-positivity, homogeneity and the
linearity of some positive mappings between C∗-algebras. If Φ : A → B is a continuous

unital 3-positive map between unital C∗-algebras, which is in the class S
(2)
mon+ and Φ(0) = 0,

then

1. if Φ(αI) = αI for some α ∈ C1 ∪ R+, then Φ(αA) = αΦ(A) for every A ∈ A ,
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2. if Φ(αI) = αI for some α ∈ C1∪R+ with |α| 6= 0, 1, then Φ(βA+B) = βΦ(A)+Φ(B)
for every β ∈ R+ and A,B ∈ A+,

in which C1 = {z ∈ C : |z| ≤ 1}. Moreover, if either Φ is 6-positive or in the class S
(4)
mon+,

then

1. if Φ(αI) = αI for some α ∈ C1∪R+ with |α| 6= 0, 1, then Φ(βA+B) = βΦ(A)+Φ(B)
for every β ∈ R and A,B ∈ A ,

2. if Φ
(
z I
)

= z I for some z ∈ C with Im(z) 6= 0 and |z| < 1, then Φ is linear on A .

The following examples show the necessity of some hypotheses in the above facts.

Example 2.3. (1) Consider the map ϕ : C→ C defined by ϕ(z) =
1

3
(|z| 32 + |z| 43 +1). It is

known that ϕ is a 3-positive map and ϕ ∈ S(2)
mon+ (see [4, Theorem 5.1]). Evidently, there

exists a number z ∈ [1.1, 2] such that ϕ(z) = z. However, ϕ is not additive on positive
numbers.
(2) Let (A , ‖ · ‖) be a unital C∗-algebra. According to [1, Corollary 3.6], we see that ‖ · ‖
is not a 3-positive map in the most C∗-algebras. For every α > 0, we have ‖αI‖ = α while
‖ · ‖ is not additive on positive elements of A , in general.

(3) The map | · | : C → C is a 3-positive map in the class S
(2)
mon+. However, | · | is not

6-positive, nor is in the class S
(4)
mon+. For every α > 0, we have |αI| = α, but | · | is not

additive on C, see [1].

We aim to give the relation between n-positivity and the continuity of a positive map
between C∗-algebras. It is known that (see [5]) if Φ : A → B is a 2-positive map between
C∗-algebras, then

Φ(A]B) ≤ Φ(A)]Φ(B)

for every A,B ∈ A++.

Theorem 2.4. Let A be a unital C∗-algebra and B be a C∗-algebra. If Φ : A → B is a
2-positive map, then

s. o.− lim
ε→0

Φ(A+ εI) = Φ(A)

for every A ∈ A++, where the convergence is in the strong operator topology.

We have the following theorem.

Theorem 2.5. If Φ : A → B is a positive map between C∗-algebras in the class S
(2)
mon+,

then Φ(A , ‖ · ‖)→ (B, ‖ · ‖) is continuous.

3 Conclusion

Some results about positive linear maps between C∗-algebras are still valid for non-linear
positive maps if they are n-positive for some n ∈ N. Moreover, for a certain class of
positive maps, in order to be homogeneous and linear, it is sufficient to investigate the
homogeneity at only one scalar.
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Abstract

Feature selection problem is an important issue in both data clustering and data
classification. This paper introduces a supervised framework for the task of feature se-
lection. The proposed method is built based on applying the information gain method
into the framework of maximizing relevancy, and aims to reduce the redundancy be-
tween the selected features by using the idea of maximum projection and minimum
redundancy. Several experimental results on seven well-known microarray datasets
demonstrate the promising performance of the proposed method over some state-of-
the-art methods in this area.
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mum projection, Minimum redundancy
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1 Introduction

Dimensionality reduction, known as a challenging subject in machine learning, has deliv-
ered innumerable magnificent achievements over the past decades. It is noticeable that
a major category of problems regarding dimensionality reduction has formed based on
feature selection methods and related conceptions. In specific, these methods determine
the most representative features of the original feature space with respect to a selection
criterion [1].

During past years, a variety of techniques have been developed to characterize feature
selection problems. As an excellent example, the information gain (IG) method can be
mentioned which is a particularly prevalent attribute evaluation method that has found
widespread application in the context of feature selection [1, 2]. The IG method works as
a univariate filter which ranks all the features in order of importance. In the next step,
the archetypal features are selected by the IG method according to a certain threshold.
Another notable example is matrix factorization-based approaches that have been widely
employed in the frame of feature selection problem. In [4], Wang et al. have propounded
a novel unsupervised feature selection method via matrix factorization (MFFS) which was

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: fdsaberi@gmail.com
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based on the subspace distance and made use of a especial matrix factorization criterion.
According to the notion of projection, Wang et al. [5] have introduced another feature
selection method via maximum projection and minimum redundancy (MPMR) in such a
way as to find non-redundant features from the whole feature set.

Most of the existing research works in the field of feature selection have been con-
structed by using some fundamental aspects such as the matrix factorization technique
and the geometric information of data. In addition to these considerations, another view-
point would be important to formalize the feature selection problem. This viewpoint is
referred to the concept of linear independence. To be more specific, for a given set of fea-
tures like microarray high-dimensional datasets in which the number of features is larger
than the number of samples, it may be possible to express one feature as a linear combina-
tion of the other features. As a novel feature selection method, Ebrahimpour et al. [2] have
applied the notion of linear independence to derive a supervised feature selection method
for determining representative non-redundant subsets of features in microarray datasets.

In this paper, motivated by the idea of MPMR to eliminate redundant features, and
taking advantage of the IG method to maximize relevancy, we propose a supervised feature
selection method in which the impact of selecting linearly independent subsets of features
on the feature selection problem is considered. In order to evaluate how well the theoretical
results are effective to perform simultaneously dimensionality reduction and classification
tasks, the algorithms are compared with several well-known supervised feature selection
methods through microarray high-dimensional datasets.

2 Notations

In the present paper, we indicate scalers by italic lowercase letters such as x; vectors by
bold lowercase letters such as x; matrices by bold uppercase letters such as X; and sets
by italic uppercase letters such as X. Throughout this paper, X = [x1, . . . ,xd] ∈ Rn×d

is the data matrix associated with the original feature set {x1, . . . ,xd}, where n is the
number of samples, and d is the number of features. For simplicity, the submatrix of X
associated with a feature subset XI is denoted by the n × k matrix XI , where I is the
index set of selected features, and |I| is the number of elements in the set I. In addition,
‖X‖F denotes the well-known Frobenius norm of X, the transpose of X is denoted by XT ,
rank(X) indicates the rank of X, X† denotes the Moore-Penrose pseudo-inverse of X, and
span(X) is the set of all possible linear combinations of the columns of X.

3 Maximum projection and minimum redundancy

In recent times, the concept of maximum projection and minimum redundancy (MPMR)
has been introduced by Wang et al. [5] for constructing an unsupervised feature selection
algorithm. The procedure of feature selection based on MPMR is described in Algorithm
3.1. It is worthwhile pointing out that the main idea behind of MPMR is that minimizing
the redundancy of the selected features is equivalent to keeping them close to orthogonality;
for more discussion on the mechanism of MPMR, the reader is referred to [5].

Algorithm 3.1. Feature selection based on MPMR.

Input. Data matrix X = [x1, . . . ,xd] ∈ Rn×d, and the number of selected features k.

1. XI = {xi1} and I = {i1} such that i1 = argmini ‖X− xi(x
T
i xi)

†xT
i X‖F ;

2. for j = 2, . . . , k do
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3. XI ← XI ∪ {xij} and I ← I ∪ {ij} such that ij = argmaxi ‖Yi‖F in which Yi is the
ith column of Y = X−XI(XT

I XI)†XT
I X.

4. end for
Output. An index set of the selected features I ⊆ {1, . . . , d} and |I| = k.

In the rest of this section, it can be demonstrated that if Algorithm 3.1 proceeds k
steps, then the selected features form a linearly independent subset of original features.
Here, it should also be noted that since microarray datasets used in this paper are of full
row rank and n� d, it is assumed from now on that rank(X) = n.

Theorem 3.2. Let X = [x1, . . . ,xd] ∈ Rn×d be a data matrix such that rank(X) = n.
Assume that Algorithm 3.1 proceeds k steps and k ≤ n. Then, the set {xi1 , . . . ,xik} is a
linearly independent subset of the original features.

Proof. Suppose that xi1 6= 0 has been chosen such that i1 = argmini ‖X−xi(x
T
i xi)

†xT
i X‖F .

Let I = {i1} and define PI = XI(XT
I XI)†XT

I to be the orthogonal projection of XI . If
we set Y = X − PIX, then it can be verified that Yi1 = 0. From this fact and the
assumption that rank(X) = n, we can select a vector xi2 not only xi2 /∈ span(xi1), but
also xi2 = argmaxi ‖Yi‖F . Therefore, XI = {xi1 ,xi2} is a linearly independent subset of
X. By continuing in this fashion, we are able to construct a linearly independent subset
XI = {xi1 , . . . ,xin} of X.

4 Main results

In this section, the details of the proposed supervised feature selection via information
gain, maximum projection and minimum redundancy (SF-IG-MPMR) are described. The
proposed SF-IG-MPMR method consists of two steps:

1. The pre-processing step. As it can be seen from Algorithm 3.1, in case the value
of d is large, then this algorithm may be very expensive. For instance, the first step
of Algorithm 3.1 requires to compute the Moore-Penrose pseudoinverse of xT

i xi for
i = 1, . . . , d. In order to get rid of this difficulty, Algorithm 3.1 can be modified in
a way that not only does its computational complexity reduce, but also a subset of
features is selected with the aim of maximizing the relevancy. To achieve this goal,
in the pre-processing step, we propose that the information gain method should be
applied so as to assign a specific rank to each feature and to select features according
to an ordered ranking of all the features. Afterwards, in lieu of the original features,
the top-p ranked features are selected. In fact, the following procedure is performed:

Input. Data matrix X = [x1, . . . ,xd] ∈ Rn×d, and the parameter p.
1. for i = 1, . . . , d do
2. IG(i)←− Information gain (IG) score for the ith feature.
3. end for
4. Arranging the IG scores in descending order.
5. Xnew ←− Rearranging the features in X in terms of sorting order. Set Xnew =

[xnew
1 ,xnew

2 , . . . ,xnew
p ].

Here, it should be highlighted that according to the results given in [3], the value of
p in this paper is selected to be equal to 2n.

2. The feature selection step. In this step, a linearly independent subset of features
is selected from the top-p ranked features that obtained from the pre-processing
step. Note that this selection procedure is guided by Algorithm 3.1. In this way, it
is expected that the redundancy among the selected features is significantly on the
decline due to the fact that they are linearly independent.
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5 Experimental results

In this section, some experiments are performed to study the effectiveness of the proposed
SF-IG-MPMR method. This method is also compared with seven feature selection algo-
rithms, and the obtained results of the empirical experiments on a set of seven widely-used
binary microarray datasets are presented. The detailed characteristics of the datasets are
summarized in Table 1.

Table 1: Statistics of the seven binary microarray datasets applied in the experiments [1].

Brain CNS Colon DLBCL GLi85 Ovarian SMK

# Samples 21 60 62 47 85 253 187

# Features 12625 7129 2000 4026 22283 15154 19993

5.1 Comparison methods

In recent years, some feature selection methods have been suggested in the subject of
microarray datasets. Several commonly used instances of such methods applied in this
paper are as follows: IG, ReliefF, MRMR, SVM-RFE [1], RREFS [2], SFS-BMF1 and
SFS-BMF1 [3]. Furthermore, “No-FS”, mentioned in our experiments, refers to the case
in which no feature selection algorithm is used.

5.2 Experimental settings

There is a parameter that is required to be set. For the SF-IG-MPMR, SFS-BMF1 and
SFS-BMF1 methods, the number of selected features, k, is tuned from {5, 10, 15, 20} for all
the datasets. For the rest of the feature selection methods IG, ReliefF, MRMR, SVM-RFE
and RREFS, the values of the parameter k are considered as suggested in the original ref-
erences [1,2]. In addition to this, three well-known classifiers C4.5, Näıve-Bayes and SVM
are adopted to assess the classification performance of the feature selection algorithms.
Moreover, the 5-fold DOB-SCV technique is utilized in order to improve the performance
of the algorithms. For all the feature selection methods considered in the experiments,
the best results of the optimal parameters in terms of the classification performance are
reported. Moreover, the experiments are run 10 times and averaged.

5.3 Measures for evaluation

In order to have a fair criterion to assess the performance of the feature selection algo-
rithms, four well-known measures are occasionally applied: sensitivity (Se), specificity
(Sp), G-mean and accuracy (Ac) criteria. These criteria are defined as:

Se =
TP

TP + FN
, Sp =

TN

TN + FP
, G-mean =

√
Se× Sp, Ac =

TP + TN

TP + TN + FP + FN
,

where TP,TN,FN and FP indicate true positives, true negatives, false negatives and false
positives, respectively.

5.4 Results and analysis

This subsection discusses a number of empirical results associated with the performance
of the SF-IG-MPMR algorithm and presents comparisons of these results with those of
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the methods indicated in Subsection 5.1. It is notable that the number 50 assigned to IG,
ReliefF, and SVM-RFE, and the number 10 assigned to MRMR refer respectively to the
top 50 and 10 features in relation to the ranking techniques employed by those methods.

It is apparent that feature selection strategies specifically aim at deciding which fea-
tures are the most representative of the whole feature set in terms of their information
content. In this regard, the number of selected features do count for feature selection
methods. The results of this measure for various methods are reported in Table 2. Con-
sidering the data in Table 2, it is crystal clear that the SF-IG-MPMR method has the
ability to omit more than 99% of all the features. Furthermore, the number of features
selected by SF-IG-MPMR is almost by far the smallest compared to that number for the
other methods.

Table 2: Number of the selected features.

Methods Brain CNS Colon DLBCL Gli85 Ovarian SMK

IG-50 50 50 50 50 50 50 50
ReliefF-50 50 50 50 50 50 50 50
SVM-RFE-50 50 50 50 50 50 50 50
MRMR-10 10 10 10 10 10 10 10
RREFS 20 48 50 38 68 202 150
SFS-BMF1 5 20 5 20 20 20 20
SFS-BMF2 5 20 5 20 20 20 20
SF-IG-MPMR (Ours) 5 5 5 5 5 5 5

In order to illustrate the effectiveness of the proposed method, the average performance
of the three classifiers for different feature selection methods is illustrated in terms of the
evaluation measures Ac, Se, Sp and G-mean in Figures 1 and 2. It is worthwhile to note
that the higher the Ac, Se, Sp and G-mean values are, the better the classification results
will be.

In Figure 1, the x-axis indicates the measures Ac, Se, Sp and G-mean, and the y-
axis represents the obtained values of these measures for the different feature selection
methods. In Figure 2, the x-axis indicates the different feature selection methods, and the
y-axis represents the values of the measures Ac, Se, Sp and G-mean which are indicated
by the blue, purple, green and red colors, respectively.

Figure 1: Bar chart of the average values of the measures Ac, Se, Sp and G-mean for the
three classifiers C4.5, Näıve-Bayes and SVM on microarray datasets after performing the
DOB-SCV method with 5 folds. Note that the higher the Ac, Se, Sp and G-mean values
are, the better the classification performance will be.

Figures 1 and 2 demonstrate that except for the SFS-BMF1 and SFS-BMF1 methods,
the SF-IG-MPMR method produces the better results in comparison with the other meth-
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Figure 2: Bar chart of the average values of the measures Ac, Se, Sp and G-mean for the three
classifiers C4.5, Näıve-Bayes and SVM on microarray datasets after performing the DOB-SCV
method with 5 folds. Note that the higher the Ac, Se, Sp and G-mean values are, the better the
classification performance will be.

ods in terms of the aforementioned measures. Moreover, the performance of SF-IG-MPMR
is almost the same as that of SFS-BMF1 and SFS-BMF1.

6 Conclusion

In this paper, a novel supervised framework for feature selection has been proposed. This
approach is grounded on maximizing relevancy and reducing redundancy among selected
features according to the use of information gain method. Experimental results on seven
well-known microarray datasets show the superiority of the suggested method over some
baseline methods.
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Abstract

In this work, we applied a new method for solving linear weakly singular Volterra
integral equations. We begin the theoretical study with the acquires of the variational
form, and we also use the finite element method to approximate our problems. We
estimate the error of the method by proving some theorems. Moreover, in the final
section, we present some numerical examples.
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1 Introduction

In subject finite element methods for differential equations and integral equations, many
authors have to work for example in [5]. In this paper we used of adaptive finite element
method (FEM) and Lagrange polynomials to obtain an approximate solution for linear
weakly singular Volterra integral equation as follow:

u(x) = f(x) +

∫ x

a

W (x, t)u(t)

(x− t)α , 0 < α < 1, (1)

that W (x, t) and f(x) are known continuous functions, and u(x) is a unknown function.

2 Finite element method

First, we obtain weak and variational form of the equation (1), for this purpose we show
bilinear form with B : V×V→ R and L : V→ R is a linear functional, and V = H0(Ω) =
L2(Ω), that Ω = [a, b] ⊂ R is an infinite dimensional space, and for all arbitrary function
v(x) ∈ V we have where

B(u, v) =L(v), and L(v) =

∫

Ω
f(x)v(x)dx,

B(u, v) =

∫

Ω
u(x)v(x)dx−

∫

Ω
v(x)(

∫ x

a

W (x, t)u(t)

(x− t)α dt)dx, (2)

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: erfaniyan@uoz.ac.ir
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thus

B(γu+ βw, v) =

∫

Ω
(γu+ βw)v(x)dx−

∫

Ω
v(x)

∫ x

a

W (x, t)(γu(t) + βw(t))

(x− t)α dtdx

= γB(u, v) + βB(w, v),

then, B is a bilinear form. Consider {φi}ni=1, is a set of basis continuous piecewise Lagrange
polynomial functions of degree at most m, and Vh = span{φ1, φ2, ..., φn}, and

φi(xj) = δij , i, j = 1, 2, ..., N.

For uh(x) and vh(x) we have

uh(x) =
n∑

i=1

aiφi(x), vh(x) =
n∑

j=1

bjφj(x), (3)

hence, by substituting (3) in variational formulation we have

n∑

j=1

bj {
n∑

i=1

ai{
∫

Ω
φi(x)φj(x)dx−

∫

Ω
φj(x)(

∫ x

0

K(x, t)

(x− t)α φi(t) dt) dx }

−
∫

Ω
f(x)φj(x)dx } = 0. (4)

Since, bj , j = 1, 2, . . . n, are arbitrary, we have

n∑

i=1

ai{
∫

Ω
φi(x)φj(x)dx−

∫

Ω
φj(x)(

∫ x

0

W (x, t)

(x− t)α φi(t) dt) dx}

−
∫

Ω
f(x)φj(x)dx} = 0. (5)

Now, we define

Ci,j =

∫

Ω
φi(x)φj(x)dx−

∫

Ω
φj(x)

∫ x

0

W (x, t)

(x− t)α φi(t) dt) dx, i, j = 1, 2, ..., n, (6)

and

Fj =

∫

Ω
f(x)φj(x)dx, j = 1, 2, ..., n, (7)

thus

n∑

i=1

Cijai = Fj , j = 1, 2, ..., n, (8)

then from system (8) for F = [F1, F2, ..., Fn]T , we have

CTA = F, (9)

that,

A = [a1, a2, ..., an]T , C = [Cij ], for i, j = 1, 2, ..., n.

By solving of the system (9), we can obtaine approximate solution of equation (1).
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3 Error Analysis

In this section, by using the theorem, we get an upper bound for the error of our method,
and we proved the order of convergence is a O(hζ). For this purpose, suppose that V and
B are a Hilbert space and symmetric respectively.

Definition 3.1. If B is a V-elliptic bilinear form, then an inner product energy is a
(., .) : V× V→ R and the energy norm as

||u||2E = (u, u)B = B(u, v),

Definition 3.2. For operator Π : V→ Vh, projection operators as Πu = ũh =
∑n

i=1 ãiφi(x).

Theorem 3.3. Let α > 0, then bilinear form B, defined by (2) is a V-ellipticity and
equation (1) has a unique solution, and order of convergence is a O(hζ).

Proof. From equation (2) we have

|B(u, v)| = |
∫

Ω
u(x)v(x)dx−

∫

Ω
v(x)

∫ x

a

W (x, t)u(t)

(x− t)α dtdx|,

with using of the Cauchy-Schwarz inequality and L2-norm, we have

|B(u, v)| ≤ ||u||L2(Ω)||v||L2(Ω) +W |
∫ b

a
v(x)

∫ x

a

u(t)

(x− t)αdtdx|

= ||u||L2(Ω)||v||L2(Ω) +W |
∫ b

a
v(x)u(ηx)

∫ b

a

1

(x− t)αdtdx|

≤ ||u||L2(Ω)||v||L2(Ω) +W |
∫ b

a
v(x)u(ηx)

1

1− α(x− t)1−α |t=xt=a dx|

≤ ||u||L2(Ω)||v||L2(Ω) +
W (b− a)1−α

1− α |
∫ b

a
v(x)u(ηx)dx|

≤ (1 +
W (b− a)1−α

1− α )||u||L2(Ω)||v||L2(Ω),

where
W = max |W (x, t)|, x ∈ [a, b], and t ∈ [a, x], (10)

then B is a continuous. Furthermore, we proved V -ellipticity of B, for this purpose we
have

B(v, v) =

∫

Ω
v(x)v(x)dx−

∫

Ω
v(x)

∫ x

a

W (x, t)v(t)

(x− t)α dtdx

≥ ||v||2L2(Ω) −W (
(b− a)1−α

1− α )||v||2L2
= (η)||v||2L2(Ω), (11)

then B(v, v) ≥ (η)||v||2L2(Ω), or B(v, v) ≥ α||v||2L2(Ω), where

η = 1−W (
(b− a)1−α

1− α ),

if η > 0, thus B is a V-ellipticity, therefore, by using of Lax-Milgram theorem we proved
the equation (1) has a unique solution. Suppose uh is an approximate solution, so we have

B(u, vh) = l(vh), B(uh, vh) = l(vh), ∀vh ∈ Vh. (12)
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If e = u− uh, that u are an exact solution of equation(1), then

B(e, vh) = 0, ∀vh ∈ Vh. (13)

By Schwartz’s inequality, and relation between energy norm and inner product we have

|B(v, w)| ≤ ||v||E ||w||E , ∀v, w ∈ V, (14)

by using of (13) we have (e, vh)B = B(e, vh) = 0. Therefore, e is an orthogonal for any vh.
By using of Cea’s Lemma [?], and for each particular ṽh in Vh, and

||u− uh||E = min{||u− vh||E ; vh ∈ Vh},

we have inf ||u− vh||V ≤ ||u− ṽh||V, if ṽh is equal to ũh, then ||u− uh||V ≤ c||u− ũh||V, if
we get an upper bounded for the interpolation error, we have

||u− ũh||V ≤ cMhβ, β > 0,

and c is independent of h, therefore

||u− uh||V ≤
CM

η
hβ.

Thus h→ 0, and the order of method is a O(hβ).

4 Numerical Examples

Example 4.1. Consider the linear weakly singular Volterra integral equation:

u(x)−
∫ x

0

1√
x− tu(t)dt = x− 4

3
x

3
2 , 0 < x ≤ 1,

with the exact solution u(x) = x.

By using Lagrange polynomials of degree 2, and M = 10, the results obtained are
presented in Table 1 and Figure 1. The global error of 2.37E − 10 is reported by authors
(See [2] for more details).

x Exact Numerical RBFmethod

0.1 0.1000000 0.1000000 0.0999932
0.2 0.2000000 0.2000000 0.1999937
0.3 0.3000000 0.3000000 0.2999908
0.4 0.4000000 0.4000000 0.3999884
0.5 0.5000000 0.5000002 0.4999836
0.6 0.6000000 0.6000005 0.5997819
0.7 0.7000000 0.7000006 0.6999698
0.8 0.8000000 0.8000017 0.7999591
0.9 0.9000000 0.9000040 0.8999434
1 1.0000000 1.0000091 0.9999249

Table 1: Numerical results for Example 4.1.
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Figure 1: Diagrams of exact and numerical solutions and graph of error for Example 4.1.

Example 4.2. In this example, we consider

u(x) = f(x) +

∫ x

0

−u(t)

4
√
x− tdt, 0 ≤ x ≤ 1,

corresponding to the following data

f(x) = (1 + x)
−1
2 +

π

8
− 1

4
arcsin(

1− x
1 + x

),

with exact solution u(x) = 1√
1+x

.

By using Lagrange polynomials of degree 2, and M = 10, the results obtained are
presented in Table 2 and Figure 2. For comparison, we note that the error of approximation
using product integration method with step size 0.05 is about 1.0E − 7 (See [4] for more
details).

x Exact Numerical RBFmethod

0.1 0.9534625 0.9534606 0.9535137
0.2 0.9128709 0.9128768 0.9128688
0.3 0.8770580 0.8770625 0.8770231
0.4 0.8451542 0.8451618 0.8451318
0.5 0.8164965 0.8165025 0.8165060
0.6 0.7905694 0.7905842 0.7905978
0.7 0.7669649 0.7669637 0.7669830
0.8 0.7453559 0.7453482 0.7453433
0.9 0.7254762 0.7254816 0.7254464
1 0.7071067 0.7071089 0.7071263

Table 2: Numerical results for Example 4.2.

5 Conclusions

In this paper, we used of adaptive finite element method and Lagrange polynomials to
solving one of the most important linear weakly singular Volterra integral equations that
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Figure 2: Diagrams of exact and numerical solutions and graph of error for Example 4.2.

very important in the concrete problem of mechanics or physics. First, we obtain a weak
and variational form of the equation (1), and with using the system (9), we can obtain an
approximate solution. In section Error analysis we proved B is a V -ellipticity and equation
(1) has a unique solution, and order of convergence is a O(hζ). In section Numerical
Examples, we have solved three problems considered from [2–4] the results obtained are
presented in Table 1, 2 and Figure 1, 2, the comparison of results confirms the better
accuracy with this method.
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Abstract

In this paper we present two types of positivity for matrices and the latest de-
velopment in matrix differential equations maintaining the positivity of the initial
condition. Two important types of positivity are Comlpete Positivity and Total Posi-
tivity. Matrix A is completely positive if it can be decomposed as A = BBT , where B
is a nonnegative matrix. A matrix is called totally positive if all minors of the matrix
are positive. Two square matrices are said to be Isospectral if they have the same
eigenvalues. In this paper we introduce a matrix differential equation that preserves
the positivity property of the initial matrix.

Keywords: Isospectral flow, Completely positive matrix, Totally positive matrix
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1 Introduction

An isospectral matrix flow is charachterized by the following matrix differential equation

dA(t)

dt
= [F (A), A], A(0) = A0, t ≥ 0, (1)

where F (A) is a matrix function and [X,Y ] = XY − Y X is known as Lie braket. It can
be shown that the solution of this differental equations is

A(t) = U(t)A0U(t)−1. (2)

Therefore the solution A(t) and the initial matrix A0 are isospectral. Since the eigenvalues
of A(t) remain invariant, this implies such flows are interesting in the context of numer-
ical linear algebra. In fact, the suitably constructed isospectral flows give a continuous
realization process for a discrete algorithm. It is proved that Toda lattice at each integer
value of t gives the iterates of the QR algorithm [5].

Isospectral flows are also a useful tool in studying inverse eigenvalue problems, for
example see Chu [3]: seeking a matrix of a given structure that possesses a specified set of
eigenvalues. Such problems are important in a wide range of applications, ranging from
the theory of vibrations to control theory, tomography, system identification, geophysics,
and particle physics [3]. It is natural to ask for what matrix function F (A) this flow also
maintains the positivity properties of the initail matrix A0?

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: kghanbari@sut.ac.ir
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2 Main results

In this section we state some latest developments in isospectral matrix flows for an specific
type of matrix function F (A). For general type of F (A) the problem is still open [3].

Theorem 2.1. Suppose F (A) = A+T − A+, where A+ is upper triangular part of A. If
A0 is symmetric and totally positive, then A(t) the solutions of the matrix flow (1) is
symmetric and totally positive. Morover σ(A(t)) = σ(A0), [7].

We developed this result to nonsymmetric matrices as follows:

Theorem 2.2. Suppose F (A) = Au − Al, where Au, Al are upper and lower triangular
part of A, respectivly. If A0 is totally positive, not necessarily symmetric, then A(t) the
solutions of the matrix flow (1) is totally positive. Morover σ(A(t)) = σ(A0), [4].

We also developed Theorem 2.1 for the set of completely positive matrices as follows:

Theorem 2.3. F (A) = A+T − A+, where A+ is upper triangular part of A. If A0

is symmetric and completely positive, then A(t) the solutions of the matrix flow (1) is
completely positive. Morover σ(A(t)) = σ(A0).

3 Preliminaries and Definitions

In this section we introduce some preliminary materials used in the proof of the main
results.

Definition 3.1. Denote the set of eigenvalues of a matrix A by σ(A). If A and B are
two square matrices with the same size such that σ(A) = σ(B) then A and B are called
isospectral.

For example if A is a given matrix then for eny nonsingular matrix P the matrices
PAP−1 and A are isospectral. Note that the similarty transformation may change the
positivity propert of A.

Definition 3.2. The determinat of a square submatrix of a given matrix A with row
α = {α1, α2, · · · , αp} and column β = {β1, β2, · · · , βp} is denoted by A(α;β). The matrix
A is called totally positive (TP) if all minors of A are positive. If all minors of A are
nonnegative then A is called totally nonnegative (TN).

Totall positivity arise in the study of in-line systems, rods, beams, Sturm-Liouville
differential equations, etc [5]. If we pick up a matrix randomly, it will NOT be TN or
TP, most probably. But there are some construction algorithms that we can construct TP
matrices using prescribed data (Inverse Eigenvalue Problems).

Definition 3.3. Matrix A is completely positive (CP) if it can be decomposed as A =
BBT , where B is a nonnegative matrix, i.e. all entries of B are nonnegative.

Definition 3.4. A semidefinite entrywise nonnegative matrix is called doubly nonnegatve.
It is clear that every completely positive matrix is doubly nonnegatve by definition.

Completely positive matrices arise in the study of block designs in combinatorics, in
probability, and in various applications of statistics, including a Markovian model for DNA
evolution [2].
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Definition 3.5. If A is an n×n matrix then comparision matrix of A is denoted by M(A)
and is defined as follows:

M(A) =

{
|aij |, if i = j

−|aij |, if i 6= j
,

It is clear that every TP matrix is CP therefore we can construct CP matrices from
spectral data. But the reverse is not true. There are some criterion to detect TP and CP
matrices. For detailed and comprehensive knowledge on this topics refer to nice books [5]
for total positivity, and [2] for complete positivity. The number of minors to be checked
for totall positivity is too much. Ando [1] found a criterion that needs to check much
smaller set of minors for totall positivity. Let Qp,n denote the set of strictly increasing
sequence α = {α1, α2, · · · , αp} chosen from 1, 2, 3, · · · , n. Define

d(α) =
n−1∑

i=1

(αi+1 − αi − 1),

and note that if α ∈ Qp,n then d(α) = 0 iff αi+1 = αi + 1, for i = 1, 2, · · · , p − 1; i.e.,
d(α) = 0 iff alpha1, α2, · · · , αp consists of consecutive integers. We define Q0

k,n as the
subset of Qk,n consisting of those α with d(α) = 0. We state the following theorem of
Ando [1387].

Theorem 3.6. A ∈Mn is TP if A(α;β) > 0 for all α, β ∈ Q0
k,n, k = 1, 2, · · · , n.

Theorem 3.7. If A is a symmetric and nonnegative and if its comparison matrix M(A)
is positive semidefinite, then A is completely positive

It can be easily verified that a matrix isospectral flow may or may not preserve pos-
itivity property of the initial matrix A0. We are interested in studying isospectral flows
that maintain poitivity properties of the initial matrix A0.

Example 3.8. Consider the following isospectral flow where N is a given constant matrix

dA(t)

dt
= [A,N ] = AN −NA, A(0) = A0, t ≥ 0.

It is clear that the solution is A(t) = e−tNA0e
tN , so the flow is isospectral. If A0 is

positive semidefinite then so is A(t). But for the case of A0 to be TP or CP then A(t) is
not TP or CP in general.

Example 3.9. [Toda Flow] Let A0 be a given completely positive having off-diagonal
entries positive that appear in discretization of Sturm-Liouville differential equation and
mass-spring vibrating system. By definition of completely positive matrix it is clear that
A0 is a doubly nonnegatve matrix. Consider the isospectral flow of the form (1) where A
is a tridiagonal matrix of the following form

A =




a1 b1 0 . . .
b1 a2 b2 0 . .
0 b2 a3 b3 0 .
. . . . . .
. . . . . bn−1

. . . . bn−1 an



. (3)
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The corresponding differential equation will be as follows:

{
ȧk = 2(b2k−1 − b2k
ḃk = (ak+1 − ak)bk, k = 1, 2, · · · , n

where b0 and bn supposed to be zero. Let σ(A0) = {λi}ni=1, thus all eigenvalues are
positive, therefore A(t) will be positive semidefinite since the flow is isospectral. Thus
ak > 0 for k = 1, 2, · · · , n. Solving the second differential equation in the system above we
find

bk(t) = bk(0)e(ak+1(t)−ak(t)).

Computing the comparison matrix M(A) shows that M(A) is positive semeidefinite. Using
Theorem 3.7 shows that A(t) is completely positive. It can be checked that if A0 is TP
then A(t) also will be TP.

4 Conclusion

In this paper we introduced the concept of isospectral matrix flows. We presented an
isospectral flow that preserve the positivity property of the intial matix A0.
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Conditional square matrices of order 2 with given
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Abstract

In search of a method to generate matrices of order 2 with large positive integer
elements and having small determinant, we prove that for given positive integers d
and M there exist many infinitely matrices A = [aij ]16i,j62 with integer elements
satisfying aij > M and detA = d. Our proof, which is based on the theory of linear
Diophantine equations with two variables, has capacity to be followed numerically.
Hence, we present several practical examples of these conditional square matrices
running over a Maple code.
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1 Introduction

The question of the present paper arose to my mind when I was searching square matrices
with large positive integer elements and having small positive integer determinant. A
typical example is

det

[
10888869450418352160891456789 403291461126605623238321090
20390342059236161031596777818 755197854045783718784086689

]
= 1. (1)

Focusing on the case that matrices under study are of order 2, we prove the following
result.

Theorem 1.1. Given positive integers d and M there exists many infinitely matrices
A = [aij ]16i,j62 with integer elements satisfying aij >M and detA = d.

We give the proof of Theorem 1.1 in the next section. Our proof based on the the-
ory of linear Diophantine equations with two variables, which is known in number theory
literatures (for example see Theorem 2.9 of [2]). The proof has capacity to be followed
numerically, hence we get a method to generate matrices with large positive integer ele-
ments and having small determinant. We will provide several methods of generation in
Section 3, running over a Maple code.

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: mehdi.hassani@znu.ac.ir
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2 Proof of Theorem 1.1

Let

A =

[
a11 a12
a21 a22

]
.

We take a11 = M and a12 = M + 1, for which we observe that gcd(M,M + 1) = 1 for
all integers M . Also, let a21 = y and a22 = x. Thus, the equality detA = d reads as the
following Diophantine equation

Mx− (M + 1)y = d,

which has many infinitely solutions x = x0 + (M + 1)t and y = y0 +Mt with t ∈ Z, and
(x0, y0) is any particular solution of the equation. We observe that M(−d)−(M+1)(−d) =
d. Hence we may take x0 = y0 = −d. Thus, we obtain

x = (M + 1)t− d, y = Mt− d, (t ∈ Z).

To realize the condition aij > M , we take t > M+d
M to ensure that x, y > M . Hence, for

each integer t > 2 + b d
M c we have

det

[
M M + 1

Mt− d (M + 1)t− d

]
= d,

providing many infinitely matrices A = [aij ]16i,j62 with integer elements satisfying aij >
M and detA = d. Note that if d < M we can also take t = 1, still keeping positivity of
elements.

Remark 2.1. In the above proof, the generator elements a11 = M and a12 = M + 1
satisfy gcd(a11, a12) = 1, to make sure that gcd(M,M + 1)|d, and hence existing many
infinite solutions for the related Diophantine equation a11x − a12y = d. We may choose
generator elements a11 and a12 in other ways, for example as follows

(a11 = 2M + 1, a12 = 9M + 4),

(a11 = 5M + 2, a12 = 7M + 3),

(a11 = 2M + 3, a12 = 4M + 5),

all satisfying the desired condition gcd(a11, a12) = 1. Another option to choose generator
elements a11 and a12 is to take two distinct large primes. Also, shifted factorials, n!±m
for practical values of m,n ∈ N are good choices to take large generator elements, but
here we should make sure that they are coprime.

3 Numerical Results

A Maple code to generate matrices A = [aij ]16i,j62 with integer elements satisfying
aij >M and detA = d is as follows.

restart:

with(LinearAlgebra):

a11:="here put the element a11":

a12:="here put the element a12":

s:=[op(isolve(a11*X-a12*Y="here put d"))]:
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t:="here put t":

a21:=rhs(eval(s[2],−Z1=t)):
a22:=rhs(eval(s[1],−Z1=t)):
A:=Matrix([[a11,a12],[a21,a22]]);

Determinant(A);

As some numerical examples, we run the above Maple code with t = 1, giving positive
elements, on several generator elements, mentioned in Remark 2.1.

Example 3.1. Let a11 = M and a12 = M + 1, with M = 299792458 and d = 2. We
obtain

det

[
299792458 299792459
599584914 599584916

]
= 2.

Example 3.2. Let a11 = 2M + 1 and a12 = 9M + 4, with M = 30! − 20! + 1398 and
d = 1. Note that we use factorials just to generate large numbers. We obtain

det

[
530505719624377251468600606722797 2387275738309697631608702730252586
530505719624377251468600606722799 2387275738309697631608702730252595

]
= 1.

Example 3.3. Let a11 = 5M + 2 and a12 = 7M + 3, with M = 297 − 1 and d = −1. We
mention that our method works for all integer values of d, including negative values. We
obtain

det

[
792281625142643375935439503357 1109194275199700726309615304700
792281625142643375935439503362 1109194275199700726309615304707

]
= −1.

Example 3.4. Let a11 = 2M + 3 and a12 = 4M + 5, with M = 23
4

and d = 1. We obtain

det

[
4835703278458516698824707 9671406556917033397649413
4835703278458516698824708 9671406556917033397649415

]
= 1.

We observe that in all of the above examples, elements in twice are close. To get
matrices with elements far from each other, we use shifted factorials n!±m for practical
values of m,n ∈ N.

Example 3.5. Let a11 = 29! + 1398 and a12 = 30!− 13982020. We obtain

det

[
8841761993739841308210827683681 265252859812191058636308466017980
12122414446903775419930145354240 363672433407107530811944149365921

]
= 1.

As another example, by taking a11 = 27! + 123456789 and a12 = 26! − 12345678910 we
obtain the equation (1).

4 Conclusion

In this paper we consider a kind of finding conditional square matrices, under certain given
conditions. Obtaining such conditional matrices seems to be useful to in specific problems,
when we wish to get expected results. Although, we considered matrices of order 2 with
large positive integer elements and having small determinant, the similar problem with
higher orders seems interesting and hard.
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Abstract

Let Mn be the algebra of all n-by-n real matrices. A matrix R ∈ Mn with
nonnegative entries is called row substochastic if each row sum is at most 1. For
x, y ∈ Rn, we say that x is row substochastic lower triangular majorized by y (write
as x ≺slt y ) if there exists a row substochastic lower triangular matrix R such that
x = Ry. In this paper, the structure of all linear functions T : R2 → R2, preserving
(strongly preserving) ≺slt are characterized.

Keywords: (Strong) linear preserver, Row substochastic matrices, Slt-majorization
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1 Introduction

Recently, the concept generalized stochastic matrices has been attended specially and
many papers have been published in this topic. For example, one can see [1]- [3].

Throughout the article,
Rn denotes the set of all n-by-1 real vectors;
RS ltn denotes the collection of all n-by-n row substochastic lower triangular matrices;
{e1, . . . , en} denotes the standard basis of Rn;
A(n1, . . . , nl|n1, . . . , nl) denotes the submatrix of A obtained from A by deleting rows and
columns n1, . . . , nl;
Nk denotes the set {1, . . . , k} ⊂ N;
At denotes the transpose of a given matrix A;
[T ] denotes the matrix representation of a linear function T : Rn → Rn with respect to
the standard basis;
C(A) denotes the set {∑m

i=1 λiai | m ∈ N, λi ≥ 0,
∑m

i=1 λi ≤ 1, ai ∈ A, i ∈ Nm}, where
A ⊆ Rn.

A linear function T : Rn −→ Rn is said to be a linear preserver (strong linear preserver)
of ∼ if T (x) ∼ T (y) whenever x ∼ y (T (x) ∼ T (y) if and only if x ∼ y).

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: a.ilkhani@vru.ac.ir
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2 Main results

In this section, we will characterize all linear functions that preserves (strongly preserves)
slt-majorization on R2.

Definition 2.1. A matrix R with nonnegative entries is called row substochastic if all its
row sums is less than or equal to one.

Definition 2.2. Let x, y ∈ Rn. We say that x slt-majorized by y (in symbol x ≺slt y) if
x = Ry, for some R ∈ RS ltn .

We bring the followings with no proof.

Lemma 2.3. Let x = (x1, . . . , xn)t, y = (y1, . . . , yn)t ∈ Rn. Then x ≺slt y if and only if
xi ∈ C{y1, . . . , yi}, for all i ∈ Nn.

Lemma 2.4. Suppose T : Rn → Rn is a linear preserver of ≺slt. Assume that S : Rk →
Rk is the linear function with [S] = [T ](k + 1, . . . , n). Then S preserves ≺slt on Rk.

Proof. Let x′ = (x1, . . . , xk)
t, y′ = (y1, . . . , yk)

t ∈ Rk and let x′ ≺slt y′. Then, by Lemma
2.3, x := (x1, . . . , xk, 0, . . . , 0)t ≺slt y := (y1, . . . , yk, 0, . . . , 0)t ∈ Rn and hence Tx ≺slt Ty.
This implies that Sx′ ≺slt Sy′. Therefore, S preserves ≺slt on Rk.

Lemma 2.5. Let T : Rn → Rn be a linear preserver of ≺slt. Then [T ] is lower triangular.

Proof. Let [T ] = [aij ]. Use induction on n. For n = 1, there is nothing to prove. For
n ≥ 2, assume that the matrix representation of every linear preservers of ≺slt on Rn−1 is
an upper triangular matrix. Let S : Rn−1 → Rn−1 be the linear function with [S] = [T ](n).
By Lemma 2.4, the linear function S preserves ≺slt on Rn−1. The induction hypothesis
insures that [S] is an n− 1× n− 1 lower triangular matrix. So it is enough to show that
a1n = a2n = · · · = an−1n = 0. Put x = en and y = en−1. Then x ≺slt y and hence
Tx = (a1n, a2n, . . . , an−1n, ann)t ≺slt (0, . . . , 0, an−1n−1, ann−1)t = Ty. By Lemma 2.3, it
implies that a1n = a2n = · · · = an−2n = 0. So it is enough to show that an−1n = 0.
Assume, if possible, that an−1n 6= 0. Without loss of generality, suppose that an−1n = 1.

We consider two cases.

Case 1. an−1n−1 6= 0. Let x = en and y =
−1

an−1n−1
en−1 + en. So x ≺slt y and hence

Tx ≺slt Ty. It follows that 1 = 0, which is a contradiction.
Case 2. an−1n−10. Let x = en and y = en−1. We see x ≺slt y and hence Tx ≺slt Ty. It
implies that 1 = 0, a contradiction. Thus an−1n = 0 and hence the induction argument is
completed. Therefore, [T ] is an lower triangular matrix.

2.1 Slt-Majorization on R2

Here, we obtain the structure of all linear functions T : R2 → R2, preserving ≺slt.

Theorem 2.6. Let T : R2 → R2 be a linear function. Assume [T ] = [aij ]. Then T
preserves ≺slt if and only if one of the following holds.

(a) [T ] =

(
a11 0
a21 0

)
.

(b) [T ] =

(
a11 0
0 a22

)
, a22 6= 0, and (0, a22, a11)

t is monotone.
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Proof. If T preserves ≺slt, Lemma 2.5 ensures that [T ] is lower triangular. If a22 = 0, then
we have (a). If a22 6= 0; Without loss of generality assume that a22 = 1. We cliam that

a21 = 0. If a21 6= 0; Set x = e2 and y =
−1

a21
e1 + e2. We observe that x ≺slt y, and then

Tx ≺slt Ty. This shows that ac ≤ 0.
We consider two steps.

Step 1. a11 = 0. By putting x = e2 and y =
−1

a21
e1 + e2, we obtain a contradiction.

Step 2. a11 6= 0. If a21 < 0 < a11, set x = (
1

a21
− 1)e1 − e2 and y = −e1 + a21e2. We

deduce that a11a21 > 0, a contradiction. If a11 < 0 < a21, put x = (
−1

a21
+ 1)e1 + e2 and

y = e1 − a21e2. We conclude that a11a21 > 0, a contradiction.
Thus, a21 = 0. On the other hand, since e2 ≺slt e1, we find 1 ∈ C{0, a11}, and hence

(0, 1, a11)
t is monotone. We have (b).

To prove the sufficiency, let x = (x1, x2)
t, y = (y1, y2)

t ∈ R2 and let x ≺slt y. If (a)
holds, we see Tx ≺slt Ty. If (b) holds, we could suppose a22=1. Then Tx = (a11x1, x2)

t

and Ty = (a11y1, y2)
t. As x2 ∈ C{y1, y2}, there exist α, β ≥ 0, α + β ≤ 1 such that

x2 = αy1 + βy2. Thus, x2 = αa11(Ty)1 + β(Ty)2. We see that Tx ≺slt Ty.

Lemma 2.7. Let T : Rn → Rn be a linear function that strongly preserves ≺slt. Then T
is invertible.

Proof. Suppose that T (x) = 0, where x ∈ Rn. Notice that since T is linear, we have
T (0) = 0 = T (x). Then it is obvious that T (x) ≺slt T (0). Therefore, x ≺slt 0, because T
strongly preserves slt-majorization. So x = 0, and hence T is invertible.

The following theorem characterizes the linear functions T : R2 → R2 which strongly
preserves slt-majorization.

Theorem 2.8. A linear function T : R2 → R2 strongly preserves ≺slt if and only if
[T ] = αI2, for some α ∈ R \ {0}.

Proof. First, suppose that T strongly preserves ≺slt. Lemma 2.7 ensures that T is invert-
ible and hence Te2 6= 0. Theorem 2.6 ensures that

[T ] =

(
a11 0
0 a22

)
,

and the vector (0, a22, a11)
t is monotone.

One obtains

[T ]−1 =

( 1
a11

0

0 1
a22

)
.

Since T strongly preserves ≺slt, we conclude T−1 is a linear preserver of ≺slt, and hence
the vector (0, 1

a22
, 1
a11

)t is monotone. Therefore, a11 = a22.
For the converse, assume that there exists α ∈ R such that α 6= 0 and [T ] = αI2. Thus,
[T ]−1 = 1

αI2. Then both of T and T−1 preserve ≺slt, and therefore, T strongly preserves
≺slt.

3 Conclusion

Recently, the concept generalized stochastic matrices has been attended specially and
many papers have been published in this topic. Due to the importance of the topic in this
article, we have focused on this topic.
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Abstract

In this paper, we analyze the semi-convergence of the improved symmetric suc-
cessive over-relaxation method for singular saddle point problems. In fact, when the
(1, 2)-block of the coefficient matrix is rank deficient, the saddle point problem is
singular. Here, we study sufficient conditions for semi-convergence of the improved
symmetric successive over-relaxation method.
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1 Introduction

Consider the following large and sparse saddle point problem

Au ≡
(

A B
−BT 0

)(
x
y

)
=

(
p
−q

)
≡ b, (1)

where A ∈ Rm×m is a symmetric positive definite matrix, B ∈ Rm×n is a rank deficient
matrix, p ∈ Rm, and q ∈ Rn with n ≤ m. It follows that the coefficient matrix of the
saddle point problem (1) is singular.

The saddle point problems is crucially important in a variety of scientific and engineer-
ing applications [3]. Here we mention some applications of the saddle point problems like
mixed finite element approximation of elliptic partial differential equations, optimal con-
trol, computational fluid dynamics, weighted least-squares problems, electronic networks,
computer graphics and nonlinearly constrained optimization, and so forth [1, 2, 5].

When B in (1) is of full rank, a number of iteration methods and their numerical
properties have been discussed to solve the saddle point problem (1) in the literature,
such as SOR-like method presented in [1] and improved SSOR method given in [2].

Though most often the matrix B occur in the form of full column rank, but not
always in practise. For example, in the finite difference discretization of the Navier-Stokes
equation with periodic boundary conditions, B in (1) becomes singular [5]. In recent years,

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: izadkhah@birjandut.ac.ir
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there has been a surge of interest in solving singular saddle point problems (1), which some
of them are Uzawa-type method proposed in [5] and Uzawa-HSS method given in [4].

In this paper, the idea of the improved symmetric successive over-relaxation method is
established for the singular saddle point problems (ISSORS) of the form (1). We present
the semi-convergence conditions of the proposed ISSORS method. Finally, some conclu-
sions are presented.

2 Improved SSOR iteration method

In this section, we proposed improved symmetric successive over-relaxation method given
in [2] for solving saddle point problem (1). So, we consider the following splitting

A = D −Al −Au, (2)

where

D =

(
A 0
0 Q

)
, Al =

(
−1

2A 0
BT 1

2Q

)
, Au =

(
1
2A −B
0 1

2Q

)
,

for nonsingular and symmetric matrix Q ∈ Rn×n. Set

L = D−1Al =

(
−1

2I 0
Q−1BT 1

2I

)
, U = D−1Au =

(
1
2I −A−1B
0 1

2I

)
, (3)

where I is the identity matrix of the appropriate dimension.
Suppose that u(k) = [x(k)T , y(k)T ]T is the k-th approximation of the exact solution of

(1), then improved symmetric successive over-relaxation iterative method is obtained as

u(k+
1
2
) = (I − ωL)−1((1− ω)I − ωU)u(k) + ω(I − ωL)−1D−1b, (4)

u(k+1) = (I − ωU)−1((1− ω)I − ωL)u(k+
1
2
) + ω(I − ωU)−1D−1b. (5)

So, based on Eqs. (4) and (5) and assuming ω 6= ±2, the ISSORS method can be considered
as the following algorithm.

Algorithm 2.1. Improved SSOR iteration method

Given initial guess u(0) = [(x(0))T , (y(0))T ]T . For k = 0, 1, 2, . . . until iteration se-
quence {[(x(k))T , (y(k))T ]T } is convergent, compute

1. y(k+1) = y(k) + 4ω
2+ωQ

−1BT
{
x(k) + 2ω

2−ωA
−1(p−By(k))

}
− 4ω

2−ωQ
−1q.

2. x(k+1) = 2−3ω
2+ω x

(k) − 2ω
2−ωA

−1B
{
y(k+1) + 2−3ω

2+ω y
(k)
}

+ 4ω
2+ωA

−1p.

3 Semi-convergence of the ISSORS

In this section, we discuss the semi-convergence of the ISSORS for solving singular saddle
point problem (1). The following Lemma provides the necessary and sufficient conditions
for semi-convergence of a stationary iterative method [4, 5].

Lemma 3.1. Let G be a nonsingular matrix. Then, iteration scheme x(k+1) = x(k) +
G(d −Mx(k)) used for solving singular linear system Mx = d is semi-convergent if and
only if the following two conditions are fulfilled
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(i) index(I − T ) = 1, or equivalently, rank(I − T )2 = rank(I − T ), where T = I −GM
is the iteration matrix.

(ii) The pseudo-spectral radius of T is less than 1, i.e.

ν(T ) = max{|λ| : λ ∈ σ(T ) and λ 6= 1} < 1,

where σ(T ) is the spectrum of the matrix T .

Here we denote the null space of the matrix A by null(A). To analyze the semi-
convergence properties of the ISSORS iteration method for the singular saddle point
problem (1), we write the Algorithm 2.1 as

(
x(k+1)

y(k+1)

)
=

(
x(k)

y(k)

)
+ G

(
b−A

(
x(k)

y(k)

))
, (6)

where

G = ω(2− ω)(I − ωU)−1(I − ωL)−1D−1

=

(
4ω
2+ωA

−1 − 16ω2

(2−ω)(4−ω2)
A−1BQ−1BTA−1 − 8ω2

(2−ω)2
A−1BQ−1

8ω2

4−ω2Q
−1BTA−1 4ω

2−ωQ
−1

)
. (7)

By what mentioned above, we can obtain the iteration matrix of the scheme (6) as

T = I − GA

=

(
2−3ω
2+ω I − 8ω2

4−ω2A
−1BQ−1BT − 4ω

2+ωA
−1B + 16ω2

(2−ω)(4−ω2)
A−1BQ−1BTA−1B

4ω
2+ωQ

−1BT I − 8ω2

4−ω2Q
−1BTA−1B

)
.

(8)

Now, we prove that the ISSORS iteration method is semi-convergent for solving the
singular saddle point problem (1) under some restrictions as in Lemma 3.1. It is neces-
sary to mention that, in this algorithm, the matrix Q is an approximation of the Schur
complement matrix BTA−1B [1, 2].

Lemma 3.2. Let A ∈ Rm×m be symmetric positive definite, B ∈ Rm×n be rank deficient,
and Q ∈ Rn×n be nonsingular and symmetric. Then iteration matrix T of the ISSORS
method given in Eq. (8) satisfies

index(I − T ) = 1. (9)

Proof. Inasmuch as T = I − GA in (8), so Eq. (9) holds if

null(GA) = null((GA)2),

where G is defined as in (7). It is obvious that null(GA) ⊆ null((GA)2).
Let x = [xT1 , x

T
2 ]T ∈ Rm+n satisfies (GA)2x = 0. Denote y = (GA)x. So, we have

y =

(
y1
y2

)
=

(
4ω
2+ωA

−1 − 16ω2

(2−ω)(4−ω2)
A−1BQ−1BTA−1 − 8ω2

(2−ω)2
A−1BQ−1

8ω2

4−ω2Q
−1BTA−1 4ω

2−ωQ
−1

)
× (10)

(
A B
−BT 0

)(
x1
x2

)
. (11)
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This results in




y1 =
(

4ω
2+ω I − 8ω3

(2−ω)(4−ω2)
A−1BQ−1BT

)
x1

+
(

4ω
2+ωA

−1B − 16ω2

(2−ω)(4−ω2)
A−1BQ−1BTA−1B

)
x2,

y2 = − 4ω
2+ωQ

−1BTx1 + 8ω2

4−ω2Q
−1BTA−1Bx2.

(12)

Since G is invertible and (GA)y = (GA)2x = 0, it holds that Ay = 0, i.e.,

Ay1 +By2 = 0, −BT y1 = 0. (13)

It is easy to get y1 = −A−1By2. Then we obtain BTA−1By2 = 0. Therefore By2 = 0
and y1 = 0. From By2 = 0, we attain x1 = 2ω

2−ωA
−1Bx2, that means y2 = 0. Thus

y = (GA)x = 0, i.e.,
null((GA)2) ⊆ null(GA).

The proof is complete.

Let the singular value decomposition of matrix B be as

B = U(Br, 0)V T , Br =

(
Σr

0

)
∈ Rm×r, Σr = diag(σ1, σ2, . . . , σr) ∈ Rr×r, (14)

with U ∈ Rm×m, V ∈ Rn×n being two orthogonal matrices and σi(i = 1, 2, . . . , r) being
singular values of B. We define

P =

(
U 0
0 V

)
.

It is obvious that P is a (m+ n)× (m+ n) orthogonal matrix, and therefore we have the
orthogonal similarities

T̂ = P TT P, Â = UTAU, Q̂ = V TQV. (15)

Hence T has the same spectrum as the matrix T̂ . Let [Q̂−1]i:j,k:s stands for the submatrix

of Q̂−1 by considering rows i to j and columns from k to s(we use the notation [·]r for the
case [·]1:r,1:r),

Lemma 3.3. Suppose A ∈ Rm×m be symmetric positive definite, B ∈ Rm×n be rank
deficient. Let Â and Q̂ are defined as in (15). Assume that for Br defined in (14), all
eigenvalues of Q̂−1BT

r Â
−1Br are real and positive. Then, pseudo-spectral of the iteration

matrix T of the ISSORS method is less that one if

0 < ω <
2

1 + 2
√
µ
, (16)

where µ = ρ(Q̂−1BT
r Â

−1Br).

Proof. Firstly, by definition of T̂ in (15), it holds that

T̂ =

(
T̂11 T̂12
T̂21 T̂22

)
, (17)

where

T̂11 =
2− 3ω

2 + ω
Im −

8ω2

(4− ω2)
UTA−1BQ−1BTU
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=
2− 3ω

2 + ω
Im −

8ω2

(4− ω2)
Â−1(Br, 0)Q̂−1

(
BT

r

0

)

=
2− 3ω

2 + ω
Im −

8ω2

(4− ω2)
Â−1Br[Q̂

−1]rB
T
r , (18)

T̂12 = − 4ω

2 + ω
UTA−1BV +

16ω2

(2− ω)(4− ω2)
UTA−1BQ−1BTA−1BV

= − 4ω

2 + ω
Â−1(Br, 0) +

16ω2

(2− ω)(4− ω2)
Â−1(Br, 0)Q̂−1

(
BT

r

0

)
Â−1(Br, 0)

=

(
− 4ω

2 + ω
Â−1Br +

16ω2

(2− ω)(4− ω2)
Â−1Br[Q̂

−1]rB
T
r Â

−1Br, 0

)
, (19)

T̂21 =
4ω

2 + ω
V TQ−1BTU

=
4ω

2 + ω
Q̂−1

(
BT

r

0

)

=
4ω

2 + ω

(
[Q̂−1]rB

T
r

[ Q̂−1]r+1,n,1:r BT
r

)
, (20)

T̂22 = In −
8ω2

4− ω2
V TQ−1BTA−1BV

= In −
8ω2

4− ω2
Q̂−1

(
BT

r

0

)
Â−1(Br, 0)

=

(
Ir − 8ω2

4−ω2 [Q̂−1]rB
T
r Â

−1Br 0

0 In−r

)
. (21)

It follows from (18)-(21) that

T̂ =




T̃ 0(
0

[ Q̂−1]r+1,n,1:r BT
r

)
In−r


 , (22)

with

T̃ =

(
2−3ω
2+ω Im − 8ω2

(4−ω2)
Â−1Br[Q̂

−1]rB
T
r − 4ω

2+ω Â
−1Br + 16ω2

(2−ω)(4−ω2)
Â−1Br[Q̂

−1]rB
T
r Â

−1Br

4ω
2+ω [Q̂−1]rB

T
r Ir − 8ω2

4−ω2 [Q̂−1]rB
T
r Â

−1Br

)

Then from (22), ν(T ) = ν(T̂ ) < 1 holds if and only if ρ(T̃ ) < 1. Note that T̃ can be
viewed as the iteration matrix of the ISSOR iteration method [2] applied to the nonsingular
saddle point problem with the following coefficient matrix

(
Â Br

−BT
r 0

)
,

for the preconditioner Q̂ = V TQV . One can finish the proof off by Theorem 2 in [2].

To present the semi-convergence properties of the ISSORS method, by making use of
the aforementioned Lemmas 3.2 and 3.3, we summarize and state following Theorem.

Theorem 3.4. Let A ∈ Rm×m be symmetric positive definite, B ∈ Rm×n be rank deficient,
and ω fulfilled in (16) in Lemma 3.3. Then the ISSORS iteration method (6) is semi-
convergent for solving the singular saddle point problem (1).
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4 Conclusion

An extension of the improved symmetric successive over-relaxation method has been given
for singular saddle point problems. The method involves one preconditioning matrix for
clustering eigenvalues of the iteration matrix of ISSORS method. Furthermore, sufficient
conditions has been given for the semi-convergence of the proposed ISSORS method.
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Abstract

Let n be a positive integer and A be a square matrix of size n, with entries in
a field F . A polynomial p ∈ F [x1, . . . , xn] is called a quasi-invariant polynomial for
A if p(xA) is a constant multiple of p(x) where x is the vector (x1, . . . , xn). In this
article, we classify all quasi-invariant polynomials of a given non singular matrix A
when F is algebraically closed and of characteristic zero. The classification is done by
constructing a canonical basis that will be made precise in the text.

Keywords: Linear algebra, Invariant polynomial, Jordan normal form, Quasi invari-
ant
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1 Introduction

This article deals with the type of mathematics studied in 19th century by Cayely, Klein,
Hilbert, etc. see for example [2] and for a modern treatment [3].

Let F be a field and A is a square matrix of size n and entries in F , a polynomial
p ∈ F [x1, . . . , xn] is a quasi invariant for A if

p(xA) = cp(x)

for some fixed c ∈ F . For example a linear polynomial p(x) = a1x1 + · · · + anxn is a
quasi invariant polynomial for A if and only if a = (a1, . . . , an)T is an eigen-vector for A,
that is Aa = ca for some c ∈ F . When A is a diagonalizabe matrix over F , then we will
get n linear quasi invariant polynomials p1, . . . , pn this way corresponding respectively to
the eigen-values c1, . . . , cn (with required multiplicities). It is easy to show that any quasi
invariant polynomial p, with p(xA) = cp(x), is written uniquely as

p =
∑

ai1,...,inp
i1
1 . . . p

in
n

where for all (i1, . . . , in) that ai1,...,in 6= 0, we have

ci11 . . . c
in
n = c.

To classify all quasi invariant polynomials of a matrix A, one may replace A with a matrix
B = SAS−1 similar to it. It is because, one has p(xA) = cp(x) if and only if q(xB) = cq(x)

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: ajafari@sharif.ir
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with q(x) = p(xS). So if F is an algebraically closed field, we may without loss of generality
assume that A is in normal Jordan form. The examples below show that in absence of
diagonalizability, interesting phenomena can happen and we may get quasi invariants of
genuinely higher degrees. We use Jλ,n for the size n Jordan block with λ on its main
diagonal and 1 on its off diagonal right below the main diagonal.

Example 1.1. If A = Jλ,3 then other than the obvious quasi invariant polynomial
p1(x1, x2, x3) = x3, the polynomial

p2(x1, x2, x3) = λ(x22 − 2x1x3)− x2x3
is also quasi invariant with p2(xA) = λ2p2(x).

Example 1.2. If A = Jλ,4 then other than the obvious quasi invariant polynomial p1 = x4
and the polynomial p2 = λ(x23 − 2x2x4)− x3x4 coming from Example 1.1, the polynomial

p3 = λ(−x33 + 3x2x3x4 − 3x1x
2
4)− 2x2x

2
4 + x23x4

is quasi invariant with p3(xA) = λ3p3(x).

Example 1.3. If A = diag(Jλ1,2, Jλ2,2) is a square matrix of size 4 with two Jordan
blocks, then other than the obvious quasi invariant polynomials p1 = x2 and p2 = x4, the
polynomial p3 = λ1x1x4 − λ2x2x3 is quasi invariant with p3(xA) = λ1λ2p3(x).

Example 1.4. In Example 1.2 above, any polynomial p of the form
∑

ai1,i2,i3p
i1
1 p

i2
2 p

i3
3

where i1 + 2i2 + 3i3 is a fixed integer k is quasi invariant with p(xA) = λkp(x). One might
conjecture that these are all quasi invariant polynomials for A, which is in fact wrong.
The following degree 4 polynomial p given by

λ3(−3x23x
2
2 − 6x1x

3
3 + 8x32x4−18x1x2x3x4 + 9x21x

2
4) + 3λ2(x2x

3
3 − 2x22x3x4 − 3x1x

2
3x4 + 6x1x2x

2
4)

+λ(−5x2x
2
3x4 + 8x22x

2
4 + 3x1x3x

2
4) + 2x2x3x

2
4

is quasi invariant with p(xA) = λ4p(x). However it can not be written as a polynomial
in terms of p1, p2 and p3 . However it can be written as a rational function

p =
−p32 + p1p2p3 + λp23

x24
.

The goal of this article is to show that for a non-singular matrix, which we may assume
is in normal Jordan form

A = diag(Jλ1,n1 , . . . , Jλk,nk
)

with n1 ≥ · · · ≥ nl ≥ 2 > nl+1 = · · · = nk = 1 and l ≥ 1, besides the obvious k quasi
invariant polynomials xn1 , xn1+n2 , . . . , xn1+···+nk

= xn, one can add k − 1 extra explicitly
constructed quasi invariant polynomials of degrees 2 and 3 to get a set p1, . . . , pn−1 of
quasi invariant polynomials with pi(xA) = cipi(x) for i = 1, . . . , n− 1 such that any quasi
invariant polynomial p(x) with p(xA) = cp(x) can be uniquely expressed as a rational
function ∑

ai1,...,in−1p
i1
1 . . . p

in−1

n−1

xm1
n1 . . . x

ml
n1+···+nl

where for all i1, . . . , in−1 with non zero ai1,...,in−1 we must have ci11 . . . c
in−1

n−1 are fixed inde-
pendent of i1, . . . , in−1.
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2 Main results

In this section a canonical basis for a matrix A in a normal Jordan form will be constructed.
First we need few lemmas and conventions. The binomial coefficient

(
n
k

)
is n(n−1)...(n−k+1)

k!
which is defined for all real numbers and n and all integers k ≥ 0, we set

(
n
k

)
to be zero if

k < 0.

Lemma 2.1. Let A = Jλ,n and n > 1 is an odd number. Let m = n−1
2 . The polynomial

of degree 2

pn−1 =
m∑

i=0

i∑

j=0

Ai,jλ
ixm+1−i+jxn−j

where

Ai,j = (−1)m−j
(

2

(
m− j − 1

i− j − 1

)
+

(
m− j − 1

i− j

))

is a quasi invariant polynomial with pn−1(xA) = λ2pn−1(x).

Proof. When A is applied to x, xi will be transformed to λxi + xi+1 where xn+1 := 0 by
convention. So in order to show pn−1(xA) = λ2p(x) we need to show the following relation
holds for Ai,j

Ai,j +Ai+1,j+1 +Ai,j+1 = 0

which is an easy consequence of the Pascal’s identity.

Lemma 2.2. Let A = Jλ,n and n > 2 is an even number. Let m = n−2
2 . The polynomial

of degree 3

pn−1 =
m∑

i=0

(xn−1gi − xnhi)λi

where

gi = (−1)ixm+2xn−i −
i∑

j=1

((
m− j
i− j + 1

)
+ 2

(
m− j
i− j

))
xm+1−i+jxn+1−j

and

hi = (m+ 1 + i)

(
m

i

)
xm+1−ixn +

i∑

j=1

(m+ 1 + i− 2j)

(
m− j
i− j

)
xm+1−i+jxn−j

is quasi invariant for A, i.e. pn−1(xA) = λ3pn−1(x).

Proof. This is similar and a little more tedious than the previous lemma and will be left
to the reader.

Lemma 2.3. Let A = diag(Jλ1,n1 , . . . , Jλk,nk
) be a square matrix in Jordan normal form,

with n1 ≥ · · · ≥ nl ≥ 2 > nl+1 = · · · = nk = 1, then for i = i, . . . , l − 1, the polynomials

pn−l+i = λ1xn1−1xn1+···+ni+1 − λi+1xn1xn1+···+ni+1−1

are quasi invariant polynomials for A with pn−l+i(xA) = λ1λi+1p(x).

Proof. Easily checked by evaluating pn−l+i(xA).
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Remark 2.4. These polynomials are extensions of the examples 1.1,1.2 and 1.3 of the
introduction.

To make the presentation a little easier, we will assume here after that all matrices are
non-singular, i.e. all eigen-values are non-zero. The ground field F is also assumed to be
algebraically closed and of characteristic zero.

Theorem 2.5. If A is a Jordan block Jλ,n with λ 6= 0, then if n = 1 or n = 2 and
quasi invariant polynomial p(x) with p(xA) = cp(x) is othe form

∑
aix

i
n where for all i

with ai 6= 0, λi = c. If n ≥ 3, then we have invariant polynomials p2(xn−2, xn−2, xn−3),
p3(xn−3, xn−2, xn−1, xn), dots, pn−1(x1, . . . , xn) of degrees 2 and 3 alternatively constructed
from lemma 2.1 and lemma 2.2. for lower corner submatrices of A of sizes 3, 4, . . . , n that
together with p1 = xn form a basis in the sense that any invariant polynomial p is uniquely
written as ∑

ai1,...,in−1p
i1
1 . . . p

in−1

n−1

xkn

where −k + i1 + 2i2 + 3i3 + 2i4 + 3i5 + . . . is fixed.

Proof. The case n = 1, is trivial. Now let n = 2. Assume that f(x1, x2) =
∑m

i=0 aix
i
1x
m−i
2

is a quasi invariant polynomial of degree m, with f(λx1 + x2, λx2) = cf(x1, x2). Assume
that the highest power of x1 in f is k. By comparing the coefficients of xk1x

m−k
2 of both

sides it follows that c = λm. By comparing the coeffiecients of xk−1
1 xm−k+1

2 of both sides
it follows that ak−1λ

m + kakλ
m−1 = ak−1λ

m and hence k = 0. This shows that x2 is a
basis for the space of all quasi invariant polynomials for A. Now we prove the theorem by
induction on n. It is easy to check that p1, . . . , pn−1 are algebraically independent using
the fact each time a new variable appear in them. Let p(x1, . . . , xn) be a quasi invariant
polynomial, if x1 does not appear in p, then by induction p has the required represention
in term of p1, . . . , pn−2. If the power of x1 in p is m ≥ 1, write p =

∑m
i=0 hi(x2, . . . , xn)xm1 .

Then by comparing the highest power of x1 in both sides of p(xA) = cp(x) it follows that
hm(xA) = cλ−mhm(x). Note by the construction of pn−1 in lemmas 2.1 and 2.2, one has

pn−1 = ax1x
r
n + s(x2, . . . , xn)

where r = 1 if n is odd and r = 2 if n is even, a is a non-zero element (since characteristic
is zero) and pn−1(xA) = λr+1pn−1(x). It follows that

q(x) = (axrn)mp(x)− hm(x)(pn−1(x))m

is quasi invariant with q(xA) = cλmrq(x) and the power of x1 is at most m − 1 in q(x).
So by induction (on highest exponent of x1), we can write q(x) in terms of p1, . . . , pn−1 as
required in the theorem and then solving for p(x), the theorem will be proved.

Remark 2.6. There are many more examples of basis for A besides the one given in
Theorem 2.5. It can be shown that any basis can not have more than bn−1

2 c forms of
degree 2. In the construction given in the Theorem 2.5 this maximum number is achieved.

Theorem 2.7. Let A = diag(Jλ1,n1 , . . . , Jλk,nk
) be a square matrix in Jordan normal

form, with n1 ≥ · · · ≥ nl ≥ 2 > nl+1 = · · · = nk = 1 and l > 0. Then by the previous
theorem each Jordan block of size ni > 1 will give ni − 1 quasi invariant polynomials
and so together we get n − l quasi invariant polynomials p1, . . . , pn−l and then by using
lemma 2.3 we construct l−1 quasi invariant polynomials pn−l+1, . . . , pn−1 of degree 2. Let
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pi(xA) = cip(x). Any quasi invariant polynomial p(x) with p(xA) = cp(x) can be written
uniquely as

∑
ai1,...,in−1p

i1
1 . . . p

in−1

n−1

xm1
n1 . . . x

ml
n1+···+nl

where for all i1, . . . , in−1 with non zero ai1,...,in−1 we must have ci11 . . . c
in−1

n−1 = cλm1
1 . . . λml

l .

Proof. The proof of algebraic independence of p1, . . . , pn−1 is skipped. This can be done
using Jacobian criterion in [1]. Assume p(x) is a quasi invariant polynomial with p(xA) =
cp(x). If p(x) does not have x1, then by induction on n (size of the matrix), p(x) has
the desired rational expression. If n1 > 2, then the same proof as before using pn1−1 will
reduce the power of x1 in p(x) and induction on the exponent of x1 will finish the proof.
If n1 = 2, and all n2 = · · · = nk = 1 then the statement of the theorem becomes trivial,
using a similar technique used in the previous theorem for n = 2. Finally if n2 = 2 (note
that n1 ≥ n2, so n2 ≤ 2) then one can use r = λ1x1x4 − λ2x2x3 to reduce the power of x1
in p(x). Let

p(x) =
m∑

i=0

hi(x2, . . . , xn)xi1

q(x) = (λ1x4)
mp(x)− (λ1x1x4 − λ2x2x3)mhm(x)

is a quasi invariant polynomial whose x1 variable has degree less than m. Due to the
restriction in space, we leave the details for a full version of this paper.

Remark 2.8. The introduction of quasi invariant instead of invariant has the benefit of
making the space in some sense finitely generated. Hilbert proved that for a finite group of
matrices the space of all invariant polynomials is finitely generated, however if the group is
not finite, for example a cyclic infinite order group generated by a non-singular matrix A,
this space is not in general finitely generated. A quasi invariant homogeneous polynomial
of degree d, is in fact an eigen-vector of the k fold Kronecker product of A with itself. So the
theory of quasi invariant polynomials is in fact an eigen-vector problem for all Kronecker
products of A with itself. In the literature there are results about the eigen-values of the
Kronecker products but very few results about the eigen-vector problem.
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Normalization method on max-plus algebra and its
application1
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Abstract

In this paper, we introduce and analyze the normalization method for solving a
system of linear equations over max-plus algebra. We use this method to construct an
associated normalized matrix, which gives a technique for solving the linear system.
We present a procedure to determine the column rank and the row rank of a matrix.

Keywords: Semiring, Max-plus algebra, System of linear equations, Column rank,
Row rank

Mathematics Subject Classification [2010]: 16Y60, 65F05, 15A03

1 Introduction

Systems of linear equations play a fundamental role in mathematics problems. Solving
these systems is among the important tasks of linear algebra. We intend to present a
method for examining the behavior of linear systems and solving them over Max-plus
algebra. The first notion of a semiring was given by Vandiver [3] in 1934. A semiring
(S,+, ., 0, 1) is an algebraic structure in which (S,+) is a commutative monoid with an
identity element 0 and (S, .) is a monoid with an identity element 1, connected by ring-like
distributivity. The additive identity 0 is multiplicatively absorbing, and 0 6= 1. Note
that for convenience, we mainly consider S = (R ∪ {−∞},max,+,−∞, 0) which is called
“max−plus algebra” in this work. We want to solve the system AX = b, where A =
(aij) ∈ Mm×n(S), b ∈ Sm and X is an unknown vector of size n. To this end, we
present a necessary and sufficient condition based on the associated normalized matrix,
which is obtained from a proposed normalization method. Additionally, we introduce an
equivalent relation over matrices that implies the associated normalized matrix of a linear
system and each of its equivalent systems should be the same. As such, the solvability of
a linear system and its equivalent system depend on each other. Determining the column
rank and the row rank of a matrix is of particular interest in studying the behavior of
matrices. As a result of the normalization method, we are able to find the column rank
and the row rank of matrices over tropical semirings.

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: sjamshidvand@mail.kntu.ac.ir

64



S. Jamshidvand, F. Olia and Sh. Ghalandarzadeh

2 Definitions and Preliminaries

Definition 2.1. (See [1]) Let S be a semiring. A left S-semimodule is a commutative
monoid (M,+) with identity element 0M for which we have a scalar multiplication function
S ×M −→ M, denoted by (s,m) 7→ sm, which satisfies the following conditions for all
s, s′ ∈ S and m,m′ ∈M:

1. (ss′)m = s(s′m) ;

2. s(m+m′) = sm+ sm′;

3. (s+ s′)m = sm+ s′m;

4. 1Sm = m;

5. s0M = 0M = 0Sm.

Right semimodules over S are defined in an analogous manner.

Definition 2.2. A nonempty subset N of a left S-semimodule M is a subsemimodule of
M ifN is closed under addition and scalar multiplication. The rank of a left S-semimodule
M is the smallest n for which there exists a set of generators of M with cardinality n.

Definition 2.3. (See [2]) Let M be a left S-semimodule. A nonempty subset A of M
is called linearly independent if α /∈ Span(A \ {α}) for any α ∈ A. If A is not linearly
independent then it is called linearly dependent.

Definition 2.4. (See [4]) Let A ∈ Mm×n(S). The right S-subsemimodule of Mm×1(S)
generated by the columns of A is called column space and denoted by colrank(A). Sim-
ilarly, The left S-subsemimodule of M1×n(S) generated by the rows of A is called row
space and denoted by rowrank(A).

The set of all m× n matrices over S denotes by Mm×n(S). The matrix operations for
any A,B ∈Mm×n(S), C ∈Mn×l(S) and λ ∈ S can be considered as follows.

A+B = (max(aij , bij))m×n, AC = (
n

max
k=1

(aik + ckj))m×l, and λA = (λ+ aij)m×n.

For convenience, we can denote the scalar multiplication λA by λ+A. Moreover, max−plus
algebra is a commutative semiring, which implies λ+A = A+ λ.

we study the system of linear equations AX = b where A ∈Mm×n(S), b ∈ Sm and X
is an unknown column vector of size n over max−pluse algebra, whose i−th equation is

max(ai1 + x1, ai2 + x2, · · · , ain + xn) = bi.

Definition 2.5. Let A,B ∈ Mn(S) such that A = (aij) and B = (bij). We say A ≤ B if
and only if aij ≤ bij for every i ∈ m and j ∈ n where n = {1, · · · , n} and m = {1, · · · ,m}.

Definition 2.6. A solution X∗ of the system AX = b is called maximal, if X ≤ X∗ for
any solution X.

Definition 2.7. A vector b ∈ Sm is called regular if bi 6= −∞ for any i ∈ m.
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3 Main results

In this section, we introduce a method, which we call the normalization method, for
solving a system of linear equations. Consider the system of linear equations AX = b,
where A = (aij) ∈Mm×n(S), b = (bi) is a regular m−vector over S and X is an unknown
n−vector. Let the j-th column of the matrix A be denoted by Aj .

Definition 3.1. (Normalization Method) Let A ∈Mm×n(S) and Aj ∈ Sm be a regular
vector for any j ∈ n. Then the normalized matrix of A is denoted by

Ã =
[
A1 − Â1 A2 − Â2 · · · An − Ân

]
,

where Âj =
a1j+a2j+···+amj

m for every j ∈ n.
Similarly, the normalized vector of the regular vector b ∈ Sm is

b̃ = b− b̂,

where b̂ = b1+b2+···+bm
m .

As such, we can rewrite the system AX = b as the normalized system ÃY = b̃, where
Y = (Âj − b̂) +X = (Âj − b̂+ xj)

n
j=1, as follows.

AX = b ⇒ max(A1 + x1, A2 + x2, · · · , An + xn) = b

⇒ max((A1 − Â1) + Â1 + x1, (A2 − Â2) + Â2 + x2, · · · , (An − Ân) + Ân + xn) = (b− b̂) + b̂

⇒ max(Ã1 + Â1 + x1, Ã2 + Â2 + x2, · · · , Ãn + Ân + xn) = b̃+ b̂

⇒ max(Ã1 + (Â1 − b̂+ x1), Ã2 + (Â2 − b̂+ x2), · · · , Ãn + (Ân − b̂+ xn)) = b̃

⇒ max(Ã1 + y1, Ã2 + y2, · · · , Ãn + yn) = b̃

⇒ ÃY = b̃.

Hence yj ≤ b̃i − ãij for every i ∈ m and j ∈ n. Now, we define the associated normalized
matrix Q = (qij) ∈Mm×n(S) where qij = b̃i− ãij . We choose yj as the minimum element
of Qj (the j-th column of Q), which we call the “j-th column minimum element”.
It should be noted that if aij = −∞ for some i ∈ m and j ∈ n, then we will not count aij
in the normalization process of column Aj , i.e.

Âj =
a1j + a2j + · · ·+ a(i−1)j + a(i+1)j + · · ·+ amj

m− 1
.

As such, ãij = −∞ and we set qij := (−∞)− such that s < (−∞)− for any s ∈ S. Thus,
qij does not affect the j−th column minimum element. Consequently and without loss of
generality, we assume that every column of the system matrix is regular.

Theorem 3.2. The linear system of equations AX = b has solutions if and only if there
exists at least one column minimum element in every row of Q.

Proof. Let the system AX = b has solutions. Suppose the i-th row of Q has no column
minimum element for some i ∈ m. That is yj < b̃i − ãij for every j ∈ n, therefore the i-th
equation of the system ÃY = b̃ is

max(ãi1 + y1, ãi2 + y2, · · · , ãin + yn) < b̃i.

Hence, the system ÃY = b̃ and a fortiori the system AX = b have no solution, which is a
contradiction.
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Conversely, suppose that every row of the matrix Q contains at least one column minimum
element, so for any i ∈ m there is some j ∈ n such that yj = b̃i − ãij . Then

max(ãi1 + y1, ãi2 + y2, · · · , ãij + yj , · · · , ãin + yn) = b̃i

for every i ∈ m. Thus, the system ÃY = b̃ and consequently the system AX = b have
solutions.

Remark 3.3. The solution of the system AX = b that is obtained from Theorem 3.2 is
maximal.

Example 3.4. Let A ∈M4×5(S). Consider the following system AX = b:




165 57 72 −7 0
141 64 48 3 −1
137 101 46 0 2
−243 98 −206 156 −5







x1
x2
x3
x4
x5




=




102
78
76
160


 .

By Definition 3.1, the system AX = b is rewritten as the normalized system ÃY = b̃:




115 −23 82 −45 1
91 −16 58 −35 0
87 21 56 −38 3
−293 18 −196 118 −4







y1
y2
y3
y4
y5




=




−2
−26
−28
56


 .

Note that the j-th column of Ã is Ãj = (aij−Âj)
4
i=1, for any 1 ≤ j ≤ 5 and b̃ = (bi− b̂)4i=1,

where Â1 = 50, Â2 = 80, Â3 = −10, Â4 = 38, Â5 = −1, b̂ = 104. Now, we can build the
matrix Q = (qij) ∈M4×5(S), with qij = b̃i − ãij as follows.




−117 21 −84 43 −3

−117 −10 −84 9 −26

−115 −49 −84 10 −31

349 38 252 −62 60


 ;

where the minimum column elements are boxed. Since every row of Q contains at least
one of these minimum column elements, due to Theorem 3.2, the system ÃY = b̃ has the
maximal solution Y ∗:

Y ∗ =




−117
−49
−84
−62
−31



.

Hence, the system AX = b has the maximal solution X∗:

X∗ =




−63
−25
30
4
74




;

where x∗j = y∗j − Âj + b̂, for any 1 ≤ j ≤ 5.
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3.1 Solving equivalent systems of linear equations

Definition 3.5. Let A,A′ ∈Mm×n(S).We say A is equivalent to A′ if there exist nonzero
coefficients α1, α2, · · · , αn ∈ S such that A′j = Aj + αj for any j ∈ n, and we write

A ∼ A′ ⇐⇒ A′ = [A1 + α1| · · · |An + αn]

for some α1, α2, · · · , αn ∈ S\{−∞}.

The equivalence class of A is defined as follows.

[A] = {A′ ∈Mm×n(S)|A ∼ A′}
Note that this equivalence relation also holds for vectors.

Theorem 3.6. Let A ∈ Mm×n(S) and b ∈ Sm be a regular vector. Then the system
AX = b has solutions if and only if the equivalent system A′X ′ = b′ has solutions for any
A′ ∈ [A] and b′ ∈ [b].

Proof. Suppose AX = b has solutions. By theorem 3.2, every row of its associated nor-
malized matrix, Q = (qij), contains at least one column minimum element, where

qij = b̃i − ãij = (bi − b̂)− (aij − Âj).

On the other hand, since A′ = (a′ij) ∈ [A] and b′ = (b′i) ∈ [b], there exist coefficients
α1, α2, · · · , αn, β ∈ S\{−∞} such that a′ij = aij + αj and b′i = bi + β. Now, consider the
associated normalized matrix Q′ = (q′ij) of the system A′X ′ = b′ such that

q′ij = b̃′i − ã′ij = (b′ − b̂′)− (a′ij − Â′j)
= (bi + β − b̂′)− (aij + αj − Â′j)
= (bi − b̂)− (aij − Âj) (3.1)

= qij ,

for any i ∈ m and j ∈ n. It should be noted that the equality (3.1) is obtained from:

b̂′ =
b′1 + · · ·+ b′m

m
=

(b1 + β) + · · ·+ (bm + β)

m

=
(b1 + · · ·+ bm)

m
+ β

= b̂+ β

and similarly, Â′ = Âj + αj . This means Q = Q′ and consequently, the column minimum
elements of Q and Q′ are the same. Hence, the proof is complete. Similarly, we can prove
the converse.

3.2 Determining the column rank by normalization method

We consider the following arbitrary matrix A:

A =
[
A1 A2 · · · An

]
,

where Aj is the j-th column of A.
We check the existence of solutions of the following system by the normalization method:

[
A1 A2 · · · An−1

]
X = An. (1)
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Here, we have two cases:

(a) If the system (1) has no solution, we conclude that An is an independent column
of A. In this case, An can not be removed from the set of generators of Col(A).
As such, we consider the following system by setting An as the first column of the
coefficient matrix:

[
An A1 A2 · · · An−2

]
X = An−1, (2)

(b) If the system (1) has solutions, then An is dependent on the other columns of
matrix A. Hence, we remove the column An from the set of generators of Col(A),
and colrank(A) ≤ n− 1. Now, we can consider the new system as follows.

[
A1 A2 · · · An−2

]
X = An−1, (3)

Next, we check both cases (a) and (b) for the systems (2) or (3) depending on which one
has happened. We repeat this until we get a linear system whose vector is A1 and whose
matrix is the independent columns of matrix A which are obtained from the procedure.
Finally, we check both cases 1 and 2 for this last system. At this point, we can completely
determine the independent columns and the column rank of A.

Remark 3.7. Note that we can obtain the row rank of A by applying the above method
to the matrix AT and finding the column rank of AT , i.e., rowrank(A) = colrank(AT ).

Example 3.8. Consider the following matrix A ∈M4×5(S);



4 −4 2 3 3
5 7 7 2 6
10 12 12 8 11
4 −3 2 3 3


 ,

by applying the above method, we can conclude that colrank(A) = 2.

4 Conclusion

In this paper, applying the normalization method to a linear system, we presented a
necessary and sufficient condition for the system to have a solution. In order to determine
the column rank and the row rank of an arbitrary matrix.
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direct sum of two Jordan blocks?1
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Abstract

Let Jn(λ) be the n × n Jordan block with a positive real eigenvalue λ. In this
note, we give some sufficient conditions on λ so that the origin is not included in the
polynomial numerical hull of degree 2 for the matrix Jn(λ)⊕ Jn(−λ).
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1 Introduction

Let Mn(C) be the set of all n × n complex matrices. The numerical range (or field of
values) of a matrix A ∈ Mn(C) is a convex and compact subset of the complex plane:
W (A) = {x∗Ax : x ∈ Cn, ‖x‖ = 1}, where x∗ stands for transpose of the complex
conjugate of the vector x and ‖x‖ and ‖A‖ represent the Euclidean 2-norm of a vector
x and a matrix A, respectively. By a Jordan block Jn(λ), we mean an n × n bidiagonal
upper triangular Toeplitz matrix with λ on its main diagonal and 1 on its superdiagonal.
We use the notation Jn instead of Jn(0). It is known that the numerical range of a Jordan
block Jn(λ) is a closed circular disk with the center at λ and the radius r = cos( π

n+1) i.e.
W (Jn(λ)) = D(λ, cos( π

n+1)) [3].

For any 1 ≤ k ≤ n, the polynomial numerical hull of degree k for A ∈ Mn(C) was
introduced and defined by Nevanlinna [6]

Hk(A) := {z ∈ C : |p(z)| ≤ ‖p(A)‖, ∀p ∈Pk}, (1)

where Pk denotes the set of all polynomials of degree at most k, and ‖.‖ denotes the
2− matrix norm. Polynomial numerical hulls can be considered as a generalization of the
numerical range; H1(A) = W (A). These sets have many useful properties in the studying
iterative methods such as Krylov subspace methods. Th following lemma, gives us some
basic properties of the polynomial numerical hulls.

Lemma 1.1. [2, 6] Let A ∈ Mn(C). Then for any 1 ≤ k ≤ n the following properties
hold:

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: s.karami@iasbs.ac.ir
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1. σ(A) = Hn(A) ⊆Hn−1(A) ⊆ · · · ⊆H2(A) ⊆H1(A) = W (A).

2. Hk(U
∗AU) = Hk(A) for any unitary matrix U ∈Mn(C).

3. Hk(αA+ βI) = αHk(A) + β for all α and β in the complex plane C.

4. If A is a Hermitian matrix, then H2(A) = σ(A).

Polynomial numerical hulls of a Jordan block has been studied in [1]. It is shown that
the polynomial numerical hull of degree k, 1 ≤ k ≤ n− 1, is a circular disk with a positive
radius around the eigenvalue of Jordan block. In the paper, we consider the polynomial
numerical hull of degree 2 for the matrix A, where A = Jn(λ) ⊕ Jn(λ). This subject
is related to the stagnation of order 2 of the Generalized Minimal Residual (GMRES)
method for solving the linear system Ax = b. For these types of matrices, 0 ∈ Hm(A)
if and only if there exists a right hand side vector b such that the GMRES method for
solving the linear system Ax = b (with the initial guess x0 = 0) has stagnation of order
m [4]. Therefore, if 0 /∈H2(A), then for any right hand side vector b, the GMRES method
does not stagnate. This provides a motivation for our work.

2 Main results

In this section, we study the conditions on λ for which we have 0 /∈ H2 (A), where
A = Jn(λ)⊕ Jn(−λ) and λ > 0. Please, note that the results of this section are different
of the ones stated in [5, Theorem 2.6]. According to Theorem 2.6 of [5], if λ >

√
2, then

0 /∈H2 (Jn(λ)⊕ Jn(−λ)), for any n ≥ 2. However in this section, for any n ≥ 2 we give a
positive scalar an such that if λ > an then 0 /∈ H2 (Jn(λ)⊕ Jn(−λ)). Our method, here,
is giving an including region for the numerical range of the matrices Jn(λ)k, k = 2, . . .
independent of [5, Remark 4].

At the first, by using an orthogonal transformation, we determine the Jordan canonical
form of the matrix Jkn . Actually, for any 2 ≤ k ≤ n−1, we use a permutation to gathering
Jordan sub-blocks of Jkn . This permutation is determined in terms of remainders of division
of n− 1 by k. Note that, for any k ≥ n, Jkn = 0 and for any 1 ≤ k ≤ n− 1, the matrix Jkn
is an upper triangular matrix with 1’s on its kth superdiagonal and 0 in other places.

Lemma 2.1. Let n ∈ N. Then for any 1 ≤ k ≤ n−1, the matrix Jkn is orthogonal similar
to the matrix

Jm1 ⊕ . . .⊕ Jm1︸ ︷︷ ︸
r1times

⊕ Jm2 ⊕ . . .⊕ Jm2︸ ︷︷ ︸
r2times

,

where m1 = [n−1k ] + 1,m2 = [n−1k ], r1 = ((n− 1) mod k) + 1 and r2 = k − r1.

Example 2.2. The matrix J3
16 is orthogonal similar to the matrix J6 ⊕ J5 ⊕ J5 and the

matrix J14
16 is orthogonal similar to J2⊕J2⊕012. Also the matrix J8

21 is orthogonal similar
to the matrix J3 ⊕ J3 ⊕ J3 ⊕ J3 ⊕ J3 ⊕ J2 ⊕ J2 ⊕ J2.

Next, we turn to our main result in this section. For this aim, we recall that for
any two matrices A and B, W (A ⊕ B) = Conv(W (A) ∪ W (B)) [3]. Since, m1 >
m2 we get W (Jm1) ⊇ W (Jm2). Therefore W (Jkn) = W (Jm1) = D(0, cos( π

m1+1)) =
D(0, cos( π

[n−1
k

]+2
)).

Now, we consider polynomial numerical hulls of the matrix Jn(a)⊕Jn(b), where a, b ∈
C. By rotation and translation we need only to study these sets for the matrices of the form
Jn(λ)⊕Jn(−λ), where λ ∈ R, (see Lemma 1.1). We remember that for any 1 ≤ k ≤ n−1,
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Hk(Jn(λ)) = D(λ, rk,n), the circle disk with the center λ, and radius rk,n [1, 2]. It is
known that 0 < rn−1,n ≤ rn−2,n ≤ · · · ≤ r1,n = cos( π

n+1) < 1. Since Jn(λ) and Jn(−λ) are
principle sub-matrices of A, we obtain that

D(λ, rk,n) ∪D(−λ, rk,n) ⊆Hk (Jn(λ)⊕ Jn(−λ)) , k = 2, . . . , n− 1. (2)

Remark 2.3. By using the fact that the matrix A = Jn(λ)⊕Jn(−λ) is unitary equivalent
to the matrix Ã = Jn(λ) ⊕ −Jn(λ), we obtain that the sets Hk(A), k = 1, . . . , 2n are
symmetric with respect to x and y axises.

Lemma 2.4. Let A = J2(λ)⊕ J2(−λ). Then the following statements are equivalent:

(i) |λ| ≤ 1,

(ii) 0 ∈H2(A),

(iii) 0 ∈H3(A).

Proof. The equivalence of (i) and (iii) is due to [5, Theorem 2.1] and we need to prove the
equivalence of (i) and (ii). If 0 ∈H2(A), then

0 ∈W (A2) = F
(
J2(λ)2 ⊕ J2(−λ)2

)

= F (J2(λ)2) ⊆ D(λ2, |λ|).
(3)

Thus |λ| ≤ 1. For converse assume that |λ| ≤ 1 and let X = (x1, . . . , x4)
T ∈ C4, where

x1 = x3 =

√
1+
√

1−|λ|2
2 and x2 = −x4 = −λ

4x1
. It is readily seen that ‖X‖ = 1 and

X∗AX = X∗A2X = 0. Therefore (0, 0) ∈W (A,A2) and hence 0 ∈H2(A).

Now, we study polynomial numerical hull of degree 2 for general n. Note that as we
say in the introduction analytical computing of polynomial numerical hull for general n
represent a very difficult problem which leads to computing zeros of an complex polynomial
of order 2n. However, in the following we give an analytical conditions on λ such that
origin lie in the polynomial numerical hull of degree 2.

Theorem 2.5. Let A = Jn(λ) ⊕ Jn(−λ) where λ ∈ (0,+∞) and n ≥ 3. Let m = [n+1
2 ]

and r1 = cos( π
n+1),r2 = cos( π

m+1). Then:

i) If 0 ≤ λ ≤ 1, then 0 ∈H2(A). Moreover [−
√
λ2 + λ,

√
λ2 + λ] ⊆H2(A).

ii) If λ > r1 +
√
r21 + r2, then H2(A) ∩ {z : |z| < α} = ∅, where α = (λ2 − 2λr1 − r2)

1
2

and therefore 0 /∈H2(A).

Proof. Since the matrix J2(λ) ⊕ J2(−λ) is a principle sub matrix of the matrix A, the
assertion in (i) follows by using Lemma 2.4. Now, we consider (ii). An observation shows
that A2 = B⊕C, where B = Jn(λ)2 = λ2In + 2λJn + J2

n and C = λ2In− 2λJn + J2
n. The

matrix C is unitary similar to the matrix B. Therefore W (A2) = W (B) = W (Jn(λ)2). So

W (A2) = W (λ2 + 2λJl + J2
l )

⊆ λ2 + 2λD(0, r1) +D(0, r2) = D(λ2, 2λr1 + r2).
(4)

Since λ > r1+
√
r21 + r2, we have λ2−2λr1−r2 > 0. If |z| < α, then |z2−λ2| ≥ λ2−|z|2 >

2λr1 + r2 and hence z2 /∈W (A2). Therefore z /∈H2(A) and the proof is completed.
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Remark 2.6. Let A = Jn1(λ) ⊕ Jn2(−λ). By choosing n = max{n1, n2} and letting
Â = Jn(λ) ⊕ Jn(−λ), we know that A is a principle sub-matrix of Â. So if 0 /∈ H2(Â),
then 0 /∈H2(A). Hence we can use Theorem 2.5 for Â instead of A.

Example 2.7. Let A = J4(2) ⊕ J3(−2). Then n = 4 and by Theorem 2.5, we obtain
that H2(A) ∩ {z ∈ C : |z| < α} = ∅, where α =

√
4− 4 cos π5 − cos π3 = 0.5137. There-

fore 0 /∈ H2(A). Also note that by equation (2), D(2, r2,4) ∪ D(−2, r2,3) = D(2, 0.7) ∪
D(−2, 0.6) ⊆ H2(A). In Figure 1, we plot the set H2(A) together with the circle
{z : |z| = 0.5137}(which is shown by dashed curve).

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

The Numerical Range of A

Figure 1: Polynomial numerical hull of degree 2

Now, let A = Jn1(λ1) ⊕ Jn2(λ2), where λi ∈ R, ni ≥ 2, i = 1, 2 and without loss of
generality assume that λ2 < λ1. Here we investigate when 0 ∈H2(A). If λ1 < − cos( π

n1+1)
or λ2 > cos( π

n2+1), then 0 /∈ W (A) = H1(A) and so 0 /∈ H2(A). Also if |λi| ≤ r2,ni for
i = 1 or i = 2, then 0 ∈ H2(A), where r2,n denotes the radius of the circular disk
H2(Jn) (see eqaution (2)). The crucial case is when λ2 < 0 < λ1. By using Theorem
2.5 and translation property of polynomial numerical hulls, in the following we give some
statements for this case, which help us to investigate whether 0 ∈H2(A).

Theorem 2.8. Let A = Jn(λ1) ⊕ Jm(λ2) where λ1, λ2 ∈ R and λ1 ≥ λ2. Let l =
max{n,m},ml = [ l+1

2 ], r1 = cos( π
l+1), r2 = cos( π

ml+1), λ = λ1+λ2
2 and d = λ1−λ2

2 . If

d > r1 +
√
r21 + r2, then H2(A) ∩ {z ∈ C : |z − λ| < α} = ∅ where α =

√
d2 − 2dr1 − r2.

Example 2.9. Let A = J3(5) ⊕ J2(−1). It is readily seen that 0 ∈ H1(A) = W (A). By
the previous theorem notations we have: d = 3, λ = 2, r1 = 0.707, r2 = 0.5 and α = 2.0635.
Thus Re(H2(A)) ∩ (−0.0635, 4.0635) = ∅. In particular we obtain that 0 /∈ H2(A)(see
Figure 2).

3 Conclusion

For the matrix A = Jn(λ) ⊕ Jn(−λ) the origin lies between λ and −λ. Thus 0 ∈ W (A),
the numerical range of A. In this note, we gave some sufficient conditions on the positive
scalar λ such that the origin is not included in the polynomial numerical hull of degree 2
of the matrix A.
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Abstract

In this article we define and study a majorization relation on Rn, also we study its
linear preservers. Let x, y be in Rn, we say x is majorized by y and write x ≺ y when
x = Ty for some t-transform T . We say a linear transformation f is a linear preserver
of ≺t if x ≺t y implies that f(x) ≺t f(y).
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1 Introduction

We call a linear map T on Rn a t-transform if there exists 0 ≤ t ≤ 1 and indices 1 ≤
j, k ≤ n such that

Ty = (y1, . . . , yj−1, tyj + (1− t)yk, yj+1, . . . , (1− t)yj + yk, yk+1, . . . , yn),

for all y = (y1, . . . , yn) ∈ Rn.
If [T ] is the matrix representation of a t-transform T with respect to the stundard basis
of Rn then

[T ] =




1 0
. . .

1− t t
1

. . .

t 1− t
. . .

0 1




Also we can write [T ] = tI + (1 − t)Q, where I is the n × n identity matrix and Q
is a permutation matrix that Qej = ek, Qek = ej and Qei = ei for all i 6= j, k, where
{e1, . . . , en} is the stundard basis on Rn. It is trivial that a t-transform is singular if and
only if t = 1/2.

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: f khalooei@uk.ac.ir
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If x and y are nonincreasing vectors in Rn such that
∑k

i=1 xi ≤
∑k

i=1 yi for k = 1, . . . , n
with equality for k = n, then we say that x is multivariate majorized by y and write x ≺ y.
A linear operator T on Rn is said to be a linear preserver of a given relation ≺ on Rn if
x ≺ y implies that Tx ≺ Ty. For more information about other majorization and their
linear preservers we refer the reader to [3], [4] and [5].
An n × n matrix D = [dij ] is called doubly stochastic if dij ≥ 0,

∑n
k=1 dik and

∑n
k=1 dkj

are equal to 1 for all i, j. The set of doubly stochastic matrices is denoted by DS(n).
Also we can describe doubly stochastic matrices by

DS = {D ∈Mn : D ≥ 0, De = e, Dte = e},
where e ∈ Rn is the vector whose components are all +1.

Theorem 1.1. [2, Birkhoff’s Theorem] The set of n × n doubly stochastic matrices is a
convex set whose extreme points are the permutation matrices.

Theorem 1.2. [2]For x, y ∈ Rn, the following statements are equivalent

1. x ≺ y,
2. x is obtained from y by a finite number of t-transforms,

3. x = Dy for some doubly stochastic matrix D.

2 Main results

In this section we define a majorization relation on Rn and study some of its properties.
Also by an example we show that ≺ dose not imply it.

Definition 2.1. For x, y ∈ Rn we say x is t-majorized by y and write x ≺t y when
x = Ty for some t-transform T .

Corollary 2.2. On R2 the following statemants are true

1. A 2× 2 matrix is doubly stochastic if and only if it is a t-transform.

2. If x, y ∈ R2 then x ≺ y if and only if x ≺t y.

Theorem 2.3. For x, y ∈ Rn

1. if n ≥ 2, x ≺t y and y ≺t x if and only if x = Py for some n×n permutation matrix
P , which is the identity matrix or a permutation matrix that just interchanges two
coordinates.

2. for n = 2, x ≺t y and y ≺t x if and only if x = Py for some 2 × 2 permutation
matrix P .

Example 2.4. Multivariate majorization does not imply t-majorization on Rn. n ≥ 3.
(3, 2.5, 1.5) ≺ (4, 2, 1) but (3, 2.5, 1.5) 6≺t (4, 2, 1).

Theorem 2.5. [1] A linear map T : Rn → Rn preserves ≺ if and only if one of the
following holds

1. Tx = (trx)a for some a ∈ Rn,

2. Tx = αPx+ βJx, for some α, β ∈ R and n× n permutation matrix P .

Theorem 2.6. If T : Rn → Rn has the form Tx = (trx)a for some a ∈ Rn or Tx =
αPx + βJx, for some α, β ∈ R and n × n permutation matrix P , then T is a linear
preserver of ≺t.
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using symmetric and skew-symmetric iteration method1
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Abstract

In the implementation of the symmetric and skew-symmetric splitting precondi-
tioner in a Krylov subspace method for generalized saddle point problems, a shifted
skew-symmetric system should be solved. In this paper, we propose an efficient it-
erative method for solving this system and investigate its convergence properties.
Numerical results are given to show the efficiency of the method.

Keywords: SSS, Iterative method, Preconditioner, Skew-symmetric, Generalized sad-
dle point
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1 Introduction

Benzi and Golub in [2] proposed using the symmetric and skew-symmetric (SSS) iteration
method for solving the generalized saddle point problems

Ax =

(
A BT

−B C

)(
x
y

)
=

(
f
g

)
≡ b, (1)

where A ∈ Rn×n, C ∈ Rm×m and B ∈ Rm×n, f ∈ Rn, g ∈ Rm and m ≤ n. According to
the SSS iteration, the matrix A is split as A = H+ S, where

H =
1

2

(
A+AT

)
=

(
H 0
0 C

)
and S =

1

2

(
A−AT

)
=

(
S BT

−B 0

)
,

in which H = (A+AT )/2 and S = (A−AT )/2. For α > 0, both of the matrices αI +H
and αI + S are nonsingular, where I is the identity matrix of order m+ n. In this case,
the SSS iteration method for the saddle point problem (1) is written as

{
(αI +H) xk+

1
2 = (αI − S) xk + b,

(αI + S) xk+1 = (αI −H) xk+
1
2 + b,

(2)

where x0 is an initial guess. Computing xk+
1
2 from the first equation and substituting it

in the second one, gives the iteration xk+1 = Tαxk + c, where

Tα = (αI + S)−1 (αI −H) (αI +H)−1 (αI − S) ,

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: khojasteh@guilan.ac.ir
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and c = 2α (αI + S)−1 (αI +H)−1 b. In [2], it was shown that if A is positive real
(xTAx > 0, for every nonzero vector x ∈ Rn), C is symmetric positive semidefinite and B
has full rank, then the iteration (2) is unconditionally convergent.

As the authors of [2] mentioned the iteration method (2) is typically show for the
method to be competitive and proposed using a nonsymmetric Krylov subspace method
like GMRES or its restarted version GMRES(m) [6] in conjunction with the SSS precon-
ditioner induced by the iteration method. It is known that there is a unique splitting
A =Mα −Nα, with Mα being nonsingular and Tα =M−1α Nα = I −M−1α A, where

Mα =
1

2α
(αI +H) (αI + S) , Nα =

1

2α
(αI −H) (αI − S) . (3)

If the SSS method is convergent then the eigenvalues of AM−1α are included in the unit
circle centered at (1, 0). Hence, it is expected that a Krylov subspace method like GM-
RES or its restarted version will be suitable for solving the right-preconditioned system
AM−1α y = b with x = M−1α y. The pre-factor 1

2α in Mα has no effect on the precondi-
tioned system, hence it can be omitted and the matrix Mα = (αI +H) (αI + S) can be
used as a preconditioner.

Application of the preconditioner Mα within the GMRES method requires solving
linear systems of the formMαz = r which can be done by first solving (αI+H)v = r, for
v and then (αI+S)z = v. System (αI+H)v = r can be reduced to two sub-systems of the
form (αIn +H)v1 = r1 and (αIm +C)v2 = r2, where v1, r1 ∈ Rn, v2, r2 ∈ Rm, v = (v1; v2)
and r = (r1; r2). Here, Ir denotes the identity matrix of order r. Obviously, the coefficient
matrices of these systems are SPD. Hence, they can be solved exactly using the Cholesky
factorization or inexactly by the conjugate gradient (CG) method [6]. However, solving
Eq. (αI + S)z = v is not trivial. This system can be equivalently rewritten as

Rz =

(
αIn + S BT

−B αIm

)(
z1
z2

)
=

(
v1
v2

)
= v, (4)

where z1 ∈ Rn, z2 ∈ Rm and z = (z1; z2). As the authors of [2] suggested, the vector z
can be computed by first solving

(
α2Im +B(In +

1

α
S)−1BT

)
z2 = B(In +

1

α
S)−1v1 + αv2, (5)

for z2, followed by (αIn +S)z1 = v1−BT v2. Both of these systems can be solved directly
using the LU factorization or inexactly using a Krylov subspace matrix like GMRES.

In this paper, we present an efficient iterative method for solving the system (4) which
is unconditionally convergent. So, in the implementation of the SSS preconditioner within
a Krylov subspace method we can apply the proposed iteration method.

2 The new method

We split the coefficient matrix of Eq. (4) as R = R1 +R2, where

R1 =

(
αIn + S 0

0 αIm

)
and R2 =

(
0 BT

−B 0

)
,

Obviously, R1 and R2 are shifted skew-symmetric and skew-symmetric matrices, respec-
tively. In fact, Eq. R = R1 +R2 presents a shifted skew-symmetric and skew-symmetric
splitting (SSSS). For β > 0, using the splittings

R = (βI +R1)− (βI −R2) = (βI +R2)− (βI −R1),
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we propose the SSSS iteration method for solving Eq. (4) as following
{

(βI +R1) zk+
1
2 = (βI −R2) zk + v,

(βI +R2) zk+1 = (βI −R1) zk+
1
2 + v.

(6)

The SSSS iteration method can be written as zk+1 = Gα,βzk + d, where

Gα,β = (βI +R2)
−1 (βI −R1) (βI +R1)

−1 (βI −R2) ,

and d = 2β (βI +R2)
−1 (βI +R1)

−1 v. On the other hand, we have R = Pα,β − Qα,β,
where

Pα,β =
1

2β
(βI +R2) (βI +R1) , Qα,β =

1

2β
(βI −R2) (βI −R1) .

Therefore, Pα,β can be used as a preconditioner for the system (4). We now state the
convergence of the SSSS iteration method for solving (4).

Theorem 2.1. Let S ∈ Rn×n be skew-symmetric matrix and B ∈ Rm×n. Then, the SSSS
iteration method is unconditionally convergent, i.e., ρ(Gα,β) < 1 for all α, β > 0.

Proof. Evidently, the matrix Gα,β is similar to

G̃α,β = (βI −R1) (βI +R1)
−1 (βI −R2) (βI +R2)

−1 = UV,
where U = (βI −R1) (βI +R1)

−1 and V = (βI −R2) (βI +R2)
−1. Since R2 is a skew-

symmetric matrix, we deduce that the matrix V is orthogonal and as a result we have
‖V‖2 = 1 (see [4, p. 68]). On the other hand, we have

U = ((β − α)I − J ) ((β + α)I + J )−1 , (7)

where J = bldiag(S, 0). Clearly, the matrix J is skew-symmetric and there is an orthogo-
nal matrixW, such that J =WDWT , where D = bldiag(D, 0) with D = diag(λ1, . . . , λn)
and λi ∈ σ(S), i = 1, . . . , n. It is well-known that the eigenvalues of the matrix S can be
written as λi = iµi, where µi ∈ R, i = 1, 2, . . . , n and i =

√
−1 (see [5, p. 101]). Therefore,

it follows from (7) that

U =W ((β − α)I − D) ((β + α)I +D)−1WT . (8)

Hence,

ρ(Gα,β) = ρ(G̃α,β) ≤ ‖UV‖2 ≤ ‖U‖2‖V‖2 = ‖U‖2
=

∥∥∥W ((β − α)I − D) ((β + α)I +D)−1WT
∥∥∥
2

=
∥∥∥((β − α)I − D) ((β + α)I +D)−1

∥∥∥
2

=

∥∥∥∥∥

(
((β − α)In −D) ((β + α)In +D)−1 0

0 β−α
β+αIm

)∥∥∥∥∥
2

=

∥∥∥∥diag

(
(β − α)− iµ1
(β + α) + iµ1

, . . . ,
(β − α)− iµn
(β + α) + iµn

,
β − α
β + α

, . . . ,
β − α
β + α

)∥∥∥∥
2

= max

{∣∣∣∣
β − α
β + α

∣∣∣∣ ,
√

(β − α)2 + µ2i
(β + α)2 + µ2i

: i = 1, . . . , n

}

=

√
(β − α)2 + ρ(S)2

(β + α)2 + ρ(S)2
=: δα,β.

Obviously, δα,β < 1, for all α, β > 0, which proves the convergence of the SSSS iteration
method.
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Theorem 2.2. Under the assumptions of Theorem 2.1 and for a fixed value of α, we have

β∗ = argmin
β
δα,β =

√
α2 + ρ(S)2.

Proof. Letting g(β) = δ2α,β, we get

g′(β) =
4α
(
β2 − (α2 + ρ(S)2)

)

((β + α)2 + ρ(S)2)2
.

Therefore, the minimizer of δα,β is given by β∗ =
√
α2 + ρ(S)2.

3 Inexact version of SSSS and its implementation issues

To compute zk+1 from (6), we need to solve two subsystems with the coefficient matrices
βI +R1 and βI +R2, which are very costly. To improve the implementation of the SSSS
iteration method, we can employ iteration methods for solving the two subsystems. This,
results in the inexact version of the SSSS (ISSSS) iteration method.

Let γk = zk+
1
2 − zk. In this case, we have zk+

1
2 = zk + γk. Substituting zk+

1
2 in the

first relation in Eq. (6), gives

(βI +R1) γ
k = v − (R1 +R2) zk = v −Rzk =: rk. (9)

This system is equivalent to

(
(β + α)In + S 0

0 (β + α)Im

)(
γk1
γk2

)
=

(
rk1
rk2

)
,

where γk1 , r
k
1 ∈ Rn and γk2 , r

k
2 ∈ Rm. To solve the above system we first solve the system

((β + α)In + S) γk1 = rk1, (10)

for computing γk1 , using a Krylov subspace method like GMRES or its restarted version
GMRES(`). Then the vector γk2 is simply computed via γk2 = rk2/(β + α).

Similarly, by setting γk+
1
2 = zk+1 − zk+

1
2 , from the second equation in (6) we get

(βI +R2) γ
k+ 1

2 = v − (R1 +R2) zk+
1
2 = v −Rzk+

1
2 =: rk+

1
2 . (11)

After computing the vector γk+
1
2 from the latter equation, the vector zk+1 is computed

via zk+1 = zk+
1
2 + γk+

1
2 . In the ISSSS algorithm, the systems (9) and (11) are solved

inexactly using the iterative methods. System (11) is equivalent to

(
βIn BT

−B βIm

)(
γ
k+ 1

2
1

γ
k+ 1

2
2

)
=

(
r
k+ 1

2
1

r
k+ 1

2
2

)
,

where γ
k+ 1

2
1 , r

k+ 1
2

1 ∈ Rn and γ
k+ 1

2
2 , r

k+ 1
2

2 ∈ Rm. For solving the above system, we first solve
the system

(β2Im +BBT )γ
k+ 1

2
2 = Br

k+ 1
2

1 + βr
k+ 1

2
2 =: r̃k+

1
2 , (12)

for computing γ
k+ 1

2
2 using the CG method, and then simply compute γ

k+ 1
2

1 via γ
k+ 1

2
1 =

(r
k+ 1

2
1 −BTγ

k+ 1
2

2 )/β. The resulting algorithm is summarized as follows.
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Algorithm 3.1. The ISSSS iteration method

1. Choose an initial guess z0.

2. For k = 0, 1, 2, . . . , until convergence, Do

3. Compute rk = v −Rzk.

4. Solve the system (10) approximately for γk1 using GMRES.

5. Compute γk2 = rk2/(β + α).

6. Set γk = (γk1 ; γk2 ) and zk+
1
2 = zk + γk.

7. Compute rk+
1
2 = v −Rzk+

1
2 .

8. Solve the system (12) approximately for γ
k+ 1

2
2 using CG.

9. Compute γ
k+ 1

2
1 = (r

k+ 1
2

1 −BTγ
k+ 1

2
2 )/β.

10. Set γk+
1
2 = (γ

k+ 1
2

1 ; γ
k+ 1

2
2 ) and zk+1 = zk+

1
2 + γk+

1
2 .

11. EndDo

4 Numerical experiments

In order to show the effectiveness of the ISSSS iteration method we solve some generalized
saddle point problems by the flexible GMRES (FGMRES) method [6] in conjunction with
the SSS preconditioner. All numerical experiments were performed in Matlab 2013a on
an Intel core i7 CPU (3.50 GHz) 16G RAM Windows 7 system. A zero vector was always
used as an initial guess and the stopping criterion ‖b−Ax‖2 < 10−6‖b‖2 was used.

We consider the Oseen problem

{
−ν∆u + w · ∇u +∇p = f in Ω,

∇ · u = 0 in Ω,
(13)

with suitable boundary conditions on ∂Ω, where Ω ⊂ R2 is a bounded domain and w is a
given divergence free field. The parameter ν > 0 is the viscosity, the vector field u stands
for the velocity and p represents the pressure. The Oseen problem (13) is obtained from
the linearization of the steady-state Navier-Stokes equation by the Picard iteration where
the vector field w is the approximation of u from the previous Picard iteration. Nine
iterations of the Picard iteration were used and the generated generalized saddle point in
the ninth iteration was used. We use the stabilized Q1-P0 finite element method for the
leaky lid driven cavity problems on stretched grids on the unit square, with the viscosity
parameter ν = 0.01. The stabilization parameter (β = 0.25) was used in all cases. We use
the IFISS software package [3] to generate the linear systems corresponding to 32 × 32,
64 × 64 and 128 × 128 grids. We mention that the matrix A is non-symmetric positive
definite, however the matrix B and has rank m− 2. In this case the matrix A is singular.
To get a nonsingular matrix A we drop last two rows of B and last two rows and columns
of C. For all test problems the right-hand side vector b is set to be b = A[1, 1, . . . , 1]T .

In the implementation of the SSS preconditioner we used the following two methods.
In both methods and for all the subsystems a zero vector was used as an initial guess and
the maximum number of iterations were set to be 20.

Method 1: The subsystems (αIn + H)v1 = r1 and (αIm + C)v2 = r2 were solved using
the CG method. We also solved the system Rz = v using the GMRES(10). The iterations
of CG and GMRES(10) were stopped as soon as the residual 2-norm was reduced by a
factor of 103.

Method 2: Similar to Method 1, the systems (αIn + H)v1 = r1 and (αIm + C)v2 = r2
were solved using the CG method. For solving the system Rz = v, the ISSSS algorithm
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was employed. For both the CG method and the ISSSS algorithm for solving the above
systems, the iterations were stopped as soon as the residual 2-norm was reduced by a factor
of 103. In the kth iteration of the ISSSS algorithm the system ((β + α)In + S) γk1 = rk1 was
solved using GMRES(10) with the stopping criterion ‖rk1−((β + α)In + S) γk1‖2 < εk‖rk1‖2,
where εk = max{10−3, 0.1 × 0.9k} (see [1]). Also, the system (12) was solved using CG

and the stopping criterion ‖r̃k+ 1
2 − (β2Im +BBT )γ

k+ 1
2

2 ‖2 < εk‖r̃k+
1
2 ‖2 was used.

For all the test problems we first choose an appropriate value of the parameter α for
Method 1 and the same value of α along with β∗ was used for Method 2. Numerical
results are given in Tables 1. As we observe there is no significant difference between the
number of iterations (Iter) of two methods. However, the elapsed CPU time for Method
2 is always less than those of Method 1.

Table 1: Numerical results for the stretched grid and ν = 0.01.

Metod 1 Metod 2

grid n m cond(A) α Iter CPU α β∗ Iter CPU

5× 5 2178 1022 9.20× 104 0.1 257 2.96 0.1 0.105 257 1.92
6× 6 8450 4094 3.06× 106 0.01 135 17.87 0.01 0.025 135 9.88
7× 7 33282 16382 1.32× 108 0.01 167 54.09 0.01 0.018 167 24.84

5 Conclusion

We have presented the shifted skew-symmetric splitting (SSSS) method and its inexact
version, ISSSS, for solving the shifted skew-symmetric system appeared in the implementa-
tion of the SSS preconditioner for the generalized saddle point problems. We have shown
that the SSSS iteration method is unconditionally convergent. Numerical results have
shown that the new implementation of the SSS preconditioner significantly reduces the
CPU time of the classical implementation of the SSS preconditioner.
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Minimal residual HSS iteration method for the Sylvester
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Abstract

By applying the minimal residual technique to the Hermitian and skew-Hermitian
(HSS) iteration scheme, we introduce a non-stationary iteration method named mini-
mal residual Hermitian and skew-Hermitian (MRHSS) iteration method, to solve the
continuous Sylvester equation. Numerical results verify the effectiveness and robust-
ness of the MRHSS iteration method for the Sylvester equation.

Keywords: Sylvester equation, Hermitian and skew-Hermitian method, Minimal resid-
ual
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1 Introduction

In many problems in scientific computing we encounter with matrix equations. Nowa-
days, the continuous Sylvester equation is possibly the most famous and the most broadly
employed linear matrix equation, and is given as

AX +XB = C, (1)

where A ∈ Cn×n, B ∈ Cm×m and C ∈ Cn×m are defined matrices and X ∈ Cn×m is
an unknown matrix. Equation (1) has a unique solution if and only if A and −B have
no common eigenvalues, which will be assumed throughout this paper. The Sylvester
equation appears frequently in many areas of applied mathematics and plays vital roles in
a number of applications such as control theory, model reduction and image processing,
see [1–3] and their references.

The matrix equation (1) is mathematically equivalent to the linear system of equations

Ax = c, (2)

where the matrix A is of dimension nm× nm and is given by

A = Im ⊗A+BT ⊗ In, (3)

where ⊗ denotes the Kronecker product (A⊗B = [aijB]) and

c = vec(C) = (c11, c21, · · · , cn1, c12, c22, · · · , cn2, · · · , cnm)T ,
x = vec(X) = (x11, x21, · · · , xn1, x12, x22, · · · , xn2, · · · , xnm)T .

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: mo.khorsand@mail.um.ac.ir
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Of course, this is a numerically poor way to determine the solution X of the Sylvester
equation (1), as the linear system of equations (2) is costly to solve and can be ill-
conditioned.

When both coefficient matrices are (non-Hermitian) positive semi-definite, and at least
one of them is positive definite, the Hermitian and skew-Hermitian splitting (HSS) method
[1] and the nested splitting conjugate gradient (NSCG) method [2] are often the methods
of choice for efficiently and accurately solving the Sylvester equation (1).

Motivated by [4, 5], we apply the minimal residual technique to the Hermitian and
skew-Hermitian iteration scheme and introduce a non-stationary iteration method named
minimal residual Hermitian and skew-Hermitian (MRHSS) iteration method to solve the
continuous Sylvester equation.

In the remainder of this paper, we use ||M ||2, ||M ||F and In to denote the spectral
norm, the Frobenius norm of a matrix M ∈ Cn×n, and the identity matrix with dimension
n, respectively. Note that ||.||2 is also used to represent the 2-norm of a vector. Fur-
thermore, we have the following equivalent relationships between the Frobenius norm of a
matrix R and the 2-norm of a vector r = vec(R):

||r||2 =

√√√√
mn∑

i=1

|ri|2 ⇔ ||R||F =

√√√√
m∑

i=1

n∑

j=1

|Rij |2.

2 Main results

For the linear system of equations (2), we consider the Hermitian and skew-Hermitian
splitting A = H+ S, where

H =
A+AT

2
, S =

A−AT
2

, (4)

are the Hermitian and skew-Hermitian parts of matrix A, respectively. Then, the iteration
scheme of the MRHSS iteration method [4, 5] for system of linear equations (2) is

{
x(k+

1
2
) = x(k) + βkδ

(k)

x(k+1) = x(k+
1
2
) + γkδ

(k+ 1
2
),

(5)

where, δ(k) = (α̂I +H)−1r(k), δ(k+
1
2
) = (α̂I + S)−1r(k+

1
2
), r(k) = c −Ax(k) and r(k+

1
2
) =

c−Ax(k+ 1
2
). Let M1 = A(α̂I+H)−1 andM2 = A(α̂I+S)−1. The residual form of iteration

scheme (5) can be written as
{
r(k+

1
2
) = r(k) − βkM1r

(k)

r(k+1) = r(k+
1
2
) − γkM2r

(k+ 1
2
).

(6)

Denote M = (α̂I +H)−1. Then, an inner product can be defined as

(x, y)M = (Mx,My), ∀x, y ∈ Cnm, (7)

where (·, ·) denotes the l2 inner product of two vectors. Thus, for x ∈ Cnm and X ∈
Cnm×nm, the induced vector and the induced matrix norms can be defined as ||x||M =
||Mx||2 and ||X||M = ||MXM−1||2, respectively. Now, the parameter βk is determined
by the 2-norm of the residual, and we have

βk =
(r(k),M1r

(k))

||M1r(k)||22
. (8)
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However, the parameter γk will be determined by minimizing the M-norm of the residual
rather than the 2-norm, see [4]. Therefore, we have

γk =
(Mr(k+

1
2
),MM2r

(k+ 1
2
))

||MM2r
(k+ 1

2
)||22

. (9)

The iteration scheme (5) is an unconditionally convergent MRHSS iteration method [4].
For the Sylvester equation (1), according to iterative scheme (5), we have the following

iteration scheme {
X(k+ 1

2
) = X(k) + βk∆

(k)

X(k+1) = X(k+ 1
2
) + γk∆

(k+ 1
2
),

(10)

where, ∆(0) obtain from the Sylvester equation

HA(α)∆(0) + ∆(0)HB(α) = R(0), (11)

and ∆(k+ 1
2
) obtain from the Sylvester equation

SA(α)∆(k+ 1
2
) + ∆(k+ 1

2
)SB(α) = R(k+ 1

2
), (12)

with R(0) = C − AX(0) −X(0)B and R(k+ 1
2
) = C − AX(k+ 1

2
) −X(k+ 1

2
)B. We state how

to update ∆(k+1) a few later.
If the Sylvester equation (1) has a unique solution, then under the assumption A and

B are positive semi-definite and at last one of them is positive definite, we can easily see
that there is no common eigenvalue between the matrices HA and −HB (also for SA and
−SB), so the Sylvester equations (11) and (12) have unique solution for all given right
hand side matrices.

Let HA(α) = αIn + HA, SA(α) = αIn + SA, HBT (α) = αIm + HBT , SBT (α) = αIm +
SBT and HA, SA, HBT , SBT are the Hermitian and skew-Hermitian parts of A and BT ,
respectively. From (3) and (4), by using the Kronecker product’s properties, we have

α̂I +H = Im ⊗HA(α) +HBT (α)⊗ In (13)

α̂I + S = Im ⊗ SA(α) + SBT (α)⊗ In (14)

where α = α̂
2 . Form relations (6), we can obtain

{
R(k+ 1

2
) = R(k) − βW (k)

R(k+1) = R(k+ 1
2
) − γW (k+ 1

2
)

(15)

where W (k) = A∆(k) + ∆(k)B and W (k+ 1
2
) = A∆(k+ 1

2
) + ∆(k+ 1

2
)B. Moreover, similar to

(8) and (9), we can obtain

β =
〈R(k),W (k)〉F
〈W (k),W (k)〉F

, (16)

and

γ =
〈V (k+ 1

2
), U (k+ 1

2
)〉F

〈U (k+ 1
2
), U (k+ 1

2
)〉F

, (17)

where, V (k+ 1
2
) obtain from the Sylvester equation

HA(α)V (k+ 1
2
) + V (k+ 1

2
)HB(α) = R(k+ 1

2
),
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and U (k+ 1
2
) obtain from the Sylvester equation

HA(α)U (k+ 1
2
) + U (k+ 1

2
)HB(α) = W (k+ 1

2
)

On the surface, four systems of linear equations should be solved at each step of the
MRHSS method for system of linear equations (2). But it can be reduced to three. Denote

ζ(k+
1
2
) = (α̂I + H)−1r(k+

1
2
) and v(k+

1
2
) = (α̂I + H)−1Aδ(k+ 1

2
), the vector δ(k+1) in Step

k + 1 can be calculated as follows

δ(k+1) = (α̂I +H)−1(c−Ax(k+1))

= (α̂I +H)−1(c−A(x(k+
1
2
) + γkδ

(k+ 1
2
)))

= (α̂I +H)−1(r(k+
1
2
) − γkAδ(k+

1
2
))

= ζ(k+
1
2
) − γkv(k+

1
2
),

where the ζ(k+
1
2
) and v(k+

1
2
) have been calculated in Step k. Therefore, in (10) we can

update ∆(k+1) as

∆(k+1) = V (k+ 1
2
) − γU (k+ 1

2
).

In addition, we choose the value of parameter α as in [1].
Therefore, an implementation of the MRHSS method for the continuous Sylvester

equation can be given by the following algorithm.

Algorithm 2.1. The MRHSS algorithm for the Sylvester equation

1. Select an initial guess X(0), compute R(0) = C −AX(0) −X(0)B

2. Solve HA(α)∆(0) + ∆(0)HB(α) = R(0)

3. For k = 0, 1, 2, · · · , until convergence, Do:

4. W (k) = A∆(k) + ∆(k)B

5. β = 〈R(k),W (k)〉F
〈W (k),W (k)〉F

6. X(k+ 1
2
) = X(k) + β∆(k)

7. R(k+ 1
2
) = R(k) − βW (k)

8. Solve SA(α)∆(k+ 1
2
) + ∆(k+ 1

2
)SB(α) = R(k+ 1

2
)

9. Solve HA(α)V (k+ 1
2
) + V (k+ 1

2
)HB(α) = R(k+ 1

2
)

10. W (k+ 1
2
) = A∆(k+ 1

2
) + ∆(k+ 1

2
)B

11. Solve HA(α)U (k+ 1
2
) + U (k+ 1

2
)HB(α) = W (k+ 1

2
)

12. γ = 〈V (k+1
2 ),U(k+1

2 )〉F
〈U(k+1

2 ),U(k+1
2 )〉F

13. X(k+1) = X(k+ 1
2
) + γ∆(k+ 1

2
)

14. R(k+1) = R(k+ 1
2
) − γW (k+ 1

2
)

15. ∆(k+1) = V (k+ 1
2
) − γU (k+ 1

2
)

16. End Do
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Theorem 2.2. Suppose that the coefficient matrices A and B in the continuous Sylvester
equation (1) are non-Hermitian positive semi-definite, and at least one of them is positive
definite. Then the MRHSS iteration method (10) for solving the Sylvester equation (1) is
unconditionally convergent for any α > 0 and any initial guess X(0) ∈ Cn×m.

Proof. The continuous Sylvester equation (1) is mathematically equivalent to the linear
system of equations (2). Therefore, the proof is similar to that of Theorem 3.3 in [4] with
only technical modifications.

3 Numerical results

All numerical experiments presented in this section were computed in double precision with
a number of MATLAB codes. All iterations are started from the zero matrix for initial
X(0) and terminated when the current iterate satisfies ‖R

(k)‖F
‖R(0)‖F ≤ 10−8, where R(k) =

C −AX(k) −X(k)B is the residual of the kth iterate. Also we use the tolerance ε = 0.001
for inner iterations in corresponding methods. For each experiment we report the CPU
time, the number of total outer iteration steps and the norm of residual ‖R(k)‖F , and
compare the HSS [1] iterative method with the MRHSS iterative method for solving the
continuous Sylvester equation (1).

Example 3.1. For this example, we use the matrices

A = M + 2rN +
100

(n+ 1)2
I, and B = M + 2rN +

100

(m+ 1)2
I

where M = tridiag(−1, 2,−1), N = tridiag(0.5, 0,−0.5) from suitable dimensions, and
r = 0.01 [2]. For this problem we consider n = 2048 and m = 8.

Example 3.2. We consider the continuous Sylvester equation (1) with n = m = 512 and
the coefficient matrices

{
A = diag(1, 2, · · · , n) + rLT ,
B = 2−tIn + diag(1, 2, · · · , n) + rLT + 2−tL,

with L the strictly lower triangular matrix having ones in the lower triangle part [1].

Example 3.3. For this example, we use A = B = tridiag(−1, 4,−2) of dimension 1000×
1000 instead the coefficient matrices A and B [2, 3].

We apply the iteration methods to these problems and the results are given in Table
1. Comparing the results in the Table 1, Shows that the MRHSS method is more efficient

Table 1: The results for the problems

HSS MRHSS
CPU iteration res-norm CPU iteration res-norm

Example 3.1 0.65 20 1.44109e-5 0.48 12 8.4888e-6
Example 3.2 210.01 99 0.0302 143.06 49 0.0304
Example 3.3 247.26 21 1.7697e-4 36.29 12 1.0527e-4

versus the HSS method.
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4 Conclusion

In this paper, we have proposed an efficient iterative method, which named the MRHSS
method, for solving the continuous Sylvester equation AX+XB = C. We have compared
the MRHSS method with the HSS method for some problems. We have observed that, for
these problems the MRHSS method is more efficient versus the HSS method.
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Abstract

In this paper, using some linear algebraic methods, we show that every latin tade
can be produced by intercalates (i.e. latin trades of volume 4). A similar result is
true for 4-cycle systems. That is, every 4-cycle system can be generated by double-
diamonds (4-cycle systems of volume 2).
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1 introduction

An interesting problem in combinatorics is that whether there can be defined some moves
(using trades of small volume or something else) between different elements of a class
of combinatorial objects with the same parameters, such as latin squares, Steiner triple
systems, etc. These moves must be such a way that each element has chance to be produced
by these moves.

By simulating an ergodic Markov chain whose stationary distribution is uniform over
the space of n × n latin squares, Mark T. Jacobson and Peter Matthews [4], have dis-
cussed elegant method by which they generate latin squares with a uniform distribution
(approximately). The central issue is construction of moves that connect the squares.

There does not exist a known move between Steiner triple systems as yet. Steiner
triple systems are 3-cycle systems.

In this note, we investigate two classes: latin squares and 4-cycle systems.

2 Latin square

A latin square L of order n is an n × n array with entries chosen from an n-set N =
{0, 1, . . . , n − 1} in such a way that each element of N occurs precisely once in each row
and in each column of the array. For ease of exposition, a latin square L will be represented
by a set of ordered triples {(i, j;Lij) : element Lij accures in cell (i, j) of the array}.

A partial latin square P of order n is an n×n array in which some of the entries are filled
with elements from N in such a way that each element of N occurs at most once in each

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Email address: khosravi−m@uk.ac.ir
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row and at most once in each column of the array. The set SP = {(i, j) : (i, j;Pij ∈ P}
is called the shape of P and the number of elements in SP is called the volume of P .

In a latin square P , we define RrP (CrP ) as the set of entries occurring in row (column)
r of P .

A latin trade T = (P,Q) of volume s is an ordered set of two partial latin squares of
volumes s and orders n, such that

1. SP = SQ.

2. for each (i, j) ∈ Sp, Pij 6= Qij .

3. for each r, 0 ≤ r ≤ n− 1, RrP = RrQ and CrP = CrQ.

For example, the following tables show a latin trade of order 5 and volume 19:

. . 2 3 1

. 2 . 1 4

1 . 0 4 3

0 4 1 . 2

4 1 3 2 0

. . 1 2 3

. 1 . 4 2

4 . 3 1 0

1 2 0 . 4

0 4 2 3 1

⇒

. . 21 32 13

. 21 . 14 42
14 . 03 41 30
01 42 10 . 24
40 14 32 23 01

A latin trade of volume 4 which is unique (up to isomorphism), is called an intercalate.

An interesting result about latin trades is as follows.

Theorem 2.1. Every latin trade can be written as a sum of intercalates.

In [4], the authors found a method by which they generate latin squares uniformly.
Although, most of their lengthy paper is to construct a latin square from another. This
method was rewitten by Aryapour and Mahmoodian [1] in a simple way using trades.
They noted that in this constraction, sometimes we generate an improper latin trade.

Finally, in [5], the authors defined an inclusion matrix M such that every latin trade
can be considered as a vector in kenel of M . They show that there exists a basis of kernel
of M consist of intercalates.

Of course, for each 1 ≤ k ≤ n − 1 and 2 ≤ i, j ≤ n, they defined an intercalate
P = {(1, 1; 0), (i, 1; k), (1, j; k), (i, j; 0)} and Q = {(1, 1; k), (i, 1; 0), (1, j; 0), (i, j; k)} and
show that these intrcalates form a basis for latin trades.

3 4-cycle systems

Let T1 be a set of edge-disjoint 4–cycles on the vertex set {1, 2, . . . , v}. Then T1 is called
a 4–cycle trade, if there exists a set, T2, of edge-disjoint 4–cycles on the same vertex set
{1, 2, . . . , v}, such that T1 ∩ T2 = ∅ and

⋃
C∈T1 E(C) =

⋃
C∈T2 E(C).

We call T2 a disjoint mate of T1 and the pair (T1, T2) is called a 4–cycle bitrade
of volume s = |T1| and foundation v = |⋃C∈T1 V (C)|. Here for them we use the term
“trade”.

A µ-way 4-cycle trade is a collection of µ disjoint collections {T1, . . . , Tµ} such that
(Ti, Tj) forms a 4- cycle bitrade for each i 6= j.

The following well-known theorem states that for which values of n a 4-CS(n) exists.

Theorem 3.1. [2, Page 266] A necessary and sufficient condition for the existence of a
4-CS(n) is that n ≡ 1( mod 8)

91



Some applications of linear algebra in combinatorics

A double-diamond is a trade of volume 2 which can be seen in the following graph:

Let M be a pair inclusion matrix whose rows are corresponded to the edges of the complete
graph Kn and its columns are corresponded to all possible 4-cycles of the complete graph
Kn.

Since by every four vertices a, b, c and d, we can construct three different 4-cycles
(a, b, c, d), (a, c, b, d) and (a, b, d, c), the matrix M has exactly 3

(
n
4

)
columns. Thus, the

matrix M is of size
(
n
2

)
× 3
(
n
4

)
.

Also, for each trade (T1, T2), we consider a “frequency” vector X with 3
(
n
4

)
components

with 1 for each cycle in T1 and −1 for each cycle in T2, other cycles are corresponded with
a 0 component. It is easy to see that every vector X corresponding to a trade, is a vector
in the kernel of M . We show that there exists a bases for the kernel of M , containing only
double-diamonds.

Theorem 3.2. The pair inclusion matrix M is a full rank matrix.

Corollary 3.3. The nullity of M is 3
(
n
4

)
−
(
n
2

)
.

Theorem 3.4. The set of vectors corresponding with the double-diamonds is a generating
set for the kernel of M . In other words, for each n, there exists a set of 3

(
n
4

)
−
(
n
2

)

linearly independent vectors in the kernel of M , where each of them is corresponded to a
double-diamond.

4 Conclusion

It seems that the linear algebra provides some useful tools to study the trades in different
combinatorial designs. Generating these designs with small trade, help us to know more
about big trades by studying small ones.
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We present some norm inequalities related to the Kadison inequality. In particular,
we utilize the famous Furuta inequality to obtain some complements to the asymmetric
Kadison inequality for matrices.
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1 Introduction

In the present article, Mn denotes the algebra of all n×n matrices with complex entries and
I denotes the identity matrix. We write A ≥ 0 when A is a positive semidefnite matrix.
The well-known (Löwner) partial order on the real space of all Hermitian matrices is
defined by A ≤ B if and only if B − A ≥ 0. When mI ≤ A ≤ MI, we simply write
m ≤ A ≤ M . For J ⊆ R, we denoted by σ(J) the set of all Hermitian matrices, whose
eigenvalues are contained in J . If f : J → R is a continuous function, then f(A) is defined
by the functional calculus for every A ∈ σ(J). A continuous function f : J → R is called

matrix convex (concave) if f
(
A+B
2

)
≤ (≥)f(A)+f(B)

2 for all A,B ∈ σ(J).

A map Φ defined on Mn is called positive whenever it preserve the Löwner order. Φ is
called unital if Φ(I) = I.

The celebrated Kadison’s inequality asserts that Φ(A2) ≥ Φ(A)2 holds for every unital
positive linear map Φ and every Hermitian matrix A. It provides a non-commutative
extension for the positivity of the famous variance quantity of a random variable X

Var(X) = E(X2)− E(X)2,

where E is the expectation value.

In application of the probability theory, it is useful to have some lower bounds for the
variance. In the non-commutative setting, it is known that if m ≤ A ≤M for two positive
scalars m < M , then

Φ(A2)− Φ(A)2 ≤ (M −m)2

4
and Φ(A2) ≤ (M +m)2

4mM
Φ(A)2. (1)

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: kian@ub.ac.ir
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The Kadison inequality is equivalent to the positivity of the block matrix
[

I Φ(A)
Φ(A) Φ(A2)

]
.

The authors of [5] present a generalization of Kadison inequality by proving that the
operator matrix 



I Φ(A) · · · Φ (Ar)
Φ(A) Φ(A2) · · · Φ

(
Ar+1

)
...

...
. . .

...
Φ (Ar) Φ

(
Ar+1

)
· · · Φ

(
A2r
)




is positive.
Furuta gave a variant of the Kadison inequality as

|Φ(Xp)rΦ(Xq)r| ≤ Φ(X(p+q)r), (2)

when 0 ≤ p ≤ q and q
p+q ≤ r ≤

2q
p+q . In particular,

|Φ(Xp)Φ(Xq)| ≤ Φ(Xp+q) (3)

holds for every 0 ≤ p ≤ q or

|Φ(Xr)Φ(X)| ≤ Φ(X)1+r (4)

for every r ∈ [0, 1].

In this paper, we present some complementary inequalities to (3) and (4).

2 Main results

First we note that inequality (4) is equivalent to
∥∥∥Φ(X)−

1+r
2 |Φ(Xr)Φ(X)|Φ(X)−

1+r
2

∥∥∥ ≤ 1, (5)

that is valid for every r ∈ [0, 1].
We need some facts about the Furuta inequality. If A ≥ B ≥ 0, the so-called Löwner–

Heinz inequality implies that Ar ≥ Br for every r ∈ [0, 1]. If r 6∈ [0, 1], then this is not
true in general. The celebrated Furuta inequality provides an analogue order preserving
result by showing that if A ≥ B ≥ 0, then

A1+r ≥
(
A

r
2BpA

r
2

) 1+r
p+r

(r ≥ 0, p ≥ 1). (6)

M. Fujii et. all presented the next result regarding the Furuta inequality in [3].

Lemma 2.1. Let A and B be positive definite matrices such that 0 < m ≤ B ≤ M for
two positive real numbers m < M . Then

∥∥∥∥A
1
2

(
A

s
2Bp+sA

s
2

) 1
p
A

1
2

∥∥∥∥ ≤ K
(
h1+r,

p+ s

1 + r

) 1
p
∥∥∥A 1+r

2 B1+rA
1+r
2

∥∥∥
p+s

p(1+r)
(7)

holds for all p ≥ 1 and s ≥ r > −1, in which

K(h, p) =
hp − 1

(p− 1)(h− 1)

(
p− 1

p

hp − 1

hp − h

)p

, h =
M

m

is the generalized Kantorovich constant.
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Now we present a complementary result to (4).

Theorem 2.2. Suppose that Φ is a positive linear map and X is a positive definite matrix.

If m ≤ |Φ(Xq)Φ(Xp)|
q
p ≤M for two positive scalars m,M , then

K
(
h

p
q , 2
)− 1

2 ≤
∥∥∥Φ(Xp)

− q+p
2p |Φ(Xq)Φ(Xp)|Φ(Xp)

− q+p
2p

∥∥∥ . (8)

holds for all p ≤ q ≤ 2p.

Remark 2.3. Note that if we put r = q
p and put X

1
p instead of X in (8), then we have

K
(
h

1
r , 2
)− 1

2 ≤
∥∥∥Φ(X)−

1+r
2 |Φ(Xr)Φ(X)|Φ(X)−

1+r
2

∥∥∥ (9)

which gives obviously a counterpart to (5). Moreover, with r = 1 this gives a converse to
the Kadison inequality as

K(h, 2)−1/2 ≤
∥∥Φ(X)−1Φ(X)2Φ(X)−1

∥∥ ≤ 1.

In the next theorem, we give a difference counterpart to (3).

Theorem 2.4. Let A be a positive definite matrix such that sp(A) ⊆ [m,M ]. If p, q ≥ 0,
then there exists a unitary matrix U such that

Φ(Ap+q)− U |Φ(Ap)Φ(Aq)|U∗ ≤ C(hq, 1 +
p

q
) + (C(hp, 2)− C(h2q,

p

q
))

1
2M q

for every unital positive linear mapping Φ, in which

C(h, p) =
Mmp −mMp

M −m + (p− 1)

(
1

p

Mp −mp

M −m

) p
p−1

.

Remark 2.5. It proof of Theorem 2.4, we use the fact that if X,Y are positive definite
matrices, then

(X + Y )
1
2 ≤ UX 1

2U∗ + V Y
1
2X∗ (10)

for some unitaries U and V . In [4], it was shown that the inequality (10) can be stated
without the presence of unitaries U and V if we restrict the spectrum of matrices X,Y :
Theorem. [4, Corollary 2.9] If f is a continuous concave function with f(0) ≥ 0, then
f(X+Y ) ≤ f(X)+f(Y ) for all positive definite matrices X,Y for which X ≤ aI ≤ X+Y
and Y ≤ aI ≤ X + Y for some scalar a > 0.

Using this fact, Theorem 2.4 can be stated without presence of unitaries U and V .
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1 Introduction

Let B(H) denote the C∗-algebra of all bounded linear operators on a complex Hilbert
space H with an inner product 〈 . , . 〉 and the corresponding norm ‖ . ‖. In the case when
dimH = n, we identify B(H) with the matrix algebra Mn of all n×n matrices with entries
in the complex field. An operator A ∈ B(H) is called positive if 〈Ax, x〉 ≥ 0 for all x ∈ H,
and then we write A ≥ 0.
A functional Hilbert space H = H(Ω) is a Hilbert space of complex valued functions on
a (nonempty) set Ω, which has the property that point evaluations are continuous i.e.
for each λ ∈ Ω the map f 7→ f(λ) is a continuous linear functional on H. The Riesz
representation theorem ensure that for each λ ∈ Ω there is a unique element kλ ∈ H such
that f(λ) = 〈f, kλ〉 for all f ∈ H. The collection {kλ : λ ∈ Ω} is called the reproducing
kernel of H. If {en} is an orthonormal basis for a functional Hilbert space H, then the
reproducing kernel of H is given by kλ(z) =

∑
n en(λ)en(z); (see [4, Problem 37]). For

λ ∈ Ω, let k̂λ = kλ
‖kλ‖ be the normalized reproducing kernel of H. For a bounded linear

operator A on H, the function Ã defined on Ω by Ã(λ) = 〈Ak̂λ, k̂λ〉 is the Berezin symbol
of A, which firstly have been introduced by Berezin [2]. The Berezin set and the Berezin
number of the operator A are defined by

Ber(A) := {Ã(λ) : λ ∈ Ω} and ber(A) := sup{|Ã(λ)| : λ ∈ Ω},

respectively,(see [5]). The numerical radius ofA ∈ B(H) is defined by w(A) := sup{|〈Ax, x〉| :
x ∈ H, ‖x‖ = 1}. It is clear that

ber(A) ≤ w(A) ≤ ‖A‖ (1)

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: monire.hajmohamadi@yahoo.com

98



R. Lashkaripour, M. Bakherad and M. Hajmohamadi

for all A ∈ B(H). Moreover, The Berezin number of an operator A,B satisfies the following
properties:
(i) ber(αA) = |α|ber(A) for all α ∈ C.
(ii) ber(A+B) ≤ ber(A) + ber(B).
The authors in [1] showed some Berezin number inequalities as follows:

ber(A∗XB) ≤ 1

2
ber(B∗|X|B +A∗|X∗|A), (2)

ber(AX ±XA) ≤ ber
1
2 (A∗A+AA∗)ber

1
2 (X∗X +XX∗),

and

ber(A∗XB +B∗Y A) ≤ 2
√
‖X‖‖Y ‖ber

1
2 (B∗B)ber

1
2 (AA∗) (3)

for any A,B,X, Y ∈ B(H(Ω)).
In this paper, we would like to state more extensions of Berezin number inequalities.
Moreover, we obtain several Berezin number inequalities based on the 2 × 2 operator
matrices.

2 Main results

Lemma 2.1. Let T ∈ B(H) and x, y ∈ H be any vectors.
(a) If 0 ≤ α ≤ 1, then

| 〈Tx, y〉 |2≤ 〈| T |2α x, x〉〈| T ∗ |2(1−α) y, y〉,

where |T | = (T ∗T )
1
2 is the absolute value of T .

(b) If f , g are nonnegative continuous functions on [0,∞) which are satisfying the relation
f(t)g(t) = t (t ∈ [0,∞)), then

| 〈Tx, y〉 |≤‖ f(| T |)x ‖‖ g(| T ∗ |)y ‖

for all x, y ∈ H.
Lemma 2.2. Let A ∈ B(H1(Ω)), B ∈ B(H2(Ω),H1(Ω)), C ∈ B(H1(Ω),H2(Ω)) and
D ∈ B(H2(Ω)). Then the following statements hold:

(a) ber

([
A 0
0 D

])
≤ max{ber(A), ber(D)};

(b) ber

([
0 B
C 0

])
≤ 1

2(‖B‖+ ‖C‖).

Theorem 2.3. Let A,B,X ∈ B(H(Ω)). Then

(i) berr(A∗XB) ≤ ‖X‖rber
(

1
p(A∗A)

pr
2 + 1

q(B∗B)
qr
2

)
for r ≥ 0 and p, q > 1 with 1

p + 1
q = 1

and pr, qr ≥ 2.
(ii) ber(A∗XB) ≤ 1

2ber(B∗|X|2αB + A∗|X∗|2(1−α)A) for every 0 ≤ α ≤ 1.

Theorem 2.4. Suppose that A,B,X ∈ B(H(Ω)) such that A,B are positive. Then

berr(AαXB1−α) ≤ ‖X‖r
(
ber(αAr + (1− α)Br)− inf

‖k̂λ‖=1
η(k̂λ)

)
, (4)

in which η(k̂λ) = r0(〈Ark̂λ, k̂λ〉
1
2−〈Brk̂λ, k̂λ〉

1
2 )2, r0 = min{α, 1−α}, r ≥ 2 and 0 ≤ α ≤ 1.
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Remark 2.5. Putting A = B = I in inequality (4), we get a generalization of the
inequality (1).

The Heinz mean is defined as Hα(a, b) = a1−αbα+aαb1−α
2 for a, b > 0 and 0 ≤ α ≤ 1.

The function Hα is symmetric about the point α = 1
2 and

√
ab ≤ Hα(a, b) ≤ a+b

2 for all
α ∈ [0, 1].

Theorem 2.6. Suppose that A,B,X ∈ B(H(Ω)) such that A,B are positive. Then

berr
(AαXB1−α +A1−αXBα

2

)
≤ ‖X‖

r

2

(
ber(Ar +Br)− 2 inf

‖k̂λ‖=1
η(k̂λ)

)

≤ ‖X‖
r

2

(
ber(αAr + (1− α)Br) + ber((1− α)Ar + αBr)

− 2 inf
‖k̂λ‖=1

η(k̂λ)
)
,

in which η(k̂λ) = r0(〈Ark̂λ, k̂λ〉
1
2−〈Brk̂λ, k̂λ〉

1
2 )2, r0 = min{α, 1−α}, r ≥ 2 and 0 ≤ α ≤ 1.

For positive operators X,Y ∈ L (H), the operator geometric mean is the positive

operator X]Y = X
1
2

(
X−

1
2Y X−

1
2

) 1
2
X

1
2 , In the next theorem we can obtain an upper

bound for the Berezin number involving power geometric mean.

Theorem 2.7. Let X,Y, Z ∈ B (H) be operators such that X,Y are positive. If p ≥ q > 1

with
1

p
+

1

q
= 1, then

berr ((X]Y )Z) ≤ ber
(
X

rp
2

p
+

(Z?Y Z)
rq
2

q

)
− 1

p
inf
λ∈Ω

([
X̃ (λ)

] rp
4 −

[
˜(Z?Y Z) (λ)

] rq
4

)2

for all r ≥ 2

q
.

Corollary 2.8. Let X,Y ∈ B (H) be positive operators and let p ≥ q > 1 with
1

p
+

1

q
= 1.

Then

berr (X]Y ) ≤ ber
(
X

rp
2

p
+
Y

rq
2

q

)
− 1

p
inf
λ∈Ω

([
X̃ (λ)

] rp
4 −

[
Ỹ (λ)

] rq
4

)2

for all r ≥ 2

q
.

Corollary 2.9. Let X,Y ∈ B (H) be positive operators. Then
√

2ber (X]Y ) ≤ ber2 (X,Y ) ≤ ber 1
2
(
X2 + Y 2

)
.

Proposition 2.10. Let X,Y, Z ∈ B (H) such that X,Y are positie and let
1

p
+

1

q
= 1.

Then

‖(X]Y )Z‖rber ≤
∥∥∥∥∥
X

rp
2

p

∥∥∥∥∥
ber

+

∥∥∥∥∥
(Z?Y Z)

rq
2

q

∥∥∥∥∥
ber

− 1

p
inf
µ,λ∈Ω

(〈
Xk̂µ, k̂µ

〉 rp
4 −

〈
Z?Y Zk̂λ, k̂λ

〉 rq
4

)2

for all r ≥ 2

q
.
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In the following we state some Berezin number inequalities for 2× 2 matrices.

Proposition 2.11. Let T =

[
0 B
C 0

]
∈ B(H1(Ω)⊕H2(Ω)) and f , g be nonnegative

continuous functions on [0,∞) satisfying the relation f(t)g(t) = t (t ∈ [0,∞)). Then

berr(T ) ≤ max

{
ber

(
1

p
fpr(| C |) + 1

q
gqr(| B∗ |)

)
, ber

(
1

p
fpr(| B |) + 1

q
gqr(| C∗ |)

)}
, (5)

in which r ≥ 1, p ≥ q > 1 such that 1
p + 1

q = 1 and pr ≥ 2.

Proposition 2.12. Let T =

[
A 0
0 D

]
∈ B(H1(Ω)⊕H2(Ω)). Then

berr(T ) ≤ 1

2
max{ber(|A|r + |A∗|r), ber(|D|r + |D∗|r)} (6)

for r ≥ 1.

Corollary 2.13. Let T =

[
A B
C D

]
with A,B,C,D ∈ B(H). Then

ber(T ) ≤ 1

2
max{ber(|C|+ |B∗|), ber(|B|+ |C∗|)}+ 1

2
max{ber(|A|+ |A∗|), ber(|D|+ |D∗|)}.

In particular,

ber

([
A B
B A

])
≤ 1

2
(ber(|A|+ |A∗|) + ber(|B|+ |B∗|)).
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Max-spectral radius of products for non-negative matrices1
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Abstract

Several authors have proved inequalities on the spectral radius, operator norm
and numerical radius of Hadamard products and ordinary products of non-negative
matrices. The aim of this paper is to investigate and study the max-spectral radius
inequalities for Hadamard, conventional and max-products of non-negative matrices.
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1 Introduction

In recent years both industry and the academic world have become more and more inter-
ested in techniques to model, to analyse problems. One of these tools is max-algebra. The
max-algebra is a subdivision of mathematics, which has many applications. max-algebra
system has been studied in research papers and books from the early 1960’s. The max
algebra system consists of the non-negative real numbers R+ equipped with the operation
of multiplication a ⊗ b = ab, and maximization a ⊕ b = max{a, b}. Furthermore, the
max algebra is isomorphic to the max-plus algebra, which consists of the set R+{−∞}
with operations of maximization and addition [2,4,6].This algebra system and its isomor-
phic version raise the possibility of changing the non-linear phenomena in different areas
such as parallel computation, transportation networks, timetabled programs, IT, dynamic
systems, combinatorial optimization, and mathematical physics to linear-algebra. Fur-
thermore, this algebra system has been used directly in areas such as algorithm,Vetrbi,
analysing DNA and in AHP for ranking matrices. In this algebra system, there is no
deduction but many of appeared problems in linear algebra like equation systems, eigen-
value, projections, subspaces, singular value decomposition, duality theory have developed
and have reached other areas like functional analysis, algebra topology and combinatorial
optimization.

Let Mn(R) be the set of all n × n real matrices and Mn(R+) be the set of all n × n
non-negative matrices. Let A and B be two matrices in Mn(R+). We say that A ≤ B if
aij ≤ bij for all i, j = 1, 2, . . . , n. The max-product A⊗B and max-sum A⊕B defined as
follows

(A⊗B)ij = max
k

aikbkj , (A⊕B)ij = max{aij , bij}.

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: h.shokooh@math.iut.ac.ir
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The notation Ak
⊗ denotes the kth power of A. For non-negative vector x ∈ Rn, the notation

A⊗x means (A⊗x)i = max
1≤k≤n

aijxj . A non-negative scalar λ is called a max-eigenvalue of

A if A⊗ x = λx for some non-negative vector x 6= 0. The set of all max-eigenvalues of A
is denoted by σ⊗(A). let ‖A‖ = ‖A‖∞ = maxi,j aij and ‖x‖ = ‖x‖∞ = maxi xi. In linear
algebra, the spectral radius plays a key role in a variety of areas, including the stability
theory of difference and differential inclusions and wavelet analysis. In this paper, we
extend the work described and study properties of max-spectral radius inequality.

The max-spectral radius of A ∈ Mn(R+) is denoted by r⊗(A) and defined by the
maximum cycle geometric mean r⊗(A), which is defined by

r⊗(A) = max
{

k
√
ai1ik · · · ai3i2ai2i1 : k ≤ n and i1, . . . , ik ∈ {1, . . . , n} mutually distinct

}
.

It is known that r⊗(A) is the largest max-eigenvalue of A, that is

r⊗(A) = max{λ : λ ∈ σ⊗(A)}.

The max version of the Gelfand formula holds for any A ∈Mn(R+) which is

r⊗(A) = lim
j→∞

‖Aj
⊗‖1/j = inf

j∈N
‖Aj
⊗‖1/j .

For vector x ∈ Rn
+, the local max-spectral radius of A at x is defined by

rx(A) = lim
j→∞

‖Aj
⊗ ⊗ x‖1/j .

Lemma 1.1. If A and B are two non-negative matrices with A ≤ B and x ∈ Rn
+, then

r⊗(A) ≤ r⊗(B), rx(A) ≤ rx(B).

Proof. The proof is straightforward.

Lemma 1.2. [5] Let A ∈ Rn×n
+ , j ∈ {1, . . . , n}. Then rej (A) is maximum of all t ≥ 0

with the following property (∗):
there exist a ≥ 0, b ≥ 1 and mutually distinct indices i0 := j, i1, . . . , ia, ia+1, . . . , ia+b−1 ∈
{1, . . . , n} such that

a−1∏

s=0

Ais+1,is 6= 0 and
a+b−1∏

s=a

Ais+1,is = tb

where we set ia+b = ia.

Theorem 1.3. [5] Let A ∈Mn(R+) and x ∈ Rn
+ be a non-zero vector. Then

1. r⊗(A) = max{rej (A) : 1 ≤ j ≤ n, xj 6= 0}.

2. σ⊗(A) = {rej (A) : 1 ≤ j ≤ n}.

2 Main results

The spectral radius ρ(A) of A ∈Mn(C) is the largest modulus of σ(A). The spectral radius
is not sub-multiplicative that is ρ(AB) ≤ ρ(A)ρ(B) does not hold in general, not even for
non-negative matrices [1]. On the other hand, for non-negative A and B, the spectral
radius is sub-multiplicative with respect to the Hadamard product: ρ(A ◦B) ≤ ρ(A)ρ(B).
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In 2009, X. Zhan conjectured that for non-negative n× n matrices A and B, the spectral
radius ρ(A ◦B) of the Hadamard product satisfies

ρ(A ◦B) ≤ ρ(AB),

where AB denotes the conventional matrix product of A and B. This conjecture was
confirmed by K.M.R. Audenaert as follows

ρ(A ◦B) ≤ ρ 1
2 ((A ◦A)(B ◦B)) ≤ ρ(AB).

These inequalities were established via a trace description of the spectral radius. Using
the fact that the Hadamard product is a principal sub matrix of the Kronecker product.
R.A. Horn and F. Zhang proved in 2010 the inequalities

ρ(A ◦B) ≤ ρ 1
2 (AB ◦BA) ≤ ρ(AB).

We are interested in answering the following questions. From now we will use µ(A) for
r⊗(A).

1. µ(AB) ≤ µ(A)µ(B)?

2. µ(A ◦B) ≤ µ(A)µ(B)?

3. µ(A⊗B) ≤ µ(A)µ(B)?

4. µ(A⊗B) ≤ µ(AB)?

5. µ(A ◦B) ≤ µ(AB)?

6. µ(A ◦B) ≤ µ(A⊗B)?

7. µ(A ◦B) ≤ µ(A⊗B ◦B ⊗A)1/2 ≤ µ(A⊗B)?

8. µ(A ◦B) ≤ µ(AB ◦BA)1/2 ≤ µ(AB)?

It is well known that ρ(AB) = ρ(BA) for every two n × n matrices A and B. The
following example shows that this not true for max-spectral radius.

Example 2.1. Let A =

[
1 2
0 0

]
, and B =

[
1 2
2 4

]
. Then AB =

[
5 8
0 0

]
, and BA =

[
1 2
2 4

]
.

Thus, µ(AB) = 5 6= µ(BA) = 4.

Conjecture: Let A,B ∈Mn(Rn
+). Then µ(A⊗B) = µ(B ⊗A).

In the following example we show that µ(A⊗B) ≤ µ(A)µ(B) does not hold. Of course,
µ(Ak

⊗) = µ(A)k for every k ∈ N.

Example 2.2. Let A =

[
1 25
1 1

]
, B =

[
4 1
1 1

]
be given. Then A⊗B =

[
25 25
4 1

]
, So

µ(A)µ(B) = 5× 4 < 25 = µ(A⊗B).

Example 2.3. Let A =

[
5 1
1 1

]
, B =

[
2 2
1 3

]
be given. Then A⊗B =

[
10 10
2 3

]
, So

µ(A)µ(B) = 5× 3 > 5 = µ(A⊗B).
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The following examples show that there is no relation between µ(AB) and µ(A)µ(B).

Example 2.4. Let A =

[
1 2
0 0

]
, B =

[
1 2
3 4

]
be given. Then AB =

[
7 10
0 0

]
, So

µ(A)µ(B) = 1× 4 < 7 = µ(AB)

Example 2.5. Let A =

[
1
2

1
3

0 0

]
, B =

[
0 1
1 0

]
be given. Then AB =

[
1
3

1
2

0 0

]
, So

µ(AB) =
1

3
<

1

2
× 1 = µ(A)µ(B)

Theorem 2.6. Let A,B be n× n non-negative matrices, then

µ(A⊗B) ≤ µ(AB).

Proof. The entries of A⊗B are as max{aikbkj} while entries of AB are as liner combination
of aik, bkj . Since aik, bkj are non-negative, so aikbkj ≥ max{aik, bkj}.Therefore µ(A⊗B) ≤
µ(AB) by Lemma 1.1.

Theorem 2.7. Let A,B be n× n non-negative matrices. Then

µ(A ◦B) ≤ µ(A⊗B).

Proof. It is direct result of definition A◦B, A⊗B and definition of max-spectral radius.

Corollary 2.8. Let A,B ∈Mn(Rn
+). Then

µ(A ◦B) ≤ µ(AB).

Theorem 2.9. [3] If A,B ∈Mn(R+), then

µ(A ◦B) ≤ µ 1
2 (A⊗B ◦B ⊗A) ≤ µ(A⊗B).

Question: Let A,B be n× n two non-negative matrices, then

µ(A ◦B) ≤ µ 1
2 (AB ◦BA) ≤ µ(AB)?

Example 2.10. A =

[
4 2
1 1

]
, B =

[
4 1
2 1

]
be given. Then A ⊗ B =

[
16 4
4 1

]
, AB =

[
20 6
6 2

]
, and AB ◦BA =

[
340 54
54 10

]
. Thus

µ(A ◦B) = 16 <
√

340 = µ
1
2 (AB ◦BA) < 20 = µ(AB)

Example 2.11. A =

[
4 2
3 1

]
, B =

[
4 3
2 1

]
be given. Then A ⊗ B =

[
16 12
12 1

]
, AB =

[
20 14
14 10

]
, and AB ◦BA =

[
500 154
154 50

]
. Thus

µ(A ◦B) = 16 < 20 = µ(AB) <
√

500 = µ
1
2 (AB ◦BA),

but µ(AB) = 20.

Lemma 2.12. Let A,B be n× n two non-negative matrices and x ∈ Rn
+, then

µ(A ◦B) ≤ µ 1
2 (AB ◦BA), rx(A ◦B) ≤ r

1
2
x (AB ◦BA).

Proof. Since A and B are non-negative matrices, by definition Hadamard and conventional
products of matrices and definition max-spectral radius, we get the result by Lemma 1.1.
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Constructing cross sectional area of vibrating rod using two
spectra1
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Abstract

In this research, the construction of non-symmetric cross sectional area of vibrating
rod is proposed. For this purpose, using finite difference method, we discretized the
rod equation to a Jacobi matrix eigenvalue problem. Then, with correction of given
spectra and using Lancsoz method, we construct the Jacobi matrix. Finally, according
to the relation between the entries of Jacobi matrix and cross sectional area, we obtain
the cross sectional area at different points. Some numerical examples are given.

Keywords: Rod equation, Lancsoz method, Discretization, Jacobi matrix

1 Introduction

Free vibration of a free-fix straight rod of unit length is governed by the following eigenvalue
problem:

{
(a(x)y′(x))′ + λa(x)y(x) = 0, x ∈ (0, 1),
y′(0) = 0, y(1) = 0,

(1)

where a(x) > 0 is the cross sectional area at point x, λ is the eigenvalue, y(x) is the
displacement of an element dx [5]. It is proved that, problem (1) has infinite number of
eigenvalues which are distinct, nonnegative and can be ordered as follows

0 ≤ λ1 ≤ λ2 ≤ · · · , lim
k→∞

λk =∞. (2)

see [5]. The set of all eigenvalues of the problem (1) is called the spectrum and denoted
by σ(a(x),∞, 0). The construction of a(x) from spectral data (eigenvalues, eigenfunctions
or both) are studied in different papers [2–4]. In general, if a(x) is symmetric respect
to mid point, then a(x) can be constructed using one spectrum. Otherwise, two spectra
corresponding to, two set of boundary conditions are needed. On the other words, for
constructing a non-symmetric a(x), we need two spectra σ(a(x),∞, 0) and σ(a(x), 0, 0).
The spectrum of the problem (1) is an infinite sequence of nonnegative real numbers, but
in practice, only the first few eigenvalues are given. In this paper, we try to solve the
following problem:
Main problem: Given two finite sequence {λi}Ni=1 and {µi}N−1i=1 . Construct the cross
sectional area a(x) such that, {λi}Ni=1 and {µi}N−1i=1 are primitive eigenvalues of the spectra
σ(a(x),∞, 0) and σ(a(x), 0, 0), respectively.

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: h mirzaei@sut.ac.ir
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2 Main results

In this section, we try to solve the Main problem. For this purpose, using the idea of [2,3],
we obtain the required data of well known Lancsoz method for approximating a(x). Using
finite difference method, problem (1) reduces to the following matrix eigenvalue problem:

KY = λMY, Y = [y1, · · · , yN ], (3)

where,

K =




a1 −a1
−a1 a1 + a2 a2

. . .
. . .

. . .

−aN−2 aN−2 + aN−1 −aN−1
−aN−1 aN−1 + aN



,

M = diag(
a1
2
,
a1 + a2

2
, · · · , aN−1 + aN

2
).

and h = 1
N , xi = ih, ai = a(xi − h

2 ), yi = y(xi). The cross sectional area a(x) is nonzero
thus, M is nonsingular and problem (4) can be written as follows:

JX = λX, J = D−1KD−1, X = DY,D = M
1
2 . (4)

For solving Main problem first, we construct the Jacobi matrix J , then according to the
relations between the entries of J and cross sectional area, we obtain ai.
We denote the spectrum of J by σ(J). For constructing J , two spectra σ(J) and σ(J1)
or σ(JN ) are needed [5], where Ji is the matrix obtained from J by deleting ith row and
column. Now, this question arise that: How we can obtain the spectra σ(J) and σ(J1)
from the given data {λi}Ni=1 and {µi}N−1i=1 ?
Problem (4) is the approximation of problem (1) thus, the eigenvalues of J can be ap-
proximated by the first N eigenvalues of the problem (1). But, it is observed in Tables 1
and 2 that only a few lower eigenvalues of the problem (1) are a good approximation for
the eigenvalues of matrices J and J1. On the other words, if we denote the eigenvalues of
J and problem (1) by λ∗i (a) and λi(a), respectively, then |λi(a) − λ∗i (a)| is an increasing
sequence.
Let εi = λi(a) − λ∗i (a) and δi = µi(a) − µ∗i (a), where a(x) = a is a constant and µi, µ

∗
i

are the eigenvalues of the problem (1) with fix-fix boundary conditions and corresponding
matrix J1, respectively. We observe that λi(a(x))− εi and µi(a(x))− δi are good approxi-
mations for λ∗i (a(x)) and µ∗i (a(x)) , respectively via [1] and references there in, such that
we have

|λi − εi − λ∗i | = O(ih2), |µj − δj − µ∗j | = O(jh2).

Thus, we can construct the matrix J using Lancsoz method [5] such that σ(J) =
{λi(a(x))− εi}Ni=1 and σ(J1) = {µi(a(x))− δi}N−1i=1 . In the following example, we solve the
Main problem by our method for the cases a1(x) = ex and a2(x) = (1 + x)2.

Example 2.1. Suppose that a1(x) = ex and a2(x) = (1+x)2. We compute the eigenvalues
{λi}Ni=1 and {µi}N−1i=1 using Matslise package [6]. For the case a(x) = constant, we have

λi = (i− 0.5)2π2, λ∗i =
2

h2
(1− cos((i− 0.5)πh)), µi = i2π2, µ∗i =

2

h2
(1− cos(iπh)).

Thus we can compute σ(J) = {λi − εi} and σ(J1) = {µi − δi}. The numerical results of
our method for a1(x) and a2(x) are given in the Table 3 and Figures 1 and 2.
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Table 1: Errors of the eigenvalues of problem (1) for a(x) = ex with N = 20

λi |λi − λ∗i | |λi − εi − λ∗i | µi |µi − µ∗i | |µi − δi − µ∗i |
3.6231 5.9e-3 4.6-3 10.1196 2.3e-2 3.1-3
23.4423 1.3e-1 3.5e-2 39.7284 3.3e-1 1.2-2
62.9297 8.8e-1 9.5e-2 89.0764 1.6e+0 2.7-2
122.1499 3.1e+0 1.8e-1 158.1637 5.1e+0 4.7-2
201.1078 8.4e+0 2.0e-1 246.9901 1.2e+1 7.3-2
299.8044 1.8e+1 4.3e-1 355.5558 2.5e+1 1.0-1
418.2400 3.5e+1 5.9e-1 483.8606 4.6e+1 1.4-1
556.4146 6.2e+1 7.7e-1 631.9046 7.9e+1 1.7-1
714.3284 1.0e+2 9.5e-1 799.6879 1.2e+2 2.1-1
891.9814 1.5e+2 1.1e+0 987.2104 1.8e+2 2.4-1
1089.3736 2.2e+2 1.3e+0 1194.4721 2.6e+2 2.8-1
1306.5049 3.2e+2 1.5e+0 1421.4730 3.7e+2 3.2-1
1543.3755 4.3e+2 1.7e+0 1668.2131 5.1e+2 3.6-1
1799.9852 5.8e+2 1.9e+0 1934.6924 6.6e+2 3.9-1
2076.3342 7.5e+2 2.0e+0 2220.9109 8.5e+2 4.2-1
2372.4223 9.6e+2 2.1e+0 2526.8687 1.1e+3 4.5-1
2688.2497 1.2e+3 2.3e+0 2852.5656 1.3e+3 4.7-1
3023.8162 1.5e+3 2.4e+0 3198.0018 1.6e+3 4.8-1
3379.1220 1.8e+3 2.4e+0 3563.1771 1.9e+3 4.9-1
3754.1670 2.1e+3 2.4e+0

Table 2: Errors of the eigenvalues of problem (1) for a(x) = (1 + x)2 with N = 20

λi |λi − λ∗i | |λi − εi − λ∗i | µi |µi − µ∗i | |µi − δi − µ∗i |
4.1158 8.7e-3 7.4-3 9.8696 2.0e-2 1.4-4
24.1393 1.5e-1 5.6e-2 39.4784 3.2e-1 1.6e-4
63.6591 9.4e-1 1.5e-1 88.8264 1.6e+0 1.5e-4
122.8891 3.3e+0 2.9e-1 157.9136 5.1e+0 1.4e-4
201.8512 8.6e+0 4.7e-1 246.74011 1.2e+1 1.2e-4
300.5499 1.8e+1 7.0e-1 355.3057 2.5e+1 1.1e-4
418.9868 3.5e+1 9.5e-1 483.6106 4.6e+1 8.1e-5
557.1622 6.2e+1 1.2e+0 631.6546 7.8e+1 5.5e-5
715.076 1.0e+2 1.5e+0 799.4379 1.2e+2 2.8e-5
892.7299 1.5e+2 1.8e+0 986.9604 1.8e+2 0
1090.1223 2.2e+2 2.1e+0 1194.2221 2.6e+2 2.8e-5
1307.2539 3.2e+2 2.4e+0 1421.2230 3.7e+2 5.5e-5
1544.1246 4.4e+2 2.7e+0 1667.9631 5.0e+2 8.1e-5
1800.7344 5.8e+2 3.0e+0 1934.4424 6.6e+2 1.1e-4
2077.0835 7.6e+2 3.3e+0 2220.6609 8.5e+2 1.2e-4
2373.1717 9.7e+2 3.5e+0 2526.6187 1.1e+3 1.4e-4
2688.9991 1.2e+3 3.7e+0 2852.3156 1.2e+3 1.5e-4
3024.5657 1.5e+3 3.8e+0 3197.7518 1.6e+3 1.6e-4
3379.8716 1.8e+3 3.9e+0 3562.9271 2.0e+3 1.4e-4
3754.9166 2.1e+3 3.6e+0

109



H. Mirzaei

Table 3: Numerical errors for a1(x) = ex and a2(x) = (1 + x)2

N ‖ a1(x)− ai ‖∞ ‖ a2(x)− ai ‖∞
10 5.28e-02 1.06e-01
20 2.57e-02 5.16e-02
30 2.00e-02 3.40e-02
40 1.47e-03 2.53e-02
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Figure 1: Results for a1(x) with N = 40.
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Figure 2: Results for a2(x) with N = 40.
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3 Conclusion

In this paper, the cross sectional area of vibrating rod using two spectra and Lancsoz
method is constructed. We observe that the correction terms εi and δi play an important
role in the construction procedure.
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Inverse problem for H-symmetric pentadiagonal matrices1
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Abstract

The set of eigenvalues of a square matrix P is denoted by σ(P ), and the set of
eigenvalues of the submatrix obtained from P by deleting the first i rows and columns
of P is denoted by σi(P ). In this paper we solve the inverse eigenvalue problem for
H-Symmetric pentadiagonal matrices, not necessarily symmetric. Using σ, σ1, σ2, not
necessarily interlacing, we construct the solution by modified Lancsoz algorithm.

Keywords: Inverse eigenvalue problem, Modified Lanczos algorithm, H-symmetric
matrices

Mathematics Subject Classification [2010]: 15A18, 65F18

1 Introduction

Let H = diag(δ1, δ2, · · · , δn) be a diagonal matrix such that H2 = I, where I is identity
matrix. In Cn we define the inner product [x, y]H = y∗Hx. An square real matrix P is
said to be H-Symmetric if HP TH = P. The matrix HP TH is called H−adjoint of P and
it is denoted by P ]. It is proved that if P is H-Symmetric and σ(P ) is real and disjoint,
then the eigenvectors are H-Orthonormal, i.e. there are eigenvectors u1, u2, . . . , un of P
such that

HUTHU = I, where U = [u1, u2, ·, un].

See [1, 2]. It can be easily verified that the pentadiagonal real matrix P of the form

P =




a1 ε1b1 ε1ε2c1
b1 a2 ε2b2 ε2ε3c2
c1 b2 a3 · · ·

. . .
. . .

. . .
. . . εn−2εn−1cn−2

εn−1bn−1
cn−2 bn−1 an



, (1)

for H = diag(1, ε1, ε1ε2, · · · ,
∏n−1

i=1 εi) is a H-Symmetric matrix. If H = I then P is penta-
diagonal symmetric matrix. Pentadiagonal symmetric matrices arise in discrete vibrating
beams, see [4] for more detals. Inverse eigenvalue problems for symmetric pentadiagonal

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: kghanbari@sut.ac.ir

112



H. Mirzaei and K. Ghanbari

matices are studied by many authors, for example see [3,4]. In most of the cases the recon-
struction procedure require three interlacing real spectra. Using finite difference metheod
for discretizing non-smooth beams may lead to a nonsymmetric stiffness matrix, see [6].
H-Symmetric pentadiagonal matrices of the form (1) appear in non-hermitian quantum
mechanics [5]. The objective of this paper is to study the inverse eigenvalue problem for
H-Symmetric pentadiagonal matrices. Indeed using three given spectrum that may or
may not have interlacing property, we construct H-Symmetric pentadiagonal matrices of
the form (1) such that σ(P ), σ1(P ) and σ2(P ) are the prescribed spectrums. We use the
modified form of Lancsoz algoritm to construct the solution and we prove that the solution
is not unique. The solution obtained by this algorithm produce eigenvectors that for large
size matrices may not be H-Orthonormal. To resolve this case we use a modified gram
schmidt orthogonalization procedure to make eigenvactors to be H-Orthonormal.

2 Construction of the solution

In this section, we state the main inverse eigenvalue problem and construct the solution.
We consider conditions on the given data for which this problem has solution.

Inverse Problem. Given three real spectrum {λi}ni=1, {µi}n−1i=1 , {νi}n−2i=1 , construct a
H-Symmetric pentadiagonal matrix P of the form (1) such that

σ(P ) = {λi}ni=1, σ1(P ) = {µi}n−1i=1 , σ2(P ) = {νi}n−2i=1 .

Theorem 2.1. Let P be a H-Symmetric matrix with H = diag(δ1, δ2, · · · , δn). Let σ(P ) =
{λi}ni=1 and

u1 = [u11, u12, · · · , u1n], u2 = [u21, u22, · · · , u2n],

are the vectors of first and second components of the eigenvectors of P , respectively, such
that

[u1, u2]H = 0, [u1, u1]H = δ1, [u2, u2]H = δ2.

Then the entries of P can be constructed as follows:

ai = δi

n∑

j=1

λjδju
2
1j , bi = εiδi+1

n∑

j=1

λjδju1jui+1,j , ci =
√
Di,

Di = δi+2

n∑

j=1

δj [(λj − ai)uij − ci−2ui−2,j − bi−1ui−1,j − εibiui+1,j ]
2,

ui+2,j =
1

εiεi+1ci
[(λj − ai)uij − ci−2ui−2,j − bi−1ui−1,j − εibiui+1,j ],

where c0 = c−1 = b0 = 0.

Proof. Suppose U is a matrix that its columns are eigenvectors of P . If Λ = diag(λ1, λ2, · · · , λn)
then

AU = UΛ (2)

Writting the first row of the equation (2) impies that

a1u1j + ε1b1u2j + ε1ε2c1u3j = λju1j . (3)
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Multiplying both sides of (3) by δju1j and summing up from j = 1 to j = n and using
H-Orthonormal properties of the vectors u1 and u2 we find

a1 = δ1

n∑

j=1

λjδju
2
1j . (4)

Similarly, multiplying both sides of (3) by δju1j and summing up from j = 1 to j = n we
find

ε1b1δ2 =
n∑

j=1

λjδju1ju2j ,

Using the equation (3) implies that

ε1ε2u3j = (λj − a1)u1j − ε1b1u2j . (5)

Taking to the power 2 and multiplying the last eqauation by δj and summing up from
j = 1 to j = n implies that

c21δ3 =
n∑

j=1

δj [(λj − a1)u1j − ε1b1u2j ]2, (6)

that concludes c1 =
√
D1 where D1 = δ3

∑n
j=1 δj [(λj −a1)u1j − ε1b1u2j ]2. Again using the

equation (3) we find

u3j =
1

ε1ε2c1
[(λj − a1)u1j − ε1b1u2j . (7)

Continuing this procedure will produce all entries of the matrix P . Note that for solvibility
of the inverse problem by this Theorem the eigendata must be chosen such that Di given
by theorem to be nonnegative, otherwise the problem has no solution.

Now we are ready to construct the solution of the inverse problems by three given
spectra. First, we compute the first entries of the eigenvectors of P by two given spectra.

Theorem 2.2. Let P be H-Symmetric and

σ(P ) = {λi}ni=1, σ1(P ) = {µi}n−1i=1

are real and distinct such that there exists a permutation of σ(P ), say {λki}ni=1 such that

δi
Πn−1

j=1 (µj − λki)
Πn

j=1,j 6=i(λkj − λki)
> 0, i = 1, 2, · · · , n.

Then the first entries of the eigenvectors of P i.e., u1i are computed as follows:

u1i =

√√√√δi
Πn−1

j=1 (µj − λki)
Πn

j=1,j 6=i(λkj − λki)
. (8)

Theorem 2.3. Let H1 = diag(δ11 , δ
1
2 , · · · , δ1n−1) and P1 be H1−Symmetric matrix. Suppose

V = [v1, v2, · · · , vn−1] is the matrix with columns consisting the eigenvectors of P1. Then
the eigenvalues of P are the roots of the following equation:

(a1 − λ)−
n−1∑

i=1

δ1i ε1(b1v1i + c1v2i)
2

µi − λ
= 0. (9)
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Theorem 2.4. Let P be H-Symmetric and P1 be H1-Symmetric such that σ2(P ) =
{νi}n−2i=1 . Then

u2i = v1i

n−1∑

j=1

δ1i ε1δ
1
j (b1v1i + c1v2i)

(µj − λi)
u1i,

where b1v1i + c1v2i is computed by

(b1v1j + c1v2j)
2 = −δ1j ε1

Πn
i=1(λi − µj)

Πn−1
i=1,i 6=j(µi − µj)

, j = 1, 2, . . . , n− 1.

Now given the spectrum {λi}ni=1 and having the first and second components of eigen-
vectors, i.e., u1i and u2i we can construct the matrix P using modified Lanczos algorithm
(Theorem 2.1).

3 Numerical Examples

Example 3.1. Cosider the H- symmetric pentadiagonal matrices of the form (1) with
entries

ai =





20, i = 1,
6, i = 2, . . . , n− 1,
5, i = n,

bi = −4, ci = 1, εi =

{
−1, i = 1,
1, i = 2, . . . , n− 1.

In Tables 1 and 2, for different values of n, we compared the spectra of computed matrix
P (c) with the initial given matrix P .

Table 1: Numerical results for example 3.1 without Modified Gram-Schmit method

n ‖σ(P (c))− σ(P )‖ ‖σ1(P (c))− σ1(P )‖ ‖σ2(P (c))− σ2(P )‖
10 1.41e-07 1.37e-07 1.45e-07

50 165.59 166.77 166.88

100 337.07 338.06 338.20

200 374.86 375.59 375.72

Table 2: Numerical results for example 3.1 with applying Modified Gram-Schmit method

n ‖σ(P (c))− σ(P )‖ ‖σ1(P (c))− σ1(P )‖ ‖σ2(P (c))− σ2(P )‖
10 4.06e-14 1.19e-14 9.74e-15

50 1.35e-13 3.12e-14 3.50e-14

100 1.55e-13 4.12e-14 4.35e-14

200 4.30e-13 5.51e-14 5.71e-14

4 Concluding Remark

Using Lanczos algorithm we construct pentadiagonal matrix P and H-Orthonormal eigen-
vectors. For large scale matrices the constructed eigenvectors might not be H-Orthonormal.
To overcome this difficulty we use the modified Gram Schmidt orthogonalization. This
algorithm transforms the vectors u1, u2, · · · , un into H-Orthonormal vectors as follows:
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1. Put u1 = v1√
uT
1 Hu1

,

2. For i = 2, 3, · · · , n define Si = ui −
∑i−1

j=1 δj [ui, uj ]uj ,

3. Set ui = Si√
[ui,ui]H

.

Due to the fact that the components of u1i and v1i have signs +,−, also b1v1j + c1v2j
have signs +,−, therefore the solution matrix is not unique. To illustrate the efficiency
of the numerical examples we compare the prescribed eigenvalues with the eigenvalues of
the constructed matrix.
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Reflection matrices and linear preservers of majorization1
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Abstract

A reflection is a mapping from an Euclidean space to itself that is an isometry. In
this paper, we have outlined the concept of left majorization (resp. right majoriza-
tion) of the group of reflection matrices to the line passing through the origin of the
coordinates, and we have found all linear preserver transformations of this kind of
majorization.
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1 Introduction

Let X be a real vector space, W ⊆ X, conv(W ) be the convex hull of W and G be a left
action (right action) on X. The group G induces an equivalence relation on X, defined
by x ' y if and only if x = gy (x = yg) for some g ∈ G. The equivalence classes of this
relation are called the orbits of G. for each y ∈ X the orbit of y is as follows:

OG(y) = {gy|g ∈ G} (OG(y) = {yg|g ∈ G}).

A vector x is said to be G-majorized of the left (of the right) by y and we write x ≺lG y
(x ≺rG y) if x ∈ conv(OG(y)). Let T : X −→ X be a mapping and ∼ be a relation on X.
We say T is a preserver of ∼ if Tx ∼ Ty whenever x ∼ y, it is called a strong preserver of
∼ if it further satisfies x ∼ y whenever Tx ∼ Ty.

2 Main results

In this section section, the concept of majorization is studied and then the linear preservers
of this concept are characterized.

Definition 2.1. Let θ be a real number, define

Pθ =

[
cos(θ) sin(θ)
sin(θ) − cos(θ)

]

and Gθ = {I2, Pθ}. Its obvious that Gθ is a group.

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: a.mohammadhasani53@gmail.com
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For each z the orbit of z = (x, y)t ∈ R2 is a follows:

OGθ
(z) = {gz : g ∈ Gθ}.

Let z1, z2 ∈ R2. We say that z1 = (x1, y1)
t G-majorized of the left by z2 = (x2, y2)

t

(denote by z1 ≺lθ z2) if z1 ∈ conv(OGθ
(z2)).

Theorem 2.2. Let z1 and z2 are two vectors of the R2.

1. z1 ≺lθ z2 if and only if the z1 = tz2 + (1− t)Pθz2, for some 0 ≤ t ≤ 1.

2. z1 ∼lθ z2 if and only if z1 = z2 or z1 = Pθz2.

Proof.

Theorem 2.3. Let T be a linear operator on M2. Then T preserves G-majorized ≺lθ if
and only if one of the following holds:

1. θ 6= nπ and

[T ] =

[
a sin θ b sin θ
b sin θ a sin θ − 2b cos θ

]
or [T ] =

[
a sin θ a(1− cos θ)
b sin θ b(1− cos θ)

]

for some real numbers a, b.

2. θ = 2nπ and

[T ] =

[
a 0
b 0

]
or [T ] =

[
a 0
0 b

]

for some real numbers a, b.

3. θ = (2n+ 1)π and

[T ] =

[
a 0
0 b

]
or [T ] =

[
0 a
0 b

]

for some real numbers a, b.

Proof. 1. If

A = [T ] =

[
a sin θ b sin θ
b sin θ a sin θ − 2b cos θ

]

then

A(ty + (1− t)Pθy) = tAy + (1− t)PθAy ≺lθ Ay

for each y ∈ R2, and if

A = [T ] =

[
a sin θ a(1− cos θ)
b sin θ b(1− cos θ)

]

then

A(ty + (1− t)Pθy) = Ay ≺lθ Ay
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for each y ∈ R2, so T preservers ≺lθ.
Now Let θ 6= nπ and T preservers ≺lθ and

[T ] = A =

[
a11 a12
a21 a22

]

Since e1 ∼θ (cos θ, sin θ)t,

(a11, a21)
t ∼θ (a11 cos θ + a12 sin θ, a21 cos θ + a22 sin θ)t (1)

therefor

(a11 cos θ + a12 sin θ, a21 cos θ + a22 sin θ)t = (a11, a21)
t

or

(a11 cos θ + a12 sin θ, a21 cos θ + a22 sin θ)t = Pθ(a11, a21)
t

= (a11 cos θ + a21 sin θ, a11 sin θ − a21 cos θ)t.

Similarly, since e2 ∼θ (sin θ,− cos θ)t,

(a12, a22)
t ∼θ (a11 sin θ − a12 cos θ, a21 sin θ − a22 cos θ)t (2)

therefor

(a11 sin θ − a12 cos θ, a21 sin θ − a22 cos θ)t = (a12, a22)
t

or

(a11 sin θ − a12 cos θ, a21 sin θ − a22 cos θ)t = Pθ(a12, a22)
t

= (a12 cos θ + a22 sin θ, a12 sin θ − a22 cos θ)t.

We consider four cases.

Case1: Let

(a11 cos θ + a12 sin θ, a21 cos θ + a22 sin θ)t = (a11, a21)
t

and

(a11 sin θ − a12 cos θ, a21 sin θ − a22 cos θ)t

= (a12 cos θ + a22 sin θ, a12 sin θ − a22 cos θ)t

in this case a12 = a21 and a22 = a11 − 2a12 cot θ so

A =

[
a sin θ b sin θ
b sin θ a sin θ − 2b cos θ

]

where a = a11
sin θ and b = a12

sin θ .

Case2: Let

(a11 cos θ + a12 sin θ, a21 cos θ + a22 sin θ)t = (a11, a21)
t

and

(a11 sin θ − a12 cos θ, a21 sin θ − a22 cos θ)t = (a12, a22)
t
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in this case a12 = 1−cos θ
sin θ a11 and a22 = 1−cos θ

sin θ a21 so

A =

[
a sin θ a(1− cos θ)
b sin θ b(1− cos θ)

]

where a = a11
sin θ and b = a21

sin θ .

Case3: Let

(a11 cos θ + a12 sin θ, a21 cos θ + a22 sin θ)t

= (a11 cos θ + a21 sin θ, a11 sin θ − a21 cos θ)t

and

(a11 sin θ − a12 cos θ, a21 sin θ − a22 cos θ)t

= (a12 cos θ + a22 sin θ, a12 sin θ − a22 cos θ)t

in this case a12 = a21 and a22 = a11 − 2a12 cot θ so

A =

[
a sin θ b sin θ
b sin θ a sin θ − 2b cos θ

]

where a = a11
sin θ and b = a12

sin θ .

Case4: Let

(a11 cos θ + a12 sin θ, a21 cos θ + a22 sin θ)t

= (a11 cos θ + a21 sin θ, a11 sin θ − a21 cos θ)t

and

(a11 sin θ − a12 cos θ, a21 sin θ − a22 cos θ)t = (a12, a22)
t

in this case a12 = a21 and a22 = a11 − 2a12 cot θ. so

A =

[
a sin θ b sin θ
b sin θ a sin θ − 2b cos θ

]

where a = a11
sin θ and b = a11

1+cos θ .

2. We only prove the necessary condition. The Relation (2) results that

(a12, a22)
t ∼θ (−a12,−a22)t

so

(−a12,−a22)t = (a12, a22)
t or

(−a12,−a22)t = Pθ(a12, a22)
t = (a12,−a22)t.

If (−a12,−a22)t = (a12, a22)
t have a12 = a22 = 0. So

A =

[
a11 0
a21 0

]

If

(−a12,−a22)t = Pθ(a12, a22)
t = (a12,−a22)t
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we have a12 = 0. On the other hand (1, 1) ∼θ (1,−1) consequence that

(a11, a21 + a22) ∼θ (a11, a21 − a22)

so (a11, a21 − a22) = (a11, a21 + a22) or (a11, a21 − a22) = (a11,−a21 − a22). Hence
a22 = 0 or a21 = 0. Thus

[T ] =

[
a11 0
a21 0

]
or [T ] =

[
a11 0
0 a22

]

3. We only prove the necessary condition. The Relation (1) results that

(a11, a21)
t ∼θ (−a11,−a21)t

so

(−a11,−a21)t = (a11, a21)
t or

(−a11,−a21)t = Pθ(a11, a21)
t = (−a11, a21)t.

If (−a11,−a21)t = (a11, a21)
t have a11 = a21 = 0. So

A =

[
0 a12
0 a22

]

If

(−a11,−a21)t = (−a11, a21)t

we have a21 = 0. On the other hand (1, 1) ∼θ (−1, 1) consequence that

(a11 + a12, a22) ∼θ (−a11 + a12, a22)

so

(−a11 + a12, a22) = (a11 + a12, a22)

or (−a11 + a12, a22) = (−a11 − a12, a22).

Hence a11 = 0 or a12 = 0. Thus

[T ] =

[
0 a12
0 a22

]
or [T ] =

[
a11 0
0 a22

]

Similarly, For each vector z = (x, y) ∈ R2 the orbit of z is a follows:

OGθ
(z) = {zg : g ∈ Gθ}.

Let z1, z2 ∈ R2. We say that z1 = (x1, y1)
t G-majorized of the right by z2 = (x2, y2)

t

(denote by z1 ≺rθ z2) if z1 ∈ conv(OGθ
(z2)).

Theorem 2.4. Let z1 and z2 are two vectors of the R2.

1. z1 ≺rθ z2 if and only if the z1 = tz2 + (1− t)z2Pθ, for some 0 ≤ t ≤ 1.
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2. z1 ∼rθ z2 if and only if z1 = z2 or z1 = z2Pθ.

Theorem 2.5. Let T be a linear operator on M2. Then T preserves G-majorized ≺rθ if
and only if one of the following holds:

1. θ 6= nπ and

[T ] =

[
a sin θ b sin θ
b sin θ a sin θ − 2b cos θ

]
or [T ] =

[
a sin θ b sin θ

a(1− cos θ) b(1− cos θ)

]

2. θ = 2nπ and

[T ] =

[
a 0
b 0

]
or [T ] =

[
a 0
0 b

]

3. θ = (2n+ 1)π and

[T ] =

[
a 0
0 b

]
or [T ] =

[
0 0
a b

]

for some real numbers a, b.
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Abstract

In this paper triangular functions (TF) and the related operational matrices of
fractional integration are applied to solve time-fractional Black-Sholes equation. By
using this equation, we are able to price an option, which is one of the most important
derivatives in financial markets. The numerical result confirms the efficiency and
accuracy of the proposed method.
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1 Introduction

Options are usually used for risk reduction in stock markets and has been widely used by
traders and practitioners. One of the most important financial derivative pricing models
is BlackScholes model, which has been the basis of current financial models [1].
In recent years, many financial studies have been conducted on markets with fractional
models due to better and more acceptable results in real markets [2]. In the early 1970s,
Fisher Black, Miren Scholes and Robert Merton took a big step in option pricing. The
result was a model named Black-Scholes model. This model has had a great impact on
the option pricing and risk hedge methods. In this paper, we introduce a new opera-
tional method to solve a special differential equation of fractional order. The aim of this
work is to present an operational method (operational triangular functions method) for
approximating the solution of fractional Black-Scholes equation [3]:

∂αc(s, t)

∂tα
+

1

2
σ2s2

∂2c(s, t)

∂s2
+ (r −D)

∂c(s, t)

∂s
= rc(s, t), (s, t) ∈ (Bd, Bu)× (0, T ), (1)

such that when α = 1 is the classic Black-Scholes formula. For an option pricing problem,
the initial and boundary conditions of this equation are:

c(Bd, t) = P (t), c(Bu, t) = Q(t), (2)

c(s, T ) = V (s), Bd < s < Bu, (3)

where r is the rate of interest, σ is volatility of stock price, D is the dividend yield, T is
the expire time, Bd is the lowest stock price in time interval [0, T ] with d probability and

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: n.mollahasani@math.uk.ac.ir
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Bu is the highest stock price in time interval [0, T ] with u probability such that u+ d = 1.
The conditions (2) and (3) for European call option are as:

c(s, T ) = max{0, smax − k}, 0 ≤ s <∞, c(0, t) = 0, 0 ≤ t ≤ T,
c(s, t) = smax − ke−rt, s→∞.

Also, the mentioned conditions for European put option are as follows:

c(s, T ) = max{0, k − smax}, 0 ≤ s <∞, c(0, t) = ke−rt, 0 ≤ t ≤ T,
c(s, t) = 0, s→∞.

2 Fractional Calculus

There are several definitions of a fractional derivative of order α > 0. The two most
commonly used definitions are the Riemann- Liouville and Caputo. Each definition uses
Riemann- Liouville fractional integration and derivatives of whole order. The Riemann-
Liouville fractional integration of order α ≥ 0 of function f is defined as:

Iα0,tf(t) =





1

Γ(α)

∫ t
0 (t− τ)α−1f(τ)dτ, α > 0,

f(t), α = 0,

and the Caputo fractional derivative of order α is defined as cD
α
0,tf(x) = Im−α

0,t Dmf(x),

where Dm is the usual integer differential operator of order m, Im−α
0,t is the Riemann-

Liouville integral operator of order m− α and m− 1 < α ≤ m.
The relation between Riemann- Liouville operator and Caputo operator is given by the
following lemma:

Lemma 2.1. If m− 1 < α ≤ m, m ∈ N, then cD
α
0,tI

α
0,tf(x) = f(x), and:

Iα0,t cD
α
0,tf(x) = f(x)−

m−1∑

k=0

f (k)(0+)
xk

k!
, x > 0.

3 Triangular Functions

In this section, first we introduce triangular functions, then using them and operational
matrices, the fractional Black-Scholes equation will be solved .

Definition 3.1. Divide [0, L) into m equal parts. Suppose that h =
L

m
. Triangular

functions are defined as:

T 1
i (t) =

{
1− t− ih

h
, ih ≤ t < (i+ 1)h;

0, otherwise,

and:

T 2
i (t) =

{
t− ih
h

, ih ≤ t < (i+ 1)h;

0, otherwise,

for i = 0, 1, ...,m− 1.
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Let’s define the TF-vector as the following:

T(t) =

[
T1(t)
T2(t)

]
,

such that:

T1(t) = [T 1
0 (t), T 1

1 (t), T 1
2 (t), ..., T 1

m−1(t)]
T , T2(t) = [T 2

0 (t), T 2
1 (t), T 2

2 (t), ..., T 2
m−1(t)]

T .

For each continuous function f ∈ L2[0, L], we have:

f(x) '
m−1∑

i=0

ciT
1
i (t) +

m−1∑

i=0

diT
2
i (t) = F T1 .T1(t) + F T2 .T2(t)

=

[
F1

F2

]T [
T1(t)
T2(t)

]
= FTT(t) = fm(t),

where ci = f(ti) and di = f(ti+1) for i = 0, 1, ...,m− 1 [4].

3.1 Operational Matrices of Triangular Functions

Now we investigate the operational matrix of fractional integral of triangular functions (of
order α).

Definition 3.2. Fractional integration of triangular functions of order α is defined as:

IαT(t) =
1

Γ(α)

∫ t

0
(t− τ)(α−1)T (τ)dτ ' PαT(t),

where Pα is called the operational matrix of fractional integration of triangular functions
and derived according to the following theorem.

Theorem 3.3. [4] The operational matrix of fractional integration of triangular functions,
Pα, is defined as the following:

IαT(t) ' PαT(t), Pα =

[
Pα11 Pα12
Pα21 Pα22

]
, (4)

where:

Pα11 =




0 ξ0 ξ1 . . . ξm−2

0 0 ξ0 . . . ξm−3
...

...
...

. . .
...

0 0 0 . . . ξ1
0 0 0 . . . ξ0
0 0 0 . . . 0



, Pα12 =




ξ0 ξ1 ξ2 . . . ξm−1

0 ξ0 ξ1 . . . ξm−2
...

...
...

. . .
...

0 0 0 . . . ξ2
0 0 0 . . . ξ1
0 0 0 . . . ξ0



,

such that ξj =
hα

Γ(α+ 2)
[(j + 1)α(α− j) + jα+1] for j = 0, 1, 2, ...,m− 1 and:

Pα21 =




0 η0 η1 . . . ηm−2

0 0 η0 . . . ηm−3
...

...
...

. . .
...

0 0 0 . . . η1
0 0 0 . . . η0
0 0 0 . . . 0



, Pα22 =




η0 η1 η2 . . . ηm−1

0 η0 η1 . . . ηm−2
...

...
...

. . .
...

0 0 0 . . . η2
0 0 0 . . . η1
0 0 0 . . . η0



,

such that ηj =
hα

Γ(α+ 2)
[(j + 1)α+1 − jα(α+ j + 1)] for j = 0, 1, 2, ...,m− 1.
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4 TF-Method for Solving Fractional Black-Scholes Equation

Suppose that c(s, t) which shows option pricing in time t by the price of s, can be written
as:

∂2c(s, t)

∂s2
'

n∑

i=0

m∑

j=0

cijT
α
i (s)Tαj (t) = TT (t)CT(s),

where C is the coefficient matrix which is unknown.
Applying the fractional integration operator Iα0,s to the both sides of (5) and using the
operational matrix of (4), we get:

∂c(s, t)

∂s
' TT (t)CP1T(t) + L(t), (5)

where L(t) will be calculated later. Again by applying the integration operator I20,s to the
both sides of (5) and using the operational matrix of (4), we have:

c(s, t) ' TT (t)CP2T(s) + sL(t) + Z(t). (6)

By the assumption Bd = 0, it is obvious that Z(t) = P (t). On the other hand, L(t) is
unknown in (5) and (6), which can be obtained by applying the condition c(Bu, t) = Q(t)
in (6):

c(Bu, t) = TT (t)CP2T(Bu) +BuL(t) + P (t).

Therefore:

L(t) ' 1

Bu
(Q(t)− P (t))− 1

Bu
TT (t)CP2T(Bu). (7)

Substituting (7) in (5) and (6), we get respectively:

∂c(s, t)

∂s
' TT (t)CP1T(s) +

1

Bu
(Q(t)− P (t))− 1

Bu
TT (t)CP2T(Bu), (8)

c(s, t) ' TT (t)CP2T(s) +
s

Bu
(Q(t)− P (t)−TT (t)CP2T(Bu)) + P (t). (9)

Now by replacing (5), (8) and (9) in (1), we have:

∂αc(s, t)

∂tα
∼= TT (t)[rCP2T(s)− r s

h
CP2T(Bu)− 1

2
σ2s2CT(s)

−rsCP1T(s) + r
s

h
CP2T(Bu)] + rTT (t)P,

where P (t) ∼= TT (t)P . For simplicity, we define:

X := rCP2T(s)−r s
h

CP2T(Bu)− 1

2
σ2s2CT(s)−rsCP1T(s)+r

s

h
CP2T(Bu)]+rTT (t)P,

therefore:
∂αc(s, t)

∂tα
∼= TT (t)X + rTT (t)P. (10)
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Figure 1: Fractional European Option Pricing for Different α and N = M = 50.

Figure 2: The restriction of Figure 1 for 53.5 ≤ s ≤ 55.5.
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Applying Iα0,t on both sides of (10) and using the operational matrix of triangular
functions, we get:

c(s, t) ' TT (t)(Pα)TX + rTT (t)(Pα)TP + ω(s). (11)

To calculate ω(s), we use the terminal condition c(s, T ) = V (s) in (3):

ω(s) = V (s)−TT (T )(Pα)TX − rTT (T )(Pα)TP. (12)

substituting (12) in (11), we have:

c(s, t) ' (TT (t)−TT (T ))(Pα)TX + r(TT (t)−TT (T ))(Pα)TP + V (s). (13)

By equating (11) and (13), we get:

(TT (t)−TT (T ))(Pα)TX + r(TT (t)−TT (T ))(Pα)TP + V (s) (14)

= TT (t)CP2T(s) +
s

Bu
(Q(t)− P (t)−TT (t)CP2T(Bu)) + P (t).

In order to find the unknown C in (14), the collocation method is utilized. Thus, by
putting the collocation points (si, tj) for i = 1, 2, ..., 2n and j = 1, 2, ..., 2m in (14), we
have a system of 2n× 2m equations with an unknown matrix C2n×2m.
After finding the coefficient matrix C, using function approximation for two variables case,
European option pricing is as follows:

c(s, t) ∼= TT (t)CT(s).

5 Numerical results

Example 5.1. Consider the following fractional Black-Scholes equation respect to time
for European option:

∂αc(s, t)

∂tα
+

1

2
σ2s2

∂2c(s, t)

∂s2
+ r

∂c(s, t)

∂s
− rc(s, t) = 0, (s, t) ∈ (Bd, Bu)× (0, T ),

c(Bd, t) = P (t), c(Bu, t) = Q(t), c(smax, T ) = V (s),

where V (s) = max{0, smax − k}, P (t) = Q(t) = 0 for Bd = 0, Bu = 100, k = 50, r =
0.05, σ = 0.25, for the expire time T = 1. Figures 1 and 2 demonstrate the application of
the presented method for N = M = 50 and some 0 < α < 1.
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Abstract

A generalized sun graph S(n, p) is the corona product of the cycle Cn and the
empty graph of order p. We study Laplacian spectral characterization of generalized
signed sun graphs and show that balanced generalized singed sun graphs can not be
characterized by their Laplacian spectra.
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1 Introduction

In this paper we assume that all graphs are simple, i.e. without any loops or multiple
edges.
Recall that a signed graph Λ = (G, σ) is a simple graph G = (V (G), E(G)) equipped with
a signed function σ : E(G)→ {+,−}.

The adjacency matrix of a signed graph Λ = (G, σ) is defined as A(Λ) = (aσij) with
aσij = σ(ij)aij where A(G) = (aij) is the usual adjacency matrix of G. Also the Laplacian
matrix of Λ is defined as L(Λ) = D(G) − A(Λ). For a signed graph Λ = (G, σ) and
U ⊆ V (G), let ΛU be the signed graph obtained from Λ by reversing the signatures of
the edges in the cut [U, V (G) \ U ]. Namely σΛU (e) = −σΛ(e) for any edge e between U
and V (G) \ U and σΛU (e) = σΛ(e) otherwise. The signed graph ΛU is called a switching
of Λ, and Λ and ΛU are called switching equivalent, for the following well-known and
easy-to-prove theorem.

Theorem 1.1. The adjacency (Laplacian) matrices of Λ and ΛU are similar.

Corollary 1.2. The adjacency (Laplacian) matrices of Λ and ΛU have the same charac-
teristic polynomials.

Definition 1.3. Two signed graphs are said to be A-cospectral (L-cospectral) if they have
the same adjacency (Laplacian) characteristic polynomials. Also we say that a signed
graph Λ is determined by its adjacency (Laplacian) spectrum if every graph that is A-
cospectral (L-cospectral) to Λ is switching isomorphic to Λ.

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: fmotialah2011@yahoo.com
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The sign of a cycle in a signed graph is positive, if it contains an even number of
negative edges, otherwise it is negative.

Definition 1.4. A signed graph is said to be balanced if all of its cycles (if any) are
positive, otherwise it is unbalanced.

Therefore, by this definition and the notion of switching isomorphism, basically there
exists two non-switching isomorphic structures for a cycle Cn. One of them is (Cn,+)
in which all edges are positive, the other is (Cn,−) in which just one edge is negative.
Also note that the signs of the edges of an induced tree in a signed graph is irrelevant,
since such edges can be changed to be positive by suitable switching. It follows that for a
unicyclic graph G,there exist two non-switching isomorphic signed G which is determined
by the sign of its cycle. We denote them by (G,+) (balanced) and (G,−) (unbalanced).

Lemma 1.5. [2, Lemma 4.4] For the cycle Cn we have:

SpecA(Cn,+) = {2 cos
2k

n
π, k = 0, 1, . . . , n− 1},

SpecA(Cn,−) = {2 cos
2k + 1

n
π, k = 0, 1, . . . , n− 1},

Definition 1.6. The corona of two graphs G1 and G2, denoted by G1 ◦ G2 is the graph
obtained from G1 and n disjoint copies of G2, where n is the order of G1, such that each
vertex of G1 is adjacent to all vertices of a corresponding copy of G2.

For example let G1 = C4 and G2 = K2. The two different coronas G1 ◦G2 and G2 ◦G1

are shown in Figure 1.

Figure 1: Coronas of two graphs

The corona of a cycle and a single vertex is called a sun. Laplacian spectra character-
ization of signed sun graphs is given in [4].

A generalized sun graph S(n, p) is the corona product of the cycle Cn and the empty
graph (graph with no edge) of order p.

When we have two signed graphs, for their corona to become a signed graph, different
ways exist to give signs to the additional connecting edges [1]. The graph S(n, p) is a
unicyclic graph, when it is signed it has only two non-switching isomorphic structures,
(S(n, p),+), the balanced one; and (S(n, p),−), the unbalanced one, in which in the latter
only one edge of the cycle (which can be any of its edges) is negative.

As in [4], we now consider generalized signed sun graphs and show that the balanced
generalized sun graph (S(n, p),+) can not be characterized by its Laplacian spectrum
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Figure 2: S(4, 2)

whenever n is even. Therefore we can say generalized signed sun graphs can not be
characterized by their Laplacian spectra.

We need the following well-known lemma, which can be proved plainly.

Lemma 1.7. Let G be a graph with p adjacent pendant edges (pendant edges with a
common vertex). Then it has 1 as a Laplacian eigenvalue with multiplicity at least p− 1.

By employing the proof of the Lemma above, we can easily conclude the following
proposition.

Proposition 1.8. The signed graph Λ = (S(n, p), σ) has 1 as a Laplacian eigenvalue with
multiplicity at least n(p− 1).

2 Main results

First we derive the eigenvalues of Λ = (S(n, p), σ), where σ ∈ {+,−}.
As we have seen in proposition 1.8, at least n(p−1) eigenvalues of the Laplacian matrix

of Λ are 1. Now we have to compute other Laplacian eigenvalues.
We consider the following labeling of vertices of Λ. First the vertices of the cycle come

as 1, 2, . . . n. Then we pick one vertex attached to the vertex 1, one vertex attached to the
vertex 2, and so on; repeating this process p times to complete labeling. The Laplacian
matrix of Λ is then:

L(Λ) =




(p+ 2)In −A(Cn, σ) −In −In . . . −In
−In In 0n . . . 0n

...
−In 0n 0n . . . In


 .

Theorem 2.1. Let Λ = (S(n, p), σ). The Laplacian eigenvalues of Λ are

(3 + p− µi)±
√

(3 + p− µi)2 − 4(2− µi)
2

for i = 0, . . . , n− 1; where µi = 2 cos 2i
n π if σ = + and µi = 2 cos 2i+1

n π if σ = −.
Proof. Let ψ(Λ, x) be the characteristic polynomial of L(Λ) and φ(Cn, x) be the charac-
teristic polynomials of A(Cn). If x 6= 1, then by an elementary row operation we get

ψ(Λ, x) = det(xIn+np − L(Λ)) = det(T ),

where

T =




((x− (p+ 2))− p
(x−1))In +A(Cn) pIn (p− 1)In . . . In

0n (x− 1)In 0n . . . 0n
...

0n 0n 0n . . . (x− 1)In


 .
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Therefore, ψ(Λ, x) = (x− 1)np det(((x− (p+ 2))− p
(x−1))In +A(Cn)).

Since x 6= 1, p
(x−1) − (x− (p+ 2)) is an eigenvalue of A(Cn), provided that x is a root

of ψ(Λ, x). If p
(x−1) − x + p + 2 = α, we have x2 − (3 + p − α)x − (α − 2) = 0 and hence

x =
(3+p−α)±

√
(3+p−α)2−4(2−α)

2 .

Thus, by Lemma 1.5,
(3+p−µi)±

√
(3+p−µi)2−4(2−µi)

2 are the Laplacian eigenvalues of Λ,
where µi = 2 cos 2i+1

n π for σ = −, and µi = 2 cos 2i
n π for σ = +, i = 0, . . . , n− 1.

Corollary 2.2. The Laplacian eigenvalues of signed graph (S(n, p), σ) are 1 with multi-
plicity n(p− 1) and

(3 + p− µi)±
√

(3 + p− µi)2 − 4(2− µi)
2

for i = 0, . . . , n− 1; where µi = 2 cos 2i
n π if σ = + and µi = 2 cos 2i+1

n π if σ = −.

Proof. By Proposition 1.8 and Theorem 2.1, it is obvious.

Theorem 2.3. Let Λ = (S(n, p),+) be a signed graph, where n ≥ 6 is even. Then Λ is
L-cospectral with (S(n2 , p),+) ∪ (S(n2 , p),−).

Proof. By Theorem 2.1, Laplacian eigenvalues of Λ are
(3+p−µi)±

√
(3+p−µi)2−4(2−µi)

2 for
i = 0, . . . , n−1; where µi = 2 cos 2i

n π . For i even, they are the eigenvalues of (S(n2 , p),+),
and for i odd, they are the eigenvalues of (S(n2 , p),−).

3 Conclusion

We showed that a generalized balanced sun graph S(n, p) cannot be characterized by its
Laplacian spectrum when n is even. This extends some results of [4].
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[3] F. Belardo, S. K. Simić, On the Laplacian coefficient of signed graphs, Linear Algebra
Appl., 475 (2015), 94–113.

[4] F. Motialah, M. H. Shirdareh Haghighi, Laplacian spectral characterization of signed
sun graphs, Theory and Applications of Graphs, 6 (2019), Iss. 2, Art. 3.

132



Non-standard finite difference scheme for a fractional-order
chaotic system1

Mehran Namjoo∗, Mehdi Karami and Mehran Aminian

Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

Abstract

In this paper, we introduce a novel fractional-order chaotic autonomous system.
Stability analysis of the fractional–order system is studied using the fractional Routh–
Hurwitz criteria. The nonstandard finite difference (NSFD) scheme is implemented to
study the dynamic behaviors in the novel fractional-order chaotic autonomous system.
The lowest order for the system to remain chaotic is found. The numerical results show
that the NSFD approach is easy and accurate when applied to fractional-order chaotic
system.

Keywords: Chaos, Grunwald-Letnikov derivative, Stability, Fractional calculus,
Nonstandard finite difference scheme
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1 Introduction

In the recent years there is increasing interest in fractional calculus which deals with inte-
gration or differentiation of arbitrary orders. The list of applications of fractional calculus
has been evergrowing and includes control theory, viscoelasticity, diffusion, turbulence,
biology, economics, electromagnetism and many other physical processes. The interest in
the study of fractional-order nonlinear systems lies in the fact that fractional derivatives
provide an excellent tool for the description of memory and hereditary properties, which
are not taken into account in the classical integer-order models. Studying dynamics in
fractional-order nonlinear systems has become an interesting topic and the fractional cal-
culus is playing a more and more important role for analysis of the nonlinear dynamical
systems.

This paper is organized as follows: In next section, we give some basic definitions and
properties of the Grünwald–Letnikov (GL) approximation and provide a brief overview
of the important feature of the procedures for constructing NSFD schemes for ODEs.
In section 3, we introduce a novel fractional-order chaotic autonomous system and also
fractional Routh–Hurwitz stability conditions are given for the local asymptotic stability
of the fractional systems. In section 4, we will discuss the stability analysis of fractional
system. In addition, we present the idea of NSFD scheme for solving the novel fractional-
order chaotic autonomous system. Numerical results show that the NSFD approach is
easy to be implemented and accurated when applied to novel fractional-order autonomous
system.

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: namjoo@vru.ac.ir
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2 NSFD scheme and Grünwald–Letnikov approximation

The initial foundation of NSFD schemes came from the exact finite difference schemes.
These schemes are well developed by Mickens [3] in the past decades. These schemes are
developed for compensating the weaknesses such as numerical instabilities that may be
caused by standard finite difference methods. Consider the autonomous ODE is given by

x′ = f(t, x, λ), x(0) = x0, t ∈ [0, tf ],

where λ is a parameter and f(t, x, λ) is, in general, a nonlinear function. For a discrete-
time grid with step size, 4t = h, we replace the independent variable t by t ≈ tn = nh,
for n = 0, 1, 2, . . . , N where h =

tf
N . The dependent variable x(t) is replaced by x(t) ≈ xn,

where xn is the approximation of x(tn). The NSFD scheme requires that x′ has the
more general representation x′ ∼= xn+1−xn

φ , where the denominator function, i.e. φ has the

property φ(h) = h+O(h2). Derivatives of fractional–order have been introduced in several
ways. In this paper we consider GL approach. The GL method of approximation for the
one–dimensional fractional derivative is as follows:

Dαx(t) = f(t, x(t)), x(0) = x0, t ∈ [0, tf ], (1)

Dαx(t) = lim
h→0

h−α
[ t
h
]∑

j=0

(−1)j
(
α

j

)
x(t− jh),

where 0 < α ≤ 1, Dα denotes the fractional derivative and h is the step size and [ th ]
denotes the integer part of t

h . Therefore, Eq. (1) is discretized as follows:

n∑

j=0

cαj xn−j = f(tn, xn), n = 1, 2, 3, ...

where tn = nh and cαj are the GL coefficients defined as:

cαj = (1− 1 + α

j
)cαj−1, cα0 = h−α, j = 1, 2, 3, ...

By applying this technique and using the GL discretization method, it yields the
following relations

xn+1 =

−
n+1∑

j=1

cαj xn+1−j + f(tn+1, xn+1)

cα0
, n = 0, 1, 2, ...

where cα0 = φ(h)−α.

3 The novel fractional-order chaotic autonomous system

Ref. [2] reported a three-dimensional autonomous system which relies on two multipliers
and one quadratic term to introduce the nonlinearity necessary for folding trajectories.
The chaotic attractor obtained from the new system according to the detailed numerical as
well as theoretical analysis is also the butterfly shaped attractor, exhibiting the abundant
and complex chaotic dynamics. This chaotic system is a new attractor which is similar

134



Non-standard finite difference scheme for a fractional-order chaotic system

to Lorenz chaotic attractor. The chaotic system is described by the following non-linear
integer-order differential equations

x
′

= −ax+ fyz,

y
′

= cy − dxz,
z
′

= −bz + ey2,

(2)

where x, y, and z are the state variables, and a, b, c, d, e, and f are positive constant
parameters. Now we introduce fractional–order into the system (2) of chaotic system. The
new system is described by the following set of fractional ODEs of order α1, α2, α3 > 0, in
the following form

Dα1x = −ax+ fyz,

Dα2y = cy − dxz,
Dα3z = −bz + ey2,

0 < αi ≤ 1, i = 1, 2, 3.

(3)

with initial condition

x(0) = x0, y(0) = y0, z(0) = z0.

In order to analyze the stability of the system, fractional Routh–Hurwitz stability condi-
tions for fractional–order differential equations are introduced. The Jacobian matrix J of
the system Eqs. (3) at the equilibrium point E = (x∗, y∗, z∗) is computed as

J(E) =



−a fz∗ fy∗

−dz∗ c −dx∗
0 2ey∗ −b


 , (4)

The existence and local stability conditions of these equilibrium point are as follows:
Let D(P ) denotes the discriminant of a polynomial P

P (λ) = λ3 + a1λ
2 + a2λ+ a3 = 0, (5)

and
D(P ) = 18a1a2a3 + (a1a2)

2 − 4a3(a1)
3 − 4(a2)

3 − 27(a3)
2,

using the results of [1], we have the following Routh–Hurwitz stability conditions for FDEs:

(i) If D(P ) > 0, then the necessary and sufficient condition for the equilibrium point
E to be locally asymptotically stable is a1 > 0, a3 > 0, a1a2 − a3 > 0.

(ii) If D(P ) < 0, a1 ≥ 0, a2 ≥ 0, a3 > 0, then the equilibrium point E is locally asymptot-
ically stable for α < 2/3. However, if D(P ) < 0, a1 < 0, a2 < 0, α > 2/3, then all roots of
polynomial (5) satisfy the condition |arg(λ)| < απ

2 .

(iii) If D(P ) < 0, a1 > 0, a2 > 0, a1a2 − a3 = 0, then the equilibrium point E is lo-
cally asymptotically stable for all α ∈ [0, 1).

(iv) The necessary condition for the equilibrium point E to be locally asymptotically
stable is a3 > 0.

In the next section we discuss the asymptotic stability of the equilibrium point E of
the system Eqs. (3).
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4 Stability analysis of the fractional–order chaotic autonomous
system

When a = 16, b = 5, c = 10, d = 6, e = 18, and f = 0.5, the new system (2) has three real
equilibrium points E1(0, 0, 0), E2(0.325, 1.4243, 7.303), E3(−0.325,−1.4243, 7.303). The
local stability conditions of these equilibrium points are as follows.

Theorem 4.1. For the parameters a = 16, b = 5, c = 10, d = 6, e = 18, and f = 0.5, the
equilibrium point E1 of system Eqs. (3) is unstable for any α ∈ (0, 1).

Theorem 4.2. When the parameters a = 16, b = 5, c = 10, d = 6, e = 18, and f = 0.5,
if α < 0.89, then equilibrium points E2 and E3 of system Eqs. (3) are stable.

4.1 NSFD scheme for fractional–order system

By using definition of GL derivative and use NSFD for the system Eqs. (3) we have:

n+1∑

j=0

cα1
j xn+1−j = −axn+1 + fynzn,

n+1∑

j=0

cα2
j yn+1−j = cyn − dxn+1zn, (6)

n+1∑

j=0

cα3
j zn+1−j = −bzn+1 + ey2n+1.

Doing some algebraic manipulation to Eqs. (6) yields the following relations

xn+1 =

−
n+1∑

j=1

cα1
j xn+1−j + fynzn

cα1
0 + a

,

yn+1 =

−
n+1∑

j=1

cα2
j yn+1−j + cyn − dxn+1zn

cα2
0

,

zn+1 =

−
n+1∑

j=1

cα3
j zn+1−j + ey2n+1

cα3
0 + b

,

where
cα1
0 = φ1(h)−α1 , cα2

0 = φ2(h)−α2 , cα3
0 = φ3(h)−α3 ,

with [4–6]

φ1(h) =
eah − 1

a
, φ2(h) =

ech − 1

c
, φ3(h) =

ebh − 1

b
.

5 Simulation and results

Analytical studies always remain incomplete without numerical verification of the results.
In this section, numerical results from the implementation of NSFD scheme for the novel
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fractional-order autonomous system are presented. Using NSFD scheme, when α1 = α2 =
α3 = α, the simulation results demonstrate that the lowest order for the system (3) to
remain chaotic is α = 0.89. The approximate solutions are displayed in Figs. 1-3 for
different 0 < αi ≤ 1, i = 1, 2, 3.

In Fig. 1 is depicted phase trajectory of the classical novel autonomous system (2) for
commensurate order α = 1 and parameters a = 16, b = 5, c = 10, d = 6, e = 18, and
f = 0.5 with the initial conditions (x(0), y(0), z(0)) = (0.05.0.05, 0.0001), for simulation
time 20s and step size h = 0.01.
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Figure 1: The chaotic attractor and the equilibrium point of system (3)when α = 1.

In Fig. 2 is depicted phase trajectory of the fractional–order novel autonomous chaotic
system (3) for commensurate order α = 0.88 and parameters a = 16, b = 5, c = 10, d = 6,
e = 18, and f = 0.5 with the initial condition (x(0), y(0), z(0)) = (0.05.0.05, 0.0001), for
simulation time 20s and step size h = 0.01.

In Fig. 3 is depicted phase trajectory of the fractional–order novel autonomous chaotic
system (3) for incommensurate order α1 = 0.88, α2 = 0.85, α3 = 0.80 and parameters a =
16, b = 5, c = 10, d = 6, e = 18, and f = 0.5 with the initial condition (x(0), y(0), z(0)) =
(0.05.0.05, 0.0001), for simulation time 20s and step size h = 0.01.
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Figure 2: Phase trajectory of the equilibrium point E3 when when α = 0.88.
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Figure 3: Phase trajectory of the equilibrium point E2 when α1 = 0.88, α2 = 0.85 and
α3 = 0.80.
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Abstract

Warren Ambrose defined a general structure, namely H∗-algebra. Saworotnow
discussed trace class on these structures. In this work, we investigate this algebra and
this trace class. Also, we mention some properties of trace functional. Finally, a norm,
based on the trace functional, and some examples on these subjects are described.
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1 Introduction

The word Algebra was first used by al-Khwarizmi in 780-850. Different structures are
derived from Algebra.

An algebra over field F is a vector space A over F that also has a multiplication defined
on it that makes A into a ring such that if α ∈ F and a, b ∈ A, α(ab) = (αa)b = a(αb).

A Banach algebra is an algebra A over field F that has a norm ‖·‖A relative to which
A is a Banach space and such that for all a, b ∈ A,

‖ab‖A ≤ ‖a‖A ‖b‖A (Algebra norm)

For a Banach algebra A, an involution is a map a 7→ a∗ from A into A such that the
following properties hold for a, b ∈ A and α ∈ C:

(a∗)∗ = a, (ab)∗ = b∗a∗, (αa+ b)∗ = ᾱa∗ + b∗.

Each Banach algebra equipped with an involution is called Banach ∗-algebra or B∗-algebra.

Definition 1.1. A C∗-algebra is a Banach algebra A with an involution such that for
every a ∈ A,

‖a∗a‖A = ‖a‖2A .
1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: ma moarrefi@yahoo.com
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2 H∗-Algebra

Warren Ambrose defined an H∗-algebra structure in [1]. He defined H∗-algebras as a
generalization of L2-algebras. In continue, we survey on the definition and some properties
of these structures. Also present some examples for this algebra. Then checking the
difference between that and the similar algebra. Also, discuss on involution ∗ and proper
H∗-algebras. Finally express structure theorem for H∗-algebra.

Definition 2.1 ( [1]). The Banach algebra A is called H∗-algebra, if satisfies the following
conditions:

i. The underlying Banach space of A is Hilbert space of arbitrary dimention.

ii. For each a ∈ A, there exist adjoint a∗ ∈ A such that

〈ab, c〉A = 〈b, a∗c〉A and 〈ab, c〉A = 〈a, cb∗〉A (1)

for all a, b, c ∈ A.

This means, an H∗-algebra A is a (real or complex) Banach algebra and a (real or
complex) Hilbert space with an inner product 〈a, b〉A such that the algebra norm ‖a‖A
and the Hilbert space norm 〈a, a〉1/2A are equal for all a ∈ A. And also, for every element
a ∈ A there is at least one adjoint element a∗ satisfies in (1).

Example 2.2. We explain two examples for H∗-algebras and express relation between
these algebras and C∗-algebras:

i. Complex number, C, with inner product 〈α, β〉 = Re (αβ∗) and induced norm by
this inner product, is an H∗-algebra and C∗-algebra, because 〈αβ, γ〉 = Re (αβγ) =
〈β, α∗γ〉 = 〈α, γβ∗〉 and ‖α∗α‖ = ‖α‖2 where for every complex number η, η∗ = η
and ‖η = η1 + η2i‖ =

√
〈η, η〉 =

√
Re (ηη∗) = η2

1 + η2
2.

ii. The Clifford algebra A = Cl0,n is a finite-dimension real H∗-algebra with respect to
〈λ, µ〉 := 2n[λµ]0 = 2n

∑
A λAµA.

Let |λ|20 := 〈λ, λ〉0 = 2n
∑

A λ
2
A be an induced norm by above inner product on

C `02 (i.e. i2 = j2 = −1). Consider λ = i + j, then λλ = 2, |λλ|0 = 4 and
|λ|20 = 22(12 + 12) = 8. Hence |λλ|0 6= |λ|20.

Therefore Cl0,n with this inner product and induced norm is an H∗-algebra and is
not a C∗-algebra (For more information see [4]).

The adjoint a∗ of a is not unique. Consider any Hilbert space and make it into an
algebra by defining the 〈a, b〉 := 0. It is trivial that this is an H∗- algebra in which every
element is an adjoint of every element.

For every H∗-algebra A, aA = (0) is equivalent to Aa = (0), for all a ∈ A.

Definition 2.3 ( [1]). An H∗-algebra is proper or semi-simple if the only a ∈ A satisfies
in aA = (0) is a = 0.

Theorem 2.4 ( [1]). An H∗-algebra is proper if and only if every element has a unique
adjoint.

Definition 2.5. Let A be a proper H∗-algebra and a, e, f ∈ A. Then

i. a is self-adjoint member of A if a∗ = a;
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ii. a is positive member of A if 〈ax, x〉A ≥ 0 for all x ∈ A;

iii. a is normal element if a∗a = aa∗;

iv. e is idempotent if e2 = e 6= 0;

v. e is sa-idempotent or projection if e be an idempotent and self-adjoint, i.e. e2 = e =
e∗ 6= 0;

vi. The non-zero idempotents e, f are called doubly orthogonal if ef = fe = 0 and
〈e, f〉A = 0;

vii. An idempotent is primitive if it can not be expressed as the sum of two doubly
orthogonal idempotents.

Theorem 2.6 ( [1]). Every proper H∗-algebra contains an sa-idempotent.

Theorem 2.7 ( [1]). Every proper H∗-algebra contains a (non-empty) maximal family of
doubly orthogonal primitive sa-idempotents

Theorem 2.8 (First structure theorem, [ [5]). ] Let {ei} be a maximal family of doubly
orthogonal primitive sa-idempotents in a proper H∗-algebra A. Then

A =
∑

i

eiA =
∑

i

Aei,

that is, A is the direct sum of the minimal left ideals Aei and A is a direct sum of the
minimal right ideals eiA.

2.1 Trace-Class for H∗-Algebras

In this section, A is a proper H∗-algebra. We describe definition of trace–class and trace–
functional for H∗-algebras. After that, we explain some consequences and relations about
these.

Lemma 2.9 ( [6]). Let b be a normal element in A. Then there exists a projection base
{eα}α∈Λ for A and a family {λα}α∈Λ of scalars such that b =

∑
α∈Λ λαeα. The nonzero

numbers λα are nonzero numbers in the spectrum of b.
If b = a∗a for some a ∈ A then every λα ≥ 0.

Corollary 2.10 ( [6]). For each a 6= 0 in A there exists a sequence {en} of mutually
orthogonal projections and a sequence {λn} of positive numbers such that

a∗a =
∑

n

λnen. (2)

Note also that a∗aen = ena
∗a = λnen for each n.

Define [a] :=
∑

n µnen, where µn :=
√
λn ≥ 0, For every n ∈ N, in Equation (2) of

Corollary 2.10. Then for each k:

k∑

n=1

‖µnen‖2A =
k∑

n=1

µ2
n 〈en, en〉A =

k∑

n=1

〈λnen, en〉A

=

k∑

n=1

〈a∗aen, en〉A =

k∑

n=1

〈aen, aen〉A
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=

k∑

n=1

‖aen‖2A ≤ ‖a‖2A .

Therefore
∑

n µnen is converges. Hence [a] =
∑

n µnen is well-define.

Lemma 2.11 ( [6]). For each a ∈ A there exists a unique positive member [a] of A such
that [a]2 = a∗a (note that [a]∗ = [a]).

The trace–class for A is the set

τ(A) = {xy|x, y ∈ A} ,

i.e. τ(A) be the set of all products xy of members x, y of A. Every trace–class is non–
empty, because each idempotent element e2 = e ∈ A is belong to τ(A), see Theorem
2.6.

If a ∈ τ(A), then a = xy for some x, y ∈ A. We define

tr a := 〈y, x∗〉A .

In every proper H∗-algebra tr (ab) = tr (ba), for each a, b ∈ A. The trace tr is a positive
functional, i.e. tr (a) ≥ 0, for every positive element a ∈ A. There exists b ∈ A such that
tr (b) < 0. Therefore in follow use “[a]” to build a norm according to the trace functional,
because [a] is a positive member of A, for every a.

Definition 2.12 ( [6]). We define τ(a) := tr ([a]) = tr (
∑∞

n=1 µnen) =
∑∞

n=1 µn for every
a ∈ A.

Corollary 2.13 ( [6]). Suppose A be an H∗-algebra. Then

i. τ(a∗a) = tr (a∗a) = ‖a‖2A, for all a ∈ A;

ii. |tra| ≤ τ(a), for all a ∈ τ(A);

iii. ‖a‖A ≤ τ(a), for all a ∈ τ(A);

iv. τ(ab) ≤ ‖a‖A · ‖b‖A, for all a, b ∈ A;

v. τ(ab) ≤ τ(a)τ(b), for all a, b ∈ τ(A).

3 Some Examples

Example 3.1. Consider a structure (`2(N),+, ·, 〈·, ·〉) with the standard addition and
scalar product. Suppose a = (a1, a2, · · · ) = {ai}∞i=1 , b = (b1, b2, · · · ) = {bi}∞i=1 ∈ `2(N)
where ai, bi ∈ F = C. We define

a · b = (a1 · b1, a2 · b2, · · · ) = {ai · bi}∞i=1 (product)

〈a, b〉A =
∞∑

i=1

aibi (inner product)

a∗ = (a1, a2, · · · ) (adjoint)

where · is conjugate of a complex number. Then we know that 〈·, ·〉A is an inner product

and ‖a‖A = 〈a, a〉
1
2
A = (

∑∞
n=1 |an|2)

1
2 is induced norm. So A is a Hilbert space and a

Banach algebra. Also ∗ is an involution.
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A is an H∗-algebra, because

〈ab, c〉A =
∑

aibici,

〈b, a∗c〉A =
∑

biaici =
∑

aibici,

〈a, cb∗〉A =
∑

aicibi =
∑

aibici,

are equal. But it has not C∗-algebra structure. For check this, let a = (2, 3, 0, 0, · · · ).
Then ‖a‖2A 6= ‖a∗a‖A.

It is easy to show that 1A must be {1R}∞i=1 and it is not belong to `2(N).

Let δi = {δij}∞j=1, i ∈ N, where δij is the Kronecker delta. Then {δi} is family of
doubly orthogonal primitive sa-idempotents.

For every a = {an}∞n=1, [a] = {|an|}∞n=1. Then tr (a) = tr ({an}∞n=1) =
∑∞

n=1 an and

τ(a) = tr ([a]) =
∑∞

n=1 |an|. Therefore ‖a‖A = 〈a, a〉
1
2
A =

√
tr (a∗a) =

√
τ(a∗a).

Example 3.2. Consider a structure (M2(C),+,×, scalar product) with the common ma-
trix addition, matrix product and the scalar product. Also, involution on a matrix A be
conjugate transpose of A, i.e. A∗ = AT . Suppose A,B ∈ M2(C) where aij , bij ∈ F = C.
We define inner product

〈A,B〉A =
2∑

i=1

2∑

j=1

aij · bij .

Then 〈·, ·〉A is an inner product and A is a Hilbert space.

Induced norm is ‖·‖2A = 〈A,A〉A =
∑2

i=1

∑2
j=1 aij · aij =

∑2
i=1

∑2
j=1 |aij |2, and it is

Frobenius norm. So, A is a Banach algebra.

A is an H∗-algebra, becuse

〈A×B,C〉 = 〈B,A∗ × C〉 = 〈A,C ×B∗〉
= a11b11c11 + a12b21c11 + a11b12c12 + a12b22c12

+ a21b11c21 + a22b21c21 + a21b12c22 + a22b22c22,

but it is not a C∗-algebra, because ‖I∗I‖ 6= ‖I‖2.

1A = I2×2 ∈ A, but ‖1A‖A 6= 1. Then A is not unital Banach algebra.

Now calculate trace functional tr for each A ∈ A

tr (A) = tr (AI) = 〈A, I〉 = a11 + a22.

For check the part(i) of Proposition 2.13, letA =

(
a b
c d

)
. ThenA∗A =

(
āa+ c̄c āb+ c̄d
b̄a+ d̄c b̄b+ d̄d

)
.

And tr (A∗A) = |a|2 + |c|2 + |b|2 + |d|2 = ‖A‖2.

4 Conclusion

An H∗-algebra structure is a complete vector space with a multiplication on its elements
such that it has a particular inner product. Then investigate a trace-class sub-algebra of
this and a trace functional and a trace norm. Finally, we mentioned some properties of
these.
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Abstract

In this paper for a given set of real numbers σ via a special unit lower triangular
matrix, we find a symmetric matrix such that σ is its spectrum and in continue we
bring a conditon for solving symmetric inverse eigenvalue problem(SNIEP).
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1 Introduction

The nonnegative inverse eigenvalue problem (NIEP) asks for necessary and sufficient con-
ditions on a list σ = (λ1, λ2, . . . , λn) of real or complex numbers in order to σ be a spectrum
of a nonnegative matrix A, we will say that σ is realizable and that it is realization of σ.
Since all eigenvalues of symmetric matrices are real, then if σ = (λ1, λ2, . . . , λn) of real
numbers then (SNIEP) is symmetric nonnegative inverse eigenvalue problem and if we
find a symmetric matrix C with eigenvalues σ, then we will say that σ is symmetrically
realizable and that it is symmetric realization of σ.

In [1] Fiedler obtained some necessary and some sufficient conditions for a set of n
real numbers σ = {λ1, λ2, . . . , λn} that it to be the set of eigenvalues of n× n symmetric
nonnegative matrix. Although nonsymmetric inverse eigenvalue problem (NIEP) has not
been solved in general, however sufficient conditions for the SNIEP have been obtained
in [3].

Some necessary conditions on the list of real number σ = (λ1, λ2, . . . , λn) to be the
spectrum of a nonnegative matrix are listed below.
(1) The Perron eigenvalue max{|λi|;λi ∈ σ} belongs to σ (Perron-Frobenius theorem).
(2) sk =

∑n
i=1 λ

k
i ≥ 0.

(3)smk ≤ nm−1skm for k,m = 1, 2, . . . (JLL inequality) [2, 3]. One of the special and
interesting cases of SNIEP is inverse eigenvalues of Euclidean distance matrix (EDM). For
instance, T.L. Hayden, R. Reams and J. Wells have solved the inverse eigenvalue problem
for Euclidean distance matrices of order n = 3, 4, 5, 6, and any n for which there exists a
Hadamard matrix and also they solved this problem: If for n ∈ N there exists a Hadamard
matrix of order n, then there is an (n + 1) × (n + 1) and an (n + 2) × (n + 2) distance

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: a-nazari@araku.ac.ir
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matrix with eigenvalues which hold under special conditions for n 6 16 [5]. Nazari and
Mahdinasab solved this problem without using any Hadamard matrix [4].

A matrix L is called unit lower triangular if it is lower triangular matrix and all entries
on its main diagonal are one. The inverse such a matrix also is unit lower triangular. In
Gaussian elimination method and LU factorization unit lower triangular matrices play an
important role.

Recently, Nazari and Nezami were able to solve the inverse eigenvalue problem in
general by using unit lower triangular matrices [6]. In this paper for a given set of real
numbers by helping a special unit lower triangular matrix we find a symmetric matrix
C, such that σ is its spectrum and in continue we find a sufficient condition that C is
nonnegative symmetric matrix.

2 Main results

In this paper for a given set of real numbers σ by helping of similarity of matrices and via a
special unit lower triangular matrices, we find a symmetric matrix that σ is its spectrum.

Lemma 2.1. If

L =




1 0 · · · 0
1 1 0
...
1 1 · · · 1




is k × k unit lower triangular matrix, then

L−1 =




1 0 0
−1 1 0
0
...
0 · · · −1 1



.

Proof. It is easy to see that LL−1 = LL−1 = Ik, that Ik is k × k identity matrix.

Theorem 2.2. Let σ = {λ1, λ2, · · · , λn} is set of real numbers, then there exist a sym-
metric matrix that σ is it’s spectrum.

Proof. Let

A =




λ1 a12 a13 · · · a1n
0 λ2 a23 a2n
0 0 λ3 a3n
...

. . .
...

0 0 0 · · · λnn



,

and

L =




1 0 0 · · · 0
1 1 0 0
1 1 1 0
...

. . .
...

1 1 1 · · · 1



,
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is unit lower triangular matrix. Now by Lemma 2.1, we compute

C = L−1AL =




1 0 0
−1 1 0
0
...
0 · · · −1 1







λ1 a12 a13 · · · a1n
0 λ2 a23 a2n
0 0 λ3 a3n
...

. . .
...

0 0 0 · · · λnn







1 0 0 · · · 0
1 1 0 0
1 1 1 0
...

. . .
...

1 1 1 · · · 1



.

(1)
Finally we find the entries a12, · · · , a1n, a23, · · · , a2n · · · , ann−1 such that the matrix C to
be symmetric. For this we select the elements on upper triangular matrix A as following

aij =
i

j
(λj − λj−1), i = 1, · · · , n− 1, j = i+ 1, · · · , n. (2)

Then the matrix C is similar to matrix A and is symmetric because without lose of
generality we assume that i < j, then

Cij = (aij − ai−1j) + (aij+1 − ai−1j+1) + · · ·+ (ain − ai−1n), (3)

if we substitute (2) in to (3) then after simplification we have

Cij = −1

j
λj−1 +

1

j(j + 1)
λj +

1

(j + 1)(j + 2)
λj+1 + · · ·+ 1

(n− 1)(n− 2)
λn−1 +

1

n
λn. (4)

On the other hand we have

Cji = (aji−aj−1i)+(aji+1−aj−1i+1)+· · ·+(ajj−aj−1j)+(ajj+1−aj−1j+1)+· · ·+(ajn−aj−1n)
(5)

Since i < j and A is upper triangular matrix, then from (5) we have

Cji = (ajj − aj−1j) + (ajj+1 − aj−1j+1) + · · ·+ (ajn − aj−1n). (6)

It is easy to see that ralation (6) after replacing (2) and relation (4) are equal. Then
Cij = Cji for all i < j. Therefore the matrix C is symmetric and has eigenvalues σ.

Theorem 2.3. The necessary and sufficient condition for the matrix C in (1) to be
nonnegative is that

1

n
(λn + (n− 1)λn−1) ≥ 0.

Corollary 2.4. If σ = {λ1, λ2, . . . , λn} ⊂ Q, then the symmetric matrix C with eigenval-
ues σ lies in Qn×n.

Proof. Since σ = {λ1, λ2, . . . , λn} ⊂ Q, then by (2) the matrix A ∈ Qn×n, and due to the
structure of the matrix C, this matrix has rational entries.

Example 2.5. Consider σ = {12,−4,−3,−2} then

L−1 =




1 0 0 0

−1 1 0 0

0 −1 1 0

0 0 −1 1



,
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A :=




−2 −1/2 −1/3 4

0 −3 −2/3 8

0 0 −4 12

0 0 0 12




and

L :=




1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1




then

C := L−1AL =




7/6 19
6 11/3 4

19
6 7/6 11/3 4

11/3 11/3 2/3 4

4 4 4 0



.
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Abstract

Nowadays, certain problems in automata theory, control theory, manufacturing
systems and parallel processing systems are intimately linked to linear systems over
max-plus algebra. The main purpose of this paper is to introduce a method based on
the pseudo-inverse of a matrix for solving a linear system of equations over max-plus
algebra. To this end, we present a necessary and sufficient condition for the system
to have a maximal solution.
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1 Introduction

Solving systems of linear equations is an important aspect of linear algebra. We propose a
systematic method to understand the behavior of linear systems over max−plus algebra.
Systems of linear equations over semirings find applications in various areas of engineering,
computer science, optimization theory, control theory, etc (see e.g. [1, 3]). Semirings are
algebraic structures similar to rings, but subtraction and division can not necessarily be
defined for them. The notion of a semiring was first introduced by Vandiver [5] in 1934.
A semiring (S,+, ., 0, 1) is an algebraic structure in which (S,+) is a commutative monoid
with an identity element 0 and (S, .) is a monoid with an identity element 1, connected by
ring-like distributivity. The additive identity 0 is multiplicatively absorbing, and 0 6= 1.
For convenience, we mainly consider S = (R ∪ {−∞},max,+,−∞, 0), which is called
max−plus algebra.

We intend to solve the system of linear equations AX = b, where A = (aij) ∈
Mn(S), b ∈ Sn and X is an unknown vector over S. To this end, we present a necessary
and sufficient condition based on the “pseudo-inverse”, A−, of matrix A with determinant
detε(A) ∈ U(S) to solve the system, where U(S) is the set of the unit elements of S. It is
shown that the proposed method is not limited to square matrices, and can be extended
to arbitrary matrices of size m×n as well. In such cases, we try to convert the non-square
system to a square one of size min{m,n}.

∗Speaker. Email address: folya@mail.kntu.ac.ir
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1.1 Definitions and preliminaries

Definition 1.1. (See [2]) A semiring (S,+, ., 0, 1) is an algebraic system consisting of a
nonempty set S with two binary operations, addition and multiplication, such that the
following conditions hold:

1. (S,+) is a commutative monoid with identity element 0;

2. (S, ·) is a monoid with identity element 1;

3. Multiplication distributes over addition from either side, that is a(b + c) = ab + ac
and (b+ c)a = ba+ ca for all a, b, c ∈ S;

4. The neutral element of S is an absorbing element, that is a · 0 = 0 = 0 · a for all
a ∈ S;

5. 1 6= 0.

A semiring is called commutative if a · b = b · a for all a, b ∈ S.

Let S be the max−plus algebra. We denote the set of all m × n matrices over S by
Mm×n(S). For any A = (aij) ∈ Mm×n(S), B = (bij) ∈ Mm×n(S), C = (cij) ∈ Mn×l(S)
and λ ∈ S, we define the matrix operations as follows.

A+B = (max(aij , bij)),

AC = (
n

max
k=1

(aik + ckj)),

and

λA = (λ+ aij).

For convenience, we can denote the scalar multiplication λA by λ+A. Moreover, max−plus
algebra is a commutative semiring which implies λ+ A = A+ λ. It is easy to verify that
Mn(S) := Mn×n(S) forms a semiring with respect to the matrix addition and the matrix
multiplication.

The concept of the determinant of a matrix over a commutative semiring requires the
definition of an ε-function. (See [4] for more details.)

Definition 1.2. Let (S,+, ., 0, 1) be a commutative semiring. A bijection ε on S is called
an ε-function of S, if ε(ε(a)) = a, ε(a+ b) = ε(a) + ε(b), and ε(ab) = ε(a)b = aε(b) for all
a, b ∈ S. Consequently, ε(a)ε(b) = ab and ε(0) = 0.
The identity mapping: a 7→ a is an ε-function of S.

Definition 1.3. Let A ∈ Mn(S), S be the max−plus algebra and Sn be the symmetric
group of degree n ≥ 2 . The ε-determinant of A, denoted by detε(A), is defined by

detε(A) = max
σ∈Sn

ετ(σ)(a1σ(1) + a2σ(2) + · · ·+ anσ(n)),

where τ(σ) is the number of the inversions of the permutation σ, and ε(k) is defined by
ε(0)(a) = a and ε(k)(a) = ε(k−1)(ε(a)) for all positive integers k.
In particular, let ε be the identity function, since ε(2)(a) = a, we then have:

detε(A) = max
σ∈Sn

(a1σ(1) + a2σ(2) + · · ·+ anσ(n)).
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Definition 1.4. Let A ∈ Mn(S) and ε be an ε-function of S. The ε-adjoint matrix A,
denoted by adjε(A), is defined as follows.

adjε(A) = (ε(i+j)(detε(A(i|j)))n×n)T ,

where A(i|j) denotes the (n− 1)× (n− 1) submatrix of A obtained from A by removing
the i-th row and the j-th column.

Theorem 1.5. (See [4]) Let A ∈Mn(S). We have

1. Aadjε(A) = (detε(Ar(i⇒ j)))n×n,

2. adjε(A)A = (detε(Ac(i⇒ j)))n×n,

where Ar(i ⇒ j) (Ac(i ⇒ j)) denotes the matrix obtained from A by replacing the j-th
row (column) of A by the i-th row (column) of A.

Definition 1.6. Let A ∈ Mn(S) and detε(A) ∈ U(S). The pseudo-inverse of A, denoted
by A−, is defined as A− = (a−ij) where a−ij = (adjε(A))ij − detε(A).

Corollary 1.7. Let A ∈Mn(S). Then the elements of the multiplication matrix AA− are

(AA−)ij = detε(Ar(i⇒ j))− detε(A).

In particular, the diagonal entries of the matrix AA− are 0. Furthermore, the entries of
the matrix A−A are defined analogusly.

Proof. Clearly, the diagonal entries of the matrix AA− are:

(AA−)ii = (Aadjε(A))ii − detε(A)

= detε(Ar(i⇒ i))− detε(A)

= detε(A)− detε(A)

= 0

Consider the system of linear equations AX = b where A ∈ Mn(S), b ∈ Sn and X is
an unknown column vector of size n over S, whose i−th equation is

max(ai1 + x1, ai2 + x2, · · · , ain + xn) = bi.

Definition 1.8. Let A,B ∈Mm×n(S) such that A = (aij) and B = (bij). We say A ≤ B
if and only if aij ≤ bij for every i ∈ m, j ∈ n.

Definition 1.9. A solution X∗ of the system AX = b is called maximal if X ≤ X∗ for
any solution X.

Definition 1.10. Let b ∈ Sm. Then b is called a regular vector if bi 6= −∞ for any i ∈ m.
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2 Main results

In this section, we present the pseudo-inverse method for solving a linear system of equa-
tions over max−plus algebra. The pseudo-inverse method determines the maximal solu-
tion of a linear system if solutions exist.

Theorem 2.1. Let A ∈Mn(S) and b ∈ Sn be a regular vector. Then the system AX = b
has the maximal solution X∗ = A−b with X∗ = (x∗i )

n
i=1 if and only if (AA−)ij ≤ bi − bj

for any i, j ∈ {1, · · · , n}.

Proof. Suppose that (AA−)ij ≤ bi − bj for any i, j ∈ {1, · · · , n}. First, we show that
the system AX = b has the solution X∗ = A−b. Clearly, AX∗ = AA−b, so for any
i ∈ {1, · · · , n}:

(AX∗)i = (AA−b)i =
n

max
j=1

((AA−)ij + bj)

= max((AA−)ii + bi,max
i 6=j

((AA−)ij + bj)).

Since for any i, j ∈ {1, · · · , n}, (AA−)ij + bj ≤ bi, and (AA−)ii + bi = bi, we have
(AX∗)i = bi. As such, X∗ is a solution of the system AX = b.
Now, we prove X∗ = A−b is a maximal solution. Since, AX∗ = b, then A−AX∗ = X∗. As
such, the k-th equation of the system A−AX∗ = X∗ is

max((A−A)k1 + x∗1, · · · , x∗k, · · · , (A−A)kn + x∗n) = x∗k,

that implies

(A−A)kl ≤ x∗k − x∗l for any l 6= k. (1)

Now, suppose that Y = (yi)
n
i=1 is another solution of the system AX = b. This means

AY = b, and (A−A)Y = X∗. Without loss of generality, we can assume there exists only
j ∈ {1, · · · , n} such that yj 6= x∗j , i.e., yi = x∗i for any i 6= j. The j-th equation of the
A−AY = X∗ is

max((A−A)j1 + x∗1, · · · , (A−A)jj + yj , · · · , (A−A)jn + x∗n) = x∗j .

This means (A−A)jj + yj ≤ x∗j which implies yj < x∗j . Moreover, if all inequalities (1) for
k = j are proper, then

max((A−A)j1 + x∗1, · · · , yj , · · · , (A−A)jn + x∗n) < x∗j .

Hence, Y is not the solution of the system AX = b. That leads to a contradiction.
This happens if all inequalities in (1) are proper, so we can conclude that X∗ is a unique
solution of the system AX = b. Otherwise, if some of the inequalities are not proper, i.e.,
(A−A)jl = x∗j − x∗l for some l 6= j, then Y is a solution of the system AX = b such that
Y ≤ X∗. Consequently, X∗ is a maximal solution.
Conversely, suppose that X∗ = A−b is a maximal solution of the system AX = b. Then
AA−b = b. That implies (AA−)ij ≤ bi − bj for any i, j ∈ n.

In the following example, we show that (AA−)ij ≤ bi − bj is a sufficient condition for
the system AX = b to have the maximal solution X∗ = A−b.
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Example 2.2. Let A ∈M4(S). Consider the following system AX = b:



1 −6 2 −5
4 5 1 −2
7 −1 3 0
−2 −9 −5 0







x1
x2
x3
x4


 =




2
7
3
−4


 ,

where detε(A) = 14. Due to Theorem 2.1, we must check the condition (AA−)ij ≤ bi − bj
for any i, j ∈ {1, · · · , 4} where (AA−)ij = (Aadjε(A))ij − detε(A) = detε(Ar(i ⇒ j)) −
detε(A) (see Theorem 1.5 ). As such, AA− is

AA− =




0 −11 −6 −5
−1 0 −3 −2
1 −6 0 0
−7 −14 −9 0


 .

Indeed, it is easier to check (AA−)ij ≤ bi − bj ≤ −(AA−)ji for any 1 ≤ i ≤ j ≤ 4.
Since these inequalities hold, for instance (AA−)12 ≤ 2 − 7 ≤ −(AA−)21, the system
AX = b has the maximal solution X∗ = A−b:

X∗ =




−6 −13 −7 −7
−6 −5 −8 −7
−2 −13 −8 −7
−7 −14 −9 0







2
7
3
−4


 =




−4
2
0
−4


 .

2.0.1 Extension of the method to non-square linear systems

We are interested in studying the solution of a non-square linear system of equations as
well. Let A ∈ Mm×n(S) with m 6= n, and b ∈ Sm be a regular vector. For solving the
non-square system AX = b by Theorem 2.1, we must consider a square linear system of
order min{m,n} corresponding to it. Since m 6= n, we have the following two cases:

1. If m < n, then we consider the square linear system of order m corresponding to the
system AX = b. Let X = ATY where Y is an unknown vector of size m. Then the
square linear system AATY = b is obtained from replacing X in AX = b. Suppose
that the conditions of Theorem 2.1 hold for the system AATY = b, so the system
AATY = b has the maximal solution Y ∗ = (AAT )−b. If so, the system AX = b
has (at least) a solution in the form of X = ATY ∗ = AT (AAT )−b, which is not
necessarily maximal.

2. If n < m, then we consider the square linear system of size n corresponding to the
system AX = b. Clearly, we have the square linear system ATAX = AT b of size n.
Assume that the conditions of Theorem 2.1 hold for the system ATAX = AT b. If so,
it has the maximal solution X∗ = (ATA)−AT b. Note further that X∗ = (ATA)−AT b
is not necessarily the solution of the system AX = b unless b is an eigenvector of
A(ATA)−AT corresponding to the eigenvalue 0, i.e.; AX∗ = A(ATA)−AT b = b.

Example 2.3. Let A ∈M4×5(S). Consider the following system AX = b:




−4 7 12 −3 0
3 2 8 3 −1
−9 1 6 0 2
2 8 −5 1 −3







x1
x2
x3
x4
x5




=




14
10
8
11


 .
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Due to the extension method, the non-square system AX = b can be converted into
the following square system AATY = b, cosidering X = ATY :




24 20 18 15
20 16 14 10
18 14 12 9
15 10 9 16







y1
y2
y3
y4


 =




14
10
8
11


 .

The conditions of Theorem 2.1 hold for the systemAATY = b, that is ((AAT )(AAT )−)ij ≤
bi − bj for any i, j ∈ {1, · · · , 4}, where (AAT )(AAT )− is the following matrix:




0 4 6 −1
−4 0 2 −5
−6 −2 0 −7
−9 −5 −3 0


 .

As such, the system AATY = b has the maximal solution Y ∗ = (AAT )−b:

Y ∗ =




−24 −20 −18 −25
−20 −16 −14 −21
−18 −14 −12 −19
−25 −21 −19 −16







14
10
8
11


 =




−10
−6
−4
−5


 .

Hence, X = ATY ∗ is a solution of the non-square system AX = b:

X =




−3
3
2
−3
−2



,

which is not necessarily maximal solution.

3 Conclusion

In this paper, we presented necessary and sufficient conditions for the linear systems of
equations to have a maximal solution using the pseduo-inverse of system matrices. We
also extended the idea to nonsquare systems.
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Abstract

In this work, we study the performance of a general class of preconditioners to
accelerate the convergence speed of iterative schemes for solving multi-linear systems
whose coefficient tensor is a strongM-tensor. Some comparison results are presented
between preconditioners extracted from the majorization matrix associated with the
coefficient tensor. Numerical experiments are reported for a test example to illustrate
the validity of theoretical discussions.
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1 Introduction

Consider the following multi-linear system

Axm−1 = b, (1)

where A = (ai1...im) is an order m dimension n real tensor, x and b are n dimensional real
vectors. Here the n dimensional vector Axm−1 is given by [6]:

(Axm−1)i =

n∑

i2,...,im=1

aii2...imxi2 · · ·xim , i = 1, 2, . . . , n.

In the sequel, we use R[m,n] to denote the set of all order m dimension n real tensors
for notational simplicity. The following definition for the product between a matrix and
tensor is used throughout the paper which is a special case of the product between two
tensors given in [7].

Definition 1.1. If A ∈ R[2,n] and B = (bi1...im) ∈ R[m,n], then the tensor C = AB belongs
to R[m,n] and its entries are given as follows:

cji2...jm =

n∑

j2=1

ajj2bj2i2...im , 1 ≤ j, i` ≤ n,

for j = 2, . . . , n.

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: m.najafi.uk@gmail.com
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In this work, we consider the case that A is a strong M-tensor. In order to recall
the definition of an M-tensor, we need the following definition of tensor eigenvalues and
eigenvectors; see [6].

Definition 1.2. Let A ∈ R[m,n]. A pair (λ, x) ∈ C× (Cn\{0}) is called an eigenpair of A
if they satisfy the equation

Axm−1 = λx[m−1],

where x[m−1] = (xm−1
1 , . . . , xm−1

n )T . The eigenpair (λ, x) is called and H-eigenpair if both
λ and x are real.

The spectral radius of A is defined by ρ(A) = max{|λ| | λ ∈ σ(A)} in which σ(A)
stands for the set of eigenvalues of A. In the sequel, the unit tensor in R[m,n] is denoted
by Im where Im = (δi1...im) such that

δi1...im =

{
1, i1 = · · · = im

0, otherwise
.

Definition 1.3. Let A ∈ R[m,n]. The tensor A is called a Z-tensor if its off-diagonal
entries are non-positive. If there exists a nonnegative tensor B and a positive real number
η ≥ ρ(B) such that

A = ηIm −B,

then A is an M-tensor. If η > ρ(B), then A is called a strong M-tensor.

It is known that if A is a strong M-tensor then for every positive vector b the multi-
linear system Axm−1 = b has a unique positive solution [4, Lemma 4.1].

For A ∈ R[m,n], the majorization matrix M(A) of A is the n×n matrix with the entries
M(A)ij = aij...j for i, j = 1, 2, . . . , n.

For a general M-tensor, the following lemma is proved by Liu et al. [4, Lemma 3.6].

Lemma 1.4. If A is a strong M-tensor, then M(A) is a nonsingular M -matrix.

Definition 1.5. Let A ∈ R[m,n]. If M(A) is a nonsingular matrix and A = M(A)Im, the
matrix M(A)−1 is called the order 2 left-inverse of A.

In [4], Liu et al. defined the concepts of left-invertibility of a tensor and tensor split-
ting. We also utilize the same definitions during this work given as follows:

Definition 1.6. Let A ∈ R[m,n]. If A has an order 2 left-inverse, A is called a left-invertible
tensor or a left-nonsingular tensor.

The decomposition A = E − F is called tensor splitting if E is left-nonsingular. The
splitting A = E − F is said to be a regular splitting of A if M(E)−1 ≥ 0 and F ≥ 0;
a weak regular splitting if M(E)−1 ≥ 0 and M(E)−1F ≥ 0; a convergent splitting if
ρ(M(E)−1F) < 1.

A generic tensor splitting iterative scheme is given by

xk = [M(E)−1Fxm−1
k−1 +M(E)−1b][

1
m−1

], k = 1, 2, . . . , (2)

where x0 is given. The tensor M(E)−1F is called the iteration tensor of iterative scheme
(2). Liu et al. [4] showed that ρ(M(E)−1F) can be seen as an approximate convergence
rate of (2).

Throughout this paper, we assume that each diagonal entry of the tensor A in (1) is
equal to one. Also, we consider the decomposition A = Im − L − F where L = LIm in
which −L is the strictly lower triangular part of M(A).
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2 A class of preconditioners

In order to accelerate the asymptotic convergence rate of (2), one can use preconditioners.
In fact, instead of (1), we solve the following preconditioned multi-linear

PAxm−1 = Pb,

for a given preconditioner P ∈ Rn×n.

More recently, the performance of the preconsitioner Pmax = I + Smax was studied
in [1] in which,

Smax = (smiki) =

{
−aiki...ki , i = 1, . . . , n− 1, ki > i

0, otherwise

where ki = min{j|maxj |aij...j |, i < n, j > i}.
In this paper, we consider a class of preconditioners in the form

P̃ = I + S̃, (3)

where

S̃ = (S̃ij) =

{
−αijaij...j , i, j = 1, . . . , n, (i 6= j)

0, i = j,

here the constants αij ∈ [0, 1] are given for i, j = 1, 2, . . . , n. Evidently, preconditioner P̃
reduces to Pmax for proper choices of αij (1 ≤ i, j ≤ n).

For a given tensor A ∈ R[m,n], the following comparison result between two weak
regular splittings A = E1 − F1 = E2 − F2 is proved in [2, Lemma 5.3].

Lemma 2.1. Let A ∈ R[m,n] be a strong M-tensor and A = E1 − F1 = E2 − F2 be two
weak regular splittings with M(E2)

−1 ≥ M(E1)
−1. If the Perron vector x of M(E2)

−1F2

satisfies Axm−1 ≥ 0 then ρ(M(E2)
−1F2) ≤ ρ(M(E1)

−1F1).

We can show that the above result remains valid, if the assumption Axm−1 ≥ 0 hold
for the Perron vector x of M(E1)

−1F1. We state this fact as the following lemma which
its proof is omitted.

Lemma 2.2. Let A ∈ R[m,n] be a strong M-tensor and A = E1 − F1 = E2 − F2 be two
weak regular splittings with M(E2)

−1 ≥ M(E1)
−1. If the Perron vector x of M(E1)

−1F1

satisfies Axm−1 ≥ 0 then ρ(M(E2)
−1F2) ≤ ρ(M(E1)

−1F1).

Now we present the following lemma without proof. Then a theorem is proved which
reveals that except the assumption of being strong M-tensor for A, other hypotheses
in [1, Theorems 1 and 2] are not required to be assumed. Basically, they could be concluded
from the fact that A is a strong M-tensor.

Lemma 2.3. Let A ∈ R[m,n] be a Z-tensor. Assume that A = Im−L−F where L = LIm
in which −L is the strictly lower part of M(A). The tensor A is a strong M-tensor if and
only if Ã = P̃A is a strong M-tensor.

Theorem 2.4. Let A ∈ R[m,n] be a strong M-tensor. If Ã = Ẽ − F̃ such that Ẽ =
Im − D̃ − L − L̃ where D̃ = D̃Im and L̃ = L̃Im in which D̃ and L̃ are the diagonal and
strictly lower triangular parts of M(S̃L). Then M(Ẽ) is an M -matrix.
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Proof. It can be seen that M(Ẽ) = I − D̃ − L− L̃. Evidently,

M(S̃L)ij = (S̃M(L))ij 1 ≤ i, j ≤ n,

which results in

M(S̃L)ij =

j−1∑

j2=1

αij2aij2...j2aj2j...j . (4)

Therefore the diagonal part of M(Ẽ) is given by

M(Ẽ)ii = 1−
i−1∑

j2=1

αij2aij2...j2aj2i...i ≥ 1−
n∑

j2=1
(j2 6=i)

αij2aij2...j2aj2i...i = M(Ã)ii,

for i = 1, 2, . . . , n. By Lemma 2.3, Ã is a strongM-tensor which ensures that M(Ã) is an
M -matrix by Lemma 1.4. Consequently, the diagonal entries of M(Ẽ) are positive. Also,
since 0 ≤ αij ≤ 1, it is observed that

(L+ L̃)ij = (αij − 1)aij...j +
i−1∑

j2=1
(j2 6=j)

αij2aij2...j2aj2j...j ≥ 0,

for i > j reminding that aij...j ≤ 0 when i 6= j. It is not difficult to verify that M(Ẽ) =
M1 − N1 is a regular convergent splitting with M1 = I − D̃ and N1 = L + L̃ ≥ 0. This
ensures that M(Ẽ) is an M -matrix which completes the proof.

Remark 2.5. Let A ∈ R[m,n] be a strong M-tensor. If Ã = Ẽ − F̃ such that Ẽ =
Im − D̃ − L − L̃ where D̃ = D̃Im and L̃ = L̃Im in which D̃ and L̃ are the diagonal
and strictly lower triangular parts of M(S̃L). From [4, Theorem 3.18], Lemma 2.3 and
the above theorem, we deduce that if M(Ẽ)−1F̃ ≥ 0, then Ã = Ẽ − F̃ is a weak regular
convergent splitting.

Proposition 2.6. Let P̃ = I + S̃ and S̃ be defined such that the nonzero entries of S̃ and
Smax are equal. Assume that the remaining nonzero elements of S̃ are defined as before
such that S̃ ≥ Smax. Then M(Ẽ)−1 ≥M(Emax)−1 ≥ 0 where Ẽ defined as in Theorem 2.4,
Emax = Im −Dmax − L − Lmax in which Dmax = DmaxIm and Lmax = LmaxIm such that
Dmax and Lmax are the diagonal and strictly lower triangular parts of M(SmaxL).

Proof. It can be observed that

M(S̃L) ≥M(SmaxL). (5)

Let M(Ẽ) = (I − D̃)− (L̃+L) and M(Emax) = (I −Dmax)− (Lmax +L) where D̃ (Dmax)
and L̃ (Lmax) are respectively the diagonal and strictly lower part of M(S̃L) (M(SmaxL)).
Here −L denotes the strictly lower part of M(A). Evidently, I − D̃ ≥ 0 (I −Dmax ≥ 0)
which can be concluded from the fact that M(Ã) (M(Amax)) is an M -matrix. From (5),
we have D̃ ≥ Dmax and L̃ ≥ Lmax ≥ 0. Hence it can be verified that

(I − D̃)−1(L̃+ L) ≥ (I −Dmax)−1(Lmax + L) ≥ 0,

which implies that

M(Ẽ)−1 = (I − D̃)−1
n−1∑

l=0

(I − D̃)−l(L̃+ L)l
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≥ (I −Dmax)−1
n−1∑

l=0

(I −Dmax)−l(Lmax + L)l = M(Emax)−1.

Similar to the proof of Theorem 2.4, it can be observed thatM(Ẽ)−1 ≥ 0 andM(Emax)−1 ≥
0 which completes the proof.

Proposition 2.7. Let A ∈ R[m,n] be a strong M-tensor and the eigenvalues of S̃ are all

real. Let (ρ, x) be the Perron eigenpair of M(Ẽ)−1F̃. If αij ∈ [0, 1] and ρ̃2

1−ρ̃2 ≤
ρ

1−ρ , then

Axm−1 ≥ 0 where ρ̃ = ρ(S̃).

Proof. The proof follows from similar strategy used in [2, Lemma 5.4].

Remark 2.8. In addition to the assumption of Proposition 2.6, if F̃− S̃Im ≥ 0 then Ã =
Ẽ−F̃ is a convergent regular splitting. As a result, the splitting A = (I+S̃)−1Ẽ−(I+S̃)−1F̃

is weak regular. Let A = (I + Smax)−1Emax − (I + Smax)−1Fmax. It is known that for the
Perron vector xmax of M(Emax)−1Fmax, by Proposition 2.7, we have Axmax ≥ 0. Using
Lemma 2.2, for the weak regular splittings

A = (I + S̃)−1Ẽ− (I + S̃)−1F̃ = (I + Smax)−1Emax − (I + Smax)−1Fmax,

we deduce that ρ(M(Ẽ)−1F̃) ≤ ρ(M(Emax)−1Fmax) < 1.

3 A test example

Numerical results in this part were computed using MATLAB version 9.4 (R2018a) running
on an Intel Core i5 CPU at 2.50 GHz with 8 GB of memory. We report total required num-
ber of iterations and consumed CPU-time (in seconds) under “Iter” and “CPU–times(s)”,
respectively. We set the maximum iteration number as 1000 and the stopping criterion is

‖Axm−1
k − b‖

2
≤ ε,

where xk is the kth approximate solution, ε = 10−10 and the initial vector is taken to be
zero. The spectral radius of the nonnegative iteration tensors are computed by the power
method given in [5].

Example 3.1. Let A ∈ R[3,n] and b ∈ Rn with




a111 = annn = 1,

aiii = 4, i = 2, 3, . . . , n− 1,

ai,i−1,i = −1/2, i = 2, 3, . . . , n− 1,

ai,i−1,i−1 = −1/2, i = 2, 3, . . . , n− 1,

ai,i+1,i+1 = −1/2, i = 2, 3, . . . , n− 1,

ai,i−2,i−2 = −1/2 i = 3, 4, . . . , n− 2,

ai,i+2,i+2 = −1/2 i = 3, 4, . . . , n− 2,

ai,i−5,i−5 = −1/2 i = 6, 7, . . . , n− 5,

ai,i+5,i+5 = −1/2 i = 6, 7, . . . , n− 5,

and





b1 = c20,

bi = a
(n−1)2

, i = 2, 3, . . . , n− 1,

bn = c21,

where c0 = 1/2, c1 = 1/3 and a = 2. Since aiii ≥ 1 for i = 1, 2, . . . , n, we solve the multi-
linear system D−1Ax2 = D−1b by iterative method (2); here D = diag(a111, . . . , annn).
The corresponding results are reported in Table 1. We set P̃ = I + S̃ with S̃ = I −
triu(M(A)). As seen, the obtained results show the validity of our discussions in Remark
2.8 and P̃ = I + S̃ outperforms Pmax = I + Smax. We comment that for n = 300, 350, the
corresponding spectral radii of each (preconditioned) method are equal up to 4 digits.
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Table 1: Example 3.1: Numerical results for applying iterative method (2).

n Preconditioner P E ρ(M(E)−1F) CPU–times(s) Iter
(F = E− PA)

150

I Im − L 0.7921 0.3156 73
Pmax Im − L−Dmax − Lmax 0.7477 0.2509 59

P̃ Im − L− D̃− L̃ 0.6684 0.1723 42

300

I Im − L 0.7923 2.8292 72
Pmax Im − L−Dmax − Lmax 0.7482 2.2002 58

P̃ Im − L− D̃− L̃ 0.6693 1.4740 41

350

I Im − L 0.7923 4.2838 72
Pmax Im − L−Dmax − Lmax 0.7482 3.9541 58

P̃ Im − L− D̃− L̃ 0.6693 2.7067 41

4 Conclusions

In this work, we proposed a general class of preconditioners which incorporate some of
the recently examined preconditioners in the literature for solving multi-linear systems. It
should be commented that the idea of constructing such a kind of preconditioners is taken
from [3]. Numerical experiments were reported for a test problem to numerically confirm
the validity of presented results. The performance of preconditioners in conjunction with
Krylov subspace methods for solving the mentioned multi-linear systems is a project to
be currently undertaken.
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Abstract

In mathematical finance, the Black-Scholes equation is a backward parabolic par-
tial differential equation finding the price evolution of a European call/put options.
There are numerous numerical and analytical methods to solve Black-Scholes equation,
but most of these methods have computational complexity and so far these methods
could not present a general form to solve the Black-Scholes equation. In this paper by
using the spectral method and special linear operators, we obtain matrix form of the
Black-Scholes equation and matrix form of boundary conditions. Moreover, by using
these matrix forms, we present a linear system of equations which approximate the
solutions of the Black-Scholes equation.
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1 Introduction

Black-Scholes equation is one of the most important differential equations with second-
order partial derivation in financial mathematics for estimating option price [1–4].
According the two variables of time t and price s this equation is defined as:

Vt +
1

2
σ2s2Vss + rsVs − rV = 0 (1)

where V (s, t) is the price of the option, r is the risk-free interest rate and σ is the volatility
of the stock. Given that the Black-Scholes equation is a backward parabolic equation for
a unique solution, we must specify final and boundary conditions in as follows:
Typically we must pose two conditions in s, as we have a Vss term in the equation,
but only one in t, as we only have a Vt term in it. For example, we could specify that
V (s, t) = Va(t) on s = a and V (s, t) = Vb(t) on s = b, where Va(t) and Va(t) are two
given functions of t. Also due to the backward of the equation, we must also impose a
final condition such as V (s, T ) = VT (s), where VT (s) is a known function. One of the best
boundary conditions induced for the Black-Scholes equation for call and put options is as
follows:

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: mrazavi@math.uk.ac.ir
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European call option:

c(0, t) = 0 0 6 t 6 T, c(M, t) = M − ke−r(T−t) 0 6 t 6 T, c(s, T ) = max{s− k, 0} 0 6 s 6M.

European put option:

p(0, t) = ke−rt 0 6 t 6 T, p(M, t) = 0 0 6 t 6 T, p(s, T ) = max{k − s, 0} 0 6 s 6M.

In this paper by using the spectral method and special linear operators, we obtain
matrix forms of the Black-Scholes equation and boundary conditions. Moreover, by
using these matrix forms, we present a linear system of equations which approximate
the solutions of Black-Scholes equation.

2 Preliminaries

In this section, we state some useful definitions and well-known results. Also, in this
section we assume that the function of approximation of the Black Scholes equation is
v =

∑m
i,j=0 αiβjTi(s)Tj(t).

Definition 2.1. The Chebyshev polynomial Tn(x) of the first kind is a polynomial in x
of degree n, defined by the relation

Tn(x) = cosnθ where x = cosθ.

Lemma 2.2. If v(x) =
∑m

k=0 αkTk(x), then v′(x) =
∑m

k=0 αkT
′
k(x) =

∑m
k=0 α̂kTk(x) and

v
′′
(x) =

∑m
k=0 αkT

′′
k (x) =

∑m
k=0

ˆ̂αkTk(x). Assume that α := [α0 α1 · · · αm]t, α̂ :=

[α̂0 α̂1 · · · α̂m]t and ˆ̂α := [ ˆ̂α0
ˆ̂α1 · · · ˆ̂αm]t. Therefore, there exists derivative matrix D

such that α(1) = Dα and α(2) = D2α, where

Dij =





j − 1 i+ j is odd , j > i = 1,
2j − 2 i+ j is odd , j > i > 1,
0 other wise,

(D2)ij =





((j−1)2−(i−1)2)(j−1)
2 i+ j is even, j > i = 1,

((j − 1)2 − (i− 1)2)(j − 1) i+ j is even, j > i > 1,
0 other wise.

Lemma 2.3. Let us =
∑m

i,j=0 αiβjT
′
i (s)Tj(t) =

∑m
i,j=0 α̂iβjTi(s)Tj(t),

uss =
∑m

i,j=0 αiβjT
′′
i (s)Tj(t) =

∑m
i,j=0

ˆ̂αiβjTi(s)Tj(t), ut =
∑m

i,j=0 αiβjTi(s)T
′
j (t) =∑m

i,j=0 αiβ̂jTi(s)Tj(t) and D,D2, be the matrices as in Lemma 2.2. Then

a)[α̂β] = (D ⊗ I))[αβ]. b)[αβ̂] = (I ⊗D)[αβ]. c)[ ˆ̂αβ] = (D2 ⊗ I)[αβ].

where

[αβ] := [α0β0 α0β1 . . . α0βm | . . . | αmβ0 αmβ1 . . . αmβm], [α̂β] := [α̂0β0 α̂0β1 . . . α̂0βm | . . . | α̂mβ0 α̂mβ1 . . . α̂mβm],

[αβ̂] := [α0β̂0 α0β̂1 . . . α0β̂m | . . . | αmβ̂0 αmβ̂1 . . . αmβ̂m], [ ˆ̂αβ] := [ ˆ̂α0β0
ˆ̂α0β1 . . . ˆ̂α0βm | . . . | ˆ̂αmβ0

ˆ̂αmβ1 . . . ˆ̂αmβm].
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3 Matrix forms of the Black-Scholes equation with bound-
ary conditions

In this section, by using Lemmas 2.2 and 2.3, we present the matrix forms of the Black-
Scholes equation and boundary conditions. Given that Chebyshev polynomials are defined
in interval [−1, 1], we first need to transfer the variables of the Black-Scholes equation to
interval [−1, 1]. So, we do the following steps respectively

step 1: In regard with the fact that variable t is bounded in [0, T ], by changing variable
t̃ = 2

T t− 1, we convey variable t to [−1, 1].

step 2: In regard with the fact that variable s is bounded in [0,M ], by changing variable
s̃ = 2

M s− 1, we convey variable s to [−1, 1].

step 3: By exerting the changing variable of Steps (1) and (2) in the Black-Scholes equa-
tion by using chain derivation and relations:

Vt =
2

T
Vt̃ , Vs =

2

M
Vs̃ , Vss =

4

M2
Vs̃s̃ ,

we have:
4Vt̃ + σ2T (s̃+ 1)2Vs̃s̃ + 2rT (s̃+ 1)Vs̃ − 2rTV = 0, (2)

v(s̃, 1) = max{M
2

(s̃+ 1)− k, 0} − 1 6 s̃ 6 1, v(−1, t̃) = 0 − 1 6 t̃ 6 1 (3)

v(1, t̃) = M − ke−r(T−T2 (t̃+1)) − 1 6 t̃ 6 1

Now, by using the spectral method, we present the matrix forms of the Black-Scholes
equation and boundary conditions in Theorem 3.1 and 3.2.

Theorem 3.1. If v =
∑m

i,j=0 αiβjTi(s̃)Tj(t̃), then matrix implementation collocation spec-
tral method of the Black-Scholes equation (2) is

Â[αβ] = 0, (4)

where

Â = ΛBΠB, ΠB := 4(I ⊗D) + σ2T (s̃+ 1)2(D2 ⊗ I) + 2rT (s̃+ 1)(D ⊗ I)− 2rT (I ⊗ I),

and

ΛB = [T0(s̃)T0(t̃) T0(s̃)T1(t̃) . . . T0(s̃)Tm(t̃) | . . . | Tm(s̃)T0(t̃) Tm(s̃)T1(t̃) . . . Tm(s̃)Tm(t̃)].

Theorem 3.2. If v =
∑m

i,j=0 αiβjTi(s̃)Tj(t̃), then the matrix implementation collocation
spectral method of the boundary conditions in Black-Scholes equation (3) is equal to

Ã[αβ] = G̃, (5)

where

Ã =




(vec(Tt(s̃)× e))t
(vec(ẽt × T(t̃))t

(vec(et × T(t̃))t


 ∈M3,(m+1)2 , G̃ =




max{M2 (s̃+ 1)− k, 0}
0

M − ke−r(T−T2 (t̃+1))


 ,

T(t) := [T0(t) T1(t) · · ·Tm(t)], ẽ := [1 − 1 · · · (−1)m], e := [1 1 · · · 1].
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Remark 3.3. If pi, i = 1, 2, ...,m+1 are the roots of Tm+1(x), by replacing pi in relations
(4) and (5), we obtain two linear systems. By choosing (m+ 1)2 independent linear rows
from these systems and solving the new linear system, we can find unknown coefficients
αiβj for i, j = 0, 1, 2, ...,m.

In the following, we obtain the matrix forms for m = 2. Then v =
∑2

i,j=0 αiβjTi(s̃)Tj(t̃).

We consider T3(x) = 4x3 − 3x, with roots p1 = −
√

3
2 , p2 = 0, p3 =

√
3

2 . Now, by using
Theorem 3.1 and Theorem 3.2, we obtain the following:

ΠB =




−2rT 4 0 2r(s̃ + 1)T 0 0 4σ2(s̃ + 1)2 0 0

0 −2rT 16 0 2r(s̃ + 1)T 0 0 4σ2(s̃ + 1)2 0

0 0 −2rT 0 0 2r(s̃ + 1)T 0 0 4σ2(s̃ + 1)2

0 0 0 −2rT 4 0 8r(s̃ + 1)T 0 0

0 0 0 0 −2rT 16 0 8r(s̃ + 1)T 0

0 0 0 0 0 −2rT 0 0 8r(s̃ + 1)T

0 0 0 0 0 0 −2rT 4 0

0 0 0 0 0 0 0 −2rT 16

0 0 0 0 0 0 0 0 −2rT




,

ΛB = [T0(s̃)T0(t̃) T0(s̃)T1(t̃) T0(s̃)T2(t̃) T1(s̃)T0(t̃) T1(s̃)T1(t̃) T1(s̃)T2(t̃) T2(s̃)T0(t̃) T2(s̃)T1(t̃) T2(s̃)T2(t̃)]

= [1 t̃ 2t̃2 − 1 s̃ s̃t̃ s̃(2t̃2 − 1) 2s̃2 − 1 t̃(2s̃2 − 1) (2s̃2 − 1)(2t̃2 − 1)],

Â = ΛBΠB , [αβ] = [α0β0 α0β1 α0β2, α1β0 α1β2 α2β0 α2β1 α2β2]t,

Ã =




1 1 1 s̃ s̃ s̃ 2s̃2 − 1 2s̃2 − 1 2s̃2 − 1

1 t̃ 2t̃2 − 1 −1 −t̃ −(2t̃2 − 1) 1 t̃ 2t̃2 − 1

1 t̃ 2t̃2 − 1 1 t̃ 2t̃2 − 1 1 t̃ 2t̃2 − 1


 , G̃ =




max{M
2 (s̃+ 1)− k, 0}

0

M − ke−r(T−T
2

(t̃+1))


 .

4 Conclusion

Implementation of the spectral method on Black-Scholes equation is complicated. Here we
are going to improve this problem by introducing matrix forms for Black-Scholes equation
and boundary conditions, which is an important step in reducing the calculation and
complexity of the implementation of the spectral method for this equation.
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Abstract

We investigate all n-tuples which satisfy the generalized triangle inequality of the
second type in quasi Banach spaces. As applications, we get some new results asso-
ciated with generalizations of the triangle inequality in quasi Banach spaces and we
confirm some already known results in a new approach.
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1 Introduction

The triangle inequality is considered to be one of the most fundamental inequalities in
mathematics. There are many interesting generalizations, refinements and reverses of the
triangle inequality in normed spaces, quasi normed spaces, inner product spaces, pre-
Hilbert C? moduals by some authors [3]. Some generalizations of the triangle inequality
are profitable to study the geometrical structure of Banach spaces. Espacially, based on
the triangle inequality of the second type

‖x+ y‖ ≤ 2
(
‖x‖2 + ‖y‖2

)
(1)

and its generalizations in normed spaces. Takahasi et al. [6] obtained some conditions for
which the inequality

‖ax+ by‖q
λ

≤ ‖x‖
q

µ
+
‖y‖q
ν

(λ = µa2 + νb2, λµν > 0)

holds For q ≥ 1. In [2] Dadipour et al. discussed the generalized triangle inequality of
the second type and its reverse in normed spaces. Also Izumida et al. presented another
approach to characterizations of the generalized triangle inequality by using ψ-direct sums
of Banach spaces.

In this talk, we investigate all n-tuples which satisfy the generalized triangle inequality
of the second type

‖x1 + · · ·+ xn‖q ≤
‖x1‖q
µ1

+ · · ·+ ‖xn‖
q

µn
, (for all x1, . . . , xn ∈ X, q > 1), (2)

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: a.rezaei@student.kgut.ac.ir
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where (X, ‖.‖) is a quasi Banach space. As applications, we get some new results associated
with generalizations of the triangle inequality in quasi Banach spaces and we confirm some
already known results due to Belbachir et al. [1] and Dadipour et al. [2] in a new approach.

In the remainder of this section we recall some basic concepts, preliminary results and
symbols that are used throughout this note.
A quasi norm on a vector space X is a real valued function ‖·‖ : X → R with the following
properties:

(i) ‖x‖ ≥ 0, for all x ∈ X and ‖x‖ = 0 if and only if x = 0,

(ii) ‖λx‖ = |λ|‖x‖, for all λ ∈ R and all x ∈ X,

(iii) There is a constant C ≥ 1 such that ‖x+ y‖ ≤ C (‖x‖+ ‖y‖), for all x, y ∈ X.

The smallest possible C in (iii) is called the modulus of concavity of ‖ · ‖ and the pair
(X, ‖ · ‖) is called a quasi normed space. If it is possible to take C = 1 we obtain a norm.
A quasi norm ‖ · ‖ is called a p-norm (0 < p ≤ 1) if it satisfies

‖x+ y‖p ≤ ‖x‖p + ‖y‖p (x, y ∈ X).

In this case, a quasi normed space is called a p-normed space.
There are many different equivalent metrics on a quasi normed space, one of these, is
given by Aoki and Rolewicz. The Aoki-Rolewicz theorem [4] states that if (X, ‖.‖) is a
quasi normed space with the modulus of concavity C, then there is p ∈ (0, 1] such that
the following

9x9 := inf





(
n∑

i=1

‖xi‖p
) 1

p

: n > 0, x1, . . . , xn ∈ X, x =
n∑

i=1

xi



 ,

defines a p-norm equivalent to quasi norm ‖.‖. Moreover 9x9 ≤ ‖x‖ ≤ 2C 9 x 9 and

2
1
p
−1 ≤ C. So every quasi norm is equivalent to some p-norms (0 < p ≤ 1) and d(x, y) :=

9x − y9p defines a metric topology on X. A quasi normed space (p-normed space) is
called a quasi Banach space (p-Banach space) if every Cauchy sequence converges.
The notion of q-norm is a specification of a quasi norm that Belbachir et al. [1] introduced
it as follows:
A real valued function ‖ · ‖ on a vector space X is called a q-norm (q ≥ 1) if it satisfies
(i), (ii) in the above and the following inequality

‖x+ y‖q ≤ 2q−1(‖x‖q + ‖y‖q) (x, y ∈ X). (3)

Considering the inequality ‖x‖q + ‖y‖q ≤ (‖x‖+ ‖y‖)q, we deduce that every q-norm is a

quasi norm with the modulus of concavity C ≤ 2
q−1
q .

Let (X, ‖.‖) be a quasi Banach space and q > 1. By F (q) we denote all n-tuples
(µ1, . . . , µn) ∈ Rn with positive coordinates for which inequality (2) holds for all x1, . . . , xn ∈
X. Inequality (2) is also called the characteristic inequality of F (q). We should notice that
there is no n-tuple (µ1, . . . , µn) ∈ Rn with some negative coordinates satisfying inequality
(2) (To see this, assume that there exists (µ1, . . . , µn) ∈ Rn such that µj < 0 for some
j = 1, . . . , n and inequality (2) holds for all x1, . . . , xn ∈ X. One can take xj ∈ X \{0} and
xi = 0 (i = 1, . . . , n, i 6= j) and get a contradiction.). So our main aim is to investigate
F (q) for all q > 1.

167



The triangle inequality with n-elements in quasi Banach spaces

2 Main results

We obtain some regions of Rn which are contained in F (q) for all q > 1 with the most
accurate as possible. So we can state the following theorem.

Theorem 2.1 ( [5, Theorem 2]). Let (X, ‖.‖) be a quasi Banach space with the modulus
of cancavity C and q > 1. Then the following hold:

(i) F (q) ⊇
{

(µ1, . . . , µn) : µ1, . . . , µn > 0 and

(∑n
i=1 µ

1
q−1

i

)q−1

≤ C−q(1+logn−1
2 )

}
;

(the case where n 6= 4, 6);

(ii) F (q) ⊇
{

(µ1, . . . , µn) : µ1, . . . , µn > 0 and

(∑n
i=1 µ

1
q−1

i

)q−1

≤ C−nq
2

}
;

(the case where n = 4, 6).

In the next, as a reverse inclusion of the last result, we can get a region of Rn which
contains F (q).

Proposition 2.2 ( [5, Proposition 1]). Let (X, ‖.‖) be a quasi Banach space and q > 1.
Then the following inclusion holds:

F (q) ⊆ {(µ1, . . . , µn) : µ1, . . . , µn > 0,
n∑

i=1

µ
1

q−1

i ≤ 1}.

The results in the following corollaries are derived from Theorem 2.1 and Proposition
2.2 as some special cases.
Taking C = 1 and by using Theorem 2.1 and Proposition 2.2, we have the following
corollary which was proved by Dadipour et. al [2, Theorem 2.4(i) ].

Corollary 2.3 ( [2, Theorem 2.4(i) ]). Let (X, ‖.‖) be a normed space and q > 1. Then

F (q) =

{
(µ1, . . . , µn) : µ1, . . . , µn > 0,

n∑

i=1

µ
1

q−1

i ≤ 1

}
.

Finally with connection to the notion of q-norms, we get the following result which
was proved by Belbachir et. al [1, Proposition 2.1]

Corollary 2.4 ( [1, Proposition 2.1]). Every norm in a usual sense is a q-norm for all
q > 1.

3 Conclusion

In quasi Banach spaces, by using the well-known Holder inequality, some regions of Rn

which are contained in the set of all n-tuples satisfying the generalized triangle inequality
are obtained. The results provide a better understanding of the behaviors of some inequal-
ities with the source of the triangle inequality in some vector spaces such as Rn, lp, . . . .
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Abstract

In this paper, for any n × n matrix A with index α, the rank−k numerical range
of the matrix polynomial (A − λI)(α+1) is investigated. Also, some of algebraic and
geometrical properties of them, by focus on the nilpotent and Jordan matrices, are
studied.
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1 Introduction

Let Mn,k be the set of n× k matrices with complex entries and

L(λ) = Amλ
m +Am−1λ

m−1 + · · ·+A1λ+A0 (1)

be a matrix polynomial with Ai ∈ Mn,n and Am 6= 0. For a positive integer k ≥ 1, the
rank−k numerical range of L(λ) is defined as

Λk(L(λ)) = {λ ∈ C : Q∗L(λ)Q = 0k for some Q ∈Mn,k with Q∗Q = Ik}.
If  L(λ) = λI −A, this set reduces to Λk(A). When k = 1, the rank−k numerical range is
W ( L(λ)), the classical numerical range of the polynomial  L(λ). By α = ind(A), the index
of the matrix A ∈ Mn,n, we mean the size of the largest Jordan block corresponding to
the zero eigenvalue of A. It is obvious that if A is nonsingular, then ind(A) = 0. Recently
in [4], using the matrix polynomial (A− λI)α+1 the index numerical range of the matrix
A is defined and denoted by IW (A) = W ((A − λI)α+1) = {z ∈ C : x∗(A − zIn)α+1x =
0, for some x ∈ Cn \ {0}}. In the following proposition, we list some properties of the
index numerical range useful in this paper; To see the proofs and more results see [4].

Proposition 1.1. Let A ∈Mn,n. Then
(i) If A is nonsingular, then IW (A) = W (A);
(ii) IW (A) is compact and connected subset of C;
(iii) σ(A) ⊆ IW (A);
(iv) If β, γ ∈ C, then IW (βIn + γA) = β + γIW (A).

In this paper, we introduce the notion of index rank−k numerical range of matrices.
In special case, we study some algebraic and geometrical properties of the Jordan matrix
Jn(n× n Jordan block with zero eigenvalue).

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: sh rezagholi79@yahoo.com
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2 Main results

Using the same way of definition of the index numerical range, we have the following
definition.

Definition 2.1. Let A ∈Mn,n and α = ind(A). The index rank−k numerical range of A
is defined and denoted by

IΛk(A) = {λ ∈ C : Q∗(A− λI)α+1Q = 0Ik for some Q ∈Mn,k with Q∗Q = Ik}.

It is obvious that IΛ1(A) = IW (A), and so it is a generalization of index numerical
range. The following proposition lists some basic and useful properties of the rank−k
numerical range.

Proposition 2.2. Let A ∈Mn,n. Then the following statements are true
(i) If A is a nonsingular matrix, then IΛk(A) = Λk(A);
(ii) If U ∈Mn is a unitary matrix, then IΛk(U

∗AU) = IΛk(A);
(iii) IΛk(A) ⊆ IΛk−1(A) ⊆ · · · ⊆ IΛ1(A);
(iv) If β, γ ∈ C, then IΛk(βIn + γA) = β + γIΛk(A).

Proof. If A is nonsingular, then ind(A) = 0 and this shows that IΛk(A) = Λk[A− λI] =
Λk(A), where A−λI is considered as a matrix polynomial. This shows (i); Let α = ind(A)
and X ∈ Mn,k be such that X∗X = Ik and X∗(A − λI)α+1X = 0Ik. If U is a unitary
matrix, then the isometry matrix U∗X ∈Mn,k helps us to conclude (ii); (iii) is a coclusion
of [1, Proposition 3]; To see (iv), suppose that γ 6= 0. IΛk(βIn + γA) = {λ ∈ C : 0 ∈
Λk((λ − β)In − γA)α+1} = {λ ∈ C : 0 ∈ Λk(γ

α+1(λ−βγ − A)α+1)} = {λ ∈ C : 0 ∈
γα+1Λk((

λ−β
γ −A)α+1)}. So, λ ∈ IΛk(βIn + γA) if and only if λ−β

γ ∈ IΛk(A). This shows
that IΛk(βIn + γA) = β + γIΛk(A). For γ = 0, the equality holds obviously

Since (A − λI)α+1 is a monic matrix polynomial, using [1, Propositions 1 and 10] we
have the following proposition.

Proposition 2.3. Let A ∈Mn,n. Then IΛk(A) is a compact subset of C.

If k = 1, we have the following corollary which is proved in [4] by another way.

Corollary 2.4. Let A ∈Mn,n. Then IW (A) is a compact subset of C.

For nilpotent matrices, if we use first k columns of In respectively to costruct an
isometry matrix, one can see that zero is a member of index rank-k numerical range.
In the next theorem we see that index rank-k numerical range of nilpotent matrices is
connected.

Theorem 2.5. Let A ∈Mn,n be a nilpotent matrix. Then IΛk(A) is connected.

Remark 2.6. Although we know that IW (A) is connected(Proposition 2.2(ii)), one can
use the above theorem in case k = 1, to give another proof for connectedness of index
numerical range of nilpotent matrices.

To find the index higher numerical ranges of matrices, finding this set for Jn can be
useful. The next theorem show the shape of the index higher numerical ranges of Jordan
matrices;

Theorem 2.7. Let Jn be the n× n Jordan matrix with zero eigenvalue. Then IΛk(Jn) is
a closed disk.
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Proof. Let U = diag(1, e−iθ, e−2iθ, . . . , e−(n−1)iθ), where θ ∈ R. It’s obvious that U is
a unitary matrix with the property U∗JnU = eiθJn. So, by Proposition 2.2(ii) and
(iv), IΛk(e

iθJn) = eiθIΛk(Jn), for all θ ∈ R. By Proposition 2.5, IΛk(Jn) is connected
and [4, Theorem 2] shows that it is compact. These shows that IΛk(A) is a closed disk
around the origin. The special case is derived by choosing k = 1 and using the fact that
0 ∈ σ(Jn) ⊆ IW (A).

By setting k = 1 in the above theorem and using proposition 2.2(iii), we have the
following corollary.

Corollary 2.8. Let Jn be the n× n Jordan matrix with zero eigenvalue. Then IW (A) is
a closed disk around the origin.

In [4, Theorem 7], we saw that {z ∈ C : |z| ≤ (n + 1)/2} ⊆ IW (Jn). Moreover, [4,
Example 1] shows that IW (J2) = {z ∈ C : |z| ≤ 3/2}, i.e., the radious of the mentioned
disk in the above theorem is exactly (2 + 1)/2. The following example show that the
mentioned disk radious may be bigger than (n+ 1)/2.

Example 2.9. Let z ∈ IW (J3). So, z4−4z3x∗J3x+6z2x∗J2
3x = 0. Let x = (1/2, 1/

√
2, 1/2)t.

Then x∗J3x =
√

2/2 and x∗J2
3x = 1/4. So, z =

√
2+1/

√
2 ∈ IW (J3), while |z| > (3+1)/2.

Corollary 2.10. Let Jn be the n× n Jordan matrix with zero eigenvalue. Then IΛk(Jn)
is convex. In special case, IW (Jn) is convex.

In the following example, we see that if A 6= Jn, then IW (A) may not be convex.

Example 2.11. ( [4, Lemma2]) Let A = diag(λ, 0) where 0 6= λ ∈ R. Then

IW (A) = {z : |z − (λ/2)| = λ/2},

which is not convex.

3 Conclusion

The index rank−k numerical range of matrices may not be connected. We can find the
number of connected components of it for some special matrices exactly. The number of
connected components for nilpotent matrices is one, i.e., the index rank−k numerical range
of nilpotent matrices are connected. Using this fact, we find that the rank−k numerical
range of Jordan matrices is a closed disk around the origin.
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In this paper, an operational wavelet method is introduced for finding an approx-
imate solution of a class of two-dimensional Volterra weakly integral equations (two-
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1 Introduction

Wavelet constitutes a family of functions constructed from dialation and translation of
a single function called the mother wavelet. When the dialation parameter a and the
translation parameter b vary continuously, we have the following family of continuous
wavelets as [2].

ψa,b(t) = |a|− 1
2ψ(

t− b
a

) , a, b ∈ R,

where ψ is the mother wavelet.
Chelyshkov Wavelets (ChWs), ψn,m(x) = ψ(k, n,m, x), are defined on the interval

[0, L) by [2]:

ψn,m(t) =

{√
2k(2m+ 1)Pm(2k tL − n), n

2k
L ≤ t < n+1

2k
L,

0, otherwise.

where Pm(t) is the Chelyshkov polynomial, which is defined as follows:

Pm(t) := ρm,M (t) =
M−m∑

j=0

aj,m t
m+j , m = 0, 1, . . . ,M, (1)

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: amjad.hashemi@gmail.com
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where:

aj,m = (−1)j
(
M −m

j

)(
M +m+ j + 1

M −m

)
.

These polynomials are orthogonal over the interval [0, 1] with respect to the weight function
w(t) = 1, i.e. : ∫ 1

0
Pn(t)Pm(t) dt =

δmn
m+ n+ 1

,

where δmn is the Kronecker delta. According to the definition (1) it is obvious that for
a fixed integer M , the polynomials Pm(t) , m = 0, 1, . . . ,M are polynomials exactly of
degree M .

The ChWs {ψn,m(t) |n = 0, 1, . . . 2k − 1, m = 0, 1, . . .M} forms an orthonormal basis
for L2[0, L]. By using the orthogonality of ChWs, any function f(t) ∈ L2[0, L] can be
expanded in terms of ChWs as:

f(t) =
∞∑

n=0

∞∑

m=0

cn,m ψn,m(t), (2)

where cn,m = 〈f(t), ψn,m〉 =
∫ L

0 f(t)ψn,m(t) dt. If the infinite series in Eq. (2) is
truncated, then it can be written as:

f(t) '
2k−1∑

n=0

M∑

m=0

cn,m ψn,m(t) = CTΨ(t),

where C and Ψ are m̂ = 2k(M + 1)-vectors, given by:

CT = [c0,0, c0,1, . . . , c0,M , c1,0, . . . , c1,M , . . . , c2k−1,0 . . . , c2k−1,M ]

= [c1, c2, . . . , cm̂], (3)

Ψ(t)T = [ψ0,0(t), . . . , ψ0,M (t), ψ1,0(t), . . . , ψ1,M (t), . . . , ψ2k−1,0(t), . . . , ψ2k−1,M (t)]

= [ψ1(t), ψ2(t), . . . , ψm̂(t)]. (4)

The purpose of this paper is introducing an operational method for solving the following
two dimensional Abel equation, by using ChWs:

u(x, y) = f(x, y) +

∫ x

0

∫ y

0

u(s, t)

(x− s)α(y − t)β ds dt, (5)

where 0 < α < 1, 0 < β < 1, and f is a given function.

2 Main results

2.1 The fractional integration in the Riemann-Liouville sense

There are several definitions of a fractional integration of order α ≥ 0, and not necessarily
equivalent to each other, [?]. The most used definition is due to Riemann-Liouville, which
is defined as:

Iα0,t f(t) =

{
1

Γ(α)

∫ t
0 (t− τ)α−1 f(τ) dτ , α > 0 , t > 0,

f(t), α = 0.
(6)

One of the basic properties of the operator Iα0,t is:

Iα0,t x
β =

Γ(β + 1)

Γ(β + α+ 1)
xβ+α.
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2.2 Fractional Integration of ChW Vector Ψ(t)

Let Ψ(t) be the ChW vector of size m̂ = 2k(M +1) defined in (4). The Reimann-Liouville
fractional integral of order α for vector Ψ(t) can be approximated by:

IαΨ(t) ' P(α) Ψ(t), (7)

where P(α) = [p
(α)
i,j ] is an m̂ × m̂ matrix, known as the fractional operational matrix for

the ChW, defined by:

p
(α)
ij = 〈Iαψi(t), ψj(t)〉.

After some calculations and simplifications we will have:

Iαψn,m(t) = Am


ubn(t) (t− bn)α

M−m∑

j=0

aj (m+ j)!

Γ(m+ j + α+ 1)
(2kt− n)m+j

−ubn+1(t) (t− bn+1)α
M−m∑

j=0

m+j∑

l=0

aj (m+ j)!

(m+ j − l)! Γ(l + α+ 1)
(2kt− n− 1)l


 ,

(8)

in which ua(t) = u(t− a) and u(t) is the unit step function and bn = n
2k
L.

For example for k = 1, M = 2, and α = 1
2 , P (α) can be obtain as:




0.21415 0.21085 0.08753 0.05698 0.07211 0.07628
−0.05531 0.33159 0.33295 0.05732 0.11957 0.13728
0.00824 −0.03329 0.38685 0.22626 0.25063 0.22944

0. 0. 0. 0.21415 0.21085 0.08753
0. 0. 0. −0.05531 0.33159 0.33295
0. 0. 0. 0.00824 −0.03329 0.38685




.

If we consider definition (4) and define

Ψ(x, y) = Ψ(x)⊗Ψ(y), (9)

where, ⊗ is the Kronecker product[?],
Now, let have a closer look at equation (5) and its terms and use some other useful

formulas. First, note that, according to Eqs. (2) and (7), we have:

∫ x

0

f(t)

(x− t)α dt = Γ(1− α)I1−α
0,x (x).

Now, by using Eqs. (9) and (7) we get:

∫ x

0

∫ y

0

ψ(s, t)

(x− s)α(y − t)β ds dt =

∫ x

0

∫ y

0

ψ(s)⊗ ψ(t)

(x− s)α(y − t)β ds dt

=

(∫ x

0

ψ(s)

(x− s)α ds
)
⊗
(∫ y

0

ψ(t)

(y − t)β dt
)

=
(
Γ(1− α) I1−α

0,x ψ(x)
)
⊗
(
Γ(1− β) I1−β

0,y ψ(y)
)

= (Γ(1− α) Γ(1− β))
(
I1−α

0,x ψ(x)
)
⊗
(
I1−β

0,y ψ(y)
)

= (Γ(1− α) Γ(1− β))
(
P (1−α) ψ(x)

)
⊗
(
P (1−β)ψ(y)

)
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= (Γ(1− α) Γ(1− β))
(
P (1−α) ⊗ P (1−β)

) (
ψ(x)⊗ ψ(y)

)

= (Γ(1− α) Γ(1− β))P (1−α,1−β) ψ(x, y). (10)

Let u(x, y) ' CT Ψ(x, y) and f(x, y) ' FT Ψ(x, y).

According to Eq. (10) it can be seen that Eq. (5) transforms to the following matrix
relation:

CT Ψ(x, y) ' FT Ψ(x, y) + (Γ(1− α) Γ(1− β)) CT P (1−α,1−β) Ψ(x, y). (11)

Hence, Eq. (11) coverts to a linear system of equations, as:

CT = FT + (Γ(1− α) Γ(1− β)) CT P (1−α,1−β),

or:

C = F + (Γ(1− α) Γ(1− β)) (P (1−α,1−β))T C,

and equivalently

(
I − (Γ(1− α) Γ(1− β)) (P (1−α,1−β))T

)
C = F. (12)

By solving the system of linear equations (12), for unknown vector C, the approximate
solution of the main Eq. (5) can be obtained as: u(x, y) ' CT Ψ(x, y).

3 Numerical results

In this section, an example presented to verify the capability and efficiency of the proposed
method. In this example, we consider L1 = L2 = 1. To show the error, we use

e(x, y) = |u(x, y)− û(x, y)|, (13)

in which u(x, y) is the exact solution and û(x, y) is the approximate solution given by the
suggested method.

Figure 1: Error Function of Example (3.1) for M = 2 and k = 3
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Figure 2: Error Function of Example (3.2) for M = 3 and k = 1

Example 3.1. Cosider the following two dimensional Abel equation:

u(x, y) = f(x, y) +

∫ x

0

∫ y

0

u(ξ, ζ)

(x− ξ)α(y − ζ)β
dξ dζ, (14)

in which α = 1
2 , β = 3

4 and f(x, y) =
√
x y − B(1

2 ,
3
2)B(1

4 ,
3
2)x y

5
4 , where B(a, b) is the

Beta Function. The exact solution of the problem is u(x, y) =
√
x y. We implement the

proposed method with M = 2 and k = 3. Fig. (1) shows the error function introduced in
(13)

Example 3.2. Consider the following problem,

u(x, y) = f(x, y) +

∫ x

0

∫ y

0

u(ξ, ζ)

(x− ξ)α(y − ζ)β
dξ dζ,

where f(x, y) = x3y3 − 36x4−αy4−β
(1−α)(2−α)(3−α)(4−α)(1−β)(2−β)(3−β)(4−β) , and α = 0.3, and β = 0.5.

The exact solution is u(x, y) = x3y3.
As can be seen, in comparison with example 1 of [4], for (relatively small) M = 3 and

k = 1, approximate solution is very accurate.
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Abstract

In this paper, we investigate some properties of spectral functions from convex anal-
ysis and monotone operator theory point of view. Indeed, we study ε-subdifferential
of spectral functions. Also, we present the Fitzpatrick function of the subdifferential
of a spectral function in terms of the Fitzpatrick function of the subdifferential of
corresponding symmetric function.

Keywords: Spectral function, Convex analysis, Monotone operator, Fitzpatrick func-
tion

Mathematics Subject Classification [2010]: 15A18, 49J52, 47A75

1 Introduction and Preliminaries

There has been growing interest in the variational analysis of spectral functions. This
growing trend is due to spectral functions that have important applications to some fun-
damental problems in applied mathematics such as semi-definite programming and engi-
neering problems (see [2, 3], and references therein).
A function F defined on Sn is called spectral if

F (UTAU) = F (A), ∀ A ∈ Sn, ∀ U ∈ On,

where Sn is the vector space of all n× n real symmetric matrices and On is the group of
all real orthogonal matrices.
One can easily see [3] that every spectral function is the composition of a symmetric
function f defined on Rn and the eigenvalue function λ : Sn −→ Rn, i.e.,

F (A) = (f ◦ λ)(A), ∀ A ∈ Sn.

Hence there exists a one-to-one correspondence between the spectral functions F defined
on Sn and the symmetric functions f defined on Rn. In recent years a lot of research shows
that the properties of F are inherited from the properties of f, and vice versa [2–5].
The notion of a maximal monotone operator is crucial in optimization as it captures both
the subdifferential operator of a convex, lower semicontinuous, and proper function and
any continuous linear positive operator. It was recently discovered that most fundamental

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email: arsattarzadeh@gmail.com
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results on maximal monotone operators allow simpler proofs utilizing Fitzpatrick func-
tions.
We consider the Euclidean space Rn with the inner product 〈., .〉 and the induced norm
‖.‖. For a function f : Rn −→ R̄ := [−∞,+∞], define the domain of f by

dom(f) := {x ∈ Rn : f(x) < +∞}.

We say that f is proper if dom(f) 6= ∅ and f(x) > −∞ for all x ∈ Rn. The set of all
proper lower semi-continuous (l.s.c) and convex functions defined on Rn with values in R̄
is denoted by Γ0(Rn). The Fenchel-Moreau conjugate of a function f : Rn −→ R̄ is defined
by f∗ : Rn −→ R̄

f∗(x) := sup
y∈Rn
{〈x, y〉 − f(y)}, ∀ x ∈ Rn,

and the second conjugate (or bi-conjugate) of f is defined by

f∗∗(x) := sup
y∈Rn
{〈x, y〉 − f∗(y)}, ∀ x ∈ Rn.

Let f : Rn −→ R be a function and x0 ∈ dom(f). Recall [1] that the subdifferential of f
is the set valued mapping ∂f : Rn ⇒ Rn defined by

∂f(x0) := {u ∈ Rn : 〈u, x− x0〉 ≤ f(x)− f(x0), ∀ x ∈ Rn},

and for given ε ≥ 0, the ε-subdifferential of f is the set valued mapping defined by

∂εf(x0) := {u ∈ Rn : 〈u, x− x0〉 ≤ f(x)− f(x0) + ε, ∀ x ∈ Rn},

For set valued mapping T : Rn ⇒ Rn, we consider the graph of T by

G(T ) := {(x, u) ∈ Rn × Rn : u ∈ Tx}.

and T is called monotone, if

〈x− y, u− v〉 ≥ 0, ∀ (x, u) ∈ G(T ), ∀ (y, v) ∈ G(T ).

A set valued mapping T : Rn ⇒ Rn is called maximal monotone, if T is monotone and
T = T ′ for any monotone mapping T ′ : Rn ⇒ Rn such that G(T ) ⊆ G(T ′).
Let T : Rn ⇒ Rn be monotone. Correspondence to the mapping T , the Fitzpatrick
function ϕT : Rn × Rn −→ R is defined by [1]

ϕT (x, u) = sup
(y,v)∈G(T )

{〈x, v〉+ 〈y, u〉 − 〈y, v〉}, ∀ (x, u) ∈ Rn × Rn. (1)

The following theorem is well known in convex analysis and monotone operator theory
[1, 2].

Theorem 1.1. Let f ∈ Γ0(Rn). Then, ∂f : Rn ⇒ Rn is a maximal monotone operator.
Also, we have

ϕ∂f (x, u) ≥ 〈x, u〉, ∀ (x, u) ∈ Rn × Rn,

with equality holds if and only if (x, u) ∈ G(∂f).
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We endow Sn with the trace inner product [2, 3]:

〈A,B〉 := tr(AB), ∀ A,B ∈ Sn.
This inner product induces the Frobenius norm [3], i.e., ‖A‖F =

√
tr(A2). For any

x ∈ Rn, we denote by the symbol Diag(x) the n× n matrix with components of x on its
diagonal and with zero off the diagonal. For x ∈ R, we denote the vector x† ∈ Rn, with
x† := (x, x, · · · , x).
Define the eigenvalue function λ : Sn −→ Rn by λ(A) := (λ1(A), λ2(A), · · · , λn(A)) for
each A ∈ Sn, where λ1(A), λ2(A), · · · , λn(A) are the eigenvalues of A and ordered in a
non-increasing order, i.e., λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A). The following theorem due to
von Neumann plays a central role in the spectral variation analysis.

Theorem 1.2. [2, 3] For any A,B ∈ Sn, we have

‖λ(A)− λ(B)‖ ≤ ‖A−B‖F ,
and

〈A,B〉 ≤ 〈λ(A), λ(B)〉. (2)

Every A ∈ Sn admits a spectral decomposition of the form A = UDiag(λ(A))UT for some
U ∈ On. For each A ∈ Sn, define the set of all orthogonal matrices giving the ordered
spectral decomposition of A by

OA := {U ∈ On : UTAU = Diag(λ(A))}.
It is clear that OA is non-empty for each A ∈ Sn.
A function F : Sn −→ R̄ is called spectral if F is On-invariant, i.e.,

F (UTAU) = F (A), ∀ A ∈ dom(F ), ∀ U ∈ On.
It is not difficult to see [3] that any spectral function F defined on Sn can be written as a
composition f ◦ λ for some symmetric function f defined on Rn (a function f : Rn −→ R̄
is called symmetric if f(x) = f(Px) for all permutation matrices P and for all x ∈ Rn).
For instance, it is well-known that for each A ∈ Sn,

‖A‖2F =

n∑

i=1

[λi(A)]2 = ‖λ(A)‖2,

i.e.,

‖A‖F = (‖.‖ ◦ λ)(A).

The above relation shows that the Frobenius norm is a spectral function defined on Sn
associated with the standard Euclidean norm on Rn.
The following theorems present some properties of spectral functions in point of view
convex analysis.

Theorem 1.3. [2,3] Let f : Rn −→ R be a symmetric function. Then, f ∈ Γ0(Rn) if and
only if f ◦ λ ∈ Γ0(Sn). Also, one has

(f ◦ λ)∗(A) = f∗ ◦ λ(A), ∀ A ∈ Sn. (3)

Theorem 1.4. [2, 3] Let f ∈ Γ0(Rn) be symmetric function. Let A ∈ Sn be arbitrary.
Then,

∂(f ◦ λ)(A) = {UDiag(v)UT : v ∈ ∂f(λ(A)), U ∈ OA}.
Also, if B ∈ ∂(f ◦ λ)(A), Then A and B are simultaneously diagonalizable.
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2 Main results

We first present some properties of subdifferential of the spectral function. This properties
are immediate consequence of Theorem 1.4.

Lemma 2.1. Let f : Rn −→ R be a symmetric function. Let A,B ∈ Sn. Then the
following assertions are true:

1) If B ∈ ∂(f ◦ λ)(A), then λ(B) ∈ ∂f(λ(A)).

2) If B ∈ ∂(f ◦ λ)(A) and U ∈ On, then UBUT ∈ ∂(f ◦ λ)(UAUT ).

3) y ∈ ∂f(x) if and only if Diag(y) ∈ ∂(f ◦ λ)(Diag(x)).

The following theorem states properties of the ε-subdifferential of the spectral function.

Theorem 2.1. Let f : Rn −→ R be a symmetric function. Let A,B ∈ Sn. Then the
following assertions hold:

1) If B ∈ ∂ε(f ◦ λ)(A), then λ(B) ∈ ∂εf(λ(A)).

2) Let v ∈ ∂εf(λ(A)) and U ∈ OA. Then, UDiag(v)UT ∈ ∂ε(f ◦ λ)(A).

3) Suppose that λ(B) ∈ ∂εf(λ(A)), and A, B are simultaneously diagonalizable. Then,
B ∈ ∂ε(f ◦ λ)(A).

The following lemma is an immediate consequence of Theorem 1.1 and Theorem 1.3.

Lemma 2.2. Let f ∈ Γ0(Rn) be a symmetric function. Then, ∂(f ◦ λ) is a maximal
monotone operator on Sn.

Now, we investigate the Fitzpatrick function of the subdifferential of the spectral function.

Theorem 2.2. Let f : Rn −→ R be a symmetric function. Let A,B ∈ Sn be arbitrary.
Then

ϕ∂(f◦λ)(A,B) ≤ ϕ∂f (λ(A), λ(B)). (4)

Furthermore, suppose that one of the following assertions holds:

(i) A and B are simultaneously diagonalizable.

(ii) G(∂f) = {(x†, y†) : x, y ∈ R}.

Then, equality holds in (4).

Proof. First, note that it follows from (3) that

ϕ∂(f◦λ)(A,B) = sup
Y ∈∂(f◦λ)(X)

{〈A, Y 〉+ 〈X,B〉 − 〈X,Y 〉},

and

ϕ∂f (λ(A), λ(B)) = sup
y∈∂f(x)

{〈x, λ(B)〉+ 〈λ(A), y〉 − 〈x, y〉}.

Let Y ∈ ∂(f ◦ λ)(X) be arbitrary. Theorem 1.4 implies that there exists U ∈ OX ∩ OY
such that

X = UDiag(λ(X))UT , Y = UDiag(λ(Y ))UT .
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Now, consider

〈A, Y 〉+ 〈X,B〉 − 〈X,Y 〉 = 〈A, Y 〉+ 〈X,B〉 − 〈UDiag(λ(X))UT , UDiag(λ(Y ))UT 〉
= 〈A, Y 〉+ 〈X,B〉 − 〈Diag(λ(X)), Diag(λ(Y ))〉
≤ 〈λ(A), λ(Y )〉+ 〈λ(X), λ(B)〉 − 〈λ(X), λ(Y )〉
≤ ϕ∂f (λ(A), λ(B)).

By taking supremum over all (X,Y ) ∈ G(∂(f ◦ λ)), we get

ϕ∂(f◦λ)(A,B) ≤ ϕ∂f (λ(A), λ(B)). (5)

Now, suppose that assertion (i) holds. Let U ∈ On be such that

A = UDiag(λ(A))UT , B = UDiag(λ(B))UT .

Let y ∈ ∂f(x) be arbitrary. Consider

〈x, λ(B)〉+ 〈λ(A), y〉 − 〈x, y〉
= 〈Diag(x), Diag(λ(B))〉+ 〈Diag(λ(A)), Diag(y)〉 − 〈Diag(x), Diag(y)〉
= 〈Diag(x), UTBU〉+ 〈UTAU,Diag(y)〉 − 〈Diag(x), Diag(y)〉
= 〈UDiag(x)UT , B〉+ 〈A,UDiag(y)UT 〉 − 〈UDiag(x)UT , UDiag(y)UT 〉
≤ ϕ∂(f◦λ)(A,B).

Taking supremum over all (x, y) ∈ ∂f . We conclude that the reverse of the inequality (4)
holds.
Now, assume that assertion (ii) holds. Let (x†, y†) ∈ G(∂f) be arbitrary. Since∑n

i=1 cii =
∑n

i=1 λi(C), for each C = (cij) ∈ Sn. Hence

〈x†, λ(B)〉+ 〈λ(A), y†〉 − 〈x†, y†〉
= 〈Diag(x†), Diag(λ(B))〉+ 〈Diag(λ(A)), Diag(y†)〉 − 〈Diag(x†), Diag(y†)〉
= 〈Diag(x†), B〉+ 〈A,Diag(y†)〉 − 〈Diag(x†), Diag(y†)〉
≤ ϕ∂(f◦λ)(A,B).

Now, by taking supremum over all (x†, y†) ∈ G(∂f), we have

ϕ∂f (λ(A), λ(B)) ≤ ϕ∂(f◦λ)(A,B),

which completes the proof.

Corollary 2.1. Let f : Rn −→ R be a symmetric and sublinear function. Let A and B
be simultaneously diagonalizable. Then,

ϕ∂(f◦λ)(A,B) = (f ◦ λ)(A) + (f ◦ λ)∗(B).
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Abstract

A rotation group is a group in which the elements are orthogonal matrices with
determinant 1. In this paper, we study the majorization of the group of rational rota-
tion around the origin of coordinate and identify the linear preserver transformations
of this type of majorization.
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1 Introduction

In this section we have defined the action on a group and expressed its relation to ma-
jorization.

Definition 1.1. Let G be a group (or semigroup) and X a set. Then G is said to act on
X on the left if there is a mapping θ : G×X −→ X satisfying two conditions:

1. If e is the identity element of G, then

θ(e, x) = x for all x ∈ X.

2. If g1, g2 ∈ G, then

θ(g1, θ(g2, x)) = θ(g1g2, x) for all x ∈ X.

Similarly, G is said to act on X on the right if there is a mapping

θ : X ×G −→ X

satisfying two conditions:

1. If e is the identity element of G, then

θ(x, e) = x for all x ∈ X.
1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: y.sayyari@gmail.com
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2. If g1, g2 ∈ G, then

θ(θ(x, g1), g2) = θ(x, g1g2) for all x ∈ X.

If X is a real vector space, then each left action G (resp. right action G) creates a left
majorization relation ≺lG (resp. right majorization relation ≺rG) on X, which we will
describe below.

Let X be a real vector space, W ⊆ X, conv(W ) be the convex hull of W and G be a
left action (right action) on X. The group G induces an equivalence relation on X, defined
by x ' y if and only if x = gy (x = yg) for some g ∈ G. The equivalence classes of this
relation are called the orbits of G. for each y ∈ X the orbit of y is as follows:

OG(y) = {gy|g ∈ G} (OG(y) = {yg|g ∈ G}).

A vector x is said to be G-majorized of the left (of the right) by y and we write x ≺lG y
(x ≺rG y) if x ∈ conv(OG(y)). Let T : X −→ X be a mapping and ∼ be a relation on X.
We say T is a preserver of ∼ if Tx ∼ Ty whenever x ∼ y, it is called a strong preserver of
∼ if it further satisfies x ∼ y whenever Tx ∼ Ty.

2 Main results

In this section section, the concept of majorization is studied and then the linear preservers
of this concept are characterized.

Definition 2.1. Let n be a natural number, define

R(n,k) =

[
cos(2kπn ) − sin(2kπn )

sin(2kπn ) cos(2kπn )

]

and Gn = {R(n,k)|0 ≤ k ≤ n− 1}. Its obvious that Gn is a group.

We use the vectors symbol z = (x, y)t or complex numbers symbol z = x+iy as needed
for each point on the xy-plane. For each z the orbit of z = (x, y)t is a follows:

OGn(z) = {gz : g ∈ Gn}.

We say that z1 = (x1, y1)
t G-majorized by z2 = (x2, y2)

t (denote by z1 ≺n z2) if z1 ∈
conv(OGn(z2)).

Theorem 2.2. Let z1 and z2 are two members of the xy-plane.

1. z1 ≺n z2 if and only if the z1 is located on or inside the regular n-polygon bound to
the origin center of the coordinates and the z2 corner.

2. z1 ∼n z2 if and only if zn1 = zn2 .

Proof. Since R(n,1) rotates points in the xy-plane counterclockwise through an angle 2π
n

with respect to the x axis about the origin of a two-dimensional Cartesian coordinate
system, Parts 1 and 2 are easily proven.

Corollary 2.3. Let z1 and z2 are two members of the xy-plane and z1 ∼n z2 then |z1| =
|z2|.
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Theorem 2.4. Let T be a linear operator on R2. Then T preserves ∼n if and only if one
of the following holds:

1. n = 2 and T is an arbitrary linear operator T on M2.

2. n 6= 2 and

[T ] =

[
a b
−b a

]
or [T ] =

[
a b
b −a

]

for some real numbers a, b. (i.e. T (z) = Az or T (z) = Az for some complex number
A = a− ib).

Proof. If

[T ] =

[
a b
−b a

]

then

T (z) = (a− ib)z

so zn1 = zn2 results that ((a− ib)z1)n = ((a− ib)z2)n. If

[T ] =

[
a b
b −a

]

then

T (z) = (a+ ib)z

so zn1 = zn2 results that ((a+ ib)z1)
n = ((a+ ib)z2)

n. So, T preserves ∼n.
If n = 2, G2 = {I2,−I2} and every linear operator T preserves ∼2.
Conversly, let T preserves ∼n and

[T ] = A =

[
a11 a12
a21 a22

]

Since (1, 0)t ∼n (cos(2kπn ), sin(2kπn ))t = R(n,1)(1, 0)t for every 0 ≤ k ≤ n− 1, so

A(1, 0)t ∼n A(cos(
2kπ

n
), sin(

2kπ

n
))t

Hence,

a211 + a221 = (a11 cos(
2kπ

n
) + a12 sin(

2kπ

n
))2 + (a21 cos(

2kπ

n
) + a22 sin(

2kπ

n
))2

so

(a211 + a221 − a212 − a222) sin2(
2kπ

n
) = 2(a11a12 + a21a22) sin(

2kπ

n
) cos(

2kπ

n
) (1)

for every 0 ≤ k ≤ n − 1. Since for n 6= 2, 4 we can choise two k1 6= k2 that cot(2k1πn ) 6=
cot(2k2πn ), thus

{
a211 + a221 − a212 − a222 = 0
a11a12 + a21a22 = 0

(2)
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Case 1: If a21 = a11 = 0 so (2) results that a12 = a22 = 0.
Case 2: If a21 = a12 = 0 so (2) results that a11 = ±a22.

Case 3: If a21 6= 0 then (2) results that

a22 = −a11a12
a21

and

a211 + a221 − a212 − (−a11a12
a21

)2 = 0

thus

(a211 + a221)(a
2
21 − a212) = 0

so a21 = ±a12. a21 = +a12 and (2) results that a11 = −a22, and a21 = −a12 and (2)
results that a11 = a22.
Case 4: If n = 4, (1) results that

a211 + a221 − a212 − a222 = 0 (3)

On the other hand have

(a11, a12)
t ∼4 (a12,−a11)t

thus

(a211 + a212, a21a11 + a22a12)
t ∼4 (0, a21a12 − a22a11)t (4)

also

(a21, a22)
t ∼4 (−a22, a21)t

and

(a11a21 + a12a22, a
2
21 + a222)

t ∼4 (−a22a11 + a12a21, 0)t (5)

of the (4) and (5) have

(a211 + a212, a21a11 + a22a12)
t ∼4 (a11a21 + a12a22, a

2
21 + a222)

t

therfore

a211 + a212 = a221 + a222 (6)

Equalities (3) and (6) yields that

a211 = a222 and a212 = a221

so a11 = ±a22 and a12 = ±a21.
Now we prove that a11 = −a22 and a12 = +a21 or a11 = +a22 and a12 = −a21.
If a11 = +a22 = a 6= 0 and a12 = +a21 = b 6= 0, so

A =

[
a b
b a

]
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Since (1, 1)t ∼4 (1,−1)t, (a + b, b + a)t ∼4 (a − b, b − a)t. Thus |a + b|4 = |a − b|4
so a + b = ±(a − b), this is a contradiction. Similarly, if a11 = −a22 = a 6= 0 and
a12 = −a21 = b 6= 0, so

A =

[
a b
−b −a

]

Since (1, 1)t ∼4 (1,−1)t, (a + b,−b − a)t ∼4 (a − b,−b + a)t. Thus |a + b|4 = |a − b|4 so
a+ b = ±(a− b), this is a contradiction. Thus a11 = −a22 and a12 = +a21 or a11 = +a22
and a12 = −a21.

In this section (m,n) is the largest divisor the common the two integers m,n. Let
θ = m

n be a rational number with (m,n) = 1, define

R(θ,k) =

[
cos(2kπθ) − sin(2kπθ)
sin(2kπθ) cos(2kπθ)

]

and Gθ = {R(θ,k)|k = 0, 1, 2, ...}. Its obvious that Gθ is a group. For each z the orbit of
z = (x, y)t is a follows:

OGθ(z) = {gz : g ∈ Gθ}.

We say that z1 = (x1, y1)
t Gθ-majorized by z2 = (x2, y2)

t (denote by z1 ≺θ z2) if z1 ∈
conv(OGθ(z2), where the notion conv(A) is the convex hull of a set A.

Theorem 2.5. Let z1 and z2 are two members of the xy-plane and θ = m
n be rational

number with (m,n) = 1.

1. z1 ≺θ z2 if and only if the z1 is located on or inside the regular n-polygon bound to
the origin center of the coordinates and the z2 corner.

2. z1 ∼θ z2 if and only if zn1 = zn2 .

Corollary 2.6. Let z1 and z2 are two members of the xy-plane and z1 ∼θ z2 then |z1| =
|z2|.

Corollary 2.7. Let T be a linear operator on R2 and θ = m
n . Then T preserves Gθ-

majorized ∼θ if and only if one of the following holds:

1. Any linear operator T preserves Gθ-majorized ∼2.

2. n 6= 2 and

[T ] =

[
a b
−b a

]
or [T ] =

[
a b
b −a

]

i.e. T (z) = Az or T (z) = Az for some complex number A.
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Abstract

In this paper, using a suitable modification technique, an orthogonal block diago-
nalization and a number of formulas for anti-pentadiagonal block band persymmetric
Hankel matrices with perturbed corners are shown. These formulas include block di-
agonalization, determinant, inverse, and eigenvalues of these matrices. Also, using an
orthogonal block diagonalization for Toeplitz-plus-Hankel matrices, these results are
presented. The validity of the approaches is illustrated by numerical experiments.
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1 Introduction

Spectral and computational properties of persymmetric Hankel matrices have been stud-
ied by several authors such as Bini, Fasino and Lita da Silva in [1, 3, 5].
The proposed algorithms construct the fast computational methods for the evaluation of
the block diagonalization, the determinant and the characteristic for anti-pentadiagonal
block band persymmetric Hankel matrices with perturbed corners.
Block band symmetric Toeplitz matrices (BBST-matrices) and block band persymmetric
Hankel matrices (BBPSH-matrices) arise in a wide variety of applications such as the fi-
nite difference approximation, linear dynamical systems, multigrid techniques, algorithms
based on the cyclic reduction among others.
Here, we try to explain some statements that make fast computational methods for the
evaluation of block diagonalizations, determinants, and characteristic polynomial of per-
symmetric Hankel matrices with perturbed corners.
Let R, A1, A2, A3 be defined real matrices m×m and HN be an N − block×N − block
anti-pentadiagonal BBPSH-matrices with perturbed corners:

HN =




A3 A2 R
A3 A2 A1 A2

A3 A2 A1 A2 A3

. .
.

. .
.

. .
.

. .
.

. .
.

A3 A2 A1 A2 A3

A2 A1 A2 A3

R A2 A3




. (1)

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: shamssolary@pnu.ac.ir, shamssolary@gmail.com
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Throughout, I is the identity matrix and 0 is the zero matrix of any size to satisfy the
conformability requirement of a particular operation; the transpose of a matrix S is de-
noted by ST .
The following N ×N symmetric matrix

[S]ij =

√
2

N + 1
sin

[
ijπ

N + 1

]
, (2)

is essential in the procedure due to its special properties, particularly ST = S = S−1.
The symbol ⊗ will denote the Kronecker product [2] and Im is an m×m identity matrix
and C = A3 +R−A1.

2 Main results

Theorem 2.1. Let HN be an N − block×N − block anti-pentadiagonal BBPSH-matrices
with perturbed corners is given by (1) and

Fi = −A3ν
2
i −A2νi − (A1 − 2A3), (3)

νi = 2 cos
(
Niπ
N+1

)
, i = 1, 2, . . . , N that Fi’s are invertible matrices with simple eigenval-

ues.

HN = [S⊗ Im] P

(
D3 + uuT ⊗ C 0

0 D4 − vvT ⊗ C

)
PT [S⊗ Im] (4)

that the following relation holds:

(a) If N is even,
D3 = diag(F1, F3, . . . , FN−1), D4 = diag(F2, F4, . . . , FN ),
P is the N − block ×N − block block permutation matrix and u, v are defined by (19).

(b) If N is odd,
D3 = diag(F1, F3, . . . , FN ), D4 = diag(F2, F4, . . . , FN−1),
P is the N − block ×N − block block permutation matrix and u, v are defined by (21).

u =




u1
u3
...

uN−1


 , v =




v2
v4
...
vN


 , (5)

where

u2i−1 =
2√
N + 1

sin

(
(2i− 1)π

N + 1

)
, v2i =

2√
N + 1

sin

(
2iπ

N + 1

)
(6)

i = 1, 2, . . . , N2 , when N is even or (b).

Proof. We can find a class of simultaneously diagonalizable matrices which have a suitable
block submatrix generating by block band persymmetric Hankel matrices by bordering
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technique in [1]. Suppose that an N − block × N − block anti-pentadiagonal BBPSH-
matrices with perturbed corners similar (7) and a sparse matrix ÊN similar (8):

Ĥn =




A3 A2 A1 −A3

A3 A2 A1 A2

A3 A2 A1 A2 A3

. .
.

. .
.

. .
.

. .
.

. .
.

A3 A2 A1 A2 A3

A2 A1 A2 A3

A1 −A3 A2 A3




, (7)

and

ÊN =




0 0 A3 +R−A1

0 0 0

. .
.
. .
.
. .
.

0 0 0
A3 +R−A1 0 0



. (8)

Then HN = ĤN + ÊN , by Proposition 3.1 in [1] [S⊗ Im] PÊNPT [S⊗ Im], we get

[S⊗ Im] PHNPT [S⊗ Im] = [S⊗ Im] P(ĤN + ÊN )PT [S⊗ Im] .

If EN = [Eij ]

[E]ij =
2

N + 1
sin

(
iπ

N + 1

)
sin

(
Njπ

N + 1

)[
1 + (−1)i+j

]
,

then

PT [EN ⊗ C] P−
(

uuT ⊗ C 0
0 −vvT ⊗ C

)
= 0,

and

[S⊗ Im] HN [S⊗ Im] = diag(F1, F2, . . . , FN ) + EN .

By permuting rows and columns of ĤN +ÊN according to the permutation matrices which
yields

[S⊗ Im] PĤNPT [S⊗ Im] =

(
D3 0
0 D4

)
, (9)

and

[S⊗ Im] PÊNPT [S⊗ Im] =

(
uuT ⊗ C 0

0 −vvT ⊗ C

)
. (10)

From Equations (9) and (10) and by adding them with together, then deduce Equation
(4).

Theorem 2.1 allows us to deduce the inverse and the determinant of the anti-pentadiagonal
block band persymmetric Hankel matrices with perturbed corners.
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Theorem 2.2. Let HN be an N − block×N − block anti-pentadiagonal BBPSH-matrices
with perturbed corners (1) and Fi, i = 1, 2, . . . , N be given by (3), and relations in
Theorem 2.1, we can find H−1

N :

H
−1
N = [S ⊗ Im]P




D−1
3 − U1(I + V1U1)

−1V1D
−1
3 0

0 D−1
4 + U0(I − V0U0)

−1V0D
−1
4


P

T
[S ⊗ Im] . (11)

Also, we have:

Theorem 2.3. Let HN be an N − block×N − block anti-pentadiagonal BBPSH-matrices
with perturbed corners (1) and Fi, i = 1, 2, . . . , N be given by (3), then by some relations
in Theorem 2.2, we have:

det(HN ) =

(
N∏

i=1

det(Fi)

)
det

[
I +

4C

N + 1

N∑

i=1

sin
2

(
(2i− 1)π

N + 1

)
F

−1
2i−1

][
I − 4C

N + 1

N∑

i=1

sin
2

(
2iπ

N + 1

)
F

−1
2i

]
. (12)

From the generalized of the some results of this Section and the some results of Chapter
6 in [4] the following formula is explained:

(λI− Fi)−1 =

m∑

j=1

F
(j)
i

rj−1∑

k=0

1

(λ− νj)k+1
(Fi − νjI)k, (13)

whenever λ /∈ σ(Fi) and the minimal polynomial of Fi is p(t) = (t − ν1)r1 . . . (t − νm)rm ,
νi 6= νj when i 6= j.

Jordan canonical form of Fi is Fi = SiJiS
−1
i , then F

(j)
i = SiDijS

−1
i , where Dij is a

block diagonal matrix that is conformal with Ji; every block of Ji that has eigenvalue νj
corresponds to an identity block in Dij and all other blocks of Dij are zero.

Theorem 2.4. Let HN be an N − block×N − block anti-pentadiagonal BBPSH-matrices
with perturbed corners (16), Fi, i = 1, 2, . . . , N be invertible matrices with simple eigen-
values are given by (3), then:
The eigenvalues of matrix HN can be found by the roots of the following functions:

r(λ) = I +
4C

N + 1

N∑

i=1

m∑

j=1

sin2

(
(2i− 1)π

N + 1

)
1

λ− ν(2i−1)
j

F
(j)
2i−1, (14)

s(λ) = I− 4C

N + 1

N∑

i=1

m∑

j=1

sin2

(
2iπ

N + 1

)
1

λ− ν(2i)j

F
(j)
2i , (15)

where ν
(2i−1)
j are eigenvalues of F2i−1 and ν

(2i)
j are eigenvalues of F2i, i = 1, 2, . . . , N2 for

N when N is even, and i = 1, 2, . . . , N−1
2 for N when N is odd, whenever λ /∈ σ(Fi).

3 Final Comments

An orthogonal block diagonalization of pentadiagonal BBST-matrices and anti-pentadiagonal
BBPSH-matrices both having perturbed corners are valuable. So, solution of the inverse,
determinant and the characteristic polynomial is a fast way for next computations by this
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block diagonalization.
Let TN be an N−block×N−block pentadiagonal BBST-matrices with perturbed corners:

TN =




R A2 A3

A2 A1 A2 A3

A3 A2 A1 A2 A3

. . .
. . .

. . .
. . .

. . .

A3 A2 A1 A2 A3

A3 A2 A1 A2

A3 A2 R




. (16)

In [6], we have:

Theorem 3.1. Let TN be an N − block ×N − block pentadiagonal BBST-matrices with
perturbed corners is given by (16) and

Bi = A3µ
2
i +A2µi +A1 − 2A3, (17)

µi = 2 cos
(

iπ
N+1

)
, i = 1, 2, . . . , N that Bi’s are matrices with simple eigenvalues, S is

the N ×N symmetric matrix (2) and C = A3 +R−A1, then:

TN = [S⊗ Im] P

(
D1 + uuT ⊗ C 0

0 D2 + vvT ⊗ C

)
PT [S⊗ Im] (18)

where (a) D1 = diag(B1, B3, . . . , BN−1), D2 = diag(B2, B4, . . . , BN ),
P is the N − block ×N − block permutation matrix.

u =




u1
u3
...

uN−1


 , v =




v2
v4
...
vN


 , (19)

where

u2i−1 =
2√
N + 1

sin

(
(2i− 1)π

N + 1

)
, v2i =

2√
N + 1

sin

(
2iπ

N + 1

)
(20)

i = 1, 2, . . . , N2 , when N is even or (b),

D1 = diag(B1, B3, . . . , BN ), D2 = diag(B2, B4, . . . , BN−1),
P is the N − block ×N − block permutation matrix.

u =




u1
u3
...
uN


 , v =




v2
v4
...

vN−1


 , (21)

where

u2i−1 =
2√
N + 1

sin

(
(2i− 1)π

N + 1

)
, v2i =

2√
N + 1

sin

(
2iπ

N + 1

)
(22)

i = 1, 2, . . . , N−1
2 , whenever N is odd.

195



M. Shams Solary

The same conditions apply in the case of block TN + HN matrices with perturbed
corners:

TN + HN =




R A2 A3 A3 A2 R

A2 A1 A2 A3 A3 A2 A1 A2

A3 A2 A1 A2 A3 A3 A2 A1 A2 A3

. . .
. . .

. . .
. . .

. . .
... . .

.
. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
. ...

. . .
. . .

. . .
. . .

. . .

A3 A2 A1 A2 A3 A3 A2 A1 A2 A3

A2 A1 A2 A3 A3 A2 A1 A2

R A2 A3 A3 A2 R




. (23)

These implements are constructive for finding the functions of matrices, eigenvalues, eigen-
vectors, integer powers and parallel computations in similar cases.
Now by Theorem 2.1 in the last section, we can derive:

Theorem 3.2. Let TN + HN be an N − block ×N − block pentadiagonal Toeplitz-plus-
Hankel matrices with perturbed corners is given by (23), then:

TN + HN = [S⊗ Im] P

(
D1 + D3 + 2uuT ⊗ C 0

0 0

)
PT [S⊗ Im] , (24)

that is used by the notations introduced in Theorem 2.1 and Theorem 3.1.

References

[1] D. Bini, M. Capovani, Sepctral and computational properties of band symmetric
Toeplitz matrices, Linear Algebra Appl., 52/53 (1983) 99–126.

[2] D. Bini, M. Capovaui, Tensor rank and border rank of band Toeplitz matrices, SIAM
Journal on Computing, 16 (2) (1987) 252–258.

[3] D. Fasino, Spectral and structural properties of some pentadiagonal symmetric matri-
ces, Calcolo, 25 (4) (1988) 301–310.

[4] C. R. Johnson, R. A. Horn, Topics in Matrix Analysis, Cambridge University Press
1991.

[5] J. Lita da Silva, On anti-pentadiagonal persymmetric Hankel matrices with perturbed
corners, Comput. Math. Appl., 72 (2016) 415–426.

[6] M.S. Solary, Computational properties of pentadiagonal and anti-pentadiagonal block
band matrices with perturbed corners, Soft Computing, Accepted for publication Oc-
tober (2019).

196



Multivariate group majorization on Mn,m and its linear
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Abstract

For X,Y ∈Mn,m, X is said to be multivariate majorized by Y , denoted by X ≺m

Y , if there exists a doubly stochastic matrix D ∈ Mn such that X = DY . In this
paper, we extend multivariate majorization as a group majorization on Mn,m. Let G
be a subgroup of orthogonal group O(Rn). We say that X is GM -majorized by Y

(written as X ≺GM Y ), if X =
∑k

i=1 cigiY for some gi ∈ G, ci ≥ 0, and
∑k

i=1 ci = 1.
We state equivalent conditions for linear preservers of multivariate group majorization.

Keywords: Matrix majorization, Group majorization, Linear preserver

Mathematics Subject Classification [2010]: 15A86, 15A39, 15B51

1 Introduction

Definition 1.1. For x, y ∈ Rn, we say that y majorizes x and write x ≺ y, if

k∑

i=1

x↓i 6
k∑

i=1

x↓i

for k = 1, . . . , n− 1 and equality holds for k = n, where x↓ = (x↓1, . . . , x
↓
n) is arrangement

of x in non-increasing order.

We say that a linear operator A : Rn −→ Rm preservers majorization, if Ax ≺ Ay
whenever x ≺ y. The following theorem has an essential role to characterize linear pre-
servers of majorization, see [1].

Theorem 1.2. [1, Theorem 2.6] Let A be a linear map from Rn to Rm. Then the
following conditions are mutually equivalent:

a A preserves majorization.

b Ax ∼ Ay whenever x ∼ y.

c For any permutation matrix Π ∈ Mn there exists a permutation matrix Π̂ ∈ Mm such
that Π̂A = AΠ.

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: m.soleymani@uk.ac.ir
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By above theorem, we can characterize all linear preservers of majorization.

Theorem 1.3. [1, Corollary 2.7] Any linear operator A : Rn → Rn preserving majoriza-
tion has one of the following forms:

a A = aet for some a ∈ Rn.

b A = αΠ + βJn for some α, β ∈ R and Π ∈ Pn.

A matrix D ∈ Mn is called doubly stochastic if De = e and Dte = e. We know that
x ≺ y if and only if x = Dy for some doubly stochastic matrix D. Birkhoff theorem [3,
Theorem II.2.3] says that the set of all n×n doubly stochastic matrices is the convex hull of
Pn. On the other word, x ≺ y if and only if x ∈ conv{Px : P ∈ Pn}. By replacing Pn with
any subgroup of orthogonal group O(Rn), we can define a new concept of majorization on
Rn which is called group majorization.

Definition 1.4. Let V be a finite dimensional inner product space and G be a subgroup
of orthogonal group O(V ). We say that x is group majorized by y, write x ≺G y, if
x ∈ conv{gy : g ∈ G}.

In this paper, as same as Theorem 1.2, we state an equivalent condition for matrix
representations of linear preservers T : Mn,m → Mn,m of G-majorizations, where G is a
finite subgroup of O(Rn).

2 Main results

The concept of matrix majorization is defined by directional majorization [5] or multivari-
ate majorization [2] as follows:

Definition 2.1. For X,Y ∈Mn,m, we say that X is directional majorized by Y and write
X ≺d Y if Xv ≺ Y v for every v ∈ Rm.

Definition 2.2. For X,Y ∈ Mn,m, we say that X is multivariate majorized by Y and
write X ≺m Y if there exists doubly stochastic matrix D ∈Mn such that X = DY .

In [2], multivariate majorization defined as X = Y D. Since Dt is doubly stochastic,
The definition of Beasley means Xt ≺m Y t with the above definition. The concept of
group majorization can be extended for matrices as follows.

Definition 2.3. For X,Y ∈ Mn,m, X is said to be multivariate group majorized by Y
(written as X ≺GM Y ), if X ∈ conv{gY : g ∈ G} and G is a subgroup of O(Rn).

On the other word, X ≺GM Y if X =
∑k

i=1 cigiY where gi ∈ G, ci ≥ 0,
∑k

i=1 ci =
1. Now, we prove an equivalent condition for linear preservers of GM -majorization as
Theorem 1.2. To do this, we need some preliminaries.
For every A = (aij) ∈Mn,m, we associate the vector vec(A) ∈ Rnm defined by

vec(A) = [a11, . . . , an1, a12, . . . , an2, . . . , a1m, . . . , anm]t.

Let B be the standard basis for Mn,m . On the other word

B = {E11, . . . , En1, E12, . . . , En2, . . . , E1m, . . . , Enm}.
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Also let [T ]B be representation of T with respect to B. Then

[T ]B =




B11 B12 · · · B1m

B21 B22 · · · B2m
...

...
...

Bm1 Bm2 · · · Bmm


 , (1)

where each Bij ∈ Mn and vec(T (X)) = [T ]B (vec(X)). Let A ∈ Mn,m, X ∈ Mm,p,
B ∈Mp,q and C ∈Mn,q. By [4, Lemma 4.3.1], AXB = C if and only if

vec(C) = vec(AXB) = (Bt ⊗A)vec(X). (2)

To verify linear preservers of multivariate group majorization, we deal with x ∼GM y
means x ≺GM y and y ≺GM x. The following theorem gives an equivalent condition for
∼GM .

Theorem 2.4. Let X,Y ∈Mn,m. Then X ∼GM Y if and only if X = gY for some g ∈ G.

Proof. By the definition of multivariate group majorization, X ≺GM Y means that X =∑k
t=1 αtgtY . Since gt ∈ O(Rn),

‖X‖2 = ‖
k∑

t=1

αtgtY ‖2 ≤
k∑

t=1

αt‖gtY ‖2 =
k∑

t=1

αt‖Y ‖2 = ‖Y ‖2. (3)

On the other hand, Y ≺GM X and then ‖Y ‖ ≤ ‖X‖. Hence, equality holds in (3). If
αt′ 6= 0 for some 1 ≤ t′ ≤ k, then

‖αt′gt′Y + Z‖2 = ‖αt′gt′Y ‖2 + ‖Z‖2,

where Z =
∑k

t=1,t6=t′ αtgtY . Since equality holds in triangle inequality(cauchy-schwarz
inequality), Z = λαt′gt′Y for some λ ∈ R. Therefore, X = (1 + λ)αt′gt′Y . Since ‖X‖2 =
‖Y ‖2, (1 + λ)αt′ = 1.

The following theorem states an equivalent condition for matrix representations of
linear operator T : Mn,m → Mn,m which preserves GM -majorization, where G is a finite
subgroup of O(Rn).

Theorem 2.5. Let G be a finite subgroup of O(Rn), T : Mn,m →Mn,m be a linear operator
and

[T ]B =




B11 B12 · · · B1m

B21 B22 · · · B2m
...

...
...

Bm1 Bm2 · · · Bmm


 .

Then T preserves ∼GM if and only if for every g ∈ G there exists a matrix ĝ ∈ G such
that ĝBij = Bijg for each i = 1, . . . , n and j = 1, . . . ,m.

Now, we will prove the follwing extention of [5, Theorem 2] as a result of Theorem 2.5.

Corollary 2.6. Let T be a linear operator on Mn,m. The following are equivalent:

1 T preserves multivariate majorization.

2 T preserves directional majorization.
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3 TX ≺d TY whenever X ≺m Y .

4 TX ∼d TY whenever X ∼d Y .

5 TX ∼m TY whenever X ∼m Y .

6 One of the following holds :

a There exist R,S ∈Mm and P ∈ Pn such that T (X) = PXR+ JnXS.

b There exist A1, . . . , Am ∈Mn,m such that T (X) =
∑m

j=1 tr(xj)Aj.
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Abstract

Let A be an arbitrary ∗-algebra with unit I over the real or complex field F that
contains a nontrivial idempotent P1 and n ≥ 1 be a natural number. It is shown that
if a surjective map ϕ : A −→ A satisfies

ϕ(P ) •n−1 ϕ(P ) • ϕ(A) = P •n−1 P •A,

for every A ∈ A and projection P ∈ {P1, I−P1}, where A •n−1A denotes the Jordan
multiple ∗-product of n− 1 A’s, then ϕ(A) = ϕ(I)A for all A ∈ A and ϕ(I)2 = I.

Keywords: Maps preserving, Strong Jordan multiple, ∗-product

Mathematics Subject Classification [2010]: 15A03, 15A23, 15B36

1 Introduction

Let A be a ∗-algebra. For A,B ∈ A, we define Jordan ∗-product and Lie ∗-product of
A,B respectively by A•B = AB+BA∗ and [A,B]∗ = AB−BA∗, which are two different
kinds of new products. The products are found playing a more and more important role
in some researches (see [1-3]). Recently, many mathematicians focused on the study of the
new products. In [1] which M and N are two von Neumann algebras, it is proved that
a not necessarily linear bijective map ϕ : M −→ N satisfies ϕ([S, T ]∗) = [ϕ(T ), ϕ(S)]∗
for all T, S ∈ M if and only if ϕ is the direct sum of a linear ∗-isomorphism and a
conjugate linear ∗-isomorphism. Also in [4] where A and B are two factor von Neumann
algebras, it is characterized that a not necessarily linear bijective map Φ : A −→ B satisfies
Φ(A •B) = Φ(A) • Φ(B) for all A,B ∈ A if and only if Φ is a ∗-ring isomorphism.

Let R be an associative ring (or an associative algebra over a field F). Then recall a
map ϕ : R −→ R preserves strong commutativity or strong Lie Product if [ϕ(A), ϕ(B)] =
[A,B], for each A,B ∈ A that [A,B] is Lie product i.e. [A,B] = AB − BA. Similarly ϕ
preserves strong Jordan product if ϕ(A) ◦ ϕ(B) = A ◦B, for each A,B ∈ A that A ◦B is
Jordan product i.e. A ◦B = AB +BA. The structure of linear (or nonlinear) maps that
preserve strong commutativity and strong Jordan product have been investigated in [3].
Gonga et al [3] proved that every nonlinear map ϕ that preserves strong Jordan product
on any algebra R with unit I over a field F, has the form of ϕ(A) = ϕ(I)A, for all A ∈ R,
where ϕ(I) ∈ R and ϕ(I)2 = I.

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: taghavi@umz.ac.ir
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For a ring R and a positive integer k, recall that the k-commutator of elements A,B ∈
R is defined by [A,B]k = [[A,B]k−1, B] with [A,B]0 = A and [A,B]1 = [A,B] = AB−BA;
similarly we define A◦kB = (A◦k−1B)◦B with A◦0B = A and A◦1B = A◦B = AB+BA.
A map ϕ : R −→ R is called strong k-commutativity preserver if [ϕ(A), ϕ(B)]k = [A,B]k
for all A,B ∈ R and ϕ is called strong k-Jordan product if ϕ(A) ◦k ϕ(B) = A ◦k B for
each A,B ∈ R. Qi [2], characterizes the structure of a strong 2-commutativity preserving
map on prime algebra. Also Lin and Hou [5] characterize the structure of a map that
preserves Strong 3-commutativity on standard algebras. Moreover recently in [6] authors
proved the concrete form of a map that preserves strong 2-Jordan product on standard
operator algebras, properly infinite von Neumann algebras and nest algebras.

The aim of this paper is to extend this work by studying surjective maps that preserves
strong skew Jordan multiple ∗-product on general ∗-algebras. We prove that if A be an
aribtrary ∗-algebra (with identity I) over the real or complex field F that contains a
nontrivial idempotent P1 and ϕ : A −→ A satisfies condition

ϕ(P ) •n−1 ϕ(P ) • ϕ(A) = P •n−1 P •A,

for every A ∈ A and projection P ∈ {P1, I − P1}, then ϕ(A) = ϕ(I)A for all A ∈ A and
ϕ(I)2 = I. Where, n ≥ 1 a natural number and A •n−1A with repeat n− 1 times A is the
Jordan multiple ∗-product.

We are now ready to state the main results of the paper.

2 Main results

We begin by showing a preliminary lemma.

Lemma 2.1. Let A be an arbitrary ∗-algebra over the real or complex field F that contains
a nontrivial idempotent P and n ≥ 1 a natural number. If P •n−1 P • A = 0, then
PA = 0 = AP .

Following, we will state the main results and proofs.

Theorem 2.2. Let A be an arbitrary ∗-algebra with unit I over the real or complex field
F that contains a nontrivial idempotent P1 and n ≥ 1 a natural number. Assume that
ϕ : A −→ A is a surjective map satisfying the condition

ϕ(P ) •n−1 ϕ(P ) • ϕ(A) = P •n−1 P •A, (1)

for all A ∈ A and projection P ∈ {P1, I − P1}. Then ϕ(A) = ϕ(I)A for all A ∈ A and
ϕ(I)2 = I.

Proof. We assume P2 = I − P1 and organize the proof into several steps.

Step 1. ϕ is injective.

Step 2. i) ϕ(A∗) = ϕ(A)∗ for all A ∈ A.
ii) ϕ(P )n+1 = P for every P ∈ {P1, P2}.

Step 3. For every A ∈ A and P ∈ {P1, P2}, we have

ϕ(P )ϕ(A) + ϕ(A)ϕ(P ) = PA+AP. (2)

We prove the result in two cases.
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Case 1. Let n = 2k − 1 and k ∈ N.

Case 2. Let n = 2k and k ∈ N.

Step 4. PAϕ(P ) = ϕ(P )AP for all A ∈ A and P ∈ {P1, P2}.

Step 5. ϕ(A) = ϕ(I)A for all A ∈ A.
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Abstract

In decision-making problems, the obvious or implicit effects of the experts on each
other can be used such that the final solution has a higher degree of consensus. Here we
introduce a consensus model based on the similarity between the experts’ preferences
and trust degree on each other, to reach a higher consensus. First, each experts’ profile
is specified based on trust degree, self-confidence, and consistency. Then, the experts
are clustered by using the cosine similarity measure. In a feedback mechanism, the
experts with the low-rank profile are receiving some advice from those experts who
are similar to and have a higher profile rank.

Keywords: Group decision making, Consensus, Feedback mechanism, Intuitionistic
fuzzy preference relation, Similarity

Mathematics Subject Classification [2010]: 15B15, 90B50

1 Introduction

In a group decision making scenario, GDM, a group of experts need to evaluate a set of
alternatives. One of the challenges is how to reach a solution with the maximum individ-
ual consistency and global consensus. Taking into account, the interpersonal relationships
of experts and their impact on each other’s views, we can increase the level of final con-
sensus [1, 2]. In [3], a new feedback mechanism that works in large scale decision making
processes is proposed by bringing together both decision making approaches and opinion
dynamics. This mechanism involves experts’ classification based on Jaccard similarity and
also an inter-agent influence. As noted in [1], the Jaccard similarity function is slower than
other functions. It also reaches a lower level of consensus than others. Therefore, to im-
prove this, we could use the cosine similarity function, which is much faster than Jaccard
and also it could reach a higher level of consensus with almost a stable process. In this
contribution, according to the trust between the experts, their self-confidence and their
individual consistency, the experts’ profiles are identified; Then by using the cosine similar-
ity (which is stable in measuring consensus, regardless of the number of experts [1,4]), the
experts are clustered. This approach helps in reaching a higher final consensus by offering
recommendations for experts with low consensus degree by their higher level neighbors.

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: taghavi.atefe@gmail.com
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2 Background

Normally, in decision making problems, a set of experts, E = {e1, ..., em}, are asked to
declare their preferences on the set of available alternatives, X = {x1, ..., xn}. It is shown
that the most effective method to express preferences is the pairwise comparison.

Definition 2.1 (Intuitionistic Fuzzy Preference Relation). ”An intuitionistic fuzzy prefer-
ence relation B on a finite set of alternatives X = {x1, . . . , xn} is characterised by a mem-
bership function µB : X ×X → [0, 1] and a non-membership function νB : X ×X → [0, 1]
such that 0 ≤ µB(xi, xj) + νB(xi, xj) ≤ 1 for all (xi, xj) ∈ X ×X, with µB(xi, xj) = µij
interpreted as the certainty degree up to which xi is preferred to xj ; and νB(xi, xj) = νij
interpreted as the certainty degree up to which xi is non-preferred to xj [5].”

In the case µii = νii = 0.5 ∀i ∈ {1, . . . , n} and µji = νij∀i, j ∈ {1, . . . , n} then B is
reciprocal.

To estimate the preference value between a pair of alternatives, (xi, xj) with (i < j),
when an intermediate alternative xk (k 6= i, j) is available, multiplicative consistency

property could be used; mrkij =
rik · rkj · rji
rjk · rki

whereas the denominator should not be zero.

The total estimated value based on multiplicative transitivity is assessed by the average

of all possible mrkij of the pair of alternatives (xi, xj): mrij =

∑
k∈R01

ij

mrkij

#R01
ij

; in which R01
ij =

{k 6= i, j|(rik, rkj) /∈ R01}, R01 = {(1, 0), (0, 1)}, and #R01
ij is the cardinality of R01

ij .
Therefor, MR = (mrij), can be constructed.

Definition 2.2 (Multiplicative Consistency [5]). A fuzzy preference relation R = (rij) is
multiplicative consistent if and only if R = MR.

The consistency of a fuzzy preference relation is measured at three different levels [5]:

Consistency Index of pair of alternatives: CLij = 1− d(rij ,mrij) ∀i, j.

Consistency Level of alternatives: CLi =

n∑

j=1; i 6=j

CLij

n−1 .

Consistency Level of a fuzzy preference relation.

CL =

n∑

i=1

CLi

n
. (1)

Given a reciprocal intuitionistic fuzzy preference relation, B = (bij) = (〈µij , νij〉),
Ureña et al. in [5] introduce the concept of experts’ confidence degree with three different
levels:

Definition 2.3 (Self-Confidence Degree [5]).

• For an given intuitionistic preference value bij the confidence degree is measured as:
CFLij = 1− τij , where τij = 1− µij − νij is the hesitancy degree associated to bij .

• The confidence degree associated to the alternative xi is defined as:

CFLi =

∑n
j=1,j 6=i(CFLij + CFLji)

2(n− 1)
.
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• For a reciprocal intuitionistic fuzzy preference relation B, the confidence degree is:

CFLB =

∑n
i=1CFLi
n

(2)

Normally in a group decision-making real problem, the experts’ opinions affected with
the others based on their trust in them. Taking into account the trust between the experts,
the final solution would have higher consensus.

Definition 2.4 (Trust Function (TF) [2]). An ordered tuple γ = (t, d) where t, d ∈ [0, 1]
and t, d are representing the trust and distrust degrees respectively, will be referred to as
a trust function value. The set of trust function values (TFs), or trust function, will be
denoted by Γ = {γ = (t, d)|t, d ∈ [0, 1]}.

Intuitionistic trust function (ITFs), which is more natural in real world, is defined by
adding the extra condition 0 ≤ t+ d ≤ 1 to the TFs’ definition.

Definition 2.5 (Trust Score (TS) [2]). The trust score associated to an ordered pair of
trust/distrust values γ = (t, d) is:

TS(γ) =
t− d+ 1

2
. (3)

3 Proposed algorithm

In Figure 1 a simple scheme of the algorithm is illustrated.

Figure 1: The Proposal Algorithm Flowchart

Definition 3.1. Experts’ awareness degree: For each eh ∈ E
ADh = (δ1).TS

h + (δ2).CL
h + (δ3).CFL

h, (4)

In which the parameters TSh, is the trust score; CLh, is the consistency degree and CFLh

is the confidence degree associated to Bh. Also, the parameters to control the weights of
those three criteria in the considered variable are δi ∈ [0, 1], i = 1, 2, 3 and

∑3
i=1 δi = 1.
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Given a Minimum AD Threshold ADTHmin ∈ [0, 1] and a superior AD threshold
ADTHsup ∈ [0, 1], the experts can be classified in the following profiles:

• Profile 1: The experts with high degree of awareness, HTCC experts, Influencers.
An expert eh is considered as a HTCC expert if and only if ADh > ADTHsup.

• Profile 2: Experts with medium level of awareness, MTCC experts: ADTHmin ≤
ADh ≤ ADTHsup.

• Profile 3: Experts with low degree of awareness, LTCC experts: ADh ≤ ADTHmin.

By using a suitable distance measure, we can evaluate the similarities between experts.
As investigated in [1] the cosine and dice distance functions result in fairly similar and
stable global consensus levels regardless of the number of experts. When the number of
experts is eight or higher, the Manhattan and the Euclidean distance functions tend to
produce higher values of consensus than the previous distance functions; while for lower
numbers of experts it is reverse. Besides all of these, it has been shown that the Jaccard
distance function always yields the lowest global consensus values. Ureña et al. in [3],
used a similarity measure based on the Jaccard distance function which considered the
intersection between two experts’ preference relation as the number of same preferences
that both agents prefer. In [4] a cluster-based consensus measure with feedback mechanism
is proposed in which the experts are clustered by using the cosine similarity of preferences.
So, regard to the advantages of cosine similarity the experts are classified based on their
intuitionistic fuzzy preference similarity. Here, inspired by this similarity measure, we
introduce a new similarity measure between a pair of experts as follows:

Definition 3.2. Given two experts, ep, eq, with reciprocal intuitionistic fuzzy preference
relations Rp, Rq, the similarity matrix is:

Sim(Rp, Rq) = CSpq

=

∑n−1
i=1

∑n
j=i+1(µp

ij .µ
q
ij)√∑n−1

i=1

∑n
j=i+1(µp

ij .µ
p
ij).
√∑n−1

i=1

∑n
j=i+1(µq

ij .µ
q
ij)

After computing the similarity matrix, CSpq, by using previous definition, the experts
could be clustered.

Definition 3.3 (AD-IOWA operator). Using the reciprocal intuitionistic fuzzy preference
relations {B1, ..., Bm}, an awareness degree IOWA (AD-IOWA) operator of dimension
m; Φtccw , is an IOWA operator whose set of order inducing values is the set of aware-
ness degree index values, {AD1, ..., ADm}, associated with the set of experts. Then, the
collective reciprocal intuitionistic fuzzy preference relation Bad = (badij ) = (〈µadij , νadij 〉)
is computed as follows: µadij = Φadw (〈AD1, µ1ij〉, ..., 〈ADm, µmij 〉) =

∑m
h=1wh.µ

σ(h)
ij and,

νadij = Φadw (〈AD1, ν1ij〉, ..., 〈ADm, νmij 〉) =
∑m

h=1wh.ν
σ(h)
ij .

The weights of the AD-IOWA operator are obtained as follows: wh = Q(

∑h
i=1AD

σ(i)

T
)−

Q(

∑h−1
i=1 AD

σ(i)

T
) in which T =

∑m
i=1AD

i and Q is the membership function of the lin-

guistic quantifier.
The average similarity between each expert’s preference relation and the global aggre-

gate one is considered as the global consensus. The global matrix G is computed using
the AD − IOWA operator. So the global consensus is defined as follows:
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Definition 3.4. For m experts involving in the decision making process, the overall con-

sensus level Cs, is: Cs =

∑m
h=1CS

hG

m
where CShG = Sim(Rh, G).

If this level of consensus does not reach the minimum threshold, θ, then an iterative
feedback process is activated. While Cs satisfy the minimum threshold, Cs > θ, the
consensus reaching process ends, and the selection process is activated to find the final
solution.

In the case Cs < θ, each expert with the LTCCprofile will receive some recommen-
dation from its neighbors’ with both HTCCprofile and MTCCprofile. Each experts
with MTCCprofile will received some advice from its neighbor with HTCCprofile and
MTCCprofile. The feedback recommendation spread is shown in Figure 2.

Figure 2: Feedback Spreading Scheme

4 Example

Suppose eight experts, E = {e1, ..., e8}, express their preferences to six alternatives,
X = {x1, ..., x6} by using the reciprocal intuitionistic fuzzy preference relations, which
are converted to the following fuzzy preference relations according to [5]:

P
1
=




0.5 0.4 0.3 0.6 0.65 0.8
0.5 0.5 0.2 0.7 0.65 0.6
0.75 0.7 0.5 0.4 0.2 0.25
0.35 0.25 0.5 0.5 0.45 0.3
0.25 0.1 0.7 0.5 0.5 0.7
0.1 0.25 0.6 0.65 0.2 0.5


 P

2
=




0.5 0.2 0.3 0.4 0.5 0.55
0.7 0.5 0.45 0.6 0.3 0.35
0.65 0.5 0.5 0.5 0.4 0.1
0.55 0.3 0.4 0.5 0.6 0.7
0.45 0.7 0.55 0.3 0.5 0.4
0.4 0.6 0.8 0.25 0.5 0.5




P
3
=




0.5 0.5 0.6 0.4 0.15 0.35
0.45 0.5 0.35 0.5 0.3 0.65
0.4 0.6 0.5 0.7 0.1 0.6
0.5 0.4 0.25 0.5 0.7 0.4
0.8 0.6 0.85 0.2 0.5 0.2
0.6 0.3 0.3 0.5 0.8 0.5


 P

4
=




0.5 0.25 0.2 0.3 0.55 0.6
0.7 0.5 0.1 0.7 0.2 0.45
0.75 0.8 0.5 0.6 0.3 0.35
0.6 0.2 0.3 0.5 0.85 0.5
0.4 0.65 0.7 0.1 0.5 0.65
0.3 0.4 0.6 0.45 0.35 0.5




P
5
=




0.5 0.62 0.25 0.5 0.6 0.68
0.35 0.5 0.2 0.7 0.81 0.3
0.7 0.69 0.5 0.3 0.25 0.2
0.45 0.25 0.68 0.5 0.45 0.15
0.4 0.1 0.7 0.4 0.5 0.75
0.25 0.65 0.78 0.7 0.2 0.5


 P

6
=




0.5 0.35 0.12 0.5 0.55 0.5
0.6 0.5 0.3 0.6 0.15 0.4
0.85 0.6 0.5 0.45 0.4 0.2
0.45 0.35 0.5 0.5 0.5 0.6
0.37 0.8 0.55 0.4 0.5 0.45
0.4 0.55 0.75 0.35 0.5 0.5




P
7
=




0.5 0.6 0.4 0.5 0.2 0.65
0.3 0.5 0.25 0.6 0.35 0.5
0.55 0.7 0.5 0.5 0.15 0.6
0.45 0.35 0.4 0.5 0.7 0.5
0.7 0.6 0.8 0.25 0.5 0.25
0.2 0.4 0.35 0.45 0.72 0.5


 P

8
=




0.5 0.3 0.4 0.2 0.55 0.38
0.65 0.5 0.25 0.6 0.28 0.3
0.6 0.72 0.5 0.65 0.15 0.25
0.75 0.35 0.3 0.5 0.7 0.6
0.45 0.7 0.82 0.25 0.5 0.55
0.55 0.63 0.7 0.35 0.4 0.5




To classify the experts by using cosine similarity we have following similarity matrix:

CS =




0.5 0.90 0.823 0.913 0.971 0.919 0.891 0.89
0.9 0.5 0.85 0.938 0.848 0.975 0.89 0.953

0.824 0.849 0.5 0.862 0.767 0.841 0.963 0.889
0.913 0.938 0.862 0.5 0.864 0.952 0.906 0.967
0.971 0.848 0.767 0.864 0.5 0.868 0.85 0.852
0.919 0.975 0.84 0.952 0.868 0.5 0.901 0.937
0.891 0.89 0.963 0.906 0.85 0.901 0.5 0.9
0.89 0.953 0.889 0.967 0.852 0.937 0.9 0.5




Based on this similarity we obtain three clusters: {e1, e5}, {e2, e4, e6, e8}, {e3, e7}.
Now, for identifying experts profiles, it need to have consistency, confidence and trust

degree, which are computed as follows: The consistency Level of the fuzzy preference re-
lations; using formula (1); first multiplicative transitivity matrices, MR, are obtained. So
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we have: CL1 = 0.53, CL2 = 0.32, CL3 = 0.64, CL4 = 0.59, CL5 = 0.68, CL6 = 0.25, CL7 =

0.34, CL8 = 0.32.
The confidence degree associated to each reciprocal intuitionistic fuzzy preference re-

lation; formula (2) CFL1 = 0.91, CFL2 = 0.93, CFL3 = 0.94, CFL4 = 0.93, CFL1 =
0.94, CFL2 = 0.94, CFL3 = 0.93, CFL4 = 0.96. Now, by considering the following
trust/distrust matrix, the trust score (TS) of each expert is computed.

TdT =




− (0.5, 0.43) (0.6, 0.4) (0.8, 0.19) (0.7, 0.2) (0.34, 0.45) (0.73, 0.21) (0.6, 0.3)
(0.8, 0.17) − (0.44, 0.55) (0.7, 0.3) (0.6, 0.35) (0.73, 0.2) (0.58, 0.4) (0.76, 0.2)
(0.53, 0.4) (0.7, 0.3) − (0.32, 0.65) (0.8, 0.1) (0.59, 0.35) (0.9, 0.1) (0.64, 0.32)
(0.62, 0.3) (0.44, 0.5) (0.29, 0.7) − (0.7, 0.2) (0.8, 0.1) (0.6, 0.3) (0.9, 0.1)
(0.7, 0.25) (0.8, 0.15) (0.5, 0.4) (0.45, 0.5) − (0.65, 0.3) (0.7, 0.15) (0.68, 0.27)
(0.45, 0.5) (0.9, 0.1) (0.7, 0.2) (0.5, 0.4) (0.4, 0.55) − (0.8, 0.15) (0.55, 0.34)
(0.66, 0.3) (0.5, 0.45) (0.8, 0.15) (0.7, 0.2) (0.55, 0.35) (0.47, 0.5) − (0.7, 0.27)
(0.8, 0.3) (0.62, 0.53) (0.6, 0.29) (0.5, 0.2) (0.7, 0.25) (0.68, 0.22) (0.4, 0.55) −




By using formula (3), we have: TS1 = 0.65, TS2 = 0.67, TS3 = 0.66, TS4 = 0.65TS5 =

0.68, TS6 = 0.65, TS7 = 0.65, TS8 = 0.64.

Now, by considering δ1 = 0.4, δ2 = 0.3, δ1 = 0.3, and using formula (4), the
trust/confidence/consistency index will be: AD1 = 0.69, AD2 = 0.65, AD3 = 0.74, AD4 =

0.72AD5 = 0.76, AD6 = 0.61, AD7 = 0.64, AD8 = 0.64.

Given the minimum and superior thresholds for AD; ADTHmin = 0.65, ADTHsup =
0.7}, the profiles will be: (i) Profile 1= HTCC experts = {e5, e3, e4}, (ii) Profile 2=
MTCC experts = {e1, e2}, (iii) Profile 3= LTCC experts = {e7, e8, e6}.

So, based on this classification and the similarity between the experts, we have:
(I) e1 receives advice from e5, (II) e2 receives advice from e4, (III) e6 receives

advice from e2, e4, (IV) e7 receives advice from e3, (V) e8 receives advice from e2, e4,

5 Conclusion

In this contribution we present a new consensus approach that includes a feedback mech-
anism in which, based on the similarity between the experts, and their interpersonal
relationships some recommendations are provided to the experts.
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Abstract

Additive results for the generalized Drazin inverse of Banach space operators are
presented. Under some conditions on generalized Drazin invertible operators a and
b, we give explicit representations of (a + b)d. Then we apply our results to 2 × 2
operator matrices.
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1 Introduction

Let X be an arbitrary complex Banach space and A denote the Banach algebra L(X) of
all bounded operators on X. The commutant of a ∈ A is defined by comm(a) = {x ∈
A | xa = ax}. Here, Aqnil = {a ∈ A | 1 + ax ∈ U(A) for every x ∈ comm(a)}. As is

well known, a ∈ Aqnil ⇔ lim
n→∞

‖ an ‖ 1
n = 0. An element a in A has g-Drazin inverse, i.e.,

generalized Drazin inverse, provided that there exists b ∈ A such that

b = bab, ab = ba, a− a2b ∈ Aqnil.

Such b, if exists, is unique, and is called the g-Drazin inverse of a, and denote it by ad. We
use Ad to stand for the set of all g-Drazin invertible a ∈ A. The g-Drazin inverses have
various applications in singular differential and difference equations, Markov chains, and
iterative methods (see [1–3]).
Suppose the bounded linear operators a and b on an arbitrary complex Banach space have
g-Drazin inverses. In Section 2, we present new conditions on a, b, and prove that a+b has
g-Drazin inverse. These extend the results of Djordjevic and Wei [3, Theorem 2.3] and
Yang and Liu [6, Theorem 2.1]. They are also the main tool in our following development.
We next consider the g-Drazin inverse of a 2× 2 operator matrix

M =

(
A B
C D

)
(∗)

where A ∈ L(X), D ∈ L(Y ) are GD-invertible and X,Y are complex Banach spaces. Here,
M is a bounded operator on X ⊕ Y . In Section 3, we present some g-Drazin inverses for
a 2× 2 operator matrix M under a number of different conditions.

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: ftayebis@gmail.com
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2 Main results

The purpose of this section is to establish new conditions under which the sum of two
g-Drazin invertible operators has g-Drazin inverse. We begin with

Lemma 2.1. Let a, b ∈ A and ab = 0. If a, b ∈ Ad, then a+ b ∈ Ad and

(a+ b)d = (1− bbd)
( ∞∑

n=0

bn(ad)n
)
ad + bd

( ∞∑

n=0

(bd)nan
)
(1− aad).

Lemma 2.2. Let a ∈ A and n ∈ N. Then an ∈ Ad if and only if a ∈ Ad.

Lemma 2.3. Let A ∈ Mm×n(A), B ∈ Mn×m(A) and k ∈ N. Then (AB)k ∈ Mn(A)d if
and only if (BA)k ∈Mm(A)d.

We are now ready to extend [6, Theorem 2.1 and Theorem 2.2] and prove:

Theorem 2.4. Let a, b ∈ Ad. If aba = 0 and ab2 = 0, then a+ b ∈ Ad and

(a+ b)d = (1, b)Md

(
a
1

)
,Md = F d +G(F d)2,

where

F d = (I −KKd)
[ ∞∑
n=0

Kn(Hd)n
]
Hd +Kd

[ ∞∑
n=0

(Kd)nHn
]
(I −HHd);

Hd =

(
(ad)2 0
(ad)3 0

)
,Kd =

(
0 0

(bd)3 (bd)2

)
, G2 = 0.

Proof. Set

M =

(
a2 + ab a2b
a+ b ab+ b2

)
.

Then

M =

(
ab a2b
0 ab

)
+

(
a2 0
a+ b b2

)
:= G+ F.

We see that G2 = 0 and GF = 0.

F =

(
a2 0
a+ b b2

)
=

(
a2 0
a 0

)
+

(
0 0
b b2

)
:= H +K.

One easily check that

H =

(
a2 0
a 0

)
=

(
a
1

)
(a, 0).

Since (a, 0)

(
a
1

)
= a2 ∈ Ad, it follows by Cline’s formula (see [5, Theorem 2.1]), we see

that

Hd =

(
a
1

)
((a2)d)2(a, 0) =

(
a
1

)
(ad)4(a, 0)

=

(
a(ad)4P 0
(ad)4a 0

)
=

(
(ad)2 0
(ad)3 0

)
.

Likewise, We have

Kd =

(
0
b

)
(bd)4(1, Q) =

(
0 0

(bd)3 (bd)2

)
.
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Clearly, HK = 0. In light of Lemma 2.1,

F d = (I −KKd)
[ ∞∑
n=0

Kn(Hd)n
]
Hd +Kd

[ ∞∑
n=0

(Kd)nHn
]
(I −HHd)

In light of [6, Theorem 2.1], we see that

Md = F d +G(F d)2.

Clearly, M =
(( a

1

)
(1, b)

)2
. By virtue of Lemma 2.1,

(a+ b)d =
(
(1, b)

(
a
1

))d
= (1, b)Md

(
a
1

)
.

as asserted.

Corollary 2.5. Let a, b ∈ Aqnil. If aba = 0 and ab2 = 0, then a+ b ∈ Aqnil.

Proof. Since a, b ∈ Aqnil, we see that ad = bd = 0. In light of Theorem 2.4, (a + b)d = 0,
and therefore a+ b ∈ Aqnil, as required.

In [6], Sun et al. the Drazin inverse of P + Q in the case of PQ2 = 0, P 2QP =
0, (QP )2 = 0 for two square matrices over a skew field. As is well known, every square
matrix over skew fields has Drazin inverse. We are now ready to extend [6, Theorem 3.1]
to g-Drazin inverses of bounded linear operators and prove:

Theorem 2.6. Let a, b ∈ Ad. If ab2 = 0, a2ba = 0 and (ba)2 = 0, then a+ b ∈ Ad and

(a+ b)d = (1, b)Md

(
a
1

)
,Md = F d +G(F d)2 +G2(F d)3 +G3(F d)4,

where

F d = (I −KKd)
[ ∞∑
n=0

Kn(Hd)n
]
Hd +Kd

[ ∞∑
n=0

(Kd)nHn
]
(I −HHd);

Hd =

(
(ad)2 0
(ad)3 0

)
,Kd =

(
0 0

(bd)3 (bd)2

)
, G4 = 0.

Proof. Set

M =

(
a3 + a2b+ aba a3b+ abab
a2 + ab+ ba+ b2 a2b+ bab+ b3

)
.

Then

M =

(
a2b+ aba a3b+ abab

0 a2b+ bab

)
+

(
a3 0

a2 + ab+ ba+ b2 b3

)

:= G+ F.

We see that G4 = 0, FGF = 0 and FG2 = 0. Moreover, we have

F =

(
a3 0

a2 + ba 0

)
+

(
0 0

b2 + ab b3

)

:= H +K.

One easily check that

H =

(
a3 0

a2 + ba 0

)
=

(
a2

a+ b

)
(a, 0).
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Since (a, 0)

(
a2

a+ b

)
= a3 ∈ Ad, it follows by Cline’s formula, we see that

Hd =

(
a2

a+ b

)
((a3)d)2(a, 0) =

(
a2

a+ b

)
(ad)6(a, 0)

=

(
(ad)3 0

(ad)4 + b(ad)5 0

)
.

Likewise, We have

Kd =

(
0
b

)
(bd)4(1, b) =

(
0 0

(bd)3 (bd)2

)
.

Clearly, HK = 0. In light of Lemma 2.1,

F d = (I −KKd)
[ ∞∑
n=0

Kn(Hd)n
]
Hd +Kd

[ ∞∑
n=0

(Kd)nHn
]
(I −HHd)

By Lemma 2.1 again, we have

Md = F d +G(F d)2 +G2(F d)3 +G3(F d)4.

Obviously, M =
(( a

1

)
(1, b)

)3
. By virtue of Cline’s formula,

(a+ b)d =
(
(1, b)

(
a
1

))d
= (1, b)Md

(
a
1

)
,

as desired.

Let a, b ∈ Ad. If a2b = 0, aba2 = 0 and (ba)2 = 0, then a+ b ∈ Ad. This can be proved
in a symmetric way as in Theorem 2.6.

3 g-Drazin inverse of an operator matrix

Let A ∈ L(X), D ∈ L(Y ) be GD-invertible and M be given by (∗). The aim of this section
is to consider a GD-invertible 2 × 2 operator matrix M . Using different splitting of the
operator matrix M as M = p+ q, we will apply Theorem 2.4 to obtain various conditions
for a GD-invertible M , which extend [6, Theorem 2.1 and Theorem 2.2].

Theorem 3.1. If BCA = 0, BCB = 0, DCA = 0 and DCB = 0, then M is GD-
invertible.

Proof. We easily see that

M =

(
A B
C D

)
= p+ q,

where

p =

(
A B
0 D

)
, q =

(
0 0
C 0

)
.

By virtue of [3, Lemma 2.2] p and q are GD-invertible.

Corollary 3.2. If BC = 0 and DC = 0, then M is GD-invertible.
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Proof. If BC = 0 then BCA = 0 and BCB = 0. If DC = 0, then DCA = 0 and
DCB = 0. So we get the result by Theorem 3.1.

Corollary 3.3. If CA = 0 and CB = 0, then M is GD-invertible.

Proof. If CA = 0 then BCA = 0 and DCA = 0. If CB = 0, then DCB = 0 and
BCB = 0. So we get the result by Theorem 3.1

Theorem 3.4. If ABC = 0, ABD = 0, CBC = 0, CBD = 0, then M is GD-invertible.

Proof. Clearly, we have

M =

(
A B
C D

)
= p+ q,

where

p =

(
A 0
C D

)
, q =

(
0 B
0 0

)
.

Then by Theorem 2.4, we complete the proof as in Theorem 3.1.

Corollary 3.5. (1) If BC = 0 and BD = 0, then M is GD-invertible.
(2) If AB = 0 and CB = 0, then M is GD-invertible.

Example 3.6. Let A,B,C be operators, acting on separable Hilbert space l2(N), defined
as follows respectively:

A(x1, x2, x3, x4, · · · ) = (x1, x1, x3, x4, · · · ),
B(x1, x2, x3, x4, · · · ) = (x1,−x1, x3, x4, · · · ),
C(x1, x2, x3, x4, · · · ) = (x1 + x2, x1 − x2, 0, 0, · · · ),
D(x1, x2, x3, x4, · · · ) = (−x2, x2, 0, 0, · · · ).

Set M =

(
A B
C D

)
. Then BCA = 0, BCB = 0, DCA = 0 and DCB = 0. By virtue of

Theorem 3.4, M is GD-invertible.

It is convenient this stage to include the following spiliting Theorem.

Theorem 3.7. If BCA = 0, BCB = 0, BDC = 0 and BD2 = 0, then M is GD-invertible.

Proof. Let

p =

(
A B
0 0

)
, q =

(
0 0
C D

)
.

Then M = p + q. In view of [3, Lemma 2.2,] p and q are GD-invertible. By hypothesis,
we easily verify that pqp = 0 and pq2 = 0. This completes the proof, by Theorem 2.4.

Theorem 3.8. If ABC = 0, ABD = 0, DCB = 0, BCBC = 0 and BCBD = 0, then M
has g-Drazin inverse.

Proof. Write M = p+ q, where

p =

(
A 0
C D

)
, q =

(
0 B
0 0

)
.

By using [3, Lemma 2.2] it is clear that p, q have g-Drazin inverses. Obviously, pq2 = 0.
Also by the assumptions ABC = 0, ABD = 0, DCB = 0 we have p2qp = 0. By using
BCBC = 0 and BCBD = 0, we have (qp)2 = 0. Then we get the result by Theorem
2.6.
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Corollary 3.9. If ABC = 0, ABD = 0, BCB = 0 and DCB = 0, then M has g-Drazin
inverse.

Proof. It is special case of Theorem 3.8.

If AB = 0 and CB = 0, we claim that M has g-Drazin inverse (see [2, Theorem 2]).
This is a direct consequence of Corollary 3.9.

Example 3.10. Let M =

(
A B
C D

)
, where

A =




0 0 0
0 0 0
1 0 1


 , B =




1
1
−1


 , C =

(
1 0 1

)
and D = 0

be complex matrices. Then ABC = 0, ABD = 0, BCB = 0 and DCB = 0. In this case,
AB,CB 6= 0.

4 Conclusion

The g-Drazin inverse of the sum of two GD-invertible operators was presented under some
conditions. These results are applied to obtain the g-Drazin inverse of 2 × 2 operator
matrices.
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Abstract

In this study, we obtain new lower bound for the ratio of the largest and smallest
components in a Perron vector for the weakly nonnegative irreducible tensors and
compare this bound to the known bounds. Numerical experiment are given to validate
the efficiency of our new bound.
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1 Introduction

Let C(R) be the set of all complex (real) numbers, R+(R++) be the set of all nonneg-
ative (positive) numbers, Cn(Rn) be the set of all dimension n complex (real) vectors,
and Rn+(Rn++) be the set of all dimension n nonnegative (positive) vectors. An order m
dimension n complex (real) tensor A = (ai1i2...im), denoted by A ∈ C[m,n](A ∈ R[m,n],
respectively), consists of nm entries:

ai1i2...im ∈ C(R), ∀ ij = 1, ..., n, j = 1, ...,m.

A tensor A = (ai1i2...im) ∈ R[m,n] is called nonnegative (positive) if

ai1i2...im ≥ 0 (ai1i2...im > 0), ∀ ij = 1, ..., n, j = 1, ...,m.

Tensors have many similarities with matrices and many related results of matrices
such as eigenvector and eigenvalue can be extended to higher order tensors [3]. Further-
more, structured matrices such as nonnegative matrices and weakly irreducible matrices
can also be extended to higher order tensors and these are becoming the focus of re-
cent tensor research [3]. In recent years, the maximal eigenvalue problem and the Per-
ron vector for nonnegative tensors has attracted special attention because it has many
important applications such as positive definiteness of a multivariate form, multilinear
pagerank, hypergraphs, higher-order Markov chains [3]. Chang et al. [1] generalized the
Perron-Frobenius theorem from irreducible nonnegative matrices to irreducible nonnega-
tive tensors. Friedland et al. [2] introduced weakly irreducible nonnegative tensors and

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: mohsentourang@gmail.com
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established the Perron-Frobenius theorem for them. A Perron vector can be used for co-
ranking schemes for objects and relations in multi-relational or tensor data, and higher-
order Markov chains [3]. In this note, we propose a new lower bound for the ratio of
the largest component and thesmallest component of a Perron vector for the weakly non-
negative irreducible tensors. And we show that the proposed result improves the bounds
in [4, 5].

We continue this section with some fundamental notions and properties developed in
tensor analysis [3], which are needed in the subsequent section.

Definition 1.1. For a vector x ∈ Cn, we use xi to denote its components and x[m−1] to
denote a vector in Cn such that

x
[m−1]
i = xm−1i for all i.

Axm−1 denotes a vector in Cn, whose i th component is

(Axm−1)i =
n∑

i2,i3,....,im=1

aii2...imxi2 ...xim .

A pair (λ, x) ∈ C× (Cn\ {0}) is called an eigenpair (eigenvalue - eigenvector pair) of A, if
they satisfy

Axm−1 = λx[m−1].

Specifically, (λ, x) is called an H-eigenpair if (λ, x) ∈ R× Rn\ {0} .

Definition 1.2. Let A be an m−order n−dimensional tensor.

(i) We call σ(A) as the set of all eigenvalues of A. Assume σ(A) 6= ∅. Then the spectral
radius of A is denoted by

ρ(A) = max {|λ| : λ ∈ σ(A)} .

(ii) We call a tensor A reducible if there exists a nonempty proper index subset I ⊂
〈n〉 := {1, 2, ..., n} such that

ai1i2...im = 0, ∀ i1 ∈ I, i2, ..., im /∈ I.

If A is not reducible, then we call A irreducible.

(iii) We call a tensor A nonnegative weakly irreducible, if for any nonempty proper index
subset I ⊂ 〈n〉, there is at least an entry ai1i2...im > 0, where i1 ∈ I, and at least an
ij /∈ I, j = 2, ...,m.

(iv) We denote by δi1i2...im , the Kronecker symbol for the case of m indices, that is,

δi1i2...im =

{
1, i1 = i2 = ... = im,
0, otherwise.

Let us recall the Perron-Frobenius theorem for irreducible nonnegative tensors given
in [1].

Theorem 1.3. (see Theorem 1.4 of [1]) Suppose that A is an irreducible nonnegative
tensor of order m dimension n. Then ρ(A) > 0 is an eigenvalue of A with a positive
eigenvector x corresponding to it.

217



A new bound for the Perron vector of weakly irreducible nonnegative tensors

Remark 1.4. It is noted that the spectral radius ρ(A) is the largest H-eigenvalue for the
nonnegative tensor [1].

Note that ρ(A) and x in Theorem 1.3 are called the Perron root and the Perron vector
of A, respectively, and (ρ(A), x) is regarded as a Perron eigenpair. Subsequently, Friedland
et al. [2] generalized the result in Theorem 1.3 to weakly irreducible nonnegative tensors
as follows:

Theorem 1.5. Suppose that A is a weakly irreducible nonnegative tensor of order m
dimension n. Then ρ(A) is a positive H-eigenvalue λ, with a positive H-eigenvector x.
Furthermore, λ is the unique H-eigenvalue of with a positive H-eigenvector, and x is the
unique positive H-eigenvector associated with λ, up to a multiplicative constant.

2 Main results

In the fields of numerical analysis and social networks (for example, see [6]), it is important
to obtain estimates of the ratio of components of a Perron vector of A. The problem of
estimating the ratio

γ = max
1≤i,j≤n

xi
xj

for a maximal eigenvector of a positive tensor has been examined theoretically in [4,
Theorem 3.5] as follows:

Theorem 2.1. Let A be a positive tensor of order m dimension n with maximal eigen-
vector x = (x1, x2, ..., xn)T . Then

√
R

r
≤
(

max
p,q

xp
xq

)m−1
, (1)

where ri(A) =
n∑

i2,...im=1
aii2...im , R := max

i
ri(A) , r := min

j
rj(A).

Recently in [5, Theorem 3.2], by estimating the ratio of the largest component and the
smallest component of a Perron vector, Wang et al. gave the following bound for γ of a
weakly irreducible nonnegative tensor and proved it is better than the bound in (1).

Theorem 2.2. Let A be a weakly irreducible nonnegative tensor of order m dimension n
with the spectral radius ρ(A) and the Perron vector x. Then

√
R−min (ai...i, aj...j)

r −min (ai...i, aj...j)
≤
(

max
p,q

xp
xq

)m−1
.

Now, we make a new lower bound of γ for the weakly irreducible nonnegative tensor,
and show by example that the lower bound on γ is sharp.

Theorem 2.3. Suppose that A is a weakly irreducible nonnegative tensor of order m
dimension n. Let T = {t ∈ N : rt(A) < ρ(A)} and S = {s ∈ N : rs(A) > ρ(A)}. Also, let
i ∈ S such that ri(A) = R and j ∈ T such that rj(A) = r. Then

γm−1 ≥ max




R− aii...i +
∑

k∈S\{i}
aik...k

rk(A)−ρ(A)
ρ(A)−akk...k

ρ(A)− aii...i
,

ρ(A)− ajj...j
r − ajj...j −

∑
k∈T\{j}

ajk...k
ρ(A)−rk(A)
ρ(A)−akk...k


 .
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Proof. Let λ = ρ(A) be the Perron root with the Perron vector x, i.e.

Axm−1 = ρ(A)x[m−1].

Since A is a weakly irreducible, x is positive from Theorem 1.5 (Perron-Frobenius theorem
for weakly irreducible nonnegative tensor). By choosing xs = max

i
xi and xt = min

i
xi, for

each k, we have

(ρ(A)− akk...k)xm−1k =
n∑

i2,...im=1
δki2...im=0

aki2...imxi2 ...xim

≥ xm−1t (rk (A)− akk...k)	 0

where the final expression is positive since A is nonnegative weakly irreducible and x is
positive. Thus, for each k,

(
xk
xt

)m−1
≥ rk (A)− akk...k

ρ(A)− akk...k
. (2)

Since R = ri(A) := max
p
rp(A), then

R−
∑

k∈S\{i}
aik...k =

n∑

i2,...im=1
δki2...im=0

aii2...im +
∑

k/∈S\{i}
aik...k. (3)

Now by using (2) and (3), one has

(ρ(A)− aii...i)xm−1i =
n∑

i2,...im=1
δii2...im=0

aii2...imxi2 ...xim

≥
∑

k∈S\{i}
aik...kx

m−1
k + xm−1

t

∑

i2,...im=1
δki2...im=0
δii2...im=0

aii2...im + xm−1t

∑

k/∈S\{i}
aik...k

≥ xm−1t


 ∑

k∈S\{i}
aik...k

rk(A)− akk...k
ρ(A)− akk...k

+R− aii...i −
∑

k∈S\{i}
aik...k


 .

Putting rk(A)− akk...k = (rk(A)− ρ(A)) + (ρ(A)− akk...k) and simplifying, we obtain the
first lower bound

γm−1 ≥
(
xi
xt

)m−1
≥

(R− aii...i) +
∑

k∈S\{i}
aik...k

rk(A)−ρ(A)
ρ(A)−akk...k

ρ(A)− aii...i
. (4)

To obtain the second lower bound on γ, we note first that for each k,

0 < (ρ(A)− akk...k)xm−1k =
n∑

i2,...im=1
δki2...im=0

aki2...imxi2 ...xim

≤ (rk(A)− akk...k)xm−1s
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and so (
xs
xk

)m−1
≥ ρ(A)− akk...k
rk(A)− akk...k

> 0. (5)

Since r = rj(A) := min
p
rp(A), similarly by (5) we have

(ρ(A)− ajj...j)xm−1j =

n∑

i2,...im=1
δji2...im=0

aji2...imxi2 ...xim

≤
∑

k∈T\{j}
ajk...kx

m−1
k + xm−1s

∑

k/∈T\{j}
ajk...k + xm−1s

n∑

i2,...im=1
δki2...im=0
δji2...im=0

aji2...im

≤ xm−1s


 ∑

k∈T\{j}
ajk...k

rk(A)− akk...k
ρ(A)− akk...k

+ r − ajj...j −
∑

k∈T\{j}
ajk...k


 .

Putting rk(A)− akk...k = (rk(A)− ρ(A)) + (ρ(A)− akk...k) and simplifying, we obtain

(ρ(A)− ajj...j)xm−1t ≤ (ρ(A)− ajj...j)xm−1j

≤ xm−1s


 ∑

k∈T\{j}
ajk...k

rk(A)− ρ(A)

ρ(A)− akk...k
+ r − ajj...j


 .

The previous inequality implies that

γm−1 =

(
xs
xt

)m−1
≥ ρ(A)− ajj...j∑

k∈T\{j}
ajk...k

rk(A)−ρ(A)
ρ(A)−akk...k + r − ajj...j

. (6)

Finally, by (4) and (6), we have

γm−1 ≥ max




R− aii...i +
∑

k∈S\{i}
aik...k

rk(A)−ρ(A)
ρ(A)−akk...k

ρ(A)− aii...i
,

ρ(A)− ajj...j
r − ajj...j −

∑
k∈T\{j}

ajk...k
ρ(A)−rk(A)
ρ(A)−akk...k


 .

The proof is completed.

We now show the efficiency of the new bounds in Theorem 2.3 by the following example
which is considered in [5, Example 3.4].

Example 2.4. Let A = (aijk) be an order 3 dimension 3 tensor with

aijk =





a111 = 1 ; a112 = 1 ; a121 = 1 ; a122 = 1 ; a133 = 1 ;
a211 = 1 ; a212 = 1 ; a213 = 3

2 ; a221 = 1 ; a231 = 3
2 ; a233 = 1 ;

a311 = 1 ; a313 = 3 ; a322 = 1 ; a331 = 3 ; a333 = 1 ;
aijk = 0 , otherwise.

For this tensor, it can be verified that

(ρ(A), x) = (6.6575, (0.5756, 0.6826, 0.7890)) .
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That is, the Perron root is 6.6575 and the Perron vector is (0.5756, 0.6826, 0.7890)T . We
compute the lower bound of γ, (i.e. the ratio of the largest and smallest entries in a Perron
vector) for A given by Theorem 2.1, Theorem 2.2, and Theorem 2.3

Thoerem 2.1 : γ2 ≥
√

9

5
≈ 1.34164078649.

Thoerem 2.2 : γ2 ≥
√

2 ≈ 1.41421356237.

Thoerem 2.3 : γ2 ≥ 1.42314551266.

Actual value : γ2 = 1.87893793997.

This example shows that the lower bound of Theorem 2.3 is better than those of Theorem
2.1 in [4] and Theorem 2.2 in [5].

3 Conclusion

Here, a new ratio of the largest and smallest values of the Perron vector for the weakly
irreducible nonnegative tensors is presented. We demonstrated that the lower bound is
sharper than the conclusions of [4, 5] by a running example.
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Abstract

In this paper, we propose a new projection method to solve large Sylvester ma-
trix equations. The new approach projects the problem onto extended global Krylov
subspace and gets a low dimensional equation. We use the global Golub-Kahan bidi-
agonalization procedure to construct the F-orthonormal basis for the extended Krylov
subspaces. Finally, we give some theoretical results and present numerical experi-
ments.
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1 Introduction

In this paper we will consider the Sylvester matrix equation of the form

AX +XB + CDT = 0, (1)

where A ∈ RN×N is assumed to be large, B ∈ RM×M , C ∈ RN×s, D ∈ RM×s and X ∈
RN×M is unknown matrix for equation (1). The matrix equation (1) plays the fundamental
role in many areas such as control and communications theory. Direct methods for solving
the matrix equation (1), are attractive if the matrices are of small size. These methods
are based on the Schur decomposition, by which the original equation is transformed into
a form that is easy to be solved by a forward substitution. Iterative projection methods
for solving large Sylvester matrix equations have been developed during the past years.

In this paper we present a new projection method that projects the initial problem
onto an extended global Krylov subspace. The new projection method builds the F-
orthonormal basis of enriched global Krylov subspaces and allows us to compute low rank
approximations to the solution of (1). The extended global Krylov subspaces are generated
by means of the new extended global Golub and Kahan procedure. We mention that the
Golub and Kahan process first introduced in [1]. In [4], the authors defined the global
bidiagonalization based on Golub and Kahan procedure.

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: za.asgari93@gmail.com
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The outline of this paper is as follows. In Section 2, we give a quick overview of the
global Golub-Kahan procedure and its properties. In Section 3, we present the extended
version of global Golub-Kahan procedure and its properties. In Section 4, we show how to
apply the extended global Golub-Kahan procedure to obtain low rank approximate solu-
tions to the Sylvester equation (1). Section 5 is devoted to some numerical experimants.
Finally, we make some concluding remarks in Section 6.

2 The global Golub-Kahan procedure

In this section, we present a brief description of the Global Bidiag 1 algorithm [4]. This
algorithm is the basis for the extended global Golub-Kahan procedure.

The global Bidiag 1 procedure constructs the sets of the n×p block vectors V1, V2, . . . , Vk
and U1, U2, . . . , Uk such that 〈V T

i , Vj〉F = 0, 〈UT
i , Uj〉F = 0, for i 6= j, and ‖Vi‖F =

‖Ui‖F = 1 and after k steps they form the F-orthonormal bases of Rn×kp.

Global Bidiag 1 (Starting matrix G; reduction to lower bidiagonal form)

β1U1 = G, α1V1 = ATU1, (2)

βi+1Ui+1 = AVi − αiUi,
αi+1Vi+1 = ATUi+1 − βi+1Vi,

}
i = 1, 2, . . . k, (3)

The scalars αi ≥ 0 and βi ≥ 0 are chosen so that ‖Ui‖F = ‖Vi‖F = 1. With the definitions

Uk ≡ [U1, U2, . . . , Uk], V k ≡ [V1, V2, . . . , Vk], Tk ≡




α1

β2 α2

. . .
. . .

βk αk

βk+1



, (4)

and using the Kronecker product ⊗, the recurrence relations (2) and (3) may be rewritten
as:

Uk+1(β1e1 ⊗ Ip) = G,

A−TV k = Uk+1(Tk ⊗ Ip),
A−1Uk+1 = V k(T T

k ⊗ Ip) + αk+1Vk+1(e
T
k+1 ⊗ Ip),

(5)

where ej is the jth column of the identity matrix. We have 〈Ui, Uj〉F = 〈Vi, Vj〉F = 0 for
i 6= j and ‖Ui‖F = ‖Vi‖F = 1. We can easily show that [U1, U2, · · · , Uk] and [V1, V2, · · · , Vk]
are the F-orthonormal basis of the subspaces Kk(AAT , U1) and Kk(ATA, V1), respectively.
More details about the global Golub-Kahan process can be found in [4].

3 The extended global Golub-Kahan process

In this section we present the extended version of global Golub-Kahan procedure applied
to the pair (A,C) where the matrix A ∈ Rn×n is assumed to be nonsingular and C ∈ Rn×p.
The algorithm proceeds by first running k steps of the global Golub-Kahan process [4] with
A−T , and then continuing with m iterations of the global Golub-Kahan process with A,
while maintaining F-orthogonalization among all generated vectors in the sequence. By
performing k steps of the Golub-Kahan procedure to the pair (A−T , C), we have

β1U1 = C, α1V1 = A−1U1, (6)
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βi+1Ui+1 = A−TVi − αiUi,
αi+1Vi+1 = A−1Ui+1 − βi+1Vi,

}
i = 1, 2, . . . , k, (7)

where the scalars αi ≥ 0, and βi ≥ 0 are chosen so that ‖Ui‖F = ‖Vi‖F = 1. With the
definitions

Uk ≡ [U1, U2, . . . , Uk], V k ≡ [V1, V2, . . . , Vk], Tk ≡




α1

β2 α2

. . .
. . .

βk αk

βk+1



, (8)

and using the Kronecker product ⊗, the recurrence relations (6) and (7) may be rewritten
as:

Uk+1(β1e1 ⊗ Ip) = C,

A−TV k = Uk+1(Tk ⊗ Ip),
A−1Uk+1 = V k(T T

k ⊗ Ip) + αk+1Vk+1(e
T
k+1 ⊗ Ip),

A−1Uk = V k(T
T
k ⊗ Ip),

(9)

where T k obtained from Tk by deleting its last row and ej is the jth column identity
matrix. We have 〈Ui, Uj〉F = 〈Vi, Vj〉F = 0 for i 6= j and ‖Ui‖F = ‖Vi‖F = 1. We can
easily show that [U1, U2, · · · , Uk] and [V1, V2, · · · , Vk] are the F-orthonormal basis of the
subspaces Kk((AAT )−1, C) and Kk((ATA)−1, A−1C), respectively. Now we again use the
global Golub and Kahan bidiagonalization applied to the pair (A,U1) in order to construct
the matrices Q1, Q2, · · · , Qm and P1, P2, · · · , Pm+1 such that

Uk+1,m = [U1, U2, · · · , Uk+1, Q1, Q2, · · · , Qm] and Vk,m+1 = [V1, V2, · · · , Vk, P1, P2, · · · , Pm+1]

form the F-orthonormal basis of the subspaces

Ke
k+1,m(AAT , U1) = span{(AAT )−kU1, . . . , (AA

T )−1U1, U1, (AA
T )U1, . . . , (AA

T )m−1U1},
Ke

k,m+1(A
TA, V1) = span{(ATA)−k+1V1, . . . , (A

TA)−1V1, A
TC, (ATA)V1, . . . , (A

TA)mV1},

respectively. In order to have the F-orthonormal basis Uk+1,m,Vk,m+1, first we generate
the matrix P1 satisfying

α̃1P1 = ATU1 −
k∑

i=1

hi1Vi, (10)

where the scalars α̃1 ≥ 0 and hi1, i = 1, 2, · · · , k, are chosen so that 〈P1, Vi〉F = 0 and
‖P1‖F = 1. Then, we generate the matrix Q1 satisfying

β̃1Q1 = AP1 − α̃1U1 −
k+1∑

i=2

gi1Ui, (11)

where the scalars β̃1 ≥ 0 and gi1 are chosen so that 〈Q1, Ui〉F = 0 and ‖Q1‖F = 1. Now
we construct Q2, Q3, . . . , Qm+1 and P2, P3, . . . , Pm+1 with the recurrence relations:

α̃iPi = ATQi−1 − β̃i−1Pi−1,

β̃iQi = APi − α̃iQi−1,

}
i = 2, 3, . . .m+ 1. (12)
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With the definitions g11 = α̃1 and

Qm ≡ [Q1, Q2, · · ·Qm], Pm ≡ [P1, P2, · · ·Pm], T̃m ≡




β̃1
α̃2 β̃2

. . .
. . .

α̃m β̃m
α̃m+1



,

the recurrence relations (12) may be rewritten as

ATQm = Pm+1(T̃m ⊗ Ip),
APm = Qm(T̃

T

m ⊗ Ip) +
∑k+1

i=1 gi1Ui(e
T
1 ⊗ Ip),

(13)

where T̃m is the matrix obtained from T̃m by deleting its last row.
The main steps of the extended global Golub-Kahan algorithm to generate Uk+1,m and

Vk,m+1 may be summarized as follows.

Algorithm 3.1. The extended global Golub-Kahan algorithm

1. Inputs: A ∈ Rn×n, C ∈ Rn×p, k, and m.

2. Compute β1 = ‖C‖F , U1 = C/β1, α1 = ‖A−1U1‖F , V1 = (A−1U1)/α1,

3. For i = 1, . . . , k,
compute W = A−TVi − αiUi, βi+1 = ‖W‖F , Ui+1 = W/βi+1,
compute W = A−1Ui+1 − βi+1Vi, αi+1 = ‖W‖F , Vi+1 = W/αi+1,

End For.

4. Compute W = ATU1,
For i = 1, . . . , k, compute hi1 = 〈Vi,W 〉F , W = W − hi1Vi, End For.
Compute α̃1 = ‖W‖F , P1 = W/α̃1.

5. Compute W = AP1 − α̃1U1,
For i = 2, . . . , k + 1, compute gi1 = 〈Ui,W 〉F , W = W − gi1Ui, End For.
Compute β̃1 = ‖W‖F , Q1 = W/β̃1,

6. For i = 2, . . . ,m+ 1,
compute W = ATQi−1 − β̃i−1Pi−1, α̃i = ‖W‖F , Pi = W/α̃i,
compute W = APi − α̃iQi−1, β̃i = ‖W‖F , Qi = W/β̃i

End For.

In implementation of Algorithm 3.1, instead of using the matrix-vector products with
A−1, we use the LU-decomposition of A for computing V1 and W in steps 2 and 3.

For the extended global Golub-Kahan Algorithm, we have the following proposition.

Proposition 3.2. Suppose that (k,m) steps of Algorithm 1 have been carried out. Let

Fk+1 =




1 α1β
−1
2

1 α2β
−1
3

1
. . .
. . . αkβ

−1
k+1

1



, Jk =




h11 β−1
2

h21 β−1
3

...
. . .

hk1 β−1
k+1


 .
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Then we have

ATUk+1,m = Vk,m+1(Fk+1,m ⊗ Ip), with Fk+1,m =




JkF
−1
k+1 | 0k×m

−−−−−− −−−−−
α̃1e

T
1 F

−1
k+1 | β̃1e

T
1

−−−−−− −−−−−
0m×(k+1) | T̃m



,

(14)
where T̃m is the matrix obtained from T̃m by deleting its first row and eT1 = [1, 0, . . . , 0] ∈
R1×m.

Proof. From (10) and (7), we have

ATU1 = α̃1P1 +
∑k

i=1 hi1Vi,

ATUi+1 + αiβ
−1
i+1A

TUi = β−1
i+1Vi, for i = 1, . . . , k.

By using the definition of matrices Fk+1 and Jk, these equations can be written as follows:

ATUk+1 = [V k, P1]

([
Jk
α̃1e

T
1

]
⊗ Ip

)
(Fk+1 ⊗ Ip)−1 = [V k, P1]

([
JkF

−1
k+1

α̃1e
T
1 F

−1
k+1

]
⊗ Ip

)
.

This together with the first relation of (13) implies the desired relation (14).

4 Low rank approximation solution to the Sylvester equa-
tion

As in [2], we define the �-product AT � B of the matrices A and B. The matrix A =
[A1, A2, . . . , Ar] is F-orthonormal if and only if AT �A = Ir. Using the �-product we have
UT
k+1,m � Uk+1,m = Im+k+1 and VTk,m+1 � Vk,m+1 = Im+k+1.

Now, we use the extended global Golub-Kahan Algorithm 1 to extract low rank ap-
proximate solution to the equation (1). Let UA

1 = C/‖C‖F , UB
1 = D/‖D‖F . Applying the

extended global Golub-Kahan Algorithm 1 to the pairs (AT , C) and (BT , D) gives us the F-
orthonormal basis UA

k+1,m = [UA
1 , · · · , UA

k+1, Q
A
1 , · · · , QA

m],VAk,m+1 = [V A
1 , · · · , V A

k , P
A
1 , · · · , PA

m+1],

UB
k+1,m = [UB

1 , · · · , UB
k+1, Q

B
1 , · · · , QB

m] and VBk,m+1 = [V B
1 , · · · , V B

k , P
B
1 , · · · , PB

m+1] of the

extended global Krylov subspaces Ke
k+1,m(AAT , C), Ke

k,m+1(A
TA,ATC), Ke

k+1,m(BBT , D)

and Ke
k,m+1(B

TB,BTD), respectively. In addition, by using Proposition 2, we can define
the matrices

T A
k+1,m = (UA

k+1,m)T �AUA
k+1,m = ((UA

k+1,m)T � VAk,m+1)FA
k+1,m,

T B
k+1,m = (UB

k+1,m)T �BUB
k+1,m = ((UB

k+1,m)T � VBk,m+1)FB
k+1,m,

where the matrices FA
k+1,m and FB

k+1,m can be obtained through the Algorithm 1. Using

the F-orthonormal basis UA
k+1,m and UB

k+1,m, as in [3], we look for low-rank approximate
solution that have the form

Xk+1,m = UA
k+1,m (Yk+1,m ⊗ Ip) (UB

k+1,m)T , (15)

where Yk+1,m ∈ R(k+1+m)×(k+1+m). Let Rk+1,m = AXk+1,m + Xk+1,mB + CDT , be
the residual associated with the approximate solution Xk+1,m. By incorporating (15)
in Rk+1,m and using the equation (14), we get

Rk+1,m = VAk,m+1

(
FA
k+1,m ⊗ Ip

)
(Yk+1,m ⊗ Ip) (UB

k+1,m)T
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+ UA
k+1,m (Yk+1,m ⊗ Ip)

(
(FB

k+1,m)T ⊗ Ip
)

(VBk,m+1)
T + CDT .

The matrix Yk+1,m can be obtained by imposing the orthogonality condition

(UA
k+1,m)T �Rk+1,m � UB

k+1,m = 0. (16)

Using (16) and the fact that UA
k+1,m and UB

k+1,m are F-orthonormal, we have

0 = (UA
k+1,m)T �Rk+1,m � UB

k+1,m

=
(
(UA

k+1,m)T � VAk,m+1

)
FA
k+1,m

(
(UB

k+1,m)T � UB
k+1,m

)
Yk+1,m

+
(
(UA

k+1,m)T � UA
k+1,m

)
Yk+1,m

((
(UB

k+1,m)T � VBk,m+1

)
FB
k+1,m

)T
+ (UA

k+1,m)T � CDT � UB
k+1,m

= T A
k+1,mYk+1,m + Yk+1,m(T B

k+1,m)T + βA1 β
B
1 e1e

T
1 , (17)

where e1 is the first column of the identity matrix of order m+ k+ 1. Assuming that the
matrices T A

k+1,m and T B
k+1,m have no eigenvalue in common, then the unique solution of

the low-dimentional Sylvester equation (17) can be obtained by applying a direct solver
such as the Hessenberg-Schur method.

5 Numerical results

In this section we report some numerical results obtained by executing the new method for
computing the solution of the equation (1). The stop criterion is ‖Rk‖F /‖R0‖F ≤ 10e−8,
where R0 = CDT is the initial residual matrix and Rk is the kth residual matrix.

Example 5.1. In this example, we use the matrices A = tridiag(−1+10/(N+1), 2,−1+
10/(N + 1)), and B = tridiag(−1 + 10/(M + 1), 2,−1 + 10/(M + 1)), where N and M
are the order of matrices A and B, respectively. The entries of the matices C and D are
random values uniformly distributed on [0, 1]. The results were reported in Table 1.

Table 1: Numerical results for Example 1.

(N,M) k,m Residual norm

(800, 500) k = 40, m = 60 8.1933e-06

(1000,500) k = 40, m = 60 8.1933e-06

(1500,800) k = 40, m = 100 2.7758e-05

6 Conclusion

In this paper, we have described the extended version of global Golub-Kahan procedure.
By using this procedure, we have presented a new projection method for computing low
rank approximate solutions for Sylvester matrix equations. Finally, some numerical ex-
periments were given in order to show the efficiency of the proposed method.
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Abstract

In this paper, an efficient method based on fractional-order Bernoulli wavelet func-
tions (FBWFs) is presented for the numerical solution of a class of the fractional opti-
mal control problems (FOCPs). To solve the problem, first the FOCP is transformed
into an equivalent variational problem, then with the aid of FBWFs, operational ma-
trix of RiemannLiouville fractional integration and Gauss quadrature formula, the
problem is solved approximately.
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Mathematics Subject Classification [2010]: 15A03, 15A23, 15B36

1 Introduction

In the last decades, many numerical techniques have been developed for solving the frac-
tional optimal control problems. A fractional optimal control problem is a generalization
that requires minimizing a performance index governed by a fractional differential equa-
tions. The fractional optimal control problems have been applied in transportation, elec-
tronic, chemical and biological systems. Because of its importance, the numerical solution
of the FOCPs was investigated. In this paper, we consider a class of the fractional optimal
control problem and solve this problem.

2 Main results

2.1 Definitions and mathematical preliminaries

Definition 2.1. The Caputo fractional derivative of order ν, when q− 1 < ν ≤ q, of f(t)
is defined by [1]

C
0D

ν
t f(t) =





1

Γ(q − ν)

∫ t

0

f (q)(s)

(t− s)(ν+1−q)ds, q − 1 < ν < q, q ∈ N,

dqf(t)

dtq
, ν = q,

(1)

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: F.valian@math.uk.ac.ir
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where Γ(·) denotes the gamma function.

Definition 2.2. The Riemann-Liouville fractional integral operator of order ν ≥ 0 of f(t)
is defined by [2]

Iνt f(t) =

{
1

Γ(ν)

∫ t
0

f(s)
(t−s)1−ν ds, ν > 0, t ≥ 0,

f(t), ν = 0.
(2)

The useful relation between the Riemann-Liouville operator and Caputo operator is
given by the following expression

Iνt
C
0D

ν
t f(t) = f(t)−

n−1∑

i=0

f (i)(0)
ti

i!
, t ≥ 0, n− 1 < ν ≤ n, (3)

where n is an integer, and f ∈ Cn1 .

2.2 Fractional-order Bernoulli wavelets

The fractional-order Bernoulli wavelets of order α ∈ R+, ψαn,m, n = 1, 2, . . . , 2k−1,m =
0, 1, . . . ,M , on the interval [0,1) defined by [3]

ψαn,m(t) =

{
2
k−1
2 β̃m(2k−1tα − n+ 1), n−1

2k−1 ≤ tα < n
2k−1 ,

0, otherwise,
(4)

that k can assume any positive integer and

β̃m(2k−1tα − n+ 1) =





1, m = 0,
1√

(−1)(m−1)(m!)2

(2m)! β2m

βm(2k−1tα − n+ 1), m > 0, (5)

where βm(t) are Bernoulli polynomials of order m on [0, 1].

2.3 The Functions approximation

An arbitrary function f(t) which is square integrable in the interval [0, 1] can be expanded
by FBWFs as [3]

f(t) =
∞∑

n=1

∞∑

m=0

cn,mψ
α
n,m(t). (6)

The infinite series in Eq. (6) is truncated to approximate f(t) in terms of the FBWFs as

f(t) '
2k−1∑

n=1

M∑

m=0

cn,mψ
α
n,m(t) = CTΨα(t), (7)

where the unknown vector C and Ψα(t) are 2k−1(M + 1) column vectors and given by [3]

C = [c1,0, c1,1, . . . , c1,M , c2,0, c2,1, . . . , c2,M , . . . , c2k−1,0, c2k−1,1, . . . , c2k−1,M ]T ,

Ψα(t) = [ψα1,0(t), ψα1,1(t), . . . , ψα1,M (t), ψα2,0(t), ψα2,1(t), . . . , ψα2,M (t), . . . ,

ψα
2k−1,0

(t), ψα
2k−1,1

(t), . . . , ψα
2k−1,M

(t)]T ,
(8)

and

CT = F TD−1,

D = 〈Ψα,Ψα〉 =
∫ 1

0 Ψα(t)ΨαT(t)tα−1dt,
F = [f1,0, f1,1, . . . , f1,M , f2,0, f2,1, . . . , f2,M , . . . , f2k−1,0, f2k−1,1, . . . , f2k−1,M ]T ,

fij = 〈f, ψαij〉 =
∫ 1

0 f(t), ψαij(t)t
α−1dt, i = 1, 2, . . . , 2k−1, j = 1, 2, . . . ,M.
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2.4 The operational matrix of fractional integration

The Riemann-liouville fractional integral of the vector Ψα(t) defined in Eq. (8) can be
obtained as

Iνt Ψα(t) ' P (ν,α)Ψα(t), (9)

where P (ν,α) denotes the 2k−1(M + 1) × 2k−1(M + 1) operational matrix for Riemann-
liouville fractional integration defined by

Iνt Ψα(t) =




Iνt ψ
α
1,0(t)

Iνt ψ
α
1,1(t)
...

Iνt ψ
α
1,M (t)

Iνt ψ
α
2,0(t)

Iνt ψ
α
2,1(t)
...

Iνt ψ
α
2,M (t)
...

Iνt ψ
α
2k−1,0(t)

ψα2k−1,1(t)
...

ψα2k−1,M (t)




'




2k−1∑
n=1

M∑
m=0

E1,0
n,mψ

α
n,m(t)

2k−1∑
n=1

M∑
m=0

E1,1
n,mψ

α
n,m(t)

...
2k−1∑
n=1

M∑
m=0

E1,M
n,mψ

α
n,m(t)

2k−1∑
n=1

M∑
m=0

E2,0
n,mψ

α
n,m(t)

2k−1∑
n=1

M∑
m=0

E2,1
n,mψ

α
n,m(t)

...
2k−1∑
n=1

M∑
m=0

E2,M
n,mψ

α
n,m(t)

...
2k−1∑
n=1

M∑
m=0

E2k−1,0
n,m ψαn,m(t)

2k−1∑
n=1

M∑
m=0

E2k−1,1
n,m ψαn,m(t)

...
2k−1∑
n=1

M∑
m=0

E2k−1,M
n,m ψαn,m(t)




=




(E1,0)TΨα(t)
(E1,1)TΨα(t)

...
(E1,M )TΨα(t)
(E2,0)TΨα(t)
(E2,1)TΨα(t)

...
(E2,M )TΨα(t)

...

(E2k−1,0)TΨα(t)

(E2k−1,1)TΨα(t)
...

(E2k−1,M )TΨα(t)




= P (ν,α)Ψα(t)

where

Ei,j = Êi,jD−1,

Êi,j = [Êi,j1,0, Ê
i,j
1,1, . . . , Ê

i,j
1,M , . . . , Ê

i,j
2,0, Ê

i,j
2,1, . . . , Ê

i,j
2,M , . . . , Ê

i,j
2k−1,0

, Êi,j
2k−1,1

, . . . , Êi,j
2k−1,M

]T ,

Êi,jn,m = 〈Iνt ψαi,j(t), ψαn,m(t)〉, n = 1, . . . , 2k−1, m = 0, . . . ,M.

2.5 Numerical Method

In this study, we focus on the following fractional optimal control problems

min J =
∫ 1

0 F (t, x(t), u(t)) dt,
C
0D

ν
t x(t) = G (t, x(t)) + b(t)u(t)

ν > 0, t ∈ [0, 1],

(10)

where x(t) and u(t) are state and control functions, respectively.
From the above equation, we can write

u(t) =
1

b(t)

(
C
0D

ν
t x(t)− G (t, x(t))

)
. (11)

Now, for solving our problem, we expand C
0D

ν
t x(t) by the FBWFs as

C
0D

ν
t x(t) ' CTΨα(t). (12)
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Using operational matrix of fractional integration and the property of Riemann-Liouville
of integration, we have

x(t) = Iνt (CTΨα(t)) +

[ν]∑

i=0

xit
i

i!
= CTP (ν,α)Ψα(t) +

[ν]∑

i=0

xit
i

i!
= CTP (ν,α)Ψα(t) + dTΨα(t),

(13)
where

[ν]∑

i=0

xit
i

i!
' dTΨα(t).

By substituting Eqs. (12), (13) in Eqs. (11), (10) our problem is converted to following
problem

min J̃ =
∫ 1

0 F
(
t, (CTP (ν,α) + dT )Ψα(t), 1

b(t)

(
CTΨα(t)− G

(
t, (CTP (ν,α) + dT )Ψα(t)

)))
dt.

(14)
Using Gauss-Legendre quadrature rule to approximate integration on [0, 1] in Eq. (14)
and following necessary conditions of optimization

∂J̃

∂C
= 0, (15)

we can determine C by means of packages such as Matlab, and we obtain the approximate
solution of Eq. (10).

3 Numerical results

In this section, some numerical examples are provided to demonstrate the efficiency and
reliability of the proposed method.

Example 3.1.

min J =
∫ 1

0 (x2(t)− 2t
3
2x(t) + u2(t)− 3

√
π

4 e−tu(t) + e−t+t
3
2 u(t) + t3 + 9π

64 e
−2t − 3

√
π

8 e−2t+t
3
2 +

1
4e
−2t+2t

3
2 + e2t)dt,

c

0D
3
2
t x(t) = ex(t) + 2etu(t),

x(0) = ẋ(0) = 0.
(16)

The exact solution is J∗ = 3.194528049, x∗(t) = t
3
2 and u∗(t) = 1

2e
−t(−e 3

2 + 3
√
π

4 ). Table
1 shows the results for J of the present method with k = 1, 2 and M = 1, 2, 3. In Table 2,
the results for J of the Legendre functions [4] and the present method are compared.

Example 3.2.

min J =
∫ 1

0

(
et(x(t)− t4 + t− 1)2 + (1 + t2)(u(t) + 1− t+ t4 − 8000t

21
10

77Γ( 1
10

)
)2

)
dt,

c
0D

1.9
t x(t) = x(t) + u(t),

x(0) = 1, ẋ(0) = −1,

(17)

The exact solution is J∗ = 0, x∗(t) = t4 − t+ 1 and u∗(t) = −t4 + t− 1 + 8000t
21
10

77Γ( 1
10

)
. In

Table 3, the results for J of the present method with k = 1, 2 and M = 1, 2, 3 are listed.
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Table 1: The estimated values of J for Example 3.1

α = 1 α = 1.5

k=1, M=1 3.1963968 3.1948096

k=1, M=2 3.1945620 3.1945342

k=1, M=3 3.1945413 3.1945321

k=2, M=1 3.1946701 3.1945823

k=2, M=2 3.1945401 3.1945324

k=2, M=3 3.1945301 3.1945298

Table 2: The comparison of the estimated values of J with the other methods for Example
3.1

Legendre functions Present method with Present method with The exact value
with n = m = 3 with k = 1, M = 2 with k = 2, M = 3

3.19453 3.194534 3.194529 3.194528

Table 3: The estimated values of J for Example 3.2

α = 1 α = 1.9

k=1, M=1 5.1E-3 2.1E-3

k=1, M=2 3.4E-3 1.8E-3

k=1, M=3 1.07E-4 3.1E-5

k=2, M=1 7.6E-4 4.7E-4

k=2, M=2 8.6E-5 6.4E-6

k=2, M=3 5.3E-7 6.7E-8
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4 Conclusion

In this paper, by using the operational matrix of fractional integration and the fractional-
order Bernoulli wavelet functions, the fractional optimal control problems were reduced to
an equivalent variational problem. Then the approximate solution of variational problem
obtained approximately by Gauss quadrature formula and solving the nonlinear system
of equations. The numerical results demonstrate the validity and applicability of this
method.
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Abstract

This paper considers well-known least squares and multiobjective least squares
problems. It is shown that those problems can be solved equivalently by goal program-
ming models. Moreover, the proposed goal programming models are approximated by
linear optimization problems.
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1 Introduction

Least squares problems are very famous and have many applications in many fileds
[1, 2, 5, 6]. The method of least squares was first introduced by Legendre and Gauss
more than two hundred years ago. It has been one of the most used techniques in many
application fileds such as statistics [6], finance [5], machine learning [1], etc. Recently,
because of encountering with big data and big systems, multiobjective least squares are
also investigated [1,6]. In the case of multiobjective problems, different methods exist for
dealing with more than one objective function [4]. In this area, goal programming is one
of the popular methods which is widely used [3]. This paper introduces goal programming
models for solving least squares as well as multiobjective least squares problems. Moreover,
for better computational models, we approximate the goal programming models by linear
optimization ones. Linear optimization problems can be solved effectively in polynomial
times [5] by related softwares such as MATLAB, GAMS, LINGO, etc.

2 Goal Programming

Consider a multiobjective optimization problem as follows [4]:

min (f1(x), f2(x), ..., fk(x))

s.t. x ∈ X , (1)

where fi : Rn → R is a real valued function for i = 1, ..., k, and X ⊂ Rn is called the feasible
region. The set X , usually, is given by X = {x ∈ Rn : gj(x) ≤ bi, i = 1, ...,m1; hj(x) =
bj , j = 1, ...,m2}, where gj (j = 1, ...,m1) and hj (j = 1, ...,m2) are real valued functions.

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: yaghoobi@uk.ac.ir
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Goal programming conversts the problem (1) to the following optimization problem [3]:

min F (n1, ..., nk, p1, ..., pk)

s.t. fi(x) + ni − pi = ti, i = 1, ..., k, (2)

x ∈ X ;ni, pi ≥ 0, i = 1, ..., k,

where ni and pi (i = 1, ..., k) are called deviational variables, ti (i = 1, ..., k) is a targret
value related to the function fi, and F is a function of deviational variables that should
be minimized.

In goal programming the function F has different structures and is called the achieve-
ment function. One of the famous achievement functions is as follows [3]:

F (n1, ..., nk, p1, ..., pk) =

k∑

i=1

wini + w′ipi, (3)

where wi and w′i (i = 1, ..., k) are the relative weights assigned to the deviational variables
ni and pi, respectively, according to the importance of the function fi.

3 Solving least squares problems by goal programming

Consider a system of linear equations as follows [1]:

Ax = b, (4)

where A is an m × n matrix, and x ∈ Rn, b ∈ Rm are the vectors of variables and right
hand side, respectively. The system (4) can be also written as aix = bi, i = 1, ...,m,
whenever ai is the i-th row of the matrix A.

In least squares problems, we seek a solution x for the system (4) such that ‖Ax− b‖22
is as small as possible. Thus, the following optimization problem should be solved:

min ‖Ax− b‖22
s.t. x ∈ Rn, (5)

which is a nonlinear (quadratic) optimization problem. Instead of solving the problem (5),
we can solve the following optimization problem, by use of goal programming problem (2):

min
m∑

i=1

n2i + p2i

s.t. aix+ ni − pi = bi, i = 1, ...,m, (6)

ni, pi ≥ 0, i = 1, ...,m,

where all weights wi and w′i (i = 1, ...,m) are set equal to one, ti = bi for i = 1, ...,m, and

F (n1, ..., nm, p1, ..., pm) =
m∑

i=1

n2i + p2i .

Theorem 3.1. The optimal solution of the optimization problems (5) and (6) are the
same.
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Figure 1: A piecewise approximation to the funtion n2i .

Although Theorem 3.1 states that we can solve the problem (6) instead of the problem
(5), but the former problem is a nonlinear optimization problem. Indeed, the objective
function of the problem (6) is sum of quadratic functions n2i and p2i . The function n2i can
be appoximated by a piecewise linear function. Figure 1 shows one of such approximations.
In fact, the piecewise linear function can be written as:

max{ai1ni + bi1, ai2ni + bi2, ..., aivni + biv}, (7)

where each aijni + bij (j = 1, ..., v) is, in general, an affine function. The function p2i can
be approximated similarly as:

max{ci1pi + di1, ci2pi + di2, ..., civpi + div}. (8)

By using (7) and (8), the problem (6) is equivalent to the following linear programming
problem:

min

m∑

i=1

yi + zi

s.t. aix+ ni − pi = bi, i = 1, ...,m,

aijni + bij ≤ yi, i = 1, ...,m, j = 1, ..., v, (9)

cijpi + dij ≤ zi, i = 1, ...,m, j = 1, ..., v,

ni, pi, yi, zi ≥ 0, i = 1, ...,m,

where yi and zi are the new continuous variables for i = 1, ...,m. Since linear programming
problems can be solved by polynomial algorithms, the problem (9) can be solved effectively
using commercial softwares such as MATLAB, GAMES, etc.
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3.1 Multiobjective least squares

In multiobjective least squares problems, we consider the following systems of linear equa-
tions simultaneously [1, 6]:

A1x = b1, A2x = b2, ..., Akx = bk,

where Al is an ml × n matrix (l = 1, ..., k), bl ∈ Rml (l = 1, ..., k), and x ∈ Rn. The goal
is finding a solution x such that all

‖A1x− b1‖22, ‖A2x− b2‖22, ..., ‖Akx− bk‖22,
are as small as possible. By applying the results of Section 3, we can use the following
multiobjective goal programming problem for solving this problem:

min (

m1∑

i=1

n21i + p21i,

m2∑

i=1

n22i + p22i, ...,

mk∑

i=1

n2ki + p2ki)

s.t. alix+ nli − pli = bli, l = 1, ..., k, i = 1, ...,m1, (10)

nli, pli ≥ 0, l = 1, ..., k, i = 1, ...,ml,

where ali is the i-th row of the matrix Al, and bli is the i-th component of the vector bl
for l = 1, ..., k.

By using the well-known weighted sum method [4], the problem (10) can be converted
to a single optimization problem as follows:

min

k∑

l=1

ml∑

i=1

wlin
2
li + w′lip

2
li

s.t. alix+ nli − pli = bli, l = 1, ..., k, i = 1, ...,ml, (11)

nli, pli ≥ 0, l = 1, ..., k, i = 1, ...,ml,

where wli and w′li are the weights assigned to the deviational variables nli and pli, respec-
tively.
Finally, we use the linear approximation of Section 3 and propose a linear programming
problem related to the problem (11) as:

min
k∑

l=1

ml∑

i=1

yli + zli

s.t. alix+ nli − pli = bli, l = 1, ..., k, i = 1, ...,ml,

alijnli + blij ≤ yli l = 1, ..., k, i = 1, ...,ml, j = 1, ..., v, (12)

clijpli + dlij ≤ zli l = 1, ..., k, i = 1, ...,ml, j = 1, ..., v,

nli, pli, yli, zli ≥ 0, l = 1, ..., k, i = 1, ...,ml.

4 Numerical results

Example 4.1. Consider the following system of linear equations:

3x1 + x2 = 4,

x1 + 2x2 = 3, (13)

−2x1 + x2 = 2.

The exact solution of least squares problem for the system (13) is x1 = 0.4 and x2 = 1.8
with ‖Ax− b‖22 = 3. Table 1 shows the implementation results of the model (9).
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Table 1: Results of the model (9) for the system (13).

# linear pieces x1 x2 ‖Ax− b‖22 CPU time (seconds)

1 0.4002 1.7996 6 0.17

2 0.4 1.8 3 0.18

The model (9) was coded in MATLAB. In the next example, we consider a multiob-
jective least squares problem and solve it with the model (12).

Example 4.2. Consider a multiobjective least squares problem with two systems of linear
equations. The first system is the same as the system (13) and the second one is as follows:

4x1 + x2 = 2,

x1 − 2x2 = −1, (14)

3x1 + x2 = 3.

The exact solution of this multiobjective least squares problem with weights 0.6 and 0.4 for
the systems (13) and (14), respectively, is x1 = 0.4066 and x2 = 1.4091 with ‖Ax− b‖22 =
3.6222. Table 2 shows the implementation results of the model (12) in MATLAB.

Table 2: Results of the model (12) for the systems (13) and (14).

# linear pieces x1 x2 ‖Ax− b‖22 CPU time (seconds)

1 0.6 1.2 5.52 0.18

20 0.4 1.4 3.624 0.21

200 0.4071 1.4086 3.622 0.54

400 0.4070 1.4090 3.6222 1.39

5 Conclusion

This paper proposed two goal programming models for solving least squares and mul-
tiobjective least squares problems. Linear programming approximation of those models
were also introduced. Numerical examples showed that the approximated solutions were
acceptable. Moreover, the CPU times for computing the solutions were reasonable.
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Abstract

The energy E(G) of a graph G is the sum of the absolute values of all eigenvalues
of G. In this note, the authors are interested in the relation between the energy of a
graph G and the matching number µ(G) of G. It is well-known that E(G) ≥ 2µ(G).
In this paper for a category of graphs, we improve the lower bound of the energy of
graphs to E(G) ≥ 2µ(G) + 2.
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1 Introduction

Let G = (V (G), E(G))be a simple graph. The order of G denotes the number of vertices
of G. For two vertices x and y by e = xy we mean the edge e between x and y. For every
vertex v ∈ V (G), the degree of v is the number of edges incident with v and is denoted
by degG(v). A k-regular graph is a graph such that every vertex of that has degree k.
By Kn,Kp,q and Cn, we mean the complete graph with n vertices, the complete bipartite
graph with parts of sizes p, q, and the cycle with n vertices respectively.

For a subset U of V (G), denote by G− U the graph obtained from G by deleting the
vertices of U together with all edges incident to them. If H is an induced subgraph of G,
we will use G−H to denote the induced subgraph G− V (H). The subgraph G−H of G
is also called the complement of H in G. If F is a set of edges of G such that G − F is
the disjoint union of two complementary induced subgraphs H and K, then F is called a
cut set of G, and we write G− F = H ⊕K. A cycle of G is called a Hamiltonian cycle if
it contains all vertices of G, and G is called a Hamiltonian graph if a Hamiltonian cycle
lies in G. Let G and H be graphs with vertex sets V (G) and V (H), respectively.

The Kronecker product of G and H, denoted by G⊗H, is the graph defined as follows.
The vertex set of G ⊗H is V (G) × V (H). The vertices (u, v) and (u′, v′) are adjacent if
u is adjacent to u′ in G and v is adjacent to v′ in H.

A matching M in G is a set of pairwise non-adjacent edges, that is, no two edges in M
share a common vertex. A Graph G has perfect matching if it has a matching in which the
edgesare collectively incident with all the vertices. A maximum matching is a matching
that contains the largest possible number of edges. The matching number of G, denoted
by µ(G), is the edge number of a maximum matching.

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: vahidadish1@gmail.com
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The energy of graphs was defined by Ivan Gutman in 1978. The energy E(G) of a
graph G is defined to be the sum of the absolute values of all eigenvalues of A(G). The
motivation for the definition of E(G) comes from Chemistry, where the first results on
E(G) were obtained as early as the 1940s [3]. However, in the last two decades, research
on graph energy has much intensified, resulting in a very large number (over 150) of
publications.

Since the eigenvalues of the complete graph Kn are n− 1 (with multiplicity 1) and −1
(with multiplicity n− 1), so E(Kn) = 2n− 2. Also E(Kp,q) = 2

√
pq, since the eigenvalues

of the complete bipartite graph Kp,q are
√
pq (with multiplicity 1), 0 (with multiplicity

p+ q − 2) and −√pq (with multiplicity 1).
In [5] the energy and the matching number of a graph were compared and it was proved

that E(G) ≥ 2µ(G) for every graph G. In some special cases the equality condition was
mentioned.

Recently, in [1], the author show that the necessary and sufficient condition for equality
is that G is union of some complete bipartition graph with equal parts and some isolated
vertices. Also, it was proved that for connected graphs without perfect matching, E(G) ≥
2µ(G) + 1, except for complete bipartite graphs of the form Kr,r+1. Furthuremore, we
have the following bound for energy of graphs.

Theorem 1.1 ( [1, Theorem 12]). Let G be a graph whose cycles are vertex-disjoint. If
we denote the number of odd cycles of G with length at least 5 by c0(G), then

E(G) ≥ 2µ(G) + c0(G).

2 Main results

Given a graph G, its bipartite double G⊗K2 is the Kronecker product of G and K2. If G
is connected, then its bipartite double is connected and bipartite, and if G has spectrum
Φ, then G ⊗ K2 has spectrum Φ ∪ −Φ. Thus E(G ⊗ K2) = 2E(G). using this fact, we
have the following lemma.

Lemma 2.1 ( [2, Lemma 3.25]). Let A and B be symmetric matrices of order m×m and
n×n, respectively. If λ1, ..., λm and µ1, ..., µn are the eigenvalues of A and B, respectively,
then the eigenvalues of A⊗B are given by λiµj ; i = 1, ...,m; j = 1, ..., n.

Using this lemma and the fact that n− 1-regular bipartite graph with 2n vertices can
be written as Kn,n − T for some perfect matching T of Kn,n, we can compute the energy
of n− 1-regular bipartite graph.

Theorem 2.2. Let G be n− 1-regular bipartite graph with 2n vertices and n ≥ 3, then we
have E(G) = 4n− 4.

In [1], the author, prove that E(Cn) ≥ n+ 1 for odd n. The following lemma, gives a
simillar result for n ≡ 2 (mod 4).

Lemma 2.3. Let G = Cn be a cycle of order n such that n ≡ 2 (mod 4) then

E(Cn) ≥ n+ 2. (1)

Note that in this case Cn has perfect maching and the previous lower bound for it was
n.

As an anothor result, we obtain a refined lower bounds for the energy of Hamiltonian
graph. We need the following Lemma.
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Lemma 2.4 ( [4, Theorem 3.1]). Let H be an induced subgraph of a simple graph G. Then
E(H) ≤ E(G) and equality holds if and only if E(H) = E(G).

One can easily see that deleting some edges of graph can decrease or increase the
energy of graph. Although, the following lemma shows the graph energy changes when we
delete a cut set of edges from a graph.

Lemma 2.5 ( [4, Theorem 3.4]). If E is a cut set of a simple graph G then E(G−E) ≤
E(G).

Finally, our main result is as follows.

Theorem 2.6. If G is a (non-complete) Hamiltonian bipartite graph with n vertices and
n ≡ 2 (mod 4) then E(G) ≥ n+ 2.

Since bipartite graphs have no odd cycle, the lower bound which is obtained from
Theorem 1.1, is n and this theorem improves this bound.

3 Conclusion

For some bipartite graph, we can improved the lower bound of energy of graph to 2µ(G)+2.
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Abstract

In this paper, using the polynomial numerical hulls, a new upper bound for the
pseudospectrum of matrices is obtained. Also, some properties of the pseudospectrum
of matrices are investigated.
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1 Introduction and preliminaries

Let Mn(C) be the algebra of all n × n complex matrices, and A ∈ Mn(C). The field of
values or the numerical range of A is defined as W (A) = {x∗Ax : x ∈ Cn, x∗x = 1}
which is useful in studying and understanding of matrices and operators, and has many
applications in numerical analysis, quantum theory, etc; e.g., see [5] and its references. It
is known, e.g., see [1, Lemma 6.22.1], that

W (A) = {λ ∈ C : |λ− µ| ≤ ‖A− µI‖, ∀µ ∈ C}, (1)

where ‖.‖ is the matrix norm subordinate to the Euclidean vector norm, and I is the n×n
identity matrix. For a positive integer k, we denote by Pk the set of all scalar polynomials
of degree k or less. Put P = ∪∞k=1Pk which is the set of all scalar polynomials. By this
idea, the notion of numerical range W (A) as in (1) can be generalized to the notion of
polynomial numerical hull of order k of A, which is defined and denoted, e.g., see [4], by

V k(A) = {λ ∈ C : |p(λ)| ≤ ‖p(A)‖ for all p ∈ Pk}.

This set has many applications in the study of convergence of iterative methods in solv-
ing linear systems. In the following proposition, we state some properties of polynomial
numerical hulls of matrices which will be useful in our discussion. For more information,
see [3, 4].

Proposition 1.1. Let A ∈Mn(C). Then

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: sh rezagholi79@yahoo.com
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1. V k(A) is a compact set in C;

2. σ(A) = V m(A) ⊆ · · · ⊆ V k+1(A) ⊆ V k(A) ⊆ · · · ⊆ V 1(A) = W (A), where m ≥ n;

3. V k(αA+ βI) = αV k(A) + β, where α, β ∈ C;

4. V k(U∗AU) = V k(A), where U ∈Mn is unitary;

5. V k(AT ) = V k(A) and V k(A∗) = V k(A) := {λ : λ ∈ V k(A)};

6. V k(A) = {λ ∈ C : (λ, λ2, ..., λk) ∈ conv(W (A,A2, ..., Ak))}, where conv(.) denotes
the convex hull, and W (A1, ..., Ak) := {(x∗A1x, ..., x

∗Akx) : x ∈ Cn, x∗x = 1} is the
joint numerical range of (A1, ..., Ak) ∈Mn(C)k;

7. If A is Hermitian, then V k(A) =

{
conv(σ(A)) for k = 1,

σ(A) for k ≥ 2;

8. If B is a principal submatrix of A, then V k(B) ⊆ V k(A);

9. V k(A) = {λ ∈ C : p(λ) ∈W (p(A)) ∀p ∈ Pk}.

For a given ε > 0 and a matrix A ∈ Mn(C), the ε−pseudospectrum (pseudospectrum
for short) of A is defined and denoted, see [6], by

σε(A) =
⋃

E∈Mn,‖E‖≤ε
σ(A+ E), (2)

where the matrix A + E is a perturbation of A, and σ(.) denotes the spectrum, i.e., the
set of all eigenvalues. During this paper, we denote by Dε(a) = {µ ∈ C : |µ− a| ≤ ε} the
closed disk at centered a ∈ C with radius ε > 0. The following properties (see [6]) are
useful in our discussion.

Proposition 1.2. Let A ∈Mn(C) and ε > 0. Then

1. σε(αA+ βI) = ασε/|α|(A) + β, where α, β ∈ C and α 6= 0;

2. σε(A) = Dε(µ) if and only if A = µI, where µ ∈ C;

3. If A =

(
A1 B
0 A2

)
, where A1 and A2 are square matrices, then σε(A1)∪ σε(A2) ⊆

σε(A). The equality holds if B = 0; i.e., σε(A1 ⊕A2) = σε(A1) ∪ σε(A2).

Proposition 1.3. Let A ∈Mn(C). Then

1. for every ε > 0, σ(A) +Dε(0) ⊆ σε(A);

2. A is normal if and only if σε(A) = σ(A) +Dε(0) for every ε > 0.

In this paper, we are going to study some algebraic and geometrical properties of
pseudospectrum of matrices. Using the polynomial numerical hulls, we find a new upper
bound for pseudospectrum. We also give some facts about the pseudospectrum of 2 × 2
block triangular matrices.
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2 Main results

Let A ∈ Mn(C). In [2, Theorem 2.1], the author found the following cover for the pseu-
dospectrum:

σε(A) ⊆ {λ ∈ C : dist(p(λ),W (p(A))) < εtp}, (3)

where p ∈ P is an arbitrary polynomial, and tp is a positive constant depending on p. We
now are going to improve the bound in (3). For this, by the idea used in (2), we introduce
the notion of extended polynomial numerical hull of order k as follows:

V k
ε (A) =

⋃

E∈Mn,‖E‖≤ε
V k(A+ E).

Note, by Proposition 1.1(9), that:

σε(A) ⊆
⋃

‖E‖≤ε

⋂

p∈Pk

{λ ∈ C : dist(p(λ),W (p(A+ E))) = 0} = V k
ε (A). (4)

Obviously and by a simple computation, we see, for every p ∈ Pk, λ ∈ C, and any E ∈Mn

with ‖E‖ ≤ ε, that

dist(p(λ),W (p(A))) ≤ dist(p(λ),W (p(A+ E))) + εtp.

This shows that the upper bound in (4) is an improvement of the bound mentioned in (3).

Theorem 2.1. Let ε > 0 and A ∈Mn(C). Then

1. V k
ε (U∗AU) = V k

ε (A), where U ∈Mn(C) is unitary;

2. σε(A) = V m
ε (A) ⊆ · · · ⊆ V k+1

ε (A) ⊆ V k
ε (A) ⊆ · · · ⊆ V 1

ε (A) = W (A) + Dε(0), where
m ≥ n;

3. V k
ε (αA+ βI) = αV k

ε/|α|(A) + β, where α 6= 0 and β are complex scalars;

4. V k
ε (A) is a nonempty and compact set in C;

5. V k
ε (AT ) = V k

ε (A) and V k
ε (A∗) = V k

ε (A). Consequently, if A is Hermitian, then
V k
ε (A) is symmetric with respect to the real axis;

6. V k
ε (A) = Dε(µ) if and only if A = µI, where µ ∈ C;

7. If A = A1⊕A2, where Ai ∈Mni(C) with n1+n2 = n, then V k
ε (A1)∪V k

ε (A2) ⊆ V k
ε (A).

The set equality holds if k = n.

In the following, we state a result about the pseudospectrum of matrices, i.e., for V n
ε (.).

Theorem 2.2. Let ε > 0, and A,B ∈ Mn be such that AB = BA. If A or A + B is
normal, then

σε(A+B) ⊆ σ(A) + σε(B).

The following example shows that the condition “A or A+ B is normal” in Theorem
2.2 is necessary.

Example 2.3. Let ε > 0, and A = B =

(
0 1
0 0

)
. Clearly, A and A+B are not normal.

Also, we have

σε(A+B) = 2σε/2(A) = D(0,
√

2ε+ ε2) * D(0,
√
ε+ ε2) = σ(A) + σε(B).
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Abstract

In this paper, a mathematical model has been developed for describing the be-
havior and interactions between B leukemia cells and three components of immune
system. The model has been presented using a system of fractional ordinary dif-
ferential equations (FODEs). Dynamics of the system are studied by determining
eigenvalues of Jacobian matrix of the system at equilibrium points and the stability
status of them. Bifurcation analysis showed that the use of the fractional-order model
figures out unpredictable behaviors of the system such as bistability and Hysteresis
Phenomenon.

Keywords: Fractional ordinary differential equations, Chronic lymphocytic leukemia,
Stability analysis, Bifurcation

Mathematics Subject Classification [2010]: 92XX, 92Bxx

1 Introduction

Since the early 1990s, mathematical models have been studied in the form of a variety
of ordinary differential equations in describing different aspects of cancer, such as tumor
growth dynamics and the interaction of immune cells and tumor cells [4, 5].

Another category of mathematical models is differential, fractional-order equations.
These fractional models are preferred over classic models for various reasons. Integrals and
fractional derivatives describe dynamic systems that have memory and inherited proper-
ties. Because of the integral in the definition of fractional derivatives, these derivatives are
non-local, that is, to calculate the fractional derivative at a given point, the points that
are located in the neighborhood of that poin are used. Therefore, fractional differential
equations are more suitable for models with rugged domains. The human immune system
is a biological system that has memory and rugged cell population. Fractional differential
equations act better than classical differential ones in explaining the behavior of immune
system diseases such as B cell chronic lymphocytic leukemia (B–CLL). The derivative or-
der in these equations serves as the memory of parameter of the system. These are some of

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: fadaei.yasin@gmail.com
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the primary reasons why fractional differential equations models are increasingly applied
to dynamical systems.
Due to advantages of fractional-order equations, in this study we will develop the model
of Nanda et al. into a model that includes a system including fractional differential equa-
tions. We will show that the fractional model is better than the classical ODE model in
understanding of the interactions between immune system and B–CLL cells.

Definition 1.1. The fractional integral of order α ∈ R+ of the function g(t), t > 0 is
defined by

Iαg(t) =

∫ t

0

(t− s)α−1
Γ(α)

g(s)ds (1)

where the gamma function is defined, as usual, as Γ(z) =
∫∞
0 e−ttz−1dt, and the Caputo

fractional derivative of order α ∈ (n− 1, n) of g(t), t > 0 is defined by

Dα = In−αDng(t), Dα =
dα

dtα
, n = 1, 2, . . . . (2)

Theorem 1.2. [6] Fractional–order ordinary differential equations system

Dαxi(t) = gi (x1(t), x2(t), . . . , xn(t)) (3)

xi(0) = ci, i = 1, 2, . . . , n, α ∈ (0, 1), (4)

is called asymptotically stable if all the eigenvalues λi, of the Jacobian matrix J = ∂gi
∂xi

computed at the equilibrium points satisfy | arg(λi)| > απ
2 , i = 1, 2, . . . , n.

2 The fractional–order mathematical model

Here, we consider the B–CLL cell population, a cell population of the innate immune
system, natural killer (NK) cells, and two cell populations of the adaptive immune system:
cytotoxic T cells (C) and T-helper (H) cells. We also assume that t represents the variable
time (day). We consider the following populations of cells, measured as concentrations of
cells per µliter are denoted by:
B(t) = B–CLL cells population,
N(t) = total NK cells population,
C(t) = total cytotoxic T cells (CD8+T) population,
H(t) = total helper T cells (CD4+T) population.
The system of fractional differential equations is given by





DαB = sB + (a− b)B − cBN − dBC,
DαN = sN − eN − fNB,
DαC = sC − gC − iCB + kr Bm

η+BmHC,

DαH = sH − jH + r Bm

η+BmH,

(5)

with initial conditions B(0) ≥ 0, N(0) ≥ 0, C(0) ≥ 0, H(0) ≥ 0 and 0 < α < 1.
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3 Analysis of the model

To analyze the model, first, using a non-dimensionalization technique, we transform the
model into a simpler form with fewer parameters:

t̃ = et, B̃ =
e

sB
B, Ñ =

e

sN
N, C̃ =

e

sC
C, H̃ =

e

sH
H

and the corresponding paremeters are:

a1 =
a− b
e

, a2 =
csN
e2

, a3 =
dsC
e2

, a4 =
fsB
e2

, a5 =
g

e
,

a6 =
isB
e2
, a7 = k

rsH
e2

, a8 =
r

e
, a9 =

j

e
, a10 = η

em

smB
.

Dropping the tilde for notational clarity, the resulting system is given by




DαB = 1− a1B − a2BN − a3BC,
DαN = 1−N − a4NB,
DαC = 1− a5C − a6CB + a7

Bm

a10+Bm
HC,

DαH = 1− a8H + a9
Bm

a10+Bm
H,

(6)

3.1 Equilibrium points and their stability

By studying the long-term behavior of the fractional differential equations system, we
can obtain useful qualitative information from the progression of the disease. To better
understand the dynamics of the system, we first detect the equilibrium points, that is, we
should find values for which the changes of system are zero. To do this, we setting each
of the four equations in the system (6) equal to zero:

DαB = DαN = DαT = DαH = 0,

now, from the NK cell population equation, we obtain:

N =
1

1 + a4B
, (7)

similarly, the fixed point of H cells

H =
a10 +Bm

a8a10 + (a8 − a9)Bm
, (8)

and, setting third equation of the (6) to zero gives

C =
a10 +Bm

a5a10 + a5Bm − a7HBm + a6a10B + a6Bm+1
, (9)

finally, we set the first equation of (6) equal to zero and by inserting the relationships (7)
and (9) in it, we have the following equation:

B(a1 + a2N + a3C)− 1 = 0. (10)

By numerical solving of Eq. (10), equilibrium points of the system will be obtained. For
biological considerations, we only consider the non-negative equilibrium points. To de-
termine the behavior of the cells near the equilibrium points, we examine their stability.
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Suppose that E = (B̂, N̂ , Ĉ, Ĥ) be an equilibrium point of system 6. We linearize the
system by obtaining the Jacobian matrix of the system (6). The Jacobian matrix at E is
computed by

J |E =




−a1 − a2N̂ − a3Ĉ a2B̂ −a3B̂ 0

−a4N̂ 1− a4B̂ 0 0

−a6Ĉ + a7a10mĤĈB̂m−1

(a10+B̂m)2
0 −a5 − a6B̂ + a7ĤB̂m

a10+B̂m
a7ĈB̂m

a10+B̂m

a9a10ĤB̂m−1

(a10+B̂m)2
0 0 −a8 + a9B̂m

a10+B̂m



.

(11)

Now, we calculate the eigenvalues of this matrix.
Let J1 be a submatrix which is given by

J1 =

(
−a1 − a2N̂ − a3Ĉ a2B̂

−a4N̂ 1− a4B̂

)
, (12)

two eigenvalues λ1, λ2 of the matrix J are equal to eigenvalues of the J1 which are obtained
by solving the characteristic equation

P (λ) = λ2 − τλ+ ∆ = 0,

where τ and ∆ are trace and determinant of the matrix J1, respectively. Other eigenvalues
of the J are

λ3 = a8 +
a9B̂

m

a10 + B̂L
, λ4 = −a5 − a6B̂ +

a7ĤB̂
m

a10 + B̂m
.

If a7 <
(a5+a6B̂)(a10+B̂m)

ĤB̂m
, then λ3 < 0, also if a8 >

a9B̂m

a10+B̂m
, then λ4 < 0.

Theorem 3.1. Assume that E be a non–negative equilibrium point of system 6 and let
λ3 < 0, λ4 < 0

1. If a4 <
1
B̂

, then ∆ < 0 and the equilibrium point of the E is saddle–node.

2. If a4 >
1
B̂

, | arg(λ3)| > απ
2 and | arg(λ4)| > απ

2 then the equilibrium E is asymptoti-
cally stable.

4 Data fitting and estimation of parameters

The model (5) contains 17 parameters that should be determined. We obtain the values
of some of the parameters from available resources. However, their values may vary in
different types of cancers and in each patient. We use data fitting to estimate the values
of parameters that are unknown. To do this, we will use the data obtained from [4]. We
perform the estimation of the parameters based on the data of CLL109 patient that have
already been studied in [5]. By running the fminsearch, a MATLAB function, which
is a least squares algorithm, we determine the values of the parameters for the values of
α ∈ (0, 1). The estimated values of the parameters are presented in Table 1.

5 Numerical Simulation

The fractional form of the Adams-Bashforth-Moulton method will be used to numerically
solve the system. We use the FDE12 function for the different values of the estimated
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parameters corresponding to the patient CLL109.
For patient CLL109 with initial value (B0, N0, C0, H0) = (38, 517, 2, 1), the solutions of
the system (5) for different values of α is shown in Figure 1 (top-left). As shown in the
curves with decreasing the value of α, the convergence rate also decreases. For α = 1, the
number of B–CLL cell population reaches 780 cells/µl by 145th day, but then decreases.
For values of α < 1, this occurs later.

6 Bifurcation

The system (5) shows a substantial sensitivity to the values of certain parameters, that is,
changing the values of the parameters leads to significant changes in the behavior of the
system. With change in one parameter, the number of equilibrium points in the system
may decrease or increase, or location and the stability of these points may change. In
Section 3, the stability of equilibrium points was theoretically discussed. In this section,
we interpret the bifurcation analysis of several parameters.
For CLL109 patient, we performed the bifurcation analysis with respect to the parameter
r (recruitment rate of H cell by B–CLL cells). Figure 1 illustrates that bistability occurs
with changing the value of the parameter r. In Figure 1 (right-top), there are two stable
branches and one unstable branch. For r ≤ 0.00206, the B–CLL cell population converges
to a larger stable equilibrium point. For the values of 0.00206 < r ≤ 0.00279, the system
contains an unstable equilibrium point and a small stable equilibrium point, in addition
to the large equilibrium point. For values of r < 0.00279, there is a jump to a small stable
equilibrium point, which shows the existence of Hysteresis in the model.
Hysteresis is a phenomenon that shows the dependence of the current state of a system
on its previous state (pathway of changes). According to some evidence, re-activation of
T-cells that have already experienced active state requires a lower signal threshold. In
order to initiate the functions of the T-cell effector, first, a Reticular Activating System
(RAS) should be activated. It is also required to activate RAS at high levels to launch T
cell receptors [1]. This example illustrates the importance and application of the hysteresis
phenomenon in the immune system. The use of memory-containing models such as model
(5) clearly reveals the existence of this phenomenon.
This phenomenon has many uses in various fields such as physics, chemistry, engineering,
biology and economics.
As can be seen in the Figure 1(bottom), the solutions of B–CLL cell population for values
r = 0.005 and r = 0.0014 converges to stable equilibrium points Be = 3.77 and Be = 2366,
respectively.
Determining the parameters that lead to decrease in B–CLL cell population and their
bifurcation points are very effective in the treatment phase of the disease. In fact, in
treatments need to move the effective parameter values across the bifurcation values.
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Table 1: Parameter Values in the Model.

Parameter Description Units Value Source
sB Source term for new B–CLL (cells/µl) /day [6,2475] Fitted
(a− b) B-CLL density change rate 1/day [0.002,130] Estimated
c B–CLL kill by NK cells 1/(cells/µl)(day) [1.05e-06,9.56e-04] Estimated
d B–CLL kill by T cells 1/(cells/µl)(day) [3.07e-05,0.1320] Estimated
sN Source term for new NK cells 1/(cells/µl)(day) [1.56,7.632] [5]
e Natural death rate of NK cells 1/day 0.0159 [2, 5]
f Deactivation rate of NK by B–CLL 1/(cells/µl)(day) 0.0001 [5]
sC Source term for new T cells 1/(cells/µl)(day) [0,12.8] Estimated
g Natural death rate of T cells 1/day [0.000102,0.04] Estimated
i Inactivation of T-cells by B–CLL 1/day 0.0001 [5]
k Scaling factor<1 – 0.55 Estimated
r Activation rate of H cells by B–CLL 1/day [0.0015,0.0075] Estimated
m Power of B–CLL in term of T and H rec. – 2 Estimated
η Half–saturation level in the rec. cells/µl 10000 Estimated
sH Source term for new H cells 1/(cells/µl)(day) [3.9,16.9] [3]
j Natural death rate of H cells 1/day [0.00135,0.0338] [3]

0 100 200 300 400 500 600 700
10

−1

10
0

10
1

10
2

10
3

Time(day)

N
u
m

b
e
r 

o
f 
B

C
L
L

 c
e

lls

Simulation of Patient 109 − Log Plot

 

 

alpha=1

alpha=0.95

alpha=0.9

alpha=0.85

0 0.002 0.004 0.006 0.008 0.01
0

20

40

60

80

100

120

r

B
C

L
L
 c

e
ll
s

Bifurication of Parameter r for Patient 109

 

 

Stable

Unstable

0 100 200 300 400 500 600 700
10

−1

10
0

10
1

10
2

10
3

Numerical Simulation of Patient 109 with alpha = 0.9 and r = 0.005

Time (days)

N
u
m

b
e
r 

o
f 
B

C
L
L
 c

e
lls

0 100 200 300 400 500 600 700
10

1

10
2

10
3

10
4

Numerical Simulation of Patient 109 with alpha = 0.9 and r = 0.0014

Time (days)

N
u
m

b
e
r 

o
f 
B

C
L
L
 c

e
lls
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Abstract

In this paper, using operator matrices representation, we investigate the explicit
solution of the operator equations and operational equations systems. In the general
setting of the adjointable modular operators between Hilbert C -modules framework,
this solution is expressed in terms of the Moore-Penrose inverses of the operators.
The obtained results extend and generalize some known operator equations studied
previously by a number of mathematicians.

Keywords: Hilbert C -module, Moore-Penrose inverse, Operator equation, Operator
matrix
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1 Introduction

The solving operator equations has recently been found in the work of many researchers
and even finding the exact solution for these equations has been interest. Since the matrix
space is finite dimensional, so if we extend these equations to the space of operators, then
also it will be able to solve equations in infinite dimensional cases. It may be assumed that
the applied equations have a matrix representation, and the generalization of equations
to higher spaces is studied merely for the abstract mathematical discussion. But there
are many cases of functional equations appeared in physics, for examples Kadomtsev-
Petviashvili operator equationvxt = 1

4(vxxx +6v2x)x + 3
4vyy + 3

2(vyvxvxvy), which is different
from the finite case. Similar to the matrix form, here too many of the solutions are
found using general inverses, and in particular the Moore-Penrose inverse. In this paper,
we try to solve a some of equations in the Hilbert C∗-modules. As we know, Hilbert
C∗-modules are extension of Hilbert spaces with the same properties, nevertheless there
exist some basic differences. However, some well known properties of Hilbert spaces like
Pythagoras’ equality, self-duality, and even decomposition into orthogonal complements
do not hold in the framework Hilbert modules. Suppose that A is an arbitrary C*-algebra
and X is a linear space which is a right A-module and the scalar multiplication satisfies
λ(xa) = x(λa) = (λx)a for all x ∈ X , a ∈ A, λ ∈ C. The A-module X is called a pre-
Hilbert A-module if there exists an A-valued map 〈., .〉 : X × X → A with the following
properties:

(i) 〈x, y + λz〉 = 〈x, y〉+ λ〈x, z〉; for all x, y, z ∈ E, λ ∈ C,
1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: j.farrokhi@birjandut.ac.ir
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(ii) 〈x, ya〉 = 〈x, y〉a; for all x, y ∈ X and a ∈ A,

(iii) 〈x, y〉∗ = 〈y, x〉; for all x, y ∈ X ,

(iv) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0.

The A-module X is called a Hilbert C∗-module if X is complete with respect to the norm
‖x‖ = ‖〈x, x〉‖1/2. Throughout this paper we assume that A is an arbitrary C∗-algebra.
The notations Ker(·) and ran(·) stand for kernel and range of operators, respectively.
The set of all bounded adjointable operator from X to Y is shown by L(X ,Y).

Theorem 1.1. ( [4, Theorem 3.2]) Suppose that A ∈ L(X ,Y) has closed range. Then
A∗ ∈ L(Y,X ) has closed range, and

[(i)]

1. ker(A) is orthogonally complemented in X , with (ker(A))⊥ = ran(A∗).

2. ran(A) is orthogonally complemented in Y, with (ran(A))⊥ = ker(A∗).

A generalized inverse of A ∈ L(X ,Y) is an operator A× ∈ L(Y,X ) such that

AA×A = A and A×AA× = A×. (1)

If the first part hold it is called inner inverse and if both equations hold A× called outer
inverse of A.

Definition 1.2. Let A ∈ L(X ,Y). The Moore-Penrose inverse A† of A is unique solution
X of the following equvalent operational systems:





AXA = A
X AX = X
(AX)∗ = AX
(X A)∗ = XA

or {
XAA∗ = A∗

XX∗A∗ = X

Moreover, we know that a bounded adjointable operator may admit an unbounded
operator as its Moore-Penrose, see [4] for more detailed information. A matrix form of a
bounded adjointable operator A ∈ L(X ,Y) can be induced by some natural decomposi-
tions of Hilbert C∗-modules. Indeed, if M and N are closed orthogonally complemented
submodules of X and Y, respectively, and X =M⊕M⊥, Y = N ⊕N⊥, then T can be
written as the following 2× 2 matrix

A =

[
A1 A2

A3 A4

]
(2)

where, A1 ∈ L(M,N ), A2 ∈ L(M⊥,N ), A3 ∈ L(M,N⊥) and A4 ∈ L(M⊥,N⊥). Note
that PM denotes the projection corresponding to M.

In fact A1 = PNAPM, A2 = PNA(1 − PM) A3 = (1 − PN )APM and A4 =
(1 − PN )A(1 − PM). The proof of the next important and widely used theorem can be
found in many articles including [2] and [5].
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Theorem 1.3. Let A ∈ L(X ,Y) has closed range. Then A has the following matrix
decomposition with respect to the orthogonal decompositions of submodules

(a) If X = ran(A∗)⊕ ker(A) and Y = ran(A)⊕ ker(A∗), then

A =

[
A1 0
0 0

]
:

[
ran(A∗)
ker(A)

]
→
[

ran(A)
ker(A∗)

]
,

where A1 is invertible. Moreover,

A† =

[
A−11 0

0 0

]
:

[
ran(A)
ker(A∗)

]
→
[

ran(A∗)
ker(A)

]
.

(b) If X = X1 ⊕X2 and Y = ran(A)⊕ ker(A∗), then:

A =

[
A1 A2

0 0

]
:

[
X1

X2

]
→

[
ran(A)
ker(A∗)

]
, (3)

and in this case,

A† =

[
A∗1D

−1 0
A∗2D

−1 0

]
, (4)

where D = A1A
∗
1 +A2A

∗
2 ∈ L(ran(A)) is positive and invertible.

(c) If X = ran(A∗)⊕ ker(A) and Y = ran(A)⊕ ker(A∗), then:

A =

[
A1 0
A2 0

]
:

[
ran(A∗)
ker(A)

]
→

[
Y1
Y2

]
, (5)

and

A† =

[
D−1A∗1 D−1A∗2

0 0

]
, (6)

where D = A∗1A1 +A∗2A2 ∈ L(ran(A∗)) is positive and invertible.

Recall that if A ∈ L(X ,Y) has closed range, then AA† = Pran(A) and A†A = Pran(A∗).
An operator A with closed range is called EP if ker(A) = ker(A∗). It is easy to see

that,

Ais EP⇔ ran(A) = ran(A∗)⇔ AA† = A†A.

The interested reader, for more detail and informations of this section, can be referred
to [6].

2 Main results

In this section, we investigate the explicit solution of the operational equations and also
modular operator equation systems.

Theorem 2.1. Let X be Hilbert C∗-module and A and B ∈ L(X) have closed ranges.
Then, AA†B = A = BA†A if and only if AA∗ = AB∗, A∗A = A∗B.

Theorem 2.2. Let X be Hilbert C∗-module and A,B and C ∈ L(X) have closed ranges,
with the following factorization A = BC. Then A is idempotent if and only if CB = I.

Corollary 2.3. Let X be Hilbert C∗-module and A ∈ L(X) has inner inverse, then the
equation X(AX − I) = 0 has unique solution.
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Theorem 2.4. Let X be Hilbert C∗-module and A,B and C ∈ L(X) have closed ranges.
If A,B is self-adjonit operators, then the modular operator equation AXB −X = C has
unique solution.

Theorem 2.5. Let X be Hilbert C∗-module and A,B,D and E ∈ L(X) have closed ranges.

The modular operator equations system

{
AX = B,
XD = E

have common solution if and only

if AE = BD. Moreover, in this case, X = X0 + (I − A†A)Y (I − DD†) for arbiterary
Y ∈ L(X).

Theorem 2.6. Let X be Hilbert C∗-module and A,B and D ∈ L(X) have closed ranges.
The modular operator equation AXB = D has unique solution if and only if AA†DB†B =
D. Moreover, in this case, X = A†DB† + Y −A†AY BB†, for arbiterary Y ∈ L(X).

Example 2.7. Let S = the real space L2[0, 2π] of real valued functions and S1 = the
absolutly continuous functions A(t), 0 ≤ t ≤ π, whose derivatives A′ are in S; and S2 =
{A ∈ S1;A′ ∈ S1}. If L be the differential operator with D(L) = {A ∈ S1;A(0) =
A(2π) = 0}, then the equation X(I −X∗X†) = 0 has unique solution.

Theorem 2.8. Let X be Hilbert C∗-module and A,B ∈ L(X) have closed ranges, whit
Ran(B) ⊆ Ran(A). If A†B is invertible, then (A+B)† = (I +A†B)−1A†.

Proof. Since Ran(B) ⊆ Ran(A), A + B = A + AA†B = A(I + A†B). So, it is suffices
to show that, A, (I + A†B) have the reverse order law property. i.e. (A(I + A†B))† =
(I +A†B)−1A†.

From the fact that Ran(A†A(I + A†B)) ⊆ Ran(I + A†B) and Ran((I + A†B)(I +
A†B)†) ⊆ Ran(A†), which is complete the proof.
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Abstract

In this paper we obtain a full asymptotic expansion for the logarithm of the gener-
alized Smith’s determinant ∆k(n) = det

[
(gcd(i, j))k

]
16i,j6n

where gcd(i, j) denotes

the greatest common divisor of i and j. For any integer k > 2 we obtain the following
Stirling type approximation

∆k(n) =
(n
e

)kn
βn
k

√
(2πn)k

(
1 +O

( 1

n

))
,

where βk is an absolute constant defined by

βk =
∏

p

(
1− 1

pk

) 1
p

,

and p runs over all primes.

Keywords: Determinants, Arithmetic functions, Prime numbers

Mathematics Subject Classification [2010]: 15A15, 11C20, 11A25

1 Introduction

In 1875 H.J.S. Smith2 [4] considered the determinant of the matrix [aij ]16i,j6n with aij =
gcd(i, j), the greatest common divisor of i and j. He proved that

det [gcd(i, j)]16i,j6n =
n∏

m=1

ϕ(m), (1)

where ϕ(m) denotes the Euler function of m, counting the number of positive integers not
exceeding m and coprime to m. The above mentioned determinant is known as Smith’s
determinant. Among several generalizations of Smith’s determinant, it is known [3] that
if f is an arithmetic function (a function defined over N) then

det [f(gcd(i, j))]16i,j6n =
n∏

m=1

∑

d|m
µ(d) f

(m
d

)
, (2)

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: mehdi.hassani@znu.ac.ir
2Henry John Stephen Smith, 2 November 1826, Dublin, Ireland – 9 February 1883, Oxford, England
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where µ(d) denotes the Möbius function of d, which is 1 if d = 1, is (−1)k if d is equal to
the product of k distinct primes, and is 0 otherwise. In this paper we are motivated by
the asymptotic growth of generalized Smith’s determinant (2) for f(n) = nk with k ∈ N.
The case k = 1, admitting Smith’s determinant (1), has been studied in [1], where we have
proved that

log
(

det [gcd(i, j)]16i,j6n

)
= n log n+ (α1 − 1)n+

1

2
log n+O(log log n),

such that α1 =
∑

p
1
p log(1 − 1

p) with p running over all primes, is an absolute constant.
In this paper we consider the case k > 2 by proving the following result.

Theorem 1.1. Let k > 2 is fixed integer, and ∆k(n) = det
[
(gcd(i, j))k

]
16i,j6n

. Define
the absolute constant αk by

αk =
∑

p

1

p
log

(
1− 1

pk

)
,

where p runs over all primes. Then, as n→∞ we have

log ∆k(n) = kn log n+(αk − k)n+
k

2
log n+k log

√
2π+

∑

16j6 k
2

kB2j

(2j)(2j − 1)n2j−1
+O

( 1

nk−1

)
,

where Bi denotes the i-th Bernoulli number.

By taking exponent we obtain the following Stirling type approximation for ∆k(n) for
each integer k > 2.

Corollary 1.2. Let k > 2 be a fixed integer, and ∆k(n) is defined as in Theorem 1.1.
Then, as n→∞ we have

∆k(n) =
(n
e

)kn
βnk

√
(2πn)k

(
1 +O

( 1

n

))
,

where βk is an absolute constant defined by

βk =
∏

p

(
1− 1

pk

) 1
p

,

and p runs over all primes.

2 Proofs

Proof of Theorem 1.1. By using the relation (2) we have

∆k(n) =
n∏

m=1

mk gk(m) = n!k
n∏

m=1

gk(m),

where gk(m) =
∑

d|m µ(d)d−k. Since gk is multiplicative, we get

gk(m) =
∏

pa‖m
gk(pa) =

∏

pa‖m

(
1− 1

pk

)
=
∏

p|m

(
1− 1

pk

)
,
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where pa‖m means that a is the largest power of the prime p for which pa|m. Thus,

∆k(n) = n!k
n∏

m=1

∏

p|m

(
1− 1

pk

)
.

We take logarithm to get

log ∆k(n) = k log n! +
n∑

m=1

∑

p|m
log

(
1− 1

pk

)
. (3)

Stirling’s approximation [2] for log n! asserts that given any positive integer r, as n→∞
we have

log n! = n log n− n+
1

2
log n+ log

√
2π +

r∑

j=1

B2j

(2j)(2j − 1)n2j−1
+O

( 1

n2r+1

)
. (4)

To approximate the double sum in (3), we change the order of summations to get

n∑

m=1

∑

p|m
log

(
1− 1

pk

)
=
∑

p6n

log

(
1− 1

pk

)∑

m6n
p|m

1 =
∑

p6n

log

(
1− 1

pk

)⌊
n

p

⌋

=
∑

p6n

log

(
1− 1

pk

)(
n

p
+O(1)

)

= n
∑

p6n

1

p
log

(
1− 1

pk

)
+O


∑

p6n

log

(
1− 1

pk

)


= αk n+ n
∑

p>n

1

p
log

(
1− 1

pk

)−1
+O


∑

p6n

log

(
1− 1

pk

)


Since − log(1− t) ∼ t as t→ 0, we have

∑

p>n

1

p
log

(
1− 1

pk

)−1
�
∑

p>n

1

pk+1
�
∫ ∞

n

dx

xk+1
� 1

nk
,

where f � g has same meaning as f = O(g). Also,

∑

p6n

log

(
1− 1

pk

)
�
∑

p6n

1

pk
�
∫ n

2

dx

xk
� 1

nk−1
.

Thus, we obtain
n∑

m=1

∑

p|m
log

(
1− 1

pk

)
= αk n+O

(
1

nk−1

)
. (5)

We take r = bk2c in (4), and we note that 2bk2c + 1 > k − 1. Considering (3) and (5)
completes the proof.

Proof of Corollary 1.2. Theorem 1.1 implies that

log ∆k(n) = kn log n+ (αk − k)n+
k

2
log n+ k log

√
2π +O

( 1

n

)
.

Taking exponent and considering the approximation eO(
1
n
) = 1 + O( 1

n) completes the
proof.
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3 Conclusion

Smith’s determinant and its generalization are interesting examples of number theoretic
determinants. Since the values of such determinants usually are given in terms of arith-
metic functions, it is interesting to approximate true order of them. In this paper we
obtain a Stirling type approximation for the generalization of Smith’s determinant.
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Abstract

In this paper, we give conditions under which the powers of the multiplication
operator Mz are reflexive on a Banach space of functions analytic on a plane domain.

Keywords: Multiplication operators, Bounded point evaluation, Reflexive operator
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1 Introduction

For any set E and any function f : E → C, define ‖f‖E by

‖f‖E = sup{|f(z)| : z ∈ E}.

If B is bounded domain in the plane, then the Caratheodory hull(C−hull) of B is the
complement of the closure of the unbounded componet of the complement of the closure
of B. The C−hull of B is denoted by B∗. Intuitively, B∗ can be described as the interior
of the outer boundary of B, and in analytic terms it can be defind as the interior of the
set of all points z0 in the plane such that |p(z0)| ≤ sup{|p(z)| : z ∈ B} for all polynomails
p. The componets of B∗ are simply connected; in fact, one can easily see the each of these
components has a connected complement. The componets of B∗ that contains B is denoted
by B1. Note that for all polynomials p, ‖p‖B = ‖p‖B1 . Since B1 is a Caraththeodory
domain, so by the Farrel-Rubel-Shields theorem [2], each bounded analytic function on
B1 can be approximated by a sequence of polynomials pointwise boundedly.

For the algebra B(X ) of all bounded linear operators on a Banach space X , the weak
operator topology (WOT) is the one in which a net Aα converges to A if Aα → Ax weakly,
x ∈ X . Also, the strong operator topology (SOT) is the one in which a net Aα converges
to A if Aα → Ax, x ∈ X .

Recall that if A ∈ B(X ), then Lat(A) is by definition the lattice of all invariant
subspaces of A, and AlgLat(A) is the algebra of all operators B in B(X ) such that
Lat(A) ⊂ Lat(B). An operator A in B(X ) is said to be reflexive if AlgLat(A) = W (A),
where W (A) is the smallest subalgebra of B(X ) that contains A and the identity I is
closed in the weak operator topology.

In [1], it is shown that any powers of the operator Mz is reflexive on Banach spaces
of formal Laurent series. Also, reflexivity of the operator Mz on Hilbert function spaces

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: p.heiatian.n@gmail.com
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has been investigated in [3,5] and for the case of Banach function spaces, see [6]. Here we
give some sufficient conditions so that the powers of the operator Mz, acting on Banach
function spaces becomes reflexive. As, usual, for a good basic source of reflexivity we refer
to [1].

Consider a Banach space X of function analytic on a plane domain G, such that for
each λ ∈ G, the linear functional eλ of evaluation at λ (defined by eλ(f) = f(λ)) is
bounded on X . A complex-valued function ϕ on G for which ϕf ∈ X for every f ∈ X is
called a multiplier of X and the collection of all these multipliers is denoted by M(X ).
Each multiplier ϕ on X determines a multiplication operator Mϕ on X by Mϕf = ϕf ,
f ∈ X . It is well-known that each multiplier is bounded analytic function on G, in fact
‖ϕ‖G ≤ ‖Mϕ‖. The notation ‖ϕ‖∞ = ‖Mϕ‖ is usually used for the norm of the operator
Mϕ.

By H(G) and H∞(G) we will mean respectively the set of analytic functions on a
plane domain G and the set of bounded analytic functions on G. Also, by P(G) we mean
the uniform closure in C(G,C)(the space of continuous functions from G into C ) of the
polynomials. Note that f ∈ P(G) if and only if there exists a sequence of polynomials
{pn}n that converges uniformly to f on every compact subset of G.

2 Main results

We investigate the reflexivity of the powers of the multiplication operator Mz acting on a
Banach function space.

Recal that a sequence {xn}n in a Banach space X is called a Schauder basis of X if for
every x ∈ X there is a unique sequence of scalars {an}n so that x =

∑
n anxn. In this case,

the closed linear span of {xn}n in of all X . Also, for every integer n, the linear functional x∗n
on X defined by x∗n(

∑
i aixi) = ai is a bounded linear functional. These functional {x∗n}n,

which are characterized by the relation x∗n(xm) = δm(n), are called the biorthogonal
functional associated to the basis {xn}. in the weak∗ topology, x∗ =

∑
n x
∗(xn)x∗n for

x∗ ∈ X ∗, and we have convergence in norm for every x∗ =
∑

n x
∗(xn)x∗n if and inly if the

sequence {x∗n}n is a Schauder basis of X ∗. For this to happen, X ∗ must, in particular be
separable. On the other hand this is always the case if X is reflexive.

From now on, let Ω be a domain in the complex plane such that Ω1 is equal to the
open unit disc D. Also suppose that the Banach space X under consideration satisfy the
following axioms:

Axiom (1). X is a subspace of the space of all analytic functions on Ω that are continuous
on Ω.

Axiom (2). For each λ ∈ Ω, the linear functional of evaluation at λ, eλ, is bounded on X .

Axiom (3). The sequences {fk}k and {f∗k}k are Schauder basis for X and X ∗ respectively,
where fk(z) = zk for all integers k and {f∗k}k is also the biorthogonal functionals associated
to {fk}k.

For h =
∑

n ĥ(n)zn ∈ H(D) ∩M(X ) and ω ∈ ∂D, define hω by hω(z) = h(ωz). Then

hω =
∑

n ĥω(n)zn where ĥω(n) = ωnĥ(n) for all n. Note that H(D)∩M(X ) is nonempty
since 1, z ∈ H(D) ∩M(X ).

Definition 2.1. We say that H(D)∩M(X ) is bi-isometrically rotation invariant whenever
ϕ ∈ H(D)∩M(X ), then ϕe−iθ ∈ H(D)∩M(X ), ‖ϕ‖∞ = ‖ϕe−iθ‖∞ and ‖ϕ‖ = ‖ϕe−iθ‖ for
all θ ∈ R.
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Furthermore, we assume that X holds in the following axioms:
Axiom (4). z ∈ X and H(D) ∩M(X ) is bi-isometrically rotation invariant.

The following Lemma extends a result obtained by Allen Shields [4] that have been
proved only for the special case where X is H2(β), the Hilbert space of formal power series.

Lemma 2.2. Let ϕ ∈ H(D)∩M(X ). Then for the sequence {rn =
∑

j r̂n(j)zj} such that

r̂n(j) = (1− j

n+ 1
)ϕ̂(j) whenever j = o, ..., n and is 0 otherwise, we have Mrn → Mϕ in

the weak operator topology.

Theorem 2.3. If P(Ω) ⊂M(X ), then Mzk is reflexive on X for all k ≥ 1.

In the proof of Theorem 2.3, we used the assumption P(Ω) ⊂ M(X ) to show that
H∞(Ω1) ∩ X ⊂ M(X ). So the following corollary is an immediate consequence of the
proof of Theorem 2.3.

Corollary 2.4. If z ∈M(X ) and H∞(Ω1) ∩ X ⊂M(X ), then Mzk is reflexive on X for
all k ≥ 1.

Recall that Mz is called polynomially bounded on X ⊂ H(Ω) if there exists c > 0 such
that ‖p(Mz)‖ ≤ c‖p‖Ω for all pollynomials p.

Theorem 2.5. If Mz is polynomially bounded on X , then Mzk is reflexive on X for all
k ≥ 1.

Proof. Since Mz is polynomially bounded, there exists c > 0 such that ‖p(Mz)‖ ≤ c‖p‖Ω
for all polynomials p. By corollary 2.4, it is sufficient to show that H∞(Ω1)∩X ⊂M(X ).
For this, let f ∈ H∞(Ω1)∩X . By the Farrel-Rubel-Shields theorm, there exists a sequence
{pn} of polynomials converging to f such that for all n, ‖pn‖Ω = ‖pn‖Ω1 ≤ d. for some
d > 0. So we obtain

‖Mpn‖ ≤ c‖pn‖Ω1 ≤ cd
for all n. Since X is reflexive, the unit ball of X is weakly compact. Therefore ball

B(X ) is compact in the weak operator topology and so by passing to a subsequence, if
necessary, we may assume that for some A ∈ B(X ), Mpn → A in the weak operator
topology. Using the fact that M∗pn → A∗ in the weak operator topology and acting these
operators on eλ we obtain

pn(λ)eλ = M∗pneλ → A∗eλ

wekly. Since pn(λ)→ f(λ), we see that

A∗eλ = f(λ)eλ.

Because the closed linear span of {eλ : λ ∈ Ω} is weak star dense in X ∗, we conclude
that A = Mf and so f ∈M(X ). Thus indeed H∞(Ω1) ∩ X ⊂M(X ).
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Ub-majorization on Mm,n and its linear preservers1
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Abstract

An n-by-n real matrix (not necessarily nonnegative) R is g-row balanced (gener-
alized row balanced) if all its row sums are zero. Let A, B ∈Mn,m. Then A is said
to be ub-majorized by B (denoted by A ≺ub B) if A = RB, for some n-by-n upper
triangular g-row balanced matrix R. We wish to find the structure of all (strong)
linear preservers of ≺ub on Rn and strong linear preservers of ≺ub on Mn,m.

Keywords: Doubly stochastic matrix, Matrix majorization, Row stochastic matrix

Mathematics Subject Classification [2010]: 15A04, 15A51

1 Introduction

Let Mn,m be the set of all n-by-m real matrices, and let Rn be the set n-by-1 real vectors.
A matrix R = [rij ] ∈ Mn is called g-row balanced if

∑n
j=1 rij = 0, for all i (1 ≤ i ≤ n).

The collection of all n-by-n upper triangular g-row balanced matrices is denoted by Rub
n .

The standard basis of Rn is denoted by {e1, . . . , en}, and e = (1, 1, . . . , 1)t ∈ Rn. Let [T ]
be the matrix representation of a linear function T : Mn,m → Mn,m with respect to the
standard basis. For a subset A ⊂ Rn B(A) := {∑m

i=1 λiai | m ∈ N, ∑m
i=1 λi = 0, ai ∈

A, i ∈ Nm}. Let A(n1, . . . , nl|m1, . . . ,mk) be the submatrix of A obtained from A by
deleting rows n1, . . . , nl and columns m1, . . . ,mk, let A(n1, . . . , nl) be the abbreviation of
A(n1, . . . , nl|n1, . . . , nl).
Let V be a linear space of matrices, T be a linear function on V, and R be a relation on
V. The linear function T is said to preserve R, if R(T X , T Y) whenever R(X ,Y). Also, T
is said to strongly preserve R, if

R(T X , T Y)⇔ R(X ,Y).

Definition 1.1. For A,B ∈ Mn,m, it is said that A is ub-majorized by B, and denoted
by A ≺ub B, if there exists R ∈ Rub

n such that A = RB.

In this paper, the linear preservers and strong preservers of ≺ub on Rn and Mn,m,
respectively, are fully characterized. For some deeper discussions of majorization and
linear preservers of majorization we refer the reader to [1]- [3].

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: a.ilkhani@vru.ac.ir
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An n-by-n real matrix (not necessarily nonnegative) A is g-row stochastic (generalized
row stochastic) if all its row sums are one. The collection of all n-by-n upper triangular
g-row stochastic matrices is denoted by Rgut

n .

The present paper continues in two further sections. Section 2 is devoted to a study of
≺ub on Rn. In this section an equivalent condition for ub-majorization on Rn is obtained
and some preliminaries are presented. In particular, the structure of all linear functions
T : Rn → Rn preserving (strongly preserving) ub-majorization are characterized. Section 3
is assigned to investigate this relation on Mn,m. In this section the strong linear preservers
of ≺ub on Mn,m is stated.

2 G-row balanced on Rn

This section studies some facts of ≺ub that are necessary for studying the linear preservers
of ≺ub on Rn. Also, we characterize the (strong) linear preservers of this relation T : Rn →
Rn.

The following proposition gives an equivalent condition for ub-majorization on Rn.

Proposition 2.1. Let x = (x1, . . . , xn)t, y = (y1, . . . , yn)t ∈ Rn. Then x ≺ub y if and
only if for each i (1 ≤ i ≤ n) xi ∈ B{yi, . . . , yn}.

Now we assert some preliminaries to express our main results.

Lemma 2.2. Let T : Rn → Rn be a linear preserver of ≺ub. Assume S : Rn−k → Rn−k

is a linear function such that [S] = [T ](1, 2, . . . , k). Then S preserves ≺ub on Rn−k.

Proof. Let x′ = (xk+1, . . . , xn)t, y′ = (yk+1, . . . , yn)t ∈ Rn−k, and let x′ ≺ub y
′. Then

x := (0, . . . , 0, xk+1, . . . , xn)t ≺ub y := (0, . . . , 0, yk+1, . . . , yn)t, by Proposition 2.1, and
hence Tx ≺ub Ty. That is, (∗, Sx′)t ≺ub (∗, Sy′)t. It ensures that Sx′ ≺ub Sy

′. Therefore,
S preserves ≺ub on Rn−k.

Lemma 2.3. Let T : Rn → Rn be a linear preserver of ≺ub. Then [T ] is upper triangular.

Proof. Let [T ] = [aij ]. The proof is by induction on n. For n = 1, there is nothing to
prove. If n > 1; Assuming the statement to hold for n − 1, we will prove it for n. Let
S : Rn−1 → Rn−1 be the linear function with [S] = [T ](1). Lemma 2.2 ensures that the
linear function S preserves ≺ub on Rn−1. The induction hypothesis insures that [S] is an
upper triangular matrix. We only need to show that a21 = a31 = · · · = an1 = 0. As
e1 ≺ub e2, it shows that Te1 ≺ub Te2. Hence a31 = a41 = · · · = an1 = 0. Therefore, [T ] is
an upper triangular matrix.

Lemma 2.4. Let T : Rn → Rn be a linear function such that akt 6= 0 for some k, t
(1 ≤ k, t ≤ n) where [T ] = [aij ]. Suppose that ak+1t = · · · = ant = 0 and there exists some
j (t+ 1 ≤ j ≤ n− 1) such that ak+1j = · · · = anj = 0. Then T does not preserve ≺ub.

Proof. There is no loss of generality in assuming akt = 1. Fix x = et and y = −akjet + ej .
One can easily see that x ≺ub y but Tx ⊀ub Ty. It follows that T does not preserve ≺ub,
as desired.

The following theorem characterizes the structure of all linear functions T : Rn → Rn,
preserving ≺ub.
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Theorem 2.5. Let T : Rn → Rn be a linear function. Then T preserves ≺ub if and only
if one of the following assertions holds.

(i) Te1 = · · · = Ten−1 = 0. In other words

[T ] =




0 . . . 0 a1n
0 . . . 0 a2n
...

...
...

...
0 . . . 0 ann


 .

(ii) There exist t (1 ≤ t ≤ n − 1) and 1 ≤ i1 < · · · < im ≤ n − 1 such that
ai1t, ai2t+1, . . . , aimn−1 6= 0, and

[T ] =




0 ∗
ai1t ∗

. . .

ai2t+1

. . .

0 aimn−1
0 ∗




,

where we have one of the following conditions.
card{aim+1n, . . . , ann} ≥ 2;
There are some k (2 ≤ k ≤ m) and some i (ik−1 < i < ik) such that ri 6= rik = · · · = rn;
ri1 = ri1+1 = · · · = rn, where ri is the sum of entries on the ith row of [T ].

Proof. We first suppose that T preserves ≺ub and (i) does not hold. As T preserves ≺ub on
Rn, Lemma 2.3 shows that [T ] is upper triangular. To prove (ii) we proceed by induction
on n. First, let n = 2. We just prove r1 = r2. Without loss of generality assume that
a11 = 1. Choose x = e1 and y = (a22 − a12)e1 + e2. We see that x ≺ub y, hence that
Tx ≺ub Ty, and finally that r1 = r2. Now assume that n ≥ 3 and the statement holds
for all linear preservers of ≺ub on Rn−1. Let S : Rn−1 → Rn−1 be the linear function
with [S] = [T ](1). Lemma 2.2 ensures that S preserves ≺ub on Rn−1. By applying the
induction hypothesis for S, we need only consider two steps.
Step 1. S satisfies (i). Lemma 2.4 ensures that the first nonzero column of T should
be its (n − 1)st column. So we have to just show that card{aim+1n, . . . , ann} ≥ 2 or
r1 = r2 = · · · = rn. We may assume without loss of generality that a1n−1 = 1. If
card{aim+1n, . . . , ann} = 1, we claim that r1 = rn. Consider x = (ann − a1n−1)en−1 and
y = (ann − a1n)en−1 + en. Observe that x ≺ub y, and then Tx ≺ub Ty. It implies that
r1 = rn.
Step 2. S satisfies (ii). If the columns 1, . . . , t − 1 of T are zero, then there is noth-
ing to prove. Otherwise, Lemma 2.4 ensures that the first nonzero column of T should
be its (t − 1)st column. If card{aim+1n, . . . , ann} ≥ 2, there is nothing to prove. If
card{aim+1n, . . . , ann} = 1; If for [S] there are some k (3 ≤ k ≤ m) and some i (ik−1 <
i < ik) such that ri 6= rik = · · · = rn, then (ii) holds for [T ]. Otherwise, we have
ri2 = ri2+1 = · · · = rn. If there is some i (1 < i < i2) such that ri 6= ri2 , then (ii)
holds for [T ]. If not; Then r2 = r3 = · · · = rn. We should prove r1 = rn. With-
out loss of generality we may assume that a1t−1 = 1. If r1 6= rn; Define x = et−1 and
y = (ann −

∑n
j=t a1j)et−1 +

∑n
j=t ej . As x ≺ub y, we see that Tx ≺ub Ty, which would be

a contradiction. Hence r1 = rn.
For the converse, we prove the sufficiency of the conditions. Let x = (x1, . . . , xn)t,

y = (y1, . . . , yn)t ∈ Rn such that x ≺ub y. We claim that Tx ≺ub Ty. If (i) holds, then
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Tx = (0, . . . , 0)t, and so Tx ≺ub Ty. If (ii) holds; We proceed by induction on n. Suppose
that n ≥ 2 and that the assertion has been established for all linear functions on Rn−1

with the conditions described in the hypothesis. Let S : Rn−1 → Rn−1 be the linear
function with [S] = [T ](1). Set x′ = (x2, . . . , xn)t, y′ = (y2, . . . , yn)t. Then x′ ≺ub y

′, and
the induction hypothesis for S ensures that Sx′ ≺ub Sy

′. That is, ((Tx)2, . . . , (Tx)n)t ≺ub

((Ty)2, . . . , (Ty)n)t. It remains to prove that (Tx)1 ∈ B{(Ty)1, . . . , (Ty)n}. Notice that
B{(Ty)1, . . . , (Ty)n} = {β1((Ty)1−annyn)+β2((Ty)2−annyn)+. . .+βim((Ty)im−annyn)+
βim+1(aim+1n − ann)yn + . . .+ βn−1(an−1n − ann)yn : β1, . . . , βn−1 ∈ R}.
If card{aim+1n, . . . , ann} ≥ 2; Without loss of generality an−1n 6= ann.

If yn 6= 0; Set βn−1 = (Tx)1
(an−1n−ann)yn

, and the other βi = 0. Then (Tx)1 ∈ B{(Ty)1, . . . , (Ty)n}.
If yn = 0; In this case if yn−1 6= 0, then by choosing βim = (Tx)1

aimn−1yn−1
, and the other βi = 0,

we obtain desired conclusion. By continuing this process, if yn = yn−1 = · · · = yt = 0,
then xn = xn−1 = · · · = xt = 0, and so Tx = (0, . . . , 0)t. It follows that (Tx)1 ∈
B{(Ty)1, . . . , (Ty)n}.
If card{aim+1n, . . . , ann} = 1; With an argument almost identical to that of the above, the
theme can be proved.
Therefore, T preserves ≺ub.

Lemma 2.6. Let T : Mn,m → Mn,m be a linear function that strongly preserves ub-
majorization. Then T is invertible.

Proof. Suppose that T (A) = 0, where A ∈ Mn,m. Notice that since T is linear, we have
T (0) = 0 = T (A). Then it is obvious that T (A) ≺ub T (0). Therefore, A ≺ub 0, because T
strongly preserves ub-majorization. So A = 0, and hence T is invertible.

The following theorem characterizes all the linear functions T : Rn → Rn which
strongly preserve ub-majorization.

Theorem 2.7. A linear function T : Rn → Rn strongly preserves ≺ub if and only if
[T ] = αA, for some α ∈ R \ {0}, and an invertible matrix A ∈ Rgut

n .

Proof. First, assume that T strongly preserves≺ub. Lemma 2.6 ensures that T is invertible.
Let [T ] = [aij ]. Theorem 2.5 ensures that [T ] is upper triangular, r1 = · · · = rn, and
a11, . . . , ann 6= 0. So there exist an invertible matrix A ∈ Rgut

n and α ∈ R \ {0} such that
[T ] = αA.

Next, assume that there exist an invertible matrix A ∈ Rgut
n and α ∈ R \ {0} such

that [T ] = αA. Then both of T and T−1 preserve ≺ub on Rn and, therefore, T strongly
preserves ≺ub.

3 G-row balanced on Mn,m

In this section, we characterize strong linear preservers ub-majorization T : Mn,m →
Mn,m.

Let E be the n-by-n matrix with all of the entries of the last column equal to one and
the other entries equal to zero. Notice that for each R ∈ Rub

n we have ER = RE = 0.
We need the following lemmas to prove the last result of the paper.

Lemma 3.1. Let A ∈Mn. Then the following conditions are equivalent.
a) For each matrix D ∈ Rub

n AD = DA.
b) For some α, β ∈ R A = αI + βE.
c) For each matrix D ∈ Rub

n and for all x, y ∈ Rn (Dx+ADy) ∼ub (x+Ay).
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Proof. (a→ b) First by considering

D =




1 −1
1 −1 0

. . .

0 1 −1
0



,

and next

D =




0
0

. . . 0
0

2 0 −2
1 −1

0




,

we see that there exist some α, β ∈ R such that A = αI + βE.
(b → c) If D ∈ Rub

n and x, y ∈ Rn; Then Dx + ADy = D(x + Ay), and hence (Dx +
ADy) ∼ub (x+Ay).
(c → a) Fix i (1 ≤ i ≤ n). Set x = e − Aei and y = ei. By the hypothesis, (−DA +
AD)ei ∼ub e, and then (−DA+AD)ei = 0. Thus AD = DA.

For each i, j (1 ≤ i, j ≤ m) consider the embedding Ej : Rn → Mn,m and the
projection Ei : Mn,m → Rn, where Ej(x) = xetj and Ei(A) = Aei. It is easy to show that

for every linear function T : Mn,m → Mn,m, TX = T [x1 | . . . | xm] = [
∑m

j=1 T
j
1xj | . . . |∑m

j=1 T
j
mxj ], where T j

i = EiTE
j .

It is easy to see that if T : Mn,m →Mn,m is a linear preserver of ∼ub, then T j
i preserves

∼ub on Rn, for all i, j (1 ≤ i, j ≤ m).

Lemma 3.2. Let T : Mn,m → Mn,m be a preserving of ∼ub. If for some i (1 ≤ i ≤
m) there exist some k (1 ≤ k ≤ m) such that T k

i is invertible, then
∑m

j=1A
j
ixj =

Ak
i

∑m
j=1 α

j
ixj + E

∑m
j=1 β

j
i xj for some αj

i , β
j
i ∈ R, where A

j
i = [T j

i ].

Proof. We may assume without loss of generality that i, k = 1 and j = 2. Let D ∈ Rub
n

and x, y ∈ Rn. Then D[x|y|0| . . . |0] ∼ub [x|y|0| . . . |0], and so
T [Dx|Dy|0| . . . |0] ∼ub T [x|y|0| . . . |0]. It implies that [A1

1Dx + A2
1Dy | ∗ | ∗] ∼ub [A1

1x +
A2

1y | ∗ | ∗], and thus A1
1Dx+ A2

1Dy ∼ub A
1
1x+ A2

1y. Lemma 3.1 ensures that there exist
α2
1, β

2
1 ∈ R such that A2

1 = α2
1A

1
1 + β21E.

Lemma 3.3. If T : Mn,m → Mn,m strongly preserves ∼ub, then for each i (1 ≤ i ≤ m)

there exists some j (1 ≤ j ≤ m) such that T j
i is invertible.

Proof. Consider I = {1 ≤ i ≤ m | T j
i e1 = 0, ∀1 ≤ j ≤ m}. We claim that I is empty. If

I is not empty; Without loss of generality I = {1, 2, . . . , k}, where 1 ≤ k ≤ m. If k = m,
choose X = [e1 | 0 | . . . | 0] ∈ Mn,m and conclude that X 6= 0 but TX = 0, which is
a contradiction, by Lemma 2.6. If k < m, by Lemma 3.3, for i (k + 1 ≤ i ≤ m) and j
(1 ≤ j ≤ m), there exist invertible matrices Ai and αj

i , β
j
i ∈ R such that

∑m
j=1A

j
ixj =

Ai
∑m

j=1 α
j
ixj + E

∑m
j=1 β

j
i xj . Then there exist γ1, . . . , γm ∈ R, not all zero, such that

γ1(α
1
k+1, . . . , α

1
m)t + · · · + γm(αm

k+1, . . . , α
m
m)t = 0. Let xj = γje1 for each j (1 ≤ j ≤ m)

and X = [x1 | . . . | xm] ∈ Mn,m. We observe that X 6= 0, and TX = 0, a contradiction.
Therefore, I is empty.
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Theorem 3.4. Let T : Mn,m → Mn,m be a linear function. Then T strongly preserves
∼ub if and only if there exist R,S ∈ Mm, R(R + S) is invertible, and invertible matrix
A ∈ Rgut

n such that TX = AXR+ EXS.

Proof. First, we prove the sufficiency of the conditions. Let X,Y ∈Mn,m such that X ∼ub

Y . It means that X = DY for some D ∈ Rub
n . Then TX = AXR + EXS = A(DY )R +

E(DY )S = A(DY )R = (ADA−1)(AY R + EY S) = (ADA−1)TY . As ADA−1 ∈ Rub
n ,

we see that TX ∼ub TY . On the other hand, if TX ∼ub TY , then there exists some
D ∈ Rub

n such that TX = DTY . So AXR + EXS = D(AY R + EY S), and hence
XR + EXS = (A−1DA)Y R, because of A is invertible. Multiply this relation by E, and
since R + S is invertible, we conclude that EX = 0. Substitute EX = 0 in the relation
AXR+EXS = D(AY R+EY S), and as R is invertible, conclude that X = (A−1DA)Y .
Thus X ∼ub Y . Therefore, T strongly preserves ∼ub.

Next, assume that T strongly preserves ∼ub. For m = 1 see Theorem 2.7. Let m > 1.
Lemma 3.3 enures that for each i (1 ≤ i ≤ m) there exists some j (1 ≤ j ≤ m) such
that T j

i is invertible. Lemma 3.2 ensures that there exist invertible matrices A1, . . . , Am ∈
Mn, vectors a1, . . . , am ∈ Rm, and a matrix S′ ∈ Mm such that TX = [A1Xa1 | . . . |
AmXam]+EXS′. One can prove rank{a1, . . . , am} ≥ 2. Without loss of generality, assume
that {a1, a2} is a linearly independent set. It implies that for every x, y ∈ Rn, there exists
Bx,y ∈ Mn,m such that Bx,ya1 = x and Bx,ya2 = y. Let X ∈ Mn,m and invertible
matrix D ∈ Rub

n . So DX ∼ub X, and then TDX ∼ub TX. Thus [A1DXa1 | . . . |
AmDXam] + EDXS ∼ub [A1Xa1 | . . . | AmXam] + EXS. Clearly, A1DXa1 + A2DXa2
∼ub A1Xa1 +A2Xa2. So for each X ∈Mn,m and each invertible matrix D ∈ Rub

n we have

DXa1 +A−11 A2DXa2 ∼ub Xa1 +A−11 A2Xa2. (1)

By replacing X = Bx,y in (1) Dx+A−11 A2Dy ∼gut x+A−11 A2y, for each invertible matrix
D ∈ Rub

n , and for each x, y ∈ Rn. Lemma 3.1 states that A2 = αA1 + βE for some
α, β ∈ R. For every i ≥ 3 if ai = 0 we can choose Ai = A1. If ai 6= 0, then {a1, ai} or
{a2, ai} is linearly independent. Similar to above Ai = γiA1 + δiE for some γi, δi ∈ R.
Define A := A1. Then for every i ≥ 2, Ai = αiA + βiE, for some αi, βi ∈ R. It implies
that TX = [AXa1 | AX(r2a2) | . . . | AX(rmam)] + EXS = AXR + EXS, in which R =
[a1 | r2a2 | . . . | rmam], for some r2, . . . , rm ∈ R and S = S′ + [0 | β2a2 | . . . | βmam].

4 Conclusion

We know that majorization and linear preservers of a relationship are of particular impor-
tance. For this reason, in this article we define a new kind of relationship and we found
its linear preservers.
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Abstract

The matricial range has been introduced by W. Areveson as a matrix valued ex-
tension of the numerical range. Noting the connection between the numerical range
and numerical radius, we introduce a quantity related to the matricial range of a ma-
trix. We present some of its properties which are extensions of the results about the
numerical radius.
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1 Introduction

Throughout this paper assume that Mn is the algebra of all n× n matrices with complex
entries and I denotes the identity matrix in any size. We write A ≥ 0 (A > 0), when A is
a positive semidefnite (positive definite) matrix. The well-known (Löwner) partial order
on the real space of all Hermitian matrices is defined by A ≤ B if and only if B −A ≥ 0.

A well-known concept in the matrix theory is the numerical range. The numerical
range of a matrix A ∈ Mn is defined by W (A) = {x∗Ax; x ∈ Cn, ‖x‖ = 1}. This set
has many applications, for example in numerical analysis and differential equations. The
numerical radius of a matrix A ∈Mn is defined by

ω(A) = sup{|z|; z ∈W (A)} = sup{|x∗Ax| ; x ∈ Cn, ‖x‖ = 1}.

Some basic properties of the numerical radius are as follows:

Theorem A. For every A,B ∈Mn

(i) ω(A) = ω(A∗) and ω(U∗AU) = ω(A) for every unitary U ∈Mn;

(ii)
1

2
‖A‖ ≤ ω(A) ≤ ‖A‖ and ω(A) = ‖A‖ if A is normal;

(iii) ω(A) ≥ 1

2

∥∥|A|2 + |A∗|2
∥∥1/2 ≥ 1

2
‖A‖.

Moreover, it is known that ω(A) ≤ 1 if and only if there exits a Hermitian matrix H

such that

[
I +H T
T ∗ I −H

]
is positive semi-definite.

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: kian@ub.ac.ir
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A map Φ : Mn → Mm is called positive if Φ(M+
n ) ⊆ M+

m, in which M+
n is the set of

all positive semi-definite matrices in Mn. Moreover, for k ∈ N, the mapping Φ is called
k-positive if the mapping Φk : Mk(Mn) → Mk(Mm) defined by Φk([Aij ]) = [Φ(Aij)] is
positive. If Φ : Mn → Mm is k-positive for every k ∈ N, then Φ is called completely
positive (CP for short). Φ is called unital if Φ(I) = I.

As a matrix valued extension of the numerical range, W. Arveson introduced the k’th
matricial range of A ∈Mn by

W k(A) = {Φ(A); Φ : C∗(A)→Mk is a unital CP map},

where C∗(A) is the unital C∗-algebra generated by A. The matricial range has favourite
properties, some of them like those of the numerical range. As a well-known property of
the numerical range, the Toeplitz-Hausdorff result says that it is a convex set. Fortunately,
the matricial range enjoys this property in a stronger manner. It is known that the matri-
cial range of a matrix is C∗-convex. A set K ⊆Mn is called C∗-convex, if X1, . . . , Xm ∈ K
and C1, . . . , Cm ∈ Mn with

∑m
j=1C

∗
jCj = I imply that

∑m
j=1A

∗
jXjAj ∈ K. Indeed, this

is a noncommutative generalization of linear convexity. Some basic properties of the ma-
tricial range reads as follows:

Theorem B. If T ∈Mn and k ∈ N, then

(i) W k(T ∗) = W k(T );

(ii) W k(U∗TU) = W k(T ) for each unitay U ∈Mn;

(iii) W k(αIn) = {αIk} and W k(αT + βI) = αW k(T ) + βIk for all α, β ∈ C.

It should be remarked that except in some special cases, it is not routine to obtain the
matricial ranges of a matrix.

The main aim of the preset work is to consider a related concept to the matricial range
in parallel to the connection of the numerical range and numerical radius.

2 Main results

Minding the matricial range, it is natural to think about a possible extension of the
numerical radius. However, a direct extension as max{‖X‖; X ∈ W k(A)} would not be
interesting, because it is exactly equal to ‖A‖.

We introduced the following quantity related to the matricial range.

Definition 2.1. For A ∈Mn, we define

ωk(A) = sup {|TrΦ(A)|; Φ : C∗(A)→Mk is unital CP map} .

where Tr(·) denotes the canonical trace.

It is easy to see that for every k ∈ N,

(i) ωk(A∗) = ωk(A);

(ii) ωk(U∗AU) = ωk(A) for every unitary U ;

(iii) ωk(A) ≤ k‖A‖ equality holds if A is normal.

We present some other properties of ωk(A) which are extension of facts in Theorem A.
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Theorem 2.2. Let A ∈ Mn and k ∈ N. Then ωk(A) ≤ k if and only if there exits a

Hermitian matrix H ∈Mk such that

[
I +H T
T ∗ I −H

]
is positive semi-definite.

Theorem 2.3. Let A,B ∈Mn. For every k ∈ N

ωk(AB) ≤ k

2

∥∥∥|A∗|2 + |B|2
∥∥∥ .

The next theorem provides an extension of (iii) of Theorem A.

Theorem 2.4. Let A ∈Mn and k ∈ N. Then

ωk(A) ≥ k

2

∥∥|A|2 + |A∗|2
∥∥1/2 .
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Abstract

By applying the steepest descent technique to the nested splitting conjugate gradi-
ent (NSCG) iteration scheme, we introduce a non-stationary iteration method named
steepest descent nested splitting conjugate gradient (SDNSCG) iteration method to
solve non-symmetric positive definite linear systems. Numerical results verify the
effectiveness and robustness of the SDNSCG iteration method.
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1 Introduction

In many problems in scientific computing we encounter with a system of linear equations
such as

Ax = b, (1)

where A ∈ Rn×n is a nonsingular matrix, x ∈ Rn is an unknown vector and b ∈ Rn is a
given vector. We consider a symmetric positive definite splitting

A = B − C, (2)

where B is a symmetric positive definite matrix and ρ(B−1C) < 1. Then the system of
linear equations (1) is equivalent to the fixed-point equation

Bx = Cx+ b.

For a given initial guess x(0), suppose that we have computed approximations x(0), x(1),
· · · , x(k) to the solution x∗ of the system of linear equations (1). Then the next approxi-
mation x(k+1) is obtain by solving the system of linear equations

Bx = Cx(k) + b, (3)

by the conjugate gradient method. It is actually inner/outer iterations, which employees
the conjugate gradient method as inner iteration to approximate each outer iterate, while

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: mo.khorsand@mail.um.ac.ir
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outer iteration is induced by the (2) splitting. This is the initial idea of the nested splitting
conjugate gradient (NSCG) method.

Axelsson et al. [1] proposed a class of the NSCG method for solving linear systems
with a coefficient matrix with a dominant positive definite symmetric part. They proposed
some implementation strategies for choosing matrices B and C respect to the coefficient
matrix A. In the special case for nonsymmetric and positive definite coefficient matrix A,
they choose B = H and C = S, When

H =
AT +A

2
, S =

AT −A
2

, (4)

are the symmetric and skew-symmetric parts of matrix A, respectively. Moreover, the
regularizing technique was proposed by using a quasi-Hermitian splitting

A = B(α)− C(α), (5)

where
B(α) = B + αI, C(α) = C + αI, (6)

and α ≥ 0 is a regularizing parameter [1].
For non-Hermitian positive definite coefficient matrix A, Li and Wu [3] proposed a

single step Hermitian and skew-Hermitian (SHSS) method described as

(αI +H)x(k+1) = (αI + S)x(k) + b, k = 0, 1, · · · , (7)

where H and S are as in (4).
Wang et al. [4] proposed a single-step iteration method for non-Hermitian positive

definite linear systems which described as

(P +H)x(k+1) = (P + S)x(k) + b, k = 0, 1, · · · , (8)

where H and S are as in (4) and P is a given Hermitian positive definite matrix. When
P = αI, this method reduced to the SHSS method [3]. As an other choice, we have
P = αH, see [4] for more details.

We can consider (7) and (8) as classes of the regularized NSCG method.
Recently, Yang et al. [6], by applying the minimum residual technique to the Hermitian

and skew-Hermitian (HSS) iteration scheme, proposed a non-stationary iteration method
named minimum residual HSS (MRHSS).

Motivated by [5,6], we apply the steepest descent technique to the nested splitting con-
jugate gradient iteration scheme and introduce a non-stationary iteration method named
steepest descent nested splitting conjugate gradient (SDNSCG) iteration method to solve
non-symmetric positive definite linear systems.

2 Main results

The linear system (3) can be rewritten as

x = x(k) +B−1r(k),

where r(k) = b − Ax(k) is the kth residual of the linear system (1). Thus, the NSCG
iteration scheme (3) can be rewritten as

x(k+1) = x(k) + δ(k), (9)
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where

δ(k) = B−1r(k), (10)

can be consider as the search direction from x(k) to x(k+1). The step size in (9) is unitary.
Thus, for improving the efficiency of the iteration scheme (9), we introduce an arbitrary
positive parameter βk to control the step sizes, which leads to the following new iteration
scheme:

x(k+1) = x(k) + βkδ
(k). (11)

The residual form of the iteration (11) can be written as

r(k+1) = r(k) − βkAδ(k). (12)

From the steepest descent algorithm and the Petrov-Galerkin condition we have

〈r(k) − βkAδ(k), r(k)〉 = 0,

and this yields

βk =
〈r(k), r(k)〉
〈Aδ(k), r(k)〉 . (13)

Therefore, the SDNSCG algorithm can be describe as follows:

Algorithm 2.1. The steepest descent NSCG algorithm

1. Select an initial guess x(0), compute r(0) = b−Ax(0)

2. For k = 0, 1, 2, · · · , until convergence, Do:

3. Solve system Bδ(k) = r(k) by the CG method

4. w = Aδ(k)

5. β = 〈r(k),r(k)〉
〈w,r(k)〉

6. x(k+1) = x(k) + βδ(k)

7. r(k+1) = r(k) − βw

8. End Do

Remark 2.2. From relation (11), the iteration sequence of the SDNSCG method yields

x(j+1) = x(j) + βjB
−1r(j). (14)

Therefore, we can obtain

x(m) = x(0) +B−1
m−1∑

j=0

βjr
(j). (15)

Applying (12), with respect to (10), recursively for k = j − 1, · · · , 1, 0, we obtain

r(j) =




0∏

i=j−1
(I − βiB−1)


 r(0). (16)
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By substituting (16) into (15), the approximate solution x(m) yields as

x(m) = x(0) +B−1
m−1∑

j=0

βj




0∏

i=j−1
(I − βiB−1)


 r(0).

So, the approximate solution x(m) does not belong to the affine space x0 +Km, where Km

is a Krylov subspace. This means the SDNSCG iteration method is not a standard Krylov
subspace method.

3 Numerical results

In this section, we give two examples to demonstrate the performance of the SDNSCG
method for solving the linear system (1). Numerical comparisons with steepest descent
(SD) and NSCG methods are also presented to show the advantage of the SDNSCG
method.

Each iterations process is started from an initial vector having all entries equal to zero,
and terminated once either the iteration number is over 10000 or the current iteration
residual r(k) = b − Ax(k) satisfies ||r(k)||2/||r(0)||2 ≤ 10−10, where r(0) = b − Ax(0) is the
initial residual. In addition, we take the right hand side vector b such that the exact
solution of the system of linear equations (1) is x∗ = (1, 1, · · · , 1)T .

Example 3.1. Consider the non-symmetric positive definite linear system (1) with A =
tridiag(−2, 4,−1) as the coefficient matrix. We apply the methods for different dimensions
n to the linear system. For each method, we reported the number of iterations and CPU
time in second (in parentheses) in the Table 1. In the Table 1, we observe that for this

Table 1: Results for the Example 3.1

Method n = 1000 n = 2000 n = 3000 n = 4000 n = 5000

SD 65(0.187) 63(0.594) 62(1.375) 61(2.218) 60(3.753)

NSCG 19(0.531) 18(2.102) 18(4.943) 18(6.531) 18(9.671)

SDNSCG 19(0.328) 18(1.843) 18(4.328) 18(5.963) 18(8.937)

example the SD method performs better than the other two methods in term of the CPU
time. Moreover, the NSCG and SDNSCG methods give similar results for this example.

Example 3.2. For the second example, we consider test matrix nos1 of dimension n = 237
from Harwell-Boeing collection as the coefficient matrix A in the linear system (1). The
results of this problem presented in the Table 2. In Table 2, the † sign for the CPU time

Table 2: Results for the Example 3.2

SD NSCG SDNSCG

CPU-time † 11.265 0.062

iterations > 10000 1753 2

||r(k)||2 1.3387e+5 0.7697 0.0104

||x(k) − x∗||2 11.9520 9.5606e-4 1.56658e-11

means that the method was not converged in 10000 iterations. The results in the Table
2 show the efficiency and advantage of the SDNSCG method versus the other methods.

279



Steepest descent NSCG method

Figure 1: Convergence history of the methods for 100 first iterations

Moreover, we compare the convergence history of the methods for 100 first iterations in
the Figure 1. Figure 1 shows, for this example the residual norm of the SDNSCG method
decreases faster and sharper versus the other methods.

4 Conclusion

For non-symmetric positive definite system of linear equations, we present a kind of steep-
est descent NSCG (SDNSCG) iteration method to approximate its solution. Numerical
results showed that the SDNSCG iteration method is very efficient and robust, especially
for the second example.
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The main aim of this article is to obtain numerical radius inequalities for the Young
and Heinz types of positive matrices A and B.
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1 Introduction

Suppose that (H , 〈 . , . 〉) is a complex Hilbert space and B(H ) denotes the C∗-algebra
of all bounded linear operators on H . In the case when dimH = n, we identify B(H )
with the matrix algebra Mn(C) of all n × n matrices with entries in the complex field,
M+
n (C) and M++

n (C) are the cones of positive semidefinite and strictly positive semidefinite
matrices in Mn(C). An operator T ∈ B(H ) is called positive(positive semidefinite for a
matrix) if 〈Tx, x〉 ≥ 0 for all x ∈ H , then write T ≥ 0. In Mn(C), beside the usual
matrix product, the entrywise product of two matrices T = (tij) and S = (sij) is called
their Hadamard(Schur) product T ◦ S = (tijsij), a principal submatrix of the tensor
product T ⊗ S = (tijS)1≤i,j≤n. The Schur Theorem says that the Hadamard product
of two positive semidefinite matrices is positive semidefinite. Therefore, if T = (tij)
is positive semidefinite and x1, x2, ..., xn are real numbers, then the matrices (tij)

k and
(xixjtij) = diag(x1, x2, ..., xn)Tdiag(x1, x2, ..., xn) are positive semidefinite for any positive
integer k. We shall say two matrices X and Y are congruent if Y = S∗XS for some
nonsingular matrix S(i.e. detS 6= 0). Note that congruence is an equivalence relation, so
if X is positive, then every congruence matrix to X is also positive.
The numerical range of an operator T ∈ B(H ) is the subset of the complex number C,
given by

W (T ) = {〈Tx, x〉 : x ∈ H, ‖ x ‖= 1}.

The following properties of W (T ) are immediate:
(i) W (αI + βT ) = α+ βW (T ) for α, β ∈ C;
(ii) W (T ∗) = {λ;λ ∈W (T )};
(iii) W (U∗TU) = W (T ) for any unitary U.
The following lemma and theorems can be found in [1].

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: f.goli@ pgs.usb.ac.ir
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Lemma 1.1. Let T be an operator on a two-dimensional space. Then W (T ) is an ellipse
whose foci are the eigenvalues of T .

Theorem 1.2. The numerical range of an operator is convex.

Theorem 1.3. The spectrum of an operator is contained in the closure of its numerical
range.

The numerical radius w(T ) of an operator T ∈ B(H ) is given by

w(T ) = sup{|λ| : λ ∈W (T )}.

The numerical radius is not unitarily invariant but it is weakly unitarily invariant.
This means that w(UTU∗) = w(T ) for any unitary matrix U . The numerical radius, w(·)
is a norm.
This norm is equivalent to the operator norm ‖ · ‖. Recall that the operator norm of an
operator T ∈ B(H ) is defined as ‖T‖ = sup‖x‖=1 ‖Tx‖. In fact for any T ∈ B(H ), we
have

‖T‖
2
≤ w(T ) ≤ ‖T‖. (1)

The inequalities in (1) are sharp: The second inequality becomes an equality if T is normal,
while the first inequality becomes an equality if T 2 = 0.

For any operator T ∈ B(H ) we have the following refinement of the seconed inequality
in (1):

w(T ) ≤ 1

2
(‖T‖+ ‖T 2‖ 1

2 ).

Also, a considerable improvement of the first inequality in (1) is given as follows:

‖T‖
2

+
|‖ReT‖ − ‖T‖2 |

4
+
|‖ImT‖ − ‖T‖2 |

4
≤ w(T ).

Kittaneh proved that for any operator T ∈ B(H )

1

4
‖T ∗T + TT ∗‖ ≤ w2(T ) ≤ 1

2
‖T ∗T + TT ∗‖. (2)

Since

1

4
‖T‖2 ≤ 1

4
‖T ∗T + TT ∗‖ ≤ w2(T ) ≤ 1

2
‖T ∗T + TT ∗‖ ≤ ‖T‖2,

then inequalities (2) improve the inequalities (1).
Similarly in [3] is shown for T ∈ B(H ), r ≥ 1 and 0 < α < 1, we have

wr(T ) =
1

2
‖|T |2αr + |T ∗|2(1−α)r‖,

w2r(T ) = ‖α|T |2r + (1− α)|T ∗|2r‖.

We recall the following result.

w(Y ◦ Z) ≤ max
i
yiiw(Z), (3)
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where Y ∈M+
n (C) and Z ∈Mn(C). The numerical radius for 2× 2 operator matrices has

the following well know properties.

w(

(
A 0
0 D

)
) = max(w(A), w(D)),

w(

(
0 B
C 0

)
) = w(

(
0 C
B 0

)
),

w(

(
0 B
C 0

)
) =

1

2
sup ‖eiθB + e−iθC∗‖,

w(

(
A B
B A

)
) = max{w(A+B), w(A−B)}, (4)

and from (4), we get

w(

(
0 B
B 0

)
) = w(B).

Also, we have

w

(
A B
C D

)
≥ w

(
A 0
0 D

)
,

and

w

(
A B
C D

)
≥ w

(
0 B
C 0

)
.

Also, we have a numerical radius inequalities involving off diagonal operator matrix as
follows:

max{w(B + C), w(B − C)}
2

≤ w(

(
0 B
C 0

)
) ≤ w(B + C) + w(B − C)

2
.

Consequently, we have

1

2
w(B) ≤ w(

(
0 B
0 0

)
) ≤ w(B).

Recall that the celebrated Heinz inequality states that for A,B ∈ M+
n (C), X ∈ Mn(C)

and 0 ≤ ν ≤ 1, we have

2|||A1/2XB1/2||| ≤ |||AνXB1−ν +A1−νXBν ||| ≤ |||AX +XB||| (5)

for any unitarily invariant norm ||| · ||| on Mn(C).
Some mathematicians proved several refinements and extensions of this inequality. Sabab-
heh in [4] showed for any A > 0, X ∈ Mn(C), a > 0, 2−a

4 ≤ ν ≤ 2+a
4 and −2 < t ≤ 2 the

following relation holds:

w(AνXA1−ν +A1−νXAν) ≤ 2w(A1−a)
2 + t

w(AaX + tA
a
2XA

a
2 +XAa). (6)

Also, he showed the Young’s version of the numerical radius inequality for A > 0, X ∈
Mn(C), ν ∈ R and −2 < t ≤ 2 as follows:

w(AνXA1−ν) ≤ w(A2ν−1)
t+ 2

w(AXA1−2ν + tA
1
2XA

3
2
−2ν +XA2−2ν). (7)

In this paper, we extend this inequalites for positive matrices A and B.
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2 Main results

In the section we give some extensions of the previous inequalities which are given by some
authors.

Theorem 2.1. Let A,B > 0 and X ∈ Mn(C). Then for a > 0, 2−a
4 ≤ ν ≤ 2+a

4 and
−2 < t ≤ 2, we have

w(AνXB1−ν +A1−νXBν)

≤ 4

2 + t
max

(
w(A1−a), w(B1−a)

)
w(AaX + tA

a
2XB

a
2 +XBa).

Corollary 2.2. Let A,B > 0. Then

w(A+B) ≤ max
(
w(A

1
2 ), w(B

1
2 )
)
w(A

1
2 + 2A

1
4B

1
4 +B

1
2 ).

Corollary 2.3. Suppose that A,B > 0 and X ∈Mn(C). Then

w(AνXB1−ν +A1−νXBν) ≤ 2w(AX +XB).

In particular,

w(A
1
2B

1
2 ) ≤ w(A+B).

Theorem 2.4. Let A,B > 0 and X ∈Mn(C). Then for ν ∈ R and −2 < t ≤ 2,

w(AνXB1−ν)

≤ 2

t+ 2
max

(
w(A2ν−1), w(B2ν−1)

)
w(AXB1−2ν + tA

1
2XB

3
2
−2ν +XB2−2ν).

Corollary 2.5. Suppose A,B > 0 and X ∈Mn(C). For p, q > 1 such that 1
p + 1

q = 1,

w(A
1
pXB

1
q ) ≤ max

(
w(A

2
p
−1

), w(B
2
p
−1

)
)
w(AXB

1− 2
p +XB

2
q ).

In particular,

w(A
1
2XB

1
2 ) ≤ w(AX +XB).

3 Conclusion

By an example we show that the inequality w(AνXB1−ν +A1−νXBν) ≤ w(AX +XB) is
not true in general. In this paper, we give an upper bound for w(AνXB1−ν +A1−νXBν).
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Abstract

In this paper, Singular Value Decomposition is used to classify handwritten digits.
Handwritten digit classification is a subarea of pattern recognition. Digital images
have a basic matrix representation, which is used to detect different patterns of the
same digits using SVD. Afterwards, any new sample images can be classified with a
high accuracy level for recognition, which is reported.
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1 Introduction

A classic problem in the field of pattern recognition is that of handwritten digit recognition.
Suppose that we have an image of a digit submitted by a user via a scanner, a tablet, or
other digital device. The goal is to design an algorithm that can correctly identify the
digit. The applications of such an algorithm are far reaching. With this technology, the
post office would be able to scan envelopes and effectively sort them by zip code and banks
would be able to process checks more efficiently.

In this paper, we present a simple yet effective algorithm which assumes that each set of
digits lies in subspace whose basis is obtained via the idea of Singular Value Decomposition
(SVD). When an unknown digit is read in, we project the digit onto each of the ten
subspaces and classify the digit according to the smallest residual vector under the 2-
norm.

Here vectors are used to represent digits. The image of one digit is a 28 × 28 matrix
of numbers, representing gray scale. It can also be represented as a vector in R784, by
stacking the columns of the matrix. A set of n digits (handwritten 3’s, say) can then be
represented by matrix A784×n, and the columns of A can be thought of as a cluster. They
also span a subspace of R784.

1Dedicated to Alireza Afzalipour and Fakhereh Saba, the founders of Kerman University
∗Speaker. Email address: hosseinnaserasadi74@gmail.com
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2 Classification of Handwritten Digits using SVD bases

The Singular Value Decomposition is a standard technique used in data analysis for the
purpose of dimensionality reduction. Here it will be used as a tool for classification. Before
we delve into the details of its application, let us first review some of the theoretical
background about singular value decomposition.

Theorem 2.1. Let A be anm×n matrix (m ≥ n) with nonzero singular values σ1, σ2, · · · , σr
then there exist orthogonal matrix U ∈ Rm×m also V ∈ Rn×n such that:

A = UΣV T ,Σ =

(
Σ0

0

)
∈ Rm×n,Σ0 = diag(σ1, ..., σn), (1)

therefore rank of A is r and we can write:

A = UΣV T = (UrÛr)

(
Σr 0
0 0

)(
V T
r

V̂ T
r

)
= UrΣrV

T
r , (2)

where

Ur ∈ Rm×r, Σr = diag(σ1, ..., σr) ∈ Rr×r, Vr ∈ Rn×r. (3)

The SVD can be used to compute the rank of a matrix. However, the zero singular
values usually appear as small numbers. Similarly, if A is made up from a rank k matrix
and additive noise of small magnitude, then it will have k singular values that will be
significantly larger than the rest. If trailing small diagonal elements of Σ are replaced by
zeros, then a rank k approximation Ak of A is obtained as

A = (UkÛk)

(
Σk 0

0 Σ̂k

)(
V T
k

V̂ T
k

)
≈ (UkÛk)

(
Σk 0
0 0

)(
V T
k

V̂ T
k

)
= UkΣkV

T
k = Ak,

such that

Σk ∈ Rk×k, ‖Σ̂k‖ < ε.

Theorem 2.2. Let ‖.‖ denote any orthogonally invariant norm, and let the SVD of A ∈
Rm×n be given as in Theorem 2.1 Assume that an integer k is given with 0 < k ≤ r =
rank(A). Then

min
rank(B)=k

‖A−B‖ = ‖A−Ak‖,

where

Ak = UkΣkV
T
k =

k∑

i=1

σiuiv
T
i .
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2.1 Theory and Algorithm

The problem we face in this section is:

Given a set of of manually classified digits (the training set), classify a set of unknown
digits (the test set).

Each image of a handwritten digit can be considered as an m×m matrix where each
entry in the matrix is a gray scale pixel value. The columns of each image are stacked to
form a column vector of size m2×1. All the stacked images of a single digit are concatenated
to form a matrix Aj ∈ Rm2×n, with n being the number of training images for a particular
digit and j = 0, 1, · · · , 9 being the particular digit.

Figure 1: Handwritten digits from the US Postal Service Database.

The idea now is to model the variation within the set of training digits of one kind
using an orthogonal basis of the subspace. An orthogonal basis can be computed using
the SVD, and A can be approximated by a sum of rank 1 matrices Theorem2.2,

A ≈
k∑

i=1

σiuiv
T
i ,

for some value of k. Each column in A is an image of a digit 3, and therefore the
left singular vectors ui are an orthogonal basis in the image space of 3’s. We will refer to
the left singular vectors as singular images. From the matrix approximation properties of
the SVD (Theorem 2.2) we know that the first singular vector represents the dominating
direction of the data matrix. Therefore, if we fold the vectors ui back to images, we expect
the first singular vector to look like a 3, and the following singular images should represent
the dominating variations of the training set around the first singular image.

The SVD basis classification algorithm will be based on the following assumptions.

1. Each digit (in the training and test sets) is well characterized by a few of the first
singular images of its own kind.

2. An expansion in terms of the first few singular images discriminates well between
the different classes of digits.

3. If an unknown digit can be better approximated in one particular basis of singular
images, the basis of 3’s say, than in the bases of the other classes, then it is likely
that the unknown digit is a 3.

Thus we should compute how well an unknown digit can be represented in the ten different
bases. This can be done by computing the residual vector in least squares problems of the
type
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min
αi

‖P −
k∑

i=1

αiui‖,

where P represents an unknown digit, and ui the singular images. We can write this
problem in the form

min
α
‖P − Ukα‖2,

where Uk = (u1, u2, · · · , uk). Instead of solving this minimization problem, we can
equivalently solve for the square of the 2-norm.

min
α
‖P − Ukα‖22

= min
α

(P − Ukα)T (P − Ukα)

= min
α

(P T − αTUTk )(P − Ukα)

= min
α

(UTP − P TUkα− αTUTk P + αTα)

Taking the derivative of the last expression with respect to α and setting it equal to
zero we get

2αT − 2P TUk = 0

αT = P TUk

α = UTk P

and the norm of the residual vector of the least squares problems is

‖(I − UkUTk )P‖2.
Intuitively, UTk P is the projection of P onto the digit space so the distance is just the

2-norm of the residual vector. In figure2, we have a geometric illustration of the scenario
where S = span(Uk).

Figure 2: The probe P , its projection onto S = span(Uk), and the residual.

The proposed algorithm is described in Algorithm 2.3. The key advantages of this algo-
rithm are simplicity and lower complexity in large sets of data, which is further discussed
in the next section.
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Algorithm 2.3. SVD Basis Classification Algorithm

1. Create matrices X0, X1, ..., X9 from TrainingSet where
Xi is a column matrix of all records belonging to class i, i = 0, 1, ..., 9.

2. For i ∈ {0, 1, ..., 9} do

3. Compute the SVD of Xi, U,Σ, V
T = Xi

4. Di ← I − UkUTk
5. end for

6. For test vector P ∈ TestSet do

7. j = argmini∈0,1,...,9 ‖DiP‖2
8. Classify vector P as belonging to class j

9. end for

10. return TestSet Labels

3 Numerical results

The results on a partial subset of the MNIST Digits dataset, containing 42,000 sample
28 × 28 dimensional gray scale images, are provided below. The method is compared to
three other classifiers: K-Nearest Neighbors classifier, a Linear Kernel Support Vector
Machine classifier and a Neural Network classifier. In order to evaluate the performance
of this classification algorithm, we used 5-fold cross-validation for train/test split. This
means that the entire dataset was shuffled and partitioned into 5 subsets. Then, for each
subset, a new model is created in which the rest of the subsets are the training data and
the subset itself is the test data. The parameter k was also set to 20 in these experiments.
The neural network was trained using Adam optimizer and consists of 1 hidden layer with
100 neurons. The parameter K for the nearest neighbors classifier was set to 5. The
linear SVM was set to l2 norm penalty and the regularization parameter was set to 1.0.
All implementations were done using Python and the three other classifiers were already
implemented by Scikit-Learn library. The SVD classifier was implemented using Numpy’s
SVD module. The results are provided in Table 1.

Table 1: Results of the 5-fold cross-validation on MNIST Digits

Method Mean Accuracy Computational Time (seconds)

SVD Classifier 95.49 51

KNN Classifier 96.68 895

Support Vector Machine Classifier 90.60 231

Neural Network Classifier 95.67 96

As it can be seen, the proposed classifier comes very close to KNN and the neural
network which are some of the most widely used classifiers in terms of accuracy, while
carrying less computational burden. The proposed approach exceeds the linear SVM
classifier in terms of accuracy as well. The computational time provided is the mean time
taken at each fold to train on the training data and classify the test data. It is worth
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noting that while KNN has the longest computational time, almost 98 percent of this time
was spent for classifying test data, which points to its weakness. The neural network on
the other hand took less than a second to classify test data, while taking over 90 seconds
to train, which also points out its slower training phase when compared to the proposed
method. The same standard holds for the linear SVM which took over 230 seconds to
train on the dataset, but took only a fraction of a second to evaluate the test data. This
method however took only 21 seconds to train and 30 seconds to classify the test data,
which shows a more moderate time in both overall.

4 Conclusion

In this paper, a basic representation for digital images was presented, and singular value
decomposition was employed to extract patterns between images of the same class. These
patterns can help classify new images, and as the test results show, is quite accurate in
doing so, when provided with enough training data. When compared to other classifiers,
it can be seen that this method is more efficient in terms of complexity when considering
a large number of samples, which in this case was a total of 42,000 images. Possible future
extensions of this method may be an extension to other types of numerical data, as well
as colored images.
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