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PREFACE

The aim of this foreword is to give a short presentation of the
Monthly Colloguium of the Iranian Mathematical Society (IMS). It will
be best understood through a brief history of the IMS activities and the

role of conferences therein.

The IMS originated its effective life from a meeting in 1970 and
has organized several conferences thereafter. The Annual Mathemat-
ics Conference in Iran (AMCI) has undoubtedly the largest evaluating
number among them. This is reflected from both scientific and social
aspects. Its scientific importance is due to the general talks given by
the main invited speakers, the number and the length of its refereed pa-
pers, and the fact that the proceedings of the past 34 AMCI have been
almost regularly published and are now reviewed in both Mathematical
Reviews and MathSci. Its social importance is credited to the number
of participants, the enthusiastic panels concerning some local or uni-
versal problems in mathematical education or research, the distribution
of prizes to winners in its opening ceremonies, the traditional annual
session of the General Assembly of the IMS held simultaneously, the
announcement of scme decisions made by the General Assembly in the
closing ceremonies, cultural activities containing visits of a few tourist
sites in the country offered to the foreign speakers, folkloric or classical

concerts, ete.

These annual conferences remain one of the main concerns of the
IMS. However, from the early days of the IMS’s life, other needs have
motivated the organization of a lot of different seminars and colloquia

as well as the publication of periodical and non periodical issues.

During the first decade (up to 1979), a Weekly Seminar has also been
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held in Tehran at different universities following the speaker’s affiliation.
From the end of that period, many specialized seminars have been or-
ganized by the IMS and held at different universities not necessarily in
Tehran. For instance, the first Algebra Seminar was held in Ahwaz (De-
cember 31st 1977 - January 1st 1978). Due to a lot of circumstances, the
proceedings of this seminar has not been published. There are lots of
other annual or biannual well-established seminars in algebra, analysis,
geometry and topology, differential equations and dynamical systems,
etc. They are mostly publishing their proceedings. A detailed analysis
of these conferences and seminars requires a serious study, which is quite

interesting, but goes beyond the scope of this preface.

Let me now return back to the philosophy of the Monthly Colloquium
as I feel its spirit. The general topics addressed in AMCI presented
by main invited speakers to a large audience are of great importance.
However, their number are limited by the restrictions natﬁraliy imposed
by such a program with a big variety in a short period of time (4 days
only). The main speeches presented at specialized seminars have also
the same shortage of time (2 days only) and, in plus, their participants
are almost exclusively scholars involved in the field, By the way, the
participants of the AMCI and the specialized seminars are practically
the only persons who are receiving the proceedings. But a general talk
or a good survey article is of interest to a larger public. Anyone of
our graduate students and us needs to cbtain information about what
is done by others even outside his specialties. So, the IMS has decided
to organize a Monthly Colloquinum presenting mainly survey articles by
research leaders in the country or from abroad. The articles presented for
the moment at Tehran are addressed to a reasonable audience, around

one hundred graduate students and professors. Ideally, a first draft of
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the papers will be distributed to the audience the day of the colloguinm.
Moreover, they will potentially be recorded in videotapes, for the use of
universities and research centers outside the capital, etc. Finally, they
will be published, in a final form, annually or biannually, when a lot of

papers are ready for printing.

During the period 2000-2003, the organizing committee of the Monthly
Colloquium that I had the honor to manage has published the first vol-
ume containing 8 articles written in Persian, and is publishing now the
second volume containing 11 articles in English. These 2 volumes are
available from the IMS head office and can be obtained by the members

of the society as well as the interested general public.

The third and next volumes will be published by our successors. 1
am confident that they will continue to fulfill the requirements of the
mathematical community more perfectly. The monthly colloquinm of
the Iranian Mathematical Society is an important step in the propaga-
tion of mathematics in our country and it is worth all the efforts done

for it,

For the final word, I present my deepest gratitude to the authors who
have accepted our invitation and submitted their priceless manuscripis
for publication in volume one and this volume. Personally, T have learned
2 ot from them. The publication of this issue would not have been
possible without the endeavors of the secretaries of the IMS whom I
thank hereby. Specifically, I would like to thank Mrs. F. Samadian
who adapted the format of the Farhang-va- Andishe-ye-Riazi for the first
volume and that of the Bulletin of the Iranian Mathematical Society for

the present volume.

Arsalan Chademan
Tehran, May 10, 2004
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Abstract: Mathematical models of 2 wide class of problems are
integral equations. Most of integral equations have no analytic
solution. In this talk I introduce different kinds of integral and
integro-differential equations, their origins and applications. I
also explain, in some detail, the numerical methods for salving

integral eguations.

1. Introduction

In some sense integral equations must be felt to be either more advanced

or of less practical interest than differential equations. We turn more
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tions, Integro-differential equations, Nystrom method, Galerkin method, Expansion
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readily to a differential formulation of a problem than to an integral
formalism. Yet the theory of linear nonsingular integral equations is at
least as well developed as that of differential equations and it is in many
respects rather simpler. The corresponding operators are bounded rather
than unbounded, leading to a very straightforward existence theory (the
Fredholm theory). There is a much tighter link between the theory
and practice of integral equations than is the case for with differential
- equations. Most of the convergence proofs are constructive in nature
and all or nearly all of the constructions have been used as the basis
of algorithms for the numerical solution of the underlying equations
(although not always with any great success).

Yor those who require detailed mathematical theory of Integral Equa-
tions (1. E.), a number of books are available:

1. 8. Smithies, Integral Equations, Combridge University Press {1958).

2. R. P. Kanwal, Linear Integral Equations, Academic Press (1971).

3. C. D. Green, Integral Equation Methods, Nelson (1969).

4. J. A. Cochran, The Analysis of Linear Integral Equations, McGraw-
Hill (1972).

The books which you may find useful in connection with the numer-

ical solution of integral equations are listed below:

1. 5. G. Mikhlin and J. L. Smolitsky, Approzimate Methods for the
Solution of Differential and Integral Equations, Elsevier (1967).

2. L.M. Delves and J. Walsh (eds.), Numerical Solution of Integral
Equations, Oxford University Press (1974).

3. C.T.H. Baker, The Numerical Treatment of Integral Equations,
Oxford University Press (1977).

4. C.T. H. Baker and G. F. Miller (eds.), Treaiment of Integral
Eguations by Numerical Methods, Academic Press (1982).
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5.

L. M. Delves and J. L. Mohamed, Computational Methods for
Integral Equations, Cambridge University Press (19853).

2. Classification

i)

iii)

Linear Fredholm Integral Equations of the First and Second
Kind, respectively

y(s) = A f K (s, t)(t)dt,
2(s) = y(s) + A J/ K (s,0)0(t)d,

where (1) is the unknown function and K{s,1) is the kernel of

the equation.
Linear Volterra Integral Equations of the First and Second Kind

y(8) = ;\j:s K{s,)yz(t)dt,

2(s) = yls)+ A j " K (s, De(t)ds.

Homogeneous eguation, eigenvalue equation, or a Fredholm equa-
tion of the third kind

z(s) = A j K (s, )a(t)dt

those values of A for which nontrivial solutions exist are called

characteristic values of the equation.

Nonlinear Integral Equations

In (i) to (iil) if you replace K (s,t) with K(s,t,z(s),z(2))} you

obtain a nonlinear integral equation.
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v) Integral equation involving unknown functions z(s;, sz, ... ,8m)

also occur regularly in practice but lie outside the scope of this
talk!

vi) Integro-differential equations

Q(s)z'(s) -+ R{s)z(s) = y(s) + A j{‘b K(s,0)z(t)dt, z(a)}= zo.

3. Origin of Integral Equations

i) Consider the following initial value problem
g%“{)" = f(S,:E), 1'6(0) = oy
s
under suitable continuity conditions on f(s,z), we have:
z(s} = zo —l—j[ F(t,z(t))dt,
0

which is an integral equation for z(s).

it) Consider the second order differential equation

- fo,2)
z(0) = zo, d(md(f)) = I,

this equation converts to
2(s) = @0 + 215 + ] (s — 1) (t, 2(2))dt
0
which is an integral equation for z{s).

iil} Two-point boundary value problems may be converted to an

integral equation. Consider the problem

%’Z%‘ = f(‘svx)v

512(0) = aam(l) = ,@,
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this problem converts to

2(5) = y(s) - /; K (s, ) f(t, s,

where
o) =a+ 2%,
( e p<i<s,
K{s, 1) =
) H) o g <i <.

H 1

4. Applications
We take a random selection of research papers in a variety of fields.

i) Currents in a superconducting strip (Rhoderick and Wilson,
1962 [18])

s

wWs) = %{j/; m:c(t)dt

i) Flow round a hydrofil (Kershaw, 1974 [15])
2(s) = (s) + A [ K(s,Da(t)et
subject to: [, 2{t)dt = 0,C a closed contour.
iii) Population competition (Dounham and Shah; 1976 [12])

x(s) = ¥(s) [ ko (o, (0, X7 = (31,22,25).

iv) Quantum scotiering: closed coupled calculations (Horn and Frazer,
1975 {14])

z(s) = y(s) ~ A j’;w Ki(s,2) jom Ky(z,t)z(t)dtd=.
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5. Existence of Solution to Integral Equations

Smithies {19}, defined the concept of relatively uniformly convergence of

sequences of functions and kernels.

Definition.  Suppose {f,(s)} be a sequence of £? functions. We say
that this sequence converges relatively uniformly (c.r.u.) to f(s) if there

exists a non-negative £ function P(s) such that
YedN(e)¥nVs (n > N(e) == |f.(s) — f(s}] < eP(s)).

It can be shown that if {f,(s)} {c.r.u.) to f(s) then it converges point-
wise, but not necessarily uniformly. Absolutely relatively uniformly con-
vergence of sequences and series of functions and kernels can be defined
similarly.

it is proved that if for a fixed A there exists kernel H,(s,t) € £?[a,b]x
fa,b] such that

K{s,t)— Hy(s,1) = AH, K = AKH,,
then z = y+ AK H, is a solution of the equation
z=y+ IKz.
It is also shown that if {{AK|| < 1 then the series
K(s,t) + AK*(s,1) + M K3(s,1)+ ...,

known as Neumann series, is absolutely relatively uniformly convergent
to Hy(s,1). (For a detailed discussion of the above concepts see Smithies
[19)).

Values of A for which H,(s,t) exist are called regular values of the
kernel K. It is shown that the set of regular values of X is open.
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6. Numerical Solution of Fredholm Integral Equa-

tions

6.1 Iterative method and the Neumann series
The Fredholm 1. E. of the second kind
2(s) = y(s) + A f 'K (s, 02(t)dt )
can be written in operator form as
z=y+ AKz,

The Neumann series is

2= iA'—Kiy, (2)

iz

and in truncated form

Tz, :i/\"}f"y.

i=0
If the series (2) converges, then lim,_, |lz — z,]i = 0. The approx-
imate solution z, is most easily produced iteratively via the obvious

recurrence relation:

Tppy = y+ AK’$n
To =Y,

provided that the function Kz, = [ K(s,t),(¢)dt can be computed.

6.2 The Nystrom (or quadrature) method

In equation (1) if you use a quadrature rule you find

jj K(s,1)z(t)dt ~ i w; K (s, 45 )2(8;),
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where w; and ¢; are weights and nodes of the quadrature rule. So (1)
corverts to (approximately)

z(s} = y(s)+ )‘ZWJK(Sa tj)m(tj): (3)
f=1
if you put s = ¢, i = 1, -3, in (3) you get the following system of
linear equations for the unknowns z(t:), ..., z{t,),
w(t) = y(t:) + A wiK (4, 1)2(t;), i=1,2,....n (4)
=1

Ifyou define x* = (z(t,),..., z(1:)), ¥ = (y(t1), ..., y(t,)) and ki =
w; K (i, 1;) the system (4) becomes

(I=-Mx =y, (5)
this equation has a solution if /— Ak is not singular, and this may happen

even if [[Ak|| > 1. In general the matrix I — Ak is well-conditioned and
the system (5) can be solved easily by direct methods.

6.3 Expansion method for Fredholm Equations

8.3.1  Methods based on an exzpansion of the solution of Fredholm I,
E. of the second kind

Suppose that the sequence of functions {ha(s)} is orthogonal and
complete in £%(a,b) and

o) = 3 bs(s),

then for sufficiently large N, we may approximate z as closely as we

please by zx:
N
z(s) ™ zn(s) = Zajhj(s),
=1

An ezpansion method is then an algorithm for determining the g, for
either an arbitrary or a specified choice of the sequence {h,{s}}. There
are many possible algorithms and we consider only the most common.
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1. Residual minimisation methods Assuming I = I — AK, the

equation (1) can be written as
Lz =y.

Now if ¢y =z — Zy, T = y — Loy then ry = Ley and computing ry
requires no knowledge of z. We now choose the vector a = (G15..0,8a)
from the minimisation criterion: min, |[rx|}.

It can be shown that

Il lirwll :
T K] < flewdl < T & provided that |lK|| < L

There are many norms avialable, the choice of norm is influenced by the

analytical properties of the kernel K.

Chebyshev norm.  For continuous kernels a possible choice is the
Chebyshev (L) norm:

feli = max lo(o), 1K= mas, [ 1E(s, Ol
‘We seek to compute
Il = min e fs) — )+ [ K s, 00t

with zy = S, a:hi(s), setting ki(s) = [} K (s, )hi(1)dt,

Il = minmaxia(s) - 3 atule) = kD)

usually k;(s) can be estimated by numerical quadrature (for fixed s) and
to search, not over [a, b], but over a discrete point set {£,i=1,... .t
le.

el i b 96} = -(A(6) = K6

iml
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Ly norm: Least squares approximation

Alternatively, we may choose to minimise ljy — Lz{],:

b 5
min f | {mN(s) - y(s) - jl K(s, t)mN(t)dt} ["ds,
whence on inserting z we find the system
Li,a =y,

where

(Ly,); = f b(Lhi)*(s)hj(s)ds, i,j=1,.. N
b

(71 )i = f y(s)(Lh ) (s)ds, i=1,... N

Lhi(s) = hi(s) ~ jb K (s, t}h(1)di.

In this norm we have to evaluate N? apparently triple integrals of the

form

f ' f K (s, b ()] / ' Ko, 1), (t)dt ds.

2. Galerkin methed.  Qur aim is to make r(s) zero. Now if the set
{h:} is complete and orthonormal in £%{a,b), the statement r(s) = 0 is

equivalent to

{r(s), hi(s)) =0, & i=1,2,..

Now with only N parameters a;, 7 = 1,..., N, at our disposal the best we

can do is to make the residual ry(3s) orthogonal to the first N functions
hi(s), ..., hn(s), ie.

[ B — Lam)(@lds =0, i=1,..., .
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this leads to the system Lga = yg where now
(Le ) = jib hi(s)(Lhi(s))ds, 4,5=1,...,N
(Ya) = _[ R ()y(s)ds, i=1,...,N.

3. The Fast Galerkin algorithm  Delves {10,11] and his Ph.D.
students used Chebyshev sequence of polynomials {T;(s)}i=o and set
2(s) = N _a,Ti(s) and for

z{s) = y(s) + ji K{s,)z(t)dt

obtained
(D-Bla=¥
where
1 : 1
By; x}r --««?‘—(i)—-r (j/ K(s,t)?f}(t)dt) ds, 4,j=0,1,...,N
{1 —-8%)3 N\
_ L Tis) )
&= jl—x my(s)ds, t=0,1,..., N,
They used Fast Fourier Transformation (FFT) and evaluated ap-
proximate values B;; and y for B;; and § in O(N?log N) operations.
Another advantage of this method is that

1T < e27?,i = max{1,i}, i=0,1,...

where p depends on the smoothness of the function y(s). Similarly
they showed that |B;;] < ¢/~ U152 if k] < a1~ where
K(s,8)=ina ,;10 ki Ti(8)T;(t), again 7, ¢ depend on the countinuity
properties of K (s,1) as functions of s and ¢, respectively. They intro-
duced asymptotically lower diagonal matrix M of type A and degree p

as
| My < g7 F

W.. 3 i>j:c>0sp30:
it ii
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and showed that the matrix 7 — AB is asymptotically lower diagonal of
type A and degree » [13]. This was the basis of an iterative method
for solving Lga = ys with O(N?) operations. Some authors have used
splines or wavelet functions to solve Fredholm I. Es. of the second kind
(Razzaghi and Ordokhani [17]).

7. Fredholm Integral Equations of the First Kind

All of the numerical methods discussed for solving second kind equations
apply formally also to first kind equation

o) = [ (s, a0, (6)

with the single exeption of the Neumann iterations,
Fredholm integral equations of the first kind are among ill-posed

problems, 1.e,
i} They may have no solution:
it} They may have not a unique solution;

ili} The solution does not depend on y(s) continuously, i.e. small
changes on y(s) may cause dramatic changes on the solution
z(s).

For example the equation [;'" cosssintz(t)dt = ¢* has no solution.

If z is a solution of Kz = y and ¢ # 0 is such that K¢ = 0 then z + a¢

is also a solution of Kz = y for arbitrary a ¢ C.

7.1 Eigenfunction expansion

The first method we consider (Baker et al., 1964; Turchin, Kozlov and
Malkevich, 1971; Hanson, 1871 [9]) is a direct extension of the numerical
method for finite rank kernels,
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Theorem. Let K be of finite rank n and have the representation:
(L
K= an @b,
[ES

then (6) has no solution unless y € span{a, . .y ln}s Le

r
dag,.... 0. y(8) = Za,,a,,,
guol

In this case (6) has the solution

7
T = z ﬁuaua
v=1

if and only if the following system of linear equations is nonsingular
Z(bﬁ,ﬂy)ﬁymay, ge=1,...,n
PE-S4

Hermitian kernels

If K is Hermitian, i.e. K(f,8) = K*(s,t) = K(s,1), it has real eigen-
values );, with corresponding eigenfunctions v, satisfying the equation
) f K (s, tyvi(t)dt = A;vi(s). If the {v} form a complete set, any function,
and in particular the solution z and driving term y, have expansions of
the form - o
z= zf@wn ¥= Zﬂlw;

i=1 i=1
giving Kz = Yoo, By = 10 GAv =y = T ay. So, B =
o/ and 2 = TR (u,y)A v [, i = 1,2,... are assumed to be
orthonormal]. The eigenvalues X; tend to zero as i increases, giving the

sum

i(@’n YA, (7)

gazl
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a dangerous look. Now if limy_.oo(v;, ¥)A7! # O the sum (7) does not
represent an £* function; that is the equation has no solution, & numer-
ical test for consistency. However, even if (vs, W) H P 0, the series (7)
is very unstable. Suppose we replace y by y + cv,. Then the solution =
changes to 7 + €7 v, and the “response ratio”, defined as ||6z|}/]|6y|| is
|47 Since limy .o, |Ax| = 0, this response ratio can be made arbitrary

large, showing that the solution z does not depend continuously on y.

MNon-Hermitian kernels

If £ is not Hermitian K*K and K K* are Hermitian. Singular values y;

and singular functions {u;, v;} satisfy the relations
Uy = ng’lJ,‘, Vg = #;K*H,', (u;,ﬁj) = (TJ{,U;’) = 5{1‘.
Further, lim;_,, g7 = 0.
Now suppose we make the expansions

z = iﬁm = i(%g z)v;,

=}
o% oG
y= Z&ius = Z(ﬂn L
I i=1
Then it follows that §; = u{w;,y) and

oo

T = E(Un Y )i

i=1
The method of regularisation

In many practical applications the driving term y(s) represents some
measured function, the integral operator K represents a model of the in-
strument used to do the measuring and z(s) represents the “true” measured
quantity, y(s} being a “smeared”version of z(s) as seen through the in-
strument being used. Now y(s) will be known to some finite accuracy
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e; we should therefore only expect to find | &z — yl] < e. Of all the
functions z satisfying this relation, we seek that which is the smoothest,
in the sence that for some linear operator I, || Lzl has the minimum

value. This yields the constrained minimisation problem

minimise || Lz}
subject to

1Kz -yl <e (8)

This problem can be solved directly, in any norm. It is however relatively
complicated to do so. It is therefore usual to solve, not (8), but a related
problem, which we develop as we note that the minimum value of ||Lz||
in (8) will decrease as € increases, that is as the constrains weaken.
Therefore, at the minimum of (8), the constrains will be binding, that

is || Kz — yi| = e. Now, if we solve the unconstrained problem (for fixed

a).
minimise, Kz — yi* + ol Lz, (9)

we will find the minimum some value n for |{Kz — yl|. As ¢ —» 0,
1 — { provided that a solution of (6) exists, and for some valve of
«,n = € This makes plausible the following results, due to Tikhonov
[20,21].

For some o (which depends on €} the solution of problem (9) is
identical to that of problem (8). Problem (9) is easier to solve and it is
refered to as the regularised problem. The choice of operator L must be
made on gualitative grounds, the usual choices are: L = I or E‘—i— or ;Ti,v

When I = 7 it can be shown that the solution to (9) is the solution of
the following Fredholm I. E. of the second kind,

j;b K(s, D)z (t)dt + azx(s) = §{s) (10)



16 E. Babolian

where

R(s,8) = j " Ke(6, )R (6 )it i(s) = jjf\f“(t,s)y(t}dt.

Unfortunately the value of o for which 7 = € is very small and the solu-
tion of (10) is very sensitive to . This makes this kind of regularisation
very expensive and impractical.

Regularisation method was also used by Phillips {16} and Twomey
[22], they used L = f%.

The augmented Galerkin method

We now turn to the use of expansion methods for (6), and recall that

(6} converts to
Ba=y (11)

where B is very ill-conditioned, and even singular when K is of finite
rank. Recall that we assumed '
2(s) = > bihi(s)
fE=4]
and for z(s) € £*(a,b) we should have

=]

> 1bil? < oo

im0

Hence we may assume that there exist constants ¢ > 0,r > % such that
bl <G =6, i=0,1,...,

again r depends on the smoothness of the solution z(s).
So, instead of solving the ill-conditioned system {11) we solve the
well-conditioned problem:
minimise | Ba - ||

subject to: e < &,i=0,1,..., N, (12)
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where §; = C,i*“,

The problem is now to estimate Cy, 7. There are a number of heuris-
tic and practical ways to set C;,7 (see Babolian & Delves (1979) {8] and
Babolian (1980) [7]). The solution of {12) is not sensitive to the values
of Cy,r, but r should not be set very large unless @ is very smooth.

Problem (12) has been solved in || - {loo and || - |2 (Belward (1982)).
In 1997, Abbasbandy & Babolian [1,2] proposed some fully automatic
algorithms to set C; and r. Then some papers were published using
automatic augmented Galerkin algorithms [3,4]. Some authors have used
direct regularisation, by multiplying both sides of Kz = y by a function
Q(s,1) (Maleknejad & Rostami) or used preconditioning to reduce the
condition number of the resulting system of equations. But none of them

have the general success of aufomatic augmenied Galerkin algorithms.

8. Integro-differential Equations

Integro-differential equations are also considered using expansion meth-

ods with complete error analysis (see Babolian & Delves (1981) [5]).
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Abstract: Let G be a finite group and A, B proper subgroups
of &. H G = AB, then we say that & is a factorizable group
and A, B are called factors of this factorization. In this case Gis
also called the product of two subgroups A and B. The problem
of which finite groups are factorizable is still an open probelm.
Certain conditions on the structure of & or the factors of the
{actorization yields some information about (. In this paper we
will give a survey of the results obtained so far on the product of

finite groups.

1. Introduction

Let G be a group and A, B subgroups of G. TG = AB = {abla €
A,b € B}, then we say that (3 is a factorizable group and A, B are called
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factors of the factorization. We also say that G is the product of its
subgroups A and B. We always have G = AG which is called the trivial
factorization of . Therefore we call a factorization G = AB proper
or non-trivial if both factors are proper subgroups of G. G 2 Ax B
is the external direct product of two non-trivial groups A and B, then
G = AB, where A~ A and B 2 B and so G has a proper factorization.
Also factorizations of groups as product of 3 or more subgroups may be
of interest, but it is not considered here. In the book [AFD], page 13,
the authors ask the following question:

Question: Describe all groups that have a proper factorization.

The above question is an open problem in group theory and it seems
to be a difficult problem in general. Not every group has a factorization,
for example if G is an infinite group with all proper subgroups finite,
then ( is not factorizable. And if & is the cyclic group of prime order

or one of the sporadic finite simple groups:
Moo, Ji, J5, Joy ML, L, ,O'N,Coq,Cog, Fiiga, Fio ., HN, TH,BM or M

then G does not have a proper factorization. The other 11 sporadic
groups have proper factorization, for example:
My, = Lz(ll)Mm; My, = MyMy, My = F;}:}Mzz, My =
Mys(M5.2), Jo = Us(3)(As X Dyo), HSE = Myp(Us(5).2), He=
(5P(2).2)(72.5L,(7)), Ru = L5(29).2F(2), Suz= G{4).Us(2},
Fiyy =2 Fy(2Y.(2.Us(2)), Coy = C03.(3.5uz2.2).
In the above F}} denotes a Frobenius group with kernel isomorphic to
Zy3 and complement isomorphic to Z,:.1f L is an exceptional group of
Lie type except G2(g),q = 37, Fi(q),q = 2" or G(4), then L does not
have a factorization. The simple unitary groups Usm41(g) don't have a
factorization except when (m,g) = (1,3),(1,5) or (4,2).

To see why the sporadic simple group J; is not a factorizable group
we recall from [CCNPW] that J; has order 2°.3.5.7.11.19 with maxirmal
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subgroups of the form:
Lg(ll), 23 : F—?, 22 X AE& Flsg, Ff}?? Dﬁ X Dlg, Fe?

If J; = AFB is a proper factorization of J,, then A is contained in a
maximal subgroup M of J), therefore J; = M B. We will consider the 7
possible cases for M. If M = L,(11),2% : F2, 2y x As, F10, D¢ X Dyq or
F%, then we have 19X 7||B|. But then B must be contained in a maximal
subgroup of J; with order divisible by 19 x 7, which is not the case. If
M = Ff, then 7 x 11||B| and from the list of maximal subgroups of J,
we see that J; does not have a maximal subgroup with order divisible
by 7 x 11. This final contradiction shows that J, is not a factorizable
group.

Looking at that factorization of finite groups, the problem goes back
to Burnside [Bu] who proved any finite group G of order p®g® is solvable.
In the case if p and ¢ are distirct primes and P and ¢ are p-Sylow and
g-8ylow subgroups of G respectively, then G = PQ. N.Ito [It1] proved
that if G = AB and if A and B are abelian subgroups of G, then & is
metabelian. H. Wielandt [Wi] generalized the result of Ito and proved
that if G = AB is a finite group, where A and B are nilpotent subgroups
of G, and (j4],|B}) = 1, then G is solvable. O.Kegel in [Ke] generalized
the result obtained by Wielandt without the assumption (J4],|B]) = 1.
Chernikov in [Ch] without the condition of finiteness on G proved that
if G = AB, A and B nilpotent subgroups of G satisfying the minimum
condition on groups, then & is a solvable group.Ore in [Or] proved that
if G is a solvable group and if A and B are two non-conjugate maximal
subgroups of G, then G = AB and conversely any maximal factorization
of G arises in this way. We recall that a factorization G = AR of a group
G is called maximal if both A and B are maximal subgroups of G.

Although there are interesting problems concerning factorizations of

infinite groups, but here we are concerned with finite groups. Therefore
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from now on all groups are assumed to be finite although the general re-
sults stated may be true for infinite groups as well. Qur aim in this paper
is to review resulfs on factorizable finite groups and to state our recent
results concerning factorizations G = AB, where one of the factors is

the alternating group.

2. Preliminary Results.

To start with, first we will mention some elementary results.
Theorem 2.1. Let G be ¢ finite group with subgroups A and B, then
the following statements are equivalent:

(i) G = AB,

(%) A acts transitively on the set of right cesets of B in G,

(iif) B acts transitively on the sef of right cosets of A in G,

(i) If m1 and 7y are the permutation characters of G oblained from
(it} and (ii1) respectively, then (my,7y) = 1.

Theorem 2.2. If G acts transitively on a set Q and H is a transitive
subgroup of G, then for any a € 1 we have G = G H. In general if G
acts k-homogeneously on o set §t and H is a k-homogeneous subgroup of
G, then G = HG(a) where A is a subset of size k in 1.

To see how theorem 2.2 can be used fo obtain factorization of some
groups, we mention that any finite group G is a factor of some symmetric
group. Because, if G is a group of order m, then we can assume G
as a transitive subgroup of §, and therefore by Theorem 2.2 we get
Sp = 8,06

If we consider the simple group Ly(7) of order 2%.3.7 , then it is easy
to see that Ly(7) has subgroups of orders 1,2,4,8,3,6,12,24,7,21, 168.
Therefore Lo{7) has faithful transitive actions on sets of cardinalities:
168,84,42,21,56,28,14,7,24,8. Now consider the transitive action of
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Ly(7) on 24 letters. Since the sporadic group M, has a subgroup iso-
morphic to L3(7), hence by Theorem 2.2 we will get Mayy = M,s.Lo(7).
Now we consider the action of L,{7) on 8 points. Since Ag has a subgroup
isomorphic to Ly{7) which is 2-transitive on 8 points, therefore by the
first and the second parts of Theorem 2.2 we have the following factoriza-
tions of the alternating group Ag, Ag = A7 Lo(7) = AgLy(T) = SeLa(7).

Using part (iv) of Theorem 2.1 and information given in {CCNPW]
about permutation characters of certain groups on maximal factoriza-
tions of sporadic groups, for instance: Jy = Us{3).{A5 x D), HS =
Maa(Us(5)2).

M.W .Liebeck, C.E.Praeger and J.Sax! in [LPS] determined com-

pletely the maximal factorizations of all the finite simple groups and
their antomorphism groups. As we mentioned earlier the maximal fac-
torizations of solvable groups were obtained by Ore in [Or]. The main
Theorem of [LPS] is the following.
Theorem 2.3. ([LPS]) Let L be a finite simple group and let G be o
group such that L < G < Aut(L). Suppose G = AB, where 4 and B
are mazimal subgroups of G not containing L. Then the triple (G, A, B)
15 explicitly known.

The following two results are also obtained about the factorizations

of the alternating and symmetric groups.

Theorem 2.4. ([LPS]). Let L = A,(n > 5) acting naturally on a set Q
of n points, and let L 9 G < Aut(L). Suppose that G = AB where A
and B are arbitrary subgroups of G not containing L. Then one of the
following holds:

(3 Anpy 9 A< 5,1 X 8 forsomek withl < k <&, and B is
k-homogeneous on §t.

(it n = 6,8,10. Ifn = 6 the groups A and B have the following
property that AN L = Ly(5),BNL = 5315;. Ifn = 8, then A =
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22 L3(2) and B > Zs X Z5. I n = 10, then A = L,(8) or L,(8).3 and
As x As Q B < 85518, and B is transitive on Q.
Of course in the above theorem the roles of A and B may be inter-

changed.

Corollary 2.5. ([LP8]) Let G be A, or S.(n > 5) and suppose that
G = AB with A and B mazimal subgroups of G not containing A,.
Then one of the following holds.

() A= (8ns x S)NG,1 <k <5, and B is k-homogeneous.

(i) n=6,4= PGLy(5)N B, B =(5515,)NG.

I & > 2, then combining the results of W.M.Kantor {Ka] and P.J.
Cameron [Ca] it is possible to find the group B mentioned in Theorem
2.4 and Corollary 2.5. If k = 1, then B is a transitive subgroup of §, or
A, and in general it is not difficult to find B in this case.

Factorizations of the symmetric and alternating groups are consid-
ered in [WW] as well. We call a factorization G = AB of G exact if
AN B = 1. In [WW] all the exact factorizations of the alternating and

symmetric groups are found.

3. General result on factorizations of group.

Much of recent research is concerned with factorization of finite simple
groups, or factorizations involving simple groups. The so called Szep
conjecture was proved by E.Fisman and 2.Arad in [FA). The conjecture
states: No simple group has a factorization G = AB with Z(4) #
1,Z(BY# 1.

Z.Arad and E.Fisman in [AF] considered factorizations of simple
groups G = AR such that (JA},18]) = 1. They proved:

Theorem 3.1. ([AF]) Let G be a simple group and G = AB where A
and B are subgroups of G with (14],|B|) = 1. Then one of the followings
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holds:

(i) G = A, withr > 5 a prime, and A= A,_,,|Bl=r.

(i1) G = My, and either A is solvable or A= M.

(#ii) G = M,z and either B is a Frobenius group of order 11.23 or B
is cyclic of order 23 and A =2 M.

(i) G = PS5L,(q) where either ¢ € {11,29,59} and A = Ay or
g # Lmod 4),¢> 3 and A is solvable.

() G = PSL,(g),r an odd prime such that (r,g—1) =1 and either
G = PSLs(2) and |B} = 5.31 or A is mazimal parabolic subgroup such
that PSL._1(q) is involved in A. In particular B is either cyclic or
Frobenius.

As a cosequence of the above theorem we obtain the following corol-

lary.

Corollary 3.2. ([AF]) Let G be a group such that G = AB, (|A],}B]) =
1. Let D be a composition factor of G. Then either D is of type ($)—(v)
in Theorem 3.1 or n(D) C 7(A) or x(D) C #(B). In particular in the
latter case D is either a section of A or of B, respectively. Here n(G)
denotes the set of primes involved in the prime factorization of the order
of the finite group G.

Before stating the next result we introduce some definitions. Let p
be a prime. An elementary abelian p-group EJ is the direct product of
n copies of Z, and in this case n is called the rank of E7. If G isa finite
group, then the p-rank of G is the maximum p-rank of an elementary
abelian p-subgroup of G and is denoted by m,(G).

Now considering the factorizations G = AB and putting restrictions
on the structures of A and B, especially on the Sylow 2-subgroups of
these groups leads to the following results due to U.Preiser [Pz].

Theorem 3.3. ([Pr]) Let G be a finite group that conlains subgroups
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A and B with G = AB. Assume that a Sylow 2-subgroup of A has rank

2 and a Sylow 2-subgroup of B is elementary abelian. Then one of the
fellowings holds:

(i) G= A or B,

(i) G~ A x B,

(110 G & Ag, A As 2 B,

(V) G = Ay, A2 PSLy(T), B A,

(v) G= Ay, AY Ag or Ay, B PSL,(8),

(vi) G = My, A= M, B2 A; or PSL,(11),

(vii) G2 Gy(3™), A= PSLy(3™), B 2% Go(3™), m odd, m # 1.
Also in the paper [Pr] by U. Prieser the following result is proved

which asserts certain finite groups are not factorizable.

Theorem 3.4. ([Pr]) (i) The groups PSFPg), g odd, don’t admit «a
factoriziation with proper simple subgroups,

(#) 2D4(¢®), q odd, don’t admit o factorization with two proper simple
subgroups,

(#i1) PSLs(g),q = 3(mod 4) and PSUs(¢?),q = 1{mod 4), don’t
admits factorizations with proper simple subgroups,

() Go{a),q = p!,p > 3, don’t admit o factorization with proper
simple subgroups.

In [HOS] finite groups G with facterization G = AR, where A and
£ have small Sylow 2-subgroups ard found.

Theorem 3.5. ([HOS)) Let G = AB be o factorization of G and G ¥
AxB. If A and B are finite simple groups such that a Sylow 2-subgroup
of B has order 4 or 8, then G = A or Asj.

There are several results by G.Walls in [Wal] concerning Sylow 2-
subgroups in a factorization of a finite group and we mention some of

them here.
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Theorem 3.8. ({Wal]) Lei G = AB where A and B are simple sub-
groups of G such that a Sylow 2-subgroup of G is dihedral. Then

(G A or B,

(i) G= Aq, A, B 2 45,

(1i1) G = A7, A Ag, B= Ly{(T) or A= As , B= Ly(7).

(iv) G =2 Ax B.

Theorem 3.7. ([Wal]) Let G = AB with A and B simple subgroups of
G. If a Sylow 2-subgroup of G is abelian or quasi-dihedral, then G = A, B
or Ax B.

Theorem 3.8. ([Wal]) If G = AB, A and B simple, and if the order
of a Sylow 2-subgroup of G is at most 32, then the case (i) — (iv) in
Theorem 3.6 occur.

Factorizations of simple groups as the product of two simple sub-

groups first appeared in the following paper of lto.

Theorem 3.8. ([It2)) If G = Ly(q) = AB with A and B simple sub-
groups of G, then

(yG=AorB,

(il g=9 and G 2 L,{9) 2 As ¥ Asds.

Extending the above result we have the {ollowing results of Gentchev.

Theorem 3.10. ([Gel]) Let G be a simple group of Lie type of Lie
rank 1 or 2 over GF(q). Let G = AB with A and B simple non-abelian
subgroups of G. Then one of the followings occurs.

(i) G = 1,(9), A, B = As,

(i) G = Ga(4), A = Jp, B = Us(4),

(#55) G = Gog),q = 311 > 3, A= Ls(¢), B 22 Galq),

(i) G = Galg),9 = 3, A = L3(q), B = Bs(g),

(v) G = Uy(3), A Ly(4), B = PSP(3),

(vi) G = Us(g),q # -1 (mod3), A= Us(g), B = PSPy(q).
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Theorem 3.11. ([Ge2)) Let G be a sporadic simple group such that
G = AB where A and B are simple non-abelian subgroups of G. Then
(1) G = Moy, A Ly(23), B My or Mys or A Ly(7), B = My,
(i) G M, A As, Ly(11) or My, and B = M,,,
(it5) G = Suz, A Uy(2), B = G,(4),
(1) G = Coy, A™ Gy(4), B Co,.

4. Factorizations with one factor being an altr-

nating or a symmetric group.

Now we turn to factorizations where one of the factors is isomorphic

to an alternating or a symmetric group. O.Kegel and H.Luneberg [KL]
proved the following.

Theorem 4.1. ([KL}) Let G = AF be a factorizable group with A, B =
As. Then G A, B, A X B or As.
W.R. Scott in [So] found all finite groups which are equal to the

product of A; and a finite non-abelian simple group.

Theorem 4.2. ([So]) Let G = AB be a finite group, A and B subgrops
of G with A a finite non-abelian simple group and B = As such that
Oul(A) # As. Then one of the following holds:

() G= A or B,

() G2 Ax B,

(1) G = A,, A= A, _i,n = 6,10,12, 15, 20, 30, 60,

(iv) G2 47, A= L,(7),

(v) G = M, A= M,

G.Walls in [Wa2] extended the main results of [Sc] by taking B to

be a non-simple group.

Theorem 4.3. ([Wa2]) Suppose that G is a simple group and that
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G = AB, where A is a non-abelian simple group and B 2 5. Then one
of the following occurs:

() G A, AZ A,q,n = 10,12, 15,20,24, 30,40, 60, 120,

(i) G = My, A= My,

(1)) G & Ay or Ag, A= Ly(7),

(i) G=A,A 2> As.

Theorem 4.4. ([Wa2]) Suppose that G = AB is not a simple but A is
a simple group and B = §5. Then one of the following cases occurs:

(i) G= A xB,

(i) G = (A x As){r),7 acting as an ouier aulomorphism on both
faclors,

(iit) G = (As X As)(t), A 2 As and A; X A5 is a minimal normal
subgroup of G,

{iv) G = 855, A= As,

(v) G = Ay X Zy, A= A,_y,n = 10,12,15,20,24,30,40,60,120,

(v} G = Myp{7m), A= My, 7 acts as an outer automorphism of order
2 on My,

(vid) G = A(r) where A > Ag and 7 is an outer aulomorphism of
the simple group A which acts as an outer automorphism on the copy of
As in A.

In Theorem 4.4 we observe that one of the factors of the factorizable

group G is a non-simple group. Walls in [Wa2] proved the following
general result.

Theorem 4.5. ([Wa2]) Suppose that G = AB is a finite group with
subgroups A and B such that A = S,,n > 5 and B 2 As. Then one of

the following occurs.
(i) G= AX B,
() G285, =An>5,
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(i18) G = Spyr,n = 5,9,11,14, 19,29, 59,

(#0) G = (A, X As)(7), T acting as an autemorphism of order 2 on
both factors,

(v) n =5,G % (A5 x As)(r), T an automorphism of order 2, Ay x As
a minimal normal subgroup of G.

To prove Theorem 4.5 one needs a special treatment of factorizable
groups with a factor being non-simple. Lemma 3 of [Wa2] is adjusted

to deal with the situations as above.

Lemma 4.8. Let G = AB be a factorization of a finite group and A, B
subgroup of G such that A is a simple group and B has a unique proper
normal subgroup N which is simple non-abelian. Let G # AX B and
let M be a minimal normal subgroup of G. Then one of the following
holds:

(i) G=AB = M is simple.

() G=MB,M=Ax N,N = 4,

(i) G= MB,M = N A is simple,

(W) M=AorN,{G:AN]=[B: NLAN= Ax N,

(MnX =1, [ X||[X:An B] for X € {A, B} and [MJAn Bl =
IAM/M N BM/M]|.

Garry Walls in [Wa3] considers factorizable non-simple groups. Some
examples of non-simple groups which can be factored as product of two

proper subgroups are:

3.PSUL(3%) = PSP,(3)PSU(3%),
3.8uz = PSU5(21)Ga(4).

Motivated by recent results of Walls, We were interested in finding
the structure of finite factorizable groups with one factor isomorphic to
an alternating group. In {DR] we proved the following results:
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Theorem 4.7. ([DR]) Let G be a finite group such that G = AB where
AN As and B2 A,,n > 5, then either G 2 AX B orGisa simple
altenaling group as follows:

(i) G = Apyr,n = 5,9,29,35,39,44,59,71,89,119, 179, 359,

(i) G = A,,n 2 6,

(i) G =2 A, n = 8.
Theorem 4.8. ([DR]) Let G be a finite group such that G = AB,
A As and B S,, n > 5. Then one of the following occurs:

(i) G = 45 % S,

(i) G = Ajp = AsSs,n = 8,

(i) G = (As x As){r),T an automorphism of order 2 and Ag X As
is the minimal normal subgroup of G,n = 6, |

(iv) G = Ay, n = 5,9,14,19,35,39,44, 59,71, 89,119, 179, 359,

(v) G=8,n2>6,

(vi) G Ay X Zy,n =8,

(vi)) G 2 (As X An){r),n > 5, where T acts as an automorphism of
order 2 on both faciors.

In {DRW] we extended the result obtained in [So] by considering
factorizable groups with one factor isomorphic to the alternating group

Ag or Sg. These results are as follows:

Theorem 4.9, ([DRW]) Let G be a simple group and G = AB be a
proper factorization of G with A simple and B ¥ As. Then one of the
following occurs:

(G2 A, AR Ay, n= 10,15, 20, 30, 36, 40, 45, 60, 72,90, 120,

180, 360,

(i) G2 Ay = Az,

{i11) G & Ag = L{T)As,

(iv) G & Ag = La(8)As,
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() G = A7 = Ly(7) A,
(v) G = OF(2) = 55(2) 4.

Theorem 4.10. ([DRW]) Let G be a simple group with non-trivial
Jactorization G = AB, where A and B are subgroups of G with A simple
and B % 5. Then we have one of the following cases:

(0 GEA, = A8, n=10,12,15, 20,30, 36,40, 45,60, 72, 80, 90,

120, 144, 180, 240, 360, ¢720,

(i) G % A;p & AgS,

(it)) G & Ag % Lo(7)Ss,

() G = Ag & L,(8)8,,

(v) G = 5:(2) = Us(3)Ss,

(vi} G = 5,(4) = L,(16)S,,

(vif) G = 53(2) 2 07(2)5s,

(with) G =2 OF(2) & 55(2)5s.
Theorem 4.11. ([DRW]) If G is not a simple group and has a factor-
ization G = AB with A simple and B = S, then one of the fellowing
occurs:

(iyG= Ax B,

(4i) G 2 A{r) where A is a simple group containing Ag and T is an
outer automorphism of both A and As.

(i) G = 8, 0r Ay Zy, AR By, n = 10, 15, 20, 30, 36, 40, 45,60, 72,

90,120, 180, 360,

(1v) G = 816 or Ajg X Zy, A 22 A,

(v) G= 8, or Ag X Z;, A = Ly(7),

(vi) G = 85 or Ay x 25, A= Ly(8),

(0id) G = 57, A = Ly(7),

(visd) G = OF (2)(r) or OF(2) x Z,, A 2 56(2), 7 an outer automor-
phism of OF(2), |
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(iz) G = (As x Ag){r), A & Aq, where Ag X Ag is the minimal normal
subgroup of G,

(z) G = (A X Ag){r),T acting as an outer automorphism on both
factors.

In general, the structure of groups which are the product of an al-
ternating and a symmetric group is given in [Da). This paper is a gen-
eralization of [DR].

Theorem 4.12. ([Da]) Let G be a finite group with two subgroups A
and B such that G = AB, where A is isomorphic fo some elternating
group A, and B is isomorphic to some symmetric group S,,r,n > 5.
Then one of the following occurs:

(i) G2 A, or 8, the trivial factorization,

(#) G = A, % S,

(i) G = Ao, Sio o Ao X Zs, where A Ag and B & Sg;

(10) G 2 Ay, Sus or A X Zg, where A Ay or Ag and B & Sy,

(V)G Ay (orSpn), AR A, ,B2S,, where A,y and A,y X 2y
(or 8,.41) hove a transitive subgroup tsomorphic to S, (or A,),

(vi) G = (A, x A){(7),7, an ouler automorphism of order 2 of A,
interchanging the two A.’s and A, x A, is the minimal normal subgroup
of G,

(vit) G = (A, X A7), 7 # n, where v acls as an automorphism of
order 2 on both factors.

(vit)) G2 S5, or 5,41

At the end of this paper we would like to mention some interesting

problems concerning factorizable finite groups.

Q1: Find the structure of all finite groups G = Lo(7)5 where B is a

non-abetian simple group.

Q2: Find all finite groups G such that G = Ly(7)B where B is any
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finite group with the property that B’ = N is a simple group which is
the unique normal subgroup of B and [B: N] = 2.

Q3: Let G be a simple factorizable group such that G = AR, where 4
and B are proper subgroups of G. If A and B are perfect groups is it
true that one of A or B must be a simple group? {4 is called a perfect
group if A’ = A). The answer to this question in the case of alternating

G is yes.

Q4: Obtain general results about factorizations of infinite alternating

or symmetric groups.

Q5: Find the structure of all finite groups G = L,(¢q}B, where B iso-
motphic to the symmeteric group S,.,n > 5.

Q6: In general find the structure of all finite groups & such that G = AB

where A is a simple group and B is isomorphic to a symmetric group.
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The basic nature of our results is that, for any given L, what-
ever holds in Set, concerning this notion, also holds in IE, pro-
vided T has some special properties, in particular when IE is a
Grothendieck topos.

The talk is general and the results have already been pub-
lished. For the details of the proof, ses [10].

1. Introduction

1.1 Universal Algebra: “Much of the beauty of mathematics is de-
rived from the fact that it affords abstraction. Not only does it allow one
to see the forest rather than the individual trees, but it offers the pos-
sibility for the study of the structure of the entire forest, in preparation
for the next stage of abstraction-comparing forests.”

Mathematicians at the beginning of the twentieth century were con-
fronted with a large number of algebraic systems such as groups, rings,
quaternions, Lie algebras, number rings, algebraic number ﬁelds; vector
spaces, Boolean algebras, lattices, etc. A. N. Whitehead [1898] tried
to place these diverse algebraic systems within a common frame work.
Universal algebra as understood today goes back to the 1930’s and it
emerged as a natural development of the abstract approach to algebra
initiated by Emmy Noether.

Universal Algebra studies features common to familiar algebraic sys-
tems mentioned above. Although, “one can become a very good mathe-
matician without being a professional logician even though logical thought
is centraj-fo mathematics”. This goes for algebraists with regard to Uni-
versal Algebra. But, such a study places the algebraic notions in their
proper setting. It often reveals connections between seemingly different
concepts and helps to systematize one’s thoughts. However, it does not

usually solve the whole problem for us, tidies up a mass of rather trivial
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details and thus allows us to concentrate our powers on the hard core of
the problem.

Universal algebra has grown very rapidly in the last thirty or forty
years. Not only the literature expanded rapidly, but also the problems
have become more sophisticated and the results deeper. Young math-
ematicians entering this field today are indeed fortunate, for there are
hard and interesting problems to be attacked and sophisticated tools to

be used.

In the last two decades universal algebra has become useful and im-
portant in combinatorics and theoretical computer sciences. In particu-
lar, structural aspects such as syntax and semantics, data abstraction,
etc., are mainly investigated by methods of universal algebras [20, 21,
23, 24, 25, 34].

One of the fundamental ideas of universal algebra is the representa-
tion of logical notions in nonlogical terms. The famous Birkhoff Variety
Theorem

states that a class of algebras is equationally definable iff it is closed
under subalgebras, homomorphic images and products; such a class is
called a variety. This characterization result was the starting point of
universal algebra.

The gensral theory of algebras borrows techniques and ideas from
lattice theory, logic, and category theory and derives inspirations from
older, more specialized branches of algebras such as the theories of

groups, rings, and modules.

1.2 Category Categorical methods of speaking and thinking has be-
come widespread in mathematics because they achieve a unification of
parts of different mathematical fields; frequently they bring simplifica-

tions and provide the impetus for new developments.
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Categories, initially a convenient way of formulating exact sequences,
and axiomatic homology theory, obtained independent life in the works
of Ehresman, Kan, Maclane, Eilenberg, Barr, Freyd, Gray, Lawvere,

Linton, Tierney, and others.

A category may be thought of in the first instance as a universe for
a particular kind of mathematical discourses. Such a universe is deter-
mined by specifying a certain kind of “objects” and a certain kind of
“arrows” that links different objects. The most general universe of cur-
rent mathematical discourse is the category Set of sets with functions
between them. Many basic properties of sets and set theoretic oper-
ations can be described by reference to the arrows in Set, and these
descriptions can be interpreted in any category by means of its arrows.
So the question that arises is “when does a category look and behave

like Set 77 A vague answer is “when it is (at least) a topos”.

1.3 Topos In 1963, Lawvere tried to find a purely categorical foun-
dation for all mathematics, beginning with an appropriate axiomatiza-
tion of the category of sets. When Lawvere heard of the properties of
Grothendieck topoi, he soon observed that such a topos admits basic op-
erations of set theory such as the formation of sets ¥ of all functions
from X toY and of power sets P(X). Subsequently, Lawvere and Tier-
ney, working together at Dalhousie University, defined in an elementary
way, free of all set-theoretic assumptions, the notion of an “elementary
topos™.

A topos is formally a category which has finite limits, exponenti-
ations (abstracting the function set B#) and subobject classifier (ab-
stracting the truth set 2 = {0,1}).

Recall that, for a category C with finite limits, we say that

C has ezponentiations (exponentials) if for every objects A and B,
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there is an object B4 together with an arrow ev : BA x 4 — B (called
evaluation) such that for every arrow g : C X A — B there is a unique
arrow §: C — B4 withevo (§ x idy) = g.

We also say that C has subobject classifier if there exists an object
£ with an arrow ¢ : 1 — § (called the truth arrow) such that for every
monomorphism f : B — A there is a unique arrow x; : 4 — {2 {called

the classifying arrow) making the square
N

1
——

2 e b
»d
iy

B
bl

1
a pullback square.

In fact, a topos is informally a category which locks and behaves
very much like the category of sets. One of the first examples of a topos

N ap
is Set*”.

A Grothendieck topos JE is a reflective subcatgory of et = (
(i:EE (. R, R 1), for some small category C, whose reflection
functor £ preserves finite limits. For example, for a topological space
X, the category PreshX, of presheaves on X, and the category ShX,
of sheaves on X, are Grothendieck topoi.

Again, one can become a good mathematician without being a pro-
fessional category theorist. But ‘

“How can yowdo “new maths” problems with an “old
math” mind?”- Charlie Brown.

“Virtually all algebraic notions in category theory are parodies of
thelr parents in the most “classical” of categories - - - the category of left

A-modules,” H. Bass.
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Here we briefly study injectivity, the most central notion in classical
universal algebra, modelled in a topos, rather than in the category Set
of sets. It is intended to provide a deeper understanding of the real
features of this algebraic notion and to show that how a classical set-
based Universal Algebra can be, as we may say so, it should be, studied
in a topos (or category) theoretic setting. For more information about
this approach see [3, 5, 6, 7, 10, 11, 12, 13, 14, 18, 30].

2. Algebra in a category

Let JK be a finitely complete category (that is, a category which has

finite products and equalizers, in particular, it has a terminal object 1).

2.1 Definition Given afamily 7 = (n,))¢4 of finite cardinal number n,,
indexed by a set A, an algebra in IK is an entity (4,(A4)res), where 4
is an object of JK and, for each A € A, the A th operation A, : A™ — 4
is a morphism in JK. The family 7 = (ny)es is called the type of this
algebra. The algebra (A, (A 4)aea) is simply denoted by A.

In the sequel, all algebras are of the same type 7.

2.2 Definition A homomorphism from an algebra A to an algebra
E in IK is a morphism A : A — B in IK such that, for each A € A,
Ap o h™ = ho ), That is, the following diagram commutes, for each
AEA:
Arr B2 Bm
Aa | s
A -2 B
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Clearly the identity morphism on the algebra A in /& is a homomor-
phism 14 : 4 — A and for composable homomorphisms 4 % B L ,
fog is a homomorphism.

As a result, the collection of all algebras (of the type 7) in K and
homomorphisms between them forms a category denoted by Alg(r)#&

{or by Alg(r) if I = Set).

2.3 Remark For 4 € Alg(7)K and any natural number n, the set
Hompg (A", A} of all morphisms in K from A" 1o A can easily be made
into an algebra of the type = in Sef, by defining the Ath operation as

)‘(¢}: :én;.) = Aa 0H¢’i
i1

for any ¢ : A" —» A (i = 1,--+,m,) in IK, where [[2,¢; : A® —
A™ is the morphism determined by ¢;’s. That is, Agomy(an, 4) takes

(¢1:“° nér‘n) to n
)\OHQ‘?,?IA“—“}AYM“'}A

iz}
Let FX be the absolutely free algebra in Set of the type r on a set

X = {z;,+,2,} of n elements. Extend the map

X — Homg(A™, A)
T g AY — A

(p; the 1 th projection), freely to
¢: F ~ Homg(A", A)

and denote ¢(p) by pa forany pe F.

2.4 Definition A law (identity or eguaiion) over A in the set X of
variables is any pair ¢ = (p, g} € F x F, denoted by p = q.
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We say A satisfies the equation p = g, wiitten A = (p = g), if
Pa = qa.

The full subcategory of Alg(r)IK given by the class of all algebras
in IK satisfying every equation of a set ¥ of equations is denoted by
mod{X, IK ), or by modXZ, if I = Set, and is called an equational cate-
gory of algebras.

2.5 Examples

1) A group in the category JK = §hX, the category of all sheaves
on a topological space X, is an entity (G;*,()!, ), where G is a sheaf
on X and

+:GXG—~G, (7'GG, e:1—G

are morhpisms in §hX (that is, natural transformations) such that the
following diagrams are commutative:

i) (associativity of *)

GxGxG X @Gx@
1% % ! } *
GxG — G
i1} (the identity condition)

1xG &2 g &) g4
ex1 ! 1] i1 I1xe
GxG 25 G & GxG

iii) (the inverse condition)

{ 1

G —— 1 e G
(L,O™ L el i (O%1
GxG - G e GxG
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Notice that the commutativity of the above diagrams in SAX means
that the diagrams are commutative at each ¥ € O(X ) in Set. In fact,
a sheaf G is a group in 52X iff GU is a group in Sef (see also 2.8).

A homomorphism between groups in §hX, is a sheaf morphism (nat-
ural transformation) which is a group homomorphism at each U € O{X).

2) A ring in the category M Set, of all M-sets (that is, sets with an
action of the monoid on it}, is an entity (R;-+,.,~,0), where E is an
M-set and

+:BRxR—R, :ExR->R, —R-£R, 0:{s} =R

are action preserving maps satisfying the ring axioms.

In fact, & ring in M Set is an M-set which is also a ring in Set whose
ring operations are action preserving maps. ‘

A homomorphism between rings in M Sef is an action preserﬁing ring
homomorphism.

3} A monoid in the category B — Mod, of all left B-modules, is an
entity (M;.,e), where M is an R-module and

MMM, ei{e} M

are B-module homomorphisms satisfying the following identities:

i} (m.n).k = m.(n.k)

ii) e.m = m = m.e

So, an R-module which is also a monoid whose monoid operations
are R-module homomorphisms is a monoid in B ~ Med.

A homomorphism between monoids in B — Mod is an RE-module

homomorphism which is also a monoid homomorphism,

2.6 Remark Let & : K — I be a functor, preserving finite limits.

Then & induces another functor

k: Alg(n)K — Alg(m)IL
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defined on objects by
kA= (A, (kAa)ren)

and on homomorphisms f: A — B, by

K(f) = k(f)

If o = (p,q) is an equation, then A = (p = ¢) implies that p4 = g4, and
hence kp, = kgs which implies that p;, = g;,; and thus k4 |= (p = q).
We thus get a functor

% : mod(Z, K) - mod(Z, IL)

for any given set ¥ of equations.

Recall that a set @ of objects of a category IK is said to be a set of
generaiors if for every pair of morphisms f,¢: A — B with f # g there
exists G € & and a morphism h : G —~ A such that fh # gh.

2.7 Lemma Let IK have a set @ of generators. Then, for any A €
Alg(T)IK and a set & of equations, A.€ mod(X,K) iff he{A) € modD
for each G € ®, where hg = Homg (G, —).

Proof Applying remark 2.6 to the functor hg, we get that for
A € mod(Z, ), he{A) € modY. Conversely, let A € Alg(r)K and
he{A) € modX for each G € $. Let o = (p,g) be an equation in I.
By hypothesis, for all G € @, hg(A4) k= o, that is, Py 4y = Toay
So, ha(pa) = he(qa) for all G € @. Since & is a set of generators,
the preceding equalities yield that py = g4. Thus 4 |= o, and hence
A € mod(Z, IK).
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2.8 Corollary The category Alg(r)C is isomorphic to the category of
all Alg{r)-valued presheaves on C. And, for a Grothendieck iopos IE,
and a set T of equations, A € mod(L, E) iff AU € modX forallU € C.

3. Injectivity in equational classes

A natural question to ask would be, what is the relationship between
the behaviour of a certain classical algebraic notion in modZ and in
mod(Z, IK). In the following, we briefly consider the notion of injectivity,
and show that the properties of modE, regarding injectivity, survive
the passage to mod(%,[E), for a set T of equations and an arbitrary
Grothendieck topos JE (fixed from now on); for the details and some
particular cases see for example {10], [13], [30]. For the case of equational

classes of algebras in Set see for example [2], [32].

3.1 Definition An object E in a category K is called injective if, for
any monomorphism B 4, C and any morphism B Ly E there exists
a morphism C L E with f o4 = f; that is the following diagram

commutes:

— C
s F

oy
by e

Replacing B, in the above definition, by £ and f by the identity
morphism on F, we get the definition of an absolute retract object E in

a category.

3.2 Definition A monomorphism A : A — B in a category K is
called essential if, for any morphism g : B — C, wherever go h is a

monomorphism, then so is g.
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3.3 Lemma In mod(L, JE), for a Grothendieck topos IE, we have

i} any composite of essential monomorphisms is an essential monomor-

phism, and

it} any direct limit of essential monomorphisms is an essential monomor-
phism.

3.4 Lemma In med(L, E), for any monomorphism h : A — B there
exists a homomorphism g 1 B — C with g o h an essential monomer-

phism.

Proof Take @y to be the maximal congruence on B such that
B/6, € mod(L,JE) and A — B — B/O; is a monomorphism. This

composition is then essential.

3.5 Coreollary In med(Z,IE), an algebra A is an absolute retract iff it

hes ne proper essential exfension.

3.6 Definition A category IK is called essentially bounded if, for each
A € IK there exists, up to isomorphism, only a set of essential extensions
in JK.

3.7 Proposition mod(L, V) is essentially bounded iff modL is essen-
tially bounded.

3.8 Definition In any category J, pushouis transfer monomorphisms
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if, for any pushout diagram

A L, B
uwo ) L v
c 4L D

whenever f is a monomorphisms, then ¢ is also a monomorphism.

If IX has pushouts, the above is equivalent to say that, any diagram
4 L B

v |
C

with f a monomorphism can be completed to a commutative diagram
A -L B

4 | ] v
Cc X D

with g a monomorphism.

3.9 Proposition Pushout transfer monomorphisms in mod(Z, IE) iff

they do in modX.

3.10 Lemma The category mod(%, IE) has enough injectives iff it is

essentially bounded and pushouts transfer monomorphisms.

3.11 Proposition The category mod(Z, JE)) has enough injectives iff
modZL has enough injectives.
4. Behaviour of injectivity in mod(Z, IE)

Banaschewski in [2] calls the notion of injectivity in a category K prop-
erly behaved iff the following three propositions hold:
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(I) Forany A € IK, the following conditions are equivalent:
{I1) A is injective.
{(I2) A is an absolute retract.

(I3) A has no proper essential extensions.
(E) Every A € IK has an injective hull, unique up to isomorphisms.

(H) For any monomorphism f : A — B, the following conditions
are equivalent:
(H1} f:A ~— B isan injective hull of A.
(H2) f:A — B is a maximal essential extension,

(H3) f:4 — Bisaminimal injective extension.

For IK = mod(%, IE), we now have the following.

4.1 Proposition For mod(Z,JE), the following are equivalent:
(1) Injectivity is properly behaved,
(if) mod(Z, IE) has enough injectives.
(iil) mod(Z, IE) is essentially bounded and pushout transfer monomor-

phisms.
In particular, one has, by proposition 3.11:

4.2 Corollary  injectivity is properly behaved in mod(T, IE) iff it is
properly behaved in mod(X).

4.3 Examples
1) Recall that, the category Set has enough injectives. So, if we take
% to be the empty set, then mod¥ as the full subcategory of all algebras
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of the type 7 = 0, is Set and hence has enough injectives. Using 3.11, this
implies that for any Grothendieck topos [E, mod(Z, IF) = IF has enough
injectives. In particular, the category M Set, of M-sets have encugh

injectives. Thus injectivity is properly behaved in such categories.

2) The category Boo, of Boolean algebras has enough injectives (the
power set of each set is injective in Boo). So, the category of Boolean

algebras in any Grothendieck topos has enough injectives.

3) The category Ab, of abelian groups has enough injectives (recall
that here injectivity means divisibility). So, the category of abelian
groups in any Grothendieck topos, in particular in SAX, has enough

injectives.

4.4 Note For certain ¥, one has characterization of the injective
A € mod¥ by properties of A in terms of its elements and subsets.
For example: divisibility for abelian groups, completeness for Boolean
algebras (the Sikorski Theorem), and completeness and Booleanness for
distributive lattices. A good guestion to ask is fo what extent, that
is for what IF, such characterizations remain valid in mod(X, E}). Ba-
naschewski {3] shows that divisibility = injectivity for abelian groups
in the category ShL of sheaves on a frame L iff I is Boolean. Also
Ebrahimi {13] shows that for Boolean algebras in the topos of M-sets,
injectivity implies “internal” completeness, but the converse is not true.
Also, Mahmoudi [30] defines internal injectivity for the category M Boo
of Boolean algebras in the topos M Set and finds some equivalent con-
ditions in which the internal version of the Sikorski Theorem holds.
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The approximation problem concerning the equality among the above algebras
and the density of these algebras in certain uniform algebras will be investigated. In
particular, when X is a compaci plane set with planar measure zero, it is shown that
Lipp(X, @) = Lip(X, &), where £ipr{X, &) is the norm closure of rational functions
with poles off X. Another important result is the density of D*(X) in £ipp(X, o),
where D?(X) is the Banach function algebra of functions with continuous derivative
on the perfect compact plane set X,

We introduce Lipschite algebras of differentiable complex functions on perfect
compact plane sets and then interesting subalgebras of these algebras are defined and
the approximation problem among these kinds of Lipschitz algebras will be discussed.

To introduce the real Lipschitz algebras om a compact metric space (X, d) we
assume that the map r : X — X is a topological involution on X such that
d(r{z},m(y)) € Cd(z,y) for all z,y € X, where C is a positive constant, Let
¢ : (X} — C(X) be the algebrza involution on £{X) induced by =; l.e. ch =hor.
The real Lipschitz algebras are introduced by

Lip{X,r,0)={h € Lip(X,a):a(h) =2} (0<e<1)
LiplX, r,a)={helip(X,a):0(h) =k} (0<a<])
The extension of the Hedberg’s Theorem for the real Lipschitz algebra fip{X, 7, o)
will be discussed and the density of Lip{X, 7, 1) in fip(X, r, &) will be shown.
Another important class of Lipschitz algebras is the Fréchet Lipschitz algebras
FLip(X,a) and Féip(X o), where X is a hemicompact metric space. The density

of FLip{X,1) in F&ip{X,a} and the Hedberg’s Theorem for the Fréchet Lipschitz
algebra Filip(X, o) will be discussed.

We will try to present a brief historical background on the progress of the subject.

1. Historical Background

Although the notion of Lipschitz functions is very old and these
interesting functions have been studied for many decades, interest in
the Banach space and Banach algebra theory of Lipschitz functions was
not developed until 1955. As it is mentioned in the paper of D.R.
Sherbert [30], the only work known to us till 1955, which treats the
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space of Lipschitz functions as a Banach algebra, was done by 5.B.
Myers {22] . His paper contains a summary of results only, the proofs
never published because of his untimely death in 1955. The proofs
of many of the unproved statements of Myers have been supplied by
Sherbert in [30] , and in some cases, his results have been extended
to more general settings. Sherbert also discussed different aspects of

Banach algebras of Lipschitz functions in [29].

Since 1964 some other mathematicians have been working on real
and complex Lipschitz algebras and obtained interesting results in the
following fields: Structure of ideals, maximal ideal spaces, point
derivation, automatic continuity, eventual continuity, amenability and
weak amenability, differentiability of Lipschitz functions, the Stone-
Weierstrass theorem, exireme points, peak points, Shilov boundary and
Chogquet boundary, isometries between Banach spaces of Lipschitz
functions, closed ideals, Lipschitz algebras of differentiable functions,

and the approximation problem.

A good collection of the works in Lipschitz algebras can be found in
the recent book of Nik Weaver {32 , though it does not contain many
results in this field. For more advanced account on some aspects of the
complex Lipschitz algebras, including the Frechet Lipschitz algebras,
one can refer to the recent and interesting monograph of H.G. Dales
[7; Sec. 4.4).

In this paper we are going to study an interesting aspect of Lipschitz
algebras, called the approximation problem. One of the famous results
in approximation is the Hedberg’s theorem, which is, in fact, the Stone-
Weierstrass theorem for Lipschitz algebras and will be discussed here
for real and complex Lipschitz algebras as well as the Frechet Lipschitz
algebras.
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2. Complex Lipschitz Algebras

Let X denote a compact Hausdorff space and C'(X) denote the
commutative complex unital Banach algebra of all continuous complex-
valued functions on X with the pointwise operations and with respect

to uniform norm on X.

Definition 2.1. A complez Banach function algebra on X , 18 a
complex subalgebra of C(X) which separates the points of X, contains
the constant function 1 and it is complete under an algebra norm. If the
norm of a complex Banach function algebra is the uniform norm on X,
then it is called a complez uniform {function) algebra on X.

If A is a complex Banach function algebra on X the space of
maximal ideals of A is denoted by M, which is, in fact, the space of all
non-zero complex (continuous) homomorphisms on A. Clearly, for each
z € X the map e; : A — C, defined by e.(f) = f(z) is a homomor-
phism (character) on A which is called the evaluation homomorphism

{character) on A at z. It is clear that A is semisimple, since
rad{A) = {f € A: f € ker(¢), for all in M,}
C{feA:fekerfe,), forallzin X}
={feAd: f(z)=0, forall z in X}
= {0}.
The map J : X — My, defined by J(z) = e, is continuous and
injective.
Definition 2.2 The Banach function algebra A is called natural if
the map J is surjective, that is, every homomorphism (character) on A
is an evaluation homomorphism (character) at some z € X.

For example, C(X) is a natural complex uniform algebra on X [4;
Sect.17] or [26; Example 11.13], I (A, ||-}}) is o complex Banach function
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algebra on X, the uniform norm of each element f € 4, does not exceed

from its norm, since

Hfllx = fgjglf(z)i < Jsup [8( )]
= s LF(O)] = I fllags = palf) = inf e < Al

Definition 2.3 Let {X,d) be a compact metric space and « > 0. The
algebra of all complex-valued functions f on X for which

pelf) = sup VI <

@y

o0

is denoted by Lip(X,a) and the subalgebra of those functiens f for
which d(j‘iﬁlﬁcu-g;{'—%)iﬁ = 0, is denoted by &ip(X, ). These are called
Lipschitz algebras of order « and were first studied by Sherbert [30].

Clearly Lip(X, ) is a Banach algebra of continuous complex-valued
functions on X under the norm ||fil. = [flix + pa{f), where
Iflix = sup lf(z)]. If £ip(X,a) is also equipped with the abeve norm
then it isszaiily proved that £ip(X,a) is a closed subalgebra of Lip(X, a)
and hence it is also a Banach algebra.

Lipschitz algebras contain the constants for every positive a. But
when X is a connected compact sabset of C*, d(z,y) = ||z - ¢|| and
1< a{a>1),then Lip(X,a) (Lip(X,a)) may contain the constant
functions only. In general, when 1 < o, Lip(X,a) may contain the
nonconstant functions. for example, if d is the discrete metric on X
then for a fixed @ € X , the function , f(z) = d(z,ua) is an element of
Lip(X,a) which is a nonconstant fanction.

In most parts of this paper X is usually a compact subset of C,
so we shall concern ourselves with the algebras Lip(X, ) (respectively,
Lip(X,a)) only when 0 < a <1 (respectively, 0 < a < 1). In this case

the algebras contain the family of functions f(z) = d(z,a), as a runs
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over X, which separates the points of X. Hence Lip(X,a) for o < 1 and
4ip( X, e) for & < 1, are Banach function algebras on the compact metric
space X. Since these Lipschitz algebras are self-adjoint and separate the
points of X, they are uniformly dense in C(X}, by the Stone-Weierstrass
Theorem. Hence they are natural Banach function algebras on X , that
is, their maximal ideal spaces coincide with X. For the proof one can
either follow the same process as the proof of the naturality of C(X), by
using the fact that these algebras are inverse-closed, or apply the main
theorem in {11).

Note that the function f(z) = d*(z,a) is an element of Lip(X, a)
but lim,_, Eiiéf,l:j’ = 1. Hence fdoes not belong to £ip(X, o) when X is
infinite and so £1p( X, 0)is a proper subalgebraof Lip(X,a)in this case.
Moreover, for every & < 1 we have the inclusion Lip(X, 1) C tip(X, ).
In fact, Lip(X, 1) is dense in £ip(X,c). This result has been proved in
(3], using the measure theory and duality, but it is also followed from a
theorem due to Hedberg in [10], which is, in fact, a Stone-Weierstrass
theorem for Lipschitz algebras of real-valued functions. However, this
theorem does hold even for Lipschitz algebras of complex-valued func-
tions with an extra condition as follows, which we need later for some

approximation theorems.

Theorem 2.4 (Hedberg’s Theorem) Let (X,d) be a compact
metric space, and 0 < @ < 1. Let 4 be a self-adjoint subalgebra of
Lip( X, a) which separates the points of X and contains the constant
functions. Then A is dense in Lip(X,q) if for every a € X there are
numbers M, and 4§, such that for every § < 6, there is an fed
with f(e) = 1, f(z) = Oon 85,(6) = {z € X : d{z,a) = &}, and
SUDy -, (6) u%%%ﬁ < ¥ where B,(6)={z e X : d(z,a) < 6} .

For the proofone canset Ay = {f € A: fis real-valued} and see that
Ay is a subalgebra of Refip(X, ), the real Lipschitz algebra, which has
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all properties of Hedberg’s theorem in the real case. Hence A, is dense
in Relip(X,a). Now by considering the fact that A is self-adjoint and
the real and imaginary parts of Lipschitz functions are also Lipschitz

functions, it is easy to show that qA is dense in £ip(X, o).

Corollary 2.5 Since A = Lip(X,1) is a self-adjoint subalgebra
of £ip(X, ) and for every a € X and arbitrary positive § the function
g(z) = 1- %22 i5 an element of Lip(X,1) which satisfies the conditions
of Hedberg’s theorem, it follows that Lip(X,1) is dense in £ip{X, a) for
every a < 1.

Now we discuss the approximation problem in Lip = Lip(X,a) for
a < 1and in &ip = Lip(X,a) for @ < 1, when X is a compact subset
of C". Since the polynomials and the rational functions with poles off X
belong to Lip(X, 1), we can define the following subalgebras of Lip(X, )
and £ip{X,a). From now on we always consider Lip(X,a) for a <1
and Lip(X,a) fora < L.

Before presenting the next definition we prove the following useful

result.

Theorem 2.6 Let A be a natural Banach function algebra on a
compact subset X of C", and suppose A contains the polynomials.
Then every function which is analytic in a neighbourhood of X is an
element of A.

proof. Since M, =& X , ie. the maximal ideal space of A4 is
homeomorphic with X, the joint spectrum of the coordinate function
is precisely the set X. If fis a function analytic in a neighbourhood of
X, then by the Functional Calculus Theorem [8; I, 4.5], there exists
g€ Asuchthat § = f(3,%,,...,%,) on My & X |, where 2; is the
Gelfand transform of the coordinate function z; (1 € k <n). Therefore
g = fon X and hence f€ A.

By the above theorem the Lipschitz algebras Lip(X, o) and Lip{X, a)
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contain any function which is analytic in some neighbourhood of X.

Definition 2.7 The subalgebra of Lip (£ip) which is generated by
the polynomials in 2, 25,... , z,, by the rational functions with poles off
X, or by the analytic functions in some neighbourheod of X, is denoted

by Lipp (Lipp), by Lipg (£ipg), or by Lipy (ipy), respectively.

Definition 2.8 The subalgebra of Lip (£ip) which is generated by
those elements of Lip (£ip) which are analytic in the interior of X is
denoted by Lip, (fips). ‘

These subalgebras are all Banach function algebras on X and they
satisty the following inclusions:

Lipp C Lipp C Lipy C Lips C Lip,

tipp C lipg C Lipy C {ipy C fip.

Note that continucus functions on X, which are analytic in the
interior of X, may not be in Lip(X,«). Since for every f € Lip(X,a),
1flix < [Iflla, it is easy to see that Lipa(X,e) = A(X)NLip(X,a) and
tipa(X,a) = A(X) 0 Lip(X,a), where A{X ) is the algebra of contin-
uous functions on X which are analytic in the interior of X. Hence
Lipa(X,e) = Lip(X,a) or lipy(X,a) = Lip{ X, o), if and only if, X
has empty interios.

Now we investigate the maximal ideal spaces of these subalgebras,
and the equality among some of them. For this purpose, we consider
the standard uniform algebras P(X}, R(X) and H(X ) which are the
uniform closures of polynomials, rational functions with poles off X
and functions which are analytic in a neighbourhood of X , Tespectively.
For the subalgebra B of C(X), we denote its maximal ideal space by
Mp and its uniform closure by B . Clearly Tipp = fipp = P(X),
Lipr = fipg = R(X), and Tipy = lipy = H(X).
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Also for every f € Lip we have ||f"ll« < IFlI% + noa{OWAIK
and so ||f]| < [|fllx, where f is the Gelfand transform of f. Thus as a

consequence of the Theorem in [11], we obtain the following results:

Theorem 2.9

L Mpip, = Myp, & X, where X is the polynomial convex hull of X.

I Mpyp, = Mupx & R-hull (X), where R-hull (X) is the rational
convex hull of X.

HL M_{,,‘pﬂ = Miipx = MH(X)v
IV. X = R-hull (X) if and only if Lipp = Lipx.

V. If R-hull (X) = X then Lipp = Lipy.

Note that whenever A(X) = H(X) we have Lipa(X, ) = lipa(X,e)
= ;A(X)ﬂ and s0 Mpyp, = Mup, = Mup. But in general these
equalities may not be satisfied. However, if X is an arbitrary compact
plane set then fips(X,e) and Lips(X, ) are natural Banach function
algebras on X [20,16, orl], but when X is an arbitrary compact subset
of C* (1 < n) the maximal ideal spaces of Lip4 and {ip, are not known
yet. For further results on some other subalgebras of Lip(X,a) one can’
refer to [31].

To establish some results about the approximation problem we need

to define the algebra of continuously differentiable functions.

Definition 2.10 Let X be a perfect compact plane set, a complex-
valued function f on X is called differentiable at 2z, € X, if

flz) - f(#)

Mol =87

E ]
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exists, and f is called differentiable on X if it is differentiable at each
point of X. The complex algebra of complex-valued functions with
derivatives of all orders on X is denoted by D=(X). Let D"(X) be
the algebra of functions with continuous n* derivatives on X. For
f € D"(X), we define the norm by

p(n) =1 £11= 2 L

This norm is actually an algebra norm on D™(X). It is interesting to
see that Do(X) =M., D"(X).

Definition 2.11 Let M = {M,}2, be a sequence of positive num-
bers such that

is denoted by D(X,M). For convenience, we regard D"(X ) as being an
algebra of the type D(X, M) by setting M, = r! (r = 0 1,...,n) and
w=00=n+Ln+2,...)

From now on whenever we refer to M = { My} we mean this sequence

satisfies the above conditions.

Now we introduce the type of compact sets which we shall consider

next.

Definition 2.12 Let X be a compact plane set which is connected
by rectifiable arcs, and suppose §(2,w) is the geodesic metric on X, the

infimum of the lengths of the ares joining z and w.
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(i) X is called regular if for each 2y € X there exists a constant C
such that for all 2 € X, 6(2,2;) < Clz — 2].

(i) X is called uniformly regular if there exists a constant €' such
that for all z,w € X, 8(z,w) < Clz — w).

If X is a finite union of regular sets then for each 2y € X there exists
a constant C such that for every z€ X and any f € DY{X),

Ff(2) = flz)l € C e = 2] (1Flx + 171x)-

This inequality implies that DYX) is complete under the norm
iflh = || fllx + {|fllx [6,14]. It is also interesting to note that the
above condition is, in fact, a necessary and sufficient condition for the
completeness of D'(X'). To see this, let D*(X} be complete and define
another norm on D'{X) by

L flz) — f()]

|z — z]

WA= 1N + 10 + sup (f e DX},
2€X

sag
where z; is a fixed point in X. Then D'(X) is also a Banach function
algebra on X under this new norm. Thus there exists a constant C such
that for all f € DY(X) and for every z € X

| f(z) = f(20)| € C |z = 2] (Il fllx + 1 Fllx)-

Note that the completeness of D'(X) is, in fact, equivalent to the com-
pleteness of D{X,M}. Moreover, DY(X) C Lip(X,1), and the norm ||.||,
of D*(X) and the Lipschitz norm of Lip(X,1) are equivalent on D{X).
Note that D*(X) is a proper closed subalgebra of Lip(X,1) for every
uniformly regular set X

From now on we assume that X is a perfect compact plane set such
that D'(X) is complete, unless otherwise specified.

As mentioned before for each < 1, Lip(X, 1) is dense in £ip( X, o).

A question which arises here is that ander what conditions D} (X) is also



70 Taher Ghasemi Honary

dense in f£ip(X,a). If D'Y(X) is dense in £ip(X,c) then Lipa( X, 0)=
tip(X, ) and so intX = ¢. Therefore, a necessary condition for the
density of D'(X) in fip(X,e) is that intX = ¢. But the inverse is
not true. However, we shall prove the interesting result that DYX) is
actually dense in Lipp(X, ).

For this purpose and the next general result we make some
preliminaries. Let X be a compact subset of the complex plane and
define V = {(z,w) € X x X : 2z # w} and W = X UV. We denote
the Banach space of bounded continuous functions on W by CH{W), the
closed subspace of functions which vanish at infinity by Co(W), and the
space of all regular complex Borel measures on W by M(W). It follows
from the Riesz representation theorem that the dual space of Co(W) is
isometrically isomorphic to M{W). As noted in [3, §3} we extend any
function g € C(X) to a function § on W by defining

iw)=gw)  (weX),
§¢om) = MO0 (¢, m) € V).

The map g — §, Lip(X, a) — C*(W)is a linear isometry and the image
of £ip(X, o) is contained in Co(W).

Theorem 2.13 [13] Let X be a compact subset of the complex plane
and suppose f : X -~ C can be extended to a function having continuous
partial derivatives in some neighbourhood of X. If either of the following
conditions is satisfied, then f € Lipp(X, @) for every o < 1.

(i) m{X) = 0, where m is planar measure.
(i1) g;; =0on X.

Proof. Suppose f satisfies the hypotheses of the theorem but
f ¢ {lipg(X,o). By the Hahn-Banach theorem there exists a
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continuous linear functional ¢ on fip(X,a) for which ¢(f) # 0 and
¢ = Uon ipp( X, ). Again, by the Hahn-Banach theorem, ¢ has a norm
preserving extension to a continuous linear functional ¢ on Cy(W), and
so there exists a p € M(W) with ¢(g) = ¢¥(3) = [ gdu, for every
g € tip(X,a).

By hypotheses there exists a function F defined and with continucus
partial derivatives on R?, having compact support, such that Fy = f.

By Green's formula

1 oF i
F(w)_m;fj/@n;a?ig'zmwdxdy (weC).

So we have

8(5) HORFIC)

[, Fau= [ fwutw)+ [ Foae o)

L(jfﬁzg- _1 dxdy)d,u(w)
4'f£ ( j{mn % :é?;:“f“—dzdy) (s m).

Since F has a compact support in R?, there exists a closed disk A in C

such that & = 0 on C\A. To show the boundedness of the integral
I~
M=y

j] 8z ||z~ ClJz- 1]

over V', we split A into three parts, D¢, D, and A\(D,U D,), where D,
and D, are disks with centres { and #, respectively, having radius J%”i
Clearly the integrals on D; and D, are bounded. If z € A\(D, U D,)
then |( — 5} < 2[z — (| and |{ — 9} < 2|z ~ g| and s0 [( ~ '™ <

ey — (155 |z — p|*5*. Hence

H

i

aF| ("
B [ e |}, | TR
{Aumwa)35IZ~dh—nEzy“
j‘f dzdy
A\(DUD,) 53 (1z - C] |z~ p|)*5=
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Now, using Holder’s inequality the last integral is bounded over V since
a < 1. Therefore by Fubini’s theorem and hypotheses we have

B }_ ;(‘113 d{w) Ty zin
¢(f) = mﬁ']ji 8z (»/X 2w v |C€“"??|“ dﬁ(C,??)) o

1 oF i
“ f/i\x Frh (z = w) dedy =0,

which contradicts our previous assumption. Therefore f € Zipg(X , o)

and this completes the proof of the theorem.
As an interesting result on the approximation problem we conclude
an extension of the Hartogs-Rosenthal Theorem, which states that R(X) =

C{X}, when X has planar measure zero.

Theorem 2.14 [13] If X is a compact subset of the complex plane
with planar measure zero, then £ipp(X, o) = fip(X, ).
Proof. By Theorem 2.13, 7 € fipp(X,a), where 7 is the complex
conjugate of the coordinate function 2, For every ¢ € X and § >
0 the function f(z) = 1 -~ E'—;%‘f- is an element of fipg(X,a). Hence
A = Lipr(X, o) satisfies the conditions of Hedberg's theorem, and so 4
is dense in fip(X, a), that is, lipa(X, a) = tip(X,a).

Remark 2.15 The above theorem is not true for the algebra Lip( X, a),
when @ < 1 and X is a compact subset of C". Note that Lipg(X,1) is
also a proper closed subalgebra of Lip(X, 1} for every uniformly regular
set X.

For similar results, which are related to the second part of Theorem
2.13 and Theorem 2.14, one can refer to [23, 24, 25].

Now we extend a result due to Dales and Davie which states that
DHX) C B(X)if X is uniformly regular {6, Lemma 1.5].

Theorem 2.16 [13] Forevery perfect compact planeset X, DI(X) =
fipR(X 3 Oﬁ}.
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Proof. It is sufficient to prove that DYX) C {fipr(X,a). Let
f € DYX). By the Whitney's extension theorem {21], there exists
a function F, defined and with continuous partial derivatives on RZ,
having a compact support, such that Flx = f, $%|, = 0and 5|, = /.
Hence f satisfies the hypotheses of Theorem 2.13, and so f € £ipr(X, a).

Remark 2.17 [13] If fipp(X, a) = Lip(X, a) then R(X) = C(X).
But there exists a Swiss cheese X,,with empty interior and positive pla-
nar measure, such that B(X,) is different from C(Xy), [8; 11,1}, Hence
Lipp(Xo,a) is different from  £ip(Xo, o). Since every Swiss cheese is
a perfect compact plane set we conclude that D'{X,) is not dense in
Lip( Xy, ).

Finally we extend the result of Theorem 2.16 {0 obtain an extension

of a similar result in uniform algebras for Lipschitz algebras.

Theorem 2.18 {13] Let X bea compact subset of C?, and let X;
(1 < j < n) denote the projection of X onto the jth coordinate plane.
() If Lipp(X;,e) = £ip(X;,0) for ll 7 (1 < j £ n), then fipp(X,a) =
Lip( X, a).

(i) If Lipp( X, ) = Lip(X;,0) forall j (1 € j < n), then Lipg(X,a) =
tip( X, c).

Proof. (i) Clearly the complex conjugate of every polynomial in
21, %55... 52, 15 an element of Lipp(X,a). Hence the function f(z) =
1- ﬂ-’—"—;—,‘ﬁ—’ﬁ is an element of fipp(X,«) for every a € X and § > 0.
Therefore by the Hedberg’s theorem, £1pp( X, o) is dense in £ip(X, a),
in other words, £ipp(X,a) = &ip(X,a).

(i} Note that every rational function r is of the form r(z) = %,
where p(2) and g(z) are polynomials in 2, 2s,...,2, and g(z) # 0 on
R-hull (X), which is the maximal ideal space of £ipg(X, o). Hence §(2),
the complex conjugate of g{z), as an element of £ipp(X, ), is invertible
in ipr( X, @) and so #(z) is an element of fipa( X, a). The result now
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follows as in (i).

As a consequence we get the following.

o

Corollary 2.18 If for each j (1 < j < n), X; has planar measure
zero, then Lipp(X, a) = fip(X, ). If moreover X'j =X, forall j (1<
J £ n) then Lipp(X, o) = fip(X, ).

Now we are going to discuss the approximation problem for the
Lipschitz algebras of differentiable functions on perfect compact plane

sets. For further details one can refer to [19].

Definition 2.20 The algebra of functions f on X whose derivatives
up to order n exist and for each k (0 < k < n), f®) € Lip(X,a) is
denoted by Lip"{X,a). The algebra £ip"{X,a) is defined in a similar
way.

We now equip these algebras with the norm

(k3 i () (%)
p“(f)mnfxzmz”f" s ;lf I +2.(7%)

The above algebras have similar properties to D™(X). Clearly for each
n > 1, Lip"(X,1) C tip*(X,a) C Lip*(X,a)C DYX)C DH{X). It is
also known that D'(X) C R(X) [6].

Definition 2.21 The algebra of functions f with derivatives of all
orders for which f® € Lip(X,a) (f® € £ip(X,a)) for all k is denoted
by Lip™(X,a) (£ip™(X, a)).

It is interesting to see that D=(X) = ow, D(X), Lip™(X,a} =
Moo, Lign(X, ) and £ip=(X,a) = Mo 4ip"(X,a). Note that these
algebras are not Banach algebras under any norm [7, 12, or 22].

We row introduce certain subalgebras of Lip™ (X, o) and £ip™(X, a).
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Definition 2.22 Let

L?: e L) N - ”f(k)“a
p(X,M,e)={f € Lip (Xaa)-z M < o0},
k=0 k

f(’r)ﬂcl

Lip( X, M, a) = {f € Lip™(X,a}): Z“ YA oo},

and for f in Lip(X, M, ) or in €ip(X, M, ) let [|f|} = 325-0 ﬁ%f—lﬁ—

Remark 2.23 The above algebras have similar properties to D(X, M).
For convenience, we regard Lip"{X,c) and {ip"(X,c) as being
algebras of the type Lip(X, M, @) and fip( X, M, o), respectively, by set-
ting My = k! (k=0,1,... ,n)and 1/M; =0 (k= n+1,...). Clearly for
a < 1, Lip(X,M,1) C tip(X,M,a) € Lip(X,M,a) C D(X,M),
Lip(X, M, ) C Lipn+ti(X,a) C £ip*(X, o), Lip(X, M,a) C Lip"t' (X, a)
C Lip®(X, a). Since Lip{X, o) and ﬂép(X ,a) are normed function alge-
bras and |||, isan algebra norm on them, forevery f,g € Lip(X, M, )
(f,g € £ip(X, M, a) we have

1.9 = T2, Ml < yoeo L5~k () 5] gk,
TR Mle B — (50 W)y LiDle) = | £ lg].

Hence f.g € Lip(X, M, a) ( f.g € tip(X, M, ) and so any of the above
algebras are normed function algebras on X, with respect to the above
norm. The completeness of DY X) or, equivalently, D(X, M), implies
that Lip(X, M, a) and £ip(X, M, o) ate Banach function algebras on X.

Remark 2.24 When X is a uniformly regular set we have D" +1(X) C
Lipr(X,1) C £ip*(X,a) and for a < 1 &ip(X, M, o) = Lip(X,M,a) if

3. is different from zero for infinitely many k.

Remark 2.25 When P, = §/M: — 00 as k — o0, D(X, M) and
likewise Lip{X,M,1) contain all rational functions with poles off X.
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From now on we assume that X is a perfect compact plane set
such that D'(X) is complete, unless otherwise specified.

Now we introduce subalgebras of Lip(X, M, o) and £ip(X, M, ).

Definition 2.26 The closed subalgebra of Lip(X, M, o) (¢ip(X, M, a))
which is generated by the polynomials, by the rational functions with
poles off X that belong to Lip(X,M,a) (fip{X,M,a)), or by those
functions of Lip(X,M,a) (¢ip(X,M,a)} which are analytic in some
neighbourhood of X, is denoted by Lipp(X, M,e) (Lipp(X, M, a)),
Lipa(X,M,a) (Lipa(X,M,a)) or Lipg(X,M,a) (Lipyg(X,M,c)),
respectively.

Remark 2.27 Clearly Lipp(X, M, o) is uniformly dense in P(X),
the uniform closure of polynomials. Moreover, when Py = {/M, [kl — o0
as k — 00, we have Ro{X) C Lip(X,M,1), so Lip{X, M, 1) and hence
Lip( X, M, o) and Lip(X, M, a) are uniformly dense in R(X). In particu-
lar, Lipp(X, M, o) is uniformly dense in R(X'). Note that, when P, — oo
as k — oo, Lipa( X, M, «) is generated by the all rational functions with
poles off X, and hence it is a natural Banach function algebra on X.
So by the Theorem in [11] we have Mryppx a0y & Mpxy = X, where
M, is the maximal ideal space of the algebra A. Thus when P, — oo
as k — oo, Lipp(X, M, ) = Lipg(X, M, a) if and only if X = X. Also
when P, — 0o as k — 00, by the Functional Calculus Theorem [8; 3.4.5],
Lipp( X, M, a) contains all analytic functions in a neighbourhood of X,
and so Lipg(X, M, o) = Lipg(X, M, a).

Theorem 2.28 [14] For each n > 0, £ip*( X, @) and Lip"(X, @) are
natural Banach function algebras on X.

Proof. Since the algebras £ip(X,a) and Lip(X,a) are uniformly
dense in C(X) and for n > 1, lip"(X, o) and Lip™(X, @) are uniformly
dense in R(X), by the naturality of C(X) and RE(X), we can show that
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for each f € Lip"(X, o) we have Hf” < Ifilx, where f is the Gelfand
transform of f. Thus by the Theorem in [11] the result follows.

It is clear that for o < 1 fipp(X, M,a) = Lipp(X,M,a),
Lipp( X, M, o) = Lipp( X, M, o) and £ipg{ X, M, o) = Lipg( X, M, o).

Theorem 2.29 If X is uniformly regular and ipp( X, o) = Lips (X, o)
then Liph(X,a) = fip"(X,¢) foralln > 1and a < 1.
Proof. As weknowif f € DX ) then po{f) < Cd**| f'llx, whered =
diam(X). Now let n > 1 and f € 4ip"(X,a). Since f) € fipy(X, o) =
Lipp( X, @), for every ¢ > 0 there exists a polynomial F; such that

Hf(n) - PO“iip(X,a) = ”f(n) - PO”X -+ Poz(f(n} . PU) <€

Let zy be a fixed point in X and P, be the antiderivative of B, with the
initial condition P;(2) = fir~1){z).
Since fO*~V — P, € ip*(X,a) € DY(X) we have

pa{FOD = P < Cd o f™ — Pllx < Cd' %

Continuing in this manner, we obtain polynomials Py, Ps,..., P, such
that Pl = Py, Pulze) = fO-B(z) , § 7% — Plx < C¥d¥e , and
(8 BY < ChdF-o¢, for k =1,2,... ,n. Cleatly PI*¥) = P,_, on
X and

n—1 n kdn kf_{_C’n kdn e e €
oy

< o
“f P hp (X} = ;zz: i -+ n Af,

for some constant A, Hence f € £iph(X, o} .
Now we investigate rational approximation on circles and annuli., We

note that when X is uniformly regalar and o < 1, then &ip(X, M, a) =
Lip(X, M, a)if 1/M,;, # 0 for infinitely many k.

Theorem 2.30 [14] T = {26 C :|z—2| = R} then Lipp(T, M, ) =
Lip(T, M, o).
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Proof. We assume that 2y = 0 and B = 1. Let f € &ip(7, M, a) and
Yo @;2 be the Fourier series generated by f, where

a; = 5= [7 f(e*®)e~"?df. The Cesarc means of this series are

on(e”) = 5= [ SR - it = o [ FE Kt

where K, (£} is the Fejer kernel. It is known that o, is a rational function
on T with the only pole 2 = 0, and {|o, — flir — 0 as n — co. Since for
each k > 0, f) is continuous on T' we have

o) = ok [ WOk i (e,

and so {[of|r < [ F®|z.
On the other hand,
o(e) = ool L 1 1oty - £

)
- K. (0dt < p (f¥).
Iz s w‘a - 2?2- e !ze-ﬂf‘l — we-—-—:!!a ( ) =P (j )

Hence pa (08} < p(f*)) and so 0, € Lipr(T, M, a).

Now we prove that [lo, — fliap(r.4,0) = 0 28 1 — co. Since

”an - f”tip(T,M,a) S Zuf“ﬁp(T,M‘Oz}!

by the dominated convergence theorem, it is enough to show that for
each £ > 0, o — fUHlr + po(off) — F*)) - 0 as n — co.

By the uniform continuity of each f(*) on T we have [lo{t) - fB) iz —0
as m — 00,

Since f® € 2ip(T, @), for € > O there exists & > 0 such that for all
zaw€e T, if0< |z—w| < § then |f¥)(2) — fEN w)]/|z ~ w]|* < ¢/2. Let
k>0and z,weT,{z#w). i]z—w| <4, then

0(2) = SO(z) = o (w) + [Hw)
< €,
|z — wle
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If |z — w| > 6 and n is large enough, then

lof(z) = f9(2) — ot w) + FEw)] 2ol - fR

¥
2~ wl= THE

Hence po (o) — f(*)} - 0 as n — oco. This completes the procf of the
theorem.

Note that the following results are not satisfied when &ip(X, M, o)
reduces to £ip(X, o).

Theorem 2.31 [14] If X = {z € C : 7 < |2 — %| < R} , where
0 < r < R, then Lipg{X, M,a) = £ip(X, M, o). But in these cases we
have Lipp( X, o) = lipa( X, a).

Proof. Without loss of generality we can assume that 2, = 0.
Let f € fip(X,M,a). Since f is analytic in » < |2{ < R it has a
Laurent series of the form f(z) = 3% ;27 on r < |2| < R, where
a; = (2np))"1 [T e~ fpet)di, for v < p < R. The Cesaro means of
the Laurent series of f is

*

onl(z) = .2% j FlreK(Ddt (v < izl < B),
where K,(t) is the Fejer kernel. Clearly for each k > 0 we have

P = o= [ WK (r <2l < B),

-

and so [oF}H2)] < || F®ix for r < |2] < R. Since 0, is a rational function
with the only pole z = 0, o{}J is analytic in r < |z] < R . Therefore the
above inequality holds for all zinr < J2| € R. Hence [jo{lx < [|f®]|x
and pa(o®) < p(f*)) for all k£ > 0 and for every positive integer n,
and so 0, € ipa(X, M,a). Now we can proceed exactly the same as
in the proof of theorem 2.30 to show that |lon, — flupxmey — O as
n — co. Therefore f € Lipp(X, M, ) and this completes the proof of

the thecrem .
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I r — @, the above theorem implies the following result.

Corollary 2.32 [14] If X = {7 : |2] < R} then £ipp(X, M, a) =
tip(X, M, o).

Theorem 2.33 [14] Let X be a regular set for which there exists
Z € X suchthat for 0 < B < 1, Bz — 25) 4 2 € iniX forall z € X.
Or, equivalently, the segment [z, z) is contained in the interior of X for
all z€ X. If P — oo as k — oo, then Lipp(X, M, @) = Lip(X, M, a).
Proof. Clearly X is star-shaped and so it is polynomially convex. Thus

Lipp(X, M, ) = bipg(X, M, o) = lipy(X, M, ).

Without loss of generality we can assume that z; = 0. By the hypoth-
esis for each positive integer n and every z € X |, r,z € intX, where
Ta = nf(n+1). Let f € £ip(X, M,a) and define the sequence {f,} on
X by fa(2) = f(raz). Each f, is analytic in a neighbourhood of X and
50 fu € Lipg(X, M, ). Moreover for each & > 0, f(¥)(z) = r} f®)(r,2)
and 50 | flx < || F®ix, pa(Ff5*) < palf®)) for all £ > 0 and ev-
ery n. By the uniform contimuity of each f®) on X | lim,_ .|| f(*) -
f®x = 0. Since f ¢ lip(X,a) for each k > 0, p(f®) — F®))
0 as n ~» oo. Consequently by the dominated convergence theorem
W fo = Fllepx at,a) — 0 a8 5 — oo, and so f € Upy(X, M, a).

Corollary 2.34 If X is a compact convex set with non-empty
interior and Fy — 00 as k — oo, then fipp(X, M, o) = £ip(X, M, &).

3. Real Lipschitz Algebras

We first present a brief general description of real uniform algebras and

real Banach function algebras.
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3.1 Real Uniform {(Function) Algebras

Definition 3.1.1 Let X be a topological space. Amapr: X — X
is called a topological involuiion on X if 7 is continuvous and 7(7{z)) =z
forallz € X.

Note that, = is a homeomorphism of X onto X.

Examples 3.1.2 (i) The identity map on a topological space X is
a topological involution on X.

(ii) Let X be the closed interval [a,b]. The map 7 : X — X, defined
by r{z) = b — a — z is a topological involution on X.

(i1} Let X be a compact plane set such that X is symmetric about
the real axis. The map 7 : X — X, defined by 7{z} = Z, is a topological
involution on X.

Let X be a compact Hausdorff space and 7 be a topological involution
on X. Let

C(X,ryi={feC(X): for=f1

Then C(X,7) is a uniformly closed real subalgebra of C{X) which

contains the constant function 1.

Remark 8.1.3 If r is the identity map on a compact Hausdorff space
X then C(X,7) = Cg(X), the real uniform algebra of continuous realy
valued functions on X. On the other hand, for a given compact Hausdorff
space X, we suppose ¥ = X X {0,1} and the map 7: Y — ¥ defines
by r(z,7) = (z,{j + 1) modulo 2). Identifying X with X x{0}, X can
be treated as a subspace of ¥ . Then every f in C(X) can be extended
uniquely to Y by requiring that the extension belongs to C(¥,7). In
fact, the map ¢ : C(X) — C(Y,7), defined by ¥(f)(z,0) = f(z),
P(f)(z,1) = f(z), is an isometrical isomorphism of C(X), as a real
Banach algebra, onto C(¥, 7). Thus C(X,r) is a more general object
than Cg(X) and C(X).
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Theorem 3.1.4 [18; Theorem 1.3.5]. Let X be a compact

Hausdorff space and r be a topological involution on X. Define the map
o : C{X)— C(X)by o{f) = for. Then:

(i) ois an algebra involution on C{X) and
CH, ) ={feC(X}):a(f)= [}
(i) C(X) = C(X,7)@ iC(X,7), that is, every h in C(X) can be
expressed uniquely as f + ig with f, g in C(X,7).
(iii) o is an isometry.
Definition 3.1.5 Let X be a compact Hausdorff space and 7 be a

topological involution on X. The algebra involution ¢ on C{X) defined
by a(f) = for,is called the algebra involution on C(X) induced by 7.

Theorem 3.1.6 [18; Theorem 1.3.5(v)] Let X be a compact
Hausdorff space. If o is an algebra involution on C(X) then:

{i} There exists a topological involution on X such that
o(f)= for, forall fin C(X).

{ii}) o is an isometry.

Theorem 3.1.7 [18; Lemma 1.3.7] Let X be a compact Hausdorff
space and 7 be a topological involution on X. Let z,y € X and 2 # y.

(i) Hy= r(z), then there exists a function fin C(X,r) such that
f(z) = i and f(y) = .

{if) My # r(z), then there exists a function f in C(X,7) such that
f(z)=1and f(y) = 0.
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In particular, C(X, ) separates the points of X

Pefinition 3.1.8 Let X be a compact Hausdorff space and 7 be
a topological involution on X. A real uniform (function) algebra on
(X,),1s a uniformly closed subalgebra of C(X, ) which contains 1 and
separates the points of X.

It is clear that C({X, 1) is a uniform (function) algebra on (X, 7).

Theorem 3.1.9 [18; Theorem 1.3.20]. lLet X be a compact
Hausdorff space, T be a topological involution on X and o be the algebra
involution induced by r on C(X). Let A be a real subspace of C(X,7)
and define

Bi={f+ig: f,g € A}.
Then
(i) o(B)=Band A={he B:oh)=h}l=BnC(X,r).
(ii) B = A®iA, that is, every i € B can be written uniquely as
f+ig with f,g in A.
(iii) For f,g € A,
max{[{ flix,lgllx} < IIf +dgllx < [Ifllx + llgllx.

(iv} B is uniformly closed (self-adjoint, separates the points of X,
contains 1) if and only if A has the same property, respectively.
Moreover, B is a complex algebra if and only if A is a real

algebra.

(v) H Ais a real uniform algebra on (X, 7) then the map
a: My — Mp, defined by ‘

a(d)( f +ig) = o(f) + i¢{g),

is & homeomorphism of M, ontoc My
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By the above theorem, if r is a topological involution on a compact

Hausdorff space X then
Mexny = {e, 12 € X},

where e, is the evaluation characteron X atz ¢ X [18; Corollary 1.3.21].
In some problems, we need to know when a given complex uniform
algebra on (X,7) can be viewed as a complexification of a real uniform

algebra. The following theorem gives a criterion.

Theorem 8.1.16 [18; Theorem 1.3.22] Let X be a compact
Hausdorff space, 7 be a topological involution on X and o be the algebra
involution induced by r on C(X). If B is a complex uniform algebra on
X with o(B) = B and suppose A = {h € B:o(h) = h} then Ais a real
uniform algebra on (X, 7) and B can be regarded as the complexification
of 4.

We now state the Stone-Weierstrass theorem for real subalgebras of
C(X,r).

Theorem 3.1.11 [18; Proposition 1.2, Corollary 2.1.14] Let X be a
compact Hausdorff space and 7 be a topological involution on X. If A
15 a self-adjoint real subalgebra of C(X, ) containing 1 and separating
the points of X then 4 = C(X,7), where 4 is the uniform closure of A.

3.2 Real Banach Function Algebras

Real uniform (function) algebras were first defined and studied by S.H.
Kulkarni and B.V. Limaye in 1981. In general, a complex wniform
(function) algebra on a compact Hausdorff space X may not be a real
uniform (function) algebra on X, with the topological involution 7 as
the identity function. But, it is interesting to note that every complex

uniform (function} algebra can be regarded as a real uniform (function)



Approximation in Complex and Real Lipschitz Algebras 85

algebra on a compact Hausdorff space with a suitable topological invo-
lution 7. Hence, the class of real uniform algebras is larger than that of
complex uniform algebras.

Now we extend the notion of real uniform (function) algebras, by
intreducing a larger class, which is called the real Banach function
algebras.

We will show that every complex Banach function algebra can be
viewed as a real Banach function algebra with some topological
involution 7. Hence the class of real Banach function algebras is larger
than the class of complex Banach function algebras. We are going to ex-
tend some general properties of the complex Banach function algebras
for the real Banach function algebras. Then the real Lipschitz alge-
bras of complex functions are introduced and some properties of this
interesting class of real Banach function algebras are discussed.

Let X be a compact Hausdorff space and 7 be a topological involution
on X. In this section, we first define a real Banach function algebra on
(X, 7). We prove that for each complex Banach function algebra (B, |i-|})
on X, there exist a compact Hausdorff space Y, a topological involution
r on Y and a real Banach function algebra (A4, [} [i) on (¥,7) such
that (B, |- |}, as a real Banach algebra, is isometrically isomorphic to
(A, ]il-1). Then we extend the Theorems 3.1.9 and 3.1.10 to real Banach
function algebras. Finally we give some results concerning the carrier

space {maximal ideal space} of real Banach function algebras.

Definition 3.2.1 Let X be a compact Hausdorff space and v be a
topological involution on X. A real Banach function algebra on (X, 7)
is a real subalgebra A of C(X,7) which contains the constant function
1 and separates the points of X and there exists an algebra norm |f - ||
on A such that (A, [ -|l) is a real Banach algebra.

Note that if the norm of a real Banach function algebra A on (X, 7)
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is the same as the uniform norm on X , then A is called a real uniform
(function) algebra on (X, 7).

Let X be a compact Hausdorff space and 7 be a topological involution
o X'. We recall that the map o : C(X) —> C(X) which is defined by
o(f) = for,is an isometric algebra involution on C(X) and is called
the algebra involution on C (X) induced by 7.

Theorem 8.2.2 [2; Theorem 1.1] Let X be a compact Hausdorff
space, T be a topological involution on X and o be the algebra involution
on (X} induced by r. If (B, ||-||) is a complex Banach function algebra
on X such that o(B)= Band A:={he B: o(h) = h}, then

(i) A is a real subalgebra of B and 4 = B N ClX,r).

(i) Every h in B can be expressed uniquely as f + ig with f, g€ A

(iii) There exists a comstant C > 1 such that fle(B)l < Cllk} for
every h € B and max{||f|l,llgli} < Clif + ig|| for all £, g € A.

(iv} (4,11} is a real Banach function algebra on (X,7).

{(v) For ¢ in M, define (NS + ig) == ¢(f) + ip(g) for f,¢ € A.
Then of¢) € My and the map « is a homeomorphism from M, onto
Mp. In particular, A is natural if and only if B is natural.

Remark 3.2.3 In the above theorem, if B is a complex uniform
algebra on X then A is a real uniform algebra on (X,7) and we can
choose ' = 1. Therefore, the above theorem is a generalization of a

similar result for the real uniform algebras.

Theorem 3.2.4 [2; Theorem 1.2] Let X he a compact Hausdorff
space, 7 be a topological involution on X and o be the algebra involution
on C{X) induced by . Let (4, || +]}) be a real Banach function algebra
on (X,7) and define B :={f +ig: f,g € A}. Then:

(Jo(By=Band A={heB:c(h)=h}=Bn C(X,r).
(ii) B is complex subalgebra of C{X) and B = A @ iA.
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(iii) There is an algebra norm ||| - ||| on B such that || f|] = ||| fil| for
all f € A and

max{{| fil, lgll} < IS+ 2glli < 2max{|ifil.lgll} (/.9 € A).

(iv) (B, i} - ) is a complex Banach function algebra on X.

(v) For ¢ € M, define (($))(f +ig) = 9(f) + id(g) for f,g € A.
Then a{¢) € Mp and o is 2 homeomorphism from M, onto Mp. In
particular, A is natural if and only if B is natural.

Remark 3.2.5 In the above theorem, if A is a real uniform algebra
on (X,7) then B is a complex uniform algebra on X. Therefore, this

result is & generalization of a similar result for the real uniform algebras,

3.3 Real Lipschitz Algebras of Complex Functions

In this section we first define (-quasicontraction and in particular
d-isometric topological involutions on a compact metric space (X,d).
Then we show that if o is the algebra involution on ¢(X) induced by a
{’-quasicontraction topological invelution 7 on a compact metric space
(X,d) and @ € (0,1] then o(Lip(X o)) = Lip( X, e) and o{fip( X, a)) =
{ip(X,a). By using this result we define the real Lipschitz algebras
of complex functions Lip(X, 7, ) and lip(X,r,a), which are real Ba-
nach function algebras on (X, 7). Next, we show that for a compact
metric space {X,d), there exists a compact metric space (¥,p) and a
p-isometric topological involution r on ¥ such that Lip(X, ) (respec-
tively, l:p(X, @}), as a real Banach algebra, is isometrically isomorphic
to Lip(Y,r,a) (respectively, Lip(¥,7,&)) for o € (0,1} (respectively,
o € (0,1)). Finally, we study the approximation problem of the real
Lipschitz algebras Lip{X,7, @) and lip(X, 7, @) and certain subalgebras
of these algebras.
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Definition 3.3.1 Let (X, d) be a compact metric spoace and r be ¢
topological involution on X.

(i) 7 is called a C- quasicontraction on X if there exists a constant
€ > 0 such that d(v{z),7(3)) < Cd{z,y), for all 2,y in X.

(i) 7 is called a d-isometric topological involution on Xif
d(r(z),7(y)) = d(z,y) for all z,y in X.

Remark 3.3.2 If 7 is a C-quasicontraction topological involution
on a compact metric space {X,d) then it is easy to see that ¢ > 1,
Moreover if C = 1 then r is d-isometric.

Lemma 3.3.3 [2; Lemma 2.4] Let (X,d) be a compact metric
space and 7 be a C-quasicontraction topological involution on X and ¢
be the algebra involution induced by 7 on C(X }. Then

(i) For every a € (0, 1] and f € Lip(X, ), pa(o(f)) < Cpa(f).

(ii) For every o € (0,1], o(Lip(X, ) = Lip(X, ).

(iii) For every a € (0,1], o(lip(X, o)) = lip( X, o).

(iv) For every e € (0,1] and every f ¢ Lip(X, a),

1o (Al < G111

(v) If 7 is a d-isometric topological involution then for every o € (0,1]
and f € Lip(X,a), pa(0(f)) = pa(£) and fo(f)ila = || f]le- Hence o is
an isometric algebra involution on Lip(X, «).

Proof. (i) Let a € (0,1} and f € Lip(X,e). Then

polo(1) = sup{IZD@ =o D

d*(z,y)
= sup{ lﬂr(?j(; ;()T(y))z 1o,y € X, o # y}
TS )
= Capa(f)4

(i) By (i), o(Lip(X,a)) C Lip(X, ). Since a(o(f)) = f for every
f € Lip(X, a), o(Lip(X, @) = Lip(X, ).



Approximation in Complex and Real Lipschitz Algebras 89

(iii) Let o € (0,1) and f € lip(X,«). Let ¢ > 0 be given. Since
f € lip(X,a), there is a §; > 0 such that 11%“{,%%}13 < C7%, whenever
0 < d(z,y) < 8. Set § = % and suppose z,y € X such that
0 < d(z,y) < 4. Since 1 is a C-guasicontraction topological involution

on (X, d}, therefore
0 < d(r{z),r(y)) < Cd(z,y) < C§ = §;.

Hence W < C~%g. This implies that Wﬂi < € and
so a{f) € lip(X,a). Therefore, o(lip(X,a)) C lip(X,«) and since o is
an algebra involution on C(X), o(lip(X, a)) = lip(X, o).

(iv) Let @ € (0,1] and f € Lip(X,a). By (i) and C > 1, we have

lo(Hlle = o (Hllx + palo())
= {fllx + pal0(f})
< filx + C%pal f) = Cll e

{v) Il 7 is a d-isometric topological involution on X then €' =1 and

50 Pa(o(f)) = palf). Hence [lo( ko = [ flla- O
Remark 3.3.4 Let (X, d) be a compact metric space and o € (0, 1].
If B = Lip(X,a) or lip{X,c), then the map f = f is an isometric
algebra involution on B.
Theorem 3.3.5 [2; Theorem 2.7] Let (X, d) be a compact metric
space, T be a (-quasicontraction topological involution on X and o be
the algebra involution on C(X) induced by 7. We define

Lip(X,r,0) = {h€ Lip(X,a) :o(h) = h} (a€(0,1]),
and

lip(X,r1,0) = {h € lip(X,a): o(h) = h} (a€ (0,1)).
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A = Lip(X,7,a) and B = Lip{X,e) (A = lip(X,7,2) and
B = lip(X, a), respectively), then

(i) B=Ag@iA.

(if) For every f, g € A, max{{| flla, liglla} < C4IIf + igllo.

(i) (4, || - |lo) is 2 real Banach function algebra on (X, 7).

(iv) Ais self-adjoint and A = C(X,7), where A is the uniform closure
of A.

(viMs={e,:z € X}.

Proof. Since (B, ]| |lo) is a complex Banach function algebra on X
and by Lemma 3.3.3, we have o{B) = B, therefore (i) and (iii} hold by
Theorem 3.2.2.

Since ¢ is an isometric involution on C(X) and by Lemma 3.3.3,
fo(h)lle € C°||h)i. for each h € B, we can easily show that (ii) holds.

Since A is self-adjoint, A = C(X,7). Thus (iv) holds. Since B is
a natural Banach function algebra on X, A is also natural by Theorem
3.2.2(v) and hence (v} holds.O

Theorem 3.3.6 [2; Theorem 2.8] Let (X, d) be a compact metric
space and @ € (0,1]. Then there exist a compact metric space (¥, ), a
p-isometric topological involution 7 on ¥ such that the complex Lips-
chitz algebra Lip( X, a) (respectively, lip(X, o)), regarded as a real Ba-
nach algebra, is isometrically isomorphic to the real Lipschitz algebra
Lip(Y,7,a) (respectively, lip(Y, 7, a)).

Proof. Let Y 1= X x {0,1}. We define themap p: ¥ XY — Rby

p((z,7), (¥, k) = max{d(z,y),|7 - k|} (2,vy€ X,5,k€{0,1}).

Then p is a metric on Y and the topology induced by p on ¥ coincides
to the product topology on Y. Now, we define themap 7 : ¥V ~— ¥ by

r(2,0) = (5,1), (5,1)=(5,0) (z€X).



Approximation in Comp}ex'alz;d Real Lipschitz Algebras 51

It is easy to see that 7 is a p-isomeric topological invelution on ¥. Now,
we define the map v : Lip{X, o) — Lip(Y,1,0) by

P(f)z,0)= flz), ¥(f)z,1)=f(z) (z€X)

We can easily show that ¢ is an isometrically homomorphism from
(Lip(X,a), | - |la), 2s a real Banach algebra, into (Lip(¥,7,a),| - lla)-
Now, let g € Lip(Y, 7, a) and define the map f: X - C by

f(x) = g(:e:,O).

It is easy to see that f € Lip(X, ) and ¢{f) = g. Therefore, ¢ is an
isometrically isomorphism from (Lip(X,a),|i<||s), as a real Banach alge-
bra, onto Lip(Y,r, ). Moreover, if f € lip(X, o) then we conclude that
¥(f) € lip(Y,r,e) and if g € lip(Y,r, ), ¥~ {g) € lip(X, o). Therefore
Y|kpcx,0y is an isometrically iscmorphism from (lip(X,a), |l - la), as &
real Banach algebra, onto lip(Y, 7,a),{| - o). &

Remark 3.3.7 If (X,d) is a compact metric space and 7 is the
identity map on X then 7 is a d-isometric topological invol ution on X

and

Lip(X,r,a) = Lipg(X,a) = {f € Lip(X,a): f is real-valued},
Lip(X,r, ) = lips(X, ) = {f € lip(X,a) : f is real-valued}.

Therefore the class of real Lipschitz algebras of complex functions
Lip(X,r,a) (lip( X, 7, 2), respectively) is larger than the class of the real
Lipschitz algebras Lipg(X, a) (lipg(X, o), respectively). Also, by Theo-
rem 3.3.6 we conclude that the class of real Lipschitz algebras of complex
functions Lip(X,r,a) (Iip(X, 7, «), respectively) is larger than the class
of complex Lipschitz algebras Lip( X, «) (Iip{ X, o), respectively}, as real
Banach algebras.
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Theorem 3.3.8 [2; Theorem 2.9] Let (X,d) be a compéct metric
space and v be a C-quasicontraction topological involution on X. Then

()I0 << B <1,then Lip(X, 7, 5) is a subalgebra of lip(X,r,a).

()10 < & < 1 and X is an infinite set then lip(X,r,a) is a proper
subalgebra of Lip(X, 1, a).

Proof. (i) Since Lip(X,7,8) = Lip(X,8) N C(X, ), lip(X,7,a) =
lip(X,a)NC(X, 1), Lip(X, B) is a complex subalgebra of lip{X,a) and
C({X,r) is a real subalgebra of C{X), we conclude that Lip(X,r,B)isa
real subalgebra of lip(X, 7, a).

(ii) Since lip( X, «) is a proper subalgebra of Lip( X, a), there exists
h € Lip(X,a)\lip(X, ). Since k € Lip(X, ) and by Theorem 3.3.5 we
have

Lip(X, o) = Lip(X,7,e) @ iLip(X, T, a),

thus & can be expressed uniquely as h = f+ig with f, g in L;p(X, T,a).
Since A ¢ lip(X, @) and by Theorem 3.3.5 we have

bip(X,a) = lip(X,7,0) @ ilip(X,7,a),

thus f & lip(X,7,a) or g & lip(X,7,e) and the proof (i) is now com-
plete. O

Let {X,d) be a compact metric space and take & € (0,1). A type
of Stone-Welerstrass theorem in real Lipschitz algebra lipg(X, o) was
first given by L. I. Hedberg in 1969 [10; Theorem 1]. Let r be 2
C-quasicontraction topological involution on X. We now extend the
Hedberg’s theorem in real Lipschitz algebra of complex functions
lip( X, T, ), without using the complexification technique.
Theorem 3.3.9 (Hedberg’s theorem in real Lipschitz algebras of com-
plex functions) [2; Theorem 2.10] Let (X, d) be a compact metric
space, T be a C-quasicontraction topological involution on X, and take
o € (0,1). Let A be a self-adjoint veal subalgebra of lip(X,7,«) which
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separates the points of X and contains the real-valued comstant func-
tions on X. Then A is dense in lip{X,r,a) if for every a € X, there are
positive numbers M, and 4, such that for every § < §,, thereisa f ¢ 4,
with f(a) =1, f(z) =0 on S5(a) = {z € X : d(z,a) = &}, and
/)~ £
o { i
where By(a) = {z € X : d{z,a) < §}.

Notice that if {X,d) is a compact metric space and 7 is the iden-
tity map on X then Lip(X,r,a) = Lipg(X,a) and lip(X,r,a) =
lipg(X,a). Hence, the theorem 3.3.9 is a generalization of the
Hedberg’s theorem in real Lipschitz algebra lipg(X,a). Note that T.
G. Honary and H. Mahyar stated the Hedberg’s theorem in complex
Lipschitz algebras lip(X, ) in {13].

As a consequence of Theorem 3.3.9, the Hedberg’s theorem in

M,
vz € Bia)y 2 < 2,

complex Lipschitz algebra lip(X, ) is obtained, which is stated as fol-
lows:

Corollary 3.3.10 [2; Corollary 2.11] Let (X,d) be a compact
metric space and take « € (0,1). Let B be a self-adjoint complex
subalgebra of lip{ X, &) which separates the points of X and contains the
complex-valued constant functions on X. Then B is dense in lip(X, a)
if for ¢ € X, there are positive numbers M, and §, such that for
every § < §,, thereis a f € B such that f(o) = 1, f(g) = 0 on
Ss(a) = {z € X : d(z,e) = §}, and

|f{=) - f(w)l
Saaren
where By(a) = {z € X : d{z,a) < §}.

As an application of Theorem 3.3.9, we prove that the real Lipschits

M,
THEE Bﬂ(é)ﬁy# 2} < “"3";;‘"“’

algebra Lip(X,r, 1) is dense in {ip(X, 7, ) for o € (0,1) without using

the complexification technique.
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Corollary 38.3.11 [2; Corollary 2.12] Let (X, d) be a compact metric
space and T be a (C-quasicontraction topological involution on X. I
a € (0,1) then Lip(X,,1) is dense in (lip(X, 1, a), {|.la)-

4. Fréchet Lipschitz Algebras

First we introduce some elementary definitions and known results con-
cerning Fréchet algebras. For further details refer to [12, 27, 15 or 7).
Definition 4.1 A Fréchet algebra is an algebra which is a com-
plete metrizable topological vector space and has a neighbourhood basis
{Va)nen of zero consisting of convex sets V,, such that V,.V, C V, for all
n € N. We always assume that the Fréchet algebra contains the unit 1.
The topology of a Fréchet algebra A can be generated by a se-
quence (P, )aen of separating submultiplicative seminorms {p,{(f.g) <
Pa{f).pn(g) for each n € N and every f,g € A such that p,(f) < pue1(f)
foralln € Nand f € A. If A has a unit, p, can be chosen such that
7a(1) = 1 [8]. We may denote the Fréchet algebra A with the above
generating sequence of seminorms by (4, (p.)). Clearly a sequence (3}
in A converges to f € A if and only if p.(fi — f) 0 for each n € N.
Definition 4.2 The specirum of a Fréchet algebra A is the set of
all non-zero continuous complex-valued homomorphisms on A and it is
denoted by M4. We endow M, with the Gelfand topology.
It can be shown that a complex homomorphism ¢ on the commu-
tative Fréchet algebra (A4,(p,)) is continuous if and only if there exists
n € N such that |[p(f)| < pa(f) for all f € A [8; Remark 3.2.2(ii)].

Definition 4.3 The radice! of a Fréchet algebra A4, denoted by
rad(A)}, is the intersection of all maximal left (right) ideals in A. The
Fréchet algebra A is called semisimple if rad(A) = {0}.

If A is a comunutative Fréchet algebra then rad(4) is the intersection
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of all closed maximal ideals; i.e. rad(A) = N, ¢, kery [9; Proposition
8.1.9].

The following interesting result for Fréchet algebras, which is due to
Carpenter [5], is similar to the uniqueness theorem of Johnson [17] for

semisimple Banach algebras.

Theorem 4.5 If A is a commutative semisimple Fréchet algebra

then A has a unique topology as a Fréchet algebra.

Definition 4.6 A Hausdorff space X is called hemicompact if there
exists a sequence (X, ),en of compact subsets of X such that X, € X4,
for each n € N and every compact subset K of X is contained in some
X,. Such sequence (X, )nen is called an admissible exhaustion of X.

If (A, (p,)) is a Fréchet algebra and A, is the completion of A/ ker p,
with respect to the norm p/(f + kerp,) = p(f), f € A, then 4, is a
Banach algebra.

Definition 4.7 Let X be a hemicompact space, and let A be a sub-
algebra of C(X) which contains the constants and separates the points
of X. Then A is called a Fréchet function algebre on X if it is a Fréchet
algebra with respect to some topology such that the evaluation homo-
morphisms are continuous on A, ie. @, € My forallz ¢ X.

Clearly with the above definition every uniform Fréchet algebra is
a Fréchet function algebra which is equipped with the compact-open
topology.

It is easy to see that every Fréchet function algebra is semisimple.
Moreover, every Banach function algebra on a compact Hausdorff space
X is a Fréchet function algebra on X. For further details see {27].

Let X be a perfect compact plane set and for n € N, B,(X) be
any of D*(X), Lip™(X,e) or £ip™(X,a). Suppose 4 is any of the al-
gebras D=(X), Lip®(X, o) or Lip™ (X, o) and (p, }» is the corresponding
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sequence of algebraic norms defined on D™(X), Lip™(X, ) or ip*(X, ),
respectively, which was defined in the Definitions 2.10 and 2.20. We
endow A with the metric topology defined by the sequence (Pn)n and
denote it by (A, (p.)). Then we get the following result, which can be
found in [12] or [27]. Moreover, by the Carpenter’s Theorem there exists

a unique topology for each of these algebras as a Fréchet algebra.

Theorern 4.8 If X is a perfect compact plane set such that D*(X)
is complete, then (4, (p,)) is a Fréchet function algebra on X which is
not a Banach algebra.

Theorem 4.9 If X is a uniformly regular space then
D=(X) = Lip=(X,1) = 4ip™(X, o) = Lip™(X, a).

Proof. If f € D™(X) then f) € DYX) for 0 < k < n. Since X
is uniformly regular, DY(X) is complete and so there exists a constant
M such that for all z,w € X and for each k¥ (0 < &k < n),

F® () ~ f* (w)] < Mlz — wl || FEH |1 .
Hence for all k(0 < k < n),

JB(z) ~ fO(w)]

B ——

p(f®) = sup <M || fE* jix< o0,

zwgX
ZFEW

and so for every k(0 < k < n), f® € Lip(X,1). Thus f € Lip™(X,1)
and it follows that D +}{(X) C Lip*(X,1). It is easy to check that

Lip™(X,1) € lip™(X,e) € Lip"(X,a) C D"(X),
and so

D=(X) C Lip™(X, 1) C £ip™(X, ) C Lip®(X,0) C D*(X).
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Hence the result follows.

Coroilary 4.10 If X is uniformly regular then the metric topologies
of D>*(X), Lip™(X,1}) and Lip>(X, o) are equivalent.

Proof. It is immediate by the Carpenter’s Theorem [5].

Now we introduce the Fréchet function algebras FLip(X,a) and
Flip(X,a) and some important subalgebras of them, where X is a
hemicompact metric space. We also extend some known results and
theorems about the Banach function algebras Lip(X, o) and fip(X, o)
to these Fréchet function algebras.

Let (X,d) be an arbitrary metric space (not necessarily compact)
and 0 < o < 1. Then, as before, we take Lip(X, @) as the space of all
bounded Lipschitz functions of order & on X, which is a Banach algebra
under the same norm as defined in the Definition 2.3.

Now we define a new topology r on Lip(X, @) under which it is an
LMC-algebraso that when X is a hemicompact metric space, (Lip(X, e), )

is metrizable. For a compact subset K of X we define

Px(f) = fllx + pe(flx)  (f € Lip(X,a)).

Clearly p,. is a submultiplicative seminorm on Lip(X, a) so that the
family ( p, )k is 2 separating family of seminorms. Let  be the topology
on Lip(X,a) which is defined by the family (p, ), of semincrms. Then
we have the following interesting result, which can be found in [27;2.4.1]

Theorem 4.11 Let (X,d) be a hemicompact metric space. Then
(Lip(X,a),7) is a Fréchet algebra if and only if X is compact {in this
case (Lip(X,a),7) is indeed 2 Banach function algebra).

Definition 4.12 For the hemicompact metric space (X, d) the com-
pletion of Lip(X,a) with respect to 7 is denoted by FLip{X, ) and it
is called the Fréchet Lipschitz algebra of order & on X.
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We can characterize the elements of FLip(X,a) as the continuous
functions f (not necessarily bounded) such that f|x € Lip(K, a) for
each compact subset K of X. To prove this result one can refer to [27;
Theorem 2.4.3], which is stated partly in the following,.

Theorem 4.13 Let (X, d) be an arbitrary metric space and let A

be the algebra of all continuous functions f on X for which

pe(f) = Ifllx + pa(flx)

is finite for each compact subset K of X. We endow 4 with the topology
defined by the family (p, )x of seminorms. Then

(i) Lip(X,a)is dense in A with respect to this topology.
(i1} (4,(p.)) is a Fréchet algebra if and only if X is hemicompact.

(ii) {4,(p.))is a Banach algebra if and only if X is compact.

Remark 4.14 Note that Parts (i) and (iii) of the above theorem also
imply Theorem 4.11. From now on we assume that X is a hemicompact
metric space and (K,) is an admissible exhaustion of X. The theorem
shows that

FLip(X,0) = {f € C(X): flx, € Lip(Kn,a),n € N).

Here it is not required to assume that f € C{X). Because X is a k-space
[9] and so if f satisfies the second condition, which implies the continuity
of f on each K, then it is continuous on X.

Ancther interesting property is that the algebra FLip(X, o) is dense
in C{ X} with respect to the compact-open topology. To see this we argue
as follows:

Tt is clear that for each n, FLip(X, ¢)|k, = Lip(K,, o) and Lip( K, a)
isdensein C(K,). Soif f € C(X)and U={g € C(X):flg— flix. < €} isa
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neighbourhood of f in C(X) for n € N, then there exists g € Lip(K,, a)
with {|flx. — gllx, < €. Now we can extend g to a § € Lip(X,a) C
FLip(X,c) and conclude that g€ U.

Now as in the compact case we introduce some interesting subalge-
bras of FLip(X, ). As before X is assumed to be a hemicompact metric
space with the admissible exhaustion (Kyand 0 <a < 1.

Definition 4.15 For 0 < o < 1 we denote the set of all f € C(X)
for which flx, € £ip(K,, o) by Flip(X,a).

Clearly Feip(X, @) is a subalgebra of FLip(X, @) and it is easy to see
that Flip{X,a) is indeed a closed subalgebra of FLip(X,a). Obviously
Fip(X,«) is also a Frechet function algebra (Ff-algebra) on X.

The inclusion  Lip(K,n,1) € &ip(K,, @), for each n, implies easily
that FLip(X,1) C Flip(X,e). Likewise the compact case we can show
that FLip(X,1) is dense in Ffip(X,o). More generally, we have the

following result, which is found in [27].

Theorem 4.16 The algebra Lip(X,1) and hence FLip(X,1) is
dense in Feip(X, ), for each o < 1.

Proof.Clearly Lip(X,1) C FLip(X,1) & Flip(X,a). Let
f e Ftip(X,a)and U = {g € Flip(X,0): pe (9 f) <ejforneN
be a neighbourhood of f in Feip(X,o). Then flk, € fip( K, o) =
Tip(K,,1). Hence there exists g € Lip(Ka,1) with ||f - fle k., +
(g~ flx.) < &. Let § € Lip(X,1) be an extension of g to X so that
§lx. = g and therefore § € U N Lip(X,1).

Now we present a Fréchet algebra version of the Hedberg’s theorem
for the Ff-algebra FZip(X,c). It is interesting to see that we can also
prove the density of FLip(X,1) in Feip(X,a) by using this theorem.
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We recall that fora € X and 6§ ~ 0

Salé)={r e X 1 d(z,a) = 6}
Bulb)={z € X : d(z,a) < 6}

Theorem 4.17 [27] Let (X,d) be a hemicompact metric space,
0 < a < 1and 4 be a self-adjoint subalgebra of Ffip(X,a), which
separates the points of X and contains the constants. Then A is dense
in Flip(X,a) if for every a € X there exist numbers M, and 4, such
that for every § < §, thereisan f € A with fla)=1, f(z) = 0 on 5,(4)
and

[f{y) — f(2)]
y,zi‘g(a) d°(y.2) go

Proof. It is enough to show that for each compact subset K of X,
the subalgebra A|x = {flx: f € A} of tip(K, &) is dense in &ip(K, «).
Since Alx, = tip( Ky, ), for an arbitrary element f € Fip(X,a) and
a neighbourhood U = {g ¢ Flip(X,0) 1 p, (g~ f) < €} of f, we can
choose a g € A with px, (g~ f) <esothat g€ U N A.

Now let K C X be compact. We try to verify the hypothesis of the
Hedberg’s theorem for the subalgebra Al of tip(K,a). Clearly Ak is
a self-adjoint subalgebra of £ip( K, e}, which separates the points of K
and contains the constants. For an arbitrary element a € K, choose M,
and &, as in the hypothesis of the theorem. So for every § < 8, we can
choose f € A with f(e) = 1, f(z) =0 on S4(6) and

Lf{y) = f(2)]
y,zgéiji‘}:(ﬁ} da‘(y,z) < ge

yEs

Then flx € Alx has the desired properties, i.e., flx(a) = 1, fix(z)=0
O SQ(é}ﬂ K = {.’1: c K - d(x,a} o é} and Suplfgy!—-j!zzf < M,

dm(y’;) i ¥
where the supremum is taken over all distinct elements
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%,2 € Ba(§)NK = {z € K : d(z,0) < 8}. Therefore, Ay = Lip(K, )
by the Hedberg’s theorem in the complex case, and hence the claim is
now established.

As an application of this theorem one can prove that FLip(X,1) =
Flip(X, o) by taking the function f(z) = 1 - -‘ﬂ%ﬁl for arbitrary 6 > @
and M, = 2'77 in the above theorem.
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1. Historical Review Of The Inverse Gaussian

Distribution

Robert Brown (1773-1858), one of the greatest botanists of England
was the one who began the story of the Inverse Gaussian distribution.
interested in pollens, he found a swimming, dancing motion of pollen
particles when these particles were immersed in water. He repeated this
experiment with a vide variety of plant pollens, finding a similar motion
in every case. Later on, he tried particles from dead plants, fossils, and
even mineral specimens of all sorts, in fact virtually everything he counld
imagine from the soot of London to a fragment from the Sphinx. Brown
apparently believed he had discovered a new type of particle, common
to all matter, organic and inorganic. Several researchers before him had
observed and noted the motion of microscopic organic particles in fluids,
but his work led to the realization that it was a physical phenomenon,
not a biological one. Whether he himself initially recognized this fact
is open to debate. During the rest of the century many researchers
conducted experiments and theorized about the nature of the so-called
Brownian motion. The law which governs the position of a single
particle performing one-dimensional Brownian motion was derived by
Bachelier in 1800. It turned out as a normal distribution. Wiener in 1923
amended Bachelier’s work by providing a measure on the path space. By
Einestion’s (1905) work who also derived the normal distribution as the
model for Brownian motion, the theory of Brownian motion was firmly
launched. Schrodinger (1913) considered the Brownian motion with a
positive drift and derived the distribution of the first passage time. This
distribution was also obtained by Smouluchowski (1915).

Tweedie (1941) and Wald (1944) encountered the first passage dis-
tribution. Tweedie noticed that there is an inverse relationship between
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the cumulant - generating function of the time to cover unit distance
and the cumulant - generating function of the distance covered in unit
time. Tweedie (1945) also observed this type of relationship between
the binomial and the negative binomial, and between the poisson and
the exponential distribution. He proposed to call them inverse statis-
tical variates. In 1956, he coined the name Inverse Gaussian for the
first passage time distribution of the Brownian motion. In 1957, he
published a detailed study of this distribution, establishing many of its
important statistical properties. A special case of the distribution was
given by Wald in 1947, which is an approximation of the sample size
distribution in a sequential probability ratio test. Folks and Chhikara
(1978) and Chhikara and Folks (1989) are the main sources for the sta-
tistical properties of the Inverse Gaussian model. The Inverse Gaussian
model has been applied in reliability, marketing, and analysis of experi-
ments. The main references concerning the classical approach are Fries
and Bhatacharrya (1983), Chhikara and Gmttman (1982), Banerjee and
Bhattacharyya {1979). On the Bayesian front the noteable works are
Banerjee and Bhattacharrya (1979), Achcar et al. (1991), and Achcar
and Rosales (1992, 1993). |

Yor regression analysis under the Inverse Gaussian model, we refer to
Whitmore {1983, 1986) Seto and Iwase (1985), and Chhikara and Folks
(1989). Iwase (1989), Woldie and Folks (1994, 1995) and lately Seshadri
(1999) are the relevant material.

The present author began his efforts with an enpirical Bayes ap-
proach. In 1994, one of his graduate students was engaged in the pa-
rameter estimation, Homayun - Aria, (1996). At the same time he him-
self developed methodology for analysis of variance, Meshkani (1996).
Following this line of research, he later developed a methodology for
the regression analysis, Meshkani (1999). Currenty he is working on



108 Mohammad R. Meshkani

the analysis of covariance. In this paper, we intend to sumimarize the
findings from these works and show some of its applications in different

settings. Some directions for further research will also be mentioned,

2. Empirical Bayes estimation of the parame-

ters in an Inverse Gaussian distribution

2.1  Introduction

A random variable ¥ with the probability distribution function

is called an Inverse Gaussain variate, where 6 is the mean and ) is the
scale parameter. This function will be denoted by IG(6, A). The IG(8,X)
for various valuse of & and A provides a rich family of positively skewed
densities which are suitable for modelling many types of positive random
variables, Figures 2-1 and 2-2. It has the following cumulant - generating

function

k=3[- (-2 <X eoy

93
which provides the moments E(z) = 8, var(z) = T and generally

Kew=1:3-5(2r =380t r>2

The measures of skewness and kurtosis are /B, = ‘/ and fy =

15{ )+ 3, which both are positive. For a normal variate, V ~ N (v o),

one has the cumulant - generating function

ku(8) = vt — %azﬁ, teR (2-3)



An Empirical Bayes View of Inference - - - 109

since (2-2) and (2-3) are inverse functions of each orther hence the In-
verse Gaussian name for (2-1). Moreover, there are striking anologies
between the sampling distributions for IG(#, A) and those for N(v,5?),
see Chhikara and Folks (1989). The Inverse Gaussian distribution be-
longs to the exponential family.

2.2 Estimation

We suppose a random sample of ¥ = (¥,...,%,) is available from the
IG(6, ) distribution. The aim is to obtain an estimator for (4, A) based
on this sample. Most of estimation procedures exploit the likelihood

function which is

(AN (- A"(y,-we)ﬁ}
L8, My) = (57?) (Hixiyi ) exp{ -3 ; it 8,A>0
(2~4)
The maximum likelihood estimators are based on maximization of (2-4)

with respect to § and A, simultaneously. This approach yeilds:

« I . n 1 1
— g : [ IEU i —— 2 §
Oyr =Y TL;Y“ AME }:?:1(1,; Y) { )
If we define the sample harmonic mean as
- 1
Yu =

[%1' z:?:i -]}1.:]
Them Ay, in (2-5) is non-negative, since ¥y < V. Among many variants
of the Bayes estimators relative to various priors, we report a case where
it is assumed that § and A are independent and exponentially distributed,
viz.

6 ~ exp(a) and A~ exp(h)
Then the joint posterior of (8, A) will be

< 2
P(6, My) A%‘*exp{ - (eu ;) —af - m} (2-6)
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with v =31, (—3« - é) . Upon integration, we can obtain the marginal
posteriors of P(Gl;;) and P(M|y). From (2-6), the Bayes estimators of 8
and A relative to the squared error loss are the posterior means of P(f|y)
and P(Aly). That is,

éBmé(a,b)mc*f(h})f ber # (@2-7)
27 YR e

where C = (%) e, ¥}, Likewise,

j\g = ig(a',b) k=

n

vaces [ e +0) - pate (Bt
v [T+ - e (g ) Jo @9

The Bayes estimators (2-7) and (2-8) have to be evaluated by numerical

methods. Details of these derivations can be found in Homayun-Aria
(1996). By a similar operation, we find the posterior variances var(#|y)
and var(My). The Empirical Bayes estimators are derived from the
Bayes estimators by replacing the prior distribution by its estimated
version. In case of a parametric prior, this strategy amounts to esti-
mation of the parameters of the prior from the observed data and then
using them in the Bayes estimators. This estamation can be done em-
ploying either the method of maximum likelihood (ML) or the method
moments {MM). For the method of ML, we first obtain the marginal
distribution of the sample values under the above exponential priors for
(8,2): - o
m(yla, b) = j j L(8, My)P(8) P())}dBd

(QW)?yf f ex P{ Z(y‘ gf) —af - b)\}dﬁd).
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Where § = I}, ¢,

2abyy e flgmal ”
(2n)5 920y +n) Jo B2 —rf+ s

m(yla,b) =

. o 2ny i
WIthT—%;:;;E;>O,S——2E>O.

After evaluation of this integral, as I{a,b) say, we obtain

2abg}H
(@n) ¥ (Zbgn + n

m(yla,b) = )I(Q, b)

To obtain the ML estimates of ¢ and &, we have to maximize m{y|a, b}
with retpect to a, and b. Suppose ay and by are the solutions. Then,

we obtain the empirical Bayes estimators as
dzpmr = Op(anz, bare) (2-9)

Aepamr = Ap(@mr, bar) (2 - 10)

whose variances are estimated by var(émm 21y) and var(Appaily), re-
spectively. The above results do not have closed {from and are obtainable
only by numerical integrations. To obtain an explicit solution, we may
use the method of moments to estimate a and b. This procedure leads

to

3 o ¥ — 77
273 ’

These estimates provide an alternative version of the empirical Bayes

Gup =§ and Dy =

estimators of # and A,4,e. ,
éEBMM = gB(&MMséMM) (2 - 11)

-S‘EBMM = 5\.B(EWM, E‘MM} (2 - 12)

with corresponding variances var(éEBMM!y) and var(f\ epmL|¥)-
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3. Linear Models under the Inverse Gaussian
Model

In scientific activities one encounters problems which are broadly clas-
sified as comparing the means of a certain variable among several sub-
populations. Examples are the average yields from different Process
formulas, average number of defectives from varicus machines, etc. The
Technical name for these problems in statistics is the Analysis of Vari-
ance (ANOVA). Occasionalyy, one is interested in finding the functional
relation betwen a dependent (response) variable and some independent
(explanatory) variables. These types of problems are called regression
analysis. Yet a third type of problem is encountered when one has the
regression and ANOVA at the same time which is referred to Analysis of
Covariance (ANCOVA). These three type of problems are subsumed un-
der the general title of linear models, whenever the functional relations
imvolve parameters of the first degree. A number of authors have tried
to develope statistical linear models for the Inverse Gaussian model akin
to those under the normal model. However, the results are limited in
the realm of classical approach. But Bayesian and Empirical Bayes ap-
proaches seem promising. we report some results obtained for ANQOVA

and regression.

4. Empirical Bayes Analysis of Variance

4.1 Introduction

There are many tvpes of experimental setups in science and engineering

where the normal theory is inappropriate for the analysis of factorial
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experiments. One important class is related to the highly skewed na-
ture of the data which cannot be removed by the usual transformations.
Alternatively, the Inverse Gaussian family of distributions are flexible
enough to provide a suitable model for these types of data. Tweedie
(1957 a,b) pioneered work in providing an analogue to analysis of vari-
ance for nested classifications concerning observations from an Inverse
Gaussian model. Despite the quite striking resemblance between normal
analysis of variance and what he called, the Inverse Gaussian analysis
of IeCipl‘OCEﬂS, in one-way or nested classifications, the possibilities
of developing analogous results for other classifications appeared to be
limited, Folks and Chhikara (1978), and Chkikara and Folks (1989).
However, Shuster and Muira (1972) succeeded in providing tests for bal-
anced two - way classifications. Their approach has the disadvantage
that it requires many observations in each cell. Such a requirement
is hard to fulfil in most experiments. Fries and Bhattacharyya (1983)
treated the analysis of two-factor experiment with no interaction and ob-
tained explicit solutions to the likelihood equations. They also proved
asymptotic consistency and normality of their estimators. A few au-
thors have contributed to the Bayesian analysis of the Inverse Gaussian
distribution. Achcar and Rosales (1992,1993) are the only records in
print for Bayesian analyis of two-factor experiments under an Inverse
Gaussian model. They actually follow the approach presented in Fries
and Bhattachatyya (1983), assuming a non-informative prior density.
Consequently, as one expects, because of heavy reliance on the likeli-
hood, their results are not much different from those cbtained by the
maximum likelihood method of estimation.

In this paper, we present an empirical Bayes analysis of two-factor exper-
iments under an Inverse Gaussian model. A real-life example previously
analyzed by Shuster and Muira{1972), and later by Achcar and Rosales
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(1893}, is reworked.

4.2 THE MODEL

Consider an experiment with two factors, factor A with I levels indexed
by i, and factor B with J levels, numbered by j, with each treatment
combination being repeated n times . Observations from this experi-

ment, denoted by y;;x, are assumed to follow an Inverse Gaussian model,
IG(6:;, M),

}/,'jkNIG(G,'}’,A), iﬂlg..a,f jzl,...,J kml,...,n,

For each 1,j , the random variables ¥;;; are iid with mean 6;; and shape

parameter A. The two - parameter Inverse Gaussian density is
1
f(ya'jk; 85, A) = {/\/(%y?jk)}g exXp {")‘(yijk - 3:‘1' )z/zyijkgizj} ’
Ve >0, 05 >0, A>0, i=1,.., 7=1,.,J, k=1,..,n
: {(4—1)
In a two - factor experiment with interaction, each cell mean is assumed
to be inversely proportional to the drift, while the drift is considered as

the sum of factor main effects (@, ) and their interaction{v). Thus, it

is assumed that

gggl:y%ﬂg'+”ﬁj+7gj, ?::1,.,.,1, j:i’wrc,J7 (4"‘"‘2)

I 7 1 J
2oai= Bi=0, 3 w3 =0 (4-3)
fanl ! [E=31 j=1 .

Here, u denotes the reciprocal of each cell mean when there is no drift.
To incorporate the constraints (4-3) in the model, we can define the

IJ x 1 parameter vector @ as

q}: [“ | Cygeen ,pey i 51:'“ 313.7—1 ;7117' . ')Ti,f—vl I e
s s Yreri 1= e By, v covial - (444)
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Then, the likelihood for the whole experiment can be written as
L(®B,M | y) o AP 2exp{ AR, . — 2n0'd + n®' MP}/2}. (4-15)

In (4-5), the convention used by Fries and Bhattachacryya (1983) has

been utilized, where we have set

ym[yllia“‘ sHitks - s Witns - s Mgty ov s

Yishr oo s Wigns v« YRy e v s ¥R - - 31&’171]:
07 =+ o+ G5 + v = X' 9,
X' =(X11,X12,...,X5s) = design  matriz,

D =diag {#h1., Y12.,--- > Y11}, Vi = Y k[T
k=1

Xi;'a

I J
=1

M =X'DX, d=5"
i=1j

Rije =454 (4-6)

Summing over and index is shown by a plus sign while averaging is de-
noted by a dot. Thus, weshalluse By, Ry, Rijs, Buy, B, R;, Rij,
and R as sums and averages , respectively.

We intend fo use a conjugate prior for A and ©. The following priors
have been proposed , see Chhikara and Folks{1989}, and Banerjee and
Bhattacharyya (1979). The prior for A is chosen from the gamma family

and given A, a normal prior is assumed or ©. Thus ,
7{A) oc A% texp{—-bA/2}, Aa,b> 0, {4-17)

and, given A, elements of & are considered independent with either of

the following two priors.

Cuase 1. Unrestricted parameter space.
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In the unrestricted case, the prior distribution for ® is

8] ~ N(n,A"A) (4-8)
A
with
Wx[??lv"'anfi}ﬁ A:dia’g{éfi”'ﬂé‘?}’}“
Then, the posterior is
a(®, Aly) o B 7 X exp{~A[Q1(m) + Q2(3))/2} (4-9)

where
¥ = (nAM + A7),
v=a+{n+1}1J/2,
Qi(n) = Ry + 04+ 59/A g ~ ' &1y,
" = (RAM + )™ (nid + 5),
Qu(8) = (&~ ')y U~ (%~ n°).
1t is evident from (4-9) that

T(Mg) o< A exp{=AQy(m)/2}, A >0, (4~ 10)
&= (nlJ+ 2a)/2, @i >0,
and
(@A, ) o AR 2 exp{-2Q4()/2},
that is, conjugacy holds. Therefore, we can write

1
w Y T G

P - - _!21:-9-»;1!44’.)’
m[l+(¢*~v*)21(‘i’-n)} (4_,11)
2a+ nlJ

$ecRrY,
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with
Z - Ql("?)\p
20+ nlJd

which is a multivariate T-type distribution, with 2a + nlJ > 2 degrees

of reedom.

Case 2. Restricted parameter space.
Strictly speaking, one should have ¢, = u > 0. This restriction on ¢,
is observed in the prior assigned tc ¢;. Thus, a normal distribution

truncated at zero is considered for ¢,, which has density

g(1 | A) x Al/z[élN(}\ilzﬂl/éﬂ}wl exp{—A(¢: - 771)2/2‘53}5 ¢ >0

(4-12)
and the remaining is as in case 1. In (4-12), AM(.) is the standard nor-
mal distribution function. The restriction imposed on ¢; results in a

posterior proportional to (4-9).

4.3 Bayes Estimates

In case 1, from (4-10) we have
EQ™y) = [2/Q:(m" [T (s + m)/T(x)] (4-13)
which provides the Bayes estimate of A relative to the squared error loss:
Apr=E(A] y) = nlJ + 2a)/Qu(n), (4~ 14)

Vi = Var(Ny) = 2(2a + nld)/[Q: ()] (4 —15)

Upon using (3.11), we arrive at

DHpy o= E(@iy} =" = (HAM + I)_l(nﬁad-?- ?}) (4 - 16)
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Ve = Var(®]y) = é@g—ﬁ% (4—17)

For case 2, the posterior moments of A remain unchanged from those
for case 1. However, for @ , the restriction on ¢, renders results on ®
different from those in (4-16) and (4-17) for case 1. To this end, let @,
1 and ¥ be partitioned as

L . m o) P ¥y
T= e T @)= em] ¥ = :
i 7 ¢ ¥ Wy

Then by virtue of the facts ¥,, ; = Voo —¥0u 9" ¥y and |¥] = P1i¥,a |
; @2(®@) in (4-9) can be written as

Q%) = 95 (81~ 1+ (8P - m3 YU (3D —m3,)  (4.18)
where
Toa = E(®MNd, A ) = 0@ 4 g7 (dy - ) ¥y (4 - 19)

and 7
Var(8Dlg,, X, y) = X171y, ;. {4.20)

In (4-19) , we take successive expectations with respect to ¢; and A,

noting that
@A y) o P hu P exp{ - é — 51)2/2), 4 >0,
which is a normal density truncated at zero. For this distribution,
B0 9) = af + A~ 1yy) 2w

with
W= (P[??f(/\*l'%bll)wlj\f[ﬁ;/(x1’»bn)”z]

where ¢(.) is the standard normal density function, and

Var(éil,y) = A7 {1 — w?] 4 glw(A~ 1) Y2
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These moments, however, are too complicated to be useful {or estimation
purposes. To simplify them, we observe that w(z) = (z)/AN{z)is a
smooth decreasing function of x. In the literature there are a host of
approximations to A/(z) [Patel and Read (1996, Chapter 3)], which can
be used to approximate w{z) with desired precision. Here, we choose to
use the simpler one due to Shah{1985),

0.5 + z{4.4 — £)/10, 0<z <22,
N(z) = 0.99, 2.2 <z <28,
1.00, z > 2.6.
Consequently,
%E‘(T?;—f_lj 0<z<22

w(z) =
0, T > 2.2,

In our problem, 0 < 2 < oo and 0 < w(z) < 0.8 . Thus, we can
approximate w(z} by its average value, which is about §.3. Of course,
if one has a better guess of z = 77/(A~1¢y;)*/? , a closer approximation

could be obtained. Using this approximation, we have
E(il\y) = n) +0.3(A )7

Var(é|h,y) = 0.91A7 1y, + 03013~y )2

Now, we take expectations with respect to the posterior distribution of

A, employing {4-13) and obtain

drpe = E(%i'y) = 7y + 0-21[1511@1(??)]1!2W‘ (4 - 21)

with W = T(x — 0.5)/T(k) =~ [2.72(x ~ 0.5)/x]?, by Stirling’s formula

and

Vipz = Var(¢ily) = 0.45%1:Qa(n)/(x~1)+0.045%, Q1 () [11/ (5~ 1)~ W]
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+0.2177 [ Q ()] 2 W, {4-22)

Now, we substitute the posterior moments of @1 into (4-9) to obtain a
simpler form as :

Byp2 = ) 4 {0.21[y7Q ()] 2 e, W (4~ 23)

Vggg ot [Ql(n)ﬂ(&: - 1)][@22 o GGQ(K- - I)Wzggg_'l/);ll@lz}
HOZIW (95 Q@ ()] 48,5, 97 0,4, (4-24)

The expressions (4-21) - (4-24) provide the Bayes estimates relative to
the restricted prior given in (4-12}. Aslong as the pricr distribution can
be assessed, the above Bayes estimators, could be put into application for
two-way classifications. Unfortunately, the situations where these priors
can reasonably be assessed are rare. In such cases, we can utilize the
empirical Bayes procedure to estimate the prior distributions from the
data. By this, we borrow strength {rom Bayesian logic and ob Jectivity
from classical method.

4.4 Empirical Bayes estimates

To estimate the prior parameters from the marginal distribution of the
observations , one can use any method of estimation. Two more com-
mon methods are the method of moments and maximum likelihood. To
provide explicit expressions for estimates of g 0,7 and A from the data,
Y, we shall first use the method of moments. To this end, we have from
Chhikara and Folks (1989),

Vu = Z(}i;kl - }:;1) ~ )‘miXi-z-
k=1

Thus,
E(Vij) = BIE(V)IA)] = (n — 1)b/2(a - 1),
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Var(Vy) = ElVar(Vi}I)] + Var[B(V;|A)]
= (n—1){(n -3+ 2a)6*/4(a ~ 1)*(a — 2).
Let
FoJ I 7
= EZ Viy/ld, 5= ZZ Vi ~ VI?/(1J - 1);

and let C = 8§y /V be the sample coefficient of variation for ;. Then,
=n-1)0%+n-3)/[(n—1)C? =2,  bo=2ac~1)V/(n—1)

which are valid positive estimates of o and & for n > 1, if one has C? >
2/(n—1), otherwise, take a and b equal to zero, 4.¢., use a noninformative
prior.

For estimation of n and A, we need 21J equations. These are provided
by the following considerations. Let Z;,¢ = 1,---,n, be iid andom
variables distributed as JG(#,A). The distributional relations between
Z:, Z and Z;! have been found in Chhikara and Folks (1989). That is,

Z ~ IG{8,n)) and Z7" has mean and variance as stated below:
Zrt e 0T R AT = E(ZTY), (A8 42070 = Var(Z7)].

Using these results in our model (4-1) - (4-6), for the reciprocals and

their means , we have :

S= 3 (Ryx— Ry )*/n(n = 1)
= (.~ R.P/IT-D),
- i(mj. - Ry - 1),
= 2 E S (Rijp — By /I T(nlJ = 1).

fel izl k=l

We obtain -
?’)? s _R‘__ —_ bo/g(ao -— 1)
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8 o = 2(ag — 1)8%/by — 00 /nij ~ bo{2(ao — 1) + niJ)(ao — 1){(ap — 2)

For TIE-TS BRI R
Mip: = Be, = nf — bo/2(ao — =R ~R_,

6210 = 2ao~1)SH/bo~(nd+nly 1)/ nd =69 —bo[2 o~ 1) +nJ]/ 20 (ag—1){ao—2).

For  je=1,---,0-1,
M = Ry =1 ~bo/20o—1)=R; - R_,

6 rse = a0 = 1)87 /b0 — (nl + nly;)/nk — 67

~bo[2({ag — 1) + nl]2ni(as ~ 1){ag — 2).

Finally, for t=1,~-, J-Land j=1,---,J -1,

M iy = Bis =00 = 0y = 75, — bo/2(ao — 1)

=Ry~ R - E; + R,
8 rmnrare = Aao~ 1)8E bo — [ + ey + 02, + Npyr_ay,
”(53,0 + 6:'24-1,0 + 5?4-;‘,0} — bof2( a0 - 1) + n}/2n{aq ~ 1){(aoc — 2)
which provide
7 =gl
A° = diaglé? ,67,,...,80;,}-

Now, we subtitute these estimates into (4-14) and (4-18) to obtain the
empirical Bayes estimate relative to unrestricted prior distribution. This

gives us

Appr = (nlJ + 2“9)/@1(”?0)3 (4~ 25)

Bpp = (RAM + 1) Y nd0d+ 7°) = 5*°. (4.26)
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Posterior variances are estimated by

Var(Aly) = 2(2a0 + nI Q") (4.27)

Var(2ly) = [Q:(n0)/2(x- D], ¥ = [nATM+(A%)TT (4.28)

In case 2, the only difference in prior is that ¢, has a truncated nor-
mal prior. Accordingly, we should alter the posterior and the marginal

moments for differences in moments of ¢, . In this case,
BNy =m + 0.30 V2%,

Var(¢{A) = 0.91.)\1"16? + 0“37?1)\"1/251‘

These differ from the respective moments of ¢, in case 1. To account for
this difference, the previous moment equations should be modifed ac-
cordingly. Omitting the details which can be found in Meshkani (1996),
we shall give the final results.
Let k(ag) = 0.21&)(@0)63‘}2 w(ag) = (e — 0.5)/T{ao)

mo = [b2/4nId(ag — 1)*(ao ~ 2)][2(g0 — 1) + nlJ]
Then,

o= R —bo/2(ac— 1)~ k{ao)b,

52 - mﬁ— [69/2((1(} - 1)]5? -+ [bU/ETLIJ(ﬂg e 1)]{'2’}1 -+ k(ag nd 1}51] — kz(dg)éf

Absorbing 7, into §? leads to the quadratic equation
A8+ B6+ D=0

with
A=1- 4(&0 - l)kz(ae)/b(},

B = k(ag){(1+2nd )[w(as~1) —w( @)}/ TIw(ae)+2(ac—1)R../bo} — 1,
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and

D = (R_[nl])+ bo(ao + nlJ}/ 20l ] (ao — 1)(ao — 2) — 2(ag — 1)5?%/by,.
Thus, we obtain an estimate for §2 as

(=B/2A) if B? 44D >0,
D/A if B*—4AD <0

f

This gives 7, = B — bo/2(ao — 1) — kob,, while other elements of 7

being equal to those given for case 1. However, for i = Lo I~ 1,
Siv1 = 2ao — 1)82/bo — [y + fiss + 1k(ao — 1)]/nd
=bo[2(ao ~ 1) + nJ}/2nd (as — 1)(ap — 2) ~ &2+
2k(a0)[81k(av) — 1] (a0 — 1)/bo ~ 28, {k(aq ~ 1) - k(ao));
for F=1,...,J~1,
brys = 2(ag ~ 1)8% /b0 — [y + i, + 8yk(ag ~ 1)}/nd
~bo[2ag — 1) + ndl/2ni(ag — 1)(ay — 2) — 52+
2%(&@)[51&(&9) - ﬁ;]gl(ag m— 1)/65{) — 251[&(@{) - 1) —_ k(ag)];
and finally, for é=1,-- , J-l,and j=1,---,J — 1,
SI'F“'(J-U'H = 2(&0*—1)533-/50“[771-{-77;4.1;{-ﬁzﬂ- +ﬁ!’+n‘(1-—i)+;‘ +¢§1k(ao-—1)]/n1
~bo{2(a0 ~ 1) + n]/2n(as ~ 1)(eo - 2) - (& + 51'2-;-1 + 5§+_f]
+2k(a0)[81k(a0) — i}ér (a0 ~ 1)/bg — 28, [k(as — 1) ~ k{ao)].

Thus, we have § = [fy,...,7,), A = diag{é?,...,82,}, which provide

the respective empirical Bayes estimates:

Apps = ('a"tIJ + 20«3)/@;(&) (4 - 29)
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Var(Ay) = 2(nld + 2a0)/[Q:(F) (4~ 30)
b1,882 = 71 + 0.210(k) [, Q1 (7)]M? (4 -31)
Var(gly) = 0.0454h1, Q1 (7)[11/(k~1)~w?(k)]+0.2175w(k)[4h1, Q1 (7)]/?
(4~ 32)
with
7" =[5, % (2)] = [nAM + 117! [nAd + 7]
~ - - ?/ju i"12
V=AM + A = [\E . }
Moreover,

28), = 7D + {0.210(k) [V Q (A2} T, (4 - 33)

Var(®ly) = [Qi(n/2(k - D)][¥; ~ 0.09(k — D’ (k) ¥z 95 ¥15]
+0.21w (k) (95 Qu (]2 0 91 ¥ (4~34)
Although we have used the method of moments to reach explicit solu-
tions, we could have alternatively used the maximum likelihood proce-
dure to obtain estimates of a,b,7 and A. This method needs numerical
maximization which can be done by usual routines. Here, we only out-

line the procedure and leave the detail for practical data analysis. From
(4-5) - (4-8),

L =I(yla,b,n,A) = K{ fi ” {A““ib“lm"”/F(G)} exp { - %Ql(”)}

x [ exp~3Qu(¢)is)

_ D(a+nlJ/2) |W}H/? (26)
T Ta)  ClAPRQu(mIe

Maximizing £ with respect to a,b,7 and A would provide the maximum

likelihood estimates, dencted by &,b,#,andA. Applying them in (4
16) and (4-17) would result in empirical Bayes estimates based on the
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maximum likelihood procedure. Again, if we observe the estriction on
&1, we shall have the corresponding results. Let the result be xpressed

as

bppL = (RAM + 1) (nA + 4), (4 - 35)

Var(2ly) = [Q:(7)/2(x - 1)]¥, (4 - 36)
with
¥ = (nAM + A~

The above derivation remains valid for the 2-factor ANOVA model
without interaction, as well as for one-way ANOVA. In these cases,
one only needs to reduce the order of the vector of parameters and
the design matrix, according to the model used and follow the above

procedure,

4.5 AN EXAMFLE

To illustrate our proposed estimators and compare them with other es-
timators, we analyze an experiment originally reported by Ostle(1963)
and analyzed by Shuster and Muira (1972}, and later by Achcar and
Rosales (1993). Data in Table 5.1 ave resulted from a randomized 2 X 5
layout with 10 replicates in each cell. The responses consist of the impact
resistance of 5 kinds of insulators to shocks when they are cut lengthwise
or widthwise. There are 10 replicates for each combination.
Maximum likelihood estimates:

It can be shown that the maximum likelihood estimates are
S(ML)= M,  d=[1,0,-,0]

MML) = 1J/InR_—d M~d]
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whose large - sample variances are
Var[®(ML)] = (nd) 1M~
Var[A(ML)] = 2(nl ) [A(ML)P
Cov[®(ML), A (ML) =0

In this example, the diagonal elements of D are given in the last column
of Table 4.1, and X' is

o111
1, 1 =1 —1
[ V70 PR AW
Ii =l —Ii 1

which yield the estimates and their standard errors (5.E.) given in Ta-
ble 4.2. The asymptotic 95 percent confidence intervals (CI) are also
provided in Table 4.2. It is clear that except for A no parameter can be
taken different from zero at 5 percent level. However, only the constant
 is different from zero at 0 percent level. But, due to wide confidence
intervals one should feel uncertain about these inferences. Better infer-
ences are possible by the empirical Bayes procedure presented below.
Empirical Bayes estimates of a and b are ¢¢ = 6.95 and b, = 0.26, es-
pectively.

The estimates of the model parameters for each of the two cases (un-
restricted nd restricted) along with the standard errors, are shown in
Table 4.3. In Table 4.4, the 95 percent credible intervals {CI) based
on the marginal posteriors are given. Again, we observe that only A
and g are infered to be different from zero at 5 percent level. Although
we have reached the same conclusion as the one relative to MLE, but
here we have much smaller standard errors which make the inference

more precise. In fact, comparing Table 4.2 and 4.3, we note a striking
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consequence of exploiting the empirical Bayes procedure. The credi-
ble intervals in both cases (unrestricted and restricted) are very much
shorter than the corresponding confidence intervals given in Table 4.2.
The only exception is the intervals for A which have become somewhat

longer for the empirical Bayes procedure.

Table {.1 Observations from the experiment

EK—11 2 3 4 5 6 7 8 G 10 | Mean
(1) | (95.)
1,1 11.15]|0.84(0.88:0.9110.86|0.8810.92/0.87/0.93:0.95|0.919
1,2 11.16|0.85]1.00{1.08:0.80]1.0111.14/0.87{0.97|1.09{0.999
1,3 10.7910.6810.64|0.72(0.63{0.59[0.81{0.65/0.64/0.75|0.690
1,4 10.96(0.8210.9810.93/0.8110.79/0.7910.86|0.8410.92!0.870
1,5 |0.4910.61,0.59]0.510.53;0.72(0.670.47{0.4410.48| 0.551
2,1 10.85(0.60/0.46:0.85]0.73;90.67/0.78]0.7710.8010.79] 0.743
2,2 |0.86(1.17{1.1811.3211.03]0.84,0.80|0.841.03(1.0611.022
2.3 10.52,0.5210.8010.64{0.63|0.5810.6510.6010.71(0.5910.623
2,4 10.8611.06;0.81/0.9710.90/0.93:0.8710.88/0.8910.82]0.809
2.5 10.5210.53:0.47(0.47(0.5710.54:0.5610.55]0.45]0.6010.526
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Table 4.2 ML Estimates of A and © and lheir sympioiic §5 percent

confidence intervals

Parameter | MLE | S.E. | 95 percent CI | CI length

A 0.98 | 0.08 0.8 1.16 0.36
It 1.34 | 0.82 -0.27 2951 322
ay 0.04 | 0.82 —1.57 1.65 3.22
Gy -0.13 | 1.58 -3.23 2.96 6.18
Ji B -0.35 | 1.47 —-2.27 2.53 4.80
Bs 0.18 | 1.72 | —3.19  3.55 6.74
Ba -3.21 1 1.54 -3.23 2.81 6.04
Tt -0.08 | 1.58 -3.19 3.0 620
Y12 -0.06 | 1.47 -2.94 2.82 5.76
13 -0.03 | 1.71 —3.38 3.32 6.70
T4 0.06 | 1.54 ~2.96 3.08 6.04

Table 4.3 Empirical Bayes estimates

Prior Unrestricted Restricted
parameter | Estimated | S.E. | Estimate’| S5.E.

A 0.7973 0.1057 | 1.2198 | 0.1616
i 1.1502 0.2324 | 0.9858 | 0.1462
&y -0.0004 | 0.1302 ¢ -0.0006 | 0.1239
B 0.0216 0.2440 | 0.0177 | 0.2406
B -0.0555 | 0.3223 | 0.0001 | 0.3131
Ba 0.6212 0.3733 | 0.0923 | 0.2107
B4 -0.0467 | 0.3193 | -0.0001 | 0.1025
Y11 0.0005 | 0.1781 | -0.0014 | 0.3202
Y12 0.0012 | 0.2324 | -0.0003 | 0.1422
13 -0.0001 | 0.2392 | 0.0005 | 0.1552
Y14 0.0018 0.2362 | -0.0022 | 0.1471
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Table 4.4 The 95 percent credible intervals for empirical Bayes stimates

Prior Unrestricted Restricted
parameter | 95 percent  CI | CI length|95 percent CI |CI length

A 0.5901  1.0044| 0.4139 0.8031  1.5365| 0.6334
I 0.6947  1.6057| 0.9110 0.6992  1.2724| 0.5732
o -0.2556  0.2548! 0.5104 -0.2434  0.24221 0.4856
Il -0.4566  0.4998| 0.9564 -0.4539  0.4893| 0.9432
B -0.6872  0.5763! 0.5950 -0.6136  0.6138| 1.2274
B3 -0.7105  0.75291 1.4664 -0.3207  0.5053 ©0.8260
B4 -0.6725  0.5721| 1.2516 -0.2010  0.2008| 0.4018
Y11 -0.3486  0.3486| 0.6082 -0.6280  0.6262] 1.2552
Yia -0.4543  0.4567) 0.9110 -0.2790  0.2784| 0.5574
13 -0.4689  0.4687! 0.9376 -0.3037  0.3047! 0.6084
Y14 -0.4614 0.4646| 0.926 -0.2905 0.2861f 0.5766

5.  Empirical Bayes regression

5.1 Introduction

In this section we look at the regression analysis under the Inverse Gaus-
sian model. This problem has also been treated mainly from the clas-
sical point of view. Whitmore (1983) considers the censored data and
estimates the regression coefficient, using the EM algorithm, Seto and
Iwase (1985) derive the minimum variance unbiased estimator. How-
ever, Hsieh and Korwar (1990) prove that it is inadmissible. Chhikara
and Folks (1989) and Seshadri (1999) each devote a chapter to the re-
gression problem.Woldie and Folks (1999, 1994) are the most relevant
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works, though they adopt the classical approach, too. We intend to
extend their results by exploiting the Bayesian and empirical Bayes ap-
proaches.

5.2 The model

Suppose we have observed the pairs of observations (g, z:),1 = 1,...,n
where y; are realizations of random variable Y;which has the Inverse
Gaussian distribution with mean (2';8)? and the scale parameter A;
where {2'; and § are p-vectors with (@';8 > 0, g is an integer, and
b > 0. Various assumptions on A; and q provide different models such
as simple inear regression through origin {p = ¢ = LA = Ao =
(z:),8 = (B)}, linear regression with intercept {p=2,¢g=1LN=
Ma = (1,20),8 = (B1,f2)}, non-linear regression {g = -1, A = Al
and general non-linear regression {g = —1,X; = A}. The problem is
to estimate B and ); from the observations {(y;,=;),4 = 1,...,n. This
problem is somewhat similar to the analysis of variance which we dis-
cussed in the previous section. The difference is in that here @; are real
vectors while there in ANOVA they were indicators showing the pres-
ence (1) or absence (0} of a factor. Thus, the approach adopted there
can be helpful in dealing with this problem.

5.3 Bayesian analysis

According to Bayesian way of thinking, we assume
YilB, A ~ IG{(=B), A}, i=1,...,n

where the parameters are treated as random variables, having some sort
of probability distribution, which are called the prior distribution. To
perform a Bayesian analysis, we need to specify the prior distributions
71(8])) and m5()). While various authors have employed different prior

distributions for 8 nd };, we choose to use the conjugate priors for these
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parameters. Those are explicitly stated as

Ti(A) = (g) AT exp {r(m)} \Neb>0,  (5-1)
and
72(BIA) = const. A5 A|-} exp{ =B~ ,7,)?_;(5 —1y 5oy
where

N={M,...,0],n€ R?
A = diag{és,... ,5,},6;, ¢ R*.

The likelihood function is reduced to

L(B,\]) = constant + A% exy{i%l@} (5-3)
with ]
Q1(B) = Z(?Jf = z/8) [y (=8)?
- tyxgi:wl LIY- ¥ X8 -1,
with

X =[@y,... 2., Y = diag{y,, - - s¥n b la = [1,... 1]

Thus, the posterior distribution of (A, B8) is obtained as

v 1

ﬂ,@w«H)M!ﬂM [Q@Hﬁﬂm+ﬂ} (5-4)

_f{etntp)
=
It makes easier to use the identity

A >0, BekR.

Q1(8) + Qa(m) + b = g(n, A) + h(m, A, )
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with »
9(ma)=(B~m)y (B-m)
m =1+ AX'YX]"qg + nAz]
2o=[AT + XY X
m,A)y=v'A g+ 1Y, +b
~[7+ AT AT + AX Y X [ + nAE]

From (5-4), the marginal posterior distribution of ) is obtained by inte-
grating on 3. It follows that

o(Mls) o X5 exp { Pinn + 4+ 9]}

That is,

(5-5)

Ay ~ r{a +n 1‘@(1{;,.&,4‘))}°

27 2
Hence, the Bayes estimator of X with respect to the squared error loss

function is

5\8 = E(M%’) = *‘_k—,,(,; "r,,)

(5-6)
— _ 2Aedn
sar(O19) = ke
For B, we integrate on A in (5-4) and obtain
1
9(Bly) « - cErey (5-7)
[(a+n)+ (B8 ~m)¥~(B ~ m)]
‘I’, - h("?; A! b)[A--i + Xn’yx]—i
a+n

That is,
Bly ~ Ll{a+ n)m, V]
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Thus, for a + n > 2 we have

By = E(Bly) = m = [[ + AX'VX[n+ nAz]

(5-8)
var(Bly) = V = 229

atn—2

By the distributional properties of the multivariate T-distribution,
each subvector of B also has a T-distribution with corresponding mean
and variance. Even each linear transfomation of 8 has a T-distribution,
too. These facts prove useful in model selection, below. Therefore, the

simple regression is estimated as
S B . .
fiip = 'iBp, i=1,...,n (5~ 9)

which marginally has a T-distribution. This fact helps us to find a
Highest Posterior Density (HPD) region akin to a confidence interval in

the classical approach.

5.4 Model selection
Selecting a particular model is tantamount to excluding some indepen-
dent variables (z;) from the full regression equation. This task can be
accomplished either by testing the sigﬁiﬁcance of various coeflicients or
by utilizing the Bayes factor. The former is the usual method in the clas-
sical approach. The latter method compares the two competing models
M;_,(y) and M;(y) while M;_,(y) is a reduced from of M;(y), lacking
some variables. Then
o 9(Bly, M;) . _
T— o5 a(Bly, M;-1)" T~
where 0 < ¢; < 1 is the prior probability that the M;(y) is the correct
model. If PO. > 1, the model M;(y) is more reasonabierthan M; (),

PO = posterior odds = 1,2,...,p
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otherwise vice-versa.

5.5 Empirical Bayes analysis

In order to use the result (5-9) in practice, one has to be able to specify
the actual values of the parameters in (5-1) and (5-2). This is not
an easy task because there may not be a consensus among the users
about the specified parameters. One way out of this difficulty is to let
the data speak for themselvves and determine those parameters. The
operational aspect of this procedure is to estimate the parameters of the
prior distributions from the observed data and then follow the Bayesian
rules. The marginal distribution of the random sample which is observed
is

Swlebim 8) = [ [{ [7 ftuig, Nma(@inm(d)an s

which by virtue of (5-1)-(5-3) and the properties of the gamma and

multivariate T distributions reduces to
bolh(n, A, b)) ED(2t2)
[a+ n] 5= T(a)|] + AX'YX|3

v € [RY] (5 ~10)

flyle,b,m, A) = constant.

That is, (5-10) is in fact the likelihood function of (a,b,7,A) which
contains 2(p + 1) parameters. Now, similar to the previous section,
we can maximize (5-10) in terms of (a,b,m, A) to obtain the MLE of
(a,b,9,A) which are denoted by (&,b,7,A) . Next we subsitute these
estimates in (5-6)-{5-8) to obtain the Aggsy and Bypar which in turn
yield

Bikamr = TBeaus (5 -11)

which being a linear function of Bgp,,, has the variance as

Uar(ﬂ{éBML) = mﬁ”ar(ﬁﬁﬁmﬁm
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Since the asymptotic variance of Bgp,,, is obtianed by the inverse of

the Fisher information matrix I=Y(8,, wr ), it follows that

var(f pamr) = oL (Bepp ).

This martrix is used in finding the HPD region, or confidence bands for
the regression equation (5-11).

The above procedure needs numerical computations to find (&, b7, A)
from (5-10). Thus he solution has no closed from. In order to provide
an explicit solution we may use the method of moment to find the es-
timatesof (a,b,m,A). Y ~ IG(u,A) with the density f(y|z,A) then
R; = Y;7! has the density

k(rlp, ) = pr f(rip™  Ap™%), ,p,A> 0

with moments of all order, Chhikara and Folks (1989, P. 43). Using this

fact we find the first two marginal moments of R;, i.e.

E(R) =+ zin (5~12)
and
var(R) = 7% + y@in + mAal, i=1,....n (5-13)
with v = b JE= 2(53“:41)). The equation (5-12) implies that

2e ~2)
Bi=~v4a'n+eg, i=1,...,n
which is similar to the multiple linear regression and can be expressed

as
R:Zn»{-e (5~ 14)

with R = [By,..., R}, Z = [1.,X], X = (zi;) » = [7,7), and € =
fer, ..., €,]. Then the least square solution of {5-13) is

i = (2'2)2'R | (5 - 15)
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A similar treatment of (5-13) leads to the system of equations

4
S:ZSE)—'}Q:;?;:-}?f%«foj-éj, i=1,...,n (5—16)

j=1

where, for Ry = 3 (,'{{ifi_)a we have defined

Now, we define

€= [fl:--=7€n]: 55 ﬂ'Alpm [51,..0,6},}

and £, = [£,8,]. Thus, (5-16) is in fact as
§% = Twi, + ¢ (5—-17)
From (5-17}, through the least squares method, one obtains
£ = (T'TYy'7T's" (5 — 18)

If it happens that in (5-15) and {5-18) the inverse matrices do not ex-
ist, their Moor-Penrose inverse would be used. We have, therefore, the
estimates of v, £, 7 and A. The pair v and £ gives us ¢ = 3%’5:}}%2

and b = %‘%ﬁiﬁ:‘—) These estimates are denoted by (&, , A, A) which will

be used n the Bayes estimates already obtained as (5-9). Thus, as an
alternative to (5-11) we have

l”';:}EBMM = mSAE}EBMM (5—19)

with

var(f pamm) = Tver(Bppun ) (5~ 28)
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The estimales obtained above either by using the ML or MM method
are in fact Bayes estimates relative to the estimated proir distributions.
Thus any inference concerning A and 8 should be based on thier posterior

distributions. For example in the case of the MM method we have

(Algj~ T (@ ; n), h(ﬁ’f’ b)], (5 —21)
(Bly) ~ Trl(a + n),, V) (6-22)

Hence, the variance in (5-20) is found from (5-22). Likewise the distri-
bution, and the HPD region for 4] zppar is found from (5-20). Table
5.1 shows the dafa set relsuted from an experiment on the turnip plant.
It is believed that the explanatory variables. X;=sunlight, X;=s0il hu-
midity, and Xz=air temperature affect y =the content of vitamin B,
in the leaves of the turnip plant. We would like to establish a relation
between u; and these 3 variables in the from of y; = [2!8]~}. To this
end, we define Z = [147, X], where X is the last three coumns of Table
5.1. Using {5-15), we abtain the estimates

(%, 71, 7oy 7la] = 107°[12581, 2,134, —28].

To obtain 3, we first compute the statistics

- (0.339-R)
Ho ="

From these, we find S* and T.Finally (5-18) gives us £ which in turn

provides

, 8% = 0.04[0.005 - B — 26 R%y], i=1,...,27.

(Bly) ~ Ts[28,7n, V]
with
Brpun = ™ = 1077[—87,4762, 318)
43505 —205205 36960

V = var(Bly) = 107° 21945 2695
23870
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and finally,from (5-19), we arrive at
A bpma = 1077 [~87zi + 47622 + 31875}

The use and interpretation of this regression equation is like the usual

regression model. Hence we do not elaborate on it.

6. Concluding remarks

We have journyed a relatively long path starting from the genesis of the
Inverse Gaussian distribution and heading towards inference about its
parameters. Along the way we used the Bayesian and empirical Bayes
vehicle to reach estimates, to do analysis of variance and to construct a
regression equation. It is not the end of journey. we could have visited
the subject of analysis of covariance, or could have studied the reliability
problems under this model. the study of asymptotic properties of various
estimators is yet another common ground to work on. The posibilities
are vast and the problems endless. One could conjecture that there are
as many problem under the Inverse Gaussian model as there are under
the normal (Gaussian) model. Most of them are not yet explored and

await for eager and perseverant workers.
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Table 5.1: the data regarding the vitamin B, content of the turnip

leaves and sunlight, soil humidity and air emperature

plant | Vitamin B, | Sunlight | Soil Hmidity | Air temperature
number Y X X X5
1 1104 176 7.0 78
2 102.8 155 7.0 89
3 101.0 273 ~ 7.9 39
4 108.4 273 7.0 72
5 100.7 256 7.0 84
6 100.3 280 7.0 87
7 102.2 280 7.0 74
8 93.7 184 7.0 87
9 98.9 216 7.0 88
10 96.6 198 ' 2.0 76
11 99.4 59 20 | 65
12 96.2 80 2.0 67
13 99.0 80 2.0 62
14 88.4 1G5 2.0 70
15 75.3 180 2.0 73
16 82.0 180 2.4 65
17 82.4 177 20 76
18 77.1 230 2.4 82
19 74.0 203 47.4 76
20 65.7 191 47.4 83
21 56.8 191 47.4 82
22 62.1 191 47.4 69
23 61.0 76 47.4 74
24 53.2 213 474 76
25 59.4 213 47.4 69
26 58.7 151 47.4 75
27 58.0 205 47.4 76

Source: Draper and Smith (1981, P.406)
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Absiract: The paper investigates the problems that students
usnaily have when beginning the study of the notion of limit in

its understanding and usage.

I. Convergence in terms of sequences

A very common problem that most beginners will have with the

definition of limit is to adjust the static nature of the definition with the

dynamic nature of the words “tending”, “converging”, that they have in

their minds.

Another problem is the difficulty of establishing the inequality

|&, — 2] < € for large values of n in order to prove {z,} converges to z

as i — 0.
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A common method to solve the latter inequality for n is to prove
first that |2, ~ 7| < o' for some unbounded increasing sequence {a,}
and then replace the inequality |z, — 2] < ¢ by the sufficient condition
a, > €~'. The new inequality has a solution of the form n > N, for
some natural number N,. In most practical examples the sequence {a,}
and the number N, can be obtained through algebraic or other simple

methods. For example, for lim _nismn = —, we have
o0 211 — cosn + 5 2

i L+ sinn

1 3
— e e ~1
2n—~cosn+ 5 2“"'(2_{_1) <&

and hence

N, = max{1,[[2(c"" ~ ]I},

where [[f]] denotes the greatest integer in 1.

In general, the sequence {a,} may not have a simple expression but,
as the following proposition shows, it always exists.

I.i. Proposition, Let {z,} be a sequence in a metric space X
converging to x € X; i.e., for every £ > 0 there exists N, € ¥ such that
d{zn,z) < ¢ for all w > N,, where d denotes the metric on X. Then
there exists an unbounded increasing sequence {a,} of positive aumbers
such that d(z,,z) <o ' (n=1,2,...).

Proof. Let N, be a positive integer such that d(z,,z) < 1 for all
n > N and define

ay = ay = - = gy, = (max{d(z1,2),d(z3,2),...,d{zN,,2), 1)

Assume by induction that Ny, N, ... ,VN x and aq,ay,...,ay, are defined
for somek > 1. Let Nyyy > N be a positive integer such that d(z,,z) <
1/{k+ 1) for all n > Ny,;. Define

GN31 = BNz = 0 Tl = k.
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In view of the Archimedes principle or the axiom of completeness, the in-
creasing sequence {a, } thus obtained is unbounded. Moreover, d(z,,2) <
a; (n=1,2,...)m

It is clear that if a sequence {z,} in a metric space (X,d) satisfies
d(za,z) < a7t (n = 1,2,...} for some z € X and some unbounded
increasing sequence {a,}, then JEEQ Z, = z. Thus, one can see that the
axiom of completeness and the definition of nh_)rglo z, are equivalent to the
following Axiom 1.2 and Definition 1.3.

1.2, Axiom. If yy < y3 < ... is bounded in lR, then there exists
Y€ [R such that (3 — ¥ )" is unbounded.

1.3. Definition. A sequence {z,} in a metric space X is said to
be convergent to some z € X if d(z,,2) < 1/a, (n = 1,2,...) for some
unbounded increasing sequence {a,} of positive numbers.

Axiom 1.2 guarantees the unboundedness of the increasing sequences
{n}; if {n} is bourded then there exists y € IR such that {{y—n)"1}is
unbounded. Hence I = (y—n)-(y-n~1)<y-nforalne Iv; a
contradiction. This shows that, in the light of Axiom 1.2, Definition 1.3 is
not vacuous. The inequality 0 < d(z,,z) < a;;! reflects the compression
of a sequence {z,} to = by the boundary of a shrinking sphere of radius
a;! centered at z. The terms "compress” and "shrink” have dynamical

natures which one expects in the notion of limit.

If the standard € — N definition of lim z, = z is replaced by the
new definition, then one can successfullyng;;ogve and discuss all necessary
results in a calculus or advanced calculus course related to limits of
sequences. (The definition of nijxfm Zn = oo can be easily given as
T, > 4, or T, < —a, for some unbounded increasing sequence {a,}.}

Moreover, limit, continuity, and differentiability of functions can be
given in terms of sequences. In fact lim f(z) = L can be defined as the

requirement lirgo f(zy) = L for all sequences {z,} in the domain of f
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such that z,, # ¢ and r}LrEo z, = ¢. (For continuity of f at ¢ we require
nI'LIEo f(za) = f(c) for any sequence {z,.} in the domain of f converging
to c.)

Thus, to prove the composition fog of continuous functions f and gis
continuous, we simply observe nh_rgo flg(z,) = f(r}ingc g(z.)) = flg(e))
whenever {z,} is in the domain of g converging to c. The intermediate
value theorem, the compactness of a closed interval, and the convergence
of a Cauchy sequence, etc. can be proved in similar sequential fashions.
For example, if a continuous function f : [a,b] — |2 satisfies fay<k<
f(b), one can construct a nest of intervals [a, ] D [ag, 5] D [a5,52) D ...
such that &, — a, = (b— a)/2" and f(a,) < k < f(b,). Hence, if
c¢=lima, = limb,, then 0 < (k—f(c))? = lim (k—fan))(k—f(8.)) < 0
and thus k = f(e). T

II. Shortcomings of the sequential definitions

As we mentioned in the previous section, the sequential definition of
convergence provides a dynamic spirit for the concept of limit. Even in
the case of functions, students expect a dynamical approach. In fact,
most textbooks and instructors of calculus respond to this need by be-
ginning the subject of limit with tables showing the values of a function
as simple as z* at various points z,, z3,... which cluster around a given
point z = ¢ and demonstrate that as z, approaches ¢, 2 approaches
c¢?. This means that while the mathematicians of the nineteenth century
regarded continuity of a curve as the free movement of a point on a
plane, the twentieth century mathematicians regard the continuity of a
function f as the convergence of the sequence {f{z,)} to f(¢) for any
sequence {z,,} converging to ¢ in the domain of f. It is well known that
this definition of continuity is equivalent with the standard € — § defini-
tion: Foralle > 0, thereexists § = 8(¢,c) > 0 such that [f(z)— f(c)| < ¢
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whenever jz — ¢] < 4. {Absolute values can be replaced by distances in
metric spaces.) If § is independent of the point ¢, the continuity of fis
said to be uniform. It is not easy to give a definition of uniform centinu-
ity purely in terms of sequences; even if it is done, it is not handy to be
used in the proofs based on uniform continuity. For example, one may
define uniform continuity as having }LI%O 1f(za) — f{ya)| = 0 whenever
i#, — ¥al — 0. But such a definition is not convenient for proving the
integrability of continuous functions. Similarly, uniform convergence of
sequences of functions are easily defined and handled by the ¢ — N defi-
nition; we found it quite artificial to use sequential definitions to prove,
for instance, that uniform limit of a sequence of continuous functions is

a continucus function.

In general, we believe the ¢ — N or £ — & definitions of limit (for se-
quences or functions) are indispensable parts of mathematics. They are
not only suitable for problems involving uniformity, but are the gates to
important subjects such as topology. The £ -6 definition introduces the
concept of neighborhoods and intimates the beginner with the manipu-

lation of abstract topological concepts.

With all these, we still believe the (dynamic) sequential definitions
of limit and continuity are worth to be included in calculus textbooks.
This is what a student expects when for the first time he/she encounters
the notion of convergence. Proposition 1.1 and the paragraph preceding
Axiom 1.2 showed that the ¢ — N definition is equivalent to Definition
1.3. Thus, a beginner mathematician may begin the subject of limit by
Definition 1.2 and then observe the standard e — N definition as a theo-
rem. The difference between something to be regarded as a "definition”
or as a "theorem” is that in the first case one has to accept a metalore
of a concept which may differ from one’s expectation of that concept,

while in the second case one defends a claim that one has successfully
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proved.

However, once the equivalence of the two methods of approach are
established, it is easy to switch from one method to another. The follow-
ing section shows that how combination of the two methods may help
to shorten the proofs of the theorems.

III. Uniformity and integrals

The Riemann integral in calculus is a concept which benefits lot from
uniformity. As mentioned before, a function f is uniformly continuous
if and only if d(f(z,), f(¥a)) ~ 0 whenever d(z,,, Yo) — 0 and {z,} and
{t¥n} are sequences in the domain of J. A sequence {f,} is said to be
uniformly convergent to a function fonaset 4, if for every £ > 0 there
exists N € IV such that n > & implies that | f.(z) — f(x)| < ¢ for all
z € A. This is equivalent with saying that falz) = f(2)} < a7 forall
z € A, where {a,} is an unbounded increasing sequence (independent
of z).

The Riemann integral of f on [a, b] exists if, by definition, there exists
an increasing sequence {m,} of partitions of {a, b] such that Zirlln ) =
im[5(f, m.) - S(f,7,)] = 0, where I(r) := wax(zy - wx-1), 5(f,7) =
z Mi(n Yz —2z41), S(, Ty = E M (7 H2r—Tpr), My(r) = sup{f(z):
:ciml <z < 2z}, and my(n) = i’;n‘{f(a:) rxp <z gb zy } for a given
partition {¢ = 2y < 2, < --- < 7, = b}. Then [ is defined to
be the limit of the increasing sequence {5¢( fg Tn )} j&bs an immediate
consequexce, |f} is integrable and | f b fl < j[ [fl,if f f exists.

Note. If #! is a refinement of 7r: and if frrﬂ} is as in the definition
of ff /. it is easy to see that {n!} also defines the integrability of f and
yields the same value for f: f. Thus f: f is independent of the choice
of {r,}. For a partition 7 as above we further set u(n) = mkax{Mk(?r) -
me(7)].
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The proof of the following results would be lengthy if one tries to
stick to one type of definitions. The proofs given here seem to be very
short.

[11.1. Theorem. Let f :| — R be bounded and let {,} be an

increasing sequence of partitions of [a,b] such that Lin l(r,) = 0. Then

b
] f exists if either the sequence vy, = Z[Mk(’ﬁ'n) —my(ny,)] is bounded

k
or im p(w,) = 0. In paritcular, if f is monotone or continuous, then
i
it 35 Riemann integrable.
Proof. If f is monotone or, more generally, if v, < D for all n €
5

iN then S(f,7mn) — S(J ) € i(ma)D forall m € Iv and hence f f

exists, If f is continuous or, more generally, if hm w(ry) = 0, then

S(fyma)— S(f,mn) (b~ a)u(r,) foralln € IV and hence b f exists @

111.2. Theorem. Let f be the uniform limit of a sequence of Rie-

mann integrable functions f, : [a,b] — 2. Then f f exists.

Proof. Let {x,} bean increasing sequence of partitions of [a, b] with
b :
hrl.n x,) =0. Assumef f does not exist. Then 5(f,7,) — S(f,mn) =

eoforalln € Iv and some g0 > 0. Let {a,} be an unbounded increasing

sequence establishing the uniform convergence of { fa}. Since
Mi(f,mn) — mi{ i) € Mi(fis 1) = ma(fiy ma) + 2077,
it follows that
0 < &g < 8 fiyma)~ S(fi,mn) + 207 (b~a) , (i= 1,2,--4)

Letting n — oo, it follows that 0 < &9 < 2a; (b — a) and hence a; <
2(b - a)/es, (3 = 1,2,...); a contradiction s
We conclude this topic with another famous theorem.
b

111.3. Theorem. If j | exists and if @ is continuous on some
&

b
closed interval containing f([a, b)), then ] wo f exists.
@
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Proof. The ¢~ § definition of continuity implies that ¢ is the uniform
limit of a sequence {¢,} of piecewise linear continuous functions which

can be expressed in the form

wa(z) = a+ bz + chlm — x|,

k=0
where the constant m,a,b,cp, 61, ,Cm, %0, %1, , T,y depend on n.

The rest of the proof follows from Theorem I11.2 and the fact that ¢, 0 f

is the sum of integrable functions®
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Abstract: The solution of problems in the calculus of varia-
tions is obtained by using hybrid functions. The properties of
the hybrid functions which comsist of block-pulse functions plus
Legendre polynomials and block-pulse functions plus Chebyshev
polynomials are presented. Two examples are considered, in the
first example the brachistochrone problem is formulated as a non-
linear optimal control problem, and in the second example an ap-
plication to a heat conduction problem is given. The operational
matrix of integration in each case is introduced and is ufilized
to reduce the calculus of variations problems to the solution of
algebraic equations. The method is general, easy to implement

and yields very accurate resulis.
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1. Introduction

There has been a considerable renewal of interest in the classical prob-
lems of the calculus of variations both from the point of view of math-
ematics and of applications in physics, engineering, and applied mathe-
matics .

Finding the brachistochrone, or path of quickest decent, is a his-
torically interesting problem that is discussed in virtuaily all textbooks
dealing with the calculus of variations. In 1696, the brachistochrone
problem was posed as a challenge to mathematicians by John Bernoulli.
The solution of the brachistochrone problem is often cited as the origin
of the calculus of variations as suggested in [1]. The classical brachis-
tochrone problem deals with a mass moving along a smooth path in a
uniform gravitational field. A mechanical analogy is the motion of a
bead sliding down a frictionless wire. The solution to this problem has
been obtained by various methods such as the gradient method [2], suc-
cessive sweep algorithm [3-4] , the classical Chebyshev methed [5] and
multistage Monte Carlo method [6].

Orthogonal functions (OF’s) have received considerable attention in
dealing with various problems of dynamic systems. The main charac-
teristic of this technique is that it reduces these problems to those of
solving a system of algebraic equations; thus greatly simplifying the
problem . The approach is based on converting the underlying differ-
ential equations into an integral equation through integration, approxi-
mating various signals involved in the equation by truncated orthogonal
series and using the operational matrix of integration P, to eliminate
the integral operations. The form of P depends on the particular choice
of the orthogonal functions. Special attention has been given to appli-
cations of Walsh functions [7], block-pulse functions [8], Laguerre serjes
(9], Legendre polynomials [10] and Chebyshev polynomials [11].
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There are three classes of sets of OF’s which are widely used. The
first includes sets of piecewise constant basis functions (PCBF’S) (e.g.,
Walsh, block-pulse, etc.). The second consists of sets of orthogonal
polynomials (OP’s) ( e.g., Laguerre, Legendre, Chebyshev, etc.). The
third is the widely used sets of sine-cosine functions (SCF’s) in Fourier
series. While OP’s and SCF’s together form a class of continuous basis
functions, PCBF’s have inherent discontinuities or jumps. The inherent
features{continuity or discontinuity) of a set of OF’s largely determine
their merit for application in a given situation. References [12] and
[13] have demonstrated the advantages of PCBF spectral methods over
Fourier spectral techniques. If a continuous function is approximated
by PCBF’s, the resulting approximation is piecewise constant. On the
other hand if a discontinuous function is approximated by continucus
basis functions the discontinuities are not properly modeled. Signals
frequently have mixed features of continuity and jumps. These signals
are continuous over certain segments of time, with discontinuities or
jump occuring at the transitions of the segments. In such situations,
neither the CB¥’s nor PCBF’s taken alone would form an efficient basis

in the representation of such signals.

The direct method of Ritz and Galerkin in solving variational prob-
lems has been of considerable concern and is well covered in many text-
books {14], [15]. Chen and Hsiao [7] introduced the Walsh series method
to variational problems. Due to the nature of the Walsh functions, the
solutions obtained were piecewise constant. Hwang and Shih [9], Chang
and Wang [10] and Horng and Chou {11}, used Laguerre polynomials,
Legendre polynomials and Chebyshev polynomials respectively to derive
continuous solutions for the first example in [7]. Furthermore, Razzaghi
and Razzaghi [16], [17] applied Fourier series and Taylor series respec-

tively to derive continuous solution for the second example in {7} which
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is an application to the heat conduction problem. It is shown in Raz-
zaghi and Razzaghi [17] that, to obtain the Taylor series coefficient, an
ill-conditioned matrix commonly known as the Hilbert matrix is used.
Hence the Taylor series is not suitable for the sclution of the second
example in {7].

In the present paper we introduce a new direct computational method
to solve problems of the calculus of variations. The method consists of
reducing the variational problems into a set of algebraic equations by
first expanding the candidate functions as hybrid functions with un-
known coefficients. The hybrid functions, which consists of block-pulse
functions plus
a) Legendre polynomials and
b} Chebyshev polynomials
are first introduced. The operational matrix of integration in each case is
given and is used to evaluate the coefficients of hybrid functions in such
a way that the necessary conditions for extremization are imposed. Two
examples are considered. In example 1, the brachistochrone problem is
formulated as an optimal control problem and in the second example we
will demonstrate the application of operational matrix of integration for
hybrid functions by considering the second example in {7}. It is shown
that the hybrid functions of block-pulse and Legendre polynomials ap-

proach produces an exact solution for the heat conduction problem.

2. Properties of Hybrid Functions of Block-Pulse and Leg-

endre Polynomials

Hybrid functions b(n, m,t),n = 1,2.}--‘- JN,m=0,1,---,M —1, have
three arguments; n is the order of block-pulse functions, m is the order

of Legendre polynomials, and ¢ is the normalized time. They are defined
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on the interval [0,¢;) as

PRt -2n 4+ 1), te[(230)t,,2¢))
bnymyty={ Y VERETL
@, otherwise.
Here P,,(t) are the well-known Legendre polynomials of order m which
are orthogonal with respect to the weight function w(t) = 1 and satisfy

the following recursive formula.

P(t)=1, P(t)=1

om+ 1
Praa(t) = (?:‘:1 )th(t) - (?ﬁ%) Pos(t), m=1,2,3, -

Since &(n, m, t) consists of block-pulse functions and Legendre polynomi-
als, which are both complete and orthogonal, the set of hybrid functions
of block-Pulse and Legendre polynomials is a complete orthogonal set.

2.1. Function Approzirmation

A function f(#), defined over the interval 0 to £; may be expanded as
ity = Z Z c(n, m)b(n,m,1t), {(2)
n=1m=i
where
e(n,m) = (f(1),b(n, m, 1))
in which (.,.) denotes the inner product. If the infinite series in Eq. (2)

is truncated, then Eq. (2) can be written as

N M-1

FE =3 % e(n, m)b(n, m,¢) = CTB(¢), (3)

n=imzl
where
C= [C(L‘G)?” o :C(}-:M - 1)56(238)?"’ 36(25M - 1)1
“'?C(Nag)ﬂ‘”ac(-_‘ﬁ’r?M”}«)]Ts (4}
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and

B(t' = [b(l,ﬁ,f),--' 1b(13M - 11i);b(2a0’t)="' ab(Q:M - Lﬁ){
"'lb(N,O,i),-“gb(N,M—-l,t)]T. (5)

2.2. The Operational Matriz of the Hybrid of Block-pulse and Legendre

Polynomials.

The integration of the vector B(t) defined in Eq. (5) can approximated
by

4
j B(#)dt' ~ PB(%) (6)
o
where P is the NM x NM operational matrix for integration and is
given by
[E H H - H\
E H H
p=10 0 E - HY, (7)
\6 0 0 1y
In Eq. {7)

{1 0 0 - 0

=z
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and F is operational matrix of integration for Legendre polynomials on
the interval  [(%531)t, &t;]  givenin [18] by

/1 1 ¢ 0 0\
= 0 10
P 0 F 0
2N : :
0 0 Q 2!\}{-3 0 25;-—-3
\0 0 © s 0

2.8. The Approzimation of B(£)BT({)C.

The following property of the product of two Legendie polynomial vec-
tors will also be used,

Let
P(t) = [Pﬁ(t)s Pi(t): | PMwl(t)]Tﬂ

A= {Ga,al,‘“‘ 5GM_..1} .
Then we have

PWPT(H)A= AP7(), (8)

where A is an M x M matrix given in [18].
Let

Bo(t) = [b(n,0,8),b(n, 1,8),...,b(n, M - LOF, n=12,...,N,
Cu = [e(n,0),¢(n,1),... ,e(n, M- D)7, n=12,...,N.
Then using Egs. (4) and (5) we get

B(t) = [Bi(t), Ba(t),- - -, Ba ()], @

C:[@hc}m"' :éN]T' (10)
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By using Eqgs. (9) and {10) we obtain

Bi(t)BT{(t)C, 0 e 0
B{1)BY ()Cy --- 0
BB = 2{t) .2( )Co |
0 0 -+ By()BI(H)Cw
(11)
Similarly to Eq. (8) we have
Bo(0)BY()C, = CuBu(t), n=1,2,---,N. (12)
Using Egs. (11) and (12), we get
B(#)BT(t)C = CB(1), (13)

where C is an NM x N M diagonal matrix given by

Ci 0 - 0
. 0 &, - 0
G = _

0 0 Cn

2.4. Integration of B(t)BT(¢).

The integration of the cross product of two hybrid Legendre vectors can

be obtained as

ir
D= Jf B(1)B(1)ds. (14)
i}
where D is a diagonal matrix, given by
L o - 0
9 L .- 0

p=|. . . | (15)
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with I the M x A diagonal matrix given by

0 G
I,~tf 0 %— ¢
=% ;
00 - ZMi—I

3. Properties of Hybrid Functions of Block-Pulse and
Chebyshev Polynomials,

Hybrid functions 5(n,m,.,t),n =1,2,--- ,Nym=0,1,--- | M — 1, have
three arguments; n is the order of block-pulse functioné, m is the order of
Chebyshev polynomials, and ¢ is the normalized time. They are defined
on the interval [0,1;) zs

) To(3t — 20+ 1), t€ (252, o))
b(n, m, ) = iy N i (18)
0, otherwise.

Here T),(t) are the wel-known Chebyshev polynomials of arder m which

1
Vie

are orthogonal with respect to the weight function w(#) = and

satisfy the following recursive formula.

T(t)=1, Tg) =t

Tpp{t) = 8T, ~ Tpr(t) , m=1,2,3,...

Since fa(n, m,t) consists of block-pulse functions and Chebyshev poly-
nomials, which are both complete and orthogonal, the set of the hybrid
functions of block-pulse and Chebyshev polynomials is a complete or-

thogonal set.

3.1. Function Approzimation.
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A function f(1), defined over the interval 0 to ¢ s may be expanded as
f{t) = Z E c(n,m)?}(n, m,t), {17)
n=1mz=l
where
e{n,m) = (f(t)?é(nvmvt))
in which (., .} denotes the inner product. If the infinite series in Eq. (17)
is truncated then Eq. (17) can be written as
N M-1 K )
J@) =373 e(n,m)b(n, m, t) = CT B(1), (18)
n=i med

where

C = [e(1,0),- -, e(1, M ~ 1)e(2,0),- - ,¢(2, M — 1)
l“"C(N,U),-” ?ﬂ(N,M— 1)]Ta

B(t) = [b(1,0,1),... ,b{1, M — 1,1)[5(2,0,8),... ,b(2, M — 1,1)]
BNV, 0,8), .. BN, M - 1,0))7. (19)

3.2. The Operational Matriz of the Hybrid of Block-pulse and Chebyshey

Polynomials

The integration of the vector B(t) defined in Eq. (19) can approximated
by

f B(t)dt' ~ PB(1)

where P is the NM x NM operational matrix for integration and is
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given by
(E H H A\
0 E FH H
P=|0 0 E b4
0 ¢ 0 . /
In the above matrix
/[ 1 00 0\
6 g ¢ g
o b = 09
H = N 3 ,
0
-1 M1
amgr-n 0 0 - 9

and F is operational matrix of integration for Chebyshev polynomials

on the interval  [(251),, &t,] givenin [11] by

i Lo o0 - 0 0 0
=1 c i 0 0
?OF04 :
.t
E=-L
N
=17 60 0 0 - =l 0 A
TM =13} (M -3) M ~1)
ZM_(L’—Z} ¢ 0 0 q(ﬁiz) 0 /

4. Hybrid Functions Direct Method

For now, we will use hybrid of block-pulse and Legendre polynomials,
similar results can be obtained by using hybrid of block-pulse and Cheby-
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shev polynomials. Consider the problem of finding the extremum of the
functional

J(z) = J{} ' Flt2(0), (0)]d:. (20)

The necessary condition for z(f) to extremize J{z) is that it should
satisfy the Euler-Lagrange equation

aF d 8F

% " @aw) T )
with appropriate boundary conditions. However, the above differential
equation can be integrated easily only for simple cases. Thus numerical
and direct methods such as the well-known Ritz and Galerkin methods
have been developed to solve variational hybrid functions. problems,
Here we consider a Ritz direct method for solving Eq. (21) using the

Suppose, the rate variable #(¢) can be expressed as
2(t) = CT B(t). (22}

Using Eq. (6), z(t) can be represented as

2(t) = [ 2(t')dt + =(0)
= CTPB(t) + [2(0),0,--- ,0,2(0),0,--- ,0,- - ,2(0),0, - ,G]TB%Q.\
We can also express ¢ in terms of B(2) as

1 1 3 1

tz{%?ﬁ?(}s’”:oﬁﬁs%’”'aea’“aoa"'s
2V-1 1
— .0, 0)B() = T B(¢ 24
2N 72N'}0? ’0] () () ( )

Substituting Eqs. (22-24) in Eq. (20), the functional J(z) becomes a
function of ¢(n,m), n =1,2,---,N, m=20,1,2,---,M — 1. Hence
to find the extremum of J{z) we solve

aJ

de(n, m) =0,

The above procedure is now used to solve the following examples.

n=1,2--,N,  m=0,1,-,M~1.(25
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5. Hlustrative Examples

In this section two problems of the calculus of variations are considered.
Example 1 is the classical brachistochrone problem, where as example 2

is an application to the heat conduction problem taken from [7].
5.1. Example 1: The Brachistochrone Problem.

5.1.1. The Brachistochrone Problem as an Optimal Control Problem

As an optimal control problem, the brachistochrone problem may be
formulated as [5].

Minimize the performance index J,

1= 1 {%L;%rdt, (26)
subject to
X)) =U(), (27)
with
X(0)=0, X(1)=-0.5. (28)

Bqs. (26), (27) and (28), describe the wmotion of a bead sliding down
a frictionless wire in a constant gravitational field. The minimal time
transfer expression is obtained from the law of conservation of energy.
Here X and t are dimensionless and they represent respectively the ver-
tical and horizontal coordinates of the sliding bead.

As is well known the exact solaution to the brachistochrone problem

is the cycloid defined by the parametric equations

z=1- g(l + cos 2a), t= %-%« g(Qa + sin 2a), (29)
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where

tanar:%?—:(f.

With the given boundary conditions, the integration constants are found
to be

4 = 16184891, ¢, = 2.7300631.
§5.1.2. The Numerical Method

Suppose, the rate variable X (t) can be expressed approximately as
X(t) = CTB(1). (30)

Using Eqs. (6) and (28), X (¢) can be represented as

X(t) = [ X(#)dr + X(0)
= CTPB(t), (31)

and by using Egs. (27) and (30) we have
U*(t) = CTB(1) BT (1)C. (32)

Equation (32) can be simplified by using the property of the product of
two hybrid Legendre function vectors given in Eq. (13).

4.1.3.  The Performance Index Approzimation

Using Eqs. (26), (31) and (32) the performance index J can be approx-

imated as follows:

14 C7EB(Y
= [ <1«~«-CTPB(t)) . (33)

Divide the interval [0, 1] into N equal subintervals, we have

Nor% (1407CBWH\*
J= 2 f:ﬁi (W) di. | (34)
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In order to use the Gaussian integration formula we transform the t-

interval (%%, &) into the r-interval (~1,1) by means of the transforma-

tion
1,1 2n-1
The optimal control problem in Eqs. (26-28) is then restated as follows:
Minimize
11+ ()
7=3 wl[l—z(r)] a (36)
subject to
de 1
== 5“(T)’ (37)
with
z(-1)=10, z(1)=-05. (38)

Using Bgs. (34) and (35) we get

J

N ¢ TAmif Lo o =1y §
S [ (Hermiin il e @)
49N J o \1- CTPB(3(§7 + %))

Using the Gaussian integration formula, £q.(39) can be approximated

a8

N k THRLL -1y ?

1 14+ CTCB( (L7 +557))
Jm Yy o DN T A w;,  (40)
; ZN ; (l ~ CTPB(L(%m + 2=13) !
where 75,3 = 0,1,..., & are the k+1 zeros of Legendre polynomial Pyyq,
and w; are the corresponding weights, given in [19]. The idea behind
the above approximation is the exactness of the Gaussian integration

formula for polynomials of degree not exceeding 2k + 1.
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&.1.4.  Ewvaluating the Vector

The optimal control problem has now been reduced to a parameter op-

timization problem which can be stated as follows.
Find ¢(n,m), n = 1,2,-.. N, m= 0,1,..., M —1 that minimizes
Eq.(40) subject to

z(~-1)=0, z(1)=-0.5. {41}

We now minimize Eq. (40) subject to Eq. (41) using the Lagrange
multiplier technique. Suppose

U =T 4 Az(~1) + Agfz(1) + 0.5

The necegsary conditions for a minimum are

aJ*
mme TL—~1,2,'“,N, m:{),l,ﬁ.wM—-l (42)

and

or
XY

8
53

0,

0. (43)

Eqgs. (42) and (43) give (¥ M + 2) non-linear equations with (N3 + 2)
unknowns which can be solved for ¢(n,m), A; and X, using Newton’s
iterative method. The initial values required to start Newton’s iterative
method have been chosen by taking #(r)} as a linear function between
z(—1) = 0 and z(1) = —0.5.

In Table 1 the results for hybrid Legendre approximation with N =
2,k =5and M = 3,4,5 together with N = 2. k = 8and M = 5
are listed, we compare the solution obtained using the proposed method

with other solutions in the literature together with the exact solution.
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Methods (1)} u(-1) J
Dynamic programming -0.5 | -0.7832273 | 0.9984988
gradient methoc[2]
Dynamic programming -0.5 | -0.7834292 0.9984989
successive sweep method([3 4]
Chebyshev solutions{5]
M=4 -0.5 | -0.7844893 | 0.9984682
M =7 -0.5 | -0.7864215 | 0.99849815
M =10 -0.5 | -0.7864406 | 0.9984081483
Hybrid Legendre, N =2,k =5
M =3 -0.5 | -0.7852418 | 0.9984989
M=4 -0.5 | -0.7864397 | 0.9984983
M=5 -0.5 | -0.7864402 | 0.9984981
Hybrid Legendre 0.5 | -0.7864408 | 0.99849814829
N=2k=8ad M=5
Exact Solution[4] 0.5 | -0.7864408 | 0.99849814829

Table 1. The hybrid Legendre and other solutions in the literature.
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5.2, Example 2: Application to The Heat Conduction Prob-
lem

Consider the extremization of

J= j{;l[%dz? — zg(t)]dt = j: F(t,z,1)dt, (44)

where g(t) is a known function satisfying

1
f g(t)dt = "1:
0
with the boundary conditions
#H0)=0 , #(1)=0. (45)

Schechter [20] gave a physical interpretation for this problem by noting
an application in heat conduction and Chen and Hsiac [7] considered
the case where g(t) is given by
-1,
3,

o
IA

¢ <t<l,

L3 o

g(t) = (46)

3
b

[XICE L

<
t <

RN
IA

and gave an approximate solution using Walsh functions. The exact

solutisn is

142 1

5t°%, 05f<z
)= {-20+t-1, i<t<i

142 3 1

st -1+ 3, §gt<1.

Here of we solve the same problem using hybrid of Legendre and block-

pulse functions with M = 3 and N = 4. First we assume
#(t) = CTB(3). (47)

In view of Eq. (46), we write Eq. (44) as

J = % A 53 (0)dt + 4 j; * 2(t)dt - 4 [Q P a()dt + f;} by,
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ar

! ;
J m% f CTB(1)BT(1)Cdt + 4CTP j[ B(e)di
0 ]

& 1
4CT P ] B(t)dt+ CTP j B(1)dt.
0 o
Let )
w(t) = ] B()dt,
0
then using Eq. (20), we have

1

T T 1 1

where .
D= f B(t)BT(1)dt.
0
The boundary conditions in Eq.(45) can be expressed in terms of hybrid

of Legendre and block-pulse functions as
CTB(0)=0 , CTB(1)=0. (49)
We now minimize Eq. (48) subject to Eq. (49) using the Lagrange
multiplier technique. Suppose
J = J 4+ MCTB(0)+ X,CTB(L), {50)

where A; and A, are the two multipliers. Using Eq. {25) we obtain
aJ*
aC

1 1

= DC + Plaw(]) - 4w(3) + w(U)] + MB(0) + 1 B(1) = 0.
(51)

We also have

w(1) = +11,0,0,1,0,0,1,0,0,1,0,07",

W(%) = %[130?8,170,0,0,0,0,0,0,(}]’?,

w(3) = 711,0,0,0,0,0,0,0,0,0,0,01",

B(G) = [11 “’11 13{}1 as 070:{};0:0’0:0]’?3

B(1) =[6,0,0,0,0,0,6,0,0,1,1,1]7.
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Equations (49) and (51) define a set of 14 simultaneous linear algebraic
equations from which the coefficient vector € and the multipliers A, and
Ao can be found. The vector CTP is

1.2 .1 16 I 22 1
1.2.9 ]l ], i, w3 = 22 1 2V
ki 3y & 1? ? 3 2 3) 3} 3 K 1" } (52)

CTp=_—J=
64[3’ 3 3

Further, to define z(t) for ¢ in the interval [0, %] we map |0, —j:} into [-1, 1}
by mapping t into 8¢ — 1 and similarly for the other intervals. Using the

above equation and Py = 1, P, =t and P, = 21% — 1, we get

%

al3 + (8t~ 1) + 338 - 1)" — 3}l = 3%, 0sts
o(t) = 61?[2—(8%3)—-[%(815—3)“%]]=“%tz+t—é? ists
A[-10 38t -5+ L8t -5 - L =42 ~t+ 8, <1<
Gl-2 -t - +BE -7 -fl=3 -+ ] i<

which is the exact solution. This exact solution can not be obtained
either with CB¥F’s or with PCBF’s.

6. Conclusion

The aim of present work is to develop an efficient and accurate method
for solving problems of the calculus of variations. The problem has been
reduced to solving a system of algebraic equations. Illustrative examples
are included to demonstrate the validity and applicability of the tech-
nique. The advantages of using the hybrid Legendre method are :

(1) The operational matrix P contains many zeros which plays an im-
portant role in simplifying the performance index.

(2) The Gaussian integration formula is exact for polynomials of degree
not exceeding 2k -+ 1.

{(3) Only small values of k, ¥ and M are needed to obtain very satisfac-

tory results for the brachistochrone problem.

e - T o
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(4) Hybrid functions approach provides an exact solution for the heat

conduction problem.
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Abstraet: Let & be a field. K[[X]} will denote the ring of formal power series in
several commuting variables, X = (z;,23,-+ ,2x) with coefficients in K. K{{X))
will denote the field of fractions of K[[X]]. An element f € K({X)) is said to be an
algebraic function over A i f is algebraic over the field of rational functions X (X).
H further f € K[[X]}, then f is said to be an algebraic series over K. A fanction
which is not algebraic is called transcendental {over K).

For the case of one variable G. Christol et. al. (1980) have chatacterised the
algebraic functions over a finite field in terms of antomata. We generalise their ar-
gument and obiain the corresponding result for the case of several variables over a
perfect field of positive characteristic. H. Furstenberg (1967) has shown that if K
is a finite field and f = 3 anz”,9 = Y baz™ € K{[X]} are aglebraic, then the

w0

Hadamard produect of f and g, f* g = E anbnz™ i8 also algebraic. We apply the
n>t
above characterisation of the algebraic series in several variables to generalise Fursten-

berg’s result and prove that i K is an arbitrary field of positive characteristic and if
fe= Eaaxi,g = Zngl € K[[X]] are a.lgei)rzuc series, then frgm= Eagb:X‘ is also

an a.lgebrmc senes As an easy consequence of the above result we gwe a proof to

MSC (2000): 11361, 12H25

Keywords: Differentially algebraic formal power series algebraically independent,
transcendence basis, Hadamard prodact.
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Deligne’s Theorem: If f € K[[X]] and f = E 6oX  is an algebraic series in X over

K, then D(f) = 3" en.1t" is an algebraic series in ¢ over K. Then we consider the
n>¢

Hadamard product of rational formal power series and we show that if L is a field of
characteristic zero and if f = ZG[X Lge= Eb;X ! are rational series in LX), then

Fxg= Z‘” B X' (which is not in general a ra.ticna.l series) is always algebraic only if
E>2.

We introduce two methods for trying to decide whether or not a given formal
power series is an algebraic series over a field. Our first method {(in characteristic
zero) is based on the reduction process modulo the prime p and our second method
{in positive characteristic and so in characteristic zero using reduction) is based on
the splitting process for fanctions.

In 1986, M. Mendes France and A. J. van der Poorten have shown that if f=

Z anz™ € F[[X]] is algebraic, where F is a finite field of characteristic p>0,a0=1
&nd f# 1andif Als a p-adic integer, then f* is algebraic if and only if A is rational.
We generalise their result and prove the following theorem:

o
Suppose that K is a field of characteristic p > 0. Suppose that f = Y- anz™ € Kifz]]

nef

1s algebraic over K, where ag =1 and a3 # 0. Let A, Ag, -+, An be p-adic mtegers
Then the following conditions are equivalent:

{i) 1, A1, A2, -+ , An are linearly independent over Q.
(i) (14 =), (1+2)%2, - (T4 2)* are algebraically independent over Q.
(i) 1, 23, , f*= are algebraically independent over K(z).

A formal power series f is cailed D-Algebraic (respectively, D-finite) if it satisfies
an algebraic (respectively, a linear) differential equation with polynomial coefficients.
These notions are usually defined only over fields of characteristic zero and are not
so significant over fields of characteristic p > 0 as f(?) 5= 0. For a formal power series
over a perfect field of positive characteristic we make the definition of E-algebraicity
{respectively, E-finiteness) which is an analogue of the notion of D-algebraicity (re-
spectively, D-finiteness).

It is slightly surprising that E-finite series are in fact algebraic series. Howeves,
the E-algebraic series (which are not all algebraic series) under ordinary addition
and multiplication of series, form a field which is algebraically closed in K'((z)) and
has some other natural prperties. We also study the Hadamard product of two B-

algebraic formal power series,
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1. Preliminaries and Notations

Let K be a fleld and X = {21,2,...,2;). We will denote the ring
of formal power series by K[[X]], the field of fractions of K[[X]] by
K({X)). An element f ¢ K((X)) is said to be an algebraic function
over X if f is algebraic over the field of rational functions K(X). If,
further, f € K[[X]], then f is said to be an algebraic series over K. A
function (or series) which is not algebraic is called transcendental over
K.

Example 1.1. (i) The series

~£(7)-L(

rim(

Py

) (~4)"z" = (1 —4z)"%

is algebraic over any field.

(ii) The series f(z) = 3.2 ,z?" is algebraic over any field of char-
acteristic p and transcendental over any field of characteristic g, where
g#p

(iii) The series ¥.;7 , z™' is transcendental over any field (see Zariski
and Samuel [25, p. 220]).

(iv) Let p be a prime number and let S;(n) be the sum of the digits
of n is its p-adic expansion. That is, if

nmim—pi, 0<n <p—1,
iz0
{actually a finite sum for n € N) is the p-adic expansion of n, then
Sp(n) = 372, n;. One can show that if

fz) =" S(n)e" € Ellz]),

n=o

then f(z) = 2=t f(z)y 4 w5y Thatis, f is algebraic over F, (see
[18]).
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2. Some characterisations of algebraic series

The following theorem is a well-known result in the field of complex
numbers.

Theorem (Biberbakh). Let f = 3% a,2" € Cliz]], where a,
Just accepis the finite elements dy,dy,...,d.. Then f is rational or

non-algebraic.

G. Christol et.al.[4] have the following characterisation of algebraic

series in terms of p-automata.

Theorem 2.1. Suppose that F is a finite field of characteristic p.
Stppose that f = 327 an,z™ € Flz]]. Then the following are equivalent:

i) f is algebraic over F.

it) The sequence (a,) is generated by a p-automata.

When F is replaced by the ring of p-adic integers, Denef and Lipshitz
in {5] have extended Theorem 2.1 to the case of several variables.

We gave a characterisation of algebraic series in several variables over
perfect fields of positive characteristic in [15].

Recall that a field X is perfect if every irreducible polynomial over K
is separable. Equivalently, every algebraic extension field of X is separa-
ble over K. For example, every finite field or every field of characteristic
zero is perfect. If K is a field of characteristic p, then K is perfect if
and only if the Frobenuis map ¢ : K — K is an automorphism.

From now on, K will denote a perfect field of characteristic p> 0,
unless explicity stated otherwise.

Firstly, we shall recall the splitting process for functions over a per-
fect field and the associated semilinear operators on the field of frac-
tions of the ring of formal power series which we introduced in f18] and

secondly, we shall employ such operators for characterising algebraic
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functions (for the details of the proofs see [15] or [18]).

Theorem 2.2. Suppose that K is a field. If f € K((X)) is an alge-
braic function over L, where L is an extension of K, then f is algebraic
over K.

The above theorem asserts that when we deal with algebraic func-
tions over arbitrary fields of positive characteristic it is enough to con-
sider such functions over perfect fields of positive characteristic, since

every field L has a perfect extension, for example, the algebraic closure
of L.

Let ¢ be a non-negative vector, that is, ¢+ = (ny,ny, -+ ,n;), where
4 € Nyj=1,2,---, k. Then X* will denote the monomial z7'23? - - - 23*.
We denote by A the set of all non-negative vectors, and by A, the set
Z}, where Z, = {0,1,2,--- ,p~ 1},

Lemma 2.3 If f(X) € K[[X]] (respectively K({X))), then f can be

written uniguely as

F=2 X (2.1)

LEA,
for some f, € K{[X]] (respectively K((X))).
Fort € A, define E, : K{(X)) — K{(X)) by
E(H=f. (2.2)
Now for f € K{(X)), by Lemma 2.3 we have

f=2 X(ELY. (2.3)

tEAy

The operator E, is semilinear; that is,if f,g € K({X)} and X € K, then

E(Af+g)= A E(f) + E(g).
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Moreover, E,(g7 f) = gE.(f).
Definition 2.4 Suppose that f, ¢ € K[[X]), say
f:Zﬂ-gXt, g:-Zb-gXt-
tEA €A

The Hadamard product of f and g, which will be denoted by f+g,
is the series which is defined by

f*xg= Zth,X"

IEA

Lemma 2.5 If f,g ¢ K{[XT]}, then for ¢ € A,

E(fxg)= E(f) * Ey(g). _

Let 2 be the semigroup generated by the identity operator and the
E, for v € A,, with ordinary composition as multiplication. To each
f € K{(X)) we associate its orbit

Uf) = {E(f): E € ). (2.4)
Then we have the following:

Theorem 2.6. Let f ¢ K((X)). Then < Q(f) >, the K-linear
space spanned by Q( f), is the smallest K -subspace of K((X)) containing
f and which is invarignt ynder each E,, 1 € Ap.

Theorem 2.7. Let fe K ((X)). Then the following are equivalent:
i) f is algebraic over K.
is] There ezist elements QoyQ1y... ,ay in K[X] such that

o0 .
2 0f? =0,

i=0



The Algebra of Formal Power Series 185

where g, # 0.

iii) There ezists a finite dimensional K -subspace V of K({X)) such
that feV and B(V)CV, ¢t €Ay,

i) dimyx < Q(f) > s finite.

Example 2.8, Let f = 3 50 g7y . We shall show that f is tran-
scendental over Fy(x,y) and hence f will be transcendental with respect
to any field of characteristic zero too.

Using the idea of Lemma 2.3 we split f and find the series

fi = Eeolf)= 22",
n20
fr = E(o,e)(o,@(f)'—‘zm“yggnn’
n>0
e
n,,2¢n?
fo = Eooeeeall) =25

n>0

Each series f; corresponds to the set {(n,m):m = 2in?}. These sets are
all clearly distinct and hence the set {fi, f2, fa,- - 1isinfinite. Therefore,
f is transcendental over Fa(z,y) by Theorem 2.7.

Corollary 2.9. Suppose that f,g € K ((X]]. If f,g are algebraic

series over K, then f % g is again an algebraic series over K.

Theorem 2.10. Suppose that K is any field. If h € K((X)) is an
algebraic function over L, where L is an extension field of K, then h is
an elgebraic funclion over K.

We are now in a position to have the main theorem.

Theorem 2.11. If K is a field of characteristic p > C aend if f,g
are algebraic series over K, then f % g is again an algebraic series over

K.
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Deligne’s theorem [4] can be proved directly from the main theorem.

Theorem 2.12. Suppose that K is a field of characteristic p > 0.
Iffe K[[X]| and f = ¥, a, X7 is an algebraic series in X over K,
then I(f) = Y onn0@nat™ 15 an algebraic series in t over K.

In Theorem 2.7 we considered < £(f) >, the K-linear space spanned
by $(f). Now we consider < Q(f) > as a K(X )-linear space spanned
by Q(f). We shall show that fis algebraic if and only if this space is a
finite dimensional subspace of K((X)) too.

Theorem 2.13. Suppose that f € K((X)) and W is the KE{X)-
subspace of K((X)) spanned by Q(f). Then f is an algebraic Junction
if and only if dimgnW < oo.

Recall that for a field extension I C F, a transcendence base of
£ over L is a subset § of F which is algebraically independent over [
and is maximal (with respect to set-theoretic inclusion) in the set of ail
algebraically independent subsets of 7.

From now on, for simplicity of notations, we just concentrate on

series in one variable.

Theorem 2.14. Let f € K((z)). Then f is algebraic over K if and
only if K(z,0(f)) is a finitely generated field eztension of K (z).

3. Some methods for transcendency

R.P. Stanley observed in [21] (via analytic techniques) that if flz) =
t

Zn
Toren " z”, 1 > 1, then f is transcendental over C(z) for even

1, ¢ > 1. He also stated that it is unknown forodd £ > 1 whether or not
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it is transcendental.

In this section apart from the method which was introduced in sec-
tion 2, we introduce ancther method for deciding whether or not a given
formal power series with integer coefficients is transcendental.

Qur method (in characteristic zero) is based on the reduction process
and looking at the degree of the corresponding explicit equation obtained
when the reduction modulo the prime p of the formal power series is
algebraic. If the degree of the corresponding polynomial equation is an
unbounded function of the prime p, then there is no single polynomial
for all primes p and therefore, the formal power series is transcendental.

We introduced our method by dealing with the above particular
problem, which was raised by Stanley {21] and we could answer it in
[23].

First we showed that (the reduction of) f is algebraic over any field of
positive characteristic p and we then deduced (from the explicit equation
obtained) that f is tramscendental over any field of characteristic zero
for any integer ¢ > 1.

We also gave a generalisation of this result in the case of multinomial
coefficients.

Note that if ¢ = 1, then f is algebraic of degree at most 2 over any
field. In that case, f = (1 —4z)~/? and for t > 1, f = 1 over any field
of characteristic 2. Hence we may suppose that, in the case of positive
characteristic p,p > 2.

"Throughout this section f will denote the series

o2 2n t
w5 () -

fortc N and t > 1.

First we shall see that if a series h with integer coefficients is algebraic
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over a field of characteristic zero, then the reduction of & is algebraic
over F.

Proposition 3.1 Suppose that K is any field of characteristic zero
and

ha)= S het € 2[l]

t=0

is algebraic over K of degree N. Then for any prime p,

Me) = 3o et € B[]

fu()

is algebraic over F, of degree at most N, where & is the image of a in
F,.
Note. Proposition 3.1 can be extended to the case of several vari-

ables.

H
Z2n
Remark 3.2. Note that f(z) = 2 ( } w™ = haxhx- - xh (1
n

2n
times), where A{z) = 7.2 z", which is algebraic (with respect
T

n=0
to any field) and * denotes the Hadamard product operation.

Now, since over any field of positive characteristic the Hadamard
product of two algebraic formal power series is again an algebraic formal
power series (see [15, Collorary 5.5]) it follows that (the reduction of) f is
algebraic over any field of positive characteristic. However, we shall now
prove this directly by using Lucas’ Theorem to find the corresponding
explicit equation for (the reduction of) f, since we need this equation
later.
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Theorem 3.3. (Lucas’ Theorem) Form,n ¢ N,p a prime,

(1) +(2)+(2) wen
(i) =(7)(5) @

fori,j€ N with0<1,7<p~1.
Proof. See, for example, Dickson [6, p. 271}. ///

and

Proposition 3.4. If p is any odd prime, then f is algebraic over
Z,,
4

2n
Theorem 3.5. Lett € Nyt > 1. If f(z) = 3, " €
n

Z[[X]}, then f is transcendental over any field of characteristic zero.

t
km
Theorem 3.6. If g(z) = 3°%°_, z™ where t,k €
m’ m, o4 o s m
N witht > 1,k > 3, then g is transcedental over any field of character-

isiic zero.

4. Rational power series

The following result, which is well known, is due to E. Borel.

Theorem 4.1. Let K be a field of characteristic zero. let f(z) =
2on206n8",9(z) = T .5obaz € K[[z]]. I f,g are rational, then f «
9(z) = a5 @nz™ is again rational.

When the field X has positive characteristic the result is still true.

Lemma 4.2. Suppose that K is a field of characteristic p > 0 which
i also algebraically closed. If f and g belong to K (), then fxg € K(z).
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Proof. see [16. Lemma 3.2}.///

Lemma 4.3. Suppose that K is o field and L is an extension field
of K. Suppose that f € K[[z]]. If f € L(z), then f € K(z).
Proof. See [16, Lemma 3.3].///

Theorem 4.4. Suppose that K is a field of characteristic p > 0. If
fand g € K(z), then f x g € K(2).

Proof. Suppose that L is an extension field of K which is alge-
braically closed. Then f and g belong to L(z). Therefore by Lemma
4.2, fxg € L(z) and so by Lemma 4.3, f 5 g € K(z).

Theorems 4.1 and 4.4 do not hold in the case of several variables.
For example if

f= Z (n‘{—m)xnym:m}.mm’

n,m>0 s 1-—.’6-—y

which is rational, then (except in characteristic two)

2 .
frf= 3 < e } 2 y™ = {(1 - ¢ - y)* - 4ay} /2,
n,m>0 R
which is not rational.

A question which arises here is

Suppose tht K is a field and f,g € K{[z,,23,---, z:]]. Suppose that
f,g are rational series. Is the Hadamard product f # g an algebraic
series?

The answer is positive when the fleld K has positive characteristic
[see {24, Corollary 5.5]}. If k > 2 and K has characteristic zero, then the

following example shows that the answer is negative.

Example 4.5. If

N+ Ry n 1
f= Z ( 1 2 3 ) xvfxxgzxgs —

a3 g, Ry, Nz -2y~ 23— 23




The Algebra of Formal Power Series 181

and
1

1 - .Tlxgﬂ’,‘a’

9= (21,23,33)" =

nz>0

which are rational series, then

n>l

dn
f*g= Z t®, where t = z,1973,
n,n,n

which is transcendental over a field of characteristic zero (see, for exam-
ple, [23]). Note that, by 23], the same series is algebraic over a field of
characteristic p > 0, but of degree equal to an unbounded function of p.

The only case which is left and still seems to be unknown is the case
k = 2 and when K has characteristic zero. In [24] we considered this

case and proved the following theorem.

Theorem 4.6. The Hadamard product of two rational series of two

variables over a field of characterisiic zero is an algebraic series.

Remark 4.7. We cannot weaken the conditions of Theorem 4.6 to

allow one of the series to be algebraic. For example if
. 2
n+m
R(z,y)= ) ( ) 2y" = {(1 -2 - y)* — dwy}1/?,
n,m>0 L
which is algebraic and

1
1—zy’

S(z,y) =) (=) =

n>0

which is rational, then

n20

2
2n
R*S::Z( ) t", wheret = zy,
i3

which is transcendental. (See [23].)
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Example 6.3. Suppose that f = 37,2, and g = ¥, 2e",
which are D-algebraic. Then f#g = En-zo ﬁ;ﬂ:“’, which is.not D-
algebraic. (See Lipshitz-Rubel [12, Proposition 7.3, p. 1209].)

A sub-algebra of D, which is closed under the Hadamard product
operation is the algebra of differentiably finite power series. A differen-
tiably finite (D-finite, for short) power series is a series which satisfies a
linear differential equation. The class of D-finite power series has been
subject to extensive investigation, particularly whithin the theory of dif-
ferential equations. A systematic exposition of their properties from a
combinatorial point of view have been given by Stanley [21].

Theorem 6.4. Suppose that f,g are D-finite power series. Then
f * g is again ¢ D-finite power series.

Proof. See Stanley [21].

Recently, Stanley’s notion of D-finiteness has been of interest to sev-
eral authors such as Gessel, Zeilberger, Lipshitz etc. Theorem 6.4 and
many other results concerning D-finiteness have been generalised by Lip-
shitz [11] to the case of several variables.

Note that in Exampe 6.3, g is D-finite. Hence the Hadamard product
of a D-algebraic and a D-finite power series is not D-algebraic. However,
we have been able to prove that the Hadamard product of a rational
formal power series and a D-algebraic formal power series is D-algebraic.
First we need the following Lemma.

Lemma 6.5. Suppose that E C F is an algebraic extension of fields.
Suppose that f € E{[z]}. Iftr.deg.pF(z, f, f ..., f™,..) < 00, then

tr.deg.g B(z, f, f o f™, .} < oo.

Theorem 6.6. Suppose that f,g € L{{z]]. If f is rational and g is
D-algebraic, then [ * ¢ is D-algebraic, '
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7. E-algebraic functions

Differentially algebraic functions are usually defined only over fields of
characteristic zerc and are not so significant over fields of characteristic
p > 0, as fi» = 0. In this section we shall define an analogue of the
concept of a D-algebraic function over a perfect field of characteristic
p> 0.

From now on K will denote a perfect field of characteristic p > 0,
unless explicitly stated otherwise. Moreover, all we discuss about can

be generalised to the case of several variables.

Definition. 7.1 Suppose that f € K{(z)). We say that [ is an
E-algebraic function (over K(z)) if tr.deg. g K (2, Q{f)) < o0,

Notation.We shall denote by I'g, the set of all E-algebraic functions.

Example 7.2. Let K = F; and o be a 2-adic integer. Let f, =
(14 z)* € Fyffz]]. If o is rational, then f, is algebraic ([20]) and hence
tr.deg.p,o)Fa{z, §2(fs)) = 0. However, if & is not rational, then f, is not
algebraic over ¥,. However, we show that f, € 'y and hence the set
T strictly contains the set of all algebraic functions.

Let o = 3770 ;2' be the 2-adic expansion of @. Then
2

fo= (Lh2) = (Lt o) [(1+2)"F)

Hence E(fo) = (1 + 2)*5™ and Ey(f,) = 2, E,(f.). Therefore,

? = AL ..,......,.:i‘f_........
Eo(ftx) - (1 + .7!:) - (1 + ;1;)010 € Fﬁ(xsfor)"
Similarly, £,{f,)? € Fa(z, fo). One can show that

[El'zl'zu-ir(fa)]z' = (l + x)ao-i'-:::i“'é‘ﬂ'“‘aw: € Fz(ﬁl‘,fq),
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where ¢ € F, and By = EoFE;. Therefore,

tr.deg.pyo oz, QU fa)) = 1,

since f, is not algebraic. Thus f, € I'g.

Note that if f € K((z)) is algebraic, then
tr.deg. k) Kz, Q(f)) = 0.

So as in the case of characteristic zero, every algebraic function is E-
algebraic.

Now we have that I'y is a field.

Theorem 7.3. Tk with ordinary addition and multiplication of

series 15 a fleld.

Let K(z) be the algebraic closure of K (z) in K((z)). In Example 7.2
we showed that K(z) C Tx. Now we show that I'x ¢ K{(z)). That is,

we construct a power series f = 5%  a,z" € K{[z]] such that f ¢ Tg.

Example 74. Let K = F, and # be a 2-adic integer which is
transcendental over ¢J. Then 1,8,6?, .- are linearly independent over
Q. Let fo = (14 2)° € Fllz]l. Then one can show that fp, fys,- -
are algebraically independent over Fy(z) (see, for example, [17]). Let
g = for = (1 +2)%", for k = 0,1,2,... and define f as follows.
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Eﬂ(f) = g0
Ean(f)=a

Eoulf)=g2 ¢ | AN

Ep1.. 1D =g
N, st

k limea

f we specify a,, then, since Fy(g,,¢1,...) has infinite transcendence
degree over Fy(z) and since Fy(g,,¢:,...) C Fo{z,0(f)), we conclude
that f ¢ I'k.

In order to specify g,, we write the binary expansion of n, n =

i fm 1
Ej:l anJ » Say
N = Ry MpNp 1 Mpgn. Il = 11...10?%&4,2.“71;

(where n; = 1) and if we use the definition of the E; operator, then we

can get
k

n = B o )(0) = ( i ) (mod 2

where E;; = E;oF; and m = 5% _, .. n;27-%~2 a5 required. Therefore,
j § j=k42

Kz} CTx C K{{z)).

As we see from the above example tr.deg.p K ({z)) = 60,
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Barcanescu and Brezuleanu in [2] proved the following proposition.

Proposition 7.5. Suppose that K is a field of characteristic p > 0.
Suppose that K C M is a separable field extension. Letu e M \K.Then
the extension K(u) C M is a separable extension if and only if u ¢
MrK.

We use the above result and have that K(z} C I'y is a separable
extension.

Proposition 7.6. i) I'x is closed under the E and D (derivative)
operators,

i) K(z) C 'k is a separable extension.

i) tr.deg.x (. )I'x = co.

w) T is elgebraically closed in K ({2)).

Proof. Seef20].

Theorem 7.7. 'y is not closed under the Hadamard product oper-
ation,
Proof. See [20].
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1. Introduction

A topological space M is locally Euclidean if, for every z € M there
exist an integer n > 0, an open set U C M of n , an open subset
U' C IR™ and a homeomorphism  : U — I/,

The integer n is uniquely determined by z and is called local dimen-
sion of M at z.

If M is Hausdorfl and second countable, then by Brouwer theorem
on invariance of domain (if U C IR" and ¥V C IR" are open subsets such
that U is homeomorphic to V, then m = n) then the local dimension is

n at every point z € M, and is called the dimension of M.

Definition 1.1 A topological space M is a topological manifold of di-
mension n if

1. M is locally Euclidean of local dimension n.
2. M is Hausdorff.
3. M is second countable.

The locally Euclidean property allows us to choose local coordinates in
any small region of M.

Definition 1.2 A coordinate chart on M is a pair (U, p) where U C M
is an open subset and ¢ : U — IR" is a homeomorphism onto an
open subset of H"*. Let @(p) = (z'(p),--- ,z°(p)) then the n-tuple
(#°(p)) is taken as the coordinate of p € M and z',s as coordinate
functions. Relative to such a coordinatization, we can do calculus in the
region U of M. The problem is that the point p will generally belong to
infinitely many different coordinate charts and calculus in one of these

coordinatizations about p might not agree with calculus in another. We
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need the coordinate systems to be smoothly compatible in the following

sense.

Definition 1.3 Two coordinate charts (U, @) and {V, @) on M are said
to be ¢®-related if either TNV =P or wou ™t : p(UNV) — (UNV)
is a diffeomorphism, between open sets of IR". o™ is called smooth
changes of coordinates on UNV.

A ¢ atlas on M is a collection A = {(Us, @a)}aer of coordinate
charts such that
(1) (gUa, Pa) is c®-related to (Us,9s) Va,f € L.
(2) M = Uses U
Two ¢ atlases A and A’ are equivalent if AU A’ is also a ¢™ atlas on
M. Equivalence of ¢® atlases is an equivalent relation. Each ¢ atlas

on M is equivalent to a unique maximal ¢® atlas on M.

Definition 1.4 A maximal ¢ atlas A on M is called smooth structure
or differentiable structure or ¢ structure on M. The pair (M, A) is
called a smooth or differentiable or ¢® manifold of dimension n or simply
n-manifold.

By substituting ¢* for ¢ we obtain ¢* manifold 1 < & < co. The
same is for real analytic or ¢ manifold. In all these cases IR" is called
the model space. We can take £ as model space (complex manifold) or
a Hilbert or Banach spaces, where the manifold will be infinite dimen-

sional,

Definition 1.5 A function f : M — R is said to be smooth if for each
z € M, there is a chart (U, p) € A such that z € U and

fop~t:p(U) — IR™ is smooth. The set of all smooth, real valued
functions on M will be denoted by D(M).

Lemma 1.8 The function f: M — IR" is smooth iff

Ll
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fows? 1 v, (U,) — IR™ is smooth for every (U, U,) € A.

Definition 1.7 Let M and N be ¢® manifold with respective smooth
structures A and B. A mapping f: M — N is said to be smooth if,
for each z € U,, f(U,) C Vs and

¢ﬁ9f9@;1 : (‘Pa(Ucr)) — Pa(Vp)
is smooth.

Lemma 1.8 the map f : M — N is smooth if and only if, for all
choices of (U, %,) € A and (U,,%,) € B such that f(Us} € V3, then
the map

Ppofop;t: (0a(Ua)) ¥ (Vs)

is smooth. [1;70]

Definition 1.9 Let M be a differentiable manifold and p € M , for a
chart or local coordinate neighborhood (U, @) of p, let

a{~¢£,6) C IR~ U C M be a differentiable curve such that a(l) = p.
Let C(U,p) be the set of all differentiable curves on M passing through
pelU. Ifa,f € C(U,p), then @ and § are said to be infinitesimally
equivalent at p or o % 4, if and only if

d d
7 @®ODi=o = = (F(B(£)))e=o

It is easy to check that & is an equivalence relation. An equivalence
class of € C(U,p) is denoted by [a],, and is called a tangent vector to
U (or M) at p, and the set

LU = {lalp;a € C(U,p)}

is called the tangent space at p.
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Lemma 1.10 For each [a], € T,U the operator
Dia], : () — IR
1s well defined, by choosing any representative o € [a], and setting
Dlal(f) = (f@lt)es  VF € D),

conversely [a], is uniquely determined by the operator D[al,, {1;28].
By the definition of infinitesimal curves there is a natural one to

one correspondence between 7,0 (or T,M) and IR” introducing tangent

vectors as a linear approximation of nonlinear curves. The key lemma

for this, follows:

Lemma 1.11 Let [o],, [8], € T,U and a,b € IR then there is a unique

infinitesimal curve [y], such that the associated derivatives on DU satisfy
D}y = aDla], +bD[f],
Proof: Let v : (~£,6) — U be a curve on M defined by
(1) = 6a(t) = b(2) — (o + b~ 1)p
Since a(0) = B(0) = p then 7(0) = p. Also
D) = $(F(v(0)))i=o

= §flaa(t) + b5(t) ~ (a + b~ 1)ph=o

= a4 (F(alt)))emo + bE(F(BE))emo

= Dla],(f) + D{B,(f)

Pl = eDlal, +bDiAl,
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Therefore the operator Df{a}, makes T,U or T, M into an n-dimensional
vector space over IK. The zero vector is the infinitesimal curve repre-
sented by the constant curve o : (g,€) — U by a(2) = p. Iif [a], € T,U.
then —[a], = [~ol, where {—a)(t} = a—t), defined for all sufficiently
small value of 1.

The operator D{a}, depends only the behavior of f in an arbitrary
small neighborhood of p, that is D[a],(f) depends only on the ¥ germ ”
of the ¢ at p.

Definition 1.12 We say that f,g € D(u) are germinally equivalent at
p and write f X g. if there is an open neighborhood W of p in U/ such
that f/W = ¢g/W. Germinally equivalent is an equivalence relation on
D(u), and equivalence class [f], of f € D(u) is called the germ of f at
p. The set D{u}/H of germs at p is denoted by G,.

Definition 1.13 For each e € (U, p} the operator Do, : Gp' — IR
is defined by D{afp([fl,) = £(f(e,1))e=0.

Definition 1.14 G, together with the operations
1. o[fl;=lefl, a€R, [f1, € G, (scalar multiplication)

2. {fh+1gl = [% + %}p [f]?a [g]p € G,,(a.ddition); W is open
neighborhood of p in dom(f) N dom(g).

3. [fligh =[(LXL),  {fl [gly € Gp(multiplication)

Definition 1.15 The evaluation map ¢, : G, — IR is defined by
ep([f]p) = f(p).

A derivative operator (derivative) on G, is an IR-linear map
D : G, — IR such that

D([fllg]) = Difles(lg]) + <o ([p]) Dlg]
= g(p)D[f] + f(p)Dlg].
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A derivative on (4, is also called a tangent vector to U at P. The set
of all derivatives on G, is denoted by T,{U) or T,(M) and is called the
tangent space to M at p.

Lemma 1.16 The tangent space T, or T, M is a vector space over IR

under the operations:
L. (aD)[f] = a(DIf]) ace RD e T, M,[fle G,

2. (Dy+ Do)lf] = Dilf]1+ Do f] D, D e T,M,[fl€G,

The two definitions of TpU give canonically isomorphic spaces [1;30]
For example define (D;),G, ~ IR by

(Dl = (25)(o)

It is proved that the set of tangent vectors (D;), = (£%)(p) is a basis of
the vector space T,U or T, M [1;32}.
that is if V' is a tangent vector in T, U, then

V= i:ﬂi(pi)p = i”i(aif e

or simply by using the summation convention V' = v*(3%),. Let

TU = Uyep Tp(U) be the disjoint union, then there is a one to one cor-

respondence T «— U x IR given by

v"('é%;r)p e (gt vh 0t ()
We use () to transfer the topology of U x IR to T'U.
Definition 1.17 Let f : ¥ — N be a smooth map between differ-
entiable manifolds M and n, where dimM = m,dimN = n. For any
p€ U CMand f(p) €V C N we define (df), = (), : T,U — Ty,)V
by

(df)plal, = [foalsp) ¥lal, € T,U.
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This is called the differential of f at p.

Lemma 1.18 The differential (df), is well defined linear map. Relative
to the basis (5), of 7, U/ and (357)1(e) of Ty(s)V the matrix of (df), is the
Jacobian matrix of f at p. Thatis Jf = (g—ﬁé)? 1<1€n 1<jij<m

The differential (f,), computed at all p € U, assemble to a mapping
fo=df :TU — TV
given by
fa‘ B, : = f(p)'.“]f
pm Ll

Here we have identified TU with U x IR™ and TV with ¥V x IR" [1;35]

2. Tangent and cotangent bundles

Let M be a ¢, m-manifold with structure {(Us, @o)}acs. Consider the
set TM = {J,er T, M as disjoint union, for each U, a € I, define

T(U) = U (WUycT™M

PeUn

. Then the individual linear map (deey)p p € U, unite to define a set
map, considering ()

dpa : T(Us) — T(9a(Us)) = @alUa) x R® C IR
More precisely, if V, denotes a tangent vector to M at p € U,,.

(dea)(V) = (0a)(9), (da)pV,
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and this defines a bijection of T'U, onto an open subset of IR, If
U, nUg 5 ¢ consider

dpedipz’ : T(pp(Ua 1 Up)) — T(ipa(Ua N Up))

is a ¢ diffeomorphism between open sets of IR?®. We Topologies the
set TAM such that if

wC d(Pa(T(Ua)) = T(‘PG(UQ)) C R
is an open set, then dy;1(w) is to be an open subset of TM.

Lemma 2.1 The above sets from the base of a topology on TM and, in
this topology, TM is a topological manifold of dimension 2m. Further-
more, the system {T(U,), dp,lpha}er is a c™ atlas on TM, determining
a maximal atlas A.

(TM,A)is called the tangent bundle of M. Themap ¢ : TM — M
determined by n(p,v)=p p€ M,v€ T, M is smooth. TM is locally a
Cartesian product of U, C M and IR™ and n~1(p) = T, M is the tangent
space of M at p.

Definition 2.2 A vector field on M is a smooth map

X M-—M ; Pr X, suchthat moX = idy,, the set of all vector
fields on M is denoted by DY(M). If (U, z},2% ... ,2") is 2 coordinate
chart on M, then X = X*.& where X*: U — IR are smooth function,
on Mfor1<i<m.

In general Let (U,z!,2%,...,2") be a coordinate chart on M, de-
note by (X*) the system of Cartesian coordinates on each tangent space
T,(M). Then in any open subset 7=}{U/) of T M we introduce local co-
ordinates (z', X') 1 €4 € n, which are called induced coordinate on
7~1(u). We denote

ad = g
bi=gn amd O=gm
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3. Covectors and 1-forms

Definition 3.1 Let M be a differentiable manifold p € M. The dual
space ToM = Hom(T,M,IR) is called the cotangent space of M at p.
Each element w ¢ T; M is called a cotangent vector to M at p.

A typical cotangent vector is the differential map. Let U C M be
open, p € U, and let f € ¢=(U). Since T(IR) = IR, we obtain a linear
functional (df), : T,M — T(R) = R, so (df), € T; M. Tt is evident
that (df,) depends only on the germ | flp € G,, 50 we obtain a surjective
IR-linear map d: G, — M

For each X, € T, M; (df)p Xp = X,(f).

Definition 3.2 If ¢ : M — N is a smooth map between manifolds, if
p€M,and if we Ty M, then pi(w) € T;{M}) is defined by

‘P;(W)XP = w(pap(Xp))-
The linear map ¥y is called the adjoint of ¢,,.

Lemma 3.3 Relative to local coordinates zl,...,2" about p € M, The
differentials dz!,... ,dz" at p from a basis of T:M and

i B 3$£
(42 (550 = 55 (p) = &
hence dimT} M = m {1;160]
Let ¢ : M ~— N be smooth map between smooth manifolds. If

1

AN A

are coordinates about p € M and ¢!,... 3" coordinates
about ¢(p) € N, we have basis (%), 1 < ¢ < m for T,M and
(505 Jutpy Tor Ty and the dual basis (dz'), for Ty M and (dyl ), for

TQN . The relations are as follows.

a LA | , .
(é‘gf’)@(p} = (fgy?)p(“a““é?)p I£ism 1<j<n
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; By ; . .
(@) = (Gohplda)y 1<i<m 1<j<n
Now let A = {{Us, Pa)}acs be a maximal smooth atlas on M. As a set
let

M=) TTM
reM

. We topologies each T*(U,) via the bijection
Po 1 THUs) — Uy x R®

defined by

W

Ya(widz')p) = (| ¢ |)

Wen
repeating the case for tangent bundle, T* M becomes a 2m dimensional
smooth manifold, and for any w € T, M we have w = w;dz? for every
tangent vector X, = (X(3%), € T,M and 1-form w = w;(dz’), € T; M
we have
() = (il )X (o)) = X (0 ()
PANLY A : r Bzi p; T Bxi P
r:ngj(?,-j -"—?.U,'X‘. 1$%,j£n

Lie bracket is defined as
[, ]:DYM)x DY{M) — DY{(M)

[, (X, Y)=XY-YX

and {DY(M),[ , 1) is called the Lie algebra of vectorfields on M, or
simply Lie algebra of M. In general let (U;2,...,2") be a coordinate
chart on M, then every 1-form w at p € U is writtenas w = &dzxt. Then

(£} are the system of Cartesian coordinate in any open subset, 77 /U
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on T M, we can introduce local coordinate (2, &) 1< i< n, which

are called induced coordinates. We denote

4. Lie groups and Lie algebra

A Lie group G is a smooth manifold without boundary which is also a
group such that the group operation e:GxG— @G, w(z,y) = zy
and the inversion ¥ : G — G; ¥(z) = ! are boat smooth.

For example every finite dimensional vector space over IR or {isa
Lie group under vector addition.

(M(n, C)4),(Gl(n, £), x)(M(n, R), +),
(Gl(n, R), x).U(n),0(n), SI{n, R), ... ,$7, 83, §*

are all Lie groups.

Definition 4.1 Let G be a Lie group, g € G. Let translation by g
is a smooth map L, : G — G defined by Li(z) = az Yz € G. A
vectorfield X' € DY(G) is left invariant if, for each g9€G (d)X =X.
The set of all left invariant vectorfields on G is denoted by L(G).

Proposition 4.2 The subset L(G) C DY(G) is the Lie algebra of the Lie
group G and the evaluation map E : L{(G) — T.G by E(X)= X, is an
isomorphism of vector spaces (e is the unit of G). Hence, dimL{G) =
dim(.[1,130]

Let A be mxm matrixand () = expA ¢ € R such that a(0) = I.
Then ot + 5} = aft)al{s) t,s € R and a~(t) = exp(~tA) that is
a(t) is a 1-parameter subgroup of Gl(n, &) of G is a Lie group then the
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exponential map exp : L(G) = 7,G — G is defined by exp(X) = ax(1)
where ax(t) = exptX.

3. Homogeneous space

Definition 5.1 Let M be a smooth manifold and ¢ a Lie group, A
smooth map ¢ : G x M — M written @(g,z) = gz, is said to be an
action of G on M, and G is called a Lie transformation group on M if

L (g2, 6(01,2) = ¢(g192. %) or g:(g2%) = (g192)z
Vo, 90€ GandVe e M

2. ple,z)=zecGVz e M

Definition 5.2 An orbit of the action G x M — M is a set of points
of the form {gz;; ¢ € G} where 2, € M. The action is transitive if M
itself is an orbit , in which case M is said to be homogeneous space of
G

The orbits of a group action are equivalence classes, two points z,y €

M being equivalent under the action if 39 € G such that gz = y.

Definition 5.2 Let M be a homogeneous space of G and let z, € M.
The isotropy of z, is the set

Goo = {9 € G gm0 = 2}

which is a property Lie subgroup of G.

Proposition 5.4 There is a smooth structure on quotient space where
GG,y and M = G/G,,, is a homogeneous space where G x M —s M
is given by g(hG.,) = (gh)G., [1,144]
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Corollary 5.5 If G is a Lie group and # € G is a closed normal
subgroup, then the group G/H has a smooth structure in which it is a
Lie group.[1,148]

For example 577! = o(n)/o(n - 1) and §2"~! = U(n}/U(n - 1).

Definition 5.6 Let ¢ : IR X n — M be a smooth map such that
¢(0,p) = p and ©(s,¢{t,p)) = (s +1,p), That is the additive group IR
is a transformation group on M. For each t € IR we define oM — M
such that :(p) = @(f,p) then it is easy to show that w, = Id and
Eopr = P00 als0 @7 = @,

{@i; € € IR} is a group. Called 1-parameter group of transformations
on M.

6. Connections

Let U C IR be open. Given X,Y € DY(U), define Dx(Y) € D} M) as
follows.

Write X = X2 Y = Y72 and define

X

07 ﬁ
Jzt gzt

Dx(Y)= X(Yf)é%—. =X
We can view D as an IR-bilinear map
D: DY (U)yx DY (U} — DY{U)
It has the following properties:
L D;x(Y)=fDx(Y). VfeDUW X,Y e D\ (U)
2. Dx(fY)=X(f)Y + fDx(Y)

Dx(Y) is called derivative of the vectorfield Y in X direction. The
operation D is called Euclidean connection.
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Definition 6.1 Let M be a smooth manifold. An Affine connection or
M 1s an JR-bilinear map

V : DY(M) x D(M) ~—> D'(M)

written as V(X,Y) = Vx(Y) with the following properties, for each
X € DY{M);Vx: D}{(M) — D'(M) is a linear mapping , that is

1. VjX—i—gY(Z) = f(VxZ)+g(VyZ) f,g € Cm(M),Y,Z < Dl(M)
2. Vx(fY) = X(f)Y + f(VxY)

The operator Vy is called covariant differentiation with respect to X.

If ¥V is an offine connection on M and {U/,z!,...,z") is a coordinate
chart, set X = ;2% then

&, L, 0
Var(ger) = Tilgar)
The smooth functions I'}; are called the Christoffel symbols.{3,27]

Definition 6.2 Let M be a manifold with an offine connection V. Let
X € DY(M) and & ; (—¢,€) — M be a differentiable curveon M. X is
called parallel along o if va(})X =0

Definition 6.3 Every manifold M has a connection {1,301}
Let V be a vector space over IE. A bilinear form on V is defined to

be a map ¢ : V x V — IR which is linear in each variable.

Definition 8.4 Suppose V is an offine connectionon M and ¢ : M — M

be smooth and
dp(VxY) = Vax(doY) VXY € DY(M)

Then ¢ is called offine transformation of (M, V).
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Definition 8.5 Let (M, V) be an offine manifolds, The curve
o {—¢,€) — aft) is called a geodesic if the family of tangent vector
oft) are parallel along . That is V“?; = (.

In a coordinate neighborhood (U, z1, . .. 2) 5 a(t) = (2(t))is geodesic
if it satisfies the system of differential equation

2,k i g
dd; + rg%% =0 [3,30]

¢ is called symmetric if oz, y) = @(y, z). a symmetric form is called
positive definite if (z,y) > 0 and (z,2) = 0 <= 2 = 0 @ is also
called an inner product on V or ¢ is a tensor of type (0,2).

Definition 6.8 A tensorfield g of smooth bilinear forms on a smooth
manifold M which assigns toeach p € M a symmetric, positive definite,
bilinear form g, of type (8,2) at T, M, that is

G T, MxT,M — R {inner product)

is called a Riemannian metric on M and (M, g) is a Riemannian manj-
fold. If g, fails to be positive definite then ¢ is called pseudo-Riemannian
and (M, g} is pseudo-Riemannian. {2,155

For any coordinate neighborhood (U, z1,. .. &™),

g 8
(33‘ " Bz Ga7) = 9

are called the components of g, that is ¢ = (gi;)

Yor M = IR”

8::= ! azJ) - 6‘1

Definition 6.7 A connection V on the Riemannian manifold (M,g)is
a Riemannian connection if for all X, Y, Z € D}(M).

Xg(X,Y) = Q(V}(Y, Z) “} g(Y, VxZ).

I{ V is symmetric then it is called Livi-Civita connection on (M, g).
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Proposition 6.8 A Riemannian manifold M has a unique Livi-Civita
connection [1,305]

In any local coordinate chart, the matrix (g;;) of metric coefficients
is nonsingular, so we can define (g*') = (g;)~'. The coefficient g* are

rational functions of the metric coefficients g;; and satisfy gy 0" = 8/,

Definition 8.9 Let (M, g) and (N,¢") be two smooth Riemannian or
(pseudo-Riemannian) manifolds and ¢ : M — N be smooth. ¢ is called
a local isometry if for each p € M, there exist open neighborhoods U of
p and V of ¢(p) such that ¢}(h) = g. In other words ¢ is an tangent
space at p and ©(p). That is g,(X,,Y,) = hypy(deX, deY)

Definition 6.10 A vector X on (M, g) is called an isometry or killing
vectorfield if local 1-parameter group of local transformations generated
by X in a neighborhood of each p € M, consists of local isometrics . In
the same manner, a vectorfield X on (M, V) is called an infinitesimal
offine transformation of M, if for each p € M a local 1-parameter group
of local transformation ¢, of a neighborhood U of p into M, preserves
the connection V, more precisely if ¢, : U — M is an offine mapping,

where U is provided with offine connection.

An infinitesimal isometry is necessarily an infinitesimal offine trans-

formation.

The Riemannian manifolds (M, g) is geodesically complete if exp,(X,)
is defined for all p € M and for all X, € T,(M). Equivalently, every

local geodesic extends {uniquely) to a geodesic a(t) for —c0 <t < co.

Proposition 6.11 (Hopt-Rinow) if M is geodesically complete then
exp, : TpM — M is surjective.fl ,318].
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7. Riemannian homogeneous space

Let (M, g) be a connected Riemannian manifold. The group of all isome-
tries ¢ : M — M, will be denoted by I{M). The action of J{M)on M

preserves all intrinsic properties.

proposition 7.1 {Myers, Steenrod). If (M,g) is a Riemannian man-
ifold, the group J(M), with compact -open topology, is isomorphic,
as a topological group, to a Lie group such that the natural action
I(M)x M — M denoted by {p,z) — @(z) is smooth and M =
I(M)/k, where k is a closed subgroup, hence M is homogeneous mani-
fold.[1,348]

Proposition 7.2 If M is a homogeneous manifold, then it is a complete

Riemannian manifold.

Definition 7.3 A Riemannian symmetric space is a Riemannian mani-
fold (M, g) with the property that, for each p € M, is ¢, € I{M) such
that ¢,(p) = p and dp, = — I, where [ is the identity transformation on
T.(M).

Remark that, ¢, reserves every geodesic s(t) through z. That is , if
5(0) = z, then @, (s(f)) = s(~1).

Proposition 7.4 If (M,g) is a symmetric space, then M is complete.
If (M, g) is connected symmetric space, then M is s homogeneous Rie-

mannian manifold.

8. Lifts

Let M be a manifold of dimension n. For any Iocal coordinates
(U,z%,...,2") on M, we have X = X' 2 w = w;dz’, and local coordi-
nates (7~} (U),z, X*)1 < i < nfor TM, ay Y{U); 2%, w;) for T*M. Also
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8 = 52:,0: = 5% basis for tangent spaces of TM and §; = 20,0 = g2
basis for cotangent spaces of T M.

Let w € D;(M) be i-form on M, we may regard w as a function on
TM and denoted by rw.

For a function ¢ € ¢®{M) we denote pe = 7(dy) € TM and called
complete lift of ¢ to TM. For any vectorfield X on M we define the
complete lift X € DYTM) by Xe¢° = (X))  Vy € c®(M).

For any l1-form w € Di(M) we define I-form w® € Dy(TM) by
wi(X®) = (w(X)) VX € DY(M), and w° is called the complete lift
ofwtoTM.

For X = Xi0; € DN M), X* = X'5% = £8; is called the vertical
lift of X to TM. Also X* = X'9; — X*XiT¥ 0, is called the horizontal
lift of X on TM.

For a metric tensorfield g = (g;;) on M we define

X"Bkg;j Gi;
7 0

as the complete lift of g to TM. In local coordinates if ¢ = g;;dzda’
then g° = I'g;;6¢dx?, where 8¢ = dr’ + [ dad.

For a vectorfield X € DY(M), the vertical lift X¥ on T°M is a
function on T* M defined by X¥( )= w(X,).

For lift to T*M we have vertical lift a 1-form w to be a vertical
vectorfield w” given by

w(X*) = (X)) X e D'(M)
For a function X¥ € ¢®(T*M), dz* is a 1-form given by
da¥ = (wiani)dxj + Xid’EU§

For a vectorfield X € D'(M) we define a vectorfield X< € DT M) by
Xe = (dzv)
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in, where € is a tensorfield of type (2,0) on T* M with components

)

where, [ is the Kronrcker tensorfield.
For a vectorfield X € D'(M) the horizontal lift is defined by hX (Y¥) =
(VxY)y.

In coordinates:

XY = wX? X = Xig,
w’ = wgé%‘_- = O w = w;dz’

Xe = X'@; - w,;(B,-X‘)Bf X = X':ag
hX = X':(?; + w;XjFijak X = X’B,-

Proposition 8.1 Let g be a pseudo-Riemannian metric on M. Then
g° is a pseudo-Riemannian metric on TM. (Yauo, Kobayashi).

Proposition 8.2 If X is a killing vectorfield of psendo-Riemannian
manifold (M,g), then X* and X° are killing vectorfields of pseudo-
Riemannian manifold (T M, ¢°).

Let ¥V be a offine connection on M, there exists a unique offine
connection V¢ on T'M, defined by

Vsy = (VxY). VX,Y € D\(M).

If ¥V is a Riemannian connection on M, with respect to the pseudo-
Riemannian metric g, then V¢ is the Riemannian connection of T'M with
respect to the pseudo-Riemannian metric g°. Alsoif X is an infinitesimal
offine transformation of M, then both X* and X¢ are infinitesimal offine
transformation of T'M with respect to V°.[3]

Proposition 8.3 If the group of offine transformation of M with re-
spect to V° is transitive on TM. Also if M is a pseudo-Riemannian



Riemann extension and complete lifts 221

(offine) symmetric space with metric g (conrection V), then 7'M is also

a pseudo-Riemannian (offine) symmetric space with metric g° (connec-

tion V©).

9. Riemann extension

Define a canonical 1-form # on T* M via the following diagram

T(T* M)
T*M/ \TM
\M /

that is, if X is a vectorfield on 7* M, define 8(X) = my(X ). (X)).

In terms of coordinates.
. .
Bzt .. 2" wy, ... W) = wydz"

we call &, the canonical I-form on T*}M. Denote §2 = d6. Q is called 2

canonical 2-form on T* 3. In terms of coordinates:

Q... 27wy, wy) = dwg A do

Q 0 7
=|_7 ol

This implies that §} has maximal rank, and consequently defines a bundle
isomorphism between T{T* M) and T*(T*M).

in matrix form



222 _ M. Toomanian

Let H be the horizontal distribution on T* M determined by the
connection V on M. Then m, defines an isomorphism of H; and the

tangent space at 7(F) € M. That is
r(hX)p = Xepy BET'M.
The tangent space T(T™ M) splits into horizontal and vertical subspaces,
Ts(T"M)=H; + V5
where ‘%/;—,— = {X’ € Ts(T"M); 7, X =0} and
Hy={hX e T,(T"M); X e T,M}.
In general every vectorfield X € DY(T*M) can be written as:
X = X0 4+ %0 = (X8, + T))w X ) + (@ ~ Tiwz™*)¢
= Xie; + Vi = X* + X°.

where X% ¢ H, X' ¢ V. X' andV; are generally functions of z and
w.

We define the Riemann extension metric § on T* M by
HE V)= QX ¥+ T, X% X,¥ e (T M)

In terms of coordinates X = X'e; + V;8 .Y = Ve, + U8

§(X,Y) = (O + Th)eX Y + X0 + YV,

ar

—(Th + Ti)wn 1
17 0

This shows that § depends only on the syminetric part of the connection
V on M. Hence we shall consider M to be an offine manifold with



Riemann extension and complete lifts 223

symmetric connection V. (T*M,§) is called the Riemann extension of
(M, V).

We have calculated the Lie algebra of vectorfields on (1M, ) and
the connection V arising from  on 7* M.

We have proved that the covariant derivative of § is zero that is Vg =
0, which is the case for any Riemannian connection ¥ on a Riemannian
manifold (M, g). i.e. Vg=o.

We have modified the metric § for a psendo-Riemannian manifold
(M,g) so that T*M becomes a natural Riemann extension. That is the
. metric defined on T*M on the zero section coinsides with the original
metric of M.

Let g be the pseudo-Riemannian metric on M and define
(X, V)= X, P+ UV, XM + eg(n. X, 7.Y)
where X,Y € DY (T*M) and ¢ € IR. For ¢ = 0 it is the metric g,
and for ¢ = 1 the additional term is just the horizontal lift of g, and for

¢ > {1 the additional terms is hypothetic to the horizontal 1ift of g.
We have proved that Vg = 0 == V§, = 0.

Definition 8.1 (T* M, §.) is called a generalized Riemann extension for
the pseudo-Riemannian manifold (M, ¢).

We have calculated the covariant derivatives of all vectorfields on
T*M and hence get the Riemann extension connection V on T M.

We have calculated the curvature tensorfield & on 73 and prove

the following theorem:

Theorem 8.2 Riemann extension (T*M,7) of a manifold (M,V) is
locally symmetric if and only if (M, V) is locally symmetric.[4]

Now we show that complete lift and Riemann extension of a pseudo-
Riemannian manifolds are isomorphic but for offinly connected mani-

folds they are not necessary isomorphic.
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Let (M,g) be a pseudo-Riemannian manifold. For any local coor-
dinate (z'),1 < i < n in M we have associated the local coordinates
(', X') and (z',w;) to TM and T*M respectively, also g° and § the
complete lifts and the generalized Riemann extension metrics:

Let ¢ : TM — T*M be mapping defined by

90(3i,X£) = (zi,ginj) y 9= Gij

It is obviously differentiable and its inverse ¢! = (2, w;) = (2*, g w;)

is also differentiable, hence ¢ is a diffeomorphism. Furthermore,

g = A'gA

4= (753) = ( i"ajg-k go' ) |

then ¢ is an isometry. This together with the proposition 8.3 gives

where

the following theorem.

Theorem 9.3 If M is a pseudo-Riemannian symmetric space, then its

Riemann extension is a pseudo-Riemannian symmetric space.

Now let M = IR? with coordinates (z!,z?) and V with coordinates
[, = 2? I'fy=0  i,5,k=1,2 we have proved that T = 0,VR =
0 and M is an offine locally symmetric space.

We have constract the Riemann extension (7* M, ) and proved that
It is locally symmetric pseudo-Riemannian manifold.

We also constract the complete lift (7'M, V¢) and proved that V¢
does not arise from any pseudo-Riemannian metric.

We have proved that following theorem:

Theorem 9.4 The generalized Riemann-extension of a pseudo-Riemannian
homogeneous manifold (M, ¢) is a pseudo- Riemannian homogeneous man-
ifold (1M, g,).[4)
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We have calculated general killing vector fields, curvature tensorfield,
general infinitesimal vectorfields and their Lie algebra of (T*M, §.).[5]
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paper-is to show how by using the CADNA library, it is possible
during the run of the codes of these algorithms to detect the nu-
merical instabilities, to stop correctly the process, and to evaluate
the accuracy of the results provided by the computer. Numerical

examples are used to show the good numerical properiies.

1. Introduction

In recent years there has been significant progress in development of

iterative methods for solving sparse real linear systems of the form
Az = b, (53)

where A is a nonsymmetric matrix of order n. The GMRES, hybrid
GMRES, AT A-orthogonal s-step Orthomin(k), and QMR algorithms are
the most popular iterative methods for solving such systems. From
the mathematical standpoint, these methods, based on a given initial
point z{") considered as an approximation of the solution to the problem
to be solved, consist in computing a sequence 2(®,z(V_ . . 2(®) guch
that, if the method converge, z(?) tends towards a limit z,, when n —
co. Obviously it is impossible to reach this limit, and consequently

termination criteria are proposed to stop the iterative process, such as
if |29 — z{e=2) < ¢ then stop,

if |29 — 24D} < ¢]|2P|] then stop,

where ¢ is an arbitrary positive value. It is clear that these termination

are not satisfactory because
et — gD < e o |20 — 2,]] < ¢,

20 — 2=V} < el 5= (6@ - ]| < elfa]
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From the informatical standpoint, the situation is even more serious. In
fact, if an iterative method is implemented on a computer, each X0 ¢ F
only has a certain number of decimal significant digits. If the ¢ selected
is less than accuracy of X(9), these termination criteria are no longer
meaningful. Thus two problems are raised.

eHow can the iteration process be stopped correctly?

sWhat is the accuracy of the informatical solution given by the
machine?

In addition, in the floating-point arithmetic there exist some cases
in which the properties of these algorithmns are lost, e.g., the coeficients
of the GMRES residual polynomial are non-significant and lead to se-
rious round-off errors, or the AT A-orthogonal method has slow conver-
gence, because of round-off error propagation.

in section 4, we observe that, the stochastic arithmetic allows the
development of a termination criterion, called the "optimal termination
criterion”, which stops the iterative process as soon as a satisfactory
informatical solution is reached, and the use of other appropriate criteria
for overcoming the instabilities which exist in the algorithms.

In section 2 we briefly describe the GMRES, hybrid GMRES,
AT A-orthogonal s-step Orthomin(k) and QMR algorithms and discuss
about the problems which exist in the implementation of these algo-

rithms on a computer.

In section 3 we give a brief description of stochastic round-off
analysis, the CESTAC method, and the CADNA software [25, 4]. Sec-
tion 4 is devoted to the use of the CESTAC method and CADNA library
for overcoming the problems which exist in the implementation of the
mentioned algorithms on a computer using the floating-point arithmetic.
Moreover, we will observe that by using the CADNA library and intro-

ducing the appropriate stopping criteria, it is possible, during the run of
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the code of these algorithms to detect the numerical instabilities and to
stop correctly the iterative process, and to restart it in order to improve
the computed solution. Some numerical results are given to show the

good numerical properties.

2. Hybrid GMRES, AT A-orthogonal s-step Or-
thomin(k), and QMR algorithms

2.1 GMRES and Hybrid GMRES algorithms

The GMRES method by Saad and Schultz [22], is one of the most pop-
ular methods for solving linear systems with a nonsymmetric matrix,
The idea of GMRES is to construct an approximate solution of the
form z,, = o + z, where 2, is an element of the Krylov subspace

K™(A;ry) = span{r,, Arg,... , A™ o} with the following property:

= lb- Az, = mi — Azlls, 54
Irmlls= 16 = Aznllz = min firo ~ Azl (54)

where ry = b — Azy. The basic structure of the GMRES algorithm is as
follows.
Algorithm 2.1, GMRES

1. Compute rg = b~ Azg, 8 = ||7oll2, and vy = ro/f8

2. Define the (m + 1) x m matrix Hn = {hijhicicmet,icj<m. Set

H,=0
3. Forj=1,2,..,m Do:
4. Compute w; = Ay;
5. Fori=1,2,..,j Do

g, ha‘;’ e (’wj',ﬁg)
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7. wj = wj — hiy;

8. EndDo

g. Bisr; = flwilip. I hjpr; = 0 set m = 7 and goto 12
10. Vipr = WifRjpa
11. EndDo

12. Compute y,, the minimizer of ||8e, —~ H,,yllz and 2., = 2o+ Vpy

The GMRES iteration constructs a sequence of residual polynomials

that minimize the norm of the residual

flrmilz = lpm({A)rallz = min  |[p(4)roll, m=1,2,....
pe P,

p(0)=1
With these GMRES polynomials the following hybrid GMRES is pro-
posed in [20]:

Start with a random initial guess z, .

Phase I: Run GMRES until ||r,,]|l» drops by a suitable amount.

Set v = m.

Phase II: Re-apply the GMRES residual polynomial p,(z)cyclically

until convergence.

The main idea of this algorithm is to suppose that at the vih
GMRES step the relation

Irulla _ lps(A)rolls _

fIrollz B flroll2

holds for some r < 1, and moreover we have

lip, (A)llz = 7.
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So that by re-applying the GMRES polynomial pu{2) cyclically we can
reduce the residual norm. Of course, these assumptions do not always
hold and it must modify the algorithm in order to cope with failure. By
assumption that storage is not limited, we propose the following safe-
guarding procedure which differs from Nachtigal, Reichel, and Trefethen
algorithm {20] in process 2:

1. If any cycle of v steps of phase IT reduces ||r,,|l, by a factor less
than /7 - that is, if the convergence is more than twice as slow

as expected - return to phase I.

2. Carry out additional GMRES steps v+ 1,0v+2,... ¢/ of phase

Luntil {iry/||2/ |r.]|2 < 1, and calculate a new polynomial p,.(z).

3. Begin a new phase II iteration with the new polynomial pul2),
starting from the previous best value z,, , which will come either
from the previous phase 11 if the convergence there was slow but
positive, or from the new phase I if there was actual divergence

in the previous phase IL

The residual polynomial p,(z) can be implicitly constructed by
GMRES. The details of calculating the coefficients of p, (z) can be found
in [20].

When the hybrid GMRES is implemented on a computer, at each
iteration g of this algorithm we have one approximate solution from
phase I, denoted z,,, and some approximate solutions from phase II,
denoted z,,,k = 1,2,.... During the run of the program if any of
these approximate solution is a satisfactory solution, in the sense that
its residual norm is reduced by a factor ¢ (where ¢ is an arbitrary positive
value), then the program can be stopped. So, for stopping the process at
iteration ¢ with ¥ < n,k = 0,1,... we can use the following termination
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criterion:

if flrevll2 < €liro]l2 then stop.

In the case v = n, the program must be stopped because the GMRES
method converges, in the absence of rounding errors, in at most n iter-
ations.

Note that in the above termination criterion ¢ is an arbitrary
value, the results of example 1 section 4 (Table 2, in which only the
decimal significant digits are printed) show that when ¢ is chosen too
large ( € = 10~°) the process is broken-off too early and consequently the
solution obtained has a poor accuracy. On the contrary when ¢ is chosen
too small { € = 10719) the iterative process is stopped too late and many
useless iterations are performed, without improving the accuracy of the
solution obtained with ¢ = 10718, In practice it is absolutely impossible
to choose correctly the value of the convergence tolerance ¢ . But as
explained in section 4 with CADNA library it is possible o break-off
the iteration of an iterative process as soon as a satisfactory computed
solution is reached, and this without using any arbitrary ¢ .

Let us now consider the linear system

21 130 g 2.1 153.1
13 8o 4.74 + E8 752 849.74
T = , (55)
0 04 39816+ E8 4.2 7.7816
0 0 1.7 9E -9 2.6F -8

which was described in [25]. The exact solutionis z = 1.0, 1.0, 10~8, 1.0]7.
The approximate solution obtained with the initial guess zp = [0,0,... ,0]F
and the FORTRAN code of the hybrid GMRES algorithm, performed

on a SUN4 computer, in double precision is as follows

2(1) = ~89.8760751972095591, 2(2) = 15.6799813793030225,
2(3) = 2.4747823346160658E — 08,  z(4) = 1.0000000003115719.
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It is necessary to say that this approximate solution has been obtained
by phase I with v = 4. This solution is false and hybrid GMRES al-
gorithm is not able, because of the propagation of the round-off errors,
to provide a satisfactory solution for this example. However, nothing
in the software nor in the solution allows the user to be aware that the
computed solution is false. In section 3 we will show that the CADNA
library is able to estimate the propagation of round-off errors during the
run of the code and to furnish the accuracy of the computed solution.

Let us consider another linear system with the nxn block diagonal
matrix

M,

M, 1 j1-1+4a
A= ) ,  where M; = 0 7 1' )

56)

Mn,’2 i

which with o = 0 corresponds to the example By, of [21], and the sec-
ond member b = [5,-3,4,-4,1,...,1]7. The exact solution is given by
Taj-1 = bgg 1+ ( — 1+ a)by; and 2,5 = —by;. With @ = 1.11, n = 150,
and the initial guess z; = [0,0,...,0]7 the computed coefficients a;
of the GMRES polynomial ps(z) with single and double floating-point
arithmetic rounded to nearest mode are presented in Table 1. In section
4, thanks to the CADNA library, we consider that these coefficients are
non significants. It is clear that, phase II is not able here to improve the
approximate solution which has been obtained by phase I. In general,
when v has a large value, it is possible to have an unstable solution
Ty, k= 1,2,... and also a GMRES polynomial with unsignificant coef-
ficients. In this situation the use of phase II has obviously no sense. So,
in order to avoid the performation of many useless operations of phase
II and to prevent an overflow which may occur, it is better the program

perform only phase I as soon as such an instability occurs during the
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run. We now face the question of how can detect these kind of insta-
bilities? The CADNA library is a precious tool for obtaining an answer
to this question. In section 4 we show that with CADNA library it is
possible, by including a simple test to detect it.

single precision double precision

ag | -2.9381578E4+05 | 1.6409978460272019E+14
a; | 3.0272866E+05 | -1.6409978460272156E+14
oy | 5.8763362E405 | -3.2819956920543981E+14
oy | -6.0545688E+05 | 3.2819956920544550E+14
oy | -2.9381784E+05 | 1.6405978460271962F+14
as | 3.0272922E-+05 | -1.6409978460272297E+14

Table 1

2.2 AYA-orthogonal s-step Orthomin(k) algorithm

In [7], Chronopoulos developes AT A-orthogonal s-step Orthomin(k) al-

gorithm fof nonsymmetric matrices with symmetric part M = (A +

AT)/2 positive definite or indefinite. In this method the s directions

{rs,...,A*"'r;} are formed and are AT A-orthogonalized simultaneously

to k of the preceding directions {pj,...,p}},j = Ji,-.. ¢ where j; =
maz(0,i — k + 1} . The norm of residual ||riy,l|; is minimized simul-

taneously in all s new directions in order to obtain z;;,. More details

of the s—step Orthomin(k) algorithm can be found in {7]. The following
notation facilitates the description of the algorithm.

W; = [(Ap}, Ap})], where 1 < 5,1 < s
a; = la},...,afl" (the steplengths in updating z; )
m; = [(Tt'! Aps)s see g (Ti, Ap;)]T

_G.!i = [(Az'ﬁ-f-ls AP}): o ,(A'rs-,;,,_, APE)]T
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Q} = {by"}s._, for § = ji,... stand ! = 1,... s, where j; =
maz(0,i ~ k + 1)

(the coefficients to AT A-orthogonalize to the previous direc-
tions) -

£ =1[p},...,pi] (the direction vectors)

B = [y, Arg,y ..o A2 (the residuals).

A description of s-step Orthomin(k) method can be given as follows:

Algorithm 2.2, s-step Orthomin(k)

Select zq

Fy= {‘1"(} = f - Al‘g,AT‘g, ces ,Asml'f‘g]

For ¢ = 0 Until Convergence Do

Compute m;, W;

Call Scalarl

Zit1 = & + P,

Tisr =1y — AP

Compute ¢},j = j;,... ,1

Call Scalar2

Compute Ry = [rogg, Arign, .., A1)
Pipy = Ry + 35y, BB

Compute AP, or,

AP:‘+1 = AR:‘H + Z:;':ji AP}' [;I?,;]fm
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EndFor

Scalarl: Decomposes W; and solves Wig, = m,

i,

Scalar?: Solves 'W,b;; = —_c_j- forj = 3;,...,iand ! = 1,...,s, where
Ji = maz(0,1—k + 1)

The solution of the linear systems may cause a quick loss of orthog-
onality of the s-dimensional direction subspaces P. because the matrix
W; may have a very large condition number. Numerical tests [8, 9, 10]
have shown that the condition number of W; is small for s < 5. One
way to alleviate the orthogonality loss which can occur for large s > 5
is to AT A-orthogonalize the s direction vectors in each iteration. In
[23], AT A-orthogonal s-step Orthomin(k) was developed and shown to
be stable for large values of s{up to s = 16). In this method the direc-
tion vectors within each subspace P; are AT A-orthogonalized using the
Modified Gram-Schmidt method. The linear systems need not be solved
at each iteration since the W; matrix is the identity matrix if P is per-
fectly AT A-orthogonalized. By using the notation j; = maz(0,i~k+1)
the algorithm can be described as follows:

Algorithm 2.3. AT A-orthogonal s-step Orthomin(k)
Select x4

Compute rg = b — Az,

For ¢ = (0 Until Convergence Do

Compute AR = [AT;, Az”“s‘r R As'f‘i]
and set Pi = [?“i’ Ari“ .. 5Aaw17’g]

%

H (0 < i) Then
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Compute b = [~(Alr;, Ap}), ..., —(Alry, Ap)IT, for

l=1,...,8 and § = Jjm1,...,t~ 1
Compute F; = P—i—f_:j_}( - [b’] 1

Compute AF; = AP, + E} AP B,

=i (a—

EndIf

Apply the Modified Gram-Schmidt method to the matrix AF;
to obtain final AP, and P

Compute g; = {(r:, Ap}), ..., (ri, AT
Zipy = T+ FPigy
Tip1 = Ti ~ AFg,

End¥For.

The main problem in the use of AT A-orthogonal s-step Orthomin(k)
method, with floating-point arithmetic, is the choice of 5. Let us con-
sider the results of this method with different values of s and % for the
examples 4-6 of section 4.2 (Tables 6, 8, and 10, in which the number of
iterations to convergence are printed). These results clearly show that
when s has a small or large value the method has slow convergence, and
for each problem and each k there exists an s which minimize the num-
ber of iterations to convergence. However, as above mentioned, the slow
convergence of the method with large value of s is due to the round-off
errors propagation. Hence, it is not possible to determine a good value
of s without estimating the round-off errors propagation. In section 4,
it is shown that by using the CADNA library, which is an efficient tool

for doing so, we will be able to determine a good value of s.
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Here, another problem is also the choice of the value ¢ for stop-
ping criterion [|ril < ¢. When ¢ is chosen too large, the iterative pro-
cess is stopped too soon, and consequently the solution obtained has a
poor accuracy. On the contrary, when ¢ is chosen small, it is possible,
due to the numerical instabilities, many useless iterations are performed
without improving the accuracy of the solution. How can the iterative
processs be stopped correctly, and restarted in order to improve the com-
puted solution? The CADNA library is a precious tool for obtaining an
answer to this question. In section 4 we will show that with CADNA
library, it is possible, by including the simple tests to stop and to restart

correctly the iterative process.

2.3 The QMR algorithm

The quasi-minimal residual method {(QMR) is based on the look-ahead
Lanczos algorithm proposed in [13]. In the following, 4 € CV*¥V is
always assumed to be a given N X N matrix. Let v;,w; € CV be any
two vectors different from the zero vector. Starting with vy, w,, the look-
ahead Lanczos algorithm generate two sequences of vectors vy, vq, -+ , ¥n

and wy, Wy, - , Wy, 0 = 1,2, -+, that satisfy

span{‘vl,vg, v ,?J“n} = Kn(‘i?za A),

57
span{us, g, 10,) = Ko {1y, 47), 0
and can be grouped into k = k(n) blocks
Vi = [vn,ny 417 '?‘mﬂ-—l]a Wi = {wn, Waygr - ‘wnwx"l]?

Vk = [vnk?)nk-Q-l tr "Un]s Wk - [wmwnk_ﬂ .. -w,,],

where

lmny <<y <0 <0 &7 < Ny
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The blocks are constructed such that we have

0 ifjL
WIv, = ,0=1,2,- ,k,
A {D, fj=1, 7

where
D, is nonsingular, / = 1,2,--- k- 1, and
Dy is nonsingunlar if n = ngqy — 1.

The first vectors v,, and wy, in each block are called regular, the re-
maining vectors are called inner. The kth block is called complete if
i = g4y~ 1; in this case, at the next step n 4 1, a new block is started
with the regular vectors v,,,, and w,,,,. Otherwise, if n < mpyy — 1,
the &th block is incomplete and at the next step, the Lanczos vectors
Uaty and wyyy are added to the kth block as inner vectors.

With these preliminaries, the basic structure of the look-ahead

Lanczos algerithm is as follows.
Algorithm 2.4 sketch of the look-ahead Lanczos algorithm [13].
0)Choose vy, w; € CV with lu, | = [juy]} = 1;
Set Vi = v, Wy = wn, Dy = WFV;
Setny =Lk=1l,uu=w=0,Vo=Wo=0,py =6 =1;
Forn=1,2,--- do:

1) Decide whether to construct v, 4, and w, ., as regular or inner

vectors and go to 2} or §), respectively;

2)(Regular step.) Compute

?-5“4_1 = Av,, R VkDEIWEAv,, - Vk_lD,;'LWE_}Avn,
'ibﬂ{.l e AT‘UJ'“ - WkD;TKTATwﬂ —_ Wk“l‘D;fivz-lATw

(58)
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setnggr=n+Lkzk+ 1,V =W, =0, and go to 4);
3)(Inner step.) Compute
Tnp1 = AV = Cacny¥n = (Dpena /P VVne1 — Vo1 D2, WT | Avy,

ﬁ’n-}-i = ATwn - Cn—nkwn - (ﬂnw—nk/gn)wn-—-l - Wk_.g.D;EleT“IATw N

(59)

4)Compute pryy =|| Bay1 || and Luyr =[] Doy Il
I prar =0 0r L4y = 0 ,stop;
Otherwise, set

Upgyr = '5n+1/,0n+1, Wy = Tﬁn+1/5n+1s

60
Vi = Vi vag1], We={[Wywap, Di= W?‘Vk. (60)

Now, we list some properties of Algorithm 2.4 which will be used in the
sequel. First, in view of (8), we have

foall = lwall =1, n=12,.... ‘ (61)

It is convenient to introduce the notation

V(n) s [’Ul 'U2 Waw 'i)n] ("'-": [Vl, Vé Boe Vk])? (62)
win) = [wlwz e wn} (x [W1W2...Wk}).
Hence, by (5),
Koo, 4) = (V2 | 2 € CY, -

Ko(wy, ATy = (W2 | z € CV).

Moreover, the recursions for the v’s in (6) and (7) can be rewritten in

matrix formulation as follows:

AV = VOV, 1[0 ... 0 Boy). (64)
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Here,
oy By 8 .- 0T
Yoz Ps
Hov=1 0 v - . 0 (65)
° B
] 0 - 0 v oo j

is a block-tridiagonal matrix of size n X n that also is upper Hessenberg.
Furthermore, the diagonal blocks a;, e, - - , a; of the matrix H, areall
squares, and their sizes are just the lengths of the look-ahead steps.

Let 2o € CV be an arbitrary initial guess for the solution of
(1), and set ry = b — Azo. At the n'h iteration QMR computes an
approximate solutions of (1) of the form

Lp € Lo “{’* Kn('n"'o,A). (66)

If we choose vy = 7/]|po|| and any w; € C¥, [Jwy]|; = 1, as the starting
vectors for the look-ahead Lanczos algorithm, then, by {11), the right
Lanczos vectors vi, vy, -, v, span Krylov subspace K,(rp, A) in (14).

Therefore, any iterate (14) can be presented in the form
Th =20+ Vs, 2z, € C", (67)

and V(™) is the matrix defined in (10). For this approximate solution z,
the residual satisfies

o= VORN(E - B2, (68)

where fopy = [llrolla 0 --- 0]F € IR™Y, and HS®), defined by

H, n
e [P a(efNT ] (@) =0 01T e B (69)
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Freund and Nachigal {14] suggested to choose z, as the solution of the

least-squares problem
0 fasr = Bz (2= minsees || fasr = B2 ]2 - (70)

The motivation of this choice of z, is as follows. The vector z which
minimizes (18) can be found with considerably less work than would be
needed to minimize the residual norm, since the matrix V"¥! will not
usually be unitary. More details of the QMR method can be found in
[14].

We observe that in each step of a look-ahead Lanczos process, it
is necessary to decide whether to construct the Lanczos vectors v,41 and
Wy 41 as regular or inner vectors. As we know [14], for a regular step it is
necessary that D, = W7V, is nonsingular. Therefore, in implementation
of QMR in the floating-point arithmetic, the smallest singular value of

matrix D, is computed and the criterion
Gmin( D) < Tol

is used to check whether this matrix is singular or close to singular, and
to decide whether to construct the Lanczos vectors vn4 and Wnyq a8
regular or inner vectors. Here Tol is a suitable chosen tolerance. The
efficiency of the algorithm depends on a good choice of the T'ol and to
construct correctly the Lanczos vectors v, 41 and @, 4. Inaddition, if the
quantity omin(Ds) is badly computed, propagation of round-off errors
will affect drastically all the computation. In section 4, we show that
QMR algorithm with the CADNA library, and using the appropriate
test, and optimal terminations, it is possible in constructing the Lanczos
vectors vy, and W4y to decide correctly, to restart the QMR algorithm
if it is necessary, to stop the program as soon as a satisfactory solution is
reached, to estimate the accuracy of the solution, and to save computer

time, because many useless operations and iterations are not performed.
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In the following section we give a brief description of CESTAC
method which is an efficient method for solving the numerical problems

such as those described above.

3. The CESTAC method

3.1 Basic ideas of the CESTAC method

Any result R provided by a computer always contains an error result-
ing from round-off errors propagation. It has been proved [2] that a

computed result R is modelized to the first order in 27 as the equation
R=r 4 E?xlu;(d)z”z’aﬁ

where 7 is the exact result, o is the round-off error, and u;(d) are quan-
tities depending exclusively on the data. The integer n is the number
of arithmetical operations involved in the computation of B, and the

integer p is the number of bits in the mantissa.

The CESTAC method (Contréle et Estimation Stochastique des
Arrondis de Calculs) was developed by La Porte and Vignes, and was
then generalized by the latter. It is based on a probabilistic approach of
the round-off errors propagation, it has been presented in {12, 16, 17],
this method allows to estimate the round-off error on each result and
consequently provides the accuracy of this result.

The basic idea of this method consists in performing the same
code several times in order to propagate the round-off error differently
each time. Several samples of R containing different round-off error are
then obtained. The first digits common to all the samples are signifi-
cant and the others are not significant and represent the round-off error
propagation. The aim is then to obtain these samples of R. They are
obtained by the use of random arithmetic.
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Indeed, each result r of any floating-point (FP) arithmetical op-
erator is always bounded by two consecutive FP values B~ and B*. The
random arithmetic consists in randomly choosing either R~ or Rt with
a probability 0.5. Then when a same code is executed N times with a
computer using this random arithmetic, for each result of any floating-
point arithmetic, N different results R;,i = 1,... , N will be provided.
It has been proved [2, 5] that, under certain hypothesis, this N results
belong to a quasi-Gaussian distribution centered on the exact result r,
So, in practice, the use of the CESTAC method consists in :

(i) Running in parallel N times (N = 2 or 3) the program with
this new arithmetic. Consequently, for each result B of any
floating-point arithmetic operation, a set of N computed results
Ri,i=1,...,N is obtained.

(ii) Taking the mean value R = LEN R, of the R; as the computed
result.

(iif) Using Student distribution to estimate a confidence interval for
R, and then compute the number Cy of significant digits of R,
defined by Cg = log,(VN|R|/ms0), with ¢? = FEN (B —
R)?, 7y is the value of the Student distribution for N —1 degrees
of freedom and a probability level 1 ~ 3.

3.2 Stochastic arithmetic

By using the CESTAC method so that the N runs of the computer
program take place in parallel, the N results of each arithmetic op-
eration can be considered as realisations of Gaussian random variable
centered on the exact result. We can therefore define a new number,

called stochastic number, and a new arithmetic, called stochastic arith-
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metic, applied to these numbers. We present below the main definitions

and properties of this arithmetic. For more details see [6]

Definition 1. We define the set § of stochastic numbers as the set
of Gaussian random variables. We denote an element X € § by X =
(4,0%), where p is the mean value of X and o its standard deviation. If

X € §and X = (p,0?), there exists Ag, depending only on 8, such that

PlXelp—dso, p+rgol)=1~4.

Isx = [g — Ag.0, g+ Ap.0lis a confidence interval of p at (1 — ). An
upper bound fo the number of significant digits commen to g and each
element of I5 x is

Cp.x = logy( “"‘"‘Aiﬂl o )-

The following definition is the modelling of the concept of informatical

zero proposed in [24].
Definition 2. X € S is a stochastic zero, denoted 0, if and only if :
Cg,x S g or X = (O, {})

Definition 3. Let X; = (u,0?), Xy = (u3,02) be two elements
of 5. We define the four elementary stochastic operations denoted
(s+,8—, s%,8/) on the stochastic numbers by

de

Xis+ X Z (14, ot +03),

Xis- X, 4 (F-i = f2, C’"?‘{‘O'%):

Xysx Xy 2 (p#pa, pdo? + pdod),

Xi oo/ X2 F (mfua, (204 (BEP),  withp £0.

Definition 4. Let X, and X; be two elements of §, X is stochastically
equal to X;, denoted X, s = X, if and only if

X}_S"" ng_Q.
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Definition 5. Let X = {p;,07) and X, = (5, 07) be two elements of
5. X, is stochastically strictly greater than X,, denoted X; 5 > X, if

and only if :
i~ py > Agyfoi + of

Definition 8. Let X| = (u;,0}), X3 = (i, 02) be elements of §. X, is
stochastically greater than X,, denoted X; s > X, if and only if :

X, 8> X, or Xy 5= X,

Based on these definitions, the following properties of stochastic arith-
metic have been proved:

e s = is reflexive and symmetric but is not transitive,

e s > is transitive

e s > is reflexive, anti-symmetric, but is not transitive;
G5< b =>as=boras< b

as= bandbs< ¢ = as< ¢
es< bandbs< ¢ = as< ¢

8 is absorbent for operation s+ and is the neutral element for operation
s+. Let z,y € IR and X,Y € 5 respectively be their representative.
X s < Y = z < y. Thus stochastic arithmetic retrieves proper-
ties of exact arithmetic, lost by usual floating-point arithmetic such as

associativity, distributivity, the concept of remarkable identities.

On computer, by using the synchroncus implemetation of the
CESTAC method and by identifying the notions of informatical zero
and stochastic zero, it is possible to use the stochastic arithmetic with

its definitions. The use of stochastic arithmetic in scientific codes allows:

1. during the run of a scientific code, to estimate the accuracy of
any numerical result, to detect the numerical instabilities, and

to check the branchings;
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2. to eliminate the programming expedients that are absolutely
unfounded, such as those used, for example, in termination cri-
teria of iterative methods, and replace them by criteria that
directly reflect the mathematical condition that must be satis-
fied at the solution.

3.3 The CADNA library

CADNA (Control of Accuracy and Debugging for Numerical Applica-
tions) is a library for programs written in FORTRAN 77, FORTRAN
90, or in ADA which allows the computation using stochastic arithmetic
by automatically implementing the CESTAC method (3, 4]. CADNA
is able to estimate the accuracy of the computed results, and to detect
numerical instabilities occuring during the run.To use the CADNA Ii-
brary, it suffices to place the instruction USE CADNA at the top of the
initial FORTRAN or ADA source code and to replace the declarations
of the real type by the stochastic type and to change some statements
as printing statements.

During the run, as soon as a numerical anomaly {for example,
appearance of informat ical zero in a computation or a criterion) occurs,
a message is writlen in a special file called Cadna_stability £90.1st. The
user must consult this file after the program has run. If it is empty,
this means the program has been run without any problem, that it
has accordingly been validated, and that the results have been given
with their associated accuracy. If it contains messages, the user, using
the debugger associated with the compiler, will find the instructions
that are the cause of these numerical anomalies, and must reflect in
order to correct them if necessary. The program execution time using
the CADNA library is only multiplied by a factor 3, which is perfectly
acceptable in view of the major advantage offered, i.e., the validation of
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programs. CADNA is also able to estimate the influence of data errors

on the result provided by the computer.

4. Using the CADNA library in iterative meth-

ods

4.1 Using the CADNA library in hybrid GMRES method

As we have seen in section 2.1, in implementation of hybrid GMRES
method three difficulties arise. Let us first consider the third problem
which concerns to the numerical instabilities which may occur in phase
1I. By remarking that a GMRES polynomial with unsignificant coeffi-
cients and alsc an unstable solution z,,k = 1,2,... always provide an
unsignificant residual norm with large magnitude, we can define with
CADNA library the test

if lirlls =0  and  {reflz 2 1.0 thenindez =1, (71)

with initial value inder = 0, which allows us by checking the value
of parameter index to detect the presence of an unstable solution. As
consequence, the program, during the run, can decide to perform the
both phase I and II, or only the phase I according to the value of this
parameter indez.

Now, we consider the first problem which concerns to choose a
stopping criterion. As explained in {24], from mathematical point of
view, once we know a solution z,,, we can validate its validity by checking

the value of the restdual norm
irmllz = b~ Azmllz = 0.

Obviously with usual floating arithmetic this equality is never satisfied

even when the solution z,, is the exact solution, because of the round-
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off errors propagation. However, with CADNA library in view of its

properties, the result will be
lirmllz = {lb~ Azl = 0.

S0, as soon as the residual norm of a stable computed solution is equal
to the informatical zero, a satisfactory informatical solution is reached
and the iterative process must be stopped. Now, by noting that it is
possible, in phase II, to have an unstable solution zy,,k = 1,2, ... and

we can detect it by the test (19), we define the termination criterion
if Irellz =0 then stop, (72)

for checking the value of the residual norm of a stable solution Ty, k=
0,1,... . This termination criterion stops the iterative hybrid GMRES
process as soon as a satisfactory solution is reached either by phase I
or by phase II. It is necessary to say that the instability of the solution
Try,k = 1,2,... must be checked before using the termination criterion
(20).

Finally the second problem, which concerns the accuracy of the
computed solution, will be solved by using the CADNA library. Since,
as it was explained in section 3.3, the CADNA library is able to estimate
the accuracy of the computed results and to furnish the results with their
exact decimal figures.

Let us now, to present the examples and the results which we
obtained by the FORTRAN code of hybrid GMRES method, combined
with CADNA library and the above tests. Computation have been per-
formed on a SUN4 computer in double or simple precision with the
stochastic arithmetic using the CADNA library.
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Example 1. We consider the linear system with

2 1
1 6 2
A= , b= ,
1 0
A 1 L

which was described in [15], and the dimension equal to 400. The exact
solution is given by z = [1,1,...,1]%. The results obtained by using
floating-point arithmetic with ¢ = 107%,107,107*, and CADNA li-
brary are presented in Table 2. Only the decimal significant digits are
printed. At the last lines of this table we can find the corresponding

value of indices v, k of the presented solution zy,.

For this example the initial guess has been zo = [0,0,...,0]7
From the results of Table 2, it appears that when ¢ has too large
value, the iterative process is stopped too soon (at v = 4,k = 11), and
the solution furnished is not the best that the computer may provide.
When ¢ is chosen too small (¢ = 1071%) the iterative process is stopped
too late (at v = 6,k = 1), many useless iterations are performed without
improving the accuracy of the solution with e = 1075, By using the
CADNA library, the optimal termination criterion (20) has stopped the
iterative process at v = 4,k = 48, and solution is reached with about 15
exact significant digits on all the elements.
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€= 1070 €= 1074° €= 15778 CADNA library
z(l) 1.0900000 | 1.0060000000000000 | 1.0000000000060008 ¢.100000000000000E41
(2} |0.999999 |1.0000000060000000 | 1.0000000000000000 (.599999999999999 10
(3} {1.000000 |1.000000000000000 1.000006000000000 | 0.100000000000000E4+1
z(4) 11.000000 |0.999999999999999¢ | 0.9999939099983900 0.1000600000000000E4+1
1(5) 0.999999  |1.0000000000000000 | 1.0000000000000000 0.999999999999999F.4.0
#{396) | 1.000000 |1.0000060000000000 1.000000¢0000006000 [ 0.999999999999999E+0
{397} {0.99949999 | 1.0000000000000000 | 1.0000000000000000 0.100000000000000E+1
©{398)]0.9999399 | 1.000000000000000 | 1.000000000000000 0.100000060000006E4-1
£(399) { 1.000OOD | 1.0000000000000000 | 1.0000000000000000 0.999999993959995 E40
x(%ﬁﬁ} 0.9999999 | 1,0000000000000009 | 1.0000000000000000 0.100000000000000E+1
v=4 r=4 v y=4
E=11 k=46 k=1 k=48

Table 2

Remark: For controling the quality of a computed solution X of

a linear system Az = b we can use the normalized residuals test. As
explained in [18, 19], this test consists in computing the normalized

residuals

pl = I3 ‘ i
277\ /mi(S3-,(4ijX;)? + BY)

i=1,...,n,
where

pi = B; - L%

e di X

and Ay, B; are the normalized floating-point representations of a;; and
bi, respectively, X is the jth element of computed solution X, and ¢ = 1
for rounding to the nearest mode, and ¢ = 2 for other rounding modes.
The integer m; is the number of nonzero elements of row i, and the
integer p is the number of bits in the mantissa.

The three following cases can occur:

case I: All the n normalized residuals are of the order of mag-
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nitude 1;

pl~ 1, Wie[h2,...,n)

thus the computed solution X is a satisfactory informatical so-

lution.

case [I: At least one of the normalized residuals is strictly strictly

greater than one, but strictly strictly smaller than 2°:
l€pl <2,

thus the computed solution X is not a satisfactory informat-
ical solution, but it is possible to improve it by an increment
vector AX which may be obtained by solving the linear system

AAX = R, where R is the residual vector with ith element p;.

case [1f: At least one of the normalized residuals is of the order

of magnitude 27:

p;~ 2,

thus X is a bad solution and in general, we can not improve
it. If this sitvation occurs, this means that the using method is

not adapted to the proposed system.

By applying this test to the computed solutions of the above example,
we discover that all the above computed solutions are the satisfactory
informatical solutions except the one which obtained by fioating-point
arithmetic with € = 107% By improving this solution two times, we
could obtain a satisfactory informatical solution. We observe that with-
out using CADNA library, it is very difficult to obtain a satisfactory

informatical solution.
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Example 2. Let us again consider the linear system (3). The
solution obtained with CADNA library is as follows

w(l) =g, 55(2) =0,
z(3) =g, z{4) = 0.9999999E + 000.

These results show that the first three elements of computed solution
are non significant and the last one has 7 significant digits. We observe
that only by using the CADNA library it is possible to conclude that the
results obtained for the first three elements of computed solution must

be due to the round-off errors propagation.

Example 3. Let us again consider the linear system (4). The
solutions furnished by using single floating-point arithmetic with ¢ =
1075, ¢ = 10-%, and CADNA library are presented in the Table 3. With
¢ = 10~7 any solution has not been obtained, because an overflow oc-
cured during the run of code. The CADNA library detected the numer-
ical instabilities and showed that all the coefficients of GMRES poly-
nomial presented in Table 1 are §, i.e., they have no significant digit.
The test of normalized residuals showed that the solution obtained by
CADNA library is a satisfactory informatical solution, but those which
obtained by floating-point arithmetic are not. By solving the corre-
sponding linear systems AAX = R we could improve the solutions cb-
tained with ¢ = 10~%,¢ = 10-° and obtain the satisfactory informatical
solutions which are presented in Table 4. Finally, with many difficul-
ties, we obtained the satisfactory informatical solutions, but what is the
accuracy of each element of these solutions? As we observe that the
CADNA library not only has obtained a satisfactory informatical solu-
tion, but also has furnished the elements of the computed solution with

thelr exact significant digits.
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£ == 107°

€= 10"°

CADNA library

(1)
z(2)
z(3)
z(4)
z(5)

z(146)
={147)
{148}
(149)
z({150)

1.6700622
2.95599499
~4,4390438
3.9999347
4.1099434

-0.5990837
75.1088562
-0.99898837
76.1687952
-0.9998837

1.670068%
2.9998803
-4.4398289
3.9958538
4.1098661

-0.9995635
75.1074753
-0.9999635
76.1073151
-0.9999635

0.167001E+4-01
0.299997E+4-01
-0.443988E+01
0.3999%9E 401
0.4108%E+01

-0.92993E+00
1.75109E+4-02
-0.99999E-4-60
0.7610854-02
-{1.99999F+-00

=T

k=20

v =11
k=0

v =12
k=0

Table §

€= 107"

£ 1670

z(1)
=(2)
z(3)
z(4)
z(5)

£(146)
z(147)
z{148)
z{149)
z{150)

1.6699998
3.0000000
-4.4400001
4.0000000
4.1100001

-1.0060000
75.11000066
-1.8000000
76.1100008
-1.06000000

1.6700000
3.0000000
-4,4400010
4.0000000
4.1100001

-1.0600000
751100606
-1.0000000
76.1100006
-1.0000000

r=29

E=0

R

k=9

Table 4

255
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4.2 Using the CADNA library in AT A -orthogonal s-step
Orthomin(k) method

As we have seen in section 2.2, in implementation of AT A-orthogonal

s-step Orthomin{k) method two problems arise. The first one is :
e How to determine a good value of s?

Let us first consider Tables 5, 7, and 9-of the examples 4-6, respectively.
These Tables present the minimum number of significant digits of the
norm of orthogonal direction vectors of Fy(the first s-dimensional sub-
space) which are furnished by the CADNA library for differents values
of 5. It emerges from these results that, for each problem, this number
begins to decrease from certain s. When it has a small value for some
s, the large error exists at the beginning of the iterative process and
can lead to the serious round-off errors, and then the slow convergence
(see the results of Tables 6, 8, and 10 of the mentioned examples which
represent the number of iterations to convergence for different values of
s). By noting this remark, it has been cbserved in experiments that, for
double precision, we can obtain a good value of s by taking the highest
value of s for which all the orthogonal direction vectors of Py have the
norm with at least 10 significant digits. By using the CADNA library
and increasing the value of 5 (for example, 4 by 4), it is very easy to de-
termine a such value of s, because the number of significant digits of the
norm of orthogonal direction vectors of #, for each s, can be furnished
by the CESTAC function which exists in this library, and returns the

number of significant digits of every stochastic variable.

Now, we consider the second problem which is :

e How can the iterative process be stopped correctly?
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As we mentioned in section 2.2, when we use the stopping criterion
I!T!'”"? <, (73)

it is possible, due to numerical instabilities or/and the stationarity, this
stopping criterion is never satisfied. So, we need to use the additional

termination criteria for stopping the process in the cases:
(i) The algorithm is stationary and can not converge.

(ii} The computer is not able to distinguish the vector r; from the
null vector and to improve the computed solution, because of

the round-off errors propagation.

As explained in {24, 25], the stochastic arithmetic allows the devel-

opment of two termination criteria for these cases.

In stochastic arithmetic, when the iterative process becomes sta-
tionary, that is, the difference between two iterates is nonsignificant, the
components of the vector z; —x;_, are stochastic zeros. So, with CADNA
library which allows using stochastic arithmetic by automatically imple-

menting the CESTAC method, and using the stopping criterion

lzi — zalh = 0. (74)
it is possible to stop the iterative process as soon as it becomes station-
ary. '

In stochastic arithmetic, when the computer is not able to dis-
tinguish the vector r; from the null vector and to improve the computed
solution, because of the round-off errors propagation, the components of
r; are stochastic zeros and a satisfactory informatical solution is avail-

able. So, with CADNA library, and using the stopping criterion

lirill2 = 0. (78)
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it is possible to stop the iterative process as soon as the case (ii) occurs

and a satisfactory informatical solution is reached.

It is clear that, in the above cases which the iterative process is
stopped by the criterion (22) or (23) before the criterion (21) is satis-
fied, the computed solution will not be a solution with desired ACCUTaCY
(liriliz < €) and it is necessary to improve it by an increment vector Az;.
For doing this, we need the classical type value of the residual vector #;
of the computed solution z; for solving the linear system AAz; = 7 by
restarting the iterative process. Fortunately, with CADNA library, it
suffices for obtaining the classical type value of r; to use the old_type
function which exists in this library, and returns the corresponding clas-

sical type value of every stochastic variable.

We observe that, with CADNA library, the criteria (22) and (23)
stop the iterative process as soon as the cases (i) and (ii) occur, and make
it possible to save computation time, because many useless itera:tions
are avoided, to restart the iterative process in order to improve the
satisfactory informatical solution which is furnished, and to obtain the
solution with the desired accuracy. Consequently, with CADNA library
and using the termination criteria (21)-(23), and including the test for
restarting the process in the cases in which the process is stopped by the
stopping criterion (22) or {23), we can have a stable and efficient AT A-
orthogonal s-step Orthomin(k) algorithm with the value of s furnished by
the method discussed above for solving the linear system and obtaining

the desired approximate solution {with {|r;jl; < €).

Let us now, o present the examples and the results which we
obtained by the FORTRAN code of AT A-orthogonal s-step Orthomin(k)
method, with floating-point arithmetic for different values of s, and this
code with the CADNA library, and the above tests, for the value of
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s furnished by the computer. Computation have been performed on a
SUN4 computer in double precision. For floating-point arithmetic the
stopping criterion was ||r:}], < € and the maximum number of iterations
allowed set to 1000.

Example 4.

‘We consider the constant-coefficient elliptic equation
~Au+ 2Pyu, + 2Puy = f, (76)

which was described in {11], on the unit square @ = {{z,¥)[0 < z,y < 1}
with Dirichlet boundary conditions. Discretizing (24) on n; X n, grid
gives rise to a sparse linear system of equations of order n = n?. By
using the second order centered differences for the first derivatives and

the Laplacian, the coefficient matrix has the form

a d e
b a d
b a €
A=
[#
d
] ¢ bam

After scaling the matrix and right-hand side by A%(h = 1/(n; + 1)), the

matrix entries are given by
a=4, b= ~(1+4p;), ¢=—(1+ps),

d:'”l'*"pl: e= ~1+py,
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where py = Pih,py = Pk, In our test we take Py = 0, P, = 50. The
grid size is b = 1/21, leading to a problem of size 400. The right
hand side is determined so that the solution z to the discrete system
is 1 everywhere. This allows an easy verification of the results. With
¢ = 107 and 2, = [0,...,07 the results obtained are presented in
Tables 5 and 6. Table 5 contains the minimum number of significant
digits of the norm of arthogonal direction vectors of P, for different
value of 5. Table 6 contains the number of iterations needed to satisfy
the stopping criterion (21}. For CADNA library there are two numbers
in this Table, the first one, denoted by TN, presents the total number
of iterations needed in the different runs of the iterative process. The
second number, denoted by NR, presents the number of restarting of the

iterative process.

s |4 B 12 16 20 24 28 32 26 40
MIN 114 14 14 13 11 6 7 5 3 3

Table 5 : The minimum number of significant digits of the
norm of orthogonal direction vectors of Py,

double floating-point arithmetic | CADNA library
8 4 8 12 16 20 24 28 32 36 40 TN NR

k=113527 1911 7 6 7 9 18 22 & 1
k=246 23 10 7 6 17 16 19 27 34 & 1
k=4152 12 8 8 8 53 57 65 88 90 5 1

Table 6 : The number of iterations to convergence

‘T'he results presented in Table 5 show that the highest value of s
for which all the orthogonal direction vectors of Fy have the norm with at
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least 10 significant digits is s = 20. Table 6 shows that the value s = 20
is a good value for this example. With computed value s = 20, and
the CADNA library, the solution was reached with only 5 iterations for
all the values k = 1,2,4 which is less than those needed with floating-
point arithmetic for different values of s. It must be noted that the
process was stopped by the stopping criterion (23) at 3th iteration and
restarted for improving the computed solution for which the norm of
residual was |jr3]|; = 0.484E 5, ||ra|ls = 0.735E -6, {|rslls = 0.755E -6,
for £ = 1,2,4, respectively. We observe that, for this example, by using
CADNA library we could determine a good value of s (s=20), and obtain
the desired approximate solution (with |jr;|}z < 10~°) with the minimum
number of iterations. So, for this example, the algorithm using CADNA

library is more efficient than that using floating-point arithmetic.

Example 5.

We consider the linear system with

a 1 14a ]
-1 a 1 o
A= , b= s
i o
] -1 « “aml

which was described in {1}, and the dimension equal 400. Witha = 1078,
€ = 10~% and the initial vector zq = [0,...,0)7 the results are given in
the Tables 7 and 8.

3 4 8 12 16 20 24 28 32 36 40
MIN |14 14 14 14 14 13 10 7 4 2

Table 7 : The minimum number of significant digits of the
norm of orthogonal direction vectors of Py.
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double floating-point arithmetic CADNA library
s 14 8 12 16 20 24 28 32 35 40 TN NR
k=11[100 50 36 25 20 19 17 15 24 29 18 1
k=2{100 50 37 25 20 20 18 17 23 39 17 1
k=4 1100 50 39 25 20 22 20 21 37 58 17 1

‘Table 8: The number of iterations to convergence

For this example the computed value of s is 28. From the results
presented in Table 8 it clearly appears that s = 28 is a good value for
this example. With the CADNA library, the solution was reached with
18 iterations for & = 1, and 17 iterations for £ = 2,4. The iterative
process was stopped by the stopping citerion (22) at 16th iteration, and
restarted in order to improve the computed solution for which the norm
of residual was {[rigll; = 0.285E — 3, {|rislls = 0.163E — 3, ||risllz =
0.124F — 3, for k = 1,2,4, respectively. We observe that, with CADNA
library for & = 1 the total number of iterations to convergence is slightly
greater than the smallest which corresponds to s = 32, and for k =
2,4 this number which is equal to 17 is less than or equal to those
needed for different value of s. So, for this example, with CADNA
library the program is able to determine a good value of s (s = 28)
and to furnish the desired approximate solution (with |jr;|l; < 107%)
with a reasonable number of iterations. Conseguently, AT A-orthogonal
s-step Orthomin(k) performed with CADNA library is an efficient tool

for solving the linear system of this example.

Example 8.

We consider the linear system with
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1
n LT

which was described in {23, 26 ]| and the dimension equal 100. With
o =2x10%¢= 107" and the initial vector zp = [0....,0]7 the results

are listed in the Tables 9, 10.

s 4 8 12 16 20 24 28 32 36 48
MIN {16 11 5 2 2 1 O 0 © O

Table 9 : The minimum number of significant digits of the
norm of orthogonal dirsction vectors of Py,

double floating-point arithmeticiCADNA library
8 4 8 12 16 20 TN NR
k=1 2% 14 10 982 « 13
k=2 27 15 19 85 « 14
k=4 22 74 68 131 « 15

Table 10 : The number of iterations to convergence,
* = problem reached iferation count limit.

For this example, the highest value of s for which all the orthogonal
direction vectors of Py have the norm with at least 10 significat digits
is s = 8. The results of Table 10 show that, with CADNA library, the
behavior is similar as in the example 2. It must be noted that the process
has been stopped by the stopping criterion (23) two times for k = 1, and

three times for k = 2,4.
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4.3 Using the CADNA library in the QMR method

As we have seen in section 2.3, in implementation of QMR in the floating-
point arithmetic, the smallest singular value of matrix Dy, is computed
and the criterion

i (0min(Dz) < Tol) then go to step 3)

is used to check whether this matrix is singular or close to singular, and
to decide whether to construct the Lanczos vectors Upt1 and Wyyy as
regular or inner vectors. Here Tol is a suitable chosen tolerance. The
efficiency of the algorithm depends on a good choice of the Tol and
to construct correctly the Lanczos vectors Vpty and w,yy, and if the
quantity ¢,,;,(Dy) is badly computed, propagation of round-off errors
will affect drastically all the computation. In addition, It has been
shown that [14], in exact arithmetic, the stopping criterion in step 4)
of algorithm 2.4 will be satisfied after at most N step -except in a very
special situation. If p,yy = 0 or &1 = 0 then K, (vy, A) is A-invariant
subspace or Kn(w;, A7) is AT-invariant subspace, respectively. In the
first case @, is the exact solution and the QMR algorithm must be
stopped. In the second case, by restarting the QMR method and using
the last available QMR iterate z,,_; (which is a good choice [14]) as the
new initial guess, it is possible tc improve the approximate solution. So,
in floating-point arithmetic, we have to use the following criterions for

stopping or restarting the QMR algorithm,

if (pa41 € € ) then stop, {77)

if (£n41 <€) then restart, (78)

where ¢, is a suitable chosen tolerance. It is necessary to mention that,
it is possible, due to round-off errors propagation, Pn+1 becomes pon-

significant and in the same time it has a large value (p, 4, > €1). In this
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situation, it is clear that, the iterations of QMR method are not able
to improve the approximate solution and the QMR method must be
restarted with the last available QMR iterate z,,_;. Finally, for QMR
Algorithm a convergence criterion is needed. We can stop the QMR

algorithm as soon as the criterion

llrallz < €aflrolla ‘ (79)

is satisfied, where ¢, is also a suitable chosen tolerance. As we observe
another problem is how to choose ¢; and €. We now face the following

questions:

o How can we detect the informatical singularity of the matrix D,

and the numerical instabilities which may occir in the program?
# How can the iterative process be stopped or restarted correctly?

In order to overcome these drawbacks, we propose to introduce the
stochastic arithmetic in the QMR algorithm, which is able to estimate
the round-off error propagation, and to detect the informatical singular-

ity of the matrix D) by means the following simple test,
if {0min(Dz) = 0) then go to step 3) (80)
and to restart or to -stop the process by the following tests,
if (a1 e or Oy, < 1) then (if {7} = Q) then stop else restart,

(81)

i (€ng1 & or Cp,,, < 1) then (if ||ru]} = 8) then stop else restart,
(82)

if (Jiraflz = 0) then stop. (83)
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It has been observed in experiment that, for double precision, ¢ = 10-8
is a good choice for tests (29)-(30) and we will have a stable algorithm.

Let us now, to present an example and the results which we ob-
tained by the FORTRAN code of the QMR algorithm, with floating-
point arithmetic for Tol = 10~* and difference val}ze of €;; and this code
with stochastic arithmetic and the test (28) and the termination criteria
(29)-(31). Computation have been performed in double precision and
the number of iterations allowed set to 200000.

Example 7. We consider the ill-conditioned linear system Hz = b
with the Hilbert matrix H (h;; = 1/{(i+j—1)), and dimension equal to
100. The right hand side is determined so that the exact solution z is 1
everywhere. This allows an easy verification of the results. With z, =
[0, 0,---, OF, e = 10~7, ¢ = 10-8, and stochastic arithmetic the results
obtained are presented in Table 11. These results show that the results
obtained with ¢ = 10~® have not more significant digits than those
obtained with € = 10~7, but the iterative process is stopped too late
(at iteration 138312). So many useless iterations are performed without
improving the accuracy of the solution. It is necessary to mention that
with ¢ = 10~? the iterative process has not been converged. As we
observe, in stochastic arithmetic, the better solution is furnished with
only 6841 iterations which is very smaller than those of floating-point
arithmetic with € = 10~7 and € = 10~%. So, we can conclude that the
use of criterion {28) which detect the informatical singularity of matrix
D, allows to stabilize the algorithm, and the use of the optimal criteria
(29)-(31) allow to continue the iterations, to restart QMR method if it
is necessary, and {o stop the program as soon as a satisfactory solution

is reached.
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€= 10™7 ¢ = 1078 | Stochastic
arithmetic
z(1) 0.9999542 | 1.0000064 1.0000
z(2) 1.0007666 | 0.9998362 1.00
2(3) | 0.9976219 | 1.0008133 | 0.999

z(98) | 0.9968086 | 0.5986008 |  0.995
z(99) | 0.9963570 | 0.9983446 |  0.995
2(100) | 0.9958868 | 0.9980741 | 0.994

Tter 19579 138312 6841

Table 11

5. Conclusion

In this paper we have seen in the implementation of iterative methods

the following problems arise

e How can the iterative process be stopped correctly?

o What is the accuracy of the computed solution given by computer?

» How can detect the numerial instabilities which may occur in

the program?
We observed that the use of CADNA library allows us to solve these
problems. It has been shown that the CADNA library with the opti-
mal termination criterion and the appropriate test is able o stop the
program as soon as a satisfactory solution is reached, to estimate the
accuracy of the solution, to detect the numerical instabilities, to prevent
an overflow which may occur, and to save computer time, because many
useless operations and iterations are not performed. Consequently, the
mentioned iterative methods with CADNA library are the robust and

efficient tools for solving large nonsymmetric systems of linear equations.
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Absiract: We review some basics on the theory of generic sin-
gularities in algebraic geometry. We state certain approaches
towards the explicit local equations of such singularities. The
main point of view is the constructive approach in commutative

algebra and algebraic geometry.

1. Introduction

One of the goals in algebraic geometry is the “local classification”
of algebraic varieties. Namely, if X is an algebraic variety over an al-
gebraically closed field k and Oy, is the local ring of regular functions .

at z (i.e., the ring of “germs” of rational functions on a neighborhood
g ol g
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of z}, how can one classify these rings up to iscmorphism? This is 2
far-reaching problem. The “local analytic classification” is the classifi-
cation of 6}(,:“ the completion of Ox, . The Cohen structure theorem
states that if X is smooth at z, then O, = k[a,,- - ,2,]], the ring of
formal power series in 7 variables where r =dimX. Such a classification
for Oy, with X smooth at z, does not exist.

The theory of ordinary singularities is an approach toward the clas-
sification of @x‘,, when X is singular at z. Ordinary singularities arise
from “generic” projection of smooth varieties. More precisely, let ¥ ¢ P"
be & projective smooth variety of dimension r in the n-dimensional pro-
jective space. Let E be a point outside Y. Let P*~! ¢ P» be the
projective space of dimension n — 1 and let 7 : ¥ — F*~! be the pro-
jection from E. If E is in general position, then ¥; = #(¥) has “nice”
singularities. We may repeat this procedure of projecting for i, and
continue as long as the projection is a birational map onto its image,
The singularities of the resulting variety X are called “ordinary singu-
larities”. A “node” is the only ordinary singularity of curves, and in this
case

@x,m = kf{z1, 2]}/ (2122).

The ordinary singularities of surfaces are also fairly simple. They
consist of ordinary double points, normal (triple) crossings, and pinch
points, where the completion of the local rings are isomorphic to

kllz, v, z]]/(xy)$ kl[z,y, 2}/ (zy2), kllz,y, zﬂ/(zzz - yz):

respectively. However, the ordinary singula,ritiés of higher dimensional
varieties are more complicated. Intuitively, ordinary singularities are
“stable”, and hence they are appropriate models for approximations of
critical points of natural phenormena.
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Many authors such as K. Mount, O. Villamayor, J. Roberts, J. Lluis
and A. Holme have given substantial contributions to the subject. A
reasonably complete “parametric” representation of ordinary singulari-
ties is now available. However, to apply results from “the ideal theory of
the ring of polynomials over a field”, one needs the explicit equations of
these ordinary singularities. For ordinary “double points*, this is rather

simple. Indeed, if x is an ordinary double point, then

51{@' = k[{wh Tty %3]/(% T ,:cp)(xﬁ.l, Tt 3'2;:);
or,
@X,r = k[[z, 21, s Za, s s wa )/
where,
I = theideal of 2x2-minors of S u“) ,
2Uy 2 AUy Zy . . . Zl, Zn

(See [Z] and [ZZ]).
In the first case, the normalization is the product of two complete regular
local rings generalizing a node, while in the second case, the normaliza-
tion is itself a complete regular local ring generalizing a pinch point.
Using the above classification of the ordinary double points, the quo-
tient forms for the classification of triple points follow from [R1} and {$Z].
Here the goal is to see some picture of the progress on the quotient forms
of the completions of local rings at ordinary singularities of higher “mul-

tiplicities”. We will omit the proofs.
2. Ordinary Singunlarities with Higher Multiplicities

For some time, in collaboration with P. Salmon, we have been trying

to provide a nice presentation for erdinary singularities of higher multi-
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plicities as a quotient of the polynomial ring by an explicit ideal. Let A
be the completion of the local ring at a point z on a variety X. Let B
be the normalization of 4. It is well-known that B is a finite A-module
(e.g., see[S]). Let ¢ be the length of B as an A-module. The positive in-
teger ¢ is called the multiplicity of X at z or simply the multiplicity of z.
Roughly speaking, a point of multiplicity ¢ is a point at which g “simple
branches” of the variety intersect, or, it is a “limiting position” of such
points. If B is a demain, the point z is called a “unibranched” point of
multiplicity g. Using these notions, we concentrate on unibranched or-
dinary singularities of multiplicity ¢. The parametric equations of these

points are given in [R2] as:

z=yt+ ot b0t 0,

=yttt 4ot hi=1,00 ,m.

In order to obtain the local defining ideal of the variety at such a
point, we need all relations obtained by “eliminating” ¢ in the above

equations. Consider the “resultant matrix”:

No
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where,

0

isa (g~ 1) x (2¢ — 1) matrix, and

Yy Y
] Wy s
N,':T—
i 0

is a ¢ X (2¢ — 1) matrix.

Yy -z
Yy
0 1 ¢ »
Y -
¥
] Uy v

Yi
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Conjecture 1. (January 1989) The local defining ideal of the uni-
branched ordinary singularity with multiplicity ¢ is generated by the

maximal minors of N.

Lemma 1. To prove Conjecture 1, it is enough to prove it for the case

y=2x = --v = 0. In this case the maximal minors of N are the same

as the maximal minors of

e <y

M,
M,
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where
A A T4 T Zy.gh
%oz Buw . . . zEi
Mg =
U W . e Y Z;
fort=1,-.-,m (we are using z for —z; for simplicity).

Remark 1. The concept of resultant matrix first appeared in [SZ].
"This generalizes the usual Sylvester resultant of two polynomials in one
variable and is in general a larger ideal compared to the classical “u-
resultant” (e.g., see [W1]), and hence is more useful from the scheme
theoretical point of view. ‘

Remark 2. The set of maximal minors of M is not a minimal generating
mq

q
which is by far larger than m¢, the expected number for a minimal

generating set.

set for this ideal. Indeed, the number of maximal minors of M is ,

Remark 3. Putting z = 1, the matrix M; becomes a circulant matrix
(see [D]). In the sense that each row is a permutation of the first row by
a cycle of length ¢. Assigning certain degrees to the variables as in the

next section, M; will be the homogenization of the this circulant matrix.

3. An Approach via Grébner Algebra.

Grébner bases are certain tools for computations in the ring of poly-
nomials. To distinguish the “initial monomial” of a polynomial as the

largest monomial appearing in the polynomial, a total order is given on
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the monomials. A generating set of an ideal whose initials generate the
ideal of initials of the given ideal, is called a Grébuer basis of the ideal.
The initials of a Grobner basis is a set of monomials which can best
reflect the given ideal.

Let’s recrder the matrix M as

Zm B ZVm . . . Zlpm |
2y ZU 2y . . . ZEy
Ym  Bm  ZUm . - . ZT,,
M =
i 2y 2y . . s 2Ty
Uy Uy e e e Ym Zm
Uy (21 R . th b-41
Let degy; = 1, degy; = 2, -+, degy; = ¢ — 1, degz; = degz =

g. Consider the “degree reverse lexicographic” order on the monomials
induced by

Zm>zm__1>°"'>21>Z>ym>‘“>?}1>Im>"">$1>ﬂm>°°‘>?.51.

Definition 1. A maximal minor of M is called principal if no entry on
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its main diagonal is a multiple of =.

Lemma 2. The ideal of maximal minors of M is generated by the set
of principal maximal minors of M.

Lemma 3. The initial monomial of a principal maximal minor of M
with respect o the above monomila order, is the product of the entries
on the main diagonal of the minor.

Conjecture 2. (August 1997) The set of principal minors of M forms
a Grobner basis for the ideal of maximal minors of M.

Theorem 1. Conjecture 2 implies Conjecture 1.

Definition 2. A principal minor is called a distinguished principal mi-
nor (DP), if the entries on the main diagonal are non-decreasing from
the top to the bottom.

Conjecture 3. The set of DP minors of M generates the ideal of max-
imal minors of M.

Theorem 2. Conjecture 3 implies Conjecture 2.

Lemma 4. The number of DP minors of M is m?.

Conjecture 3 has lead to certain basic determinantal identities which
do not seem to be well-known. Let’s state just one of such identities.
Theorem 3. Let
r Ll
£y

be a n X n matrix, § € §, any permutation with 7 fixed points. Then
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9(};1) L; L}
Ly 6(Ly) L,
+ 44| T =rIDL
Ln Ly 6(,)

4. The “episode” of Elimination Theory!

The concept of resultant has been a central one in the elimination
theory heavily studied in the 18th and the 19th centuries mostly with
constructive methods. In the early part of the 20th century, many of the
leading mathematicians in algebraic geometry and commutative algebra,
became less interested in elimination theory and its classical methods. A.
Weil in his influential book “Foundation of Algebraic Geometry, 1946
{{[W], page 31), right before quoting an important result from C. Cheval-
ley, says, “The device that follows - - - it may be hoped, finally eliminates
from algebraic geometry the last traces of Elimination Theory ---”. A
section of the famous book by B.L. van der Wearden, “Modern Alge-
bra 1953" [W1], is devoted to elimination theory. In the later editions
(1959-) [W2], the name “Algebra” is adopted for the book, and van der
Wearden eliminates the section on elimination theory! As a result, a
simple constructive proof of the existence of a resultant system essen-
tially due to Kronecker, is replaced by a non-constructive proof using
the nontrivial Hilbert’s Nullstellensatz in the second volume of the book.
In the seventies of this century, the tide starts to turn. This is reflected
in 8. Abhyankar’s famous poem of 1970%:

Eliminate, eliminate, eliminate,

Pliminate the eliminators of elimination theory
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‘Today, with the enormous influence of computers in mathematics, the
use of constructive methods has been inevitable [E]. In commutative
algebra and algebraic geometry, the basic notion for such constructive
methods, has been the notion of “Grébner basis”. We have been trying
to put some of the constructive methods of elimination theory in the

frame work of the theory of Grobner bases.
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